

-

Intel the Microcomputer Company:
When Intel invented the microcomputer in 1971, it created the era of microcomputers. Whether

used in embedded applications such as automobifes or microwave ovens, or as the CPU in
personal computers or supercomputers, Intel's microcomputers have always offered leading-edge

technology. Intel continues to strive for the highest standards in memory, microcomputer
components, modules and systems to give its customers the best possible competitive advantages.

EMBEDDED APPLICATIONS
HANDBOOK

1990

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear In this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the laiest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel pro~ucts:

376, 386, 387,486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, ACE960,
BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX, FaxBACK, Genius, i, t,
i486, i750, i860, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, 121CE, iLBX, iMDDX, iMMX,
Inboard, h;site, Intel, intel, Intel386, intelBOS, Intel Certified, Intelevision, in!aligent
Identifier, inteligent Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK,
iRMX, iSBC, iSBX, iSDM, iSXM, Ubrary Manager, MAPNET, MCS, Megachassis,
MICROMAINFRAME, MULTI BUS, MULTICHANNEL, MULTIMODULE, MultiSERVER,
ONCE, OpenNET, OTP, PR0750, PROMPT, Promware, QUEST, QueX, Quick-Erase,
Quick-Pulse Programming, Ripplemode, RMx/80, RUPI, Seamless, SLD,
SugarCube, ToolTALK, UPI, Visual Edge, VLSiCEL, and ZapCode, and the combina­
tion of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

MULTI BUS is a patented Intel bus.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade­
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

©INTEL CORPORATION 1989 CG·l01789

-

.,..

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support serVice that provides Intel customers with hardware support,
software support, customer trainin(l, consulting services and network management services. For detailed infor­
mation contact your local sales offIces.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer's expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel's customer support is quite extensive. It can start with assistance during your
development effort to network management. 100 Intel sales and service offices are located worldwide-in the
U.S., Canada, Europe and the Far East. So wherever you're using Intel technology, our professional staff is
within close reach.

HARDWARE SUPPORT SERVICES

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFIWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor­
mation Phone Service), updates and subscription service (product-specific troubleshootmg guides and;
COMMENTS Magazine). Basic support consists of updates and the subscription service. Contracts are sold in
environments,which represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well yersed in technical' areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa­
tion. InJ·ust three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-stu y. For optimum convenience; workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course
categories include: architecture and assembly language, programming and operating systems, BITBUS TN and
LAN applications.

NETWORK. MANAGEMENT SERVICES

Today's networking products are powerful and extremely flexible. The return they can provide on your invest­
ment via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network's physical and functional design, to
implementation, installation and maintenance. Whether installing your first network or adding to an existing
one, Intel's Networking Specialists can optimize network performance for you.

CG/CUSTSUPP/100389

-

- ..

Table of Contents

MCS®-48 FAMILY
Chapter 1
MCS®-48 APPLICATION NOTES

AP-24 Application Techniques for the MCS®-48 Family.. 1-1
AP-40 Keyboard/Display Scanning with Intel's MCS®-48 Microcomputers. 1-25
AP-49 Serial I/O and Math Utilities for the 8049 Microcomputer 1-50
AP-55A A High-Speed Emulatorforthe Intel MCS®-48 Microcomputers 1-73
AP-91 Using the 8049 as an 80 Column Printer Controller 1-173

MCS®-S1 FAMILY
Chapter 2
MCS®-S1 APPLICATION NOTES & ARTICLE REilRINTS

AP-69 An Introduction to the Intel MCS®-51 Single-Chip Microcomputer 2-1
AP-70 Using the Intel MCS®-51 Boolean Processing Capabilities 2-31
AP-223 8051 Based CRT Terminal Controller :.............................. 2-76
AB-38 Interfacing the 82786 Graphic Coprocessor to the 8051 2-153
AB-39 Interfacing the Densitron LCD to the 8051 ,.................... 2-159
AB-40 32-Bit Math Routines for the 8051 ... 2-166
AB-12 Designing a Mailbox Memory for Two 80C31 Microcontrollers Using EPLDs 2-175
AP-252 Designing with the 80C51 BH ... 2-189
AP-410 Enhanced Serial Port on the 83C51 FA ;... 2-213
AB-41 Software Serial Port Implemented with the PCA 2-221'
AP-415 83C51 FAlFB PCA Cookbook ... :............ 2-244
AP-425 Small DC Motor Control 2-287
AP-429 Application Techniques for the 83C 152 Global Serial Channel in.

CSMAlCD Mode 2-301
AR-517 Using the 8051 Microcontrollerwith ResonantTransducers 2-369
AR-526 Analog/Digital Processing with Microcontrollers :...................................... 2-374

Chapter 3 . .
ASIC FAMILY APPLICATION NOTE & ARTICLE REPRINT

AP-413 Using Intel's ASIC Core Cell to Expand the Capabilities of an 80C51
Based System :... 3-1

AR-537 A Fast-Turnaround, Easily Testable ASIC Chip for Serial Bus Control.......... 3-11

THE RUPITM FAMILY
Chapter 4
RUPITM APPLICATION NOTES

AP-281 UPI-452 Accelerates 80286 Bus Perlormance ... 4-1
AP-283 RUPITM/Flexibility in Frame Size with the 8044 :........... 4-21

80186/80188 FAMILY
ChapterS
80186/188 APPLICATION NOTES .

AP-186 Using the 80186/188/C186/C188 Microprocessor .. 5-1
AP-258 High Speed Numerics with the 80186/80188 and 8087 5-83
AP-286 80186/188 Interface to Intel Microcontrollers ... '5-99
AB-36 80186/80188 DMA Latency ,... 5-129
AB-37 80186/80188 EFI Drive and Oscillator Operation 5-132
AB-31 The 80C186/80C188 Integrated Refresh Control Unit 5-134
AB-35 DRAM Refresh/Control with the 80186/188 '" 5-147

vii

Table of Contents (Continued)

MCS®-96 FAMILY
Chapters
MCS®-96 APPLICATION NOTES & ARTICLE REPRINT

AP-248 Using the 8096 ... ;.,.. 6-1
AP-275 An FFT Algorithm with the MCS®-96 Products
. Including Supporting Routines and Examples 6-103
AB-32 Upgrade Path from 8096-90 to 8096BH to 80C196 ~..................... 6-178
AB-33 Memory Expansion for the 8096 6-181
AB-34 Integer Square Root Routjne for the 8096 : ;...... 6-193
AP-406 MCS®-96 Analog Acquisition Primer 6-197
AP-428 Distributed Motor Control Using the 80C 196KB ... 6-296
AR-515 A Single-Chip Image Processor :.. 6-325

Chapter 7
MCS®-96 Diagnostic Library 7-1

Chapter 8
80960 ARTICLE REPRINTS

AB-42 80960KX Self-Test ... :...................................... 8-1
AR-541 Intel's 80960: An Architecture Optimized for Embedded Control ,.. 8-4
AR-551 Embedded Controllers Push Printer Performance ,........... 8-18
AR-557 A Programmer's View of the 80960 Architecture 8-24

GENERAL MICROCONTROLLER
Chapter 9
APPLICATION NOTES

AP-125 Designing Microcontroller Systems for Electrically N9isy Environments 9-1
AP-155 Oscillators for Microcontrollers :... 9-23
AP-318 Intel's 87C75PF Port Expander Reduces System Size & Design Time 9-55
AP-315 Latched EPROMs Simplify Microcontroller Designs 9-80

viii

. -

MCS®-48 Application Notes 1

-

_ v

. inter

© Intel Corporation, 1977

APPLICATION
NOTE

1-1

AP-24

. February 1977

98413A

AP-24

INTRODUCTION

The INTEL ® MCS-48™ family consists of a series
of seven parts, including three processors, which take
advantage of the latest advances in silicon techno­
logy to provide the system designer with an effec­
tive solution to a wide variety of design problems.
The significant contribution of the MCS-48 family
is that instead of consisting of integrated micro­
computer components it consists of integrated
microcomputer systems. A single integrated circuit
contains the processor, RAM, ROM (or PROM), a
timer, and I/O.

This application note suggests a variety of applica­
tion techniques which are useful with the MCS-48.
Rather than presenting the design of a complete
system it describes the implementation of "sub­
systems" which are common to many micropro-

PROM CPU
EXPANDER MEMORY

STROBE SEPARATE

cessor based systems. The subsystems described are
analog input and output, the use of tables for
function evaluation, receiving serial code, transmit­
ting serial code, and parity generation. After an
overview of the MCS-48 family these areas are dis­
cussed in a more or less independent manner.

THE MCS-48™ FAMILY

The processors in the MCS-48 family all share an
identical architecture. The only significant differ­
ence is the type of on board program storage which
is provided. The 8748 (see Figure I) includes 1024
bytes of erasable, programmable, ROM (EPROM),
the 8048 replaces the EPROM with an equivalent
amount of mask programmed ROM, nd the 8035
provides the CPU function with no on board
program storage. All three of these processors

TEST 0 - TEST 1 - ,NT
-,.-­

FLAG a -
TIMER FLAG

POWER
SUPPLY

~PAOGRAMSUPPLY

{

VOO

~ +5V (LOW POWER

V STANDBYI

~GND

REGISTER ;>

REGISTER 3

REGISTER 4

REGISTER 5

REGISTER 6

REGISTER 7

8lEVEL STACK
(VARIABLE LENGTHI

OPTIONAL SECOND
REGISTER BANK

DATA STORE

REStDENT
RAM ARRAY

64 ~ 8

MCS4s™ Internal Structure

1-2

-

AP-24

INSTRUCTION SET

Mnemonic Description Bytes Cycle Mnemonic Description Bytes Cycles

ADD A.R Add register to A , , ..
'S CALL Jump to subroutine 2 2

ADD A.@R Add data memory to A , , ~ RET Return , 2 e
ADD A. =data Add immediate to A 2 2 .c RETR Return and restore status , 2
ADDC A. R Add register with carry , , ~

III

ADDC A.@R Add data memory with carry , , CLR C Clear Carry , ,
ADDC A. =data Add immediate with carry 2 2 CPL C Complement Carry , ,
ANL A. R And register· to A , , ~ CLR FO Clear Flag 0 , ,
ANL A.@R And data memory to A , , u:: CPL FO Complement Flag 0 , ,
ANL A. =data And immediate to A 2 2 CLR F' Clear I'Ia9 , , ,
DRL A. R Or register to A , ,

CPL F' Complement Flag' , ,
S DRL A.@R Or data memory to A , ,
~
:; ORL A. =data Or immediate to A 2 2
E MDV A. R Move register to A , ,
11 XRL A. R Exclusive Or register to A , ,

MOV A.@R Move data memory to A , ,
~ XRL A.@R Exclusive or data memory to A , ,
~ MDV A. =dat~ Move immediate to A 2 2

XRL A, =data Exclusive or immediate to A 2 2
MOV R, A Move A to register , ,

INCA Increment A , ,
MDV@R,A Move A to data memory , ,

~ DEC A Decrement A , , .. MOV R. =data Move immediate to register 2 2 > CLR A Clear A , , 0 MOV@R, =data Move immediate to data memory 2 2
CPL A Complement A , , :;

~ MDV A, PSW Move PSW to A , ,
DAA Decimal Adjust A , ,

MDV PSW, A Move A to PSW , ,
C

SWAP A Swap nibbles of A , ,
XCH A, R Exchange A and register , ,

RL A Rotate A left , ,
XCH A,@R Exchange A and data memory , ,

RLC A Rotate A left through carry , ,
XCHD A,@R Exchange nibble of A and register 1 ,

RR A Rotate A right , ,
MDVX A,@R Move external data memory to A , '2

RRCA Rotate A right through carry , ,
MDVX@R,A Move A to external data memory , 2

IN A. P I nput port to A , 2 MOVPA,@A Move to A from current page , 2

OUTL p. A Output A to port , 2 MDVP3A,@A Move to A from Page 3 , 2

ANL P. =data And immediate to port 2 2

'5 ORL P, =data Or immediate to port 2 2
~ INS A. BUS Input BUS to A , 2 MOV A, T Read Timer/Counter , ,
~

OUTL BUS, A Output A to BUS , 2 23 MOV T,A Load Timer/Counter , , g c
ANL BUS, =data And immediate to BUS 2 2

~ STRTT Start Timer , ,
~ 0
c.

OR L BUS, =data Or immediate to BUS 2 2
,tJ

STRT CNT Start Counter , ,
E "';::

MOVD A, P Input Expander port to A , 2 = STDP TCNT Stop Timer/Counter , ,
E

MOVD P,A Output A to Expander port , 2 i= EN TCNTI Enable Timer/Counter 'Interrupt , ,
ANlDP,A And A to Expander port , 2 DIS TCNTI Disable Timer/Counter Interrupt , ,
ORlD P. A Or A to Expander port , 2

~ INC R Increment register , , EN I Enable external interrupt , ,
l INC@R Increment data memory , , DIS I Disable external interrupt , ,
= DEC R Decrement register , , g SEL RBO Select register bank 0 , ,
a:

c SEL RB' Select register bank 1 , ,
0

SEL MBO Select memory bank 0 , ,
JMP add, Jump unconditional 2 2 tJ

JMPP@A Jump indirect , 2 SEL MB' Select memory bank 1 , ,
DJNZ R, addr Decrement register and skip 2 2 ENTO CLK Enable Clock output on TO , ,
JC add, Jump on Carry:::: 1 2 2
JNC addr Jump an Carry:::: 0 2 2
J Z add, Jump on A Zero 2 2 NOP No Operation , ,
JNZ add, Jump on A not Zero 2 2

.c JTO add' Jump on TO = , 2 2 ~ c
JNTO addr Jump on TO = 0 2 2 ~

III JTl add, Jump on T1 = 1 2 2
JNTl addr Jump on T' = 0 2 2,
JFO addr Jump on FO =, 2 2
JF' addr Jump on Fl = 1 2 2 Mnemonics copyright Intel Corporation 1976

JTF addr Jump on timer flag 2 2
JNI addr Jump on iNT = 0 2 2
JBb add, Jump on Accumulator Bit 2 2

Figure 2. 8048/8748/8035 I nstruction Set

1-3

AP-24

operate from a single 5-volt power supply. The
8748 requires an additional 25-volt supply only
while the on board EPROM is.being programmed.
When installed in a system only' the 5-volt supply is
needed. Aside from program storage, these chips
include 64 bytes of data storage (RAM), an eight
bit timer which can also be used to count external
events, 27 programmable I/O pins and the processor
itself. The processor offers a wide range ofinstruc­
tion capability including many designed for bit,
nibble, and byte manipulation. The instruction set
is summarized in Figure 2.

Aside from the processors, the MCS48 family
includes 4 devices: one pure I/O device and 3 com­
bination memory and I/O devices. The pure I/O
device is the 8243, a device which is connected to a
special 4 bit bus provided by the MCS48 processors
and which provides 16 I/O pins which can be pro­
grammatically controlled.

The combination memory and I/O devices consist
of the 8355, the 8755, and the 8155. The 8355
and the 8755 both provide 2,048 bytes of program
storage and two eight bit data ports. The only
difference between these devices is that the 8355
contains masked program ROM and the 8755 con­
tains EPROM. The 8155 combines 256 bytes of
data storage (RAM), two eight bit data ports, a six
bit control port, and a 14 bit programmable timer.

Figure 3 shows the various system configurations
which can be achieved using the MCS48 family of
parts. It should also be noted that eight of the pro­
cessors' I/O lines have been configured as a bidirec­
tional bus which can be used to interface to stan­
dard Intel peripheral parts such as the 8251 USART
(for serial I/O), the 8255A PPI (provides 24 I/O
lines) and the complete range of memory compo­
·nents.
. More detailed information concerning the MCS48·
family can be obtained from the "MCS48 Micro­
computer User's Manual" which provides a com­
plete description of the MCS48 family and its
. members. A general familiarity with this document
will make the application techniques which follow
easier to understand.

ANALOG I/O

If analog I/O is required for a MCS48™ system
there are many alternatives available from the
makers of analog I/O modules. By searching through
their catalogs it is possible to find almost any combi­
nation of features which is technically feasible. Per­
haps the best example of such modules are the MP-
10 and MP-20 hybrid modules recently introduced
by Burr-Brown Research Corporation. The MP-IO
provides two analog outputs and the MP-20 pro­
vides 16 analog inputs. Both of these units were

1-4,

1088
lK

832
768

64

[) Number of Available Timers
() Number of Available I/O Lines

I-
8035 8048

8048 8355 8355
4·8155 4·8155 4-8155

[5J (101) [5) (116) [5J (116)

r-'
8035 8048

8048 8355 8355
3-8155 ,3·8155 3·8155

(4) (80) (4) (95) (4) (95)

r-
8035 8048

8048 8355 8355
2-8155 2-8155 2-8155

[3) (59) (3) (74) (3) (74)

f-
8035 8048

8048 8355 8355
8155 8155 8155

[2J (38) (2) (53) [2J (53)

8035 8048
8048 8355 8355

(1) (24) [lL (28) [lJ (28)

8035
2-8355
4-8155

[5J (131)

8035
2-8355
3-8155

[4J (110)

8035
2·8355
2-8155

[3J (89)

8035
2·8355
8155

[2J (68)

8035
2·8355

[lJ (43)

lK 2K 3K 4K

PROGRAM MEMORY (ROM)

Figure 3. The Expanded MCS48 TM System

specifically designed to interface with micro­
processors_

A block diagram oftheMP-IO is shown in Figure 4.
It consists of two eight bit digital to analog conver­
ters, two eight bit latches which are loaded from
the data bus, and address decoding logic to deter­
mine when the latches should be loaded. The 0/ A
converters each generate an analog output in the
range of 10 volts with an output impedance of In.
Accuracy is ±0.4% of full scale and the output is
stable 25~sec after the eight bit binary data is
loaded into the appropriate latch. The latches are
loaded by the write pulse (WR) whenever the
proper address is presented to the MP-IO. The
lower two addresses (AO and AI) are used inter­
nally by the device. Addresses A2 & A3 are com­
pared with the address determination inputs B2
and B3. If their signals are found to be equal, and
if addresses A4-A 13 are all high, then the device
is selected and one of the latches will be loaded.
Address bit Al selects between output I and out­
put 2. If address bit AO is set then the initializa­
tion channel of the DIA is selected. In order to
prepare for operation a data pattern of 80H must

-

AP-24

A, A,
A,
AO
w"R---Q

DB 70'

ADDRESS
LOGIC

REG 1

., .,

LOAD 2

A'G'~

OA

DA

Figure 4. Mp·10 Block Diagram

ANALOG OUT ,

ANALOG OUT ,

be output to this channel folJowing the reset of the
device.
A block diagram of the MP-20 analog to digital
converter is shown in figure 5. This unit consists
of a 16 input analog multiplexer, an instrumenta­
tion amplifier, an eight bit successive approxima­
tion analog to digital converter, and control logic.
~he 16 inp~t multiplexer can be used to input
eIther 16 smgle ended or 8 differential inputs.
The output from the mUltiplexer is fed into the
instrumentation amplifier which is configured so
that it can easily be strapped for single ended 0-5
volt inputs, single ended ±5 volt inputs, or differen­
tial 0-5 volt signals. Provisions are made for an
external gain control resistor on the amplifier. The
gain control equation is:

A15 A,.
A" A" A"
A,O
A 9
A 8
A 7
A 6
A 5
A. A,
A 2
A ,
A 0

G = 2 + 50kn
Rext

EXTERNAL
GAIN CONTROL

RESISTER

Figure 5. MP·20 Analog Subsystem

1-5

With no Rext (Rext = 00) thl! gain is two and the
input is 0-5 or ±5 volts full scale. Adding an I!xter­
nal resistor results in higher gain so that low level
(±50mV) signals from thermocouples and strain
gauges can be accommodated. The output from
the amplifier is applied to the actual A/D con­
verter which provides an eight bit output with
guaranteed monotonicity and an accuracy of ±0.4~
of full scale. Note that this accuracy is specitied
for the entire module, not just for the converter
itself. The control logic monitors address lines
A 15 through A4 to determine when the address of
the unit has been selected. An address that the unit
will respond to is determined by II address control
pins, labeled A4 through A 14. If one of these pins
is tied to a logic 0 then the corresponding address
pin must be high in order for the unit to be selected.
If the pin is tied to a logic I then the corresponding
address pin must be low. If the address of the
module is selected when MEMR pulse occurs, the
lower four addresses (A3-AO) are stored in a latch
which addresses the multiplexer. The coincidence
of the proper address and MEMR also initiates a
conversion and gates the output of the converter
on to the eight bit data bus.

The control logic of the MP-20 was designed to
operate directly with an MCS-80™ system. When a
MEMR occurs and a conversion is initiated the MP-
20 generates a READY signal which is used to
extend the cycle of the 8080A for the duration of
the conversion. READY is brought high after the
conversion is complete which allows the 8080A
to initiate a conversion and read the resulting data
in a single, albeit long, memory or I/O cycle. The
conversion time of the MP-20 depends on the gain
selected for the amplifier. With no external resistor
(R = 00) the gain is two and the conversion time is
35 Jlsec. For R = 5 IOn the gain is:

G=2+ 50kn 100 .51kn -

and the conversion time becomes 100Jlsec. These
settling times are specified in the MP-20 data sheet
and range from 35 to 175 microseconds. The
READY timing is controlled by an external capa­
citor. For a gain of 2 no external capacitor is
required but if higher gains are selected a capacitor
is needed to extend .the timing.

A schematic showing both the MP-IO D/A and the
MP-20 A/D connected to the 8748 is shown in
Figure 6. This configuration, which consists of
only four major components, gives an excellent
example of what modern technology can do for

inter AP-24

I~ l:>llt;: l:gJ::d~ I:s: li;l I!: I~
~.J'J>~t!-!tlt

~
Ai2
Ail
A;O ..
Ajj

'I~ '1·2 A,
•• As

lKH ~ OBIN
As ·.V OUTPUT SELECT ..

~ CQMPIN
65 BPO IN , S

cit R' IN'4
6B

IA OUT Mp·20
20pF 6 MHz ?OpF

II~
IN ' 3

-:f-f~ol1,~
lAIN LO INT?

IA IN HI ffi INn
MUX OUT HI 1N1O

, XTALI XTAl2 MUX Qur LO IN9

cit MUX ENAB2 INB
15

StN/DIFF IN,

Rli
B •• MfM'R IN6

60
IN.

59
DO IN,

5B
0, IN,

57
0; IN,

--1 TO 56
03 IN,

~ T, '55
0, INO

~ iNT 54
0 5

~
06 ~' .

~ P"
0, ~l~ ~):>):0 l> » -i _ t.J W "'" I,,7l

~ P"

~l!l
~ ~

~ P2S lKH
~ P,. .5V

1> [" ----1!
P" ----E.
P" MD R ,

-----'! P21 " DIB DOa ~~
~ P,o

'0 01, Mes 48"~
'B

DO,
17

'6
016 006 ,.

e
01 5

8212
DO.

10 , 01, DO, •
~ • 013 DO,

6
P'17 , 01, DO,

4 ~ P" 01, DO,
--------B p,.

ALE " " OS> ----2!.
P" PROG r!L- BS1 ---22
P"

~' ~ P"
----'.[P"
~ - ~ ~ ~ tj ~ ~

PIO

~D7 rnJ'l",.!"J"l'J"
06 ~ OUT 1 ,

-a , 05

"
Vee , D.

VDD 0,
MP 10

. 5
SS • 0,

~ PSeN ,~ 0,

~
OUT.2 Vss Do

EA

~1a8~""
~~J';gl;tt

RESET

fJ~
".I "l "-I I\J - ~ ~ ~ £,., CD --.j co (t) ~ 0 -

1 2. 15 14 _
,

5 611 -

9602 9602
4 12 9' .

'SV

MCS-48™ Based Analo9 Processor

1-6

IK
-5V

~r----!I' 1!..
~
1L

" JI ,.
-"'-
1.!..-
~
~
~
~
~
~
~
72

~
~-
~
~
~
,!,-
~

+0-
~
~

~}
~.

'K

ANA
INPU
1161

LOG
TS

ANAL DG
UTS QUTP

121

-.

-

AP-24

the system designer. The four components provide:

a. An eight bit microprocessor
b. 64 bytes of RAM
c. 1024 bytes of UV erasable PROM
d. A timer/event counter
e. 16 digital I/O pins
f. 2 testable input pins
g. An interrupt capability
h. 16 eight bit analog inputs
i. 2 eight bit analog outputs

The MCS48 communicates with the D/ A and AID
converters in a memory mapped mode (i.e., it treats
the devices as if they were external RAM). By set­
ting an address in either RO or R I and then execut­
ing a MOVX the software can transfer data between
the accumulator' and the analog I/O. When the
MCS48 executes the MOVX instruction it first
sends the eight bit address out on the bus and
strobes it into the 82121atch with the ALE (Address
Latch Enable) signal. After the address is latched,
the MCS48 uses the same bus to transfer data to
or from the accumulator. If data is being sent out
(MOVX oRj, A) the WR strobe is used; if the data
is being moved into the accumulator (MOVX A,
oRj) the RD strobe is used. The one shots on the
WR line are used to delay the write strobe of the
MCS48 to meet the data set up specifications of
the MP-IO.
In order to provide reset capability for the analog
devices without dedicating an I/O pin from the
MCS48, special addresses are used as reset channels.
Executing any MOYXwith anaddressofOXXXXXXX
will reset the A/D module; a similar operation with
an address of X I XXXXXX will reset the D/ A; a
MOVX with an address of OIXXXXXX will reset
both devices. All data transfers are accomplished
with the upper two bits of the address field equal
to 10. A summary of the addressing of the analog
devices is shown in Table I. Notice that except for
an initialization channel for the D/A (which must

Table 1. Analog Interface Addresses

INPUT OR OUTPUT

OXXX XXXX Reset AID
X1XX XXXX Reset D/A

INPUT

001 1 nnnn Read p,ID Channel n n n n

OUTPUT

1 01 1 0001 Initialize D/A
101 1 0000 Write Channel 1
101 1 0010 Write Channel 2

All mnemonics copyrighted © Intel Corporation 1976. 1-7

be written to following a reset to initialize its
internal logic) all channels involve some form of
data transfer.

As was mentioned previously, the MP-:!o was
designed to use the READY line of the 8080A.
Obviously this presents a problem since the MeS-
48 does not support a READY line (with its
attendant requirement of entering WAIT state).
The necessity of a READY input can be overcome
by performing a read operation to set the channel
address, waiting the required delay (35 J.lsec for a
gain of two) and then performing a second read to
actually obtain the data. The second read will read
in the data from the channel selected by the first
read irrespective of the channel selected for the
second read. Thus it is possible to use the second
read to set up the channel for the third read. Each
read can read in the current channel and select the
next channel for conversion.

The MP-20 is shown in Figure 6 strapped to input
16 single ended ±5 volts signals. Programs which
were used to test this configuration are shown in
Figure 7. The first of these programs uses the D/ A
converter to generate sawtooth waveforms by
outputting an incrementing value to the D/ A
converters. The second program scans the analog
inputs and stores their digital values in a table
located in RAM.

LaC OBJ

ilIB3
11181

. UBI

II'.
Ilill 2391
11112 BBB3
III" 91

IllS BBBI
B11717
111B 9.
111192415

SEQ SOURCE STATEf'lEtH

• ,
2: •••.•. -----.------------------
3 ; TEST PROGRAM FOR AHALOG OUTPUT
"': THIS PROGRAM OUTPUTS A SAW-
S; TOOTH WAVEFORM BY C1UTPUTING
6; AN IHCREM(NTIHG PATTERN.
7; -------.-----------.---.------. .
9 ; -------

18 ; EQUATES
"; -------
12
13 (HITCH EGU IB3H ; D/A INITIALIZATION CHANNEL
'''' INITDT EGU
15 MTCH' EGU ,.
17; -------------
19 ; START OF TEST
19 ; -------------

BSH : D/A INITIALIZATION DATA
IBIH lOlA DATA CHANNEL

21 ORG l11H

" 22 START: /'IOV
23 MOV
24
2S

.J!!IlVll

26 LOOP; MOV

" 2.
2.
" 31

ONe
M!lVX
(HD

; IHITIALIZE O/A
A,#IN/TOT
RI,ttIHITCH
@RO,A

I TEST lOOP-OUTPUT SAWTOOTH
RI. ItDATCH
A
@tRI.A
lOOP

; [HO or PROC.RAM

Figure7a. D/A Exercise Program

inter AP-24

LaC OBJ

•• 2.
.lIr ,,"5

" ..
1,lIlI92f

"'2 IB'f
"'48BBF"
"16 8.

"17 scla
"19 fet9

"'8 ca
",e 8.
'"0 AI

"IEG

".F SCI ..
11il EC1'

1"3 [Bl8

IllS 2"'''

SEQ SOURe[STATEJI£HT

• ,
2 -------------------------------. ______ _
3

• S

•
T[ST PROGRAM fOR ANAlOG IHPUT

TH"IS PROCiRAf'I SCAMS THE INPUT CHAtttElS
AHD STORtS THE R[ADINGS IN A TAkE
STARTltIG AT IU'f.

7 ---------------------------------------•
9 ; -------
I' ; EQUATES

" ; .------
" 138JF"f EOU 2 •• i START OF 9JF'f[R
14 P1AXCH EOU IS ; HO or ANAl.OG I HPUTS
IS AIHCH EOU IBIH ; BAst ADDRESS OF ANALOG INPUTS
IS TlCIC EOU S ; EXECUTION TlfIE or DJN2

" 18 ; -------------
19 ; START Of TEST
2' ; -------------.. ORG l11H
22 J 5[nP TO SCAN ANALOG UtPUTS
23 START: '"'" Ii 1 • "BlFr .I'IAXCH .. """ R3,tlMAXCH
2S "'" R,.#(AIHCH.I'!AX(;H)
26 ; SEl.ECT CHAH/'IEL 'S
27 '""" A,ORI
20 ; WAIT »". MICROSECOHDS .. "'" li!4, "",/TICK
3t DJItZ Ii",$
31 ; ~ SCAN AHALDGS
32 LOOP: DEC •• 33 ; GET OATA .. '""" A.OR'
3S ; IOJE INTO 9JF'FER
36 "'" ORI,A
37 j D£CRtr:£HT BUF'fER PO I NT
30 DEC .,
39 ; PAD 2. I'IJCROSEC .. "'" R4,#2'/TlCK .. OJH2 R"',$.. ! LOOP UNTIL DCIHE .. OJHZ R3,LOOP .. ! REPEAT TEST F'OREVER .. JI'P START .. ; END or PRQGRAI'I ., EHI)

Figure 7b. AID Exercise Program

TABLE lOOKUP TECHNIQUES

111 the previous section the interface between analog
I/O devices and the MCS-48™ was discussed. In
many applications involving analog I/O one quickly
finds that nature is inherently nonlinear, and the
mathematics involved in 'linearizing it' can tax the
cOJ11putational power of the microprocessor, partic­
ularly if it has other tasks to perform. Problems
of this nature are good candidates for the use of
tables.

As an example of how tables can be used as part of
an analog output scheme, consider a system which
requires an MCS-48 to output a variable frequency
sinusoidal waveform. One method of performing
this function would be to use the timer to generate
an interrupt at a fixed rate of 256 times the desired
output frequency. At each interrupt the appropriate
vahieof the sine function could be calculated from
the Maclaurin series:

. 'x3 x5 x 7
Sm x = x - 3! + 5! - 7T

(_1)k x 2k +1
(2K + I)!

Where K is chosen to be large enough to provide
th~ required accuracy.
All mnemonics copyrighted @ Intel Corporation 197ft 1-8

The above calculation, although conceptually
simple, would be time consuming and would
severely limit the possible output frequencies which
could be obtained. As an alternative to calculating
these values in real time, the values could be precal­
culated off line and stored in a table. Upon each
interrupt the MCS-48 would merely have to retrieve
the appropriate value from the table and output
it to the D/A converter. the MCS-48 provides a
special instruction which can be used to access
data in a table. If'the table is stored in the last 256
bytes of the first kilobyte of MCS-48 memory
then the table lookup can be performed by loading
the independent variable (time in this case) into
the accumulator and executing the instruction .

MOVP3 A,@A

This instruction uses the initial contents of the
accumulator to index into page 3 of program
storage. The location pointed to is read and the
contents placed in the accumuhitor. If (as is often
the case) a table of fewer than 256 entries is
required, then the table can be located in any page
of program mel110ry and the instruction:

MOVPA,@A

can be used to retrieve data from the table. This
instruction operates in the same manner as does
the previous instruction' except that the current
page of program storage is ass4med to contain
the table.

If it is possible to devote slightly more of the
microprocessor's time to tile table look up process,
then a much smaller table can often be utilized by
taking advantage of interpolation to determine
values of the function between values which are
actual entries in the table. As all example of this

FLOWMETER

----1 LJ
FLOWMETER

COFltTROL AD MCS48 PANEL

----l LJ
FLOWMETER

Figure 8. Flow Monitoring System

-

inter AP-24

process consider the hypothetical system shown in
Figure 8. The purpose of this system is to measure
the flow through the three pipes, add them, and
display the total flow on the control panel. The
system consists of three flow meters which generate
a differential voltage which is some function of
flow, an A/D system with at least three differential
inputs, an MCS48, and a control panel. The
schematic sho\Vn in Figure 6 could easily become
part of this system, with the spare digital I/O of
the MCS48 used as an interface to the control
panel. The simplicity of this system is clouded by
the flow transducers, which are assumed to be not
only nonlinear but also to require individual cali­
bration (this is not an unreasonable assumption for
a flow transducer). By usinga table look up process
and an 8748 the flow transducers can be calibrated
and the results of the calibration tests stored
directly in tables in the 8748. (The 8748 has a
PROM in place of the ROM of the 8048 and thus
makes such 'one off' programmin, oractical.)

The results which might be obtained from calibra­
ting one of the flow meters is shown in Figure 9.
The results are plotted as gals/hour versus the
measured voltage generated by the transducer. The
voltage is shown in hexadecimal form so that it
corresponds directly to the digital output of the
analog to digital converter. The flow required to
generate seventeen evenly spaced voltages (OH-l bOH
in steps of 10H) has been measured and plotted.
This information is shown in tabular form in
Figure 10. It is necessary to generate a program
which will convert any measured input from OOH
to FFH into the flow in units which can be inter­
preted by a human operator. This can easily be
done by simple interpolation.

60,------------------

'0

10

Figure 9. Flow Calibration Curve

TRANSDUCE R ,..-,-,-,--,-,-,-,-,--,.--,.--,.----,-----,--,--,---.--.
VOLTAGE IHfX! 00 10

MEASURED FLOW HHHH-I-I-I-I-I-+-+-+-+-+-+-+-1
IGA l HOURI '----''----''----'--'--'--'--'---'---'---'-----'-----'----'-----'-----'-----'-----'

Figure 10. Tabulated Flow Data

1-9

The eight bits of independent variable (voltage) can
be looked on as two four bit fields. The most signi­
ficant four bits (7-4) will be used to retrieve one of
the table values. The lower four bits (3-0) will be
used to interpolate between this value and the
value retrieved from the next higher location in lhe
table. If the upper four bits are given the symbol I
and the lower four bits the symbol N, then lhe
interpolation can be expressed as:

F(x) = F(I) + ii, [F(I+I) - F(I)]

Where x is the measured voltage and F(x) is the
corresponding flow.

If, as an example, the transducer voltage was
measured as 48H then the flow (ref. Figure 10)
would be:

8 F = 30 + 16 (34-30) = 32

A subroutine which implements this caiculalJIIII is
shown in Figure II. Before it is called the indl·I"·1I
dent variable (V) is placed in the accumulator and
register R I is set to point at the first value in the
table. Aside from simple additions and subtractions
the only arithmetic required is to multiply two
values and then divide them by 16. The multiplica­
tion is handled via a subroutine which is also
shown in Figure II. The division by 16 can be per­
formed by a four place right shift followed hy a
rounding operation. The routine shown will handle
a monotonic increasing function of a single inde­
pendent variable. Fairly simple modifications are
required for nonmonotonic functions. Functions
of two variables can be handled by interpolating on
a plane rather than along a straight line. Although
this is more time consuming, requiring an inter­
polation for each of the independent variables and
a third to in terpola te the final answer, it still
provides a simple means of quickly calculating the
required function. The use of tables can offer a
powerful technique for function evaluation to the
designer.

RECEIVING SERIAL CODE-BASIC
APPROACHES

Many microprocessor based systems require some
form of serial communication. Serial communica­
tion is extensively used because it allows two or
more pieces of equipment to exchange information
with a minimal number of interconnecting wires.
The minimization of interconnecting wires results
in simpler, cheaper, interconnects because fewer
(or smaller) cables and connectors are required.
Since the required number of drivers and receivers
required is reduced, it can become economically
feasible to provide much higher noise immunity

inter AP-24

Loe OBJ .. 0 SOURCE. STATEMENT

I •••••••••.••••••••••••••••••••••••••••••••••

APPR[]X
AT ENTRY RI POIHTSAT TAkE . A HAS IHOCPEHOENT IIARIAB..E

5

• ... ,
8 I -------
9 1 EQUATES

II: ':'------
11

I ... 12 RXI EOU R' j POINTER I

'11' 13 AXI EOU R' I POINTER!
... 2 ,,, AEX EQU R, I E:xTENSIOH or A REGISTER
.113 15 COUNT EOU R3 ; COUNTER

'11'" 16 TEI'F EOU R' ; IT"" STORAGE
17
18 ; -------------
19 ; APPROItIMATIOH
21; -------------.,

"" •• ORO II'H
'3 ; POINT RXI AT TEI'F

11,. IBI'" 2'1 APPROX: fI10V RXI.#TEfIF
'5 ; TEI'P-N AND IfH
26 ; A"P AHD IFH

1,.2 Bill ., i'1OII @RXI,#I
.,1431 28 XCHD A,ORXI
IllS "17 29 ",",P A

31 ; RX1·BASEtA
111669 31 ADD A,RXI • ,,7 A9 3 • i'1OII RXI,A

33 ; RX ,·TABlE<P)
3< I A-TAEl.E(P.'J

1118 E3 35 i'1OIIP3 A,OA
111929 36 XCH A,AXl
IliA 17 3' INC A
111B E3 3B i'1OIIP3 A,@A ., : A-TABLE (P.U-TABLECPJ
,tiC 37 .. CPl A
111069 ., AIlD A,AXl
111E37 .. CPl A

43 ; A-H-A/16
111f 3410 .. CALL '''IT
1111 9312 .. i'1OII Rxt,#AEX
111331 .. XCHD A.@iRXI
11''''47 ., SWAP A
IllS 2A •• XCH A,AEX
11167219 •• JB3 ADJUST
11182A 51 XCH A,AEX
11192A 51 ADJUST: XCH A,AEX
I"A 17 52 IHe A

53 ; A-A. TABLE(PJ
111B 69 54 ADD A,RXl

" : AETURN

LaC OBJ

I"C 83

"10 BElie ,,,r BAl.

"21 97

"22 1228
.,204 2A
112567
.,26 2A
112767

"28 EB22
112A 83

"282A
112C 61
"2067
112E 2A
112F 67

1131 EB21
113283

1381

1381 II
138t IA
1382 16
1383 lA
138'" lE
138522
1386 26
138728
1388 29
1399 2A
138A 2B
13aB 20
I38C 31
I3&D 31
I38E 35
l3Bf 38
1391 3F

SEO SOURCE STAT£fII[NT

56
57
58

RET

59 I --------
61 ; I>IULTIPLY
61 ; --------

6'
63 I>IUl.T: f'IDV .. "'" .5
66 LOOPA: CLA .,
68 LOOPB: JB.
69 XCH
71 RRC
71 XCH
72 RRC
73

" 7S ,.
DJN2
RET

77 ssli>1: XCH
78 ADD
79 ARC
81 XCH
81 RRC
8.
B3
8'
8!i ..

DJNZ
RET

; SET UP COUNT AND AEX
COUNT, #8
AEX.#I

"1>1
A,AEX
A
A,AEX
A

; CLEAR CARRY

; If MUlTIPLIER (I) () 1 THEN SflIFT PRODUCT

; LOOP UNTIL DONE
COUNT,LOOPB

A,AEX
A,@IU.
A
A,ArX
A

; ELSE ADD f'>lJLTIPLIER AND SHIFT PRODUCT

; LOOP' UNTIL DONE
COUNT,LOOPA

87 I ---------------------
sa ; TABLE TO TEST PROGAAM

89 ; ---------------------., '
91 ORG 38IH

••
93 TABl-E: DB
94 DB
9S DB
96 ., ..
99

"' "' "' 113 ". 1IS
'86
'87
"8
11.

'" "'

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

EMD

..
11

••
26
31
34
38 .. .,
•• .,
4S
.8 ..
53
56
.3

; THIS TABlE: IS FROM FJG HI

Figure 11. Table Lookup With Interpolation

with more sophisticated (and expensive) line
tenninators. The final, and usually most persua­
sive, argument in favor of serial communication
is that it may be the only method available to
accomplish the job. The obvious example of
this is telecommunications where it is necessary
to encode parallel infonnation into serial fonnat
in order to communicate via the telephone net­
work. The intent of this section is to show how
the facilities of the MCS-48™ can be brought to
bear on the problem of serial communication.

Figure 12. Serial ASCII Code

Probably the most common form of serial com­
munication is that used by the obiquitous Teletype­
serial ASCII. This fonnat, shown in Figure 12, con­
sists of a START bit (0 or SPACE) followed by
eight data bits which are in tum followed by two
STOP bits (I or MARK). In actual practice the
All mnemonics copyrighted © Intel Corporation 1976, 1-10

eighth data bit usually consists of even parity on
the remaining seven data bits; for the purposes of
this discussion the eighth bit will be considered
only as data. A m'inor variation of this fonnat
deletes one of the STOP bits. An algorithm which
might be used to sample serial data under software
control using a microprocessor is shown in Figure
13. Th~ basic intent of this algorithm is to mini­
mize the effects of distortion and transmission rate
variations on the reliability of the communication
by sampling each data bit as close to its center as
possible. Upon entry to this routine the software
first samples the incoming data in a tight loop until
it is sensed as a MARK (logical one). As soon as a
MARK is detected, a second loop is entered during
which the software waits until the received data
goes to a SPACE (logical zero). The purpose of this
construction is to detect as accurately as possible
the leading edge of the START bit. This instant of
time will be used as a reference point for sampling
all of the following bits in the character. After
sensing the leading edge of the START bit a wait
of one half the expected bit time is implemented.
The period of the incoming signal is called P for
convenience. At the end of this wait the serial line
is tested-if it is MARK then the START bit was

-

inter AP-24

Figure 13. Sample Serial Input Routine

invalid and the process is reinitialized. If the line is
still a SPACE, then the START bit is assumed to
be valid and a delay of one bit time is started. At
the completion of the delay the first data bit is
sampled and a new delay of one bit time is initiated.
This process is repeated until all eight data bits
have been sampled. The last bit sampled is checked
to determine if it is a valid STOP bit (a MARK). If
it is, the character is assumed to be valid; if it is
not, the character has a framing error and is pro­
bably invalid. A listing of a program which imple­
ments the above procedure is shown in Figure 14.

A disadvantage of the approach outlined in Figure
13 is that while the processor is inputting data
serially it must totally dedicate itself to this task.
Accurate timing can only be maintained if the
program remains in a tight wait loop without
allowing itself to be diverted to other functions.
During reception of a character from a Teletype

All mnemonics copyrighted @ Intel Corporation t 976. 1-11

the processor will spend only a I OO~secs or so pro­
cessing data and the rest of the 100 millisecs wait­
ing to do the processing at the right time. This lack
of efficiency (approximately 0.1 %) in the utilization
of processing power is why devices such as the
8251 USART find broad application in micro­
processor systems.

LOC OSJ

"liZ
IU8
8182
I,M

lUI

8111 26 ••

.,123612

"11'" 341C

a116 3611

1118 BIllS

'IIA 341C
.11C341C

"IEEAIS
'11897
• ,11 3614
1,,3A7
811483

.11597
"'62619
"18 A7
"1967

IliA 24'A

"IC BCll

',IE ,BBA<4I
1121 EB21
8122 ECIE
"2483

5EO 5ClIRCE STATEMENT

"; , ,
2 , , , , ,
5 ,

SIf'FLE SERIAL II'IPUT
.THIS CODE ASSll'IES RltO IS

CONNECTED TO PIN TI

6 ; ••••••••••••••••••••••••••••••

7 8; _______

'3 ; [QUATES

11: -------
" 12 COUNT ,ou " ; COUNTER
13 BITHO ,ou 8 ; HO Of BiTS TO RECEI'JE
14 DlVH! ,ou ; HI DL Y COUNT
15 DLYLD 'ou IA4N ; LO DLV COUNT ,.
" OR. IIiH

'8 : LOOP, UNTIL IUD-MARl(
19 SEAIN: JNTI
20 ; HOW LOOP UHTlL RXO-SPACE

" JTO
22 : WAIT 112 BIT TIME
23 CALL HBIT

" , IF FALSE START REIHTIALIZE
25 JTO SER(H
26 I ELSE SET BIT COUHT
27 "~ COUNT, "aITHO.'
28 I ~IT 1 BIT TIME
29 LOOP: CALL HBIT

" HalT

" ; OCCREI'EHT COUHT
32 : -IF ZERO EXIT WITH CARRY SET OH
33 ; -FRAMIHCi ERROR ,. DJHZ COUHT,LOAD
3S CLR C , . JT. EXIT
37 CeL C
38 EXIT: R'T
39 I LOAD DATA
41 LOAD: CCR C

JHTI LLLA

" CPL C
43 LLLA: RRC A

" I AHDLOOP
<S .." LOOP 4.
47; -----------_._-._------
48 ; DELAY OHE HALF 81 T TIME
49 ; .----------------------
S.
51
52 HBIT: 1'10\1
53
S4 HLOOP: MOV
55 OJHZ

; SET UP LOOP
R4."OLYHI

: LOOP UNTIL TIM(DONE
R3,,,OLYLO
R3,S

56 DJNZ R4,HLOOP
57 RET
58 ; EHO OF PRCKiRAf"l .. END

Figure 14. Simple Serial Input

The 8251 USART is simple to interface to the
MSC-48. Figure 15 shows such an interface. The
USART requires a high speed clock (ClK), an ini­
tilization signal (RESET), data clocks (TxC and
RxC), and data in order to operate. A circuit
showing the connection of ,an 8748 to an 8251
USART is shown in Figure 15. In the circuit shown
the high speed clock (which is used for internal
sequencing by the U'SART) is provided by con-

AP-24

P24
P20

P"
PlO

f-----:l
-::- -::-

{
35
24 P24

23 P23

P"
22 P21
21

P20

{
34 P ·P27

38 11 cs Vee
26

'5V 33 17
P26

37 " CfO GND P16
32

P,.
3. • RESET -::-P15

31 P WEi 10 10 WR 5SR
22

30 14
Rli 8 13

RD DTR
24

29 P13 8748 19 " P" D, DB] CfS
28 Pl1 18 23

D. D" RTS
27 PlO

Ds " 8251

11 ALE 16
DBS

25 PROG
D4

15
DB4 hD

D3 DB3

'5V :~ Vee D2
14

DB2
13 2B 8-< VOD D, D81 R,D 3

55S 12 27
DO °BO

9 PSEN T,
39 he

9

20 20 25
VSS TO elK R,e

, EA

19968
MH,

'Install Jumper for 110 Baud OperatiOn (-111

Figure 15. MCS-48™ to 8251 Interface

necting the CLK signal of the USART to the TO
pin of the MCS-48. The TO pin of the MCS-48
can either be used as a directly testable input pin
or it can become, under program control, an out-

. put pin which oscillates at one third of the crystal
frequency. (Note that once this pin is designated
by the software to be ali output it will remain so
until the system is reset.) In Figure IS the crystal
frequency is 5.9904 MHz so the clock provided to
the 8251 is 1.9968 MHz, which conforms to its
specifications.

The initialization signal to the USART (RESET) is
provided ·programmatically by manipulation of bit
5 of port 2. It was-necessary to place the reset of
the 8251 under program control for two reasons.
The first reason is that the MCS-48 does not supply
a reset signal to other devices. The reason for this is
that it was felt to be more useful to provide another
pin of I/O function instead ofa RESET OUT signal

1-12

from the MCS-48. Although this situation could
have been circumvented by the use of an externally
generated reset which drove both the MCS-48 and
the 8251, the second reason for program control of
the reset to the USART stillstands. The USART
requires the presence of the eLK signal during
reset in order to properly initialize itself. The
ENTO CLK instruction which the MCS-48 must
execute before the 8251 will receive the CLK can
obviously not be executed until after the system
reset has ended. Reset of the USART can be

_ accomplished by the following code segment:

ENTO
ORL
MOV

LOOP: DJNZ
ANL

CLK
P2, #OO100000B
R2,#DELAY
R2,LOOP
P2, #11011111B

; TURN ON CLOCK
; START RESET
; DELAY USART
; RESETTlME
;END RESET

This code first enables the clock, then asserts the
reset signal of a time period determined by the
constant DELAY. The delay invoked is (10 +
5 *DELA Y) microseconds for DELAY >0. The
USART requires a reset of approximately 6 CLK
periods so DELAY is chosen to be I which ensures
adequate reset timing. Note that for delays this
short, NOP instructions could also be used to time
the pulse.

The data clocks required by the USART are pro­
vided by the modem if the USART is operated in
the synchronous mode. In the more common
asynchronous mode, however, these clocks must
be provided by circuitry associated with the 8251.

The 5.9904 MHz crystal was chosen because the
resulting 1.9968 MHz clock to the USART can be
evenly divided to provide transmit and receive
clocks to the USART. Assuming the USART is in
the x 16 mode (i.e. it requires data clocks 16 times
the baud rate) the 1.9968 MHz signal can be divided
by 13 to generate the proper clock rate for 9600
baud operation. This 9600 baud .clock can be
further divided to give 4800, 2400, 1200, 600, and
300 baud signals. The 1200 baud signal can be
divided by II to give a 109.1 baud signal which is
within I % of the 110 baud required by Teletypes.

The MCS-48 communicates with the 8251 in a
memory mapped mode (i.e. as if the 8251 were
external RAM). The instructions available to do
this are MOVX aRj, A which stores the contents of
the accumulator at the external RAM location
addressed by Rj U=O or I), and its complement,
the MOVx' A, @ Rj instruction which moves data
from the external RAM into the accumulator.
Since the MCS-48 multiplexes addresses and data
on the same eight bit bus an external latch would
be required in order to address the USART with

-

AP-24

Lac DIlJ

liZ'
ue,
UDF
UCE

1117F

11"
"Bf
8188

8118 75
8!118AZI
ill13 BAil
illllSEAIS
8187 9ADF

8119237F
81883A

S18el3eE
lilliE 98
IIUF2321
8111 9&

1112237f
1114 3A
ill1s 88
111667
11117 [612
1119 F9
lIlA 9AB(

""G 9'
8110 19
8"[2412

SEQ SOURCE STATEMEMT

S[R[ALT[ST
TH[S cooe: ItHIALIZES TI1E USART
AND TRANSMITS AN IHCREMfNTlNG
PATTERN. HARr:wAR£ SH~ IF riG 15.

7; ---- __ _

8; EQUATES
9; -------

" 11 MCLR [au
12 DLV [au
13 ueON [QU
14 /'{JOE: [au
15 eMD [IlU
16 STAT £QU
17 VAL (au
18 MASK [au

21
22

ORO

23 TEST; Etne
24 ORL

2S """
26 LOOP: DJHZ
27 ANL ,.
29
38 DUlL

" 32

lilH ; USART RESET ADDRESS
81H ; USART RESET DELAY

; USART CONTROL ADDRESS
BeEH ; USAIH f'1JD(

211, ; USART CMt)

7FH ; USAInSTATU5
; TEST VALUE

'SFH ; CHAt1VES eND TO DATA CHANNEL

lUSH
; TURHOHCLDCK

; AHDR[SET USAIH

eLK
P2,:tMCLR
R2,:tDLY
R2,LOOP
P2,#(HOTMCLlU

; SELECTUSARTCOHTROL
A,#UCON

P2,A

SEND 1'l]D£ AND CCI'T'1AND

A,#MOD£

33 ,. MOVX @RS,A; (CONTENTS OF Re UN[I'F'ORTANT)

A,#CMD

35

3.
3S ..

MOVX @RiI,A

; [)(] FOREVER

SELECT UsART STATUS

IF TXRDY-' THEN

00,
OUTPUT VALUE;

INCREMENT VALUE;

042 END;
043 END;

0404 TLP; A,#STAT

045 OUTl P2,A
046 A,@RB ; (CONTENTS OF RS UNII'F'ORTANT)
., A
" 51
52
53

" 55

JHe
A,VAL

AHL P2,#MASK

M!JVX @RS,A

INC VAL

JI'P TLP

; END OF PROVRAM

END

Figure 16. 8251 Test Program

RO or R I. In order to Immmize the circuitry in
Figure 15 an approach utilizing some of the I/O
pins of the MCS-48 to address the 8251 was chosen
instead. By connecting the chip select (CS) input
of the 8251 to bit 7 of port 2 (P27) and similarly
connecting the C/O address line of the 8251 to bit
6 of port 2 (P26) it is possible to address the 8251
without using RO or RI. The instruction sequence
to access the 8251 is to first reset P27 and set P26
to the appropriate state, use a MOVX instruction to
perform the appropriate operation, and then
finally set P27 to deselect the 8251. As a concrete
example of this addressing, Figure 16 shows the
code necessary to initialize the 8251 and output an
incrementing test pattern on a status driven basis.

If more than one 8251 were to be added to the
MCS-48, or if other types of peripheral circuitry
would be required (e.g. an 8253 timer to generate
the data clocks) it would probably become desirable

AU mnemonics copYrIghted © Intel Corporation 1976. 1-13

to add the circuitry necessary to use RO or R I to
address the peripheral devices. The circuitry which
has to be added to Figure 15 in order to make use
of RO or RI to address the USART is shown in
Figure 17. Note that only the changes to Figure 15
are shown. The additional component required is
the 8212 eight bit latch. This latch is loaded, when­
ever a valid address is on the bus by the Address
Latch Enable (ALE) signal provided by the MCS-
48. During an ex ternal read or wri te cycle this
address is used to address the 8251 in a linear
select mode. In the circuit shown, the 8251 will be
.selected by any address with bit I a logical zero
(XXXXXXOX) and the selection of control or data
transfer (C/O) will be based on bit zero of the
address obtained from RO or R I. Figure 18 shows
the program of Figure 16 modified to utilize the
addressing inherent in the MOVX instructions.

U748

WR~----------------------~

'I~ os,

'5V MO
13 8212

22
os,

'0
01 8 008 I-

'8
0', DO, I-

16
0'6 006 I-
015 005 I-

~ DO, 004 I-
------2 0'3 00 3 I-
~ 00, DO, ~

3 00, DO, ~

ALE ~-------"'l

D,~-+-t~+-~r+----------~
06~-+-r1-~~~-----------;

D5r---~1-~~~-----------;

D4~----~~~~-----------;
D3~------~~r+-----------;
D,r---------+-r+----------~
0, ~--------~~----------_1
DO~----------~----------_1

WR
R-a

8251

cs
c/o

D.,
086

085

084

083

08,

D.,
0.0

L..-__ -' '-__ --'

Figure 17. Modified MCS48 to 8251 Interface

RECEIVING SERIAL CODE-A MORE
SOPHISTICATED ALGORITHM

Although the USART does an admirable job of
performing the serial I/O function for the MCS-
48™, there are some situations where it can not be
used. These situations may be caused by economic
factors, such as an extremely cost sensitive design,
or because the code which must be utilized cannot
be accommodated by the USART. An example of
of such a code will be discussed later. Recall that
the principal objection to the approach to serial
input shown in Figure 13 was that it consumes
much of the processor's power by merely spinning
in loops in order to wait preset time delays.

inter AP-24

LaC OBJ

fl21

''', 1183
liCE
1121
.111
1111
1111

1111

111. 7S
1111 8A21l
1113 BAI'
1115 EAtS
"17 SADF'

11.92313

.,ta2leE
11109'
1,.[2321

"11 9,

1111 2313
111381
.,1467
'115 ES1'
'117 F'9
'118 BBl'
lilA 9.
",S 19
I"C 24"

SEQ SOURCE STATEMENT

•........... __ ._----_._-------------
S[RIALT(ST

THIS CODE INTIALIZES THE USAAT
AND TRANSMITS AN INCREMENTiNG

" PATTERN. HARDoIARE SHCIoIH IF FIG 17.
5 --------------------.--.-----------
6
7: -------
8: EQUATES
9; -.-----

" " P'CLR [DU
12 Dl..V [QU
13 UCON [au
14 I1JDE [DU
IS Cf'ID [QU
16 STAT [OU
17 VAL [DU
18 DATA [OU ,.
21 ORO
21
22,
23 TEST: EHTI
2<1 DRt.
25 1'IlII
26 LOOP DJNZ
27 AtiL
2.
29 1'IlII

3'
31 1'IlII
32 MOYX
33 1'IlII
34 MOVX
35
36
37
38
39

" " " 43 TLP: MOV
44 MCJI.IX
45 RRC
46 JNC
., MQV

48 MOV
49 f'lQVx
51 INC

51 "'" 52
53 END

211'1 1 USART RESET ADDRESS
.,H 1 U5ART RESET DELAY
.3H 1 USAAT CONTROL ADDRESS
ICEH ; USART I'IDDE
21H ; USAATCfIID
13M ; USART STATUS
III I TEST VALUE
81 I USART DATA ADDRESS

1nM
I TURN ON CLOCK
; AND RESET USART

eLK
P2,"MCLR
R2,#DLY
R2,LOOP
P2,It(NOTI'1CLR)

; SELECT USART CONTROL
A,ItUCON

; SEND !"ODE AND CCJ1'1AHD
A,#I'IJOE
ORI,A I (CONTENTS Of RI UNIMPORTANT)
A,ltCf'ID
@RI,A

; DO FORE\lER
SELECT USART STATUS

If TXRDY-1 mEN
!Xl;

OUTPUT VALUE;
INCR(II£HT VALUE;

END:
; END:

A,#STAT
A,@RI : (COHTENTS OF RI UNIMPORTANT>
A
TLP
A,VAL
RI,#DATA
ORI,A
VAL
TLP

; END Of PROGRAM

Figure 18. Modified 8251 Test Program

The timer resident on the MCS48 provides a solu­
tion to this problem. Instead of spinning in a loop
the program can set the timer for a given interval,
start it, and proceed to other tasks. When the timer,
overflows, an interrupt will be generated to notify
the software that the present time period has
elapsed. An e~tension of the algorithm of Figure
13 which uses the timer in this fashion in shown in
Figure 19. This algorithm is identical to the preced­
ing one ,up until the detection of the leading edge
of the start bit. At this point the timer is set to one
half of the bit time (P) and a return is made to the
calling program which can start additional process­
ing. At the completion of this time interval a
timer overflow interrupt is generated. When the
first interrupt is detected, the serial line is checked
to ensure that it is in a spacing condition (valid
START bit). If it is, the timer is set to P (to sample
the middle of the first data bit) and a return is
made to the program which was running when the,
All mnemon~cs copyrighted @ Intel Corporation 1976. 1-14

interrupt occurred. If the serial line has returned to
the MARK state, a status flag is set to indicate an
error and a return is made. On subsequent interrupt
detection, the data is sampled, the timer is reiniti­
ated, and control is returned to the program which
was running when the interrupt occurred. When
the last (Le. STOP) bit is detected a completion
flag is set and a return is made to the program
running when the timer overflow occurred. By
periodically, checking the error and completion
flags the running program can determine when the
interrupt driven receive program has a character
assembled for it.

TIMER
OVERFLOW

Figure 19. Improved Serial Input Routine

Using the timer to implement time delays as shown
in Figure 19 results in considerable savings in
processing time; two p,roblems remain, however,
which must be solved before an adequate software
solution to the problem ofreceiving serial code can
be found. The first problem is that even though the
delays between bit samples are implemented via
the timer rather than program loops the loop con­
struction is still used to detect the leading edge of

AP-24

the START bit. Although this results in the waste
of processing power, the second problem is even
more serious. For longer messages the required
accuracy of the clocks becomes more and more
stringent. Using the sampling technique discussed
a cumulative error of one half a bit time in the
time at which a bit sample is taken will result in
erroneous reception. The maximum timing error
which can be tolerated and yet still allow proper
detection of an II bit ASCII character is then:

O.s*BIT TIME O.SP
Emax = CHARACTER TIME - TiP = 4.5%

where P is the period of single bit. The correspond­
ing calculation for a 32 bit character yields:

Emax = ~i~ = 1.6%

Since this calculation does not allow for distortion
on the signals, it is obvious that either extremely
stable clocks will be required or a more tolerant
algorithm must be devised. This problem is parti­
cularly serious at relatively high baud rates where
the resolution of the counter (80J.lsecs with a 6 MHz
crystal) becomes a significant percentage of the
period of the received signal. At the 110 baud rate
of the Teletype the 80J.lsec resolution of the clock
allows a maximum accuracy of 0.33%; at 2400
baud this figure is reduced to 3.8%.

tNT
AD
WR

RxO
T1

PROG
ALE

P17

}~'"
P27 P16
P26 P15
P25 P14
P24 P13
P23 P12
P21 Pll
P20 PlO

TO °7

},"
06

+5V Vcc °5
VOO 0 4
ss 03
PSEN °2

°1
Vss DO

EA

-=
.::r::

Figure 20. Detecting RxD Edges

1-15

Both efficient detection of the start bit and increas­
ed timing accuracy can be obtained if the MCS48
can detect edges on the incoming received data
(RxD). A hardware construct which allows this
is shown in Figure 20.

The received data (RxD) is Exclusive NORed with
bit seven of port two and fed into the TEST (T I)
pin of the MCS48. By manipulating P27 the pro­
gram can now cause TI to be either RxD or RxD.
(If P27 = I then TI = RxD; if P27 = 0 then TI =
RxD.) Note that not only can TI be tested directly
by the software but that it is the input which is
used when the MCS48 timer is in the event counter
mode. The significance of this will be discussed
later. The relationship between TI, P27, and RxD
is given by the Boolean expression:

TI = P27 • RxD + P27 • RxD

Figure 2 I flowcharts a means of utilizing this hard­
ware construct to avoid the necessity of wasting
time in program loops to detect the leading edge of
the start bit. The receive operation is initialized
when the program desiring to receive serial data
calls the INIT subroutine (Figure 2Ia). Since INIT
is going to manipulate the timer the first action it
performs is to disable the timer overflow interrupt.
Its next step is to set P27 to a logical 1. Setting
P27 in this manner causes the TEST 1 input to the
MCS48 to follow RxD. By setting up the receive
circuitry in this manner a high to low transition
will occur on TEST 1 when the RxD goes from
the MARKING to SPACING state (Le. the START

Figure 21a. Interrupt Driven Serial Receive Flowchart

intJ AP-24

NO

__ 2-__________ ~~ ____ ~~

Figure 21 b. Interrupt Driven Serial Receive Flowchart

Figure 21c. Interrupt Driven Serial Receive Flowchart

1-16

bit, occurs). By setting the timer to OFFH and
enabling it in the event count mode, the, .INIT
routine sets up the, MCS48 to generate a timer
overflow interrupt on the next MARK to SPACE
transition of RxD (the TEST I input doubles as
the event counter input). Before returning to the
calling program the INIT routine sets a flag (RDF)
which will be cleared by the receive program when
the requested receive operation is complete. INIT
also sets a value into a register called BCOUNT.
The receive program interprets BCOUNl as follows:

Number of bits remaining
to receive

If set indicates that the
ST A RT bit has not yet been
detected

If set indicates that the
START bit has not yet bee'n '
verified

In order to request the reception of the II bit
ASCII code INIT would set BCOUNT to 1100101 lB.
The start bit has been neither verified nor detected
and II bits (lOIIB) are required.

After INIT is called the reception of the individual
serial data bits will proceed on an interrupt driven
basis until a complete character has been assemble~.
When this occurs the interrupt driven program will
set the RDF (Receive Done Flag) to a zero to indi­
cate that it has completed the requested operation
and then terminate itself. The procedure which is
used to accomplish this is shown in Figures 21 b
and 21c.

Since all operations of this program are the result
of the occurence of a timer overflow interrupt, it
is necessary to briefly review the interrupt structure
of the MCS48, There are two sources of interrupt;
an external interrupt which is the result of a logical
zero signal applied to the INT pin of the MCS48,
and an internal interrupt which is caused by a
timer overflow condition. The timer overflow
occurs whenever the timer is incremented from
OFF H to zero whether it be in the timer or event
count mode, When one of these events occurs the
hardware in the MCS48 forces the execution of a
CALL. This CALL has a preset address of location
3 if it is due to the external interrupt and location
7 if it is due to a timer overflow. If both of these

-

AP-24

events occur simultaneously the external interrupt
will take' precedence. The CALL automatically
saves the contents of the program counter for the
running program and its PSW (program status
word) on a stack the hardware maintains in RAM
locations 8-23. Although the hardware saves the
program counter and PSW, it remains the responsi­
bility of any interrupt driven software to make
absolutely certain that it does not modify any
memory locations or registers which are being
used by the main program. The most convenient
way of ensuring this in the MCS48 is to dedicate
the second bank of registers (RB 1) to the interrupt
driven program. One of these registers has to be
used to save the accumulator (which is not part of
the register bank) but seven registers remain;
including two which can be used as pointers to the
rest of the RAM (RO and R I). Note that if this
approach is taken then these registers have to be
allocated between the program which services the
external interrupt and the one which services the
timer overflow. This problem is somewhat alleviated
by a hardware lockout which prevents the timer
overflow interrupt from interrupting the external
interrupt service routine and vice versa. This is
implemented by locking out new interrupts between
the time an interrupt is recognized and the time a
RETR instruction is executed. The RETR instruc­
tion is like a normal RET (return from subroutine)
except that the PSW as well as the program counter
is restored. The RETR instruction can be very
much thought of as a return from interrupt instruc­
tion in the MCS48.

The receive program under discussion uses register
bank I in the manner described. Whenever a timer
overflow occurs (e.g. on the next MARK to SPACE
transition of RxD after INIT is called), control is
passed (by the hardware generated CALL) to the
point labled TIMER OFLO in Figure 21 b. This
program segment immediately selects register bank
I (RB I) and then saves the accumulator (A) in a
location called ATEMP which is actually R7 of
RB I. The program then tests bit seven of BCOUNT
(R6 of RB 1) to find out if a START bit has been
verified (Le. the edge of the START bit has first
been detected and then verified to still be a SPACE
one-half a bit time later. If BCOUNT [7] is a zero
the START has been verified and the program pro­
ceeds to set the timer to P (the period of the serial
bit), get the current serial data into the carry bit,
and then shift the carry bit into a buffer. After
saving the data the program decrements BCOUNT
and tests it for zero. If BCOUNT is zero the receive
operation is complete so the program sets RDF to
a zero and disables timer overflow interrupts.
Whether or not BCOUNT is zero, control is passed
to EXIT where A is loaded with A TEMP and a

1-17

RETR is executed. Note that since the state of
the flip flop which selects RB I is saved as part of
the PSW, the execution of RETR automatically
selects the register bank which was active when
the interrupt occurred.

If BCOUNT [7] is still set when it is tested, con­
trol is passed to START (Figure 21c) where bit 6
is tested to determine if the START has been
detected yet. If BCOUNT [6] is set it indicates
that this is the first occurrence of a timer overflow
since the receive process was initialized by the
INIT subroutine. If this is so, the program assumes
that the START bit has just started and therefore
it sets the timer to one-half of a bit time (1/2 P),
starts the timer in the timer mode, and clears
BCOUNT [6] to indicate that the START bit has
been detected. The next overflow will again result
in the execution of the program in Figure 21 band
again BCOUNT [7] will be found to be set. This
time, however, BCOUNT [6] will be reset and the
program will know that it should test the START
bit to ensure that it is still a SPACE. This test is
performed and if successful the timer is set for a
bit period P and BCOUNT [7] is reset so that on
the next occurrence of a timer overflow the pro­
gram will know that it should start assembling
serial bits into a character. If the test is unsuccess­
ful, the subroutine INIT is used to reinitialize the
receive program. In either case control is passed to
EXIT where a return from interrupt mode occurs.

This receive program, listings of which appear in
Figure 22, allows the reception of serial characters
transparently to the main running software. After
INIT is called the main program has only to check
RDF periodically to find out if there is data in the
buffer for it. It would be fairly easy to 'double
buffer' this operation by providing a buffer which
the receive program uses to deserialize the incom­
ing code and a second buffer to store the assembled
character. If the program would reinitialize itself
upon completion, the reception of a string of
characters could proceed in much the same way as
it would if a status driven USART were being used.

Although this program solves the first problem of
software controlled reception (lack of efficiency)
the second problem-sensitivity to frequency
variations-remains. An example of a code which
would be susceptible to this problem is the 3 I ,26
BCH code commonly used in supervisory control
systems. (A supervisory control system is, in
essence, a remote control system which allows a
human or computer operator the control of a
system via a serial communications link.) The BCH
codes are used because of their error detection
capabilities and are a class of cyclical redundancy

inter Ap·24

,'DC OBJ .. 0 SOURCE 5TAT£I'£HT •• 23 FE 71 START: IIIDY A,SCOUl'tT
"2~ 0237 72 JB6 SLLC

13 DO, .. 7< IF' T[5T1-' THEN
1126 563S 7S J" SLLD

SERiAl INPUT U5IHG,TH[I'ICS-48 7. DO,

• THIS CDtlE ASS\K.S HARtIoIARE 71 TJI'£R"P;
S SJDIoI IN FIG 2 •• TO USE 7. START TlI'IER;

• THIS ROUTIHE,CALl INIT. ,. P27".;
7 IrI£N Ror·, THE ASSEI'Il.ED •• ENI

• CHARACTER WILL BE IN SERBUF .' BCOUHl(7)·,;

• 82 END:

"
.. 1128 2307 •• "'" A,#-P

11 112A G2 •• "'" T,A
12 ; ------- 1128 S5 OS STRT T
13 ; EQUATES 112t SA7F .. AN' P2,#7FH
'4; ------- •• 2£ IS .7 'N I
'S 112F FE 'BB "'" A,ElCOUtiT II., 16 ATEJII' 'OU R7 ; STORAGE FOR A DURIHG IMTtRUf'T 1131 537F .. AN, A,#7FH

'.'6 17 BCOUHT [QU .. ; COHTAINS HtJIIBER or BITS IN MSG ,132 AS ., "'" seOUl'll,A ,.,2 Ie COUNT ,ou R2 1 UTILITY COUNTER 1133 .43f .' SElin

"" 19 RItI 'ou R' 1 POI"TER 92 ELSE 21 BITHO ,au • ; HLl'l8ER OF' BITS 93 DO,
1129 2' p 'au .. ; SAflPlE PUIOD .. CAlL,INIT: ,.2. 22 SERElJF [QU 21" I SERIAL BUFFeR os EHD;
.. 24 2. RIll' ,au 2<" ; REtE I'VE DOH£. FLAG 1135''''41 9G SLlD: CALL IHIT

2< .7 ELSE
2S ; -------------------------.---------------- .. DO,
26 ; CDHTAOL. PASSED HERE IofoI[H TIMER ORO OCCURS .. TIM[A~P/2;

27 ; -- ... STAAT TIMER;
28 '" BCOUHT[SJ"I; , .. ., 29 DOG 17H 112 END;
31 ; ,"ENTER INTERRUPT MODE·' .13723EC 1135LLC: "'" A,#-(P/2)

.117 DS 31 II'IV£C: SEL OB' 813962 " . """ T,A
1118 Af • 2 "'" ATEf'F,A 113A 55 "S STAT T

33 ; IF BCOUMT(7)·' THEM 1138 FE ,os MOIl A,BCOUHT
'119-FE .. MOIl A,BCOUHT 113e 53BF '" AN' A, "IBFH
IliA 1'223 'S J87 START '"3E AE ". """ BCOUNT ,A

36 ; 00; ". 1 £1'40:
37 Tlf'£R-P; '" ; /4[XiT INT[RUPT MODE·,

... e 2307 38 "'" A,a-p 1131' fF 111 S£XlT:I'CV II,IIT["'"

.'IE 62 39 I'II\I T,A 114' 93 .. , RETR .. START TJI'£R 113
1.11' ss ", St.L8: 'TOT 114 ; ----------------------------

<2 '''CARRY-RIO'll 115 ; INTJALJzt ROlITIHE-.. CARRY .. P27 XHOR T[ST1: 116 ; STARTS RECEIV£ PROCESS

"" III
.. IN A,P2 It ? ~ -

1111 F7 os OLC A ...
"'2661S .. JT' TJ!iRD "' , HUT:
1114 A7 " CP, C '2' PROCEDURE;

•• '"SHIfT CAI5!V INTO BJFf"ER·' '" CD,

•• RX'-SERBUF; '22 DISABLE INTERRUPTS.
SI , RSHrT MEf'IHUI); 123 P27·';

"'5882' 51 TISR'D: I'lOl/ RX',#S[fmUf '" TiMER Ow 1;
1117 2' 52 SLOOP: xeM A,ORXI "S START [VENT COUNT:

"'867 S' RRC A ,,. RQF-,;

"1921 .S<
'C" A,ORI' 127 BCOUHT·IC,H OR BITHO

SS BCOUHT-SCOUNT-l ; ". END;
56 , IF BCDUNT-' THEN ". END HilT;

.. ,AEElF " DJHZ BCOut4T,S(K1T 114135 131 l!~iT: DIS TeNTl

58 DO, 111"'2 BABI '" DO, Pl,#8I1H

S' RI)F'-'; 11"'4231'". 132 MIIV A,It-1

•• DISAIl.E EX INT: l1li4662 133 MDV T,A ., , EtlDI '1"745 ... 51R1 eNT
IflC 882" 62 l'1l\I RltI,#RDf 1148882<1 "S MOIl IU',#RDf
litE 27 •• ecR A 8.4A Bill , .. Mav @lRXI,#B1H
",F AI •• l'1l\I OIUI.A 18"C 881t '" MOIl RXIJ."'[H ; POI NT AT BCOUHT ,,2' 3S 6S DIS TCtITI "<1£ sice ... MOV @RU.#UCIH OR BITMO}

66 ; [fOlD; Its. 25 ... 'N TCNTT
,.21 '43F" .7 SEX IT US183 , .. RET .. I ELSE ; EHD or PROGRAM

69, ; 00; 142
7t IF BCDUHTl6J-' Tf£N 14' 'NO

Figure 22. Interrupt Driven Serial Receive Program

codes such as those used in synchronous data com­
munications (e.g. BISYNC or SDLC). BCH codes,
named for their originators Bose, Chaudhuri, and
Hocquenghem, are characterized by having a length
of n=2m-l, The number of redundant check bits
can be mt where t is a positive integer (clearly mt
';;;;n), The 31,26 code fits this format with m=5 and
and t= I. The length of each message is n=25-1 =31
with 5* I redundant bits, leaving 26 bits available
for. data transmission, With an appropriate poly­
All mnemonics copyrighted @ Intel Corporation 1976. 1-18

nominal BCH codes can detect all errors consisting
of 2t error bits and all burst errors of mt or fewer
bits. The 31,26 BCH code will therefore detect any
erroneous messages with I or i errors or bursts of
errors of less th~n 5 bits, The 31,26 format (shown
in Figure 23) requires the reception of a start bit
followed by 31 infonnation bits, clearly beyond
the cap;:tbility of the USART but perhaps within
reach of a program controlled approach using the
MCS-48 itself. ' .

inter AP-24

Figure 23. 31,26 BCH Code

A concept which reduces sensitivity to frequency
deviations and thus allows the reception of longer
codes is shown pictorially in Figure 24. The first
line of this timing chart shows an alternative ones
and zeros pattern on the RxD with a period of S
milliseconds. The second line shows that by
sampling at a period of exactly S milliseconds the
data can be properly interpreted. The third and
fourth lines show the effects of sampling with a
period of six and four milliseconds respectively. In
either case, an error occurs at the third sample
where both periods result in sampling on an edge
of the RxD signal. The third line of Figure 24
shows a hybrid sampling scheme which, based on
some additional information, switches sampling
periods between the two values. As can be seen in
Figure 24, the data is sampled with a 4 milli~econd
period until the sampling begins to fall behmd the
data; at this point the sampling period is increased
to six milliseconds and the sampling first catches
up and then passes the center point of the data. As
soon as this happens, the sampling period reverts
to the 4 millisecond period and the cycle repeats.
It can be seen that this scheme sets up a pattern
which repeats indefinitely and the data can be
successfully sampled. Note that the sampling pattern
established is alternating periods of four and six
milliseconds. The average period of this pattern, as
might be expected, is Smsec. Line 5 of Figure 24
shows the effect of a change in transmission speed
to a period of S.5 msec with no change in the
sampling time. The sampling is again successful but
the new sampling pattern is 4-6-6-6; 4-6-6-6, etc.
Note that the average sample is again equal to the
period of the received data (S .S). While this scheme

1 Smsec PERIOD
5msecSAMPLE

2. 5msecPERIOD
6msecSAMPLE

3 Smsee PERIOD
4msecSAMPLE

4 5msecPERIOD

HYBRID SAMPLE -l~~~--1.-'..J.....!!....I...'-'-.!C.J..::..J..--"-J...::..J-"-...I..

5. 55msecPERIOO

HYB RIO SAMPLE -l..:...J..cc...L...::...L."--'-"'::""'.L...::....L.:-'....::....J....::....J'--'.....L..'--'-;-

Figure 24. Various Sampling Alternatives

1-19

does seem to work, the question of what additional
information is needed remains.

The MSC48 must somehow decide when it is drift­
ing out of synchronization and take corrective
action. By referring back to Figure 24 it can be
seen that if the MCS48 could determine where the
edges of RxD occurred with respect to its sampling
times then the additional information would be
available. As can be seen in the figure the choice of.
sampling period can be based on the following rule:

If an edge on the RxD line occurs during the
first half of the current sampling period, then
use the short period for the next sample. If an
edge occurs during the second half of the period,
then use the long sampling period for the next
sample.

If the data on the RxD line does not change, of
course, the MCS-48 will drift out of synchronization
just as the original algorithum did. As long as edges
occur on TxD, however, synchronization· can be
maintained. To maximize the allowable time
between edges, the following addition could be
made to the above rule:'

If no edge occurs on the RxD line during a
sample, then change sampling period from short
to long or vice versa.

Note that this addition to the rule will result in
using an average of the two sampling periods when
no edge occurs for several bit times.

The edges of RxD can be easily detected by the use
of the same structure (the Exclusive - NOR gate)
which was added to the MCS48 in Figure 20. This
gate, which .is used to detect the edge on RxD
which begins the START bit, can naturally be used
to detect any edge. Since the timer is being used to
time the bit period, however, the event count input
(T I) is not useful during the receive itself. By con­
necting the output of this gate, however, to the
00 input to the MCS48 (see Figure 2S)' it is
possible to detect edges on RxD with the event
counter when the program is trying to detect the
START bit and by the external interrupt when the
program is using the timer to control the sampling
times.

inter AP-24

0
x, x,

AD
'NT WR

T,
PAOG

ALE
R,O D

P"

}.~
P" P'B
P'B P'5
P'5 p,. p,.

P"
P" P"
P" P"
P,o P,O

TO 0,

} .. DB
·Vee 0 5
Voo D.
ss 03
PSEN 0,

0,

Vss 00

'5V

EA
RESET

Figure 25. Modified Edge Detection

A modification to the program of Figure 21 which
implements this new sampling algorithm is shown
in Figure 26. The first deviation from the original
program is the addition of a routine (XISR, Figure
26a which is called when an external interrupt
occurs (Le. when an edge occurs on RxD). This
routine saves the status of the running program and
then stores the current value of the timer register
in a location called SNAP (R5 of RB I). After
doing these operations the program complements
bit 7 of port 2. Manipulating P27 in this manner
will cause the Exclusive NOR gate to turn off the
'external 'interrupt' and will set it up to generate
another interrupt when the RxD line changes again
(has another edge).

Hybrid Sampling Flowchart

1-20

Because of this edge detection it is important to
condition RxD with hardware filters to ensure that
the edges of RxD are clean. Any ringing will cause
repeated CALLs to XISR and probable erroneous
operation. The changes to the START process
(Figure 26c) are two-fold; first the TIMER is set to
one half the average of the two sample periods
when the START bit is first detected (BCOUNT
[6) = I), and second the processing of the edge
information, is initialized by presetting SNAP and
clearing P27 .

SNAP is preset so that when the reception of data
actually begins (Figure 26b BCOUNT [7) = 0), the
decision block which tests SNAP against LIMIT
will be initialized. This block actually compares the
value in SNAP with a LIMIT value which is used to
determine if the sampling point is ahead or behind
the actual midpoint of the serial' data. If the
sampling is ahead then the timer is set for TMIN;
if the sampling is behind then the timer is set for

NO

-L __________ -L __ ~~.

Hybrid Sampling Flowchart

-

AP-24

lOC OBJ SEQ SOURCE STATEMENT

SERIAL INPUT USIHG MCS-48
THIS CODE ASSlA'IES HARDoIARE
SH[WoI IN fie. 25. PROGRAI'I
IS SIMILAR TO PREVIOUS
ONE. A I'IIJRE S(J'HISTICATED

YES SAI'f'L INC, AL(iDRITI-t'I IS USED

Hybrid Sampling Flowchart

TMAX. By presettihg SNAP in the manner shown
in the flowcharts the second rule of the algorithm,
(if no edge appears on the RxD line during a
sample, then change the sampling periods short to
long or vice versa) is automatically met. If an edge
occurs theri XISR will modify SNAP, if XISR is
not invoked between two samples then the choice
of timer periods wiII alternate. The only other
significant change to the algorithm is that the INIT
routine must now lock out all interrupts, not just
the timer overflow interrupt, while it is operating.
A program which uses this algorithm to receive a
32 bit message is shown in Figure 27.

1-21

,117
1115
"12
nla
liZ'
11'<11
"05
"09
frEe
IIZI
1124

"13

11131466
'''S 93

.UG OS

.U7AF

'lIB FE
•• eg r23G

,lIa Fa
'IIC 1314
• ,,[.217

",,2309
"1262
"'3 SO'3
.. ,S ''I'C

11172305

,. NOTE; A PLII'I II KE LANGUAGE WAS USED
11 TO CD"I'IEt'lT THIS LISTING AND
12 SEVERAL OTHERS '1'4 THIS NOTE. NO
13 C(J'f'ILER EXISTS fOR THE MCS-48.
14 THE CIl1'lENTS WERE 'HAtm
IS CiM'ILEO' 11'410 ASSEMBLY COD[
16
17 ••••••••••••••••••••••••••••••••••••••

I.
19 : -------
21 ; EQUATES
21 : ----.--
22
23 ATE/'P [OU
2" BCOUHT [au
25 SNAP [QU
2G COUNT [OU
27 R.IIO [OU
28 SITNO EOU
29 liMIT EOU
31 mAX [OU
31 TMIN [OU
32 HALF EOU
33 SER9Jr [OU
3<11 RDr EOU
35

.7
os
.5
.2
••
32
21
·43
-39
-21
21H
2<H

; STQRA(;(FOR A DUR I HG I NT(RUPT
j CONTAINS NlJfII9ER Of BiTS IN M5G
; TAICES TlI'ER SNAP SHOT ON IUD EDGE
; UTILITY COUNTER
; POUlTER
; HlI'18ER OF BITS
; TEST VALUE FOR MINIMAX SAflllLlHG
; MAX SAl'PLE PERIOD
; MIN!,.."... SAl'PLE PERIOD
; HALF HOI'IIHAL PERIOD
; STAAT OF SERIAL BUFFER
I RECEIVE DONE fLAG

36 ; -------------------------------
37 ; COHTROL PASSED HERE ON [XT. I NT.

38 ; ------------------------.------
39 .. .3H
41 ; CALL S[INIC(ROUTINE
42 [IVEe: CALL. USR
43 RETR ..
45; -----0------------------------------------
46 ; COHTROL. PASSED HERE WHEN TIMER OfLO OCCURS

47; ------------------.-----------------------•• .. ; '-EHTER INTERUPT MIlDE'1
SITl'WEC: SEL RBI
51 MOV AT£MP,A
52 ; IF BCDUNT[71-1 THEH
53 MCIV A,BCOUHT
54 JB7 START
55 ; DO: .. IF SHAP<LIMIT THEN
57 MCIV A ,SNAP
5. ADD A,#LlMIT
5 • SLLA

6' 00,
61 TlMER-TMIN:
62 SNAP-LIMIT.,:
63 EHD;
6. MCIV A,#TJI'IIH
65 MCIV T.A
66 MCIV SHAP,#LlMIT-l
67, SLLB
68 ELSE
6. 00,
71 TlMER-T\'IAX;
71 SNAP-LIMIT-l;
72 EHD:
73 SLLA: ~ A,#TMAX

Figure 27. Hybrid Sampling Program

AP-24

LDC DBJ 5'. 5(lURC[STATEf'I[HT LDC D8J SE. SOURCE STATEf'EHT

.11962 ,.
""" T,A II000A '"SG '43SLLO: CALL IHIT

lilA aDI3 75 """ S/'fAP,#LJMJT-l ,.. ELSE
76 START TIMER; 145 DO,

.IIC 55 77 SLLB: 5rRT 1<6 TII'£R-(11'IIH·lMAX)/2 :
79 '-CARRV-RKD-' 147 START TlI'ER;

79 CARRY·P27 XOIiI! TEST! I "0 BCOUHT(61-ll
1110 1#1 O' IN A,P2 149 EtlD;
IIIE F7 ., OLe A •• "'C 23EC 151 SLlC: """ A,#HALF'
IIIF' 1622 0' JHTI nSRD "<IE 62 151 MOIl T,A
.121A7 03 CPL C "'4F' 55 15' SrRT T

O' '-SHIrT CARRY IHTO BUFFER-' .ISIFE 153 """ A,BCOUHl
OS RXI-S[RBUF': liSt 5311f 15' AtIL A,#IEIF'H .. COUNT-": .IS3 AE 155 """ OCOUHT,A
87 DO IoI-IILE COUHTol; 15& I [MD;

80 RSHFT f"EM(RXO); 157 I '-EXIT IHTEIlUPT MODE-l
09 RX,·riIX'·'l liS"" F'F ISS SEXIT: """ A,ATEI'P

9. COUNT-COUNT- t; 115593 159 O,rR
91 , EtiD: 16.

1122882. 92 TlSRD: """ RXI,#SERBUf 161 ;----------------------------
112" SAl" 93 """ COUNT,#'" 162 ; INTIALIZE ROUTINE-
1.26 28 94 SLOOP XCH A,RX' 163 ; STARTS RECE]IIE PROCESS
112767 9S OOC A 16' I -------------------------~--

112828 96 XCH A.@'RXI 165
1129 18 97 IHC ... 106 INIT:
112A EA26 98 OJNZ COUNT. SlOOP ,.7 PROCEDURE:

99 , BCOUNT-BCOUNT -': 160 DO,

'"~ If BCOUNT-I THEN 169 DI5AB...E IHTrRUPT5:
112C EE54 111 DJHZ BCOUNT ,SEXIT 171 P27-1:

"2 DO, 171 TlMER-·I;

". ROF'-8; 172 STAAT EYENT COUNT;

". DISAB...E EX INT: "3 RDF-I:

"5 END: ". BCOUHT-.CIH OR BlTtIO
112E 11824 11. MOV RXI, #RDf ", END:
813127 117 "0 A ". END INIT;
.131 AI "0 "'" @RXI,A 1156 15 177 IHIT: DIS I
183235 ". DIS TCNTI tl5735 179 DIS TCNTI
113315 '" DIS I 11588A96 179 DOL P2.#8IH

111 : END; I.SA 23fF 18' "'" A,#-1

1.3" '''54 112 .w SEICIT tl5C G2 101 "'" T,A
m 1 ELSE 1150 45 10' 5rRT CHT

"' ; DO; liSE 8824 103 """ RXI.#RDF
115 IF SCOUtiTlG)-, THEN 81S1 F9 104 """ A,I1

1136 FE l1G START: MII\I A,acOUHT 88Gl AI lOS MOIl ORlI.A
8837 02"C 117 JB6 SLLC 11622S 106 EH TCNT!

110 DO, 1'63 BEE' 187 "'" BCQtJNT,IIICIH OR BITNO
119 IF TE5n-1 THEN 81G583 180 RET

113S 564A 12. JTl 5LLa 109
121 00, 19.
122 TlMER-1MIN; 191 ; -------~----------------

123 START T1I'£R: 192 ; INTERUPT SERVICE ROUTINE

12' SNAP-LIMIT., ; 193 ; ------------------------
125 P27-1: 19. I KlSR:
126 'N I 195 PROCEDURE:
127 ecOUHTr71-I; 196 DO,
128 , EHO; 197 ,'-ENTER IHTERUPT f'I'ODP'

113B 2309 U,. MI" A,#TMIN 190 SNAP-TIMER:

8830 G2 131 """ T,A 199 P27-HOT P27;

113E S5 131 ,rRT T '" [NO XISR:

113F BOIS 132 """ St4AP, #L!MTT. 1 8166 D5 211 XlSR: SEL 0.,
1141 SA7F 133 AHL P2,#7FH IIG7 AF '" 1'CN AT£MP,A
8143 8S 134 'N I .168 42 213 """ A,T
1844 FE 135 MDV A,DCO\JiT 1169 AD 214 """ SNAP,A
1145537F 136 ANL A.#7FH USA IA 2.5 IH A,P2
1841 AE 137 MOV BCOUNT,A ,,,68 0381 216 xoe A,#8IH
1848 1454 130 .w SEXIT UGO]A 217 run P2,A

139 ELSE liSE FF 218 MOIl, A,ATE""
141 DO, IISf 83 2.9 RET
141 CALL INJT: 211 : END OF PROGRAM

142 END: 211 'HD

Figure 27. Hybrid Sampling Program

All mnemonics copyrighled © Inlel Corporalion 1976,
1-22

-
intJ AP-24

TRANSMITTING SERIAL CODE

Serial transmission is conceptually far simpler than
serial reception since no synchronization is required.
All that is required is to use the timer to generate
interrupts at the bit rate and present the character
. to be transmitted serially at an I/O pin. A program
which does this is shown in Figure 28. The trans­
mission of serial data becomes much more compli­
cated ifit must occur simultaneously with reception.

If both reception and transmission are to occur
simultaneously then obviously contention will
exist for the use of the timer. It is possible to allow
the simultaneous reception and transmission of
serial data using the timer as a general clock which
controls software maintained timers. The attainable
baud rates using stich techniques are, however,
limited and the use of a 8251 USART is probably

,oc OB" SEQ SOURCESTAT[f'I[NT

,
2 SERIAL TRANSMIT ON THE MCS<l8

3 TO USE PuT A CHAR IN BurF AND · SET CHARtlV TO arrH. WHEN THE
S, TRANSMITTER IS READV FOR ANOTHER · , CHAR IT WILL CLEAR CHARAV, T", , , TRANSMISSION]5 DOUBLE BUFFERED.
B ; __ . __ ._-_. __ ._----------
•
" ; _--
" ; [QUAnS
12 ; _._----
" 8U1 14 ATEr1' EOU 0' \ STORAGE FOR A CURINe; INT.

IIUS 15PTOS EOU R. \ PARALLEL TO SERIAL CONVElHER
IUS 16 BUrF EOU os ; CHARACTER BUrr[R
IU4 17 CHARAV EOU ; CHARACTER AVAILABLE ru~c.

Bell 18 COUNT EOU 03 B[T CoUMTER'
un !'JcaIT EOU BErH ; MASK TO CLEAR' no] N 1'2<1

""" 2' S81T EOU IHIN ; MASK TO SET TXO J N P24
FrOT

" P EOU ; PERIOD or no
22
23 , ----------------.-- .. -- .. "._."._-----

" , COHTROL PASSED HERE ON TIMER OVERFLOW
25 , ---,-----._.'."._-------_._----------

1187 2. ORG m

" : ENTER iNTERUPT MODE
"87 DS 28 TorlD: 5£L 'B'
1188 At ,. Mev AT[I'P,A

30 , 5£1 TIMER rOR P
88892307 " Mev A,RP
IUB G~ 32 Mev T.'
"'CSS 33 snn T

" ; GET SIT INTO CARRV

'180 1"10 3S CALL BIT
3. ; SET TXD TO CARRV

indicated in all but the most cost sensitive applica­
tions. An exception to this rule occurs when the
system, although full duplex in nature, actually
transmits the same data as it receives. An example
of this is a microprocessor driving a terminal such
as a Teletype. Although the circuit to the terminal
is full duplex, the data that is transmitted is generally
the same as that received. A minor modification to
the program shown in Figure 26 would implement
this mode of operation. The modification would be
to the XISR routine and it would add the code
necessary to place the TxD I/O pin in the same
state as the RxD line. Since any change in RxD
results in a call to XISR, this modification would
cause the retransmission of any received data.
Whenever it becomes necessary to transmit data
which is not being received, the program of Figure
28 could be used in a half duplex manner.

Loe eB" SEe SOURCE STATEMENT

Iller BA 37 A,P2
8818 D3811 3B XRL A,#BI1H
eel23A 39 DUll P2,A
BBI31'"619 " Je BITON
111159A[F " '"' Pl?, .CBIT
!le17 8418 " J'" EXIT
1H119 BAU 43 BiTON: ORL P2, .SBIT
eels rr 44 EXIT: Mev A,ATEMP
eelt 93 " RETR ,.

" -----------_._----_.- .. "._-_.--
48 ; BIT ROUTINE
49 ; ·PICKS THE NEXT BIT TO TRANSMIT

51 , .--------------------------_.--

" UID Fa 52 EIT: MIlV A,caWH
UIE C627 53 JZ 10'-'
Bl2e FE " Mev A,PTOS
182167 ss ORe ,
111224388 S. DOL A, :tellH
U124A[" Mev PTOS,A

U25 eB SB DEC COI..INT
19268) S' RET

.0
Ul797 .,

[D...(: CL'
l1li28 Fe .2 MIlV A,CHAR'AV
ell99G2D .3 JHZ GOTOHE
8128 A7 .. ePL e
U2C 83 ·.S 'ET ..
1.11120 Fa 67 c>OTQN[: MOV A,Burr
Ul~E AE .. MOV PTOS,A
Ul2f 8SBA •• M()V COUNT,tlU
1!IB31 BCUI MOV CHARAV, liB
683383 " 'ET

" ; END Of PROGRAM

" ,"0

Figure 28. Serial Transmission

All mnemonics cop·yrighled © Inlel C;:orporalion 1976.
1-23

AP-24

GENERATING PARITY
Many communications schemes require the genera­
tion and checking of parity. If a USART is used
it can be programmed to automatically generate
and check parity. If the communications is handled
by software within the MCS-4S™ then the program
must perform parity calculations. Calculating
parity is easy if one remembers what parity really
means. A character has even parity if the number
of one bits in it is even. A character has odd parity
if it has an odd number of ones. The program seg­
ment shown in Figure 29 can be caused to calculate
parity. It starts by setting a loop count to eight and

lOC OBJ

1112

111.
.'81 BAIB
111297·

1183 77
.'."'217
"16 A7

SEQ SOURCE STATEI"£I'IT

2 ; ••••••••••••••

3 :
.tIj ; PARITY
5 1 THIS PROGRAM GENERATES PARITY
6; ON THE ACCLnllATOR
7 1 CARRY WILL BE SET IF A HAS ODD PARITY . :
'3 \ ••••••••••••••

" " 12 ; .------
13 : EQUATES
'"; ._-----
IS
16 COUttT [QU
17
Ie PAR: OR.

"
MOIl

" CL.
21
22
23 LOOP: J.t
25 ePl
27
2. '""

11tH
COUHT I # 8 : SET LOOP COUNT
C ; INITIALIZE CARRY

•
OVER
e

: fOR EACH ZERO BIT IN A
; CQrlFLEf'llENT THE CARRY FLAG

; £I'ID OF PROGRAM

Figure 29. Parity Generation

clearing the CARRY flag. After this initialization a
loop is executed eight times. During each execution
the accumulator is rotated and the least significant
bit is tested. If the bit is a zero the CARRY flag is
complemented, if the bit is a one no further action
is taken. Since an even number of zeros implies an
even number of ones for an eight bit character,
after all eight loops have been accomplished the
CARRY bit will be set if an odd number of ones
were encountered; it will be reset if the number
were even. Since the RR instruction does not
involve CARRY the net result of executing this
program loop is to set CARRY if parity is odd
without effecting the character in the accumulator.

All mnemonics copyrighted @ Intel Corporation 1976.
1-24

CONCLUSION
This Application Note has presented a very small
sampling of the application techniques possible
with the MCS-4S™ family. The application of this
new single chip computer system to tasks which
have not yet yielded to the power of the micro:­
processor Will present a fascinating challenge to the
system designer.

-

- -

inter

• Intel Corporation, 1978

APPLICATION
NOTE

1·25

Ap·40

June 1978

9800755

intJ AP·40

INTRODUCTION

This application notes presents a software package for
,interfacing members of Intel's MCS-48™ family of

single-chip microcomputers with keyboards and dis­
plays using a minimum of external components. Be­
cause of the similarity of the architectures of the vari­
ous members of the family (the 8035, 8048, 8748, 8039,
8049,8021, and 8022 microcomputers; also the 8041 and
8741 universal peripheral interfaces in the UPI-41'"
family), the code included here could run with minor
modifications on any member of the family.

Since keyboard and display logic can be just one of
several functions handled by a microprocessor, the
added cost of including these functions in a system is
minimal. In fact, considering the extremely low cost of
standard X-V matrix keyboards and integrated displays,
their use is often more cost effective than even a hand­
ful of discrete switches and indicators. Thus, the addi­
tional flexibility of keyboard input and display output
can be added to inexpensive consumer products (such
as games, clocks, thermostats, tape recorders, etc.),
while producing a net savings in system cost.

Since each potential application will have its own
unique combination of keys and display characters, the
program is written so that very little modification is
needed to interface it with a wide variety of hadware
configurations. In general, the only changes required
are within the set of initial EQUates at the beginning of
the program.

Along with the basic software for driving a multiplexed
display andlor scanning and debouncing an X-V matrix
of key switches, a collection of utility subroutines is
also included for implementing the most commonly
used keyboard and display utility functions, such as
copying simple messages onto the display or determin­
ing the encoded value of each key in the key matrix. As a
result of the versatile architecture and applications"
oriented instruction set of the MCS-48 family, the entire
package fits into about 250 bytes of internal program
ROM or EPROM, leaving the rest of the ROM space for
the program to cook the perfect piece of toast, or what­
ever. By tailoring the software to match a known hard­
ware configuration, or by selecting only those functions
needed for a given application, the' program size could
be even further reduced.

Since what is being presented in this application note is
a software package, rather than the usual hardwarel
software system deSign, the format of this note is some­
what different from most - it conSists primarily of a
long program listing reproduced in the following pag,es.
For the most part, the listing is self-explanatory, with
comments introducing each subroutine and major code
segment. Some parts of this introduction are repro-

, duced in the program listing itself, explaining the con­
figuration of the prototype system. However, an addi­
tional bit of explanation would make the listing easier to
understand, especially for those readers unfamiliar with
the concept of multiplexed displays and keyboards.

In traditional digital system deSign, various hardware
registers or counters were used to hold binary or BCD
values which had to be conveyed to the user. The stand­
ard way of presenting this information was by connec­
ting each register to a seven-segment encoder (such as
the 7447) driving a single display character, as repre­
sented by Figure 1. Thus, two ICs, seven current limiting
resistors, and about 45 solder joints were required for
each digit of output. Consider how traditional tech­
niques might be (mis-)applied in designing a microproc­
essor system: the designer c)uld add a latch, encoder,
and reSistors for each digit of the display. Still another
latch and decoder could be used to turn on one of the
decimal points (if used). The characiers displayed could
only be a sequence of decimal digits. In the same vein, a
large matrix of key switches could be read by installing
an MSI TTL priority encoder read by an additional input
port. Not only would all this use a lot of extra I/O ports
and increase the system price and part count drastic­
ally, but the flexibility and reliability of the system
would be greatly reduced.

1-26

+V

a

CIRCUIT REPEATED FOR EVERY DIGIT OF DISPLAY
(DOTS USED TO INDICATE SOLDER JOINTS)

, Figure 1. Wrong Way 10 Design Multiple Digil Displays lor
Microcomputer Systems

-

AP·40

Instead, a scheme of time·multiplexing the display can
be used to decrease costs, part count, and interconnec·
tions, while allowing a wider range of character types to
be used on the display. The techniques used here are
fairly typical of today's integrated subsystems designed
especially for controlling keyboards and displays (such
as in calculators or the Intel@> 4269,8278, and 8279 Key·
boardlDisplay Controller Devices).

In a multiplexed display, all the segments of all the
characters are interconnected in a regular two·dimen·
sional array. One terminal of each ,segment is in com·
man with the other segments of the same character; the
other terminal is connected with the same segments of
the other characters. This is represented schematically
in Figure 2. A digit driver or segment driver is needed for
each of these common lines.

CURRENT
SOURCED

" SEGMENT
DRIVERS

~ ~ ~ ~ w _
SEGMENTS SEGMENTSSEGMEflHSSEGMENT5 SEGMENTS SEGMENTS

_m __ __ __ __ __
D~T_ ~!!... ~c!!... ~~ _D~T _~IT

I "a" SEGMENTS OF
J All DIGITS

~;-t-"",-:+-"",-:+-"",-:+~-:+~d-l"b"sEGMENTSOF
J ALL DIOlrs

~;-,-t~;-,-t~rl-~t-"-'"t-""""-+- !"C"SECMENTSOF
J ALlDIGLTS

-'<":'""r--'C':""r--=-t-"'C:"-+-""'"-+-"""+- 1 "d"SEQMENTSDF
J ALL DIGITS

~-::.rl~-::.rl~c1-,-""!-","+---=+- j SEGMENTSOF

JOIGITS

-rir--,--1r--=-r--"'"'"+-"'"+-"""+-I"'''SEGMENTSOF I DIGITS

-~!-~f-'-""!-"""+-""O':-+-~+-l "g"SEGMENTSOF
J ALLOIOITS

-ri-rir--;;:-:-r--"'"'"t-"'"'"+-",,-"+- I DECIMAL POINTS OF

CURRENT SUNK BY
DIGIT DRIVERS

, ALL DIGITS

Figure 2. Schematic Representation 016·01gll, 7·Segment
Common·Cathod LED Multiplexed Display

The various characters of the display are not all on at
once; rather, only one character at a time is energized.
As each character is enabled, some combination of seg·
ment drivers is turned on, with the result that a digit
appears on the enabled character. (For example, In Fig·
ure 3, if segment drivers 'a', 'b', and 'c' were on when
character position #6 was enabled, the digit '7' would
appear in the left·most place.) Each character is enabled
in this way, in 'sequence, at a rate fast enough to ensure
that the display characters seem to be on constantly,
with no appearance of flashing or flickering.

In the system presented here, these rapid mOdifications
to the display are all made under the control of the MeS·
48™ microcomputer. At periodic intervals the com·
puter quickly turns off all display segments, disables
the character now being displayed and enables the next,
looks up the pattern of segments for the next character

1-27

to be displayed, and turns on the appropriate segments.
With the next character now turned on, the processor
may now resume whatever it had been doing before. The
whole display updating task consumes only a small frac·
tion of the processor's time.

1 SEGMENT
J DRIVERS

1 DIGIT
J DRIVERS

Figure 3. Segment and Digit Drivers used with 6·Posltlon, 7.Segment
LED Display

Moreover, since the computer rather than a standard
decoder circuit is used to turn the segments off and on,
patterns for characters other than decimal digits may be
included in the display. Hexadecimal characters, spe·
cial symbols, and many letters of the alphabet are pas·
sible. With sufficient imagination this feature can be ex·
plaited for some applications, as suggested by the
examples in Figure 4.

L"-' , ,-, , , '- '- '- '-,
'I L
, L'L
'I I I ,-, L/Il ,

,-,-, , 'I
'-'-'-, ' ___ -

/,- 1,/, d=
III

Figure 4. Examples '01 Typical Messages ,Possible with Simple
7·Segment Displays

AP·40

As each character of the display is turned on, the same
signal may be used to enable one row of the key matrix.
Any keys in that row which are being pressed at the time
will then pass the Signal on to one of several "return
lines", one corresponding to each column of the matrix.
(Sell Figure 5.) By reading the state of these control
lines, and knowing which row is enabled, it is possible
to compute which (if any) of the keys are down. Note
that the keys need not be physically arranged in a rec­
tangular array; Figure 5 is merely a schematic.

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4
REtURN RETURN RETURN RETURN

LINE LINE LINE LINE

FROM SWITCHES ON
ADDITIONAL SCAN LINES

TO SWITCHES
ON ADDITIONAL
RETURN LINES

Figure 5. Schema'ic of X-Y Ma'rix Mulliplexed Keyboard

Since each character Is on for only a small fraction of
the total display cycle, its segments must be driven with
a proportionately higher current so that their brightness
averages out over time. This requires character and seg·
ment drivers which can handle higher than normal levels
of current. Various types of drivers can be used, ranging
from specially designed circuits to integrated or dis·
crete transistor arrays. The selection depends on
several factors, including the type of display being used
(LED, vacuum flourescent, neon, etc.), its size, the
number of characters, and the polarity of the individual
segments. Some drivers have'active high inputs, some
active low. Some invert their input logic levels, some do
not. Some require insignificant input currents, some
present a considerable load. Some systems use exter­
nallogic to enable one of N characters or to produce the
appropriate segment pattern for a given digit, some sys­
tems implement these functions through software.

Because of these and the other variables which make
each application unique, provisions are made in the first
page of symbol EQUates to allow the user to specify
such things as the number of characters In the display
or the polarity of the drivers used, and the program will
be assembled accordingly. The display is refreshed on
each timer interrupt, which occurs every 32 x (TICK)

machine cycles. :One machine cycle occurs every 30
crystal oscillations for the 8021 and 8022, or every 15
oscillations for all other members of the family.) A more
detailed explanation of these variables is included in the
listing.

Port assignment is also at the discretion of the user -
all port references' in the listing are "logical" rather than
physical port names. The port used to specify which
character is enabled is referred to as "PDIGIT". The out­
put segment pattern is written 1-0 "PSGMNT" and the
keyboard return lines are read by "PINPUT". These
logical port names may be assigned to whichever ports
the user pleases.

By way of example, the breadboard used to develop and
debug' this software used a matrix of 16 Single-pole
push buttons and an 8·character common-cathode LED
display with right·hand decimal point. No decoders ex­
ternal to the 8748 microcomputer were used; all logic
was handled through software. PDIGIT was the 8-bit
DUS, PSGMNT was port 1, and PINPUT was port 2. The
drivers used were 75491 and 75492 logically non­
inverting buffers: high level inputs were used to turn a
segment or character on. Pull-up resistors were used on
the 8748.output lines to source the current levels
needed by the buffers. The 8748 was socketed on the
breadboard, and was driven with an inexpensive 3.59
MHz television crystal. The short test program included
in this listing was used to echo key depressions as they
were detected, and ·to invoke four demonstration sub­
routines. A summary of the subroutines included in this
listing with a short explanation of the function of each is
included in Figure 6; Figure 7 shows how the various
utilities interact.

1-28

KBDIN

CLEAR

ENCACC

WDISP

RENTRY

PRINT

FILL

ECHO

RDPADD

HDLD

DELAY

Keyboard Input. WBits until one keystroke input has been received
from the keyboard. determmes the meaning or legend 01 that key and
returns with the encoc:led value In the accumulator.

Blank out the display

Encode accumulator with bit pallern corresponding to the segment
pattern needed by the dIsplay to represent that symbol or character.
Uses the value of the accumulator when called to access a table can·
talnlng the patterns for all legal mput values.

Write into Display. Writes the bit paltern In the accumulator mto the
next character pOSition of the display Maintains a character position
counter so thaI repeated calls Will automatically write characters inlo
seQuenttal pOSItions

Righl·hand Entry. Siores the accumulator segment pattern In the
display In the rlghl·most character position. ShIfts all other characters
to the lell one place
Print a siring of arbItrary characters onlo the display. Useful for pro·
mpt.ng messages warnings. etc Uses a lable 01 segment patterns In

ROM. so thaI messages Will not be restncted to numbers. letters. elc.

Fill the display With the character pattern In the accumulator. Useful
lor writing dashes. segment test patterns. etc .• IOta all character posi·
tlOns

Walt for a key to be pressed by the operator and wrile that key onlo
the display Used for providing feedback to the operator when enter·
Ing numeric data. etc

Adds or deletes a deCimal POint to the character at the tlght·hand Side
of the display. lor entering lIoating pOint numbers

Called when a key IS known to be down Does not return until all keys
have been released. Used lor organ· type keyboards. or when some ac·
I.on should not be Inlflated unltl the key invoking that acllon has been
released
PrOVides a crude real·tlme delay corresponding to the value of the ac·
cumulator when called. Can be used 10 cause d.splay characters 10
blink. to momentarily flash Information. to enable a buzzer. elc Could
also be used by the program when delays are needed. such as to slow
down the computer reaction rate while playing a g:ame againsl the
human operator.

Figure 6. U'lII'y Subroutine Deflnilions

-

AP·40

MAIN BACKGROUND PROGRAM

I I I
I

CLEAR PRINT ECHO RDPADD HOLD DELAY

I .J+ FILL

KBDIN ENCACC RENTRY

Figure 7. Subroutine Interrelationships

2"[,lsf,otJ I J~ • ~CC VDO

• 75491

f"F h~~ T'
.13 " 'y

~ 55

... ,..I., ... j"d'P."j
-= TO

-l1l.!.\,J,J j 2' T1 ~ ."S" _"b' "~" . "d" "e'
20 iNT
211 ~fN.C. ALE

F'E'ElPr'F'F'r'l ---'

II
30 ::: =1. -'. _. ~. ~. ='. !:i. ='. '------'

;5491
31

~ " I. 32 ':: _lEF!:~,?~! I'
33 I!-I~\\'::A~~:~ 3<

~
! ! 1 " 8748

N.C.-: ~ II
13

" N.C . .2

15492 pli "
" I.
I.

CD@@JD ~

"·~"(E II. P20
0@@J: • 13

P21

I. EXPAN~g: ,~ P ••

0®®= 75492 ~
P ••

@@}@D N.C.~ ~::~:
35

N.C • .!!

I
38

3'

I
I I ~ 38

--"~-""-

l~

Flgu"; 8 Prototype System Schematic

1-29

AP·40

1515-11 H(;S-48/1j;"1-41 MAC~J >\SSEf1lllE~, '.12 [J

ANfJ lNfEl 11(5-48 fH'BllftFL'tl5F'LH" Hl'PLl(AllOll NC,TE APPElt',!,:

LOC iJBJ

1 SHAU'oF I LE ~\~'EF

2 nITLE' 'AF'40, WTEL M(~:-48 I:E~Bl;HflD,'['ISPLH" HPF'LII)ITIOtI NOTE APPENDIX",

4 ,THE FOLLi.MING SOFTIoiAPE P~iClAGE PP.O,,'WE5 fI 51:VEN SEliI1ENT [,ISF'Lfili
5 ,INrEP.F~Cr. Hili mC~~(lCO~1FIJTER~ iN THE lNTtl ;n-4S Fflt'!IL'y'
,; ,THE CODE IS WP.I HEN SO THAT VAl<' lOLlS HHFfll4APE
7 ,CI.lltFIGIJF.'fl1 IONS CAN f>E Al);.)t10(!ATE.[' 8'T' F.E[l£I' !t.JIIIj [HE HlI lIill "'~:IABLES
8 , IN MOS r 5ITUftTiONS, THE ~E','80Aj;'t'/IiL5FLH1' lUTERFFtCE WILL BE ~'W.lIRE[\ '\G
9 ,iMF'lHIEln MO.E. SOPfHSTIGfiTE[; ,:INGLE-CHiP Sl'5IEMS (c.~LL'lJuno~':;:, ,fflLE.S, CLUI.'f..5,

19 ,!:.Te,), WITH SE('T!()NS OF THE FGLLl.lWINb un 3E'LECTEIJ AND i'liHF!E[> AS NECESSAfI"
11 ,FO~' mCH tlPPLl CATION
1<: '
~: ,A SINGLE SUflPWllNE «(fUEi) f;UJ.'SH! IS CISEu TO IMf'WlENi BOTH THE DISf-'Lkl'
14 ,joJIJLTIPLD:INlj AN[, ~E'y'BOftRt' SC,lUN1Nlj. 1J<,1N(' THE SRt11: ~j(jNAl BorH TO EIlABLe
15 ,ONE CHfiI?AClt~' OF THE DISFLA',' F1f4\ ,0 STROBE ONf ;;'0101 OF ,fit i(-Y ~'E'" tlffTPlt!
16 ,IHE SUIWOUTIPlE MI.I5T BE CfiLl,£[; ';lIFf'l,:mHL,' 0HEU 11) HISIJIlF. rH~ vISI'Lfl'i
r' ,CHf1F:AC1E~':, riO NOT FLlCKH'- Ai LEAS T 5.,1 tt)I1F'LETE D I SPl.A" SefiPlS PER ~.ECONv

1:3 ,TO Hl(Wl0[JATE SWITCHES (If Aj;'t>lTRH~Y CflEFtPNESS, [HE DElMJNCE TIME GAP! BE
19 ,sn T,) BE ANI' [>tSIPED NI.lMBER or CONFUTE SlANS
28 ,THUS THE llEBi)IJNCE THfE IS H FUUCTION OF 80TH ,HE SCHN kFilE AND ,HE VALlJ!:.
i1 .,0F CtJNS rANT 'VEBNCE'
2i .'
~~ ; It! THIS Ll~T1NG, THE INTE~NAL ilME~' IS I)SE~TQ IjEt;EPAIE INTERRLlP'I5 THAT
24 ,SERVE AS A TIME BASE FOR THE PEFP[SH 5UBPOllTltlE
<:5 ,ALTERNATE mlE BASES MIGHT BE fiN EXTEPNAL u';CILLAi..w q)~I'JWI.l THE It-llERI<Uf'T
26 ,~'IN 01< POLLED B'r' A TEST (If! INPUT PIN!" A S,)FTWA~:E IJELI"" LOOP IN 1HE BHC~ljPOUNli
27 ,PflOGr.'AM, ill< PE~'IOOIC CALLS Ie; THE SI.:i3PfJlITINE FROt1 THP.OUGHOUT THE USEP'S PPOGt<flM
(:':: ,AT AF'PPOPP I iiTE· PLACES
;;:9 ,IN THESE CASES, THE eo!)E STfll"TiNu HT LA~:EL r I lin (TIME!? INTE"'RllPT! ANI> TlRET
]0, mINT ~ElURN) GOIJl[, STilL BE I,;SE[1 TO ::;AVE AND "ESlOPE A(CtiMULflTOt.' CONTENTS
}1, THE INTEPFUF'l SEF.'\'ICIN(; flOI)TINE SELECTS J.'EGlSTE.' BANK 1
n ,FOP 1 HE NEEVEli REGISTERS
2.3 '
A',
0:5 "Wi"lTWI I::Y JOHN WHfIRTUN, INTEL SIIl(;LE-CHIP COt'lf'UTER ftPPLlCATIOr4S
]6 '

'j,i !EmT

All mnemonics copyrighted @ Intel Corporation 1976.
1·30

-

AP-40

ISIS-II r1(,s-48.'UPI-41 i'fHCPO flSSEMBLER, V';: B
flP48 INTEl MCS-48 KEYBOAl1[,/IiISPLfi',' RPPLlCAflON,NOTE APPENIiIX

LO(' CIB] SEO SOUIICE STATEMENT

s8 ,IN iHIS Ii1PLEMEtHtil WN 'jF THE [015PUI'~ SCAN. IT 15 ASSUMED "iHfH THEilE WILL
:;9 "BE I"El.AlI','EL" L1TTl.E 1/0 OTHEII THAN ~,)", THE KE'r'BOfW[i/[OISf'LA',
4e ; IF HHS 15 THE CASE. THEtl THERE I~ NO NEED FOil FI.l~ RN'" AWIiIONAL EXtEPNAL
41 ,LOGIC (SUCH f6 ONE-of-ElGH1 DEW[OEI"S 011 :;E'~EN-SEGt1Hn ENCODERS), THOUGH
4~ ,THE~'E WILL STILL BE A HEEl) FO~' CU~'REN1 OR VOLTAGE Dl<IVEIi5, ACCORDING 1U
43 ,THE T'fPE O~ [)ISPLAY BEING IJSED
44 '
45 ,IN IHIS Ll5TlNlj, THE PP.OCE~,50~' 1'0 PORTS AFE LOOICALLY [\IVI[)E[\ A~ FOLl.OWS
46 '
47 ; F'DI(j(H!GHT Btr POPT USED TO ENABLE. ONE ill fi TiME, THE INOIVIWAL
48 '
49 '
5e ,
51 '
52 '
5~ .
:,4 '
55 '
16 .
'i, '
58 '
59 '
6@ ,

61 ;
62 I

6, ,
64 '
65 '
66 ;
67,
68 ;
69 ;
70 ;
71 ;
72 }

CHAPACTEPS (IF i1N EIGHT Dilj) T SEVEN-SEGMI::NT IJISPLrW. WHILE ALSO
STPOBING THE ROWS OF AN X-',' r'lliT"'I:, KE','BOflll["
BIT:' ENABLES THE LEFTMOST CHARACTE~ HNV [HE BOTTOtl ~:ilW OF THE f:b[',
BIT4 ENAIlLES THE TOP ~'0101 OF THE 4,4 q:1) AND TH[f.'o]IjPTH CHAPfiC Te""
8m ENABLES THE PIGHTMOST CHARACiER.
(A 4(,8 KEI'BOA[.'[" COULv !iE :.T~GBW ~',' AL5,j usJt~J SIB-BITe
A/-j[) EXTENr,ItlG OR EWllNAI1NIj THE TA6LE, "LEGNli::''')
THE ENABLING OF ONE BIT (ACTIVE HIGH OR LOW, IS tlCCOMO[,ATE[) B','
ACCESS! NG A LOOr. -up TABLE LHLLtD CHFSTB
THIS TECHlilitlJE TAKES ABOUT FOUl<' B~'Tb MO~E ~0l'1 THAN A TECHNIQUE
OF j;mATING fj 'ONE' THPOIJ"H A FIEL(J OF ZEFUES' IN THE ACC.
AN APPROPPIATE NUl1BER OF 11~1ES, BUT IT ALUMS SOliE AD[,ITIONAL
FLEXABILlTl' IF THE DRIVERS BEING USI:I, HAVE H COMBINATORIAL INPUT
(AS HI THE 7545X FAtllLY OF IiI(;H-{uRRENT, HIGH-"Ol TAGE [iIi'IVERS),
THE ('H~'STB TABLE COUW PROVIDE ENCODEv iJUTPUTS, NINE DHms. FOP
EXAMPLE, CI)IJl[j BE ENABLED Wi TH Sl~ BITS Or (BUFFEfJE['-' OUTPUT
(001001,001010, e0Wr0. 010001, 019010, 010HJ0, 108001, 100BlO, 10elfJe)
IF I/O LINES NEED TO BE CONSERVED. OR IF MAtlY DIGJ1S
tlUST BE D I SPLA'r'ED, fiN EXTERNAl DECIJ[lER COUl[o BE AWED TO THE 5','STEI'1
DIJR I NG CHAI1ftCTEP TRHNS lTI 0115 A 'BLANK' CHARACTEFI IS
EXPlIClTL'r' WFITTEN TO THE DJSPLA',' THUS.
THERE WILL BE NO CHARACTEF 'SHftOOWING' CAUSED B\' THE
FftCT THAT THE HARDIofARE OR sarI WARE DECODER KEEPS ONE
OtJ1PUT, AND THUS OtE CHftRACTEI? ACTIVE AT ALL TIMES

n ,P",MNT -EIGHT BIT PORT TO ENABLE THE SEVEN SEGr1ENTS & D P OF A STANDARD
74 ; DISPLA~'

75 ' BlT7-BIHl COR~'ESPOND TO THE DP AND SE(;MENTS G THROUGH A. RESPECTlVEL~',

76 ' JT IS POSSIBLE TO ACCOMODATE
77 ' rJRIVE~'S WHICH ARE EITHER LOO!CALl Y INVERT H1G OR NON- INVEI?TING BY
78 ; SETTIN(; ~'AR!ABLE 'SEGPOl' (SEGMENT POLARlW)
79; NOTE THAT B~' HAVING AIIBITRARI' CONTROL OVER EACH SEf.lt1ENT. NON-NUMERIC
80 ' CHAI"ACTER5 CArl BE REPRE5ENTEv ON A SEllEN SEGMEtn D I SPLAII,
81 ' AS SHOWN IN EXAMPLE SUBROU fiNE 'TEST2'
82 j

83 $EJECT

All mnemonics copyrighted © Intel Corporation 1976,
1-31

infef Ap·40

ISIS-II I'ICS-4SlUPJ-41 HACIO'O ASSEI1f<lEP, 112.8
AP48· INTEL MCS-48 KEYBORRrJ/pISPLAY APPLICATIONJIOTE' APPENbIX

lOC OBJ SEQ SOlIfiCE 5TATEI'1ENT

fJ4 ,PJNPUT-F(II)P HlGH-OP.DE~' Bm USED iF INPUTS F~W1 TloiE !(EI'BOARD REWI<'N LINES
85 , ASSlJMES THAT A rEi' DOWN IN HE CURP.ENTL'" ENABLED RQI.I WOlJL[; PEl URN
86 ; A LOW lEVEl.
87 ; IN THIS CASE, BIT? RETURNS THE LEFTMOST COLlJI'IN, BJT4 THE RIGHTMOST
sa ,. THE HIGH-QI1DER BllS ARE USED SO THAT IF AN OFF-CHIP DECOUER 15 USEr,
89 ; TO ENABlE UP TO 16 CHARACTEi<'S, FOR E';,AHfU, IT Dno BE WIllEN BY
98 ; THE LOW ORDE~ BITS OF THE SAME PijJ<'T.
91 , NOTE ALSO THflT IF A SIXTEEN KE',> HAT!,:!,', WEIi:E tlECTi<'ICftLL',' OPGANI:;ED
92 ' IN A 2:<8 ARRAY, ONLY TWO RETURN L1tlES Wt)IU BE NEEDED.
93 ; i1N THis CASE, PEPHAPS Tii it,ll" 11 COllLD BE I)sE[J FOR INF1JT BIT::' "
94,
95 ,PULL -uP I<'ESISTfJRS ON THE IIETI~N LINES I'IIGHT BE III ORDEI< IF THE~f 15 AN"
96, POSSIBILITY Of A HIGH-li'1PEDENtE CONDUCTIVE PHTH THRW(,H THE SWITCH WHEN
9, ,IT 15 SlIPF'OSED TO BE 'OPEPI'.
98 ,(THIS PHEHOI'1ENON HAS ACTlIALL'1 BE!:N (.BSERVEL· ;.
99 ;

10!:l , THE r~I"'ER5 USED IN THE pFiOTOlYPE HEf.'E ALL NON- INVERTING IN THAT
1~1 ; A HIGH LEVEL ON tlN WTPUT lINE b USED TO TIJRN Ii CHflRRCTEfi OP SEGMENT ON
192 . THERE ARE A TOTAl. OF SEVEN 1/9 LINES LEn (lVE~
1tl? ; .
104 • THE ALOORlTHII FOIi: Llf<IYIHG 1 HE DISPLAY USE~ A 1ll0U' OF INTEi?NftL ~AI'1

195 ; AS [iISPLA'~ PEGISTEPS, WITH ONE Em COPRESPONDING fO EACH CHtlI<ACTEfI Of THE
106 ;D15PLAY THE EIGHr'BlT5 OF EACH BYTE CI)RIO'EsPON[J TO THE SEllEN Si:(JMENTS & iiI'
107 "OF EACH CHAAACTER IF AN EX1E~NAt. ENWI)ER IS IJSE[) ISUC.H AS A FOUR-BlT TLl
188 ; SE'IEN-SEGflENT ENCODBI 01' A 110M fljii, TRANSlATING ASCII TO
189 ; SJXTEEN-SEGI'lENT 'STARBUPST" (lIS~tAY PATlEIi'NS)., THE TABLE ENTRIES WOULD HOLD
110 .' THE CHflRACTEIi' CODES. (IN fHE FfJRME~' f;ASE, AN UNUSED ElIT CuUll' I.lE USED 10
111 ; ENABLE THE [l I')
1Ll ; THUS. WRITING CHAf"ftCTERS TO THE [; ISPLA'!, FI«1tI THE BA(KUROUNIlPflOGflAM
113 ,~LI' ENTAILS WflITING rHE APPFlOP~:IiITE SEGMENT
114 ; PATTERNS 10 A liISPLAY REGISTEF- THE I'flTUAl OliTPliTliNG IS AUTOI'IATIC
115 ; THE LEFTI'IOST cHAl<'ACm' COR~ESPOND~ iCi THE LAST BYTE OF THE DISPLAy'
116 ; REGISTERS, AND IS AC!lSSEII BY N~XTPL=8 (SEE 50URCE), [HE RIGHn10ST
117 .' CHAAACTER IS THE FlI(ST ())SPLfi'T' Bi'TE. WHEN NEXTPL=1.
118 ; lITILIr.' SUBROUTINE? ARE INCLUlJED HERE TO IF:ANSLATE FOUR BIT NUMBERS TO HE:~
119 ; [OIGIT PAlTERNS. ANI) WRITE THEM iNTO THE lHSPLAi' REGISTERS SEQlJENllALL~'
128 ; (ElTHEFI F ILLlNG FROM THE LEFT-H. p, CALCULATOR STYLE OR FROM THE
121 ; RIGHT - T L STi'L.E, SUBROUTI NES w[) I SP AND RENTRY, RE!>f'ECTl VEL ~'J
122 ,
123 ; THE K~YBOAR(l SCANNING ALGORITHM SHOWN HERE REQUIRES fl ~EY BE DOWN FOR
124 ; SOlE NlIHBER OF CO/1PLETE DISPLAY SCAN::' m BE ACKNOIoILEGED. SINCE IT IS
125 ; INTENDEv FOR '()£-F INGEll' OPERATIVN, Two-KEi' ROLLOI/ER/N-KEi' LOCKOUT HAS
126 ; BEEN IIIPLEMENTED HOIoIEVEFI, MOOIF (CATIONS IoIOll.D BE POSSIBLE Til ALLOW. FOR
127 ,EXAI1PLE, ONE KEY IN THE MATR1:, TO BE USID AS A SHIFT KEi' OR CONTROL KEY
128 • TO BE HELl) DOWN IoiiILE ANOTHE~ KEi' IN THE MATRI~ 15 PRES5Ev (SEE HuTE WITHIN
1~9, THE BOO',' OF THE LISTING,)
130;
131 SEJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-32

-

-
inter AP·40

ISIS-II I'1CS-48/UPI-41 MACRO ASSEtlBm', '<'2 ~~ PAGE 4
AP49 INTEL I'IC5-48 KE't'EOAFDlvI5PLAY APPLICi1TION NOTE APPENDiX

Loe OSJ SEQ SOIJRCE STATEt1EIlT

122 ; (BE flWARE THAT NO t'10~:E THAll TWO fl',':; CAN ~VEP BE D(j,IN UNlESS (,lODES
13:; ,ARE !'LACEr' IN SEkIES WITH ALL OF THE ~WITCHE5- CERTiHNl\' NOT THE CASE FOR EL
134 ,CHEAPO I\E't'BOARDS- BECAUSE SOME C,IMBINATIONS OF THREE KEYS ['oWN WILL RESULT
135 ; IN A 'PHAtHIJI'I FOURTH m' BEING p~RCm,'f.[,
136 ,THE PHANTOM rE',' I~OIJlD BE THE FOURTH CORNH" WHeN I HPEE KE'iS FORrmlG
E7 ,A "'ECTANGIJLftP PATIERN I IN THE ;':-'i ~E'r' /-IATRIX', ARE IXlWN \
E8 ,IF (HOOES H!<'E PLACE!: III THE SCrilllllNG MRRA'i, CONSiDERATIONS MUST BE NAvE
139 ,AfiOliT HOW THE DIODE VOL TAGE D~:OF' WILL fiFFEcr lHf'UT LOGIC LEVELS
140,
141 ; WHEN f, [iEBOIJNCEI> tH 15 DETECTE(', THE NUMBER 01' ITS POSITION IN THE f'El'
14~ ,MATRIX (lEFT-TO-I1IGHT., Bonurl-TO-TOP, STARTING FROM ell) IS PLACED INTO
143 ,PAM LOCATION '~B['I!IJF' AN INPUT SlJB~OIJTlNE THeN NEED ONL ... READ THIS LOCATION
144 ,I"EPEATE[I\. ... TO ~lERMINE WHEN H f:E',' HAS BEEN PIIESSED WHEN A ~El' IS DETECTE[,·
145 ,A SPECIAL COOE BYTE ~HOULD BE WRITTEN BAC~ TO INTO 'KBDBlIF' TO PI/EVENT
146 ; REf'EftrEf' fHE(! IONS OF THE SAt1£.KEI'
147 ; THE "'OUTINE 'KBDIN' DEf'lOI15TP.fliE A Tl'PICFt!. INPlIl F'ROlOCOL. ALONG WITH f1 METH(I[I
148 ,FOR TRANSLATINu A KEY posmON fO ITS ASSOCIA1ED SIGNIFICfiNCE SI' AC(b~,INJ.j
149 ; TABLE 'LEGN(;S' HI P.Ol'1.
150 '
151 SEJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-33

inter Ap·40

ISIS-II l'lCS-4~/UPHl MACIIO ASSEt·1EUR, 112. tI PIIIjE 5
flP4/3' INTtL 1'1(5-48 kEI'BOAPMHSI'Lft\' APPLICATION NOTE APPENIH:\

Lor liBJ

ae10
eOOB
0009

~0F

SEQ SOIJPCE STATEtlENT

152 ,*'U HA ."' ... '" ~ 1*"'* ... ·H.t<*.j<****~***.**.t**********"'************** .
!'5} •
1'54, ' - INITIAL EQUATES TO DEFINE SYSTB'I CONFIGURATION
155 .
156 ; ******H" .. t***.t<*",,,,**.t<**.********.t<*** .. ,,, .. ********************
157 ;
158 PD!GIT W)
159 P5Gt1NT EOli
1613 PINPUT WJ
161
162
163
164
165 ;
166 POSLOG tOU
167 NEfiUXi EllIJ
168 .
E9 CH~FfJL. Ef,iIJ
1iO SEGPOl . COl)
171 INPHSK Erill
1('2 I

1 n CHARNO EOIJ
17 4 flllO~1S E,tU
175 1-lC~LS E"QU
176 .
1;7 TICK WJ
178 ['EBNf..E b)lI
1,9 8LAttr. WU
188
181
182 ;
183 ENCI'l5k EW
184 .
185 SEJECT

BUS
F1
P2

; USED TO ENABLE CHARACTERS ANI) STROBE ROWS OF KE'IBOARD
,USED TO TURN ON SEGHENTS OF CURRENTLY ENABLED DIGIT
,PQF:T USED TO SCAN FOR KEY CLOSURES
; (NOTE THAT THIS POIIT ALLOCAllON USES THE HIGHER
; CURRENT SOIJRCING ABILlT'r' OF THE BUS TO SWITCH ON THE
; DIGIT DR I '/ER5, AND LEAVES P23-P20 FkEE FOR USING
• AN 8243 PORT EXPAN\)E~' I H !HE S'~STEt1.)

POSLOG ; DEFINES WHETHER OUTPUT LINES ARE ACTIVE HI OR LOW
POSLOfj ,\FOR [:'RI','lNG CHAIIACTERS fIN!) SEG1'IENT PATlERIIS
0HII-i ,ru INES 8lT5 IJSED AS INPUT

6 ; NUt1BEI1 OF (llGllS IN OISf'LA't'
,~·ows t'F KEYS ,LESS THffN OR EQUAL TO CHARNQ)

,LE5SEf' DHiENSION OF KEYBffiRD MATRIX

-1SH • [:ETEliI'1lt1ES INTERRUPT INTERVAL
4 . NUMBER OF SUCESSIVE SCANS BEFORE KEY CLOSURE ACCEPTED
00"l .' CODE TO BLANI<' 0 I SPLAY CHARACTERS.

. (lo!WlD BE 20H IF ASCII DECODING ROO USED OR flFH IF

.7447-WPE SEVEN-SEGMENT DEC1JDER EXTERNAL TO 8748)

0FH ,SELECTS WHICH BITS ARE RELEVANT TO ENGACC SUBROUTINE

All mnemonics copyrighted © Intel Corporation 1976.
1-34

-

--
Ap·40

I SIS-II HCS-48/l1P I -41 t1IlCRO ASSEMBLER, V2. e PAGE 6
AP49: INTEL HCS-48 KE'r'BOARD/DISPLAY ftPPLICAfIGN NOTE APPENDIX

LOC OBJ

0000
0001
9907

0902
9004
9095
0906
0997

0820
9021
0822

0923

9937

SEQ SOURC,E STATEMENT

186 ,~**********,,***********.j<f*****.**********************.j<*****
187 •
188 , BANK 0 REG I5TEJ(S USED
189 ;
190 ; POINTERS USED FOR INDIRECT RAM ACCESSING.
191 PNTREl EQU R0
192 PUTR1 EQU R1
193 NEXTPL EQU R, ; USED TO KEEP TRACK OF CHARACTER POSITION BEING
194 ; WRITTEN INTO
195 ;

196 ; *** 197 ;
198 .'
199 •

BIlNK 1 REGISTER ALLOCATION

200 ; PNTR0 EQU
201. PNTR1 EQU
202 ASAVE EQU
203 ROTPAT EQU
294 ROTCNT EQIJ
295 LASTK'r' EQIJ
206 CURD Hl EQU
207 ;

R0
Rl
R2
R4
R5
R6
R7

(AL~:EADY DEFINED)

; HOLDS ACCUHULftTOR VALUE DURING SERVICE ROUTINE
; USED TO HOLD INPUT PATTERN BEING ROTATI:.D THROUGH C'T
; COUNTS NlIHBER OF B ITS ROTATED THROUGH CY
; HOLDS KE'I POSITION OF LAST KEY DEPRESSION DETECTED
; HOLDS POSITION OF NEXT CHARACTER TO BE DISPLA'/ED

298 ; ************************"'************"'********************* 299 ;
219 ; DATA RAM ALLOCATION
211 ;
212 Nl<."EPTS EQU
213 KEYLOC EQU
214 KBDBUF EQIJ
215
216 RDELAY EQIJ
217 ;

32
33
34

35

; KEEPS TRACK OF SUCCESS I VE READS OF SAME KEYSTROKE
; INCREMENTED AS SUCCESSIVE KEY LOCATIONS SCANNED
; CARRIES POSITION OF D~BOUNCED KEY FI<OH REFRSH ROUTINE
• \ BACK TO BACKGJ(OlIND PROGRAM
; NON-ZERO WHEN DISPLAY IN PROGRESS

218 ;
219 ;

THE LAST (CHARNO) REGISTERS HOLD THE DISPLAY SErlMENT PATTEflNS

229 SEGt1AP EQIJ
221
222 ;

(6HHARNO) ; BASE OF flEGISTER ftRRAY FOR D ISPLAY PATTERN~
i \ (COULD BE ANYWHERE I N I NTERNAL RAM)

223 ; *********** ... "'***
224 •
225 , NOTE THAT LASTK'r', CIJRDIG, AND F1 RETAIN STATUS INFORMATION FROM
226 ; ONE INTERRUPT TO THE NEXT. ALL OTHER REGISTERS MAY BE USED IN
227 ; THE USER'S OWN INTERRUPT SERYICING ROUTINE
228 ;

229 ; *****************************<1<*****************************
230 ;
231 $EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-35

inter Ap·40

ISIS-Ii I1CS-48/UPI-41 IlACRO ASSEMBlER, ~'2. e PAGE; 7
AP40' INTEl I1CS-48 KEYBOARD/DISPLAY APPLICATION NOTE APPENDIX

LOC OBJ

9007

1l0I3'? D5
9888 Afl
9009 23F9
BOOB 62

900c 1410

000E FA
000F 93

SEQ SOURCE STATEMENT

232 ..

233 -' *******"'*****''''*********.**************** *************** ...
234 -'
235 ORG 000H
236 JI'IP INIT
237 -'
238 -'

·239 ; ******************~***************************.****'f<*******
240 -'
241 O~G
242 ;
243 -' TIINT
244 -'
245 ;
246 -'
247 ,
248 TlINT'
249
250
251
252 -'

a07H

llMEIi' INTERRUPT SUBROUTINE
CAlL !'lADE TO LOt: 1J0;'H HN TIMER THIES OUT
TIMER CAN BE RE-INITIALLlZE.D AT THIS POINT IF IJESIRED
USED HERE TO CAUSE THE [lISPLAY REFRESH AND KE~' SCAN ROUTINES TO
BE CALLED PEIO'IODICALL'f.
SEL RBi
MOY ASAYE, A
HOY AdlTlCK
HOY f.R ; RELOAD TlMEfI INTERYftL

253 -' ********** .. ****_************************************<1<***
254 ;
255 .; THE USER'S OWN THiEl" INTERflUPT ROUTIIlE ilF IT EXISTS') COULD
256 , BE PLACED AT THIS PO HIT
257 -'

258 -' ***************************************'**'************.H**~.
259-
260
261 ;
262 -'
263 -'
264,
265 i.

CALL REFRSH -' CAUSE DISPLAY TO B~ lIPDATED

THE COMPLETE INTERRUPT ROUTINE SHOULD BE COPIED HEI<E
TO SAVE A FULL LEVEL OF SUb'ROUTlNE NESTING.
IT WAS WRITTEN AS A SUBROUTINE HE~E FuR IHE SAKE OF CLAflIl'{

266 -' ***********************************-1<*******************'+***
267 -'
268 ;TlRET
269 T1RET:
270
271 ;
272 $EJECT'

TIMER INTERRUPT RETIJRN COI)E- RESTORES flee VALUE
110.,. A,ASAYE
RETR

All mnemonics copyrighted © Intel Corporation 1976.
1·36

-

-
intJ Ap·40

I5IS-II HCS-48/!JPI-41 MACRO ft5SEMBLEP, '12 e PAGE 8
AP49: INTEL 1'IC5-48 KEYOOAfl[l/DISPLAY APPLICATION NOTE ftPPENDI;;

LOC OBJ

0018 2399
0012 39
0013 2357
9015 6F
9916 R3
991792

!!Il18 2337
991A 6F
0018 il9
a01C F1
991[> 39

901£ B821
002a 9A

SEQ SOURCE STATEMENT

273 : .j.*****~*,,"'***.***.j.***.j..*******.j.*'f-~1 •• *****~*****·H*""*.*~*.t<
274 ; IIEFR~ SU8ROUTINE TO MUL TIPLEii SEYEH-SI::GMENT DISPLfl'r'S
275 • EACH CALL CRUSES THE tlEXT CHA/iACTEIl TO BE viSPLA'rED.
276 : ACCORDING TO THE CONTENTS OF THE SEGMAP I<EGISTEII ARIIAY
277 • P.EFR5H SHOIJLD BE CALLED AT LEAST EilER .. ' MSEr O~ SO
278 . ** *******.***********************.*** .••. ~* ~.~*.~.f<.j..~*.j. • .f<*.* ~
279 :
280 REFRSH: MO',' A, .BLANK :<OR SEGPOL
281 OIJTL PSGMNT, A : WlllTE BLANK FAnEllI! TI) SE(j CI1IVERS
282 REFR1: MO'r f/. •• CHRSTB ,LOOK UP NGIT ENABLE PATTEI1N
283
284
285
286 :
287
288
289
299
291
292
293 ,

Aoo
MOW
liUTL

A, CllRDHl : Af)1) CURIiIG DISPLACEMENT
A, ~R ,ENABLE ONE BIT llF ftCCIJMULATOIl
PDIGIT. fl . ENEI'GlZE CHARACTER

HOII A, ISEGMfif'
ftOD A .• CURDI(j
MOil PNTR1. A
MOY fl, @PNTk1
OIJTL P5Gt1NT, it

.. ~ ITE NEXT SEu~1ENT F'RTTERN
: LOAD BASE OF FEG I STER ARRAY
• ROO CURDIG DISPLACMENT

; LOAf) Ace 101/ NEXT SEGMENT PATTERN
,ENABLE APPROPRIATE SEGtlENTS

294 ; *******.~********,.***************~~**********~**~********~*
295 ; THE NEXT CHARACTER IS NOW BEING DISPLAYED.
296 ; THE KEYBOARD SCAN R(JIJTINE IS INTEGliHTED INTO lHE DISPLAY SCAN.
297 ; WITH THE CURRENT ROW ENERGIZED. CHECK IF THERE AilE ANY INPU1S

298 ; **************************************~***.j<***.j<.j<***********
299.:
309 SCAN. MOY PNTRe, tKEYLOC ,SET POINTER FOR SEVERAL KE'r'l.OC REFEIIENCES
391 IN /1, PINPUT ; LOAD ANY SWITCH CLOSURES
302 ;
303 ; .. #
304 ; III THIS BLOCK (IF CODE IS NOT NEEDED 8Y THE KE BOApr' SCAN LOGIC •••
305 .'" HOWEVEfI, ITS INCLIJ5ION WOULD SPEED THINGS UP A Bll BY ...
3lJ6 ,II SKIPPING OVER ROWS IN WHICH NO KEYS AilE DOWN. II.
397 ;.. IT WAS OMITTED HERE TO CONSERVE ROH SPACE, BUT 11lGHl BE ...
30a ,.. RESTORED IF IIEIIY LARGE KEYBOARDS (ESPECIRLL'r THOSE WITH EIGHl •••
309 ,.. KEYS PER ROW) ARE TO BE USED WITH THIS ALGORITHM •••
31B: ... tItI
311 ;.. eft A ; ANY CLOSURES [.oI::TECTED ARE 1m'", ONE 81 T5 tI ..
312 ,.11 ANL A, • I NPMSK •••
313 ; ttl JHZ SCAN!; -IF A K~Y HI THE CURRENTL"r ENABLED ROW IS DOWN •••
314 ,it; NO KEY 15 NOW OOWN SO THE KE'~LOr COIJNT l'tA',' BE IJPDAIED DIRECTLY .. .
:1l5 ;.. ~lOV A. @PHTR0 .. .
316 ;.. ROO A, .NCOLS •••
:m ; it MOil @PNTRl!, A III
318 :.. .IMP SCAN6 Ill.
319 ; .. tItI ••••• tll ••••• m
329 ;.. IF THIS (;ODE IS USED, SUBSTITUTE THE ; Je SCANS' FuUR LINES ...
321: •• HENCE WITH 'JNC SCANS· TO A(;COI1ODATE THE I HI/ERTED POL~ 1T'r' •••
322 :
323 sEJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-37

inter Ap·40

ISIS-II IICS-48/UPI-41 I1ACRO ASSEt1BLER, 112.8 PAGE 9
ff49. INTEL IICS-48 KEYBOARD/DISPLAY APPLICATION NOTE APPENDIX

LOC OSJ

8921 8004
8923 F7
0924 AC
0025 F63F

9027 AS
0028 B5

0029 F9
002A 2E
002B DE
002C ·8820
002E C634

SEQ SOORCE STATEI1ENT

324 i .*"'*"'*"'***************************."'***********************
325 ; ROTATE BITS THWl/I'JH THE CY WHILE INCREMENTING KEVlOC

326 .; .**
327 ,
328 SCANt: 1101/
329 NXTLOC: RLC
338
m
:>32;

I10V
JC

ROTt.'NT, IINCOLS
A
I"OTPAT, A
SCANS

; SET UP FOR (NCOLS) LO(fS THFOUGH 'NXTLOC'

i SAllE SHIFTED BIT PATTEI1N
; ONE BIT IN CY INDICATES KEY NOT DOWN

313 ,***************************-1<****************************"'**
334 ;
335 ; HT THIS POINT IT HftS JUST BEEN DETERMINED THAT THE VALUE
336 ; OF KEYLOC IS THE POSITION OF A KEY WHICH IS NOW DOWN
I~;' ; THE FOLLOWING CODE DEBOUNCES THE KE'r', ETC.
33S , IF MODIFICATIONS TO THE KlYBOARl> LOGIC, l. E. THE INCLUSION
:m ; Of A SHIFT, CONTI"OL.. OR MODE KEY Itl THE KEY HATRIX ITSELF)
349 ; ARE DESIRED, THEY SHOllD BE MADE AT THIS POINT, BEFORE
341 '; THE DEBOUNCE LOGIC BEGINS. FOI" EXAI1PLb AT THIS POINT
342 .; KEI'LOC COULD BE COMPARED AGAINST THE POSITION OF THE. I100E
343 ; KEY, AND IF THEY MATCH SET SOME FLAG BIT AI{) JUMP TO
344 ; LABEL 'SCANS'. OR, BY COI'fPftRING KEYLOC AGAINST THE LAST
345 i KEt' DEBOUNCED, IHMIODIATE TWO-KE',' ROLLOVER COULD BE
346 i IIIPLEl'fENTED.
347 .;

348 ,*****************>t-**************************.fc**************
349 i

350
351
352 ;

(;LR
(''PL

F1
.Fi

; MARK THAT AT LEAST ONE KEY WAS DETECTED
; \ III THE CURRENT SCAN

353 i *******01<***
3S4 ; A KEYSTROKE WAS DETECTE!> FOR THE CURRENT COLIJIN. ITS
355 i POSITION IS IN REGIS1ER KEI'LOC. SEE If SAME I<EI' SENSED LAST CI'CLE

356 ; *************************************~**-****************
:;:;7;
358
359
360
361
362
363 ;
364 $EJECT

I'fOV
XCH
XRl
MOY
JZ

A,@I'NTR9
A, ~ASTKY
A,LASTKY
f'NTR0, INREPTS
SCAN3

; PNTR9 STILL HOLDS IIKEVlOC

; PREPARE TO CHECK AND/OR HODIFY REPEAT COUIIT

All mnemonics copyrighted @ Intel Corporation 1976.
1·38

intJ Ap·40

ISIS-II MCS-48iUPI-41 I1ACRO ASSEI'1I3LER, V~. 0 PAGE 19
AP48 INTEL HCS-48 KEYBOARDiD I SPLAY APf'L1 CAT! ON NOTE APPEND I X

LOG OBJ

0939 IiOO4
8832 943F

0034 Fe
9035 C63F
80:>787
!le38 AiJ
0039 963F
8938 FE
893C 8822
003E A9

003F 8821
904118
9tf42 Fe
!.III43 ED2:;

9945 EFS7

SEQ SOURCE STATEttNT

365 ; ***.****************************** .. *-t**********************
366 ; A DIFFERENT KEY WAS !lEAD ON THIS CYCLE THAll 0/1 THE PREVIOUS CYCLE.
367 ; SET NREPTS TO THE DEI:!OUHCE f'ARA1'IETE~ FOR A NEW C(dJl-nOOWH

368 ; ."'*******.**************~~*****""**********.j<********** **
369 ;
:t70 I10V @PNm;.IDEBNCE
m JHf' SCANS
372 ;

373 ; ********·t"*************1<**********************.***"'******* ..
374 ; SAME KEI' WAS DETECTED AS ON f'REYI01J5 CYCLE
m ; LOIJI(AT HIIEPTS. IF ALREADY ZERO. DO NOTHING
376 ; ELSE DECREHENT NREf'TS
m ; IF THIS RESULTS IN ZERO, I10VE LASTK'r' INrO KBDBiJF

378 ,*********************************" ... *******,..ljo* .. ****i<********
379 ;
389 SCAN~. 110Y A,~NTR8

381 JZ SCANS ; I F AL~EAO't' ZE~O
382 DEC A • INDICATE ONE tl()~E SUCr.ESI~'E 'H liUECTlON
383 I10V @f'NTRIl.A
384 JHZ SCANS dF DECREMENT DOES NOT RESULT IN ;::E~'O

385 11011 A, LflSTl'Y
366 HOY PNTR9, *VB£i8iJF
387 1'101/ @PNTRll,A ; TO MARK NEW KE.Y CLOSIJ~'E

388 ;
389 SCANS. 1'10',' PNTRI.!. IKEYLOC
:;90 INC @PNTR0
:m 1'1011 fI, ~OTPAT
392 DJNZ ROTCUT, NXTLOC
393 .
394 ;
395 SCAN6. D.JNZ CURD I 1], SCAN3
;96 ;
397 fEJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-39

Ap·40

ISIS-II MCS-48/UPI -41 t1ACRO ASSEMBlER, ',12. (I PAGE' 11
RP4(1: INTEL HCS-48 KE'r'BOARD/DISPLfl'r' flPF'lICRTIONNOTE flPPENDnl

LOC OBJ

0047 BFOO
8049 8900
0048 764F
004D BEFF
904F A5

0050 B923
0052 Fl
0053 COS7
9955 97
9056 Ai

9957 83

0057
0058 01
0059 '.1~
f.ju5A 04
0(l5E! 08
B0se 1(1
(U)5!i 2('

flf:!:oE 40
1<l0'5F 80

SEQ SOURCE STATEI'1t:.1l7

398 ;

399 ; *************"'***********"*";**********'~*******"'*"'**********
490 ; THE FOLLOWING CODE SEGI'lENT IS USED BV THE KE'r'BOAR[! SCANNING f"OIJTlNE
401' IT I 5 EXECUTED ONL V AFTER A REFRESH SEQUENCE OF ALL
492 ; THE CHAFACTERS IN THE DISPLAY IS COMPLETED

493 : ****************************'1<*********"'''''1-*'''***'''****'''***.''''1<''
404 ;
495
496
497
408
409 SCANS:
410 ;

MOil
MOV
JF1
MOV
CLR

CURDIG,IICHflRNO
@PNTR0·110
SCAN8
LASTK'r' .lI0FFH
F1

,PNTR0 STILL CONTAINS IIk'E~'LOC

; JUMP IF ANV KEVS WERE DETECT!:.D
,CHANGE (LASTK'f) WHEN NO KEYS ARE DOWN

411 .' **********************"'*********t**************************
412 .: THE NE~:r CODE SEGMENT IS THE INTERRUPT-DRIVEN PORTION OF THE 'DELA'T"
413 .: UTILlW IT DECREMENTS RAM LOCATION "RDELAV' ONCE PER OI5PLAY SCAN
414 .: IF 'RDELAY' IS NOT ALREADY ZERO
415 ,; *******~**************************U,~~***'I<*"'***"**********"
416 •
417
418
419
429
421
422 ;

MOil
, MOV

JZ
[lEC
MOV

423 SCAN9' RET
424 .

PNTR1,IIRDELfI't'
A.@PNTR1
SCAN9
A
@PNTR1,A

425 ; *"'**i:**************,....**,.+·'H*·"i·t·I~:i~·*j:~*"'i<** .. *t** .. ***ot,*** .. **
426 ;
42;' • CHRST~ IS fHE B~~.f: hl~ tHE Phrm'NS TO ENABLE ONE-(lF-CHflRNO CHARftCTERS.
423 CfI~'~,;"8 O:QI.' ~~-l} flN[' OFFH
4~~! [:Or; '. 0~)~~IOI:Mltl >:01<: CHRPOl)
-i-JI c' ,'I;. ,(10003<110[: :~i)f. CHRPOL J

4:1 r..1; ,Oeljc.l01tXlE· xO!': !~HRPOL)

.tJ2 tIE 1300:)10000 mR CHRPOL)
J?:- "f: ,0l3li100€JOB XOR CHRPOU
4:?4 !)f: 13(11000000 XOR CHRPOU
41'5 r'8 <010000008 ~)R CHRPOL)
4:6 f'f: (100090996 XOR CHRP(JL)
437
438 fETECT

All mnemonics copyrighted @ Intel Corporation 1976.

1·40

-
intJ Ap·40

ISI5-1i HCS-48.!UF'I-41 IW:~'O ~<:~,Et4BLE~, V2 Q PAGE 12
AP40' INTEL I'ICS-48 l'fYBOIlPM\ISPLfI\I APPLICATION NOTE APPENtoIX

LOC OB)

0(160 D5
O~q BF08
006;: B:322
0065 BOFF
'313,,7 B~21
0069 BO~t0
(t06B 23Ht
,*161) 3fl
9(t6E C5
006F 149E
(tIm A5
0072 2,F(t
00?4 62
(1075 ~5
0Et76 25

0077 148:;
0079 B281

0078 14BA
007D 14DB
007F 0477

0081 2400

SEt)

m ,Hm
44q INlT
441
442
J4}

4~4

4d5
44t
447
448
449

450
451
452
451
454
455 '
456 ;

SOIJRCE STATEHENT

INITlilL 12E5 PF.CiCE5S0.' REGiSTERS
SEL RBi
~IOV CI.IRD1G,ICHAPNO
i10V PNTR~qWB[oBUF
t,to'.! @F'tm:o, 1I0FF H
1'10',' F'NTF:e, IltEYLOC
i'lO'! @p~m.B, 10
t1CIV ft, UNPI1SK
'.IIJTL "INPUT. R ,SET BWIRECT IONAL INPUl LINES
SEl RBO
CALL CLEAA ,OTlLIT'r' FO", SETTING INITIAl.. DISPLAY REGISTERS.
CL~ fl
r~ov R., niCK ; LOAD INTEFRIJPT RATE VALUE
~10\1 1. A
STF.'l T
Ell Term ; ENABLE lIMER INTERRUPTS

457 ,**~.* <*I * .• * ~** .~*." ~*"'*.foH****"'***.fo**"***"'*******************
458 :
459 ; ECHO cllm. FOF.' AN\' NEW KI::YSTROKES DETECTED
46\1 ' TRANSLATE EACH KEYSTROKE INTO ft SEGMENT PATTERN
461 ; HN[.' WPlTE IT INTO THE APPI"OPRIATE DISPLA'r' REGISTER

46} . .u * t ~ ~ .. ***~**-t.***'*~·******H********·~*********""'**.'.*"'*.* "'*
4';4 ;

465 ECHO'
466
46? ;
468 '
469
470
471
472 ,

CALL KBD IN .' GE.T NEXT KE~'5TROKE
.JB5 F~E~' 'JUMP IF rEI' IN RIGHTHANI) COLUMN.
SINCE THE ACG IS USE~ !:ill ENrACe AND RENTR~', ns CONTENT 5 MUST
BE PROCESSED OR SAVEv E:EFORE ENCAGC 15 CflLLED
CALL ENeAce ,FORt'1 APPROPRlftTE SEGMENT PATTERN
CALL RENTP't' : WI<lTE PATTERN INTO DISPLAY REGISTERS
IMP ECHO .' LOOF' I NDEFINITEL','

473 FKEV JMP FUNCTN ,JUMP TO OFF-PAGE CODE TO CIll..L -DEMO ROUTINE
474.:
4;'5 fEJECT

All mnemonics copyrighted ® Intel Corporation 1976.
1-41

inter· Ap·40

ISI5-11 ~lCS-48iiJF'Hl it,fiU'O ASSEI1BW· 2 (1 PAGE E
AP4e INTEL MCS-48 KEYSOf<P['/1) ISPLHl' APf'LlCATION NOTE RPPENl)j)':

l((IJ8.J

eB83 13922
01385 2380

. 0987 21
@tl88 .28:
008A €G8E
ewe I'{,

008D ·9]

t1138E
B08E 4F
0Q8F 11?

'13€19tl 4E
~€1~1 28
01392 17
0139:': 18
~B94 19
OO~5 24
f.l0~6 14
~B97 15
0€198 16
tt099 22
fitl9A 11
~09B 12
£1139(:1.3
01cl9D 21

S(!Ur"CE 5 T F(f EfoiENT

4~6 . i'~·**"""".*H;'*">i<!".t ... ",*",* ... ·,*~******",****.**************.t<*****
477 .
4?? . HIE q"-LOWING SUBROUTINES IMPLEMENT THE UTILITIES COMI1ONl T' USED FOR
47'1 . MOST fT~BOp."r'/DI5PLA'~ APPLICATIONS.
480 . THE<' COtt[! BE USED ElI.AC TL l' RS SHOWN HERE OR AOAPTED FOR SPEC I AL CASES.
481 :

4<J2 • HJI< .. :l<·I'**.,,*****.·*.·*oI< *o\,******************************_*
48] :
484.:\f8(,'W
485 .
486 ;
487 .
488 .
.lS9 .
~90 KBDIN
491
4~'"
4"'~
494
~95

496
437 .
4?a ;

VEYBOARD INPUT SUBF:OUTINE.
WU BE IJSEr' TO I NTERFACE THE USER'S BACKGROUND PROGRAM 1411 H
THE INTERPliPT DRIVEN f!E'r'BOARD 5CANNER.
RETIJhNS uNL l' flFTEI? A NEW KE::'~STROKE HAS BEEN DETECTED AND DEBOUNCED.
ENC·X)E(l '~ALl1E OF Y.'E''> (~'ATHER THAN ITS POSITION IN SWITCH MATRIX) IS
FHiJRNED Ttl lHE AGCUt1IJLAlGF.' .
11011 PNT!?!' lWBDBl.f
111),.1 f1 .. lIBftli
;-·:CfI '1. 1!F'NTR1
.JE·~ KBDIN
flDC, fl.. lIlEGNDS
110VP A.I~A

RET

; KBDSUF WILL BE MARKED AS CLEAR
,LOAe BUFFER ~ALUE

,ADD BASE OF KEY ENCODING TABLE
: OBTAIN BYTE REPRESENTING KEY SIGNIFIUlNCE

49, : WiNDS IS THE BflSE FOR TABLE SHOWING !:.E',' MATRIX SIGNIFICANCE
5€1A . FOP THE V.El'BOA~·D lISED IN THE f'ROTOTT'PE.
501: IT~ LA't'OIJT 15 AS SHOWN TO THE RIGHT.
50~

501
~;04

~05
5(i€;

507
508 LEGNDS
5139
5113
511
512
51:;
514
515
516
517
518
519
5213
521
522
5~'~
~;24

525 $LTECi

!~OTE TIiAT BIT ti-B!T4 MAY BE USED TO ENCODE KEY TYPE. IN THIS CASE:
BI14 INDICATES REGULAR DECIMAL DIGITS,
lIlT5 :NulCA7ES RIGHT-COLUI1N FUNCTION KE'iS,
8m INfoiCATES PUNCTUATION HARKS (* AND I),

.$ AND eFFH\
4FH

.' USE LOW ORDER BITS .AS TABLE INDEX

Hlli
4EH
2SH
17Ii
1SH
19H
24H
14H
15H
16H

PL>IGIT4==} 1

f'DIGlT5==) 4

PDIGIT6==) 7

PDIG\T7=) .f

2

8 (3)

9 • (4)

[is 22H
[.f;

vB
DB
DB

llH
12H
EH
21H

II V Y V
PINP1JT7 f'INPIJT6 PINPUT5 PlNPIJT4

All mnemonics copyrighted © Intel Corporation 1976.
1-42

AP·40

ISIS-II I1CS-48 JUPH1 ~IH(FO flSSEMBLER, 112. iii PAGE 14
AN0 INTEL ~ICS-4S r:E'T'BOft~:[);DISPLAY HPPllUHlON NOTE RPPEN[JI:~

LOC Of.J

f.it!9E 2:'131;1
013140 B938
@13142 BF(tS
OOft4 A1
~1(IA5 19
B0A6 EFfl4
00A8 BF€t8
€tORFi 8:;

BORS F8
~OFIC A3
00AD C6B4
fJ0AF 14D9

00Bl 18
0@B2 fJ4AB
0€184 83

0005
000-5 1E
~006 :,C
(108, (4

00B8 54
0fjB9 tifJ

c '7 .• '~;
52B ;CUfiR
~;29

'5]0 ,""ILL
531 ClaW
532 FILL ,,--
.J..!.~

534 CUi'
!'i"I;" '.:;".'

536
,,~~

. .':.·r

538
5::'9 ;

SOIJRCE SlATEfiENT

WRITES 'BLANr:' CHARACTERS INTO ALL DISPLAY REGI5TEI<S.
PETlJI'NS ~mH NEXTPL SET TO LEFnl05T CHARACTER POSITION
,IPiTES SIOGMENl PATTERN NO~I IN ACC 1I1T0 ALL NSPLA',' REGISTERS
~10\l fI, ,BLANK ;~;JR SEGPOL
t'IOV FNTR1, ~5EGNflP"'1
140\1 NE:<TPL, #CliARNO
W:rV @PIFP!, P ; STOF:E THE BLANK CODE
I tiC PNTPi· POINT 10 NEXT CHARACTER TO THE LEFl
!l.JI1Z NEXTPL, CL~'1
1'10V NEXTPL., VCHARNO
RET

540 ; "'$·U:*.·~*·U·."'*********·*01<*********"*H**",*******"************
541 •
542 ; PPINf SUBROliTINE TO COPY A STRING OF BIT PATTERNS FRO~1 Rot'l TO THE
541 ; DISPLAY REGISmS STRING STARTS AT LOCATION POINTED TO BY PIma.
544 ; CONTINUES UNTIL AN ESCAPE CODE (0FFH) IS REACHED.
545; NOTE THAT THE CHARACTEP STRING PUT OUT NUST BE LOCATE!) OU THE SANE
546 ' PHl}E AS THIS SUBROUTINE, SINCE SAME-PAGE t10llES ARE USE!).
547; PRINT IN TURN CALLS EITHER SUBROUTINE 'WDISP' OR 'RENTRY'
548 ;
549 P~'INT:

S5fJ
551
552
5'51 ,#11
554
555
556 F'RNT1
~i:'7 ;

TO ACTI.lALl'~ EFFECT WRITlNG INTO TflE DISPLfiY REGISTERS.
r'10V A, PNTR9 ; LOAD HE;~T CHARACTER LOCAT ION
NOIJP A, @A ; LOAD BIT PAlTERN INDIRECT
.IZ PRNTl ; ESCAPE PATTER~J
CfiLL WDISP ,OUTPUT TO NEXT CHARACTER POSITION

(CALL RENTRY INSTEAD IF ~IES5AGE IS TO BE RIGHT JUSTIFIED)
INC PNTF'(\ .' INDEX POINTER
JMP PR!NT
PET ,DONE

558 .. *"***~*.f<**********.t<********·t********************_********
<;';9 ;

560 ; JOHN
561 ;
562 JOHN
563
564
565
56€-
567
568 '
~69 !EJECl

ARRAY HOll'S THE BIT PATTERNS FOR [HE LETTERS 'JOHN' (SEE 'TE5T2')
(NOTE THAT 'OHW IS I.J~JTTEN IN LOWER CASE LETTER~)
EQU $.AND OFFH
DB 000111HlB i<OR SEGPOI.

010111fJ0B l:W 5EGPOL
0111010138 XOR 5EGPOL
010191008 XOR SEGPOL
00

AU mnemonics copyrighted © Intel Corporation 1976.
1-43

inter AP·40

ISIS-II 11(.'$-4811.11'1-41 11fQO IlSSEMBLEIi'. V2.0 PAGE 15
Af'40' INTEL I'1CS-4S KEYBOAIi'[\II.lISPLAY APPLICATION NOTE APPENDIX

LOC OBJ

808A 530F
008C 03C9
OOBE A3
OOBF 33

00ce
90ca 1F
09Cl 06
0OC2 56
00C3 4F
OOC4 66
eoc5 6D
OOC6 7D
OOC7 97
0fJC8 7F
0OC9 61'
OOCA 77
geCB 7C
OO(,C 39
oocr. 5E
99CE 79
OOCF 71

IJ0D0 A9
OOD1 FF
OOD2 e:m

. OOD4 29
eros Ai
00D6 EFDA
8!ID8 BF98
OODA 83

SEQ SOIJFCE STATEt1ENT

579 ; ~************"'*1o******"'************'I<******.~H.f.***"'********
571 ;
572 ; ENCfiCC ENCODES LSNIBBLE OF ACC INTO HEX BIT PATTERN INTO Ace
573 ENCACC ANL Il, tlENCMSK
574 AW 1l,IOOPIHS
575 MOvi> ft, @R
576 ~'H
577 ,C'Gf'ATS IS THE ~ASE FOR THE TABLE OF SEGMENT PATTERNS FOR THE BASIC
e,78 .. DIGITS HERE '!HE FULL HEX SET (0-Fi IS lIlCLUDED.
':>79 ; F& MANY USE", f;Pt'L1CATIOIIS, THE CHARflCTl£.' SET MAY BE AMEIIDED OR AUGJ1E,.TED
5ee ,TO !NCLlJDE AOOlTlOtIAL SPEClft PURPOSE PATTEPNS.
581 ; FORMAT IS PUFEDCBA IN STAIIDARD SEVEN-SEGMENT ENCOOHIG CONVENTION
582 ; WHE~'E P ",EPRESENT~ THE DECIMAL POINT
583 DGPATS EQIJ J AND flFf'H
584 DB 00111111B XOR 5EIJPOL
585 DB 000001108 '<OR SEGPOL
586 DB t310Wll1B ~roR SEIJPOL
587 [If:l 010011118 XOR SEGPOL
588 [lB 011001108 XOP. SEGPOL
589 DB 011811018 XOR SEGPQl
590 [lB 011111018 XOR SEGPOL
591 DB 0001)01118 XOR SEGf'OL
592 [lEI 01111111B XO,.. SEGPOL
593 r~ al109111B XOR SEGPOL'
594 [lEI t;1W)1118 ('.oR SEGPOL
595 l1l3 tll111198B XO!" S!:'GPOL
596 DB 00111001B XOR SEGPOL
597 DB >3!91:l1113B :~OR SEGPOL
598 DB 011:1.1001B ;:OR SEGPOL
599 r·B 01110001B XOR SEGPOL
600 .;
601 ; ********i:,f<:lo*1o:l<+ .. ***i<**+************************************
602 ;
603 ;!{llSP
604 ;
605 ;
606 WDISP'
60,
698
699
610
611
612
6B WDISPl
614 .:
615 $EJECT

WP.!TES BIT PATTERN NOW IN ACe INTO NEXT CHARACTEI? POSITION
OF THE DISPLAY (NEf.TPLI.. ADJUSTS NEXTPL POINTEr? VALUE.
IIESlllS IN DISPLAY BEING FILLED LEFT TO RIGHT. THEN RESTARTING
110... PNTRl, A
HOY A, NEXTPL
ROO A, IISEGMAP
XCH A, PHTR!
MOil ~lR1.A

DJN~ NEXTPL/ WISP1
1'1(1\1 NEXTPL, .CHARNO
RET

All mnemonics copyrighted @ Intel Corporation 1976.
1-44

-

-
inter AP·40

ISIS-II I'lCS-4S,'I.IFH! l'lAC:~1) AS5EHBlE~', V2. II PAGE 16
Af'40 INTEL M(:5-43 I;E'r'BOAliD/DI5PLAY Af'PlICATION NOTE APPENDIX

LOC OB.T

00DB B938
OO[l[l BFEtS
a0DF 2i
e~a 19
00E1 EFDF
00E3 BF9S
fJ0E5 83

ooE6 2391
00E8 0337
0aEf1 ft9
~J0EB F1
00EC D,81J
OOEE Ai
tll3EF ,n

00ff3 [is
001'1 FE
OOF2 C5
OOF3 37
0~F4 96F13
OOF6 83

00F7 8923
00f9 At
90FA F1
OOFB 96FA
0ltFD 83

SEQ 5I)IJRCf STATE~1ENT

616 ,*~~*~**~",****~*~' "'* .. "'* ~***",.~>t-***'" ••. t***t**.t<*************>t-**",
617 '
61~ RErITR'r' SIJBROOTIlJE TO ENTER ACC CONTENTS INTO THE RWHTHOST uIGIT
619 . qt.jD SHIFT EYE[(YTHING ELSE ONE PLftCE TO THE LEFT
629 ~'ENTj;"I' '10',' f'lITR1, JSEGI1AP+1
621 MOV NE'~TPL. ICHARNO
622 RENm :~tH A. I!PtlTPl
62: iii': P'lTII1
624 D .1HZ NElITf'L .IIENTR1
62'5 MOV NEnFL, ICHARNO ; POINT TO LEFTI'10Sr CHARftCTER
f..26 RET
627 '
628 ; ~t l<.U "'.",fIB •• '" • t"'***1"'''' .*~u ~~ io.H**",*'.*******,.",*********>t-• .t<

6~~ ;
630 ,f,'UPtIDD TOGGLE uEC!MAL poI'lT HI LAST CHAPACTER DISPLAY CHARACTER
6}1 • [)PR[l[l TOGGLES [>EC!l'IfIl. POINT IN THE CHARACTER POINTED TO ElY THE ACe
6::2 .
6?5 PDPAUD I'lIJ\' fl.i91H ,SET INDEX TO j;'IGHTllOST POSITION
634 UPA[l[" ADD A, iSEIjMAP ; ACCESS DISPLA'r' REGISTER FOR [)£SI~ED PLACE
6J5 MOil PNTR1, "I
6:;'" M!jV tI,!!/'NTR1
637 :'l;oL 11,IS0H
638 MO'l @PNTR1,1i
6,9 RE~

640 .

641 . '*·H~. '~*."*************** •••• **.j<**********.**.*******.**"**
•. 42 .
64~ ; HOl[l
644 ;

SlJSl(OUTlNE CALLED WHEN KEY IS KNOWN TO BE DOWN.
WilL NOT I1ETURN UNTIL KEl' IS RELEASED.

64S HOLD' SEL R~t
646 f10li FI, LASTK'r' ; {LASTKY)=0FFH IFF NO KEYS DOWN
647 SEL IIEIB
64B CPL A
649 IN<: HOLD
"~9 RET
6'51 .

652 ; *'" ~***************"'*************.*****************.j:********
653.;
654 .. DELAl' SIJBROiJTlNE HANGS iJP FOIl THE NiJMBER OF COHPLETE DISPLAY SCANS EQUAL
655 ; TO THE CONTENTS OF THE ACr:oHllATO~ WHEN CALLED.
656 DELAY' HOV PNTR1, IRDELfll'
657 1'1011 @PNTR1. fl
658 DELAY1. 110\1 fl. @PNTlll
659 JNZ (lfLA'r'l
€.r50 IlET
661 tEJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-45

Ap·40

1515-II MC!'-481lIPl-41 Mi'lCRO "SSEMBlEI"· V2 f.i PAGE 17
AP40. INTEL I'1CS-41'i I:EYBOAIMDI5PLflY APPLICATION tl01E APPEtlHX

LOC OBI

0100

0100 1212
81iJ2 320E
0104 528A

010614H
fJ108 04,7

WIA 342E
010e 9477

Etl8E 3424
911B 94;7

0112 3416
0114 0477

9116 BF98
0113 B808
011A FF
0118 14BA
011Dl4D8
011F EB1R
0121 BF0S
9123 83

5E(1 SOURCE STATEMENT

662 O~'1j l00H
661 .
6£,4 . l·t~·''f<*.*~*·~H*~**t~**~.**t***'t*'f<*.t*~*****'"*,******'''********
665 ;'
666 ; TilE CODE ON THIS PAGE IS FOP. [;EMONSTFATlON PURPOSES ONLY-
667 . I T~UEL Y DOUBT iJHE THH Rl'N END IJSEPS HOIJLD LI KE TO SEE A NAtlE
66S ,POPPING 1.If· ON TIiEll" CAU).lLATOP SCl1EENS
6~9 .; HOWEvER. TIiE CODE SIl(~lN HEj;l DOES INDICATE HOW THE UTILITY SUBROIJTINES
';713 ; ItIfU.lDE[· IiEPE C(IIJLfo E:E FtCCESSED
67i . THE Io'OIJTItIES T'lEMSELI,IES ftF.:E CALLED WHEN ONE OF THE FOUR BUTTONS
Eo;'2 . 01/ Of H~ ~ IGIiT -Hfl"I£; 5 I[IE OF THE PPOl (in'PE KEVBORI'D IS PFESSE(),
6(": I

•. 74 ; * ~ H·****.H:t **tt .*** .. t*··~ .****·*********t~.'t<"'* u"'.*'" ** ***.***'"
675 '
676 .• UN':TN PO'JTlNE TO 1I1PlEI'lENT OllE 0'" "'OUR DEi'll) UTILI TIES, ACCORDING
677 • TO W~I(:H OF 'l'HE FOLl" FI.~f(TION KE~'S WAS P~E55EI)
678 FIJNCfN:JB0. FIJNCTl
679 .)81 . FIJNCT2
6813 . JB2 FIJNen
681 '
682 FUIlCR (ALL RDPADD
683 JI>1P ECHO
684 .
685 FUNCB CHLL TES13
f,86 Jt1P ECHO
687 ;
688 FIJNCT2: CALL 1E5T2
68~ JI1P ECHO
690 ;
691 FllNCT1' CALL TESTl
692 JI1P ECHO
693 ;
694 ; **~****.****.********~******"'****.j<~t****~***********.*****'*
695,
696; 1E511 CODE SEGMENT TO FILL DISPLAY PfGlS1EI<S WITH WilTS DOWN TO T
697 TE511: MOil NExrpL, IICHARtl(1
698 1'11)\1 PNTR0,IICHARNO; SET FOR EIGHT LOOP REPETI1 IONS
699 T5m· MOI/ f\. NEXTPL
7f1ll CRLl ENCRce
791 CALL W[lISP
;>02 [)..TN2 PNTR0, Tsm ; COP~I NEXT DIGIT INTO DISPLAY REGISTERS
703 /'101/ NElI'TPL IICHARNO
704 RET
705 •
786 SEJELT

All mnemonics copyrighted @ Intel Corporation 1976.

1-46

-

inter Ap·40

ISIS-II I'1('S-48.'UP1-41 HAC~O ASSEMBLER. Y2. (I PAGE 18
AP48: INTEL MG5-48 m'BOAAD/D ISF'LA'r' APPLICATION NOTE APPEl'll) I X

LOC OSJ

0124 B8B5
0126 HAB
0123 2364
012A 14F7
012C 049E

012E 2340
ano HAB
BE214F0
0134049E

LlSER S'T'MBOlS
ASFIYE 0902
DEBNCE 0004
FILL !JeRe
INn 8960
HCOlS 0004
PNTR0 0000
I"EFPl eel?
S(;AN~ 01.134
TE5T2 0124

SEQ SOURCE STATEMENT

737 ,**~*****,~'io**~**~*******.j<*********.f<************"'**",*********
70S·
7~9 : TE5T2
719 ;

WRITES THE SEGMENT PATTERN FOR 'JOHN' ONTO THE DISPLA',I.
IdfiITS FOR ~ WHILE, AIID THEN CLEAPS THE DISPLAY

711 TE5T2: HOII PNTR0, i,JOHN
712 CALL PPINT
713 MOV A.1100 , SCAN DISPLAV FOR 19a CYCLES
;'14
m
716 '

GALL DELAY
,JI1P GLEAP

717 : ~*·ft *~*.t*~1'*·~*"'Y*~**~*~***~'*-~* *****************************
718 •
';'19 ,: lESE ~JJB~'OlJTINE TO -ILL DISPLfiY WIlH DASHES
72(1 ; JI.IMf'5 INTO SUBROUTINE 'CLEAR'
721 ' I1S SOON AS 1 HE KE,' IS RELEflSED.
722 TESE mv fl. ~91ee00e0B :~OR 5EGPOI. ; PATTE~N FOR '-'
72:; CALL FILL
;'24 CALL HOLf'
l25 JMP CLEAR
72f ;
727 ,.' I< ~*,.*** .• *·*:t .j<****~****:j.*********************.j<**************
728 '
729 END

BLAN¥. 9000 CHARNO 0008 CHRPOL 0000 CHRS1B 0057 ClEAP. 099E
liE LA',' 00F? DELAY1 0eFF! DGPATS BOCa DPADD 00E8 ECHO mm
Fm' 131381 FIJHCT1 13112 FIJII(;T2 lUBE FUNCB €110ft FLINCH 0106
lHPMSK 00FB JOHN 0005 V-BDBUF 0022 KBDIN a083 KEYlOC 0921
HEGlOG 00FF NE>:TPl 0007 NREPT5 002'" HROWS 9004 NXTLOC 0023
PNTR1 0001 POSLOG 0000 PliiNT 9BAB PRNTi 0084 PSGl'INT 0008
REFRSH 0010 ~ENTI?1 00DF RENT,,"Y 130LlB ROTeNT 0005 ROTPAT 00134
SCAtl5 003F ' SCAN6 131345 SCANS 004F SCAN9 0057 SEGl'IAP 0037
TESE 012E TICK FFF0 mNT 0007 T1RET fJOOE TST11 911A

ASSEMBL Y COI'1PLETE, NO ERRORS

All mnemonics copyrighted © Intel Corporation 1976.
1-47

ClRl 9BA4 CURDIG 8007
ENCAce BBBA ENCMSK 800F
FUNC1N 9100 HOlD OOFC
LASTKY 0806 LEGHOS 008E
PIHGlT 0919 P II/PUT 9009
RDELAY 0023 R()f'fl()D 119E6
SCAN 00lE SCAN1 0021
SEGPOl 0000 TEST1 9116
WISP 001)0 WDlSPl OODA

-
intJ AP·40

1515-II RsSEf1BlE~ S'r'1tBOl. (:~s REFEm/CE, ..,2 8 PAGE 1

ASA\IE 292. 249 269
BlAtl< 179. 288 531
CHARNO In. 228 405 441 5n 537 612 621 625 697 698 783
CHFPOL 169. 429 430 431 432 433 434 435 436
CHRSTB 282 4281
CLEAI1 449 5311 715 725
CL~l 5:'>4l1 536
CIJRDIG 286. 283 289 395 485 441
DEaNeE 178. :m
[)flAY 656. 714
[.oELR'.'l 658. 659
[IGPAiS· 574 5831
DPflOC' 534.
ECHO 465. 471 683 686 689 692
ENCAce 469 573J 700
ENC/'ISK lSs' 573
FILL 532. 723
FKEY 466 4731
FUNCl1 678 6911
PJNCT2 679 6881
FIJNCT3 688 68511
FIJNCT4 682.
FIJNenl 47:.> 678#
HOLD 645. 649 724
INIT 236 448.
INPHSK 171. 446
JOHN 562. 711
KBDBlJF 214. 386 442 499
KBDUI 465 499. 493
KE'r'LOC 2m 300 389 444
LRSTKV 205. 359 368 365 486 646
LEONeIS 494 508.
NCOL5 175. 328
NEGLOG 1671
NEXTPL 1m 533 536 537 697 611 612 621 624 625 697 699 783
NFEPTS 2121 361
NFOWS 174.
NXTLOC 329. 392
PDIGIT 158. 285
PINPUT 1681 381 447
PNTRIl 1911 309 356 361 379 388 383 386 367 389 399 486 442 443 444 445

549 554 698 m 711
PNTR1 1921 299 291 417 418 421 499 492 532 534 535 696 689 619 628 622

623 635 636 636 656 657 658
POSLOO 1661 169 170
PRINT 5491 555 712
~NTl 551 5561
PSGtlNT 15911 281 292
I1DELA'r' 2161 417 656
RDPAOO 633. 682
REFill 2821
REFRSH 268 288.
RElITRl 622. 624
REIfTR'r' 470 620.

All mnemonics copyrighted © Intel Corporation 1976.
1·48

-
inter Ap·40

ISIS-I I ASSEHBLER SYMBOL CROSS REFE~ENCE. V2 fJ PfiGE 2

~OTCNT 2l'!411 328 392
R01Pfli 293. :;30 391
StfiN 300.
SCAN1 328.
SCANs 362 380.
SCANS 331 371]131 384 389.
SCAN6 395.
SCANS 497 409.
SCftN9 395 419 423.
SEGflAP 220. 2&8 m 698 629 634
5E~OL 17911 280 m 563 564 565 566 584 585 586 587 588 589 590 591 !l92

593 594 595 596 597 598 599 722
rEST1 691 697.
TEST2 688 7111
TESE 685 722.
TICK 177. 250 451
T!lHT 248'
TlRET 269.
T5TH 699. 792
W['lSf' 552 606. ,(11
WDISP1 611 6131

CROSS REFE~ENCE COMI'Lf.TE

All mnemonics copyrighted @ Intel Corporation 1976.
1-49

inter

© Intel Corporation 1979

APPLICATION
NOTE

1-50'

- -
Ap·49

January 1979

9800904

AP·49

INTRODUCTION
The Intel'" MCS-48 family of microcomputers marked
the first time an eight bit computer with program
storage, data storage, and I/O facilities was available on
a single LSI chip. The performance of the initial
processors in the family (the 8748 and the 8048) has
been shown to.meet or exceed the requirements of most
current applications of microcomputers. A new member
of the family, however, has been recently introduced
which promises to allow the use of the single chip
microcomputer in many application areas which have
previously required a multlchip solution. The In­
tel'" 8049 virtually doubles ·processing power available
to the systems designer. Program storage has been in­
creased from 1 K bytes to :ilK. bytes, data storage has
been increased from 64 bytes to 128 bytes, and process­
ing speed has been increased by over 80%. (The 2.5
microsecond instruction cycle of the first members of
the family has been reduced to 1.36 microseconds.)

It is obvious that this Increase in performance Is going
to result in far more ambitious programs being written
for execution in a Single chip microcomputer. This ar­
ticle will show how several program modules can be
designed using the 804g. These modules were chosen
to illustrate the capability of the 8049 In frequently en­
countered design situations. The modules included are
full duplex sarialllO, binary multiply and divide routines,
binary to BCD conversions, and BCD to binary conver­
sion. It should be noted that since the 8049 is totally
software compatible with the 8748 and 8048 these
routines will also be useful directly on these proc­
essors. In addition the algorithms for these programs
are expressed in a program design language format
which should allow them to be easily understood and
extended to suit individual applications with minimal
problems.

FULL DUPLEX SERIAL
COMMUNICATIONS
Serial communications have always been an important
facet in the application of microprocessors. Although
this has been partially due to the necessity of con­
necting a terminal to the microprocessor based system
for program generation and debug, the main impetus
has been the simple fact that a large share of micro­
processors find their way into end products (such as in­
teliigent terminals) which themselves depend on serial
communication. When it is necessary to add a serial link
to a microprocessor such as the Intel'" MCS-85 or 86 the
solution is easy; the Intel'" 8251A USART or 8273 SOLC
chip can easily be added to provide the necessary pro­
tocol. When It is necessary to do the same thing to a
single chip microcomputer, however, the situation
becomes more difficult.

Some microcomputers, such as the Intel 8048 and 8049
have a complete bus interface built into them which
aliows the Simple connection of a USART to the proc­
essor chip. Most other Single chip microcomputers,
although lacking such a bus, can be connected to a
USART with various artificial hardware and software
constructs. The difficulty with using these chips,

00670A 1·51

however, is more economic than technical; these same
peripheral chips which are such a bargain when coupled
to a microprocessor such as the MCS-85 or 86, have a
significant cost impact on a single chip microcomputer
based system. The high speed of the 8049, however,
makes it feasible to implement a serial link under soft­
ware control with no hardware requirements beyond two
of the I/O pins already resident on the microcomputer.

There are many techniques for implementing serial I/O
under software control. The application note "Applica­
tion Techniques for the MCS-48 Family" describes
several alternatives suitable for half duplex operation.
Full duplex operation is more difficult, however, since it
requires the receive and transmit processes to operate
concurrently. This difficulty is made more severe if it is
necessary for some other process to also operate while
serial communication is occurring. Scanning a keyboard
and display, for example, is a common operation of
single chip microcomputer based system which might
have to occur concurrently with the serial receive/trans­
mit process. The next section will describe an algorithm
which implements full duplex serial communication to
occur concurrently with other tasks. The deSign goal
was to allow 2400 baud, full duplex, serial communica­
tion while utilizing no more than 50% of the available
processing power of the high speed 8049 microcom­
puter.

The format used for most asynchronous communication,
is shown in Figure 1. It consists of eight data bits with a
leading 'START' bit and one or more trailing 'STOP' bits.
The START bit is used to establish synchronization be­
tween the receiver and transmitter. The STOP bits en­
sure that the receiver will be ready to synchronize itself
when the next start bit occurs. Two stop bits are nor­
mally used for 110 baud communication and one stop
bit for higher rates.

START STOP I BIT 01 02 03 04 05 06 07 08 BIT

Figure 1.

The algorithm used for reception of the serial data is
shown in Figure 2. It uses the on board timer of the 8049
to establish a sampling period of four times the desired
baud rates. For 2400 baud operation a crystal frequency
of 9.216 M Hz was chosen after the following calculation:

f = 480N(2400)(4)
where 480 is the factor by which the crystal fre­

quency is divided within the processor
to get the basic interrupt rate

2400 is the desired baud rate
4 is the required number of samples per

bit time
N is the value loaded into the MCS-48

timer when it overflows

AP·49

The value N was chosen to be two (resulting in f = 9.216
MHz) so that the operating frequency of the 8049 could
be as high as possible without exceeding the maximum
frequency specification of the 8049 (11 MHz).

I STIRT IF RECEIVE ROOTII£

11 IF RECEIVE FlOO=e ll£N
; 2 IF SERIAL Itf'IJT=SPfn ll£N
13 RECEIVE FlAG:=1
13 BYTE FINISI£)) FlAG:=8
12 OOIF
I 1 ELSE SINCE RECEIVE FlAG=1 ll£N
: 2 IF SVI«: FlOO=e TI£N
; 3 IF SERIAL 11f'UT=SPfn ll£N
14 SVI«: FI.J1G:=1
; 4 DATA: =88H
; 4 SffIPLE CNTR:=4
; 3 ELSE SINCE SERIAL 1If'UT=ItfRK l"1£N
; 4 RECEIVE FlOO:=8
;3 OOIF
; 2 ELSE SINCE SVI«: FLAG=1 ll£N
; 3 SRlf>LE ro.M£II: =SRIf>LE CtlWTER-1
; 3 IF SRlf>LE ro.M£II=8 ll£N
: 4 SRlf>LE COUNTER: =4
; 4 IF BYTE FINISIED FlOO=e ll£N
; 5 CARRY: =SERIAL IIf'UT
; 5 SHIFT DATA RIGHT WITH CARRY
: 5 IF CAR!1Y=1 ll£N
: 6 (J(DfITA: =DATA
: 6 IF DATA REf¥)\' FlOO=e THEN
; 7 ME FINISI£)) FLAG=1
16 ELSE
; 7 BYTE FINISNED FLAG:=1
; 7 OYEl/Rlll FlAG: =1
;6 OOIF
15 OOIF
14 ELSE slta ME FINISNED FlAG=1 ll£N
15 IF SERIAL 1If'UT=IIfIRK ll£N
, 6 DATA REf¥)\' FlAG: =1
; 5 ELS!: SINCE SERIAL IIf'UT=SPACE TI£N
; 6 ERROR FlAG: =1
15 OOIF
15 RECEIVE FLRG:=8
: 5 SYNC FlAG: =8
;4 OOIF
:3 ENOIF
12 ENOIF
; 1 ENOIF

Figure 2

The timer interrupt service routine always loads the
timer with a constant value. In effect the timer Is used to
generate an independent time base of four times the reo
quired baud rate. This time base. is free running and is
never modified by either the receive or transmit pro­
grams, thus allowing both of them to use the same
timer. Routines which do other time dependent tasks
(such as scanning keyboards) can also be called periodi­
cally at some fixed multiple of this basic time unit.

The algorithm shown in Figure 2 uses this basic clock
plus a handful of flags to process the serial input data.

All mnemonics copyrighted CO Intel Corporation 1979.

Once the meaning of these flags are understood the
operation of the algorithm should be clear. The Rece/lfe
Flag is set whenever the program is hi the process of
receiving a character. The Synch Flag is set when the
center of the start bit has been checked and found to be
a SPACE (if a MARK is detected at this point the receiver
process has been triggered by a noise pulse so the pro­
gram clear!. the Receilfe Flag and returns to the idle
state). When the program detects synchronization it
loads the variable DATA with 80H and starts sampling
the serial line every four counts. As the data is received
it is right shifted into variable DATA; after eight bits
have been received the initial one set into DATA will
result in a carry out and the program knows that it has
received all eight bits. At this point it will transfer all
eight bits to the variable OKDATA and set the Byte
Finished Flag so that on the nextsample it will test for a
valid stop bit instead of shifting in data. If this test Is
successful the Data Ready Flag will be set to indicate
that the data is available to the main process. If the test
is unsuccessful the Error Flag will be set.

The transmit algorithm is shown in Figure 3. It is exe­
cuted immediately following the receive process. It is a
simple prograr:n which divides the free running clock
down and transmits a bit every fourth clock. The variable
TICK COUNTER is used to do the division. The Transmit­
ting Flag indicates when a character transmission is in
progress and is also used to determine when the START
bit should be sent. The TICK COUNTER is used to deter­
mine when to send the next bit (TICK COUNTER MOD­
ULO 4 = 0) and also when the STOP bits should be sent
(TICK COUNTER = 9 4). After the transmit routine com­
pletes any other timer baseq routines, such as a key­
board/dispJ'ay scanner or a real time clock, can be
executed.

1-52

; STfRT IF TRIIISIIIT ROOTII£

11
; 1 TIC!(CIXM'ER:=T1CK CIXM'ER+1
; 1 IF TICK ro.M£II IQ) 4=8 THEN
; 2 IF TRIIISIIITIlt«l FlAG=1 ll£N
; 3 IF TICK CWITEA=88 1818 88 BINfRY ll£N
; 4 TRANSJ1IlTlt«l FlAG: =41
I 3 ELSE IF TICK CWITEA=88 1981 88 BINfRY THEN
; 4 SEll> 00 IR!K
I oj TRIIISIIITIlt«l FlAG: =8
I 3 ELSE SINCE TICK ClXM'EROTHE fIIOYE COUNT 'll£N
14 SEll> NEXT BIT
;3 OOIF
; 2 ELSE SINCE TRANSJ11TT1t«l FlOO=e THEN
I 3 IF TRIIISIIIT REIllEST FlAG-"1 THEN
; 4 XIITBVT: =NXTBYT
; 4 TRANSIIIT REUST FlAG: =8
; 4 TRANSJ1ITTlt«l FlAG: =1
I 4 TICK COUNTER: =8
; oj SEll> SYNC BIT (SPACE)
13 ENOIF
;2 ENOIF
;100IF

Figure 3

-

inter Ap·49

Figure 4 shows the complete receive and transmit pro·
grams as they are implemented in the instruction set of

the 8049. Also included in Fig. 4 is a short routine which
was used to test the algorithm.

ISIS-ll P1C5-48.'IJPH1 "AeF:) ASSEMBLER, Y2. e

lOC OBJ SEg SOURCE STATE~lEm

THIS f'ROORAtl TESTS THE FUlL l~JPLE;, COMMIJIHCATIOI-I :,UFTWARE
-l<

*
*

5 .; *****-t<**·t,..**tt*·H*-t<**$** .. **·~t**tt*·~*·~i4~·*-t"t********:t***-t<**·!:.f<:l>*******-t<**'i'****-t:*

91300

0000 C5

0001 2400

6.
7 $INCLur'E(:F1.UPTEST PDl)
8 ;
9 ; START OF '1 EST POUT! HE

11) i ====================
11.
12 .

13 '
14 ;
15 .
16 ,1 ERROR COLINT =8
G ;1 REPEAT
18 ; 2 PATTERN Al
19 : 2 lNHlALIZE TIMER
20 . 2 CLEAFI FLAGB'm
21 ,2 FLAG1 =t1AP.r.
22:2 REPEAT
23 ; 3 IF TRflNS~lIT REQUEST FLAG=9 THEN
24 ; 4 rmB'T'TE: =PATTERN
2~. ,4 rPAN5M n REQUEST FLAG=1
26 ; 7 ENDIF
27 : ~ IF DATA READ'" FLAG=1 THEN
28 ,4 PATTERN. =O¥l)ATA
29 ; 4 [*ITA FIEADI' FLAG =0
J0 ; 3 E"'[lJF
31. 2 UNTIL ERPOR FLAG OR OVERRUN FLAG
32 ; ~ mCPEMENT ERROR COUNT
n, 1 I),.,TIL FOREVEF!
34 . EOF
:>5 tEJECT
36 ORG 0
37 .1 SELECT REGISTER BAt,'K B
33 SEL IiS9
:>9 ; 1 OOTO TEST
40 .IMP TEST
41 $ INCLU(JE<.F1·UAIITI
42.
4:1 ,
44 ; A5'ltlCHRONOU5 FIECEIIiE/TRANSMIT ROUlINE
45 ; ===================================
46 ; THIS ROIJTINE RECEIVES SH:IflL COOE USING PIN TO AS R;,1)
47, AND CONCIJRREtllLY TRANSMITS USING PIN P27
48; NOTE.
49 ; THIS ROUTINE USES FLAG 1 TO BUFFER THE TRANSMITTED

Figure 4

All mnemonics copyrighted © Intel Corporation 1979.
1-53

inter Ap·49

LOC OSJ . SEQ SOURCE STRTEItENT

59 ; 1 [lATA LINE. THIS flIlHNflTE5 THE JITTER THAT
51 ,1 WIll.D BE CRUSEll BY YAFIATlOIIS IN THE RECEIVE

= 52 ,1 T1I'1ING. NO OTHER Pf,'1BA14 11AY USE FLfIf.i 1 WHILE
53 ,1 THE TIMEii' IrITERPUPT IS ENABLED
54 ;
55 ;
56;
'57 '
58,
59 . PfGlSTEP. ASSIGllIft:.NTS-8Alt:l
60 i ============= __ T~_==
61 i

= 62;
0007 = 63 ATEMP EQIJ R7 ; USED TO SAllE Af..ctJ'IULA' ~ CONtENTS WRiNG INTERRII'T
0006 = 64 FLGBYl EQU 116 ; CONTAINS YfII;lOUS FLAGS 1.&0 10 COIITRQ. '1£ f(£CEI'fi

65 ; AlID TAAIl5t11T Pf.:Qr.£SS. SEE CON5TANT DtflNITIOOS FOR
66 ; THE I1EfIIHNG OF EACH BIT

9005 67 SAl4CTI1 EOU f;'S, ; SAl'lf'LE CtlJlTEI1 F~ THE RECIEYE f'ROCES!:I
0004 = 68 TCKCTF EOU 114 ; SAl'lf'LE CtlJNTEP FOIl THE TRANSI'IIT PROU:S!i
0000 =. 69 REGe Eoo R0 ; USEr, ~ POINTER Rl:G1STER

70 ;
71 ; Ii'A14 ASSIGltlENTS

= 72 ; ======:========
= n;

0029 = 74 I'IOt::DAT EQlJ 201i ; I1EcmE RETlJINS Yf1L1D MTA IN THIS BYIE
0021 = ?S I'II)ftTA Eoo 21H .' RECEIIri ACctll1llATES DATA IN THIS BYTE
9022 = 76 IIXI1TBY EQlJ 22H , CONTAINS BYTE llElMjTRANSI1JlTED
9923 77 ItI'..lTBY EOO 23H ; COIlTAIt.'5 Tit: NEXT BVTE TO BE TRANSI1ITlED

= 78 $EJECT

= 79 :
= 80;
= 81 ; CONSTANTS
= S2: =======
= 83 :
= 84 .; THE FOLLOWING COOSTANTS ARE USED TO ACCESS THE FLAG BIlS CONTItINED
= 85; IN REGISTER FLGM
= 86;

0091 = 87 RCYFLG EQlJ 91H : 5I:T WI£N START Bll IS FIIIST OETEm.D
= 88 : RESET WHEN RECEIVE PROCESS IS COI1Pl.ETE

0002 89 SYNFLG EQIJ 92H ; SET IoIHEN STAPT flIT 15 IIERIFIED
= 99 ; RESET WHEN RECEIVE PROCESS IS COI'IPLETE

Il904 91 B't'FIfL EQlJ 94H ; RESET IlfEN STA.~T fjIT IS FIRST DETECTED
= 92 ; SET HN THE EIGHT !!ATA BIlS IfIYE fU BEEN kECEIVED

0098 93 DRlWFL ctJu 08H ; SHOULD BE RESET BY I'IfIIN PR~API WHEN DATA IS Att;EPTED
94 ; SET BY RECEIVE PROCESS WHEN STOP 8IHS) ARE VERIFIED

0019 95 ERRFLG EOIJ llJH i SHOULD BE RESET BV I1IIN I'ROORAPI WHEN SRIIPLEIJ
96 ; SET BY RECEIVE PIWI'.£SS IF A ~RAtlII«l Ekkill IS DETECTED

0029 = 97 TRRQFL EQU 29H , TESTED BY tIfliN PROCiRRI'I TO DETERftH£ I~ Rl:Ill>Y 10
= 98 ; TAANsI'IIT A rlEW BYTE-SET TO INDICATE 1HAT NXTBYT

99 ; HAS BEEN LOADED
= 199 . ; I1ESET BY TRANSI1IT PROCESS IHN BYTE IS ACCEPTED

0049 = 191 TRNGFL EQU 40H i SET WHEN TRANSI!ISSION OF A BYTE STARTS
= 102 I RESET WHEN STOP fjlT IS TRANSIItnED

0089 = 19l OYRUN EOU 80H ; SET BY RECEIVE PROCESS WHEN OYERUN OCCURRS
= 104 ; SHOULD BE RESET BY PlAIN PliOORAl'! IIIlN SAlRE:D

Figure 4 (continued)

All mnemonics copyrighted <C> Intel Corporation 1979.
1·54

inter
LOC 08.1

90S9
FF7F
9900

0097

0997 160A
0009 93
eallA 1)5

0fI0Il AF

000c 23FE
000E 62

ooeF 7615
9911 9A7F
9013 0417
9015 BAS0

0017 FE
0018 1224

001F1 3664

00lC FE
9010 4301

00lF 53FB

0021 AE
8022 13464

SEQ

= 105 i

= 106 ;
= 107 ;
= 198 i

AP·49

SOIJRCE STATEMENT

GENERRL COrlSTANTS
=================

= 199 MARK E(lU 80H USED TO GENEFATED A !'lARK
= 119 SPACE
= 111 STPBTS
= 112

EQlJ NOT OOH ; lISED TO GENERATE A SPACE
EQlJ 9 COtlTROLS lHE NUMBER OF SWP BITS

= 113
= 114 i

= 115 $EJECT
= 116 ;

9 GENERRTI;S ONE STOP B II
1 GEUERATES TI.'O SlOP BITS

= If? ; START OF RECEIVE/TRANSMIT INTERRUPT SERVICE ROUTINE
= 118 ;
= 119 ;
= 129 ORO 0I:l07H
= 121
= 122 i 1 ENTER I NTERRUPT MODE
= 123 TI SR . JTF UART
= 124 RETR
= 125 UART: SEL RB1
= 126 ; 1 SAYE ACCUMl.lATOR CONTENTS
= 127 1'101' ATEtlP, A
= 128 ; 1 RELOAD TIMER
= 129 1'1011 A, ITIHCNl
= 130 MOIl T,11
= 131 ;
= 132 ;
= 133.,
= 134 ;

OUTPUT Txt> BUFFER (Fl) TO TXD 110 LINE (P27)
=================================

= 135 JF1 OMARK
= 136 OSPACE' ANL P2, tlSPACE
= 137 JI1P RCYOO0
= 138 O~1ARf(ORL P2, IHARK
= 139 ;
= 140 ;
= 141 ;
= 142 i

START OF RECE lYE ROUTINE
=================

= 143 ; 1 IF RECEIVE FLAG=0 THEN
= 144 RCVOO0: ItOIi A, FLGBYT
= 145 JB9 RCV~19

= 146 ; 2 IF SEFI AL IIlPUT =SPACE THEN
= 147 JTfl XMIT
= 148 ; 3 RECEII/E FLAG:=!
= 149 MOV A, FlGBYT
= 150 ORL A .. tlRCIIFLG
= 151 .' 3 BYTE FINISHED FLAG: =8
= 152 AIIL A, .,m BYFNFL
= 153 ; 2 ENDIF
= 154 MOl! FLGB'r'T. A
= iSS JMP XMIT
= 156 ; 1 1:15£ SINCE RECEIVE FLAG=1 THEN
= 157 ; 2 IF SYNC FLAG=8 THEN
= 158 RCW310. JB1 RCV939
= 159 d IF SEFIAL INPUT=SPACE 1 HEN

Figure 4 (continued)

All mnemonics copyrighted © Intel Corporation 1979.
1·55

inter
Loe OSJ

0026 3633

0028 4302
oo2A HE

0028 8821
002D B0S0

802F 0094
00?1 0464

0033 53FE

0035 AI:
0036 0464

00313 ED64

903A 8004

003(' 5259
903E 97

903F 2642
0041 A7
0042 BS21
9044 Fe

0045 67
0046 AO.

0947 E664

0049 BS29
9048 A0

004C FE
004D 7254

904F 4304
9951 AE
0052 0464

0054 4384
0056 AE

0057 9464

Ap·49

SEQ S()I.P.CE STATEMENT

= 160 JTe RCI/029
= 161 ; 4 5YOC FLAG' =1
:: 162 m. A, lIS'ltflG
= 163 19)'.,' FLGBYT. R
= 164 . 4 DATR: =80H
= 165 MOl,' Re, OOATA
= 166 PlOY @R0 •• 8011
= 167 ; 4 SAI'IPLE CNTR' =4
= 168 ~y SlKTIi', 14
= 169 JMf' XI1 IT
= 170 .:, ELSE SINCE SERIftL INPUT=I'1ARK THEN
= 171; 4 k,[CEI~'E FLfI(i.=0

. = 172 Ii'CI/029' ANL AdlNOT RCYFU;
= 173 ;]. ENOIF
= 174 1'101,' FLGf:I'L A
= 17'5 JMf' XI1lT
= 176; 2 ELSE SINGE SYNC ~LAG=l THEN
= 177 .3 SAMPLE COlINTEIi' =SAf1PLE COUNTEP.-l
= 178 I1CI/030 DJNZ SAt1CTR, >''1'1 IT
= 179 ,3
= 189 ; 4
= 181

IF SP.llPLE (,OlINl Er;:=e frifN
SAI'lPLE COUNTER: =4

SAI1CTR,14 HOV
= ~82 ;4
= 183
= 184
= 185 ; 5
= 186
= 187

m:;:
CLR

JNTO
CPL

= 188 I1C\l940 I'IOV
= IS9
= 199 ; 5
= 191
= 192
= 193 ; 5
=194
= 195 ! 6
=196
= 19(
= 1913 ,;6
= 199
= 200
=201.,
= 202
= 203
= 2134
= 295 ;6
=296;1'
= 207 ; 7
= 298 RC1I045:

PlOY

RRC
!'lOY

.INC

1'I0V
I'IOV

I'IOV·
JB3

OK
1'I0V
1MP

= 209 ; 1'1(1','

= 210 ORL
=211 I'IOY
= 212 ; 6
=213.;5
= 214 JI1P

I F B~'TE F Itll SHED FLAG=0 THEN
RCI/950
!.'\

CARR'T" =SERlftL INP/Jl
I?CI/040
C
R0, .HDATA
A,~Re

SHIFT DATA "'1(jBT WI1H CARR .. '
A
@F0,A

IF CARRI'=1 THEil
;':MIT

(}KOATA . =DATO
110.II'1OKDAT
~RO, A

IF [lATA RElIC I,' FLAG=~ lHEf'
A.. FLGBYT
[lCV045

Bt'lE FINISHED FLRG=1
A,tBYFNFL
FLGBYT, A
xrm

ELSE
BYTE FINISHED FLfiG: =1
OVERRIJN FLAG, =1

A, FLGBYT
A, «(Bl'FNFL OR Ol/RUN)
FLGBYT,A

ENDIF
ENDIF

XMIT

. Figura 4 (conllnued)

All mnemonics copyrighted © Intel Corporation 1979.
1-56

inter
LOG OBJ

0059 26SF

0058 4308
eosl) 0461

0961 53FC
0963 AE

0064 1C

006S 2303
0867 SC
0068 9697

006A FE
006B 37
006C 0286

006E 2324
0070 ric
0071 96;'B

ean A5
0074 8'5

AP·49

SEQ SOLIRCE STATEI'1ENT

= 215 ; 4
= 216 ; 5

elSE, SINCE BYTE FINISHED FLAG=1 THEN

= 217 RCY!I50: JNT0
= 218 ; 6
= 219 OPL
= 229 .IMP
=221;5
=222;6
= 223 Rel/a60: ORL
= 224 ,;5

IF SERIAL IHPUT=MARK THEN
RCV060

DATA READ',' FLAU: =1
A;'DRD'T'FL
ReVEl70

ELSE SINCE SERIAL INPUT=5PACE THEN
eRROR FLAG. =1

A •• ERRFLG
ENDIF

= 225 ; 5 RECEI','\: ~LAG. =9
= 226 ; 5 5'r'NC FLOO:=!!
= 227 ReVEl7e. AHL A.llroT(SVNFLG OR Rel/FLG)
= 228 MOV FLGB'n. A
= 229 ; 4 END IF
= 2~9 ;:? ENDIF
= 231 ; 2 EIIDIF
= 232 ,1 ENDIF
= 2:£3 rEJECT
= 234 ;
= 235 ;
= 236 ;
= 237 ;
= 238 ; 1

STAin OF TRANSM IT POUTI NE
=======================::

= 239 ; TRANSMITTER OUTPUT BIT IS P2-7
= 240 ; 1 TICK COUNTER. =TICK COUHTER+1
= 241 XMIT: INC TCKCTR
= ~42 ;1 IF TICK (;QUNTER "00 4=0 THEN
= 243 tolOV A, .03H
= 244 ANL A. TCKCTR
= 245 JNZ RETURN
= 246 ; 2 IF TRRNSI'1ITTING FLOO=l THEN
= 247 MOV A. FLGB'r'T
= 248 CPL A
= 249 JB6 XI'1T040
= 259 IF STPBTS EQ 1
= 251 ; 3 IF TICK COUNTER=09 1910 00 BINARY lHEN
= 252 "011 A •• 28H ; CONDITIONAL ASSEMBL I'
= 253 XRL A. TCKCTk
= 254 .JNZ XI'ITB19
= 255 ; 4 TRANSMlTIING FLAG: =0
= 256 MO\I A. FLGBYT
= 257 AHL A. tNOT TRNGfL
= 258 1'1011 FLGBYT. A
= 2'59 JMP RETURN
= 269 ENDIF
= 261 ,3 ELSE IF TICK COUNTER=OO 1001 00 BINARY THEN
= 262 Xl'fT910: MOY A •• 24M
= 263 XRL A. TCKCTR
= 264 1HZ ('I'IT020
= 265 ,4 SEND 00 MARK
= 266 CLR F1 ; SET FLAGl TO MARK
= 267 CPL F1
= 268 IF STPBTS EQ 9
= 269 ; 4 TRANSMITTING FLAG:=0

Figure 4 (continued)

All mnemonics copyrighled e Inlel Corporation 1979.
1-57

intJ
LOC OB'!

9075 FE
9076538F
8878 AE
8879 9497

8878 8822
007D F0
907E 67
907F All
!l080 AS
0881 E697
0883 B5
0084 9497

00S6 8297

0988 8823
008R F0
008B BS22

. 9900 A0

0091 4340
8893 fIE

0094 BC00

0097 FF
0098 93

9190
FFFE
901E
00lD
OO1C

0007
0006

SEQ

= 270'
= 271
= 272
=2?3
= 274

Ap·49

SOORCE STATEI'IENT

f'tOY
Ali.
I10V
JI'I'
ENDIF

A, FLGB'r'T
A, IINlT TRNGFL
FlGB'r'T, A .
~TURN

; CONDITIONAL ASSEI'IBl Y

= 275 ; 3
= 276 ,4

ELSE sna TICK COOO'ER C) THE ABOI/E COUNT THEN
SEND NEXT BIT

= 277 00920: i'KlY
= 278 i'KlY .

. RIl,II'IXItTBY
A,fRO

= 279 ~RC

= 280 MOIl
= 281 CLR
= 282 JtIC
= 283 CPL
-= 284 JMP
= 285 ;:1 ENDIF

A
@RIl,A
F1
RETURN
F1
RETURN

; FLltO 1 Will BE USED TO BlfFER 00
; GO TO Rm~N PO nIT IF TXD=SI'I1CE (9)
; ELSE COMPLEI1EIIT FlAG 1 TO A tlARK

-= 286 ; 2 ELSE SIt«:E TRANSMITTING H.AG=0 THEN
= 287 ; 3 IF TR~IS11I! REQUEST FlAG=l THEN
= 288 X1'1T940: JB5 RETURN' FLAG BYTE THERE
-= 289 ,4 XIITBYT : =NXTBVT
-= 290 MOil R0, IIIIIXTBY
-= 291 1'10\1 A, @RO
= 292 1'1011 RIl .• I/'IXIITlW
-= m MOY @RIl,A
= 294 ; 4 . TRAIlSI1IT REQl(ST FLAG: =0
= 295 I'IOY A, FUlBYT
-= 296 Ali. A, fNOT TRRQFl
= 297 ,4 TI"ANSl'IITTIIIG FlA(;: =1
= 298 . ORL A,ITRtIGFl
= 299 I'l0\l. FlGBYT, A
= 390 ,4 TI CK COUNTER' =0
-= 391 P'.oy TCKCTR,1I0
= 392 ; 4 SEN!) S~'NC BIT (SPftCE) .
= 393 Cll! F 1 ; SET FLAG 1 TO CAUSE A SPACI:
= 394 ; ~ ENDIF
= 305 ; 2 ENDIF
=396 ; 1 ENDIF
= 307 I1ETURN:
-= 308 ; 1 RESTORE ACCut1I.lATOR
= 399 t1O\I .' .A, ATEI'If'
= 310 RETR

311 $EJECT
]12 ;
3B; START OF TEST ROUTINE
314 ; =============
315 '
316 ORG 019011
m T1MCNT EQIJ :-2
318 HFLGBY EOO lEH
319 115A11CT EQIJ 100
320 "TCKCT EQIJ lCH
321 ;
322 ERRCNT EQU R7
323 PAn EQU R6
324 ;

Figure 4 (continued)

All mnemonics copyrighted <0 Intel Corporation 1979.
1·58

LOt OBJ

9199 BFOO

91!12 BEOO

9194 23FE
01% 62
9107 55
9100 25

9199 881E
9UIB aeee

8190 A5
911lE 85

81eF 881E
8111 Fe
9112 8224

0114 B923
9116 FE
8117 Al

9118 35

0119 Fe
911A 4329
el1C A9
811D 25
011El622
(1120 2424
0122 149A

9124 F9
9125 37
9126 7238

0128 8920
912A Fl
912B AE

812C 35

012D Fe

Ap·49

SEQ

325 ;
326 ;

SfJJRCE STATEI1ENT

327 ,; 1 ERR~ COONT: =9
328 TEST: I10Y ERRCNT, III
329 ; 1 REPEAT
339 TLOP
331 ; 2 PATTERN: =9
332 I10Y PAn, .90
333 ; 2 INITIALIZE T!IIER
334 MO\I A, ITlIDT
335 f1O\I T, A
336 5TRT T
:m EN TCNT!
:na .: 2 CLEAR FLAGBYTE
339 f'IOI,' 1/0, .HFLGBY
349 I'IOV ~e, III
341 ,,2 FLAG1=MARK
242 CLF.' F1
343 CPL Fl
344 .: 2 REPEAT
345 TILOf':
346 ;3
347
348
349
350 ;4
351
352
353
354.:4
355
356
357
358
359
360
361
362
363
364 TESTA:
365 ;3
366 ;3

367 TREC:
368
369
370
371 .:4
372
373
374
375 ;4
376
377
378
379

IF TRAHSI1IT REQUEST FLAG--9 THEN
110\1 R8, WLGBY
f1O\I ft @118

J85 TREC
NXTBYTE : =PATTERN

HOY Rl, II'tNXTBY
I'lO\l A,PAn
MO\l @R1.A

TRANSI1 IT REQUEST FLAG=l
DIS TCNT!; LOCK OUT TIPlER INTERRUPT

I'IOY R,@R!j

; SO THAT MUTUAL EXCLUSION IS I'IAINTftINC.D WHILE
.: 'IHE FLAG B\'TE IS BEING MODIFIED

ORL A, tTRRQFL
MOil
EN
JTF
JriP
CALL

ENDIF

@R!j,A
TCNT!
TES1A
TREC
IJART .: CALL IJART BECAUSE TIMER OVERFLOWED Dl.JRIN(j LOCKOUl

IF DATA READ.,. FLAG=l THEN

HOY A,@R0
CPL A
JBJ TRECE

PATTERN: =OKDATA
J1O\I R1, lMOKDAT
MOY A,@Rl
I'IOY PATT, A

DATA READY FLAG: =II
DIS TCNT!.: LOCK OUT TIMER INTERRUPT

MOY

; so THAT ItJTlR. EXCLUSION 15 MAINTIANED WHILE
; THE FLAG B't'TE IS BEING I'IOOIFIED

Figura 4 (continued)

All mnemonics copyrighted <C> Intel Corporation 1979,
1-59

AP"49

LOC OOJ

912E 53F7
0139 A9
9131 25
9132 1636
flB42438
9B6 149A

SEQ ~ SlRTEl'ENT

383
384

All.
I'IO't'
EN
JTF
JMP

385 TESTS: CRlL
J86 TRECE:
3117 ;] ENDIF

A, lOOT DRDYFl
@F1l.II
TeNT!
TESTB
TRECE '
UAIIT ; CALL UART IF T!MER OVERFLOWED DURING LOCKOllT

388 ; 2 UNTIL ERROR FLAG OR OVERRUN FLRG
389 /'10'.' R,@R9 913S F9

9139 5:>'99
913B C69F

390 RNl A.I(O't'RUN OR ERRFLG)
391 J2 llLOP
392 ; 2 INCREMENT EIIROR COUNT

0131) 1F :m INC E~CNT

394 i 1 UNTIL FOREVER
913E 2402 395 Jt4P JlOP

396 iEOF
397 END

USER S'r'/'IBOlS
ATEI1/' 9997 BI'Flfl 0094 DRDI'FL 0098 ERRCHT 0007 ERRFLG 0010 F LGBI'T 901j6 MARK 0000 r1()RTA 9921
If'LGBY 991E' I1NXTBY 9023 HOKDRT 9020 /'ISAI1CT 0011> MTCKCT 091(; HXI'ITB't' 9rra OJ1ARK 0015 OSPACE 9911
OVRUN 00S0 PATT 0096 RCI/900 0017 kl.'V010 9924 RCY020 0033 RCY030 . 9038 RCY040 9942 kCII945 0954
P.C\1050 9059 RC\1960 OO'5F RCV070 0061 RCVFLG 0001 REG0 9899 RETURN 999i' SAMCTk 0005 SPACE FF7F
STPBTS 0099 SVNFLG 0002 TCKCTR 0004 TEST 9100 TESTA 9122 lESTB 1j136 llLOP 0191' 1I11CNT mE
TJ5R 9997 TLOP 0192 TREC 9124 TRECE91J8 TRNGfl 994IJ TRRIlFL 0020 UART 99IjA Xl'll) 0064
iiMTB11j fl06E iiI'IT020 9978 XKT940 0086

A55EMBl V COI1l'lETE, NO ERRORS

Figure 4 (continued)

All mnemonics copyrighted © Intel Corporation 1979.

MULTIPLY ALGORITHMS
Most microcomputer programmers have at one time or
another I'mplemented a multiply routine as part of a
larger program. The usual procedure is to find an algo­
rithm that works and modify it to work on the machine
being used. There is nothing wrong with this approach.
If engineers felt that they had to reinvent the wheel
every time a new design is undertaken, that's probably
what most of us would be doing-designing wheels. If
the efficiency of the multiply algorithm, either in terms

of code size or execution time is Important, however, it
is necessary to be reasonably familiar with the multipli­
cation process so that appropriate optimizations for the
machine being used can be made.

To understand how multiplication operates in the binary
number system, consider the multiplication of two four
bit operands A and B. The "ones and zeros" in A and B
represent the coefficients of two polynomials. The
operation A x B can be represented as the following
multiplication of polynomials:

+ BOA3*~ + BOA2"22 + BOA1"21 + BOAO"2°
+ B1A3*24 + B1A2*~. + B1A 1*22 + B1AO*2'

+ B2A3*25 + B2A2*24 + B2A1*23 + B2AO*22

+ B3A3*26 + B3A2*25 + B3A 1*~ + B3AO*23'

1·60

AP·49

The sum of all these terms represents the product of A
and B. The simplest multiply algorithm factors the
above terms as follows:

A * B = BO*(A)*20 + B1 *(A)*21 + B2*(A)*22 + B3*(A)*23

Since the coefficients of B (Le., BO, B1, B2, and B3) can
only take on the binary values of 1 or 0, the sum of the
products can be formed by a series of simple adds and
multiplications by two. The simplest implementation of
this would be:

MULTIPLY:
PRODUCT = 0
IF BO= 1 THEN PRODUCT: = PRODUCT + A
IF B1 = 1 THEN PRODUCT: = PRODUCT + 2* A
IF B2= 1 THEN PRODUCT:=PRODUCT+4*A
IF B3 = 1 THEN PRODUCT: = PRODUCT + 8* A

END MULTIPLY

In order to conserve memory, the above straight line
code is normally converted to the following loop:

MULTIPLY:
PRODUCT:=O
COUNT:=4
REPEAT

IF B[O] = 1 THEN PRODUCT: = PRODUCT + A ENDIF
A:=2*A
B:= B/2
COUNT: = COUNT-1

UNTIL COUNT:= 0
END MULTIPLY

The repeated multiplication of A by two (which can be
performed by a simple left shift) forms the terms 2* A,
4 * A, and 8* A .. The variable B is divided by two (per­
formed by a simple right shift) so that the least signifi­
cant bit can always be used to determine whether the
addition should be executed during each pass through
the loop. It is from these shifting and addition opera-

ISIS-II ~IC5-48/UPI-41 t1fICRO ASSEMBLER, V2. Il

lOC 08.J SEQ SOURCE STAmalT

1 $MACROFIlE
2 $INClUDKF1.t1Pi'S. Hm

tions that the "shift and add" algorithm takes Its com·
mon name.

The "shift and add" algorithm shown above has two
areas where efficiency will be lost if implemented in the
manner shown. The first problem is that the addition to
the partial product is double precision relative to the
two operands. The other problem, which is also related
to double precision operations, is that the A operand is
double precision and that it must be left shifted and
then the B operand must be right shifted. An examina·
tion of the "longhand" polynomial multir Ication will
reveal that, although the partial product is Indeed dou·
ble precision, each addition performed is only single
precision. It would be desirable to be able to shift the
partial product as it is formed so that only single preci·
sion additions are performed. This would be especially
true if the partial product could be shifted into the "B"
operand since one bit of the partial product is formed
during each pass through the loop and (happily) one bit
of the "B" operand is vacated. To do this, however, it is
necessary to modify the algorithm so that both of the
shifts that occur are of the same type.

To see how this can be done one can take the basic
multiplication equation already presented:

and factoring 24 from the right side:

A*B=24[BO*(A*2- 4)+ B1*(A*2- 3)

. + B2*(A*2- 2)+B3*CA*2- 1)]

This operation has resulted in a term (within the
brackets) which can be formed by right shifts and adds
and then multiplied by 24 to get the final result. The
resulting algorithm, expanded to form an eight by eight
multiplication, is shown in figure 5. Note that although
the result is a full sixteen bits, the algorithm only per­
forms eight bit additions and that only a single sixteen
bit shift operation is involved. This has the effect of
reducing both the code space and the execution time
for the routine.

j .: ***************************************"************************************** 4.:* ,.

5 .: '" HPY8X8 '"

'" i ; *==========--================--============*
B i*
9 i*

10 i*
11 i*
12 i*
13 .:*

THIS UTllITI' PROVIDES AN 8 BI' a UNSIGNED MULTlPLI'
AT ENTR ... :

A = lOWER EIGHT BITS OF DESTINIITION OPERAND
XA= DON'T CARE
R1= POINTER TO SOURCE OPERAND (t'IUI.. TIPLIER) IN IN1ERNIII. MEMEORI'

Figura 5

All mnemonics copyrighted © Intel Corporation 1979.
1-61

* ,.
*
'" ..
*

inter
LOC 08.1

9002
000?
9004

9003

0000 BA00

0092 B!l9B

9004 120E

9096 2A
aile? 9"1
Il008 67
OO~ 2A
000A 67
0098 E894
900D 83

= 14;*
15 i*
16 i*'

= 17 ,i.
18 ;*
19 i*

AP·49

SOURCE STATEl£NT

AT EXIT,
A = LOWER EIGHT BITS OF RESllT
XA= UPPER EIGHT EIlTS OF RESUL r
C = SET IF OVERFLOW ELSE CLEARED

*
*
*
".

29 ; ************** •• ******.**********"'***~*******"'**"'**t******.t*** •• ", ... **********
21 ;
22 ;
23 $INCLUDE(:F1:t'lPVS POL)
24 ; 1 MP'r'8X3,
25 ,1 I'IUL TiFLICAND[15-8 J =0

: 26 .·1 CLiUNT. =8
27 i 1 REPEAT

=

23 i 2 IF I'lULTIPLICANV[0J=0 THai BEGIN
29 .:> MULTIPLlCAND,=MULTIPlICANro/Z
:10 i;1 ELSE
:11 d MlIL TlPLICRND[15-8], =t1ll T1PLItAN{)[15-S J+PlUL TIPLIER
32,: MULTIPLlOINr':=I'1ULTIPLICAND/2
]} ,; 2 ENDIF
f4 i 2 ~OOtlT =COIJNT-1
]5 ; 1 UNTIL COUIIT=0
~s ,lEN£, MP'J3XS
:·7 :
?8 EQIJATES
J9 i

4B ;
41 XA EQIJ R2
42 COuNT EQU R3
43lOIT EQIJ R4
44 ;
45 OII3PR EQlJ 3
46 ;
47 $EJECT
48 $INCLlIDE<: F1: MP'r'8)
49 ; 1 MP'r'8X8'
50 MP~'8l<:B:

51 ,.1 t1llTIPLIC.ANI)[15-81:=9
52 I10V XA, 100
53 ; 1 COONT:=S
54 I'IOV COUNT, tIS
55 ;1 REPEAT
56 I'IPYSLP.
57 i 2 IF MlIL TJPLlCAND[llJ=9 THEN BEGIN
58 JB0 I'1f'YSA
59 i 3 MIJL TIPLl CAND : =MIJL TIPLICAND/2
69 XCH A, XA
61 CLR C
62 RRC A
63 XCH A. XA
154 RIle fI
65 orNZ COUNT. MP'r'8LP
66 RET
6;' ,;2 ELSE

Figure 5 (contlnuad)

All mnemonics copyrighted © Intel Corporation 1979.
1-62

AP·49

LOC· OBJ SEQ SOURCE STATEMENT

68 I'lP'r'BA:
69 ,3 MIJLTlPLICAND[15-SJ:=I1IJLTlPLICI-lU(){15-S]+I'IULTlPLIER

ewE 2A
000F 61
0018 67
13011 2A
0012 67
0013 EB94
0015 83

= 70 XCH A~ XA
71 ADD A, @111
72 RfiC A
73 XCH A, XA
74 Rr;'C A
7!; DJNZ COUNT, HP't'8LP
76 RET
i7 ; 1 MIJL TIPLICANI): =I'IIJL TIPLICANI)/2
78 ,2 ENDIF
79 ; 2 COUNT· =COUNT-1
sa .: 1 UNTIL COUNT=0
~~1 ; 1 END 11P~'3:<3

82 E~[i

USER S'l't'1BOLS
COUNT iJ!.lO? D lGPP 0003 leNT 9004 MP'~SA 00iJE MF'~8LP 0004 MPV8X8 !lOO!l XA

A5SEI1BL't' COMPLETE. tlO EJIRORS

All mnemonics copyrighted © Intel Corporation 1979.

DIVIDE ALGORITHMS
In order to understand binary division a four bit opera­
tion will again be used as an example. The following
algorithm will perform a four by four division:

DIVIDE:
IF 16*DIVISOR>= DIVIDEND THEN

SET OVERFLOW ERROR FLAG
ELSE

IF 8*DIVISOR>= DIVIDEND THEN
QUOTlENT[3]:= 1
DIVIDEND: = DIVIDEND - 8* DIVISOR

ELSE
QUOTlENT[3]: = 0

ENDIF
IF 4*DIVISOR>= DIVIDEND THEN

QUOTlENT[2]: = 1
DIVIDEND: = DIVIDEND- 4*DIVISOR

ELSE
QUOTlENT[2]: = 0

ENDIF
IF 2* DIVISOR> = DIVIDEND THEN

QUOTIENT[1]: = 1
DIVIDEND: = DIVIDEND - 2*DIVISOR

ELSE
QUOTIENT[1]: = 0

ENDIF
IF 1 *DIVISOR> = DIVIDEND THEN

QUOTIENT[O]: = 1
DIVIDEND: = DIVIDEND - 1 *DIVISOR

ELSE
QUOTIENT[O]: = 0

ENDIF
ENDIF

END DIVIDE

The algorithm is easy to understand. The first test asks
if the division will fit into the dividend Sixteen times. If it
will, the quotient cannot be expressed in only four bits
so an overflow error flag is set and the divide algorithm
ends. The algorithm then proceeds to determine if eight
times the divisor fits, four times, etc. After each test It
either sets or clears the appropriate quotient bit and
modifies the dividend. To see this algorithm in action,
consider the division of 15 by 5:

00001111 (15)
- 01010000 (16*5)

Doesn't fit-no overflow

00001111 (15)
- 00101000 (8*~)

Doesn't lit-Q[3] = 0

00001111 ·(15)
- 00010100 (4*5)

Doesn't lit-Q[2]=0

00001111 (15)
- 00001010 (2*5)

00000101 Fits-Q[1] = 1

00000101 (15-2*5)
- 00000101 (1 *5)

00000000 Fits-Q[O] = 1

The result is ci = 0011 which is the binary equivalent 01
3-the correct answer. Clearly this algorithm can (and
has been) converted to a loop and used to perlorm divi­
sions. An examination 01 the procedure, however, will
show that it has the same problems as the original mul­
tiply algorithm.

1·63

The first problem is that double precision operations are
involved with both the comparison of the division with
the dividend and the conditional subtraction. The
second problem is that as the quotient bits are derived
they must be shifted into a register. In order to reduce
the register requirements, it would be desirable to shift
them into the divisor register as they are generated
since the divisor register gets shifted anyway. Unfor­
tunately the quotient bits are derived most significant
bits first so doing this will form a mirror image of the
quotient-not very useful.

Both of these problems can be solved by observing that
the algorithm presented for divide will still work if both
sides of all the "equations" involving the dividend are
divided by sixteen. The looping algorithm then would
proceed as follows:

DIVIDE:
QUOTIENT: = 0
COUNT:=4
DIVIDEND: = DIVIDEND/16
IF DIVISOR>=DIVIDEND THEN
OVERFLOW FLAG: = 1

ELSE
REPEAT
DIVIDEND:= DIVIDEND*2
QUOTIENT: = QUOTIENT*2
IF DIVISOR> = DIVIDEND THEN
QUOTIENT: = QUOTIENT + 1/*SET QUOTIENTIO]*/
DIVIDEND:= DIVIDEND- DIVISOR .

ENDIF
COUNT: = COUNT - 1

UNTIL COUNT = 0
ENDIF

END DIVIDE

ISiS- II HC5-4B/UPHl t1ACFO ASSEMBlER, Y2. 9

Lor 08,] SEQ S(NJRCf STATEMENT

1 tl'lACROFILE
;: tINCUJ[lE{ :F1·[lIII16. HED)

Ap·49

When this algorithm is implemented on a computer
which does not have a direct compare instruction the
comparison is done by subtraction and the inner loop of
t,he algorithm is modified as follows:

REPEAT
DIVIDEND:= DIVIDEND*2
QUOTIENT: = QUOTIENT*2
DIVIDEND: = DIVIDEND - DIVISOR
IF BORROW=O THEN

QUOTIENT: = QUOTIENT + 1
ELSE

DIVIDEND: = DIVIDEND + DIVISOR
ENDIF
COUNT: = COUNT - 1

UNTIL COUNT = 0

An implementation of this algorithm using the 8049 in­
struction set is shown in figure 6. This routine does an
unsigned divide of a 16 bit quantity by an eight bit quan­
tity. Since the multiply algorithm of figure 5 generates a
16 bit result from the multiplication of two eight bit
operands, these two routines complement each other
and can be used as part of more complex computations.

:: ,.~*~",,,,**.*~*** ... ************************
4 i* *
'5 :* DIV1b *
6 .. * ,..
7 .: *==?========*
S ;*
9 ;*

19 ;*
11 p~

12 .. *
13' ;*
.14 ; '"
1'5 :*
16 ;*
17 ;*

THIS UTILITY PRO\IIDES' AN 16 BY S UNSIGNED DIVIDe
AT ENTRY:

A = LOWER ElGtH BITS OF DESTINATION OPERAND
XA= UPPEI1 EIGHT BIT5 Of DIVIDEND
R1= POIllTER TO DIVISOR IN INTERNAL MEMORY

AT EXIT:
A = LOWER EIGHT BITS· OF RESUL1
XA= JlEt1AINDER

Figure 6

All mnemonics copyrighled (0 Inlel Corporalion 1979.
1-64

>I<

,..
>I<

*
>I<

'" >I<

*
* ...

inter
LOC OBJ

0002
000:5

!lael BB0e.

0903 37
0004 61 .
8905 37

0996 F60B

m~e8 117
<1!llJ9 0424

0008 61

Ap·49

SEQ SOURCE STATEMENT

C = SET IF OVERFLOW ELSE CLEARED ,.
'" 29 .' **~***** N .**~~ _* H ~ '~*.j.*~·*f··.*******,H*****",*******.I<*********"'***~**"'*~,*******

21 ,
22 ;
2, tINCLUDE(F1:DIV16 PDLl
24 ; 1 [\11116
25 ; 1 rOUrn·=3
26 ; 1 ['JVJ[lEN~[15-8J=[JJVJDEN[U~H3H)lVI50~'
27 ; 1 IF BORROIol=0 THEN l* IT FITS.:,'
28 ; 2 SET OVERFlOIJ "LAO
29 ; 1 ELSE
30 ; ~ ~ESTO~E [Il'JlDENll
31 ; 2 PEPEAT
12 ,3 DIVlDEND:=DIVIDENU*2
13 ;? OIJOTJENT =QIJOTIENT*2
34 ;:; [;!V!I)END[15-8J:=~IV!l)END[1~-SHIVISOP

35 .: 1. IF BOR~OH=l THEN
?6 ; 4 RESTORE DIVIDEND
:7 ; 3 ELSE
38 :4 ;}UOTJENf[0] =1
19 .:,. ENDIF
411 ; -, t:ourn . =COUNT-1
41 ;"2 IJPHIL COIJNT=0
42 .: 2 CLEAR OVERFLOW FLAG
4:5 ; 1 END:F
44 :1·ENDDmDE
45 ;
45 . EQUATES
47 .'
43 "
49 >:11 EGIJ R2
59 COUNT EGU f(!
51 ;
52 $EJECT
53 sJNCLlIDE< :F1:I!IV16)
54 ,1 DIVi6.
55DIVlt:. XCH A,XA

=.56 ;1 COllIIT:=8
57 t10V COONT, #~o

,,"OOTlNE WORKS MOSTLY WITH BIl5 15-8

58 ·1 DIVIDEN[I[1S-8l:=DIVIDEN[H5-SJ-DIVISOR
59 CF'L A
60 ADf' A. @R1
61 CPL A

" 62; 1 IF BORROH=ll THEN /* IT m 5"'/
6"1 Ie [)I VIA
64 ; 2
65

SET OVERFLOW FLAG

66
67 ; 1. ELSE
61'1 [)I','lft:

CPL C
JMP DIVIS

69 ·2 I<fSTORE OIVWEND
713 IlDD A,@Rl
71 2 REPEAT
72 DI'v'ILP:
7"1 .] DIVIDEND:=DIVIDEIID*2

Figure 6 (continued)

All mnemonics copyrighted © Intel Corporation 1979.
1-65

inter Ap·49

Lor OBJ

OOOC 97
0000 2A
009E F'?
890F 2A
0019 F7
0011 E618
oon 17
0014 61
0015 37
0016 0420

=

SEQ SOURCE 5TIHEt'fNT

:'4.; 3 WOTJ ENT =C!UOTl ENT *2
75 CUi C
76 ~CH H, XA
{? PLC A
79 XCH A, XA
79 RLC A
81l IN[; vIVIE
81 CPL ,A
82 ADt, fl, @R1
83 CPL A
S4 .;MP DIVIe

= 85,? [,IVIIIEND[1S-S1:=DIVIvEND[15-8HIVISOR
0018 ~7
0019 61
SetA 37

08181:@)

0011) 61
001E 0421

0021 EBOC

0024 2P-
0025 83

USE!" SYMBOLS

36 DIllIE: CPL A
37 AVO ft .. @Rl
88 CF'L A
eO? IF E:ORI<OI>J=l THEN
90 ,"'Ie Dlvre

-. 91 ,4 PE5TOI<E ['IVJI)ENV
~2

93
"4 .,:
95 [llVTC

riD[J
.!~!f'

ELSE

% ·4 QUOTJENH91.=1
97 we XA
98 : 3 ENl'IF

= ;'9;] c,)l.mr =COUNT-1
= 100 . ~ lI~Tl L COUNT =9
= HI1 DIVW DJNZ t.:OIJNT, DIlfiLP
= 1(12 : 2 CLEAI< O',IERFLOW FLAG
= liE Clf: C
= 104 ·1 ENDIF
= 105 ; 1 ENDDIVIDE
= Hl6 r,p·ilB. :<CH
= 1{l7 RET

108 E~ID

A,XA

COUNT (1003 DIV16 0000 DIVIfi 0000 DIVI8 9024 DIVIC 0020 DIVII! 0021 [lIVIE !101S DIVILP OOOC
i'II \3002

ASSEI'IBl'i COMPLETE, tlO E~I)RS
Figure 6 (conllnued)

All mnemonics copyrighted © Inlel Corporation 1979.

BINARY AND BCD CONVERSIONS
The conversion of a binary value to a BCD (binary coded

·decimal) number can be done with a very straight­
forward algorithm:

CONVERT_TOJ3CD:
BCDACCUM: = 0
COUNT: = PRECISION
REPEAT

BIN:=BIN ·2
BCD: = BCD· 2 + CARRY
COUNT:= COUNT - 1

UNTIL COUNT = 0
END CONVERT_TQBCD

The variable BCDACCUM is a BCD string used to ac·
cumulate the result; the variable BIN is the binary num­
ber to be converted. PRECISION is a constant which
gives the length, in binary bits of BIN. To see how this
works, assume that BIN is a sixteen bit value with the
most Significant bit sel. On the first pass through the
loop the multiplication of BIN will result in a carry and
this carry will be added to BCD. On the remaining
passes through the loop BCD will be multiplied by two
15 times. The initial carry into BCD will be multiplied by
215 or 32678, which is the "value" of the most Significant
bit of BIN. The process repeats with each bit of BIN
being introduced to BCDACCUM and then being scaled
up on successive passes through the loop. Figure 7
shows the implementation of this algorithm for the
8049.

1-66

AP·49

! S I S- JI MCS-48iUP H 1 MACRO ASSCI'lBlEI1, V2. (I

LOC OBJ

9002
0093
0004

'.1003

0009 28

SEQ SOURCE STATlOl'1ENl

1 fl'lACROFILE
2 SINClll!lEl :FlCONBC['l H[['l)

? ; ~** **** M •• I t**********~*·~****** ... *.~* ... * ~*+.~******~*****'1-*4~**¥~***.t<**JI. ~.t<*~,~*~**
4 ,~ '"
5, ~ CONSc[; *
6 ,.~ *
7 ; *============-==============:=========::.=================================*
8 .'~ '" 9 ;" THIS UTILITY CONVERTS A 16 Eli 8INAR',' I/ALIJE 10 SCI) '" lEI ,* AT ENHIY 01<

11 ,* A = LO~IER EIGHT BITS OF BI~~' VALUE '" 12 ;* :~A= IJPPER EIGHT BII5 OF BIIffiP..,. VALUE '" 13 ;* 110= POHn~R TO ii FRerE[) BCD Sll1lNIj *
14 ;'" '"
15 ;* HT EXIT l'

16 ; ~ A = I.IPlDEF I NED ...
17 ,t ;~fI= IJN[\[F INED *
18 ;t C = SET IF OIlEJ;'FlOlo: ELSE l1EARE[} '"
19 ; ... '"
20 : t"'***"'*~*********.j<"'''''''·.·~*'''**·~*·~*·~'''***'''***·.**·~*********~*"'*"'JI.***********"''''*****
21 '
22 '
n $INCLIJ['lE! ·F1CON8Cll. PDU
24 :1 GO/WEilL TO_BCD
25 ;1 SCDReC. =0
26 .,1 COUNT =16
27 1 REPEAT
23:2 IlIN:=BIN*2
29 ; 2 BCD . =BCD*2tCARR'r'
10 ; 2 I F CAR"'''' FROM BCDACC GOTO ERROR EX IT
31 ; 2 COUNT: =(,OUNT-1
32 ; 1 UNTIL COUl-IT=e
n ; 1 EN[) COUVERLTO_BC[}
~4 .'
:.'5 ' EPLIATES
36 .,., .
.!of f

}8 XA EQU 1<:2
39 COUNT EQU R3
40 ICNT EQU R4
41 ;
42 I)IGPR EQU 3
43 ;
44 $EJECT
45 mjClIJl'~ (: F1 . COIlBev)
46 '
·17 TEMPi SET R5
48 ;
49 ,1 CONVERL TO_BCI)
513 CI~W)
51 ; 1 BCDReC ·=0

A,RB

Figure 7

All mnemonics copyrighted <0 Intel Corporation 1979.
1-67

inter
lOt ooJ

0001 !l9
90ij2 28 ;
000:: OC\E
O(l!:l5 8100
0007 19
eooe EC05

eaec 97
0000 p

eM 2!l
e00F F7
[l(l1e ~fl

0911 28
9012 A9
een 28
0014 BC03
0016 AD
001:' F1
1j31>3 71
0019 57
00lA ~1
0018 19
[l(llC Eel;'
00lE I'[J

091F F624

0021 EBOC
8823 97

0024 83

USER SYMBOLS

"

~

AP·49

SEQ ;J)UPCE 5 fllmlENT

r-.J.;. 1'10'1 f''l. Ii ,
54 ;<(,H IUO
'55 110V lCNT. to IIJP~
'56 BCVO:" MOV 1M"1. ioo

"" .. me PI
~s DJII;: ICNT. OCHOR
~9 ; 1 COI)!IT. =1~
60 MOil COUNT. #16
61 ,1 PEPEAT
62 E:COCOB.
;;3 .;2 Ii;'l: =BJN*i
~4 tU (

65 RlC Ii
66 XCH fl. XA
€.7 RLC A
68 XCH A.:ifj
69 ;2 eCD' =BCD*2tC~R\'
73 ~Ol H.R9
71 HOII R1.A
;~2 XCH A.R9
73 11011 ICNT.IDIGPR
74 MOil TEMP!. Ii
75 Brooe MOY A·@R1
76 f100C ~.@Rl .,.,

[lfl A
"
78 MOil @j;'LA
79 INC Rl
S0 DJN2 leNT. BCDOC
>31 MOY A. TEMP1
82 .2 . IF CARRY FPCit'! BC[lACC GOTO ERROR EXIT
83 Je BCOCOD
84 .' 2 couln . =COIJNT-1
85 ; 1 UNTIL GOUNT=!!
06 r, JNZ COUNT. BCOCOB
G7 CLR C ; CLEAR CARRY TO ltIDICATE NORMAl.. TERHINftTlOtl
88 ; 1 END CONVERT-TO_BCD
89 ewcOD RET
90 END

BWCOA il005 BCDCOI3 OOOC BC[JCOD 0024 BCDOC 0017CNBC[1 0000 COUNT 0003 D I (jPR e003 1 (;NT 9004
TEMPi 0(,'.0'5 l:A 0W2

M55EMBL',' cot-RETE. /10 ERI"OR5

Figure 7 (conllnuld)

All mnemonics copyrighted <C> Intel Corporation 1979.
1-68

intJ Ap·49

The conversion of a BCD value to binary is essentially
the same process as converting a binary value to BCD.

ing the following substitution:

CONVERT_TO..BINARY
BIN:=O
COUNT:= DIGNO
REPEAT

BCDACCUM: = BCDACCUM • 10
BIN:= 10· BIN + CARRY DIGIT
COUNT: = COUNT - 1

UNTIL COUNT=O
END CONVERLTO_BINARY

The only complexity is the two multiplications by ten.
The BCDACCUM can be multiplied by ten by shifting it
left four places (one digit). The variable BIN could be
multiplied using the multiply algorithm already dis·
cussed, but it is usually more efficient to do this by mak·

151:-!! I1CS-4:3!IJPI -41 MACI"O ASSEMBLEP, \(2. 0

lOC OBJ SEQ 501JRCE: STATEMENT

1 Si'1HCROFILE
2 >INCLUDE(F1:CONIlIN. Hm)

BIN=10· BIN=(2)· (5)· (BIN)=2· (2·2+1)· BIN

This implies that the value 10 • BIN can be generated by
saving the value of BIN and then shifting BIN two places
left. After this the original value of BIN can be added to
the new value of BIN (forming 5 • BIN) and then BIN can
be multiplied by two. It is often possible to implement
the multiplication of a value by a constant by using such
techniques. Figure 8 shows an 8049 routine which con·
verts BCD values to binary. This routine differs slightly
from the algorithm above in that the BCD digits are read,
and converted to binary, two digits at a time. Protection
has also been added to detect BCD operands which, if
converted, would yield binary values beyond the range
of the result.

] .: *************_.****-1<****** ~.~*.~*********************",***************.*******",*~,*
4 ; t '"

5 .. * CONBIN '"
'"

7 ; *==*
B .:t '" 9 :* THIS UIILlW CON'/EIHS A 6 DIGIT BCD '~ALUE TO B1NARI' ,..

10,. AT ENT,.. ... · '" 11 :.~ RO= POINTER TO II PACKED BCD STFING '" 12 :j< '" 13 j t AT EXIT: '" 14.:* H = LOWER EHiHf BITS OF THE BINARY RESULl '" 1~ :* l\f:= tiPPER EIGHT BITS OF THE BINARY RESIJl T '" 16 :* C = SET IF OVERFLOJ,l ELSE CLEARED '"
V.:* '"
18 : ************"'i·'f<*~**.~*,'·t-*'f<**~*****""*"'***"'**t.j<************"'*"'***********"'*******
19.:
29 :
21 $INClUDE(·F1:CONBW. POl)
22 ;
23.
24 .: 1 1.:ot·WERLTO_BINAR'r'
25 .: 1 POINTER0:=POHlTER0+DIGITPAIR-i
26 : 1 COlIIIT: =DIGITPAIR
27 ; 1 BIN:=~
23 : 1 REPEAT
29 : 2 BIN: =BIN"'W
:m:2 BIN:=BIN+MEM(RM7-4J
31:2 BIN:=8IN*10
12 .: 2 BIN. =BIN+r1EWR0)D-01

All mnemonics copyrighted © Intel Corporation t 979.
1·69

intJ
lOC 08J

9003

9000 Fa
8001 11302
9003 ~8

8W4 BSIl3

0006 27
8W7 AA

0008 142B
009A F62A

ttOOC AD
BOOD F9
000E 47
OOBF 530F
0011 6D

. 0012 2A
0013 1399
0015 2Fl
0016 F62A

0018 142B
001A F62A

901C AD
0010 Fe
001E 5~0F
B020 61)

9021 2A

All mnemonics copyrighted CO Intel Corporation 1979.

AP·49

SEQ soo;:CE STRTEIENT

3J ; 2 POJtIT~ =POINTER8-1
34.2 COUNT:=COUNT-l
~5 • 1 UNTIL WUtH =~
36 ; 1 EN!) CON"'Ej;'L TO_BlNAI?Y

33 . EOIJRTES
39 .
40.:
41 XA
42 COUNT
43 leNT
44 ;
45 DIGPR
46;
47 fEJECT

EQIJ
EQU
EQU

EQU

R2
R3
R4

3

43 $INCLUDE ('F1. CONBIN)
49 ..
59 TEMPi SET R5
51 TEMP~ SET R6
52 ;
53 ; 1 COt/VERL TO_BINARY
54 COIlBIN:
55 ; i POINTER0:=POINTER0+DIGITPAIR-l
56 1'10'./ A, RIl
57 ROO A,I01GPR-i
58 t'f()V RB .• A
59 ; 1 COllNT:=DIGITPAIR
69 MOV COI.JNT, If) I GPR
61 .,1 BIN =0
62 elF: A
E:: MOil i(il, A
64 . i REPEAT
65 CGNBlP:
66,2 BIN:=BIN*10
67 CALL CONB10
68 .Ie CONSER
69 ,2 BIN. =BIN+MEM(R0)[7-41
79 MO\! TEMP1, A
1'1 !1OV R, @RO
72 SWAP A
73 ANl A,#iJFH
74 AI)[> Fl, TEI1Pi
;'5 XCH A, XA
76 AOOC A,too
77 ;':CH A .. XA
78 K CONBER
79 ;2 ~IN =BItM0
80 CALL CONB10
81 JC CONBER
82 :2 BIN =B IN+t1EH (RBi[HlJ
3? MOV TEt1Pl, A
84 MOV A..@RQ

as ANL A,10FH
B6 AOO A, TEMPi
37 XCH A, XA

1·70

intJ
LOC 00)

0022 BOO
0024 2A
1l1l2'3 ~62R

0027 CS

002S EBBS

002A 83

002B All
902C 21'1
902D AE
002E 2A

00'5 97
003B F7
0031 2A
0032 F7
0033 2A
00:14 F646

9036 F7
00:?7 2A
0038 F7
0039 2fl
803ft F646

003C 6D
903& 2ft
883E lE
OO~F 2A
0040F646

0042 F7
9043 2A
9044 F7
9045 2A

0046 83

USER SYMBOLS

Ap·49

SEQ SOURCE STATEI'IENT

88 AOOC A, 100
89 XCH ft,XA
90 JC COIISEII
91 ; 2 POI'lTER9. =POINTER0-1
92 DEC R0
93 ,2 COUlIT : =COUNT-l
94 ; 1 UN1IL COIJllT=e
95 D.JNZ CO'JIlT, CONBLP
96 ; 1 END CONVERLTO_BIHAR'I
97 COIl8ER: !lET
9S SEJECT
99

=100 ;
= 101 UTILI T'1' TO I'IIJLTIPL.,.. BIN BI' 10
= 102 CARR~' WILL BE SET IF OVERFLOW OCCURS
= HIS ;
= 104 CONBl9. MO~'

= 105
= 106
= 197
= 10S
= 109
= 119
= 111
= 112
= 113
= 114
= 115
= 116
= 117
= 118
= 119
= 120
= 121
= 122
= 123
= 124
=125
= 126
= 127

XCH
I1(IV

XCH

CLR
PLC
XCH
RlC
;{r)l

JC

RLC
XCH
RLC
XCH
.Ie

AI.lO
XCH
ADDe
XCH
JC

= 128 RLt
= 129 XCH
= 130 RLC
= H1 XCH
= B2 ;
= 133 CONalE: RET
= 134
= 135

136 ~N!)

TEMPi. A , SAVE A
A, XA !>AVE XA
TEl'lnA
A,XA

C
A ; BIN: =BIN*2

A
A.Xft
CONBIE ; ERROR 011 OVERFLOW,

A ; BIN: =BIIO*4
A.XA
ft
A,XA
CONBIE ; ERROR ON OVERrLOW

A. IDtf'1 ; BIN:=BIN*S
A, l(A
A, TEMP2
A. XA
COIIBIE ; ERROR ON OVERFLOW

A ; BIN: =8110*10
A. XA
A
A.XA

CONB10 0028 CONBIE 0046 CONSER 902A COIIBIN 0000 CONBLP 0008 COUNT 9003 DIGPR 0003 ICNT 0004
TEl1Pl 0095 TEt1P2 0006 i:A 0902

ASSEMBL V COMPLETE, NO E~:ROR5

All mnemonics copyrighted © Intel Corporation 1979.
1-71

inter Ap·49

CONCLUSION
The design goals of the full duplex serial communIca­
tions software were realized; if transmission and recep­
tion are occurring concurrently, only 42 percent of the
real time available to the 8049 will be consumed by the
serial link. This Implies that an 8049 running full duplex
serial I/O will still outperform earlier members of the
family running without the serial I/O requirement. It is
also possible to run this program in an 8048 or 8748 at
1200 baud with the same 42 percent CPU utilization.

The execution times for the other routines that have
been discussed have been summarized in Table 1. All of
these routines were written to maintain maximu'm use­
ability rather than minimum code size or execution time.
The resulting execution times and code size are there­
fore what the user can expect to see in a real applica­
tion. The results that were obtained clearly show the ef­
ficiency and speed of the 8049. The equivalent times for
the 8048 are also shown. It is clear that the 8049 repre­
sents a substantial performance advantage over the
8048. Considering, in most applications, that the 8048 is

the highest performance microcomputer available to
date, the performance advantage of the 8049 should
allow the cost benefits of a single chip microcomputer

',to be realized in many applications which up until now
have required too much "computer power" for a'single
chip approach.

MPY8

DIV 16

CON BCD

CONBIN

EXEC!JTION TIME
(MICROSECONDS)

BYTES 8049 8048

21 109 200

37 183,MIN 335 MIN
204 MAX 375 MAX

36 733 1348

70 388 713

Table 1. Program Performance

1·72

intJ APPLICATION
NOTE

AP·55A

August 1979

INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR THE USE OF ANY CIRCUITRY OTHER THAN CIRCUITRY EII80DIED IN AN INTEl PRODUCT. NO OTHER CIRCUIT PATE.n utENSES ARE IMPLIED.
©INTELCDRPORATlDN.1979 1-73 9801007-<)1

AP·55A

I. PURPOSE AND SCOPE

This Application Note presents a description of the
design and operation of a high·speed emulator for the
Intel'" MCS·48™ family of single chip microcomputers.
The HSE·49™ emulator provides a simple and inexpen·
sive means for executing and debugging 8049 programs
which require the full 11·MHz operating speed of the
part.

Section II of this Application Note describes some of
the features of this development tool and how it may be '
used. Section III briefly discusses the hardware used to
implement these features, while Section IV describes
the manner in which program execution status is made
available to the operator.

A detailed description of all of the operator commands,
is presented in Section V of this note, along with the
modifiers and options which may be specified for each
command. Known restrictions and limitations of the
HSE·49 system are listed and explained in Section VI.
Section VII shows how the basic circuit may be
modified to provide options on memory organization, I/O
configurations, etc.

Full schematics of the system hardware, as well as
monitor software listings, are presented in Appendices

: A and B, respectively. A short summary of the command
syntax is presented in Appendix C,. Appendix D ex·
plains the error message codes which may appear duro
ing use.

It is assumed that the reader is already familiar with the
operation of the 8048 or 8049 microcomputers. Some
knowledge of the 8048 architecture is needed to under·
stand sections of the command and modifier descrip·
tions. Most users will already have this background.
Other readers are referred to the MCS·48 Microcom·
puter User's Manua/, Intel publication number 9800270.

II. THE HSE·49 DEVELOPMENT TOOL

In essence, the HSE-49 emulator provides the user a
means for executing an MCS-48 program located in ex·
ternal RAM rather than internal ROM or EPROM. This
allows programs being debugged to be modified easily
and quickly during the debug cycle. A user's program

. may be entered into system RAM either manually or via
a serial link from a host computer such as an In·
tellec'" Microcomputer Development System. Once
loaded, the program can be modified using an on-board
keyboard and display, and executed in real-time in a

. number of breakpoint modes. The internal state of the
processor, including RAM,:accumulator, timer/counter,
and status register contents, can also be read and
modified through the keyboard. '

Breakpoinf and 'debug facilities are extremely fl,exible.
The following execution modes are provided.

• Programs may be run in full (11 MHz) real time;

• Programs may be single-stepped;

• In break mode, programs run in full real time until
break occurs;

• Breaks may be triggered by either program or exter­
nal data RAM accesses;

• Any number of breakpoints may be used in any
combination;

• "Auto-Step" operation causes the current program
counter and Accumulator contents to be printed on
the display for a short time on every instruction
cycle;

• "Auto-Break" provides the above display only when
a break flag is encountered, with real time opera­
tion otherwise;

• While running in non-break mode, a TTL-level pulse
is generated whenever a break flag is encoun'tered.
This signal may be used to trigger an oscilloscope
or Logic Analyzer to assist in hardware and soft­
ware debug.

• While running in any mode, the keyboard and
display are "alive". Execution may be suspended or
terminated by commands from the keyboard.

Intent of this Note

While the HSE-49 emulator can assist a new microcom­
puter user in becoming familiar with the 8048 and 8049
microcomputers, its inherent debug capabilities will
also prove helpful to design engineers. The design'
could be used for new system development and verifica­
tion or adapted for prototype production.

The main concern in designing the HSE-49 emulator was
to keep the basic design simple, while maximizing the
system's flexibility. The design allows the use of
jumpers, hardware and software switches, etc. to allow
the user to reconfigure the system according to the way
he dedicates chip-select pins, 110, etc. The emulator can
be changed to fit each user's unique needs, rather than
forcing the user to alter his needs to what is provided ..

The primary intent of note is to provide the reader with
the information needed to reconstruct and make full use
of the HSE-49 emulator. Less emphasis is placed on
describing how the hardware operates or how the com­
mands are implemented. This information may be found
in the schematic diagrams and software listings in­
Cluded in the Appendices.

III. GENERAL HARDWARE OVERVIEW

User Program Emulation

The actual emulation of the user's program is done
using an 8039 microcomputer (IC29 on the schematics
in Appendix A) executing a program stored in external
RAM. The basic minimum configuration includes the
8039 microcomputer, an 8282 address latch (IC19), and
2K bytes of 2114 RAM to use for program development
and real-time,execution (ICs B1, C1, B2, and C2). Addi­
tional RAM may be added to allow the user to expand
his program and data memory to 4K each. (If an 11-MHz
crystal is used with the microcomputer, tYPE! 2114-3
RAMs must be used.)

1-74

intJ AP·S5A

System Supervision

A second microcomputer - another 8039 (IC25) with an
8282 address latch (ICI6) and off-chip program memory
in a 2716 EPROM (iCI5) - is used to scan the on-board
keyboard and display, interpret and implement com­
mands, drive serial interfaces, etc. In general, the
master processor is used to interface the execution
processor's memory spaces with the outside world and
control the operation of the execution processor. In this
note the two processors will be abbreviated "MP" and
"EP", respectively. Figure 1 shows how the two proc­
essors interrelate with the rest of the system.
system.

Keyboard/Display

The 33-key keyboard shown in Figure 2 includes a 16-key
hexidecimal keypad and 17 special function keys for
specifying commands and modifiers. Readers already

USER
SYSTEM

PROTOTYPE

familiar with the PROMPT-48™ debug tool for the 8048
will find that 25 of the HSE-49 emulator keys are iden­
tical in function and layout to the PROMPT-48 keyboard,
and use the PROMPT-48 command syntax. The eight ad­
ditional keys are used to generalize and augment the
PROMPT·48 capabilities, as described in Section V.

The eight-character seven-segment display (DS1-DS8)
is used for displaying addresses, data, and pseudo­
alphanumeric messages_ The display responses printed
in Section V and throughout this note use a mix of upper
and lower case letters to indicate what seven-segment
patterns appear. An 8243 (IC9) and eight DIP packages
(resistor packs, current buffers, etc_) are used for
multiplexing the display and scanning the keyboard_

Breakpoint Detection

Breakpoints are specified and detected using a 2102A
lK x 8 RAM corresponding to each pair of 21145 (ICs AI

HOST
COMPUTER

SYSTEM
(INTELLEC)

DODOOE/e/D
O.O.O.c.I.D.C .Ll.O

B
I UPLOAD I

I SYS RST I I DNLOAD I

B

C D E F

A B

4 5 6 7

o 1 2 3

CRT

Figure 1. HSE49™ Emulator Signal Flow Diagram

I GO/RESET I G I EXAM/CHA I DDD0
DDDD

I CLR/PREV I DDD0
I HARD REG I B B DODD
Figure 2. HSE_49™ Emulator Command Keyboard Organization

1-75

AP·55A

and A2). In effect, each program or data address ac­
cesses a 9-bit word. Eight bits are used normally for
code or data storage. The ninth bit, accessed in parallel
with the other eight, is used to indicate if a breakpoint
has been set for that address. This output, when
asserted, is latched {IC27 and IC36) and used to halt the
execution processor via the single-step input. (In other
modes, the break logic can be reconfigured to set the
break requested flip-flop on any EP machine cycle or
any EP "MOVX" instruction.)

Link Register

An 8212 8-bit latch (IC18) is used to communicate data
and commands between the master and control proc­
essors. Under control of the MP, this register, called the
"Link" register, may be logically mapped into either the
program or data RAM address spaces. When this is
done, the 2114s in the respective memory space are
disabled and the link responds to all accesses.­
regardless of address. The link will be discussed in
greater detail in Section IV.

Control Logic

In addition to the devices mentioned above the
minimum configuration requires about 10 addition~IICs
for bus arbitration, system control, and breakpoint and
single-step logic; Additional parts may be optionally
added for serial port interfacing, I/O reconstruction, etc.

MP Monitor

The monitor program executed by the MP includes com­
mands for filling, reading, or writing the various memory
spaces, including the execution processor's program
RAM, external ("MOVX") data RAM, accumulator, PSW,
PC, timer/counter, working registers, and internal RAM;
to execute the user's program from arbitrary addresses
in various debugging modes; and to upload or download
object or data files from diskettes using an In­
tellec@ development system. No special software is
needed for the Intellec@ other than ISIS Version 3.4 or
later. The data format is compatible with the standard
Intel hex file format produced by ASM-4; the baud rate
may be altered from 110 baud (default state) up to 2400

EXECUTION"
PROCESSOR

baud from the on-board keybad. Blocks of data may be
transmitted to a CRT or printer and displayed in a
tabular format.

IV. INTERPROCESSOR COMMUNICATION

Program Break Sequence

When the MP detects that the EP has been halted by the
breakpoint hardware, or when the operator presses a
key while the program Is executing, the program break
sequence is initiated. The low-order 23. bytes of user pro­
gram memory is read into a buffer within' the internal
RAM of the MP. A short program for reading and
transmitting internal EP status is written over the low­
order program memory. (This is one of several "mini­
monitors" overlayed over the user program area.) The
link register is mapped logically over the user program
memory, and loaded with the 8049 machine code for a
"CALL" instruction to the mini-monitor program area
The EP is then allowed to fetch Ii single instruction fro~
the link, i.e., the "CALL" to the mini-monitor is forced
onto the EP data bus.

From this point on, the EP elfecutes code contained in
the mini-monitor. The link is logically mapped over the
data RAM address. space (whether or not any 2114 data
RAMs are present). A block diagram of the system at
this point is shown in Figure 3. The break logic is recon­
figured so that any "MOVX" (RD or WR) operation ex­
ecuted by ttie EP will cause it to halt.

For example, after entering the first mini-monitor, the
EP executes a "MOVX @RO,A" Instruction. This writes
the contents of the accumulator prior to the execution
termination into the link, and causes the EP to halt. The
MP may then read and retain the link contents to deter­
mine the EP accumulator value. The EP timer/counter
and PSW are preserved in the same manner.

Accessing EP Internal RAM

After reading and saving EP internal status, the MP
loads a different mini-monitor into the same RAM area.
This monitor allows the internal RAM of the EP to be
read and written by the MP by passing address and data

MASTER
PROCESSOR

Figure 3. Communication between EP • MP

All mnemonics copyrlghled© Inlel Corporation 1976.
1-76

inter AP·55A

values between the two processors using the link
register.

This is needed for two reasons. First, the EP program
counter prior to the forced "CALL" instruction may be
derived from the EP stack contents, and may be
modified to cause the EP to resume execution at any
desired address. Secondly, the internal RAM of the EP
may then be accessed and modified in the process of
executing a number of the monitor commands.

Resuming User Program Execution

In order to resume user program execution, a status­
restoration mini-monitor is overlayed. This restores the
EP internal status using a scheme analogous to the one
in which the status was originally saved. The final step
of the last mini-monitor is an "RETR" instruction, after
which the EP is again halted. The low-order program
memory saved earlier is rewritten into the appropriate
area, the break logic is reconfigured for the desired ex­
ecution mode, and the EP is released to run at full speed
until the next break situation is encountered.

Note that all commands are implemented using
"logical" rather than "physical" addressing. Thus the
operator need not be concerned with the intricacies of
the system design. For example, when any monitor com­
mand refers to low-order user program memory, the ap­
propriate byte of storage within the MP internal RAM is
accessed instead. If the location is altered, the internal
RAM is modified appropriately. When program memory
is reloaded prior to resuming user program execution,
the modified version of the user program will be the one
loaded.

Baud HR06 HR07

110 93H 04H
150 96H 03H
300 45H 02H
600 9DH 01H

1200 44H 01H
2400 1AH 01H

Table 1. Serial Interface Data Rate Parameters

v. HSE-49 COMMAND DESCRIPTION

Whenever the characters "HSE-49" are present on the
system display, a command string may tie entered by
the operator. In general, all command strings consist of
a basic command initiator, an optional command
modifier or type-designator, and a number of parameters
or delimiters entered as hexidecimal digits. A command
is executed, or a command in progress terminated, by
pressing the [END/.] key. Logical default values are
assumed for the modifier and parameters if either (or
both) are omitted. A defualt parameter assumed for the
command modifier will be presented on the display
when the first parameter is entered.

Each parameter is a string of up to three hexidecimal
digits. If more than three digits are entered, only the
most recent three are considered. This allows an er­
roneous digit to be corrected without respecifying the
entire command. A parameter is completed by pressing
the [NEXT/,] key. Some commands may only need. the

All mnemonics copyrighted©lntel Corporation 1976.

low order part of a parameter; i.e., a command incor­
porating a data byte (such as [FILL]) will use only the
low-order 8 bits of the corresponding parameter; Inter­
nal RAM and hardware register addr,essing uses only
seven. In each case, higher order bits are ignored.

A command string is terminated and the command in­
voked by pressing the [END/.] key. The command will
also be invoked by pressing the [NEXT/,] key when no ad­
ditional parameters are allowed. A command string may
be aborted at any point before the command is invoked
by pressing the [CLEAR/PREV] key, and the sign-on
message will appear.

Errors

An illegal command string, command terminator, or
hardware failure will cause an error message and error
code number to appear on the display (e.g., "Error-.3").
When this occurs, the monitor can be returned to com­
mand mode by preSSing the [CLEAR] or [END/.] keys. An
explanation of the various error codes is given in Appen­
dix D.

Command Classes

Commands for the HSE-49 emulator are divided into
general classes, where all commands in each class have
the same choice of options or modifiers. A brief descrip­
tion of each command, followed by a description of the
allowed options, is presented below by class.

Data Manipulation/Control Command Group

Commands:

[EXAM/CHA]

Display Response - "ECh."

1-77

Function - Examine/change memory location.

Causes the memory address specified to be read
and presented on the display. New data may be
entered (if desired) from the hexidecimal keypad.
New data is verified before appearing on the
display. Subsequent or previous locations may be
read by pressing the [NEXT/,] or [PREY] keys,
respectively. Command terminated with [END/.]
key.

[FILL]

Display Response - "FIL."

Function - Fill range of memory addresses with a
single data value.

Fill the appropriate memory space between the ad­
dresses specified by the first two parameters with
the low-order byte of the third parameter. If second
parameter less than first, only the location
specified by the first is affected. IT third parameter
omitted, zero is assumed. If second and third
parameters omitted, individual address specified is
cleared. Command is useful for setting a large
range of breakpoints; e.g., all of page 3 may be
enabled for break with the command:.

[FILL][PROG BRK]<300>[,]<3FF>[,]<1>[.]

AP·55A

[LIST]

Display Response - "LSI."

Function - List memory to output device through
HSE·49 serial port.

Display the contents of a range of addresses given
by two parameters to a, teletype or CRT screen.
Data,is formatted, 16 separated bytes per line, with
the starting address of each ,line printed. If used
with an Intellec'" system, the operator first uses
ISIS·II to transfer the TIY input to the CRT output
("COpy :TI: TO :CO:") then invokes this command
from the keypad. Alternatively, any ISIS device or
disk file name(:TO:, :LP:, :F1:HRDREG.SAV, etc.)
may be used as the destination.

[DNLOAD]

Display Response - "dnL."

Function - Download' memory through HSE·49 serial
port

Load data in hex file format through the serial input
port. If used with Intellec'" system, the operator
first invokes this command from the keypad, then
uses ISIS·II to transfer a disk file to the teletype
port ("COPY: Fn:file.HEX TO :TO:").

The use of the checksum field for the download
command is expanded slightly ,over the Intel hex
file format standard. If the first character of the
checksum field ,is a question mark ("?"), the
checksum for that record will not be verified. This
allows large object files produced by the assembler
to be patched using the ISIS text editor without the
necessity of manually recomputing the checksum
value.

[UPLOAD]

Display Response - "UPL."

Function - Upload memory through HSE·49 serial
port.

Output the contents of a range of addresses
specified by the two. parameters through the
HSE·49 serial port in standard Intel hex file format.
If used with Intellec'" system, the operator first
uses ISIS·II to transfer the TTY input to a disk file
("COPY :TI: TO :Fn:file.HEX"), then invokes this
command from the keypad.

Data types allowed:

[PROG MEM]

Display Response - "Pr."

Function - User program memory.

Memory used to develop and execute user program.
Addresses 000 through 7FF are the execution proc·
essor's memory bank 0; 800 through FFF are
memory bank 1.

[REGISTER]

Display Response - "rG."

All mnemonics copyrighted© Intel Corporation 1976.

1-78

Function - Register memory and RAM.

Internal RAM of execution processor. Locations
0-7 are working register bank 0; 18-1F are working
register bank 1. Only the low·order 7 bits of an ad·
dress are considered.

[DATA MEM]

Display Response - "dA."

Function - External data memory (if installed).

Memory accessed by execution processor "MOVX
A;@Rr" or "MOVX @Rr,A" instructions. High·order
4 bits rr,ay or may not be relevant, depending on
jumpering option selected (explained in Section VII
of this note).

[HARD REG]

Display Response - "Hr."

Function - Hardware registers.

The execution processor (EP) hardware registers
(accumulator, timer/counter, etc.), as well as
several parameters for controlling HSE·49 system
status, are accessible through this catch·all
memory space. Addresses are as follows:

00 - EP accumulator.

01 - EP PSW.
Bits correspond to 8049 PSW except that bit
3 (unused in the 8049) is u,sed to monitor and
alter the state of F1. Bits 2-0 correspond to
the stack pointer value after the EP executes
a CALL to the mini·monitor; i.e., one greater
than when EP was running the user's pro·
gram.

02 - EP timer/counter.

03 - EP internal RAM location 00.
(This value is also accessible through
[REGISTER] space.)

04 - EP program counter (low byte).

05 - EP program \~ounter (high nibble).

06-07 - HSE·49 serial interface baud rate paramo
eters. Defaults to 110 baud; other rates may
be selected by loading the values listed in
Table 1.

08 - HSE·49 automatic sequencing rate
parameter. Used in [GO][AUTO STP] and
[GO][AUTO BRK] execution commands. 00 -
fastest; FF - slowest. Defaults to 20H; ap·
proximately two steps per second.

09 - Monitor version/release number (packed
BCD).

(lA-OF - Currently unused by the monitor program.

10-7F - Variables used by master processor (MP)
monitor. Should not be altered by operator.

[PROG BRK]

Display Response - "Pb."

Ap·55A

Function - User program breakpoint memory.

Memory space used to indicate points where pro­
gram execution should halt when running in a mode
with breakpoints enabled ([GO][W/ SRK) and
[GO][AUTOSRK)). Break will occur if enabled byte is
read as the first or last byte of a 2·byte instruction,
or read in executing a MOVP, MOVP3, or JMPP in­
struction. Memory is only 1 bit per location; 00 in·
dicates continue, 01 causes a hal!. Addresses 000
through 7FF are the execution processor's memory
bank 0; 800 through FFF are memory bank 1.

[DATA SRK)

Display Response - "db."

Function - External data RAM breakpoint memory.

Function - Go from reset state.

EP is hardware· reset and released to execute the
user's program from location OOOH. No parameters
are allowed. FO, F1, PSW, stack printer, memory
bank flip-flop, etc., are cleared.

Note that this command does not require the use of
mini·monitors to initiate program execution. As the
last phase of the program development cycle, the
2114 program RAMs and address decoder may be
removed and replaced by a ROM or EPROM part
(not shown in schematics). This command may be
used to start execution when the program RAM has
been removed. No interrogation of EP status or in­
ternal RAM may be done, nor are break or single·
step modes allowed in this case, though the 2102A
breakpoint RAM outputs may still be used to trigger
a logic analyzer. Memory space used to indicate points where data

accesses should halt when running in a mode with
breakpoints enabled ([GO)[W/ BRK) and
[GO][AUTOBRK)). Memory is only 1 bit per location;
00 indicates continue, 01 causes a hal!. High·order
4 bits of breakpoint address mayor may not be rele·
vant, dependent on jumpering option selected for
the corresponding data RAM (explained in Section
VII of this note).

Execution modes allowed:

User Program Execution Control Group

Commands:

[GO)

Display Response - "Go."

Function - Begin execution.

If a parameter is given as part of the command
string, execution will begin at that address. Other·
wise, the EP program counter (hardware registers
04 and 05) will be used. These will contain the pro·
gram counter from an earlier program execution
break unless they have since been explicitly
modified by the operator.

If command is terminated by [END/.), the EP's F1,
PSW and stack pointer will be cleared. If command
string is terminated by [NEXT/,), PSW will be taken
from the EP PSW contents (hardware register 01).

While running the' user's program, the characters
"-run-." are written on the display. Execution may
be halted and another command initiated by press·
ing the appropriate command key. Execution may
be suspended at any time in any mode by pressing
the [END/.) key. This will cause the current value of
'the execution processor program counter and ac­
cumulator to appear on the display in the form
"PC.234·56". System status is saved in the
appropriate hardware registers. At this point, or
when an enabled breakpoint is encountered, press·
ing the [NEXT/,) key will cause the program to con·
tinue in the same mode as before. Any other com­
mand may be invoked by pressing the appropriate
command string.

[GO/RESET)

Display Response - "Gr."
All mnemonics copyrighted© Intel Corporation 1976.

1-79

[NO BRK]

Display Response - "nb."

Function - Without breakpoints.

Full-speed execution without breakpoints enabled.
Does not affect the state of the breakpoint
memories.

[SING STP)

Display Response - "SSt."

Function - Single Step.

Step through program one instruction at a time.
After each instruction is executed, execution halts
with the current value of the Execution Processor
Program Counter and Accumulator appearing on
the display in the form "PC.234-56". System status
is saved in the appropriate Hardware Registers. At
the pOint, [NEXT/,) will cause the program to ex·
ecute one more instruction, or any other command
may be invoked by pressing the appropriate com·
mand string. Does not affect the state of the Break­
point Memories.

[W/BRK]

Display Response - "br."

Function - With breakpoints.

Full·speed execution with breakpoints enabled.
When a breakpoint is encountered, execution halts
with the current value of the execution processor
program counter and accumulator appearing on the
display in the form "PC.234-56". System status is
saved in the appropriate hardware registers. At this
point, [NEXT.,) will cause the program to continue
until the next breakpoint is reached, or any other
command may be invoked by pressing the ap·
propriate command string.

[AUTO STP)

Display Response - "AS!'''

Function - Automatically sequence through a series
of instructions.

AP·55A

Step through program one inst~uction at a time.
After each instruction is executed, execution halts
with the current value of the execution processor
program counter and accumulator appearing on the
display in the form "PC.234-56". System status is
saved in the appropriate hardware registers. Execu­
tion resumes after a time determined by contents
of hardware register 08. Does not affect the state of
the breakpoint memories.

[AUTOBRK)

Display Response - "Abr."

Function - Automatically sequence between break­
points.

Execute a series ,of instructions in real time
between breakpoints. When breakpoint is en·
countered, halt EP temporarily while program
counter and accumulator contents are displayed,
then continue. Display is sustained after execution
resumes. Does not affect the state of the break·
point memories.

Breakpoint Control Command Group

Commands:

[B)

Display Response - "Stb."

Function - Breakpoint set.

Set breakpoint for the address given. Multiple
breakpoints may be set by entering additional ad­
dresses, separated by the [NEXT/,) key. Command
terminated by pressing [END/.). Action taken is to
fill the appropriate breakpoint memory locations
with logical ones.

[C)

Display Response - "CLb."

Function - Clear breakpoint.

Clear breakpoint for the address given. Multiple
breakpoints may be cleared by entering additional
addresses, separated by the '[NEXT/;) key. Com­
mand terminated by pressing [END/.). Action taken
is to fill the appropriate breakpoint memory loca­
tions with logical zeroes.

Data types allowed:

[PROG MEM)

Display Res'ponse - "Pr."

Function - Break on program memory fetch.

Applies command to the program breakpoint
memory space.

[DATA MEM)

Display Response - "dA."

Function - Break on data memory access.

Applies command to the external data breakpoint
memory space.

All mnemonics copyriQhted© Intel Corporation 1976.

System Control Command Group

Command:

[SYS RSn

Display Response - "HSE-49."

Function - System reset.

Reset both the MP and EP and clear all preakpoints
(requires approximately one second). CAUTION -
If reset while EP is executing the user's program,
the low order,section of program memory (about 23
bytes) will be altered.

VI. SYSTEM LIMITATIONS

In designing the HSE-49 emulator, certain compromises
were made in an attempt to maximize the usefulness of
the'emulator while keeping the circuitry simple and in­
expensive. As a result, the following limitations exist
and must be taken into account when using the system.

1. As explained in Section IV, user program execution
is terminated (by Single-stepping, breakpoints, press·
ing the [END/.) key, etc.) by forcing the execution
processor to execute a "CALL" instruction to the
mini-monitor. This uses one level of the EP
subroutine stack. The EP PSW reflects the value of
the stack pointer after processing this CALL. As a
result, the value indicated for stack depth ,by examin­
ing the EP PSW (hardware register 01) is one greater
than the depth when the break was initiated. The user
program must not be using all eight levels of stack
when a break is initiated or the bottom level will be
destroyed.

2. User program is initiated (by the [GO) command or
when resuming execution after a breakpoint, single­
stepping, etc.) by forcing the EP to execute an
"RETR" instruction. This will clear the EP interrupt­
in-progress flip-flop. If the user program allows both
external and timer interrupts to be enabled at the
same time, care must be taken to avoid causing a
break while the EP is within an interrupt servicing
routine. No limitation is placed on breakpoints or
Single-stepping in the background program because
of this. '

3. When the user program execution is terminated (by a
break, single-stepping, etc.) and later resumed, the
EP timer/counter is restored to its value when the
break occurred (unless modified by the user)_ The
prescaler, however, will have changed. Thus, up to 31
machine cycles may be "lost" or "gained" if a break
occurs while the timer is running.

1-80

4. Timer interrupts occurring at the same time as an EP
break may be ignored if the timer overflow occurs
afler breaking user program execution be(orEl the
timer value is saved.

5. The 8049 "RET" and "RETR" instructions are each
1·byte, 2-cycle instructions. During the second cycle
the byte following the return instruction is fetched
and ignored. If a program breakpoint is set for a loca·
tion fe>lIowing a "RET" or "RETR" instruction, a break'
will be initiated when the return is executed ..

Ap·55A

6. Breakpoints should not be placed in the last 3 bytes
of an EP memory bank (locations 7FDH-7FFH and
OFFDH-OFFFH). User program should not be single·
stepped or auto·stepped through these locations.

7. Since 110 configuration is determined by external
hardware rather than software, 110 modes may not be
altered while a program is executing. (See Section VII
for further details.)

8. The "ANL BUS,#nn" and "ORL BUS,#nn" instruc·
tions may not be used in the user program, as exter·
nal hardware cannot properly restore these func·
tions.

9. The memory bank select flag is not affected by the
user program break sequence. Upon resuming execu·
tion with the [GO) command this flag will remain in
the same state as before the preceding break. The
flag may be cleared only by executing the
[GOIRESET) or [SYS RST] commands.

VII. HARDWARE CONFIGURATIONS

A number of control and status lines are available to the
user. All are low·power Schottky TTL·compatible
signals.

TP1 - Unused MP input.

TP2 - Unused MP output.

TP3 - User program suspended. Low when EP run·
ning user code. High when halted or running mini·
monitors.

TP4 - Breakpoint encountered. Normally low. High·
level pulse generated when breakpoint passed. Useful
for triggering logic analyzers, oscilloscopes, etc.

TP5 & TP6 - Memory matrix mode control. Select
program vs. data RAM, link mapping configuration,
etc. (See Appendix B for details.)

TP7 - Bus control. Low when MP controls common
memory buses. High when EP controls memory
buses.

The HSE·49 emulator hardware is designed to allow the
user to reconfigure the system for a wide variety of dif·
ferent applications by installing or removing jumper
wires or additional components. The schematics in Ap·
pendix A show the components needed for a variety of
different configurations. In general, not all of the
devices are required (or allowed) for anyone configura·
tion. The devices which are required are included in the
following description.

The types of options allowed are divided below into
several general classes and subdivided into mutually·
independent features. Within some of these features
there are numbered, mutually exclusive configurations;
i.e., the serial interface (if desired) may use either

All mnemonics copyrighted © Intel Corporation 1976.
1·81

current·loop or RS·232C current buffers, but not both at
one time.

Standard Operating Configuration

(Minimum system configurations - up to 4K program
RAM; no data RAM; no serial interfaces; no execution
processor 110 reconstruction.)

A. Basic 2K monitor from Appendix B:

Install resistors R4-R6
Install transistor Q1
Install crystals Y1-Y2
Install capacitors C5-C38
Install switches S1-S33
Install displays DS1-DS8
Install IC1-IC2
Install RP3-RP5
Install IC6-IC7
Install RP8
Install IC9
Install IC15-IC20
Install IC25-IC30
Install IC34
Install IC36-IC38
Install A1-A2
Install B1-B2
Install C1·C3
Install jumpers 13-15
Install jumpers 17-18
Install jumper 20

B. Expansion 2K monitor:

Install IC14
Remove jumper 17

Serial Interface Buffer Selection

A. Current loop serial interfaces (4N46s) installed for
use with full Intellec'" Model 800 development
system TTY port.

Install IC21-IC22
Install resistor R1-R3
Install jumpers 4-9
(Remove RS·232 jumpers)

B. RS·232C serial interfaces (MC1488 and MC1489) in·
stalled for use with CRT as output device for data
dumps:

Install IC23-IC24
Install jumpers 1-3
Install jumpers 10-11
(Remove current·loop jumpers)

External Data RAM Address Decoding Scheme for Ex·
ecution Processor

A. Up to 16 pages of on·board external data RAM in·
stalled for execution processor (addresses 0 through

AP·55A

OFFFH = 4K bytes); port 2 used for addressing pages
. 0 through 15:

Install jumpers 21-25
Install jumper 27
Install A5-A8
Install B5-B8
Install C5-C8

B. One page of on·board external data RAM installed
for execution processor (addresses 0 through OFFH);
port 2 not used for data addressing:

Install jumper 26
Install jumper 28
Install A5
Install B5
Install C5
Connect the outputs of IC20 .. pins 7, 9, 10, & 11 to
the inputs of a 74LS21 AND gate (not shown). Con­
nect the output to CE and CS inputs of A5-C5.
(Note: these signals are all present at jumpers
21-24 on the schematics.)

All mnemonics copyrighted @ Intel Corporation 1976.
1-82

Reconstructing 110 for Execution Processor

A. Application of port 2, pins P23-P20:

(1) Using P23-P20 for latched output data (used with
"OUTL P2,A", "ANL P2,#data", and "ORL
P2,#data" instructions):

Install IC31

(2) Using P23-P20 for interfacing to an 8243 in user's
prototype:

Connect 03-00 pins on IC31 socket to cor­
responding 03-00 pins.

B. Application of execution processor BUS:

(1) Use of BUS as latched output port ("OUTL
BUS,A"):

InstalllC32

AP·55A

':/: g",

.~ ~~i ~. ~ 010 ~QlO ~OTO ~OTO
>-co
Q. ..

~-
is

~ 010 ~OTO ;010 ~OTO "E
co
0
III

(~ >-
~ 010 ~OTO ~OTO a 010 ..

II __ ~ ':! = ". :.: 'r- -- ---:-1
~Ii I

Cl~N-~- -r:-.J
SOlO ~oro ~OTO ~OTO

IIr---1G
I I,
I I.
I 10
I ,.
I I.

"'~ ~I~
~~ J . . to 2 ::

So~s~sg,s~s

" gf ~ . ~OTO ~ oro ,oro ~OTO

. . ,
"

~ 010 .010 ~OTO ~OTO

• - ,
.010 ~OTO ~OTO ~OTO

"~ ~i ~f-i"
m ~ nn .010 ~ 010 ,010 ~OTO

" ~ ~ ., .1

~'~ I
'- _______ J

1·83

inter AP·55A

1·84

AP·55A

1·85

:;
OJ
u e
D.

~
C ..
U

Ap·55A

flSI143 I1SE49 LNii PRINTl. LU

lSlS' I I MCS-4i)/UPHl MRCRO AS$01l1lER, Vl 0
H5E-49(TM~ EMlJlATOF MONITCF VER$IOtl 2. 5

LQC GBJ :"ill::: . SOliP.C.(5Tf1EMENl

1 $Mf'.crorILE IlOOEN NOCOND XREF
2 $TmE('I~SE'4;lifl1) El'IUlI1Tur. MONITOR VERSION 2.~')

4 ; *'·"'*1"4·~.·t.**'*4,*,~~~'I*****~*·~**·~lj.*M*>l-t>j:*********"'''',,:.',:c .. ************_********
'5,
C'
? .
(j,

9 .'
113 '
11,
12 '
13; I

f1<:Ofil~. 1~·4S(TM) lMULJITOR MONIrOR
'~[RS 2. o(ril9

COP'r'I<IGHT (0 19,'9
INTEL CORPJI<11TlON
3~;j5 BOll(RS AVOOE
UltlTP (;Lfi~·A., CllLIFORNlfl 95051

14 .' .(.-** ~"'***** "*~ t.~**,.':j~.*j .. *~*I .. ~***.I<~:**·~**~*****~****************-**-******
15 :
1(" (l8S1 Pf:CT
17 ,

1~' :H!S PJ/fJiRPoI'I CONTfilNS TlJE SLfTWARE N(CE.SSfIR\' 10 ROO THI:: fISE·-49(TI'I)
2~ , HIGIl··5F'E[[1 Efo1IJLI-iTOR For INTI:.L'S MCS-43<TI'1) f'11I11L\' f'i"II'IIll' (f- "ICROCOIf1J11RS.
;:1, :11[m.'lflTOP PROVlvES flN 1")5!,uI<TMENl or UTILlT't' FlRICllONS f 01<
~(. , tolVELOPINt. fiND [JlBL~(j(;nJlj 8tl49· BP.SED npPLlCRIIONS, INCLlJOING TIlE
2: ; 'l1l:UTV 10 DIT[~ i)1i[. t>!u[HF',' r'ROGRflr.S IN PROGRAM f-:AIt,
';4 ; fiLTE~ ~1r,T1. SPIG~l·sm· ~Et:TJtti$ Dt A PROGRflI'1, flIi) EXECU1E. PROORRI1S
25 . F:T SPE[~·S 'jf IJf' 70 l~ 14HZ. urn: OH IHTliOU1 ,;REfll(POINTS E.NnKED .
• C· ; lJlE [Io1IJIJllor: l:~ [}[SCRW£[' W GrEflm: ~ErTH IN INTEL'S APPLlCATION NOTE
,:7 ' np-~,'5 'Po flIGI+ SPEED [Mtl8TOR rOI? INIEL MCS-4S(TM) MICflOCOf'lPIJ)[RS .•
~\1 .
2~ ,
30 ;
?1 '
·,.r,
.~ .

PI<OGPf!t·l i.iP.GHIHZilTWN

TlIl~. Ll~lltlG IS ORGANIZED A~ ~OLLOWS:

?4 .. lNTROV!J(T!O'1 iiN(i Hflf'D~R(OVERVIEW;
?~ ; \lfl~Ifl8L[[)ECLRRf:r;ON flNI) DErINITION;
36 . f'(lfJEr ··ON 5','5TEt1 lNITlflUZI1T!ON;
:? : I~E'IBOf1P[> COMMIlHD rA~5ER liND ASSOClRTED TASLE~;
?S !t1rlr!'lp~mm"'S or THE rRll'lflR't' C0I'II1ANDS,
}9 : c'flTR nCmSHlG '.I r lUTY ~·lif}:OUTJNI.:; US£[) nIROUGfIOOT;
40 rfl'BORi,f' ~:~11NNING rtllD [J1Si~.fW [)F:I'IINlj JROUlINE;
41 : Inl)C'fll,:, fiND :,ISPLf:'! iNT(RFI1CING IJTlLITIES;
42 ; ('QUWIES :<rJ[, umm SIJElPOIJTlNES WHICII INTCRFiCT BlTWEIN MP ANI) [P.

43 '
44 .

45 terEer

All mnemonics copyrighted @ Intel Corporation 1976.
1·86

intJ
we OCJ

Ap·55A

LINE SfJl.!RCE ::;TR mOT

4(.;

4" :IIH:ODUCTION At{) liARDllftRt:. OVtf.· ... IUI
43. ============ === ======== =======
49 .:
50 .: rJ1E [MUlA1OR DESIGN IUS TI¥.! MICROPROCESSORS. ONE PROCESSOR ClW1ROlS
51 : 51'S TEl'! ;nHU:;,. INTERPRET:; MONITOR COI1J1flN()S, UNO COI'II1I.INICRT1;5
52 ; WITH TilE fJ~JrSlDE WORLD THR(dJUH mE ON-llOIlRl1 KlVOOtlRO, DI~f'lAY, ~IRL

5~.: HHrrrACES, rO~ImOL SIGtlflLS, ETC.
54 .: Ii ';[CONC' PPOC[,SOF: IS USEl> TO flCTUfILLI'
~5 ; E~'ECUTE rilE IJ~,[P"S PROGRflI1 U'IDER THE. CONTROL Of HIE FII<~T.
56 ; TIIESl Pf.!OCESSOf"S i1RE RErERRED TO
57.: TlIROIJGI·IOIJT THIS rRor.lo~AM AS mE MA::iTE1<: PROCESSOR (1'11') AND EXEWIION
':is : P~OCE5Sor ([I') !:,[:·PECTlVEL'r'.
59 .
50 ; T:1E I'IiOGRilM IN TKIS LISTING IS EXECIJIElI I:N 11:[Mfl5TER PROCE~SOk.
61 . RT Till Etlf' OF TIllS LISTING ~E SlVERflL ~IOI1T "MINH10NIlOR OVERLfl'I'S·
6~., wmCH ~I[EXWJTJI)tJ PROCESSOR EXECIJTES IUN INTEI<liClION !lETIoIEEN]Ill
(,3 .: 11010 Pr;'OCLS50l>'5 is 1l[c[5Sfi~'r'
64 ;
6~" HilS PROGRml 14RS !4I1ITTEN USING R NlJI'1E!ER or· MHCRtY.. TO HflNOlE 1111. ALLOCAT ION
6(: : (JF Mf'!J P.E501Jr.ct:S (IIIJRKlNG REGISTERS, INTERNfiL RAM, fiND r1P MONI'fOR ROM
67 ; rOf' COr.E roND CilIA 510f/IlGr::, nlESE MACRO DEI INn ION~ /WE INCLUDE.D IN A FILE.
6il ; Nfli'IED "ALLec. Me .. " ANI) t1RE f'lInnED IN mE LISTiN!i fOR F[I1:RENCE.
(:9 ' RNOTIIER SET OF MACrlOS IS lISED TO SIHftII-'I THE r;CCES~ING OF VARIOOLES
/13 ' STI)RED IN INTERNAL "'HM (p.s f)rpO~ED TO I.oIOFKING REG1!:.TEI<.'S) bOY USING 1':1 TO
71 ; INDIRCCTL';' f:DDF:ESS THE flPPRorRiriTE RfiM LOCATIOO WHEN NEClSSARY.
72 ' lI!t~E MACROS APE INCUJOCD IN "J'l0PC0fI. MflC", flN() fIRE nLSO PRINT~D 1£kE.. .
,'3 ; COMPLETE IJNDIJ~SmfjDHlG or- THESE MRCIIO:; IS 'lOT REQUIRED TO lJNIIE.RSTRND THE
;'4 , MOIHTOF f'RCPEI1. PoLL LINES WIHtll ACTIJALL\' PRQl)Uc£' OBJECT 1,;0I.lE APPEAR IN
75 ' TH[LISTING mELF.. INDENTED TWO SPRCES rl<:Ol'l THE NORl'If'ol. TfillULAlI~ COLtftlS.
;'6 ; lfIE q('lIJAL MONr,'OR PROfJR.!1M FOr. THE E:.I'1IJLtllQR 3EGIN5 nr t'J'F'ROXli'lA1ELI'
77 ; SOURCE Ll NE NUMElER 509.
(8;

~9 ; LIIlE5 GHIErnTCD 13'" MfICRO E)(PIlNSJON fiRE fLRGGCO CI' II PLUS SIGN ("+")

~0 ; IMMlDIOm', FOLLOWIt-!G THE SOURCE LINE NlJI'tIiER.
131 ; A NUMBCR or LINES FROM HiE Vf~IOU~ i'IfICRO DEFINITIONS IoII1lCH 00 NOT
32; PPO[lIJCE fltf,' 08'][CT CODE ARE PRO(:E!;SEO BV HIE ASSEi'lBLER
8] . f(, TI-lE5E mepos mE EXPf'.NDW. WHEN TIllS IS nIL CASE, lHESE LINES RRE
S4 .: 9JPprE5SED FROI'I TflE LIST rILE. !'is fl RE~U'I, 'IIE LINE NUI1IlERS AI(E

.G5 ; NO] nliolR'J'S CONSECIJTIVE WHfFE fl MACRO IS BEING INVOKW.
8(, ;
8i' ' NOTE:
88 ;
39.: ·~O\.lRr.:[-LINE" REFERS TO THl DEWlft NIJIf;£RS m T OF 1:J'l(;H INSTRUCTION.
~; RT mE END or TIll LISTING IS RN nsSEI1£lL\' C~OSS-R£FERENCE TAllLE. INDICm ING
!11 ; lliE SEQLUITlflL !.-OIJRCE-UNE NUMBEf< OF RLL INSTANCES WHI:RE:. AN'r' VARIflBLE
92; IS vEFINED OR REFEr;'ENCED.)HIS WILL BE:. or CRUlT fl5S15'IRNCE IN
93 ; LOC.fll ING SPECIFI C SliSROIJTIN[j, ETC. IN TflE LISTING.
~)4 ;

95; I'INEI'IONICS COP','RIGHT ,C) 1976 INTEL CORPORflTION
96 i

97 $EJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-87

inter Ap·55A

lOC OOJ LINE SOO::CE STATfI'lENT

98f. INClIJOC(-r:O.P.t.lOC. Me)
f:t90IJ ~ ?Ill SET 0

= 100 i

9000 = 101 'IRSB EQU a
0001 =-102 "'P01 EQU 1
8002 = tlj3 ?RflM EOU 2
0893 " 1114 ''CON':.iT (QIJ 3
9094 = 195 ?fl [00 4 ; RCCUtUJlTOI< YFlR IfflU rvrE

= 106 ;
" 197 , TIlE rOllOWI,.,. INIlIRLIZES TIlE LINKE!.> LIST POIN1ERS ror<
= 1118 ; lHE REGISTER RLlOCATIOtI At(l DEALlOCflTIOtI ROUTINES.
= 109 i

0093 = 118 ?OOR2 SET 3
11004 = i1! ?fJ8R3 SET 4
0085 = 112 "BIlR4 Srt 5
0006 = 113 ?OOPS SET (,

0087 = 114 ?B0P6 SI:.T 7
0008 = 115 ?B1lR7 58 C

= 116 •
0982 = 117 ?B0PNT SET 2

= 11f.) ;
9093 = 119 ?BIR2 $1:1 l
!1004 = 128 ?aiR::! SET 4
0085 = 121 ?B1F4 SET 5
91.!86 = 122 ?D1R5 SET 6
9087 = 12J ,1l1RG SET 7
OOIlS = 124 ?(J11t? SET S

= 125 ;
9982 " 1;:6 ?BIPNT SET 2

= 127 ;
8898 = 128 ORGPGIJ SET 000H
0100 = 129 ORGPG1 SET 100II
'.!'1OO = 138 OR61'G2 SET 2Wl1
8300 = H1 ORGI'G3 SlT .s08I1
8400 = 132 ORGrG4 Sl:T 400H
0500 = n~ ORGPG5 SIOl 50911
0688 = 134 ORGPG6 SET b8IlH
8700 = 135 ORGPG7 SET :'0911

= 1](.;

= 137 $EJECl

All mnemonic~ copyrighled © Inlel Corporalion 1976.
1·88

intJ
LOC !)~:J

002!l

AP·SSA

LINC SOUf'CE ~TATEI1lNl

:: 1:l3 ,·t*'~.l"**** •. *****.,**j,.,**,,,*******~**********,~**.-***********'1'***
= 139 :
= 140 ; START OF fllLOr...flTlON MACROS
= 141 ;
= 142 .' '.*~***********"****>I'*********h***,,"**-I<*"'******"to***.*********
= 143 ;
= 144 ?RSfNE
= 145 IF
= 146
= 147
= 141) ErJDIF
:: 149 f.

MntRO ~.\'M£l()L, BANI(, PNTl/lll
f 'NT't'llL ~I} 8
[RROR ~

E~ITM

5IlVE GEH
= 1 50 ~SMOOL SET R'PNTVr,L
= 151 f RESTORE
= 152 ?(l.~l:flNK&P'JT Sll ?B&eANK&R&f'NTVAL
= 15:? [NOM
= 154 ;
= 155 i

= ISC ',I'IINDX SET
:: 157 ;

21lfl

:: 1SS ?MSflVE
= 159 $
:: WI
:: 161 $

:: 162 ?I'IINDX
:: IE;3 [NOM
= 1(;.4 .

Mr.CRO SYMEOL, LENGTIl, RDDR
SAVE liEN
SYMBOL EQIJ flODR
RE!:TORE
SET ?M INOXl LENGTH

= 16'5 nocl(MACRO
= IG6 ?&~""MIlOL

S'Il'IEOL, LENGTfI
EGO 3

:: 167 ?MSflVE S\'l'llJOL, LENGTH, ??i'lINDX
= 168 ENDI'I
:: 169 ;
= 170 [)[CLfl~E MOCRO S'r'MBOL, TYPE.
= 171 ?&S'r'MDOL SET ?&WPE
:: 172 Ir ?&TVI'E EQ 2
:: 1n '111511','E S'r'MCOl., 1, ??I1INDX
:: 1(4 EXITt1
:: 175 [NDIF
:: 17C IF
= 177
= 171]
= 179 ENDIF
:: 100 IF
= IS1
:: 1iJ2
= 183 ENOlr
= 134
= 1('.5,
= 186 $

')&TW[EQ 9
?RSfW(S'r'I'IBOL, 9, ??WPNl
EXITH

?&n'p[EQ 1
?RSAVE !:\'l'tS0L, 1, ??1l1PNT

Em"

EJEn

All mnemonics copyrighted © Intel Corporation 1976.
1-89

Lot (is,}

Ap·55A

LINE SOORCE STATEI1ENT

= 187 -'
= lDe -' P.l:QRG
= 11Y.) i

MACRO TO RESET THE INS1 RltTION LOCRTION COIJlT[R

= 190 -'
TO THE nr.:ST rllE[LOCATION ON TIE FIRST PAGE IIODUI.E WILL
FIT WilHItI.

= 191 R[ORG PlACRO LOCHTION
= 192 $5AYE GEN
= 193 ORe LOCATION
= ,194 tl\'ESTORE
= 19'5 ENDII
= 196 ,
= 197 ; rOOCDU("AeRO TO rIt(l fI PFIOC OF ROI'I
= 198 ; IflICII TIllS BLOCK or CODE WILL fI1 WITHIN
= 199 COOCDLK I'IfICRO LENGTIl
= 20e '-'lENGTH 5['1 L[NGTfI
= 201 IF IIIGH<ORGf'G0+LENGTIH) EQa
= ~'02 REORG ,,OJ;'GPOO
, 203 ?sT!lI'T:::El $

, ~'94 mTM
= ;V: [N!"l~
= 20£ Ir f:lGll(OIIGf'G1 i LLNGTII-i) f:.Q 1
, 207 f:[OI?U ;t.QI.'GI'G1
, 200 ?SlAPT ~T $

, 209 EX1TM
" 2j~ ENlm
= 211 IF fIIGH(0f<!JPG2.fLOOTH"1) EQ 2
= 212 11£0j;'G iroRG1'G2
, 213 ?STAPT ~n t
, 214 rXITM
= 215 ENClIF
:: ~16 IF flIGH(ORGf'G4iLENGTlI-l) CQ 4
= 217 "'lORa ?OI\'GPG4
, 21(: ~STAI\'T 5(1 t
= 219 EXITM

. = 220 rt-IDIF
= 221 IF
= 222
" 22:$?START
:: 224 Fi<ITM
:: 225 ENDI'-
:: 22(; IF
:: 227
:: 226 ?STAPT
:: 229 [lmM
= 2:,0 ENDIF

11IGH(ORGPGSt LlNGTII-1) EQ 5
REORG iroRGF'GS
SlT $

IlIGlI(0RGPG6-1LENGTH-1) Ell C
REORG i'.oRGf'G6
:::ET $

:: 2]1 IF 11iGWORG/'G?tLENGTH-1) EQ 7
= 232 REORG ?ORGPG7
= m ~TARl SET $

= 2:?4 EXITM
= ;.'3~ ENl)I1
= 2:6 IF H1GH(ORGPG3+LENGllH) [Q J
= 237
:: 238 1S TAIlT
:: 239 EXITM
:: ;:49 OOIF
= 241

RIOORG ?ORGI'G3
SlT ~

ERROR 9 -' *** Il&lfrICll:NT SPOCE FOR CODE ON ANY I'AGl ."'.

All mnemonics copyrighted @ Intel Corporation 1976.
1-90

lOC OOJ

Ap·55A

LINE SOURCE STATEIENT

= 242 lM>ll
= 243 ,l1f'TABLK INSERTS ONTO PAGE 3
= 244 DflTflBlK IVlCm Loon I
= 245 ?LENGTH SET lENGl H
= 246 IF fIIG1HORGI"G3ilEOOTH-1l EQ 3
= 247 REORfi i'~GJ

= 248 'STAPT 5ET $

= 249 E:mM
:: 25@ [NI)IF
= 251 ERROO 0 i t~ INSlfFlCIENT SPACE F!J: DIlTR BlOCK ON m£ :s -
= ~2 ENDfI
= ~:l i ?SIZE PRINTS A LINE TO lIlE SOURCE riLE (jIYIOO E!LOCK SIZE.
= 254 ; AM) (fOOTE!; APPROPRIATE ORGI'GI
= 255 ?SIZE MACRO BLK. rGE
= 256 t5flYE (lEN
= 25;' SIZE SET BlK
= 253 ;

= 25:) i *~,.~~**.j<*'*************************~,******.***********-**­
= 260 IF "lENGTII l T SIZE
= 261 ERROR 9 ; *** SIZE EXC£1:tY.i Sf'flCE Cf[!;K(I) FOI< BY COO[E!LK 11OCk'O
:: 262 ENDIF
= 2(.3 IF IIIGH($-1) N[IIIGJl(?START!
= 264 ERROl\" 9 ; *** COOl: OR DATA I:JLOCK ROLLED OYI:R F1lGE BrufIf1R'1' *n
= 265 EIII) II:
= 266 $RESTOR[
= 26(' ORGl'GM'GE
= 26e ENDM

SET $

" 2(,9 ; SIZECIIK CHECKS SIZE OF I'RECEDII¥.i BLOCK, PRINTS SIZE 10 . lS'1 FIll
= 270 SIZEClIK MflCRO
= 271
= 272
= 273 ;
= 274 .;

?SIZE r.($··?START>., f.fIIGI·I(?!'IART>
[M)l'I

= 275 i RSOURCE CODE SP1lCE ALLOCATION stm1R\' STBTEl'UIT
= 276 RSOURCE MACRO
= 277 $SAliE LIST GEN
:: 27() PGSIZE SET ~.iI'Ci0-800\1 ; oms U~D ON PAGE 9
= 279 PCi5IZE SET OR(,'PG1-100H ; L'YTES USED ON NlGE 1
= 2ee PGSIZE !..ET 0I\'GPG2'-209f1 ; 1,".'TES UC-lD ON PA6E 2
= 2e1 PGSIZE SEl ORGPG3- 300H i BYTES UC'-lD ON PAGE 3
=282 f'GSIZE 5E.T ORGPG4"·480H ; EVTES USEII ON PAGE 4
= 283 1'65121:. SET ORGPG5- 500H ; !:lYlES lI'->ED ON PAG!:. :5
= 284 PGSIZE SET ORGPG6--600H . i B't'Tb USED ON I1lGE. (,
= 2S5 PGSIZE 5[1 ORGPGi" 709H ; O't'TES USED ON PI:GE 7
= 2S6 $EJECT
= 207 $RESTORE
= 283 ENDM
= 2fJ9 $l:.JECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-91

Lo(; OCJ

Ap·55A

LINE

298 i

291 $ It«:lUOC<:FI.I:I'IOPCtJI).ItlC)
= 292 i

= 293 ; ?fORI'I1 MACRO FOR GEI£RAl..IZII«l (I'COOE INSTRUCfIC*
= 294 i

= 2'J5 ?F0RM1
= 2% IF
= 297 $
= 298
=299
= JOO $
.. 301
= 3tr.I ENDIF
= 3~D IF
= 304 $
.. 305
= J06 $

= 307
= 30S [NDIF
= 309 IF
= 310 $
= 311
= 312 $
=313
= 314 ENDIf
= :U5
= 316 EhWI
= 317 ;

1'IAf'..RO 0f'C00[, Slit
?&sRC [0 2
~GEN

I10Y R1, I<"..RC
. OI'CODE fI, @R1

RESTORE
EXITM

?&Sk'C Ell 0 OR ?&SRC EO 1
SAVE GEN

OI'COOE f1, 5RC
RESTORE
EXITM

?&SRC EO :s
SflIIE GEN

OPCODE A, ISRC
RESTORE
EXIlI'I

ERROR 1

= 318 i ?HJRI'I2 If1CRO FOR GENERAlIZII«l IIOYES H~OI'I THE ACe 10 A YARIAllL.C
= 319?F0RI12 IftCk(J DES)
= :528 IF ?&DEST EQ 2
= 321 $ SA\I[GEN
= J22 I10Y Rj.,ID£ST

@RLA = 323 I10Y
= 324 $ ~'ESTORE
= l25 [XITI'I
= 326 ENDIF
= 327 IF
= :rolS $

= 32S
=::~30 $
= 331
= 332 CNDIF
= III
= 334 [NDM
= 335 ;

?&DEST E.Q 1.1 OR ?&DEST EQ 1
!;AYE GO!

MOY
1\,[5101"£
EXITI'I

:: 336 i?fOllt/3 1'IflCR0
= "337 i

FOR GENERAlIZING I10YES FI..'OI'I TIE oct TO A YflRIAIlLE
WIlEN IT IS KIQoJN THAT R1 <II- IUDEJ) fOR INI)l~CT AOORE:SSINli)

= I~S i

.. 339 ?FORMJ
= 340 Ir
.. 341 $

= 342
= 343 $

=344

IS AI..RCfI[)Y PJ..:ESE. 1.
MACRO DEST
?&I)[5T EQ 2
SflYE GlN

MOY
kESTORE
EXI1M

All mnemonics copyrighted @ Intel Corporation 1976.
1-92

intJ
LOC O£JJ

AP·55A

LINE 5~CE 5TATEI'IENT

= 345 ENDIF
= 346 If
= 347 $

?&DE5T mOOR ?&DEST I:.Q 1
S:WE GEN

= 34El
= 349 $
= 350
= 351 ENDlr

I'1OV DE5T,A
~'E$TORE

EXll"

= J52 EkkOl: 1
= 133 ENDI'I
= 354 ;
= 355 ; ?FORM4 I'IfiCRO fOIl GENERALIZING 'I'IOV 11, !>Re' INSTROCTIIM
= 356?F0RI'I4 11ACR0 SkC
= 3s.' IF- ?&5RC Ell 2
= 358 $ ~A\lE GEN
= 359 MOY R1, ~~IC
= 360 MO'~ A, @R1
= :SG1 $ FrS] WE
= JG2 EXilM
= 363 ENDIf
= 364 If
= J6::' $
=366
= 3G7 $

= :S6C
= 3G9 [NDIF
=]70 Ir
= ~71 $
= 372
= 373 t
= 174
= 315 ENI>U·

?&SRC EQ 9 OR ?&SRC Ell 1
SAVE GEN

1'10',' n,5Rt
[!ESTORE
eXITM

?&$I<C Ell 3
5AYE GlN

MOV A, I$RC
RESTORE
EXITi'I

= 376 ERROR 1
= 377 ENDf'I
= 378 ;
= 379 ; ?FORI'I5 I'VlCRO FOR GENERflLIZIN6 I'IOYING II ('UlSTllNT INTO A YRRIFaE
= :AAI ?fORl'l5 /'IflCI<O !)EST, CON~1
= 381 IF ?&DEST EG 9 OR ?&DE$T Ell 1 OR ?&DlSl Ell 4
= :s!l2 $ SIlYl GEN
= 383 MOY DE5T, .CONST
= 384 $ RESTOOE.
= 335 EXITi'I
= 38G ENDIF
= ~S7 IF ?&I)[ST EQ 2
= 3CB f
= :SS9
= 399
= 391 $

= 392
=:m ENDIF
= 394
= 395 ENOII
= 3')(; ;

= 397 ;1'fMO\I
= 398 i'IIIOV
= 399 IF

SRVE GEN
i'IOy RLIDEST
i'IOY ~'1, ICONST

RESTORE
EXITM

ERROR 1

I'IACRO GENIJ-'flLIZED I1O'.'E FROI'I 5RC TO DEST
MACRO DEST, SRC
?&SRC Ell 3

All mnemonics copyrighted @ Intel Corporation 1976.
1-93

inter
lOC DCJ LINE

= 400
= 401
= 402 cNDIr
= 403 IF
= 404
= 405
= 40(, ENDIF
= 407 Ir
= 40S
= 4!r)
= 410 EtIDIr
= 411

':.OIJRCE 5TRfEMENT

?FORMS 1)[5T, 51':(;
::XITM

?&DEST EQ 4
TORM1 1'10'/, SRC
EXITM

?&SI"C EIH
?rORM2 om
EXITI1

?fORM1 11OV, SRC

AP·55A

= 412 '/F0RtI2 De~T

= 411 [tIDM
= 414 ,"BINOP MflCRO GENERAlIZES ARIllll1ETIC fW lOGICJ1L llPERflTIONS
= 415 "IJINOF' I1ACRO OF'CODE, DEST, SRC
= 416 If '~,"DE~T \:.Q 4
= 411 ?rO~M1 OPCOOf., ~
= 413 EXlTM
= 419 C'ID!F
= 420 If
= 4'21
= ;.,22
= 421
= 424 HIDIr
= 425
= 426
= 427
= 428 ENr,M
= 423 ; MADr·
= 433 MADD
= 431
= 432
= 433 .
'= 434 ; MfiCDC
= 43'5 MfIDDC
= 436
= 437
= 43B ;
= 439 • M8Nl
= 440 MANl
= 441

= 442
= 443 ;
= 444 ;MORl
= 445 MORl
= 446
= 447
= 448 ,
= 449 ,MXr.L
= 459 I'IXRL
= 45!
= 452
" 453 ;
= 454 .' MXCH

''.~SRC [Q 4
'.>f ORM! OPCOOC, DEST
'HJIoIM3 !)EST
[XITM

"FORM! 11OV~ 5kC
"FORM! or'CODE, DEST
7FORI'G DEST

MACRO lOR (iCNERAlIZING flOO INSTRUCl ION
MIiCRO vEST, SRC
'iB INOP BDD, DEST, SRC
[NDM

MACRO FOR GENERALIZING AOOC INSTRucnON
I'IftCRO OCST, Sk'C
?lJINOP flOOC, IJI:ST, SRC
ENDM

MACl?O FOR GENERP.lIZING ANI. INSTRUClION
MftCRO !lEST, ~RC
?IJ I NOP flN!.. DeST, :;RC
ENDM

Mf\(;I?O FOR OCNERALIZING OR\. INSTk'UCTION
MACRll DEST, SRC
"SINOr ORL DEST, 5RC
EtIDM

MfIC"'O FOR GENERAlIZING XRl INSTRUCTION
!'IAeRO DEST, ~
'iBINOr XRl, Dm, SRC
[tID!'1

I'IACIIO lOR GENERALIZING xt:H INSTRUCTION

All mnemoniCS copyrighted @ Intel Corporation 1976.
1-94

inter Ap·55A

lOC OIlJ LINE SOURCE ~"'RTEIt:.1ll

= 455 MXCH I'fRCRO [lEST.5RC
= 456 '1S1f()P)(CH, DEST, SRC
= 457 END"
= 451) ;
= 459 ':'UNflR't' MACRO OPCOOE,DE$T
= 460 '?FORMi MOV,DEST
= 461 $SAllE (lEN
= 462 OPCODE A
= 46] fR[STORE
= 464 ?FORMl DEST
= 46.'5 ENDIt
= 466';
= 46'1 MINC IlACRO DEST
= 468 ?I..IIflRY INC,IET
= 469 [ND/'!
= 479 ;
= 471 II[l[C I'IACRO OCSl
= 472 ?UNIlRY DEC,DEST
= 473 OOM
= 474 ;
= 475 MDJNZ I'IfICRO DEST, AllOR
= 476 ?UNAR't' DEC,DEST
= 477 $SAllE GEN
=478 .JNZ ADDR
= 479 :m:STORE
=489 END/,!
= 481 ;
= #'.02 I'IRl PlfiCRO I>E5T
= 4m ?UIflRY Rl,DEST
= 484 ENDM
= 485 ,i

= 4~ MRF !'IRCRO DEST
= 43'1 ?lHlR't' RR, !)EST
= 4!l8 END"
= 489 ;
= 49IJ MFRC MACf.'O DEST
= 491 ')UNARY RRC,DES'I
= 492 ENDM
= 493 ;
= 494 MRlC IIflCRO DlST
= 495 ?UNARY RlC, Dl:ST
= 496 ENOM
= 497 ;
= 498 $EJECT

All mnemonics copyrighted @ Intel Corporation t976,
1-95

intJ
LOC 08J

0018
8828

AP·55A

LINE SOURCE STATEI£NI

499 .:
508 ; ================-------:;--::-:::-==== -------
~ ; ===--===========================--==
582 : . BEGINNING or· PROGRff'I PROPEr< .
583 ;====--=====,,======='
584 ; ===========--=====:--=--====--==
5e5 ;
~,

587 ; *************,.,ot************************c: ___ -*****.
588 :
589 ; Il.LOCATION or It' 110 PORTS:
5111 ;

511 ,********-**~:* *********",***-*",-******************
512 ;
51$.:
M4,

. 5~5 ,
516,

BUS
1'1
P2

517 f'l>IGIT EQU
51S rSEGHI mu
519 PSEGLO WU
528 rINPUl EQlI
!l21 ;

P7
1'6
P5
1'4

,USED FOR IlIDIF.ECTHM Al'a:m AN) DIITA lRfl6ERS
; USED AS INDIVIDUflL CONTROL OUTr1JTS fN) BREAK LOGIC
; IHIJIHJRDER ADDRE~S AND ADDReSS SPP.CE SELE(;lION

,U$[D TO ENABLE CHARflCTERS flN) m'OBE ROWS or f(~
; USED TO TURN ON III stGllENlS OF ClJ:REN1LY ENAb'LED Dl6n
; PORT rOR LOIoIJI FOUR SEGMENTS
; rORT USED 10 SCAN rOIl KEY CLOSMS

5<12 i ****.**_****_***"'***********.**4< __ ,**************
!l23,
524 ; JND IVIDUAL PINS OF ~T 1 USED AS FOLLOWS:
~;

526 ,*************************--**********-**-****.****
';27 :
528 I:.MJRflI'I EQIJ
529 ENBLNK lQlJ
5:se
531
532EPSSTP [00
m
5j4 CLRElfF [00
535
t>36 EPRSET EQU
537 I'IODOUT EQU
538
539 lTYOUT EQU
549
541 ;
542 $EJE.CT

090008811)
00II00819l1

; r10 - III ENABLES BREfl{ ON BkERK RAIl OUTPI.Il SIIHl.
,P11 .' HI ENflBLES BI<EAK ON RD OR WR TO LINK G'.' EP

(N01 E: P11 & Pill BOl H III ENABLES
L'REAK ON tlN'l' EP INS lRIJCTION CYCLE)

090001001l ; P12 - LO FORCES EP SS INrlIT L!lI.
HI (iflTES IJf([AKf'OINl FLIP-FLOP "f0 n' SS IIf'Ur.

88OO1.9OOC ; P13 - LO ClEflI?S BREAK KIP-FLOP
AND ENADLES WR CONU:OL 10 BREAKPOINT RIlIt.

08011188eB ; 1'14 - HI R(SE15 Ef'·
li!II1e811ooe ; P15 - LU IKN E? IS EXECU1INl USER r~

III II£N EP FROruI OR IIUItIING OYERLfl't'S.
01900000B ,P1C - SERIFl. OUTPUT TO TT\' OR CRT

,1'17 .. IJNI.Y.>ED

All mnemonics copyrighted @ Intel Corporation 1976.

1-96

inter
LOC OS]

0010
0029
0040

AP·55A

LINE sourCE S1nTEMENT

~043 "**j';'****'i-***~,,t**l'**'·**;'*~***.**********"''''*.t<~,*.j<******~",~~,**
'544 ,
545 .' INDIVIDUAL PINS (IF PORT ~ USED f)~ FOlLOWS

'546 ,

547 .' ,~**~,~****~~,,,,*,.+**~,* .. **,,,****,t*'.~*,;*,I'******"***.,*************
54G ;
'54~ :
~59 '
551 Me
552 I'll

LOU
f:.QU

553 Mf'USEL [()I.I

554
555 [xrOON [QIJ

556
55;' .'
~.'

0OO100001:s
130100900B
01000000B

100009008

; AOR11-r.Dk'S f- OR r.etESS I NG f'k'UGRflII OR I>A1n RAM ARkflY

,P24 .. I'1EI'IORY MflTPIX CONTROL PIN a
,P;:5 - MEl'IOI"<~' MATRIX COlfll\tt PIN 1
.' P'c!6 - HIGH WlIEII Mf' IN CON1f<OL or COItION /1[/1 ARRAY,

LOW WHEN [P I N CONTROL
,1"27 .. JLWERED TO ~:OI..IN[) FOR 5TAM>ARD I'ION 11 (If<,

KfJIlTHIG HN E~'Pfllj~1011 MONilOR PRESENT

55!1 .' WilEN Mf' IN CONTROL or i'lEl'1OI<'\' MATRIX 1'11-1'10 USED ns rOLLOWS
~!3;

~061 ; I'll M0 I'IODe
5£;2 ' 0 1.1 f'ROGRflM ROM ARRAY ENAELED FOR R[AO & WR ITE
563' 13 1 DAlii RnM f-IRRAY eNABLED rOR ~lP,D & WF.: HE
5£;4 , 1. X LlNl(R[GISRR r:NI1BLlD FOR READ, f.:MII ,*RIW!) DISfIEllD.
565 .' (NOTE' LIN/(R[GISTE~ fILwr.YS ENft'llD FOR !'IP WRm~)

,566 '
567 ; WHEN EP IN CONTROL or MATRIX Ml-MB IJSE:) f1S FOLLOWS:
5(..(l ;

569 ;
'570 ,
5il"
572,
573 ;
574 ,
,75 ,
576 $[J::cr

toll M0
13 X
1 11

1 1

MODE
lP f'SfoN rUCilES FROI'I WI(RfGIJ TER (USED 10 f'ORCE OftOOES)
EP f'SEN FETCHES rROM f'ROGRfII'I RAI': nRRflY,
Er RD & WR CONTROL [lf1TA RAM ilRRAI'
Er rSEN rETCHES FR01'1 rROGRflM Rfil'f fIRRnV,
rc & Wi" CONTROL LIN!(,Rt:GISTEiI,

Ali mnemonics copyrighted © Intel Corporation t976.
1-97

Lor OBJ

aa17

0010

0000

0001

0003

HFI"

c '7
,J'I '

SO'JPCE 5Tr.TEMEt11

AP·55A

5;'(\ . ~~'**'.~ ~,**~t~'*"'*~'**~*"I'******Mt**~ ******~,*~"*****************
57~ :
~8e . ~\'ST[M CONSTANT DErJNlTION~'
5el ,
':>82 • **+,"~, HI ,,"',~~~, j'''*.''*~~"1 ***********~~'******~'*.*>I-"'***~'*****>I-
583 . \
~,r.4 D[ru~rE CHflrtIO. CON~T
~9~: CHARNO EvlJ,'
5~9 ;
Cl.!0 DEGLflPE NCOL~, CONST
614 NeelS EQU
m·

,NIJt1CEF' or DIGllS IN I)I5I'Lfl'r' liND ROWS Of K[','~

:~

,Ll~SE'· DIMENSION or KE\'BOAm MATRIX
4

61(, l)ECU1I1E DEr.tI('E. CONST ; NlJleEli or 5IJCE551','[SCflNS BHORI: Kl\' CLOSUR[ACCEPTED
@) [;[[lNCE [QIJ 8
C:<1 .
(.32 rHLARt O\,~,IZ[. CONS) ; ~.IZt. UI' LnRGES', MINI-MONl1fW MRLA\' rOF 1:.1'
(;4(' [VIS I ZE E(l1) 2~

(;47 .
1.48 OCCLARE r.urLEN. CO~IST . LENGTII OF HEX FORMAT ;<I'IIT ru r[R (MAX RECORD LENGTH)
662 BlIFL[N EtlU 16
(;C~ •

C64 • "'~."**,I,**j"'***,j'~*.~,****~'********",**i,****~'*****i'*t*i'~'***-i<**>1-
665 .
fC6 . UTIlITY CONSTnNT DECLARATIONS
6(:7.
668 . ***i,~*'f'~t****"",u"t"*.t~***"'*l,*****~******~'*******~***~,*t****
6(,9 .
6'10 D(ClA~ <:ERO.I;ON5T
6l)4 m'o ml' 0
(.9':0 OCCLARE PltISL CONsr
f.9:l !'lUS1 EIlIJ 1
,'013 I)[CLi~r[PLU53. CONSl
;'14 PL~~ lQU :>
;'15 f,ECUlF'E II[G1.. CONST
.'29 NEG1 [QU .. 1

m fE.lECT

A~I mnemoniCS, copYrighted © Intel Corporation 1976.
1·98

intJ
Lo(00.1

9994

0006

9997

0002

0003

0004

0006

Ap·55A

LIN[9JURC[:;TflTEI1ENT

;'32 ..
,'I~ ,; ***~**:~i:~'*l:*':**;:*~*~*****'*"'********************.**********
7]4 ;

(3') ; BANI(0 REGI~T[rl ALLOCm ION,
I3G ;
73? ,l'*~, 't.*~,*~'~*****-I'*',*;,*",****:j.********~*********;:****""********
738;
;'39 lULARE LDATn.I<BIj
7~~+ looTn Sl T
7~ DECLAr.E K[\', Rr.e

; DAlA USED BY LOGICAlkOOR1;5SING R[ftI)/WRIl£: UTILITIES
R2

; HOlDS KL YCOOE RE1I.IRNlD FROM KliD INPUT RWlINE,
i'6~+ j{E\' m Rj
In DECLAr<E 11i'IP, me
1$6+ n I1P SET
;'90 DECLARE CIIKSJ.lM. ffi8
0031 CIIKSIJM SU
1)0;' DECLtlR[DSPTI'II',. RCIJ
320+ DSI' fMl' SET
824 DECUiR[:~P(ODE, Pf:(1

; COIJNm: !.!SEI) AS f1N I NllEX IN PARSER ROUll HE
R4

,CHlCl!~.1.I11 or DATA !lYTES TRAllSl1ITTED IN HEX FILl FORI1I1T
11')

; TEMrORAR." STORAGE FOR DISPLA',' rmTERNS IN 'DSPALt'
R6

; EXPflNSWN I1ONITOR "QUTlNE COOE NUI'IBlR
8j7 + ~'PCOD[SET Ri'
B41 ;
842 ; *'!'~"'*****~***,t"'*~>C:*>t*";'****"';'*********************;:*.'******
341;
844 ,: [:fINI(1 REGI~TER flLLOCI1TION
845 "
846 : *~,** ~****t.*~.**~.****** ~.,***********:~******************",***~
847 :
B48 DEClfl!:'E ROTPilT. RBi
065+ ROl PAT SET
86~ DECLA~:E POTeNT,·1I1l1

; USE.D TO HOLD INPUT I'flTTERN BUNG I\'OTATW THkruGH t~'

f.:2
; COUNTS 1lR'Irn:l< Of !l ITS ROl AltD THROUGH C\'

066+ ROTCNT SET R]
S90 DECLBRE UlSW.".IIB1 ; HOLDS KEY POSITION or LAST KEV DEPRESSION DUEtTED
907·1 lf15TK." SET R4
911 OCCLIlRE CURDIG. RIl1 ; HOLD!> "OSITION or NCXl CHAARCTER "iO BE DI~'LAYED
928+ WRDIG SET R5
n2 DECLtlRE m'rLG,f~B1 ;FU1G TO DrlECT WIlEN AlL Kl."S f1RE. f~[UFlSE[l

949+ m'FLG SET R6
:153 ; (k'EGI:;1~ ? NOT USED I'Ok Pkli'lflR't' MONITOR)
9S4 ;
95S ,; ******,~***:~****************;,**t******~,*********************
956 tEJ[CT

All mnemonics copyrighted @ Intel Corporation 1976.

1·99

LOC OOJ

0920

80'.:1

0922

11023

0024

9025

0E!2G

0027

9II'.IS

0929

902A

002Il

002C

002D

802[

0021·

0030

9831

0032

0033

0034

0935

1l03G

00:>7

Ap·55A

LINE SOI.Jl<'C€ S1 ATEIOT

957 ;
958 ,*<t. .. *** ~'" ,~. H':*~:**~·*******~·*****",*****************l:****~*~.~.*
959;
%0 ; DATA I"RI'I fUOCAlION
961 ;
962 ; ****~:*.j:*********~·**~:******>1-***.*i:*******.****.*~:*~'*******~.*
963 ;
YA DECLfft: [PAce, Rrd'l ; !:ltJ'flfJl IN 111' FOIl EF' f1l;CUl'lULf1TOr.
969+ ~I'ACC EQU 32
973 DECUiRE EPf'SW, ~'AM ; STORAGE IN Mr rOR EI' PROGRflM STATUS WORD
97(:+ [PPSW mu '13
932 DECLARE EPm!!?, ~RI1 ; SlomOE IN MF' rOf.: [f' T1I'1EI"ICOUNU:I< RlGIS1ER
907+ [F'Tl~ E(lt) :>4
991 DEcu:rE EPRS,~:FlI'I ' S lORfiGE IN Mr rOR EP FlEG 15Ttl1 0 OF BRNK {j

996. El'\':0 E.(JU 35
1000 DECLARE EPI'CLO, (.'fl!'1 ; S 1 OI1FlGE IN 111' rOR LOW VI'l (or EP rROGRAtI WOOER
1005+ ErpCLO EOO 36
109~ I)[CLA~ EF'PCfII. FAM 'STOIIfli.lE IN 1If' FOR HIGH NIBBLE OF EP I-'~OORfII'1 COUNT!:./.:
1914. [/'PCllI mll :)('

1018 DECLfIFlE' HBITLO, Ff1'" .. rRROMETER 1 FOR <,;EPIAL LlN~ Df11A RflTl G[NERnTOR
1023+ HBITLO E'.l1J 38
1021' DECLflRE flS ITIi I ,PAl'! ,PMllM[TEI1 2 rOF 5E.RIAL Ll~ DMA RATE GENERA10R
1032·. f:CITHI EQU -•. '.'
1936 ~CLfw.C DSPTlti, rAM ; rfWflf'l T[P f Of.' AUTo-STI;P flN(l AUl 0- BREflK SlQUENCIt«i wnn:
184H DSPTII'I [QU 4ij

1845 DECLARE IlERSNQ, RAM ' MON ITOr;' '.'EP~·I ON NUI1BEJ<
t05~+ YE~SNO [QU 41
1054 OECLME I-IREGA, RnM (UNUSED)
1{!5~+ . f:REGil EW 42
1063 OCCLn~'[IIREGD, RAM (uPUSED)
196(a . IlREGC EQlJ 43
107<: llECLAr;'E flREGC,lIfl1'1 ; (lJNI.)<'.1:D)
i07?·} HREGC EQIJ 44
1981 OCCLfif HREGD, RrlM (1HY'.1:D) .
1986-1 BREGD EGU 45
1090 DlCLflJ;'l 11RE1lE, FAM i (UNUSED)
1095. flREGE [00 46
11!99 DECLARE 1 fREGF. RAM . (UNIJ<~D)

110H HREGF EQU 47
1100 DECLf1RE SHRLO, Rrd'l ,f'Rll'IAR~'. ComlND Slr~TINGI'IE.t1OR'" HOOR135 (L~ INTE)
111J+ SI'IflLU EQU 48
1117 DECLARE SIflHI, RAM ; PRllf'oRY ComlNl> ~TARIWO MEIU\' flOOK'l!>S (HIGI: BYlE)
1122'~ SMAIl! EOO 49
1126 DECLflRE EI'IflLO, RAil ; PI"IMflk".' C.IJMIIANI) ENt'IN(; I'IE~\' ADDRES::; (LOW al'TE)
1131+ lIRO HllJ 50
1135 DECLAI1E· EI'IAI-Il.. RAI'I ; PRIMAt;",' COMMANI) ENDING MEI'IOR\' ADDRE.S!:> (HIGH BYlD
1148+ EI'IflHI [QIJ 51
1144 DlCLARE I1El'II..O, RAM ; UIIRD PWSlI? PRRAMETER & HEX RECORD ADDRESS (LOW)
114'+ I1EIILO EW S2
115:1 DECLARE MEltl!, RM ; TIII~D PfP.SER PflRAMEW:': 8 HLX RECOOD AOORESS (HIGH)
115tH MEIIIII EPU 53
1162 DlCLARE ElCODE. Rf1I'I ; PI1II'1flR't' COMMAND NUMBER FROM rff;:5[R HlBLES (lHJ)
l1G'?+ BCODE £:QIJ ~
1171 DECLARE TYPE, RflI'I ; f'RIMfIRY COi'II'IAND I'IODlrIER/OF'lION (0-5)
1176+ TI'PE EQU 55

All mnemonics copyrighted © Intel Corporation 1976.
1-100

inter
LOC OBJ

9939

9931l

993B

993C

993l)

993E

OO4Il

0041

1l!l42

9843

994[

Ap·55A

LINE 5tUICE 5TATB1[NT

111l1l DECLARE /lJI'tON, ~'flI'I ; IR<. IM'IOCR or PflRMTERS PUOWI:D FOR SELI;(;TED CO/I'IAN)

1185+ NlKOO [QU 56
11e9 DI:(.tflRE OPT! ON. RflI!
1194l OPTION EP.U
1198 OCCLR~E r£XTPL, RAM
1293+ IEXTPL EQIJ
12117 DECLflRE KBOEUF, RAM

; II«X f'OIN'IER lJS[D IN S£mCllIN6 rARSER TABlES
57

; ClfARACTER f"~ITION rOR DISPLRI' UTiLlHES TO WRITE Pl.Xl
58

.; rtlSIl ION or 1((\' OCBOlllCED BY SCAlflING stfJRWTIPl.
1212+ KOOIllf EOO ~9
1216 DECLRRE KEYLOC, RAM
1221+ KE\'LOC EQU
12'~S I!lCLARE ~PTS, RAM
1230+ NREPTS lQU

1234 DECL~ fI<" • ..IWL Rf1I'I
1239;· flSflY[EQU
1243 D[CLAPE RDELRI', R!iM
124fB RDELfll' [QlJ
1252 DEGlfiRE STFTMP, mM
1~7+ STRTI'IP EQI)
1261 DECLflRE BlfrNl, RAM
12(,(:+ BlfCNT EDIJ
1270 DECLRR[RECTI,!" RAM
1275+ R£CTYP EQI)
1279 OCCLARE B, RAM
1284·~ B EQIJ
1288 DECLARE REGe, Rfil'l
1293+ REGC [til)

1297 DECLARE H, RAM

; IM:R[tlEN1ED ns SlJCCE!>SIYE KEY LOCATIONS SCANlED
69

; KEEPS TRACK or SUCCESSIVE REnDS or SAI'IE I([I'STROKE
(;1

; HOlDS OCtltU.ATOR WIUJE DlJFINIi SERVICE RotJl INE.
62

; (.'(UfiER DECRDlENTED WIIlN flUTO'SlEP OlLfl'l' IN F'I\'tG.'ESS
(;3

; IPllEX POINTER F IJ<: DI~LfiY GflflRftCm: STRIN!i ACCESSING
64

,COUNl or llt1TA BmS IN llEX FORI'IflT RECORO BUFFU:
65

; lYrE OF flEX FORI'Ifll RECORD (9 OR 1)
E.6

;!llT COUNlER FOR flSCIl !>ERIP.L 110 UTILIW SlllROUlIPES
6r

; CHARriCTER BEING SHIH[J) DURING SERIAL 110 rROCESS
C8

; COUNTER IN SorTWfft: DELn'I DAm RATE GENERATOR
1392~ H [00 G9
1306 ;
B97 MBlOCK :.EGI1flP, ClIflRNO ; REGISTER flRRfI'I FOR DISPLf''t' PfllTERNS
1311i 5[GMflP [00 79
1314 ;
1315 MOCK O\IIJUF,OVSIZE ; LOIHIFDlR IJSER PROGRAII DURING PHNHIONITOR OVERl/lYS
1319+ OYBlf /:.QIJ fS
1322;
1323 MBLOCK HEXBIJF, BlfLEN ; ALLOCATE BLOCK or RAM I·OR lJ<.A: AS HEX REC~D btfFER
1327+ liEXBIJF EQIJ 191
1330 ;
1331 SEJECT

All mnemonic. copyrighted © Intel Corporation 1976.
1-101

intJ AP·55A

lOC Oil) LINE S(lIJ!CE STRTEI'[IIT

1332 DATflJlK 4'1
0300 13:>71 ORG 768

1341 ; INVf1LS Tfll)lE OF CON::;Tf1NT~ 10 BE LOAOCD INTO ~ INTERIR. f<ilI'! YARiftELlS
1142, fl5 PARl Of SI'ST~ INITIALl~'ATlON PROCElltH:
134:$,
1344.' INITIAL VliLlIt IIfllW1BLE WPE
1345 , ====== .:::.==

0300 00 1346 INVfll5: DB 00H ; ROlPflT I<Bl
0301 00 1347 00 0011 .' f<OlCNT RBl
0:;02 00 1348 DB 0011 ; Lf:5TKI' RBl
9393 a3 1349 00 WARtIO .' CURD1G RBl
9394 00 1350 00 0011 i KEVFLG RBl
0:ros 00 B51 DI:! OOH ; <REG7) RB1
!J31l(; 00 1352 DB 90H ; tPRCC RIf1
0307 01 1353 00 01H i lPPSW RAM
0308 00 1354 DB 001{ i EPTIMR RfiI'I
0309 00 1355 Of; 0011 ;ErR0 RflI'I
0300 00 1356 DB 0011 , [PPClO RAM
031:10 00 1357 DB 001{ ; EPPCIIl Rill'!
030C 93 135f.) DB 93H i l18lTLO RAI'l
9500 04 1S59 DC 04H , HBITHI RAI'I
B39E 20 1369 DEl 20H ;DSPTII'I RAIl
039F 25 1361 DB 25H ; VERSNO RflI'I
0310 00 1362 DB 90H ;HJ;'EQA RAM
0311 00 1363 DB 0011 ; IlREGB Rfl\'I
0312 00 1364 Oil 01111 , HREGC RfiI'I
0313 00 1360 DB 90H ; HREGD RAI'I
8314 00 1366 DB 0011 ; HREGE RAN
0315 00 1367 DB 0011 ; fll\.'EGF RAM
13316 00 1368 DB OOH ; SMALO RAM
0317 00 1369 DB 0B11 i S/'IflHI Rf'oI'I
0318 rF 1370 00 0FHI ;El'IfllO f<fiI'I
9319 OF 1371 DB 0F1I ;EI'IAHI RfiI'I
031A 00 1372 DB OOH ;/'IEMLO RAM
031B 00 1373 DB 001-1 ;I'I[MHI RAM
~!31C 00 13i'4 00 001-: ; BCODE RAM
~l31D 04 1315 DB 041-: ; TVPE RAM
031E 01 1376 DB 0W iNliMCON RAM
031F 00 1377 DB OOH ; OPTION RRM
0329 a3 1378 00 n:flRNO iNEXTPL Rfll'l
13321 IT 1379 DIl arr\1l ; KBDBIJF RAM
13]22 00 13813 08 OOH ; K[\'lOC RAM •
3023 1381 NOVAL5 [QIJ t- INVRLS

1382 SIZECIIK
8023 1335+ SIZE SET 35

13lX~ ,

1337 t ; ** .. *
1396 $EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-102

AP·55A

LOC OBJ LINE ~CE STRIDENT

1397 $ INCUJDH :F9:PARSER.IU»
=1398 COOEBlK 4~

9999 =149l~ ORG 9
=1497 ; INIT INITIALIZES PROCESSffi REGISTERS
=1498 ; AN> RAI1 LOCATIONS "10 DEFIlED Yfl.OCS.

9Il99 C5 =1499 INIT: SlL ROO
0001 BFOO =1410 i'IOY Xl'COO[' 19
800J 74Dl =1411 CALL Xl'TEST
009S 27 =1412 CLR A
0096 J() =14B lIO\II) PSE(llO, fl
0097 JE =1414 IUID PSEGlII, R
9908 ElS1A =1415 i'IOY RI!, 11AH ; START AT 1/01 (REG2) = RflII LOC lA1I
999fi 1m3 =1416 lIlY R1, ILOW NOVRLS
690C Bfl90 =1417 i'IOY R2, ILOW INYfl.5
999t FA =141B INITLP: i'IOY A,R2
000F EJ =1419 I'IOYPJ A,~

0019 All =1429 I10Y @R9,1I
90111e =1421 INC R9
0012 1A =1422 INC k2
0913 E99E =1423 DJNZ 1d.,INIlLP
0015 55 =1424 STRT "I
9016 744F =1425 CALL EPI.:RK
0018 IJ8IlB =1426 i'IOY R9, ILOW(OV1BAS+QYSIZE)
001A 74CA =1427 Cf1Ll. OYlOAD
991C 54E5 =1428 CALl COI'IFIl
091E B937 =1429 MOV R1,ITI'PE
0029 11 =1439 INC @R1
0021 34F2 =1431 CftLl INCSI'IA
9923 54E5 =1432 au COIf'll
0025 99£1" =1433 IN.. PL 1<r«lT [PRSEl) ; REIIOV[EP RESEl SIGIR.
0927 0429 =1434 J/'IP MAIN

=1435 ;
=1436 SIZECI-IK

0029 =1439+ SIZE SE:T 41
=1449-1;
=14414;** __ ****_*****_.,.'**************** __
=1459 $E.JE!;T

All mnemonics copyrighted © Intel Corporation 1976.
1-103

inter
Lot OBJ LINE

=1451 ;
=1452 ;
=1453 ;
=14~ ;
=1455 ;
=1456 ;
=1457 ;
~458 ;
=1459 ;
=1468 ;
=1461 ;
=1462 ;
=1463 ;
=1464 ;
=1465 ;
=1466 ;
=1467;
=1468 ;
=1469 ;
=1479 ;
=1471 ;
=1472 ;

AP·55A

srua STRIDENT

===--=== ==

_ ... -....... - ~-.. --- ----_._ .. - ---.. -~ .. .
II II II

! LIST ! !GOIRESET! ! GO ! !t;XAMICIfl!

" " "

! ! PROG BRK!! PROG 1£111 ! REG I STER!
! I..I'I.OAD !! ..•. -- II ---- !! •. -- !

! !AUTO STP! !Sll«l STP!! NO DR!(!

I DNLOAD ! I --.. - !! -- - !! CLRIPREV I
I ! AUTO 'IJRK I ! WIlH BRK I I

" II "
I FILL ! !III1RD REG'! NEXTI, .! I 001

=1473 ;
=1474 ;
=1475 ;
=1476 *lJECT

II II II

All mnemonics copyrighled © .Inlel Corporalion 1976.
1-104

." II II

! C !! D !! E !! r !

" " "

II II II

I S !I 9 !! A !! B !
II II II

II II II

I 4 !! 5 !! 6 .!! 7 !
II II II

II II II

! 8 !! 1 !! 2 !! 3 !
II II II

inter Ap·55A

LOC OCJ LINE !.OlJ1CE 51 RTEPEN1

=1477 ;
=1478 ; TIE nUOWIMl E~ThS DHERI1IIt.S 101 Til. P~k INTERPr<ETS
=1479 ; YfUJE5 RE:TI.J1I£1) rro/ THE KE't'OOARD SCflIIlING IIf1JT RCtH Iii.
=1480; IKN TIlE. VARIOUS KEYS OF TIE KEI'BOORD ARE PRESSED.
=1481 ;
=1482 ;
=1483 ; KE\'0 E!lU 0I!H YALUE RETURI£D JIJI EACH KEY (}" KE\ro1RD 1fl1RIX
=1484 ; KEI'1 Eoo 91H El\' KEI'WlRO SCANNIt«l SUBROUTINE "KIlDIN".
=1405 ; KEI'2 EQU 02H
=141)6 ; KEI'3 EQU 9311 ~--···t····-·.---·+-·--+ ~ --+··-·-i •.. _+-_. +
=1487 ; KEI'4 L!lU 9411 !1C!1D!1E!1F' '1!(;!0D!IlE!9r!
=1488 ; KE1'5 EW 9511 ~·~···t·····-.-····+·-·····I +···-··+-·····i---i··-·--+
=1489 ; KEI'6 EQU 00l !18!19!1A'1E! ! 98 ! 89 !. IWl ! 9B !
=1490 ;KEl7 UIU 117H +·····-i----+-··--i-····· + +-. -··i········+-····_+···--+
=1491 ; KEI'8 E!lU 0SH ' 14 ' 15 ! 16 ! 17 ! !1I4!115!il6!97'
=1492 i KEI'9 EOO 89H +_·_····1--·-+---· +-•.•.. + +-.--.) •...... -+_.---+- -.--1

=1493 ; KEI'A EOO 9111·1 !18!11!12'13! !99!111!82!03!
=1494 ;KEYO Eoo 98H +-.. ---1-. --+_···t··_·-t +-·-··-t--_·+-- ·t- --.
=1495 ; KEI'C EOO 8CH
=1496 ;J(EYO Eoo OOH
=1497 ; I(EI'E EIll 0EH
=1498 ;K[1f EOO BrH

9810 =1499 KElfiL (00 18H ; [FILL COI1IfH) 1
01112 =1508 KEI'llXT Eoo 12H ; [NlXT/, J
11813 =1501 KE\'Et-I) EQU 13H ; [001. J
11814 =1582 KEI'REL EOO 14H , [00WNL1m {,"OI'IIflND J
9915 =1593 KEYPAT EQU 1SH ; [flUTOOIlEnK I'KX>lflERJ
1J016 =1504 K(I'I)f'I EQlJ 1611 ; WIlTR I'EPIORI' I100IFIERl
9917 =1585 KE I'CL~ EtlU 1711 ; [(;LCflR/PREVIOOS 1
0018 =1506 KE. \ 'REC EQU 1!)H ; [IJ'LOAD C!1II1AND J
991~ =15117 KEI'TfIfl Eoo 191-1 ;[AU10S11P I1OOIFIER]
801R =1500 KEYPM EOO 1A1l ; [PROGRAI1 I'(~I' MQ() IHER J
9818 =1589 KEI'REG EOO 11lU ;[REGISTER ME.~' rfJDUIERJ
001C =1510 K(ltST (00 1Cll ; [FORI'IfITTED DATIl OUTPUT COI1IflHI) J
081D =1511 r.CORES EQU 1DH ; [GO FRm REstT STATe t'atlAN»
ME =1':112 KE\'GO EQU 1EH , [GO COItlRNri J
991F =1St:; KEI'MOO [00 1FK ; [~XflI'lINE/I'IOOIF',' COI'IIfN) J
8001:: =1!)14 KSETB EQU 8BH ; [SET BIlEff(POINT COI'II'IflM) J
OOOC =1515 KCL~B EQU om ; [CLEAR IlREAKPOINT COI1IflN() J

=1516 ;
=1517 ;

0019 =1518 rL~1(EQlJ 1911 ;[f'ROORRI'I BREflKf'OINT 11E~' I'IODIFIERJ
0015 =1519 DBRK (QU 151-1 .; [DATA BR£AKPOINT MEI1OR'r' I100IFlER 1
0011 =1529 RINT mu 1111 ; [IIARDWARE REGiS1ER I'IEI1ORI' MODlFIER]
0018 =1521 NOORI([00 100 ; [lmllOUT CREAKf'OlNTS I'IOOlrIER]
801(; =1522 WElRK EQlJ WI ; [WITH ERl:AKPOINTS ENRIlLEI> 11OO1f1ER]
801A =1523 SING EQU tr.H ;(SmGLE STEP I'IOOIf lERl

=1524 i

=1!)25 $EJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-105

LOC OOJ

9929 111"01
ll02B "(401
Il020 2381
8Il2r 3400
001114EC
!Jell f'B
11834 DJ13
11836 eG2S

11838 EC23

118311 B936
1183C B1111l

1IIl3E B937
9840B1lt11
9842 FC
11843, EJ
11844 B28C
11846 00
1184i' C652
11849 Fe
1184ft 0303
!I04C RC
11841) B936
II84F 11
l1li58 11442

0952 B936
11854 F1
0055 011D
11857 3482

Ap·55A

LItE !am STRTDENT

COOEBLK 168
ORG 41

=1526
=1531+
:1535 ;lIAIN
=1536 ;

OUTPUT JtE5Sf&:(C(MN)~T)
CfLL IIf'ULIJVTE(KEY)

=1537 ;1Ifl1N2 IF THE KEV=lND GO TO IfllN.
=1518 ;
=1539 f1flIN: IIOV
=1540 CflL
=1541 lIlY
=1542 CfU
=1543 CfU
=1544 I'IAIN2: I'IOV
=1545 XRI.
=1546 JZ
=1547 ;

XPCOOE.11
:<rTEST
fl,U
OOTUlL
1If'KE\'
A,KEY
A,IKE\'OO
/lAIN

=1548 ; FINDCf' FIND OOT IF 1ft KE\' PI\'ESSED 15 R LEGlTllflTE 00tfIII) INITlRIIJ::
=1549 ; ITI1P:=CTAB
=1558 ; SCOOC·='f1.'PE:=0
=1551 .; ~ILE CTAB<IllI')(>0 ICTRE EXHlIUSTEDI
=1552 ; IF CTAIl< ITIf')=KEY GOTO IfIIIIl ICOItIflND lNTRY f'Wt> IN CTAB!
=1553 ; ELSE lllf':=lTIIP+COltIRIlUNlR'l'..sm
=1554 ; BCOOE: =!lCOOE+1
=1555 ; ENDIfIILE
=1556 ; GOTO !»'OF
=1557 lIlY 1111', ICTIlIl
=1558 ItIOY 1lCODE, ZlRO .
=1569+ IIOY Ri, ISCOOE
=1570~ lIlY (IR1, lZERO
=1574 lIllY TYPE, Z[RO

=1585+ IlO\l rd., ITYf'[

=1586+ lIlY @Rj" IW,'O
=15911 FINDOf'. lIlY FI, ITW
=1591 1IOYI'3 A, @fI

=1592 JaS I£RROR
=1593 XRI. A, KEY
=1594 J't: IfIllfI
=1595 lIlY A, 1 TIIP
=1596 fI)() ft,lCOllSIZ
=1597 IIOV ITIt', A
=159S lIlY R1, IBCOOE
=1599 It«: @R1

, =1699 .mP FlNlOP
=1601 ;
=16112 ; OOTI"ULI[SSOOE(5TRCOI'I«(;(;oo(» I*fmf'T FOR T~ C~£NT UJI/IFII)*I
=1(;03 i I: =H1
=1604 ; OPTION:::IEII(I>
=1605 ; I :=['~1
=1696 ; NO_(J' J'ARAI'IETERS: =IEIf(I)
=1607 i 1:=3
=1608;
=1689 I'IAINfl:
=16113'1
=1619+
=1623
=1624

fl,BCOOl
Ri,IIlCOOE
fI,@R1

n,15TRCOI'I
OOTCLR

All mnemonics copyrighled @ Inlel Corporalion 1976.
1-106

infel' AP·55A

LOC 00,] LINE ~CE STflTEMENT

9959 lC =1625 INC ITttP
0Il5A F(; =1626 I'lO\l R, 1lI1f'
0058 E3 =1627 I'IOIJF'J R,@fl ; GEl OPTI ON PO I NrrR

=1628 !II1OV OPTION, A
905C 1i939 =1641+ !'IOV R1, IOPTION
005E fl1 =1642+ rov @R1.A
W5f 1C =1646 INC mil'
0060 rc =1647 I'lO\l A,11111'
OOC1 D =1648 MOVr3 fI,@A OCT NO OF f'fiRfll'lETtRS

=1649 MI'IOV NltICQN, A
9062 89313 =1662t /'fOIl R1, lNUl'lCON
9064 R1 =1663+ MOV ~R1, n

=1667 ;
=1668 ; rnr.rn;TER_EtHER(9=)5). =9
=1669 ;

0965 B9BC =1670 MOil r1,1t; i E.ACH I'fiRAI'I IS 2 INl ES
0067 fl8:?0 =1671 /'IOV RII,ISMALO ; START (f PARflI'I E'.tJfFERS
0069 0000 =1672 I1fllNB: /'IOV ~'0, .99H
006B 18 =1673 INC R9
006C E96!1 =1674 OJNZ 1<1.I1flINE
006E 14EC =1675 CALL INPKEY

=1676 ;
=1677 . WlIILE KEYOMEM(OPTHRliTI'P[)[6-9] DO
=1673 .. IF t1El'f(OPTlON+ T'IF,[)[7]=1 GOTO MAlND1
=1679 ; TYPE . = TI'I'E + 1
=1680 ; ENDIoIIHLE
=1681 "
=16B2 I1I'IOY ITMP, OPTION

9079 8939 =1(91)+ MOIl Ri, 1I000TI ON
0072 1"1 =1699'1 MQI} A,@R1
0073 nc =1i'12+ MOY ITMI"A
00;>41C =1715 INC Imp

=1f1C MAl NC1' MI'IOV A, ITI'IP
0015 rc =1732~ MOIl A,ITMP
0076 E3 =173(; I1OW3 A,@A
0077 97 =17S7 (;LR C
0078 F7 =1f38 f.'L(; A
0079 77 =1739 RR R .. STRIP BIT SEVEN INTO CAF.'k1'
89lA Dr, =1749 XRL fl, KEI'
0078 C693 =1741 J2 ''lUND
0071) r687 =1742 JC 1'Ifl1M>1

=1743 MINe TI'PE
0071 LOS37 =1748+ MOY 1,:1, '1i'P~
0W1 H =1749+ I'lO\l A,@Rl
OOG2 17 =1?S3+ INC A
0083 A1 =1?S8l /'lOY @Rl,A
9984 1C =1761 INC ITI'IP
0085.0475 =1762 JI'/f' /'tIlINC1

=1763 ..
=1764 i MODIfIER NOT FOUNO so RESET TlfE INOEX TO DEf'AUlT CASE. (ZERO),
=1765 "
=1766 MAI1ID1 MMOV 1\'P[,ZERO

0087 B937 =177(-1 MOIl R1.ITi'PE
.0B89 B100 =1778+ MOV flOR1,IZERO

=1782 MI'IOV A,OPTION

All mnemonics copyrighted © Intel Corporation 1976
1-107

inter
LOC (J)J

I!8SB ~39
998() Fl
908£ B
800F 3494
0091 049E

!lII93 8939
999S Fl
999(; B

8897 8937
9899 61
889R3484
989C '14EC

Il99E 0C0II
0000 2330
00A2 6C
llIIfl36C
88fI4 AS
IlIIA5 14C9
9IIfl7 FGBlI
Il0fl9 1C
09RA 8938
9IIRC F1
9IlAI) 87
80RE R1
818· C68ft
8IlB1 FB
0002 D313
9084 CGBf1
88B6 14EC
8IlB8 84fl8

09BC Bfl01
8IlBE 249A

8897

AP·55A

LINE SOI.RCE STRTEllENl

=1791+ I'm Rl,IOf'T1~

=1792+ ItOY A,@Rj,
=17% ItJ\IP3 fl,flIfl
=1797 CALL OUTIISG
=1798 Jt1P I'tRIN80
=1799 :
=18911 i CfU OOTPUT..I£SSOOHImIFIl'R)
=1881 /ifill{) ItKJY A, OPTI(Jj
=181IH IIOV R1, 'Of'TI(Jj
=1811+ 1101,1 A, I!Rl
=1815 IIOYf'J A,@fl
=1816 ~ R, TYPE
=1822·t IIOV Ri, .TYPE
=1823+ flOO fl, 8:1
=1827 CAlL OOTIISG
=1828 CIlLL 1If'KE\'
=1!l29i
=1830 I'IAIN£lII: MO\I ITl'IP,10
=1831 ml1NB1: ItOV A, ISIIILO
=1832 ADD A,ITI1P
=1833 roo A,ITI1P
=1834 \'lII/ R8,R
=1835 CAlL IIffl)F:
=1836 JC Cl'lDINT
=1837 INC Illf'
=1638 1m RL INlJII:ON
=1839 ItOV A,~1

=1840 DEC R
=1841 IIOV 1R1, A
=1842 JZ CllDINT
=1843 /{I\I A,KE\'
=1844 XRL A,IKE\'END
=1845 12 Cll[)INT
=1846 CALL INPKE\'
=1847 JIll' KAINBl
=1848 i

=1649 i CllDINT ENTER TI£ ctM1N) PROCESSOR WITIl:
=1S511 .: BfISLCOOf.=TfE KAIN rotIfIN) noPE
=1851 i WF'E"'SUBCOIII'IAND TYPE
=1852 ; PARRl'lETER(1)=rIRST I'IDDIIESS
=11.'53 ; PRRfI'IETEI!(2)=SECOND flOORESS
=1854 i PAm'ETERO>=DATA
=1855 CIID INT: JIt' lIf'LE"
=1856 i

=18~7 i 1'l"RROR [~ ENCOUNTERED IN /lAIN PfJ.SINl kOlITINE.
.=1858 IlERROR: 1m LOOTA, 11 .
=1859 JII' PERROR
=1860 SIZECHK
=1863+ SIZE SET 151
. =11l64t:

=1L'65ti*-"'-*----*******"''*****---**
=1S74 '$EJECT

All mnemonics copyrighted @) Intel Corporation 1976.
1-108

inter AP·55A

LOC OOJ LINE 5ru!C(STnTEtENT

=1875 DATfllLK 59
8323 =1889+ ORG SIB

=1884 ;

=1885 ; *****_****************************>I-"*****l,*****************
=1886;
=1887 ; TflBlES F~ PAR'.1.R
=1!J88 ;

=1SC9 ; *****.~********-****-_*_***********************.*
=1fJ90;
=1091 ; TIE C1AB TABLE CONTAINS (C1JISIz) EN1RIE5 FOR EflCll COI1I'IflND. TIl: PlANING
=1C92 ; or THE Eimms IS flS FOLLOWS:
=1C93 ;
=1894 ; ENTR'l' 8 COI9IftND KC'I' TO INITIATE
=1895 ; ENTR'l' 1. POINTER TO HIE LIST or OPTlCtlS APPLICAELE 10 THIS COittANO
=1896; ENTRY 2. NUMB[R OF NUI1ERIC f'ftRlllETERS I~QtJIRED "'..,. 1Hl rowHl
=1C97 ;

9923 =1&'98 CTAB EQU $ AN) BFFH
0093 =1899 COMSll [QU 1

=1989 ;
8323 if =1991 00 K(:\'i'IOI), LOW OPTAB1,1 ; EXAI!
0324 ~F
8325 91 . -
8J2G 1E =1992 DB KEYOO, LOW 01'1003, 1 ;GO
11327 49
832tl 91
8329 18 =1983 DB KEYFIL, LOll (J'1A1l1.3 ; fILL
1132A :sf
832B 83
932C 1C =1984 OB KEYL5T, LOll (FTAB1,2 ;iXJI'IP
8J21) 3F
832E 92
832F 18 =1985 l>B KC'I'REC, LOll OPTAEL 2 ; RECORD
8:n83F
8:m 92
11332 14 =1986 DB KEI'REL, LOW OPTflB1. 8 ; kE.l.UAD
8m 3F =
8334 Il8
8335 lIE) =1987 OB i<SE., B, LOW OPTAC2, 1 ;SET~

11336 46
8337 91
8lla OC =1998 DB KCLRB, L(l.I OPTAE2, 1 ;CLRERi(

8m 46
9331\ 01
83Jl1 11> =1989 DB KGORES, LOll OPTAe~, 0 ; GO I·RIl'I RESET STATE
113~ 49 =
SJID Iil8
833E IT =1918 DB 0ITH ; E5COI'

=1911 ;
=1912 $EJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-109

LOC OOJ

033F 2(;
03401R
034116
0342 18
0343 11
0344 19
034~ 95
0346 26
0347 1R
034B %
0349 2C
034R 18
0348 16
034C 1A
034D 15
034E 99

Ap·55A

LINE. SOI.EE STRTEI1ENT

=1913 ,
=1914 ;
=1915 .'
=1916 ;

THE OPTION TIlBlE GIVES TIlE VRRIOOS Cf'TlONS AlLOWED FOIl EfOI
BASIC COItIfIN), AS FOLLOWS:

=1917 ;
=1918 ;
=1919 ;

ENTRY 9. START or TABLE OF I'D) IF! ER RESPONSES. '
eNTRY H. 11Ll000D l'IOOirIER KIoVSTROKES cmiESPO/IlII«i TO OPtiOOS 0-5.

=1928 ;
=1921 ;
=1922 OPTIlB1. DB
=1923 DB

=
=1924 00

=1925 OPTRC2: 00
=1926 DB

=1927 OPTRB3. 00
=1928 00

=1929

=1930 SIZEClI<

NOTE HIIlT TIlE LAST BYTE IN EACH OPTION GROUP I*IS BIT
SEVEN st:T TO INDICATE TI£ END.

~TRI'DI
Kl't'Nl, KE\'OI'I, Kll'REG, I1INT

STRGOC
NOBRK,IoJERK, SING

m"RT, KE\'TRR OR WlI

002C =1933+ ~IZE SET 44

::19~5t; *~'****~:*************-*-*.*----­
=1944 $lJECT

All mnemonics copyrighted © Intel Corporation '976.
1-110

inter AP·55A

LOC OSJ L11£ SIXRCE STATEI£NT

=1945 COOEBLK 139
9199 =19SSi ORG 2:!6

9199 9319
919284F1
9194 A3

9195 B94Il
9197 Ai

9198 BS48
9100 F1
9198 A3
9111C f217
019£ D4DB

9119 C94Il
9112 F1
9113 17
9114 Ai
9115 2498
8117 C41>8

991B
9119 31
Il11A 37
9118 3E
811C 44
991D
9110 46
911E 49
911f 48
9129 4E
9121 51
9122 54
9123 57
9124 SA
912S so
9926
9126 SF
9127 61
912!l 63

=1959 ; OOTUTL OOlPUT (If: (f' F~ UTILlW DISPLA'/ PRM'TS (LEFT JUSlIFILD)
=1969 ; fl.'C(RDII«l TO ACC ctIlTENTS (8-3).
=1961 ; MCLR CLEff(DISPLAY All) OOIPUT CIflRACTER SlRIIIl STAATII«l
=1%2 ; AT Tl-E flOORESS POINTED TO I:IY BYTE itT roDRE.SS IN flCUJU.RT~.
=1%3 ; 0I.JTlf"..G ~IIf. TO COP\' n STRIIIl (f OIl f'ATTI:RNS Fm! ROt! TO Tff.
=1964 ; DISPLAY R[GI!.TERS.
=1965 ; 5TRIIIl SIl.ECTED IS DETEF.IIII£D 8\' nee raN cnw.D.
=19(,6 ; ON ENTERIIil OOTIf'..G, ACe CONTENTS lIRE USED TO ADDRESS A Il\'TE IN A
=1967 ; LOOKlf TABLE ON TIlE ru:RENT PflOC IlllCiI CONTAINS n:I, f~SS OF
=1%8 ; A STRING IF SEGl'lENT PATTERN llflTA 8\'1 ES TO DE PRINlED ONIO Til.
=1969 ; DISftAl'.
=1979 ; TIE END OF TIlE STRING IS IN>ICHTED IfIEH 0I17 =1
=1971 ; CALLS SlIBROUTII£ 'IG)ISP'
=1972 i TO flCTlRLY EFFECT WRITING INTO Tl-E DI5PLAY REGISTERS.
=1973 OOTUTL: ADD ft, 1STRU1L
=1974 OUTCLR: CALL CLEAR
=1975 0UT1f'..G· i'IOYf' A,@fl
=1976 III'IOV 5TRTIf', A
=19ll9+ I10Y R1, ISTRTI'IP
=199lH MOV @R1,A
=1$'94 PRNT2: I'KJY A, STRTII' ; LOll) NEXT CIIRRflCIIR LOCATI ON
=299l~ ItOY Ri, ISTRTI1P
=2004i i'IOY A,@R1
=2Il98 KOVP A,@A i LOAD BIT PAllERN IN>IRl::CT
=29119 JB7 PRNT1
=2919 CALL II>ISP ; OUTPUT TO NEXT CllARflClER POSITION
=2911 I'IINC STRTI1P ; I~X POINTER
=2916+ MOY R1, ISTRTIIP
=2917+ I10Y fL@Ri
=2921i INC A
=2926+ I'KlV @R1,A
=29'.!9 JIf' PRNT2
=2939 PRNT1: JII' II>ISP iDONE
=2931 i

=2932 STRUTL EQU LOW $

=2933 1>8 LOW(DERRQR) i UTILITY I'ESSAGE 9 ADDRESS
=2934 DB LOW(~) ;U1ILlW I1E5SAGE 1 AI.JI)R[SS
=2935 DB LOII(DRUIO ; UTILIW I£SgJOE 2 roDRESS
=2936 DB LOW(DBPNl) i UTILl T\' I£SSIU: 3 ADDRESS
='.!037 STRmt EQU LOll $
=2931) DfJ UJII(DIIOI) i I:flSIC COI'II'fAN) 9 RESPONSE fIOORI:SS
=2939 DB LOW(OOO) ; !!ASIC COI'IIflN) 1 RESPOOSE ADDRESS
=2949 DB LOW(DF1LL> ; BASIC COI'IIfH) 2 RESPONSE ADDRESS
=2841 DB LOW(DLST) i ElASIC cat1AND 3 RESPONSE fIOORESS
=2942 00 LOW(DREC) i BASIC CO/II'ffl) 4 RE!.PONSE ROORESS
=2943 DB LOW(DREL) i BASIC COItIAM) 5 RESPONSE flIlORESS
=2944 DB LOW(DSB) ; BASIC COIfIAN) 6 RESI'ONSI: flD£*.tSS
=2945 00 LOW(OCS) ; BASIC COI'\I'IIlN) .(RESPONSE ADDRESS
=2946 DE; LOW(OOR) .; IlfISIC COI'IIfH) 8 RESPONSE RlIlRESS
=2947 STRME" EQU LOll $

=2848 DB LOW(DPRfllt> ; DATA T't'I'E IIlDIFIt:R 9 RESPIWSE flDI)RESS
=2tI49 DB LOW (DDAI'IEI'I) ; DlfTA n'PE IQ>IFIER 1 Rt:SPOOSE roDRESS
=2959 DB LOW(IJRI1) ; DATA lYrE IIODIFlt:R 2 RESPONSE AOORESS

All mnemonics copyrighted © Intel Corporation 1976.
1-111

inter AP·55A

LOC (.(jJ LINE !lOURCE STRTEI1ENl

11129 69 =2051 DB L~(DINTRG) ; DATA TVf'l IU>IFIER 3 RESPOlSE fWRESS
812A 65 =2952 DB L~(DPRIJRK) ; DRTA TYPE IUlIFIEk 4 RESPONSE ROORESS
912f) 67 =295J DB LIII(OOlll'lJ:IO ; llfiTR TYPE IUlIFlER ~ RESPONSE ftIDRlSS
9II2C =2Il54 s) RGOC 1;00 LIII $
ei2ca: =2855 DB L~(DI«lIRK) ;EXECUnOO ~ IIOOIFII:R II
11121> 60 =21!56 DB L~(DWBIIKt ; EXECUTION ~ IUlIFIER 1
II12E E}" =2857 DB LOII(DSS) ; EXECUTION IG)E 1IOO1fIER 2
1112f" 72 =2858 00 !:0II«()Pf\) .: lXIDJTION I'IODE IUlIFIER 3
11139 75 =2859 D8 LOW(DTR) ; fXCUTION I100E IU)IFIER 4

=2868 .:
=2061 ; UTILITV OUTPUT I'ItSSFlGES
=2062 ;
=21163 DEf(R(JR:

0131 79 =21164 00 8111101118 ; IE'
0132 50 =2065 00 1I101110ilefJ ; 'R'
0133 50 =2066 DB 111010000[1 i 'R'
0134 5C =21167 DB 010111001) j '0'
0135 50 =2968 . 00 0101001l1l8 ; .~.

01JG C0 =2069 DB 11001111008 ;
=21170 DSGNON:

1I1J7 00 =2071 00 00000008B ;' .
013S 76 =2072 00 011101198 .i "H"
01J9 GD =2073 DB 01101101B ; '5'
II1JR 79 =2074 00 011110111[1 ; IE"
8flB 40 =2075 DB 01000000B ii_"

1113C 66 =2076 DB 011001100 ; 14"
!lB!> E7 =2077 DB 111001118 ; "9. "<1")

=2078 DRUN:
1113E !l0 =2079 DB ~ ." " ,
!l1Jt 41! =20C9 00 1110001l1.10B ; I.'
0148 50 =2081 DB 1I1010001l1l ; IR'
01411C =2982 00 01101118 i 'U'
11142 54 =2003 00 010181!l11E ; fiN'
11143 (,'0 =2084 00 111l1l01100B ; I .. •

=2085 OOfm:
8144 7J =2086 DB 11111811118 ; ara

0145 B9 =2007 DB 101111101B ; ·C .•
=2088 mECT

All mnemonics copyrighted @ Intel Corporation 1976. '
1-112

infel' AP·55A

LOC OI)J LINE SOURCE STATEIf:NT

=2089 ;
=2990 ; PF:11'flRY C~ RESPONSE STRING f'RTTERN$
=~1 ;
=2092 DMOO:

9146 ·,9 =2093 [Jf; 911110018, 001119918, 11110190IJ , "EClt •
0147 J9
0148 F4

=2094 000·
8149 31) =2095 DB 801111818, 110111888 ; -GO. u

914A De
=20% Df"ILL:

1l14E 71 =21197 00 011108918, 081191.!1!0E), 10111000B ; 'HL.'
814C :l0 =
014D IlS

=2098 DLST:
014E. 38 =2099 DB 00111000B, 911011818, 11111988B ; 'LST. •
1!14f 60
9158 Fa

=2190 DF:EC:
9151 3E =2191 00 901111100, 91119811E, 101111l09B j HlPL .•
0152 7J
915J Be

=2102 DREL:
0154 5E =210:1 /.l£I 010111100, 9191919011, 19111000B ; aDNl. II

9155 ~4
9156 sa

=2194 DS&.
0157 6D =2105 OB 0111l11018, 011110Il00, 11111100£: ; "SIB .•
0158 78
9159 Fe

=2106 DeC:
91SA 39 =210, D8 0811111011), 00111900B, l1111100E ; 0ClO. II

015E J8
915C FC

=2108 DGR:
01SD JD =2109 OIl 1l0111191B, 11919001lE i RGR. II

915E 00
=2119 $EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-113

lOC OBJ'

8151' 73
0168 00

8161 5[

0162 F7

916:> 50
8164 00

9165 73
9166 rc

81e? 5E
9W) FC'

-8169 76
8161l 00

816B 54
816C Fe

01GD lC
81GE 00 .

91er ro
9170 E;[)

8171 Fe

0172 77
9173 7C
9174 00

9175 77
9176 GI>
11177 F8

Ap·55A

LINE ~ 51RTEI'IENT

=2111 ;
=2112 .;
=2113,

OOR',' srACE IU)IFIER OPTION ~5PONSE STRINGS'

=2114 DF'RI1EM'
=2115

=2116 OOAI'IE.M:
=2111'

=2111: DRI'I:

()[;

=2119 '00
=
=2120 DF'RBI':K'
=2121 DB

=2122 ~I~'
=2123 DB

=2124 D I NTRG .
=2125 00

01119811[1, 119100e00 ,"PR'

910111100, 11110111B .' -Dn. ..

8191I!BB0B, 10111101B ,'RG .•

91111!9118, 11111100B j IPr:! .•

019111198, 111111008 i.OO II -

911191100, 119100WB

=2126 ;
=2127 ; RESPOI6E MESSAGES rOR GO CONI) ITI ON MOO I FJ t~.
=2121: ;
=2129 DNOIlRI(:
=2139 I>B 019191000, 111111900 ; 1m M

=2131 IIIIIlRK:
=2132 DB 911111008, 1111199008 ; "BR •

=2133 D!;S:
=2134 DB 011911918, 91191101[;, 11111000B ; 'SS 1 •

=2135 DPA:
=2136 DB 01110111[l, 01111190E, 1101B0II0IJ' , "flBR. "

=2B70TR:
=2138 00 01110111B, 011011!!1El, 11111B90B ; "AST .•

=2B9 ;
=2140 SIZECIi<

9978 =214J+ SIZE SET 120
=2144+;

=2145+; ******************************-***************************
=2154 $EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-114

LOC OOJ

1IOC9 97
9OC1 R;'

99C2 B9JS
89C4 rt
90C5 C6D7
911C7 FB
99C892D7
99Cfl 29
89CEJ 47
OOCC 20
9OCO 39
09CE 1S
OOCF 39
9IlD9 3478
99D214EC
99D4 97
991)5 94C7

.0007 FEJ
eros 1>312
000Il C6E!i
900C Fa
9000 1)313
09I)f' Cf1:5

·9OC1 BAIl2
99E3 24911
99[5 EJ846
9I!E7 8993
00E9 B4f5
99ED fJ3

992C

AP·55A

LII£ sotJ/C(STATEI'ENT

=2155 Coom.K 45
=21G0+ 1]10 192
=2164 ; INI'fIDR 1tf'UT DATIl INTO TI/O"BYTE PARlKTER IlIFFER ItlllCATED BY RB.
=2165 ; RECEIYl lUDIC KEYS rRCfl KE'I'BOfWW !mIL '.' OR '. '.
=2166 ; SHIH INTO I€lDRES!; B\.rFEI";
=2167 ; RE-WRnE I)ISPlfl'r'.
=2168 ; IF I01BCR OF CONSTIIlTS 1£[1)[1) IS ZERO. t«J 1£1/ I'AfIfft:1U:S ff1E fUM!).
=2169 ;
=2178 IIf'ADR: CLR
=2171 Cf'I..
=2172 !mY
=2181+ I'm
=2182j· I'IOV
=2186 12
=2187 1NPAD1: I'IOV
=2100 J84

C
C
A.NIKON

Ri. I/lftXlN
1I.@R1

ELSIrt
A.KEY
EL!:.IF1

=21t.'9 XCH A. @R8

=2199 SIIlP A
=2191 XCH
=2192)(011)

=219:l INC
=2194 XCHD
=2195 Cfll
=2196 Cfl.L
=2197 CU:
=2198 JI'IP
=2199 ;

A.i!R9
ILI!R8
R9
lURe
lI'Dfl)R

INPKEY
G
Itf'fI)1

=2290 ; El!.If1 IF KEY='. I ~ '. I TI£N RE'fmN.
=2291 ;
='~a12 lLSIf1: I'IOV
=2293 XRI.
=2294 12
=2295 I'IOV
=2206 XRl
=2207 J2 .
=2298 ;

A..KE\'
A.II(EYNXT
ELSIF2
ILKE\'
A.IKEYOI>
illlF2

=2299 ;
=2219 ;

EL!.E GOI0 PERROR.

=2'dl !lOY
=2212· Jl'I'
=2213 ELSIF2: PlOY
=2214 I'm
=2215 CflLL
=2216 RET
=2217 SIZECHK
=2229+ SIZE SET 44
=2221+;

LDATA.'2
PERROR
R0.ISEIM'
Ri.13
OOI..ANK

=2222+;**-_** __ *~********** __
=2231 $EJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-115

inter
LOC OOJ

8178

8178 D93A
917A 0193

817C F9
9170 (;8

8171. 539F
9189 96CE
9182 D4D8
91fJ4 Fe
9185 47
9186 5301"
9188 9692
91SA D4D!l
BlOC 2494
81SE D4DJ
!l198 F~
9191 47
9192 D4Dl
9194 F0
9195 D4Dl
0197 93

9920

AP·55A

L1/£ S(XEE STRTEI'II:NT

=2232 COD£BLK J5
=2242+ ORG 376
=2246 ; ~ tJ1)AT[OODRESS FIELD
=2247 ; (LAST nm CHf~TERS OF DISPLAY) WillI flOOf<ESS BlfFEf<
=2248 If'DI1DR: ItIOY I£XTPl, PlUS3
=2259+ ,r1OV [<1, tI£XTPI..
=22G9i PrJY @R1, IPLlI'o/3
=2264 ; WRITE fllDR INTO NE;XT TIf.'EE BlrFEF: LOCATIONS,
;'2265 UPI)f1{)1: I'IlV It flIR9
=2266 DEC k'0
=226i' flll. A, IIf'H
=2268 JHZ D!>I'HI
=2269 Cfl.L WOI5/'
=2279 !'lOY fl, flIR9
=2211 ZIoIlI' /l
=2272 ANI. A, tefH
=2273 JNZ DSP!'I1
"2274 CRLL MOl51'
=2275 JMP DSPLO
=2276 DSPIII, CALL DSPACC
=2277 DSPf1ID: I'IOV Il, tIR0
=2276 SWAP R
=2279 DSPf11 CfLL DSPRCC
=2'.169 DSPLO: I'IOV A, ~8
=2231 CfLL DSI'RCC
=22C2 RET
=221.13 SIZECIIK
=2206-1 SIZl! !.ET 12
=2'.!B7{ ;
=2280+; ***********-_**_******* ____ ** __ _
=2297 $EJECT

All mnemonicS copyrighted C9 Intel Corporation 1976.
1-116

Loe OBJ

8198

11198 IlOO4
1I19A Er02
019C 74D1
019E 27
01!11" l>7
eIRe FEl
01Al D317
01A3 C6I)G
01AS 27
01AC 3400
01r.s FA
I!lA9 041)3

01R!) B93El
01AD 611F
alAr 14EC
01El FD
0182 D3E
01114 9698
01£16 0429

0200 2306

0202 8936
0204 61
020S 83

8206 er
Irll!7 28
11288 22
021!9 lR
821!fl 11
0200 16
820C 2C
02I!D 2&
02I!E 2(;

82I!r 444f

9211 85

AP·55A

LINE SOURCE STATEMEN1

=22')8 CODEBLK 35
=2303+ ORG 408
=2312 ; r'ERROR . REPEAT
=2313 ; OUTPUT J'/[SSAGl:(P~R()IU'ROI'IPT)
=2314 • OIJTPUHLDATAl
=2315; CAlL INPUUlI'lE(K[Y)
=231G ; UNTIL KEI'='a.EIlRt'f'k'EII!OIJ.j'
=2317 RCRflOR' MOil LI!ATn.14
=2313 PERROI"<- IIOV XPCOOE •• 2
=2m lkLL xrrrsT
=2328 a.R A
=2321 I'KJV P~. A
=2322 II()\/ A. KEI'
=2323 XRL A.IKE\'CLR
=2324 JZ E.I1R0R2
=2325 CLR A
=2326 CALL OUTUl L
=2327 ItOV A, LDRTR
=2328 CfU DSPOCC
=2329 MMOIl KBOOUF. NEGl
=2340+ PIOV Rl. IKCDClUF
=2341t MOIl @R1. HGl
=2345 CALL 1 Nf'1(fI'
=2346 MOil fl. KIY
=234;' XRL fl.IKEI'E/{'l
=2348 JNZ RERROR
=2349 ERROR.,: JMP /'lAIN
=2350 SIZI:.CIIK
=2353+ SIZE Sf.T :s2
=2354+ ;

=2355i ; **************',***************",***********************"*****
=2364 ;
=236!J CODEDLK 80
=2330+ oro 512
=2384 ; I REM IIf'lU'[NT COMMfINI)

=2385 II'II'LE.I1: /'lOll 1l..ILOW(JI'II'TllL>
=2336 /'/ROO A .. OClJD(
=2392+ /'lOll Rl, .BCOOE
=2393+ 1100 fl, ~
=2397 JI'tPP (ffl

=2398 ;
=2399 Jlf'Tl'.t.:
=24118 DIJ
=2481 00
=2482 DIJ
=2483 DB
=2484 ·DB
=2485 00
=2486 D!l
=2487 00
=2483 DB
=2409 ;
=2410 JTOI1O[l: JMI'
=2411 ;
=2412 nOR[c' CLR

LOW(JTO/'I()/)
LOW(JTOOO)
LOW (JTOF"IU
LOIHJTOLST)
LOW(JTOREC)
LOWOTOREU
LOW(COI'IS[:R)
LOW(C~BR)

LOW(JGORES)

foXfl/'lIN

Fe ; r 0=8 ==) lEX FORmT DR1 A DU/'IP

All mnemonics copyrighted © Intel Corporation 1976.
1-117

LOC OIlJ

0212 B472
0214 0429

9216 5497
0218 042'.3

921A 85
0218 9S
021C B472
921E 0429

9229 8499

9222 W5
9224 9429

9226 8461

9228 BFI99
822!1 442E

922C 1JA01
922E 2304

0239 El9J7
0232 61
i!233 A1
0234 F400
8236 FB
0237 Dm
9239 C64D
023B 14EC

0230 0938
023F 0191
0241 OSSll
i!243 0090

9245 0931
9247 8199
0249 14C0
1r.!4B E634
024D 0429

Ap·55A

LINE sotnE STATEPENT

=2413 CALL flFILEO
=2414 JMI' MAIN
=2415 ;
=2416 J10RR CALL f:ReCIN
=2417 Jrt' MAIN
=2418 ;
=2419 JTfl..ST: CLR F0
=2420 CPL F9
=2421 cru HFILEO
=2422 Jrt' MAIN
=2423 ;
=2424 JTOGO: Jrf' EPRUN
=2425 ;
=2426 JlOFIL: c/u COI'IFIL
=2427 Jrt' MAIN
=2428 ;
=2429 JGORES: Jrt> COI'IGOR
=2439 ;
=2431 ; CCIIUlR C~ TO CLEAR BREAKPOINTS
=2432 C!JICDR: I'KJY LDflH1I9
=2431 JIf' BRKfIL
=2434 ;
=2435 ; ctmSBR COItVlND TO SET BREAKI1JINl S
=2436 COI'ISCR I'KJY LDftTfl •• 1
=2437 BRKFIL: !'lOY A..'4
=2438 I'troD T'lP1J n
=2t48+ I10Y R1.'TVPE
=24491 AOO n. @R1

=2455-1 I'1OV @rd. n
=2459 BRKNXT: CALL L5TORE
=246e 110\1 A, KEI'
=2461 XRL A. IKEI'END
=2462 Ji lJRKOO
=2463 CALL IWKEI'
=2464 ItIOV NUI'ICON. PLI.I$1
=2475+ !'lOY RL INI.JIUtI
=2476+ I'KlV @Ri. IPlI.I$1
=2489 MOY RO. ISI'IflO
=2481 !'lOY il'R0, 19
=2482 I'l'101/ 51'1A1H. ZERO
=2493-1 I10V RL .2ftl1
=2494+ MOY @Ri.'ZERO
=2498 CALL I NPRDR
=2499 JNC DRKI«T
=2""...00 BRl(END· JI'I' MAIN
=2501 SIZECIlK
=2504·f <:;Ize 51:.1 79
=2595+;

=2506+; **
=2515 $[JECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-118

AP·55A

LOC 08J LINE 5~CE STATEl'ENT

=2516 COOCBLK 75
924F =2531'1 ORG 591

024F as

9250 am
0252 F1
0253 0326
9255 3492
0257 EB31
9259 347C
02".Al 2348
025D D400
lJ25F 14FC
1I261 FA
02(.2 47
9263 D4D3
9265 FA
92£6 D4D3

926!) 14EC

. 926A FE)

9268 9278

II:!6/) FA
026E 47
926f 5JF9
11271 B675
9273 27
0274 95
0275 68
9276 AA
9277 F409
9279 4459

=~35 ; EXAI'IIN EXAI'IINEII1OOIF'!' I'[~' COItIAND.
=2536 ; D I SPLAYS ME110RV f1ODRE55 SPACE OPT! ON, f'lDDfBS VALUE, AND CURRENT DflTA.
=2537 ; READ!; 1([','BOflR() fIN) INTERPRETS RESPONSL
=2538 ;
=2539 ; OUTT'1JT _MES5AG(((1'II:roR\'_SPRCE_Of'n OH)(SMflY =' (DRTfLBVI E>)
=2549 EXAMIN: CLR F0
=2541 EXR/'I0: mlV A. TI'PE

. =255fji 1'1011 R1,ITl'PE
=2551+ MOV A, @R1
=~55 ADD f1.t5TRMEI'I .: OFFSET FOR FIRST MEMOR\' T'r'PE S1 RING
=2556 CfU OUTCLR
=2557 MO't' Re. II!;11ALO'}1
=255lJ CALL UPDRD1
=2559 MOV fl, 1910019998 ; , ='
=2!:>G9 CAlL f.l)15P
=2561 CAlL LFETCil
=25&2 MOV A. LOOTA
=2563 SWIlP n
=2564 CALL DSPflCC
=25(;5 I'IOV A. LlifITA
=2566 CALL Dg.occ
=2567 .:
=2568 1

=2569 .:
=2579 .:
=2571 .:
=2572 .:
=2573 .:
=2574 .:
=2575 .:
=2576 .:
=2'577 .:
=257C .:
=2579 .:
=2589
=2581
=2597+
=2601
=2692 .:
=2693 .:
=2694 .:
=2[.e5 .:
=2696 ;
=2697
=2600
=2(;99
=2610
=2611
=2612
=2613 I,J<III'I5:
=2614
=2615
=2616

Iff'UT ..KEY(KEY)
IF (KE',' IS 1«11 Nl..tlERIC)

CALL
MI'IOY

I'IOY
184

If (KEY=KEI'END) GO TO PARSER
ELSEn (KE.I'=KEI'NEXl)

INCIIEI'IENT (Slfl)
GOTO EXRl'IIN

EL5EIF (KEV=KEI'PREYl0U5)
DECREMENT (S/'Ifl)

GOTO EXAI'IIN
as[GOIO PERRo.::

INPKEI'
A,KEY

f: .• KEI'
EXAM1

APPEND DATIl "'lTIl (LOWNIEL(KLI'»
CALL LSTORE
GOTO EXAI'IIN

MOV A. Loom
SWAI' n
ANL A. tl8FaH
JF9 EXI1I15
CLR A
Cf1.. F9
ROO A,KEI'
1'Ml'/ LOflTA, A
CALL LSTORE
J~ EXA1'10

All mnemonics copyrighted @ Intel Corporation 1976.
1-119

intJ
LOC OOJ

ezro 11l1J
8270 9681
827F 8429

82!l1 FIl
8282 D312
82S4 968A
8286 34F2
8288 444F
828A FIl
8208 D317
8200 9693
82Ilf" 54f4
8291 444F
8293 Bfl03
8295 249ft

8848

AP·55A

LItE SIU'CE STRTElENT

=2617 ;
=2618 EXAII1' XRI.. II.. I(KEYEII»
=2G19 JNZ EXIII2
=2628 JIf' IfIIN
=2621 ;
=2622 EXIII2: I'KJY II.. KE'I'
=2623 XRI.. 1I..1kE\'NXT
=2624 JNZ EXfIfI3
=2625 Cfl.L IN:SIIl
=2626 JIf' EXmIN
=2627 EXRIG: ItlY II.. KEY
=2628 XRL II..II<E't'CLR
=2629 JN2 EXAII4
=2638 CfU DECSI'IfI
=2631 JII' EXIIIIIN
=2Q2 EXflK4: IIOY LDATR.J83H
=2G33 JIf' PERRmI
=2634 SIZECIlK
=2637+ SIZE SET 72
=2638+;
=2639i; ____ .. -**** .. tt .. ** .. ~......_
=2648 ;
=2649 COOEELK 4
=2654+ 0kG 236
=2658 IIf'KI:Y: CfLL KBOIN ; RETWIS KEV DEPRESSIOO IN R
=2659 IIOY Kl:Y. R
=266Il I'E
=2661 SIZEClI<
=2664-1 SIZE SE1 4
=2665";
=2666+;_~1""1 •• tt_~tttt_*_ .. ___ t"*._
=2675 $EJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-120

inter
LOC OBJ

0400 2392
94923490

9494 8938
9496 F1
9497 %15

04!l9 8939
9408 F1
848(; 8924
840E Ai

94!lf 8931
8411 F1
8412 8925
8414 Ai
9415 FE
8416 D312
8418 C61F
8411l 2391

841C B921
841E Ai

941F 8924
8421 F1
8422 AA

8423 8921
8425 F1
8426 87
84275397
8429 Ei'
942fi 8388

842C 0938
842E Ai
942F F4C3

8431 8939
8433 F1

Ap·55A

LINE SOURCE STATEMENT

2676 $
=2677
=2697t

INCLUDE(:F8:GOCOIIS.I'IOD)
COOEEtK 218

ORG 1924
=2791 ; Ef'RIJII RUN EIIllATI!14 1'KlDE.
=2('82 ;
=2793 ;
=2794 ;
=2795 ;
=27116 ;
=2787 ;
=2700 ;
=2799 ;
=2710 ;
=2711 ;

R[l0Al> Er wmt SYSTEM STATUS AND RELEflC...E.
SEQlENCE I S AS FOLLOWS'
IF L1J1tfIND WAS TERIIINffTEl) 8Y TIE 'NEXT' KEY:

$lORE SI'IfI INTO EP PC;
STORE EP PC INTO TOP··QF-STOC.K (RELATIVE. '/0 Er P'--U);
PfiSS EP Re;
PASS EP PSW;
Pf\5S Er TIMER;
PASS EP ACClKlATOR;

=2712 EPRUN: MOV
=27B GILL
=2714 ~Y

=2723t I10V
=2724+ i'IOY
=2720 JNZ
=2729 I'II'fO\I
=2745-1 MOV
=2746" I10V
=2752+ PlOY
=2753" i'IOY
=2756 MmY
=2m+ i'IOY
=2773" I'IOY
=2779+ MOY
=2788+ !'lOY
=2783 IJ'CONT: I'IOY
=2784 XRl
=27ll5 JZ
=2i1l6 PlOY
=27ll7 IftJY
=2889" IIOY
=2001-1 I'tOY
=~ EPCON1: ptl()Y
=2821+ i'IOY
=2822+ I'tOY
=2835-1 IIOY
=21138 MI'IOY
=2847+ MOIJ
=2048+ PlOY
=2852 DEC
=2&53 ANI.
=2854 RL
=2ll55 ADD
=2856 ItIOY
=2869+ PlOY
=21:79+ PlOY
=2874 CfU
=2875 MINC
=2880+ I'tOY
=2lJe1+ I'IOY

n,12
OOTUTL
A,NIJ1CON

Ri, 1/UIC!14
A,@Ri

EPC!I4T
E.PrClO, 5Ift.O

Ri,ISlft.O
A,@R1
R1, 1EI'PCl0
@Ri,A

EPrCllI,5If1III
RL IS/'IAHI
A,@R1
RL IEPPCIII
@R1,R

. R,KE\'
ftll<EYNXT
EPC!I41
flo I91H ; STACK 01£ LEYEL DaP TO lID U!Ik Sl RRlIlll flOORESS
IiPPSlo/,R

1!IR1, II
LORTA. EPf'CL0

R1,IEPPClO
~,@R1

LDATA.fl
A,EPPSW

fl

Ri, IEPPSW
A,@R1

A,I97H
A
flo IIIIIH
5IR.O,f}

Ri, ISI1fLO
@RLA

ErSTOR
SlR..O

RL.SMfl.O
A,@R1

All mnemonics copyrighted © tntel Corporation 1976.
1-121

intJ AP·55A

LOC . OOJ LINE SlUICE STATEll.NT

8434 17 =2885+ IN; A
8435 A1 =2Sgef IWJII flIRi, A

=2893 III)Y A,I:PPSW
8436 B921 =2992+ . 1m Ri,1EPI'SN
8438 F1 =2983+ 1m A, flIRi
8439 53F8 =2987 fit. A, I8FIlH

=2988 1m. A, EPf'CHI .
8438 em =2914+ PlOY Ri,IEN'CIII
8431) 41 =2915+ OR\.. fI,@R1
843E AA =2919 PlOY LOAlf1,A
843F F4C3 =2928 CALL EPSTOR
8441 BSll1 =2921 [PCNT: 1'10'1 RB, 1L1»!(OY2BAS+OYSIZE)
8443 746ft =2922 CALL ovum

=2923 !mY fl,[~

8445 8923 =2932+ PlOY Ri,tEPRe
8447 F1 =2933+ 1m A,1!R1
844l) f4ll9 =2937 CAI..L EPf'!\SS

=2938 IIIOY A, E!'PSW
844A 8921 =2947~ IfOY RL IEf'PSII
844C F1 =2940+ I10Y A,@R1
8440 f408 =2952 au EF1'f1SS

=2953 ItIOY A, EPTIIIO:
844F 8922 =2962+ /lOY RLIEPTII'IR
0451 F1 =2963+ /lOY R,@R1
8452 F408 =2967 CALL EPNlSS

=2968 ItIOY A,EPRCC
8454 B928 =2977+ PlOY R1, IEI'RCC
8456 F1 =2978+ I'IOY A, flIRi
8457 F408 =2982 au E.PPRSS
8459 8983 =2983 OR\.. P1, tee8IlIl811B
84511 F400 =2904 CALL EPST£P
8450 745A =2985 au 0YSIflP
845f 846B =2986 JIt' coo

=2987 j
=2988 j COI'IGOR GO FFaI RESET COIIItlN)

=2989 j RESET PROCESSOR
=2998 j RELOfI) LOll !JIDIJ< PROGRAtI B'1'1"ES INTO f'ROGRRI1 IDlRY
=2991 ;

8461 2382 =2992 COI'IGOR: PlOY fI,.2
8463 3488 =2993 CALL OOIUlL
8465 !l918 =2994 ORL 1'1, 1EPRSE1
8467 745A =2995 CALL 0YSIfIP
8469 99EF =2996 ANL Pl, '(NOT EPRSET>

=2997 ;
=2998 j
=2999 jCOO SET If BREAK LOOIC FOR APPROPRIRTE BI\tfII(COtI)ITIIIIS,
=31188 j Df."PEND ING 00 COOENTS IF '"M'('.
=-j
=J882 coo: III)Y A,lWE

84al B~m =3911+ I'IOY RL.TVPE
846D F1 =3812+ l'IO'II fl,@R1

846E 8m =3916 AOO R,ILI»! GOTBL
8478 83 =3917 JII'I' (If!

=3918 ;
8471 7C =3919 GOTBL: 00 LI»!(CGOtIl)

All mnemonics copyrighted © Inlel Corporalion 1976.
1-122

LOC ODJ

0472 76
8473 80
0474 76
0475 80

8476 99fD
11478 8~'91
047A 8482

947C 99F"C
847E 8482

0482 ffi29
8484 9flEF
9486 991)1'

04eS F4F4

948f1 F4AC
948C r4flF
948E 37
84er F2!15
8491 86S9
0493 8400

9495 0499
9497 84ln

0499-B400

9498 8937
049D Fl
849E 93A!
9400 113

94Al A6
84A2 SA
94A3 SA
84R4 Afl
04A5 All

Ap·55A

LIN[SOLm: STATEIt::NT

=3929 00
=3921 00
=3922 DB
=3923 DB
=31124 ;
=3025 cGOpnr:
=302G CGOWO· AIIl..
=3927 OM_
=3028 Ji'tP
=3929 ;
=3030 CGOIID· ANI..
=3931 JI1P
=3032 ;
=31G3 CGOTRA:

LOW(CGQIoIl)
LOW(CGOSS)
L~(CGOPAT)

LOW(CG()TRA)

Pi, INOT Il90099100
Pi. 1990099911)
Ept;>lJI4

Pi, INOT 9IlIlOO911B
EPRUN4

=3034 CGOSS· In Pl, .il8OO9911B
=3035 ;
=3936 ; EPRUN4 SE1 Uf' CONTROL LOGIC TO RUN USER'S I'ROGRAI'I.
=3917 , ~'ELEASE PROCESSOR TO f<lJI.
=3938 ;
=3939 Ef'RUN4· ORL
=3049 fR
=3941 All.
=3042 CfU

P2., '90100009f)
['2, INOT 9OO19OO9B
Pl, lNOT I'tOOOJT
[f'REL

; D ISAELE. EP LINK REFERENCES.
; SET fIlL REFERENClS TO RAt! fJAAAY.

=3843 ;
=-3944 ;
=3845 ;

WAIT FOR KEYSTROKE Itf'UT OR If1RDWARE BREAK TO 0l'CUR.

=3946 lPRUN1: CALL
=3847
=3848
=3849
=3959
=3951
=3~ ;

CIlLL
Crt.
JB7
JNI
JI1P

IOFPOL
KOOPQL
A
ErRUN3
EPRUN2

. EPRLtll

=3053 ; EPRUN3 n l([I'SlROKE WAS DETECTEIJ WHILE EP WAS RlJINING.
=3954 ; BREfl: EXCCU"IION,
=3055 ; PROCESS KEYSTROKE.
=3956 EPRUN3: CfIlL. STSAYE
= 39S, JMr EPf1IJN5
=3058 ;
=31159 ; EPRUN2 flN ENfJBLED BREAK CONDITION 0CCIJRm>.
=39G9 ; BREAK EI'IUlf1TJON /100£,
=3961 ; CONTINUE ACCORDING TO GO COItIAND TYPE .

. =30C2 EPRUN2· CfilL STSAVE
=30G3 i'II'JJV A, WI'E
=39721 MOV R1, ITYPE
=39"13+ I10V A, @Rl
=3977 fllD fl, 'UlII CNTmL
=3978 JI'1PP flIA
=3979 .;
=3989 CNTTBL: DB
=3981 00
=3982 DB
=3983 00
=5984 DB

LOW(BRKERR)
LOW(EPRUN6)
LOW(EPIWN6)
LOW(CNTTRA)
LOW(CNTTRA)

All mnemOnics copyrighted © Intel Corporation 1976.
1-123

LOC 08J

Il4fI6 BIl8Il
94IlS 249A

94AA om
94AC F1
94AD 94F2
04flF F4fIF
94Il1 F241

, 0483 14EC
84B5 Fa ,
94~ DlD
9488 96C7
94IlA 14EC
94BC FE
9400 D112
94Ef 96C7
94C1 2382
94Cl 3499
94C5 8441

94C7 9433

Ap·55A

LINE SWlCE STRIDENT

=3986 ; ~ BREAKPOINT LATCH IllS SE"I TllOOOH BREflKPOINl 5 NoT EIflBLED.
=3987; DISPLAY I~ ~'a1I1ESSAGE.
=J9S8 1lRKERR: !lOY LOflTA, I9EII
=J009 ' .M' rH'J/OR
=31!99 ;
=3991 CNTTRA: I'II1OY
=3193+ !lOY
=3191+ !lOY
=3195 CIU
=3196 CALL
=3197 JB7
=3198 ;

A,DSI'll"
Ri,'DSf'TIII
fl,lIR1

DElAY
KOOI'(l.

EPCNT

=3109 ; Ef'RlK) IIf'UTCKEY),
=3119 ; Ir KEY--OO GO TO PARSER,
=3111 ; It.fUT KEY,

; Bi' SET INDICATf:S NO KEYSTRM.

=3112 ; IF KlY()1£l(T GO TO f'Al&R,
=:!113 ; CONTINI..(IN SAI'IE 11ODE.
=3114 ;
=3115 EI'RI.Ki: CALL INPKEY
=3116 MOY
=3117 XRl
=3118 JHZ
=3119 EPRI.Il6: CALL
=3128 lIllY
=3121 XRL
=3122 JNZ
=3123 I'tOY
=3124 CAlL
=3125 Jill'
=3126 ;

A,KE\'
A,IKEYOO
EPREl
IIf'KEY
fl,KEY
/I, IKEYNXT
L1'RET
/1,12
runm.
Ef'CNT

=3127 ; EPRET
=3128 ;

EXECUTIIIl I'IOOE IS TO BE TtRI'IIIflTl:l),

=3129 EPRET:
=3139 ;

JIJtP IN10 PARSER TO INTERPRET KE\' ALREADY DETECTED.
JItP 1lA1N2

=3131 SIZECHK
=3134+ SIZE SET 291
=:1135+;
=3BGi'; **t_**~,******._*_*_*_********_t __ "*
=3145 $EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-124

intJ AP-55A

LOC OOJ LINE sotm 51 ATEI£NT

=3146 COOEBLK 115
85IlII =3171+ IE 1280

=3175 ; STSAYE EP STATUS SAVE 9JlROOTlI£.
=3176 ; F(gE CALL TO LOC 814H;
=3177 ; SAVE EP ACC;
=3178 ; $AYE Er TII£R;
=$179 ; Sf1Yf:. EP P$II;
=3188 ; SAVE EP Re;
=3181 ; SA'IE EP lW-(F-5TACK IN EP PC;
=3182 ; kE1U!N.

85IlII 7441- ·=3183 STSAVE: CALL EPfJRt(

8S82 2383 =3184 /'lOY R,13
85843488 =3185 CAl.L OOTUll
858G 74511 =3136 CALL OVSIR'
8588 1lS8I: =3187 /'lOY 1\'8, 1l000(OY8OOS+OYSIZD
858fl 746A =3188 CALL (M.0fl)

858C 8A28 =3189 Il<l P2, 1II81!18OO81l
Il5IE 2314 =3198 /'Xl" R,114H
8518 91 =3191 IIOYX 1!R1, A
8511 9fIOF =3192 All. P2, INOT 98190111!98
!!:i13 8983 =3193 OR!. Pi, 1888888111l
8515 F40B =3194 CALL EP5TEP
8517 eA20 =3195 ORL P2, 18910Il8008
85199fU =31% RtI.. f'2, INOT 889188081l
8518 8903 =3197 ORL Pi,I(ENBRAII OR EN3LN{)

851DF400 =3198 CALL EPS1EI'
=3199 ;
=3288 ; EXECUTION PROCESSOR IS NOlI AT LOCIlTIOO 8Il9I1 INTERNAL WITH
=3281 ; (RETlRN mDRESS+2) PUSlIED 00 STACK.
=3282 ;

8!!1F B!lA5 =:a83 /'lOY R8, ILOW(OY38AS+OVSIZE)
8521 7461-1 =3284 CALL ovun>
1!523 F4D8 =:1285 CALL EPt'ASS

=3286 ItfOY EPACC,f}
8:)25 B928 =3219+ /'lOY 1\'1,tEM;C
8527 Ai =S22B+ /'lOY I!RLR
8528 F400 =3224 CAll EPPASS

=3225 ItIOV EPTlI1R, A
852A 8922 =3238+' /'lOY R1,I£PTI~

852C Ai =32$9+ /'lOY @Rj.,A
852D F4D8 =3243 l:fI.L EPPASS

=3244 Il1011 EPPSW,R
852F 8921 =3257+ /'lOY RLIEPPSW
8531 A1 =3~O+ I10Y PRLA
8532 1:400 =3262 Cfll B'PflSS

=32G3 Il1011 EPR8,R
8534 8923 =3276+ /'lOY R1,1EPR8
8536 Ai =3277+ /'lOY @R1,A
!!:i37 C8IlB =J281 IIOY R8, 1l000(0Y1BAS'IOYSIZE>
8539 746A =3282 CfU OYLOflD

=3283 PmY R,EPPSW
8538 b'921 =3292+ /'lOY fd.,1EPPSW
8531) F1 =3293+ /'lOY A, f!fd.
1153£ 87 =~7 DEC A
853f 5387 =3298 All. A. 18711

All mnemonics copyrighted © Intel Corporation 1976.
1-125

inter AP·55A

lOC OBJ LINE SW!CE STATEtt:NT

9541 E7 =3299 RL II
85428388 =1J88 roo A.10SH

=3J81 /'IllY SIIfl.O, A
11544 B9J8 =3J14. IIJV R1.ISIR.O
854G Ai =J:U5+ IIOY 8RLA
8547 F487 =3119 Cfl.l Ef'FET
8549 93ft =1128 roD IU-2
854B AA =1121 !lOY WfllA,1I

::JJ22 I'RlY El'PCl.O, A
II54C 11924 ::11J5+ IIOY Rj"IEPPClO
Il54E Ai =:S~lG'1 I!OV 8RLA
854F F4C1 =3348 Cfl.l EPST~
8551 B9J8 =3341 I'KlY RLISIR.O
11553 11 =3342 INC lIR1
8554 F487 =3343 C/U E1'FET
85!J6 fVl =3344 /lOY lDflTA. n
8557 5JF9 =3345 All. A. 1111188888
0559 2A , =3346 XCI! A, looTA
Il55A 1JFF =3347 AOOC A.'-1
055C~ =3348 AtL fl.18IlII811118

=3349 /'IllY ErPCHI,A
Il55E Il925 =3362+, IIJV R1. IU'PCIII
Il568 Ai =3363+ IIOY I!RLA
8561 4A =1367 0Rl A.lDflTA
IlS62 fIA =3368 IIJV lDflTA.1l
Il56J F4C1 =3J69 CAll EPSTOR
8565 Il825 =n78 IIJV Re,1EPPcH1
8:i67 347C =3371 ' CAll lIf'1)fI)1'
9569 2348 =3372· I'IOV fI, 1819888888 ; "-" ~ DISPlAY
056B D4DS =3173 Cflll WDISP
056() B82Il =3374 IIJV R8,IEPfJX
Il56F 3498 =3375 CfLl DSF1IID
8571 03 =3376 RET

=3377 SIZECII< ,
8872 =3J88+ SIZE S£:.T 114

=3381+;

=3382+; ***-**********---*********--*-****
=3391 $EJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-126

intel' AP·55A

LOC OOJ LItE sotm STnTEI'ENT

3392 $ IIUOO£(:~9:HfILE.I'O)
11090 =3393 CHf1RCR EOO 0011 ; (CR)

90IIA =3394 CIm..F Et;'U 9FIl ; (Lf)

991A =3395 CNTRLZ [00 1P.H ; CONTROL-Z
=3396 ;
=3397 COOEBLK S9

9297 =3412+ ORG 663
=3416 ; tlRECIN IlEXFILE RECORD IIf'UT ROUTINE

9297 34CD =3417 Ift:CIN' CALL CHRRIN
9299 D31A =3418 XRL A, ICNTRI.2
929B C6E9 =3419 JZ DONE
929() D31A =3429 Xli'L A, ICNTRLZ
829F 033A =3421 XRL R, ,(': ')

92A1 9697 =3422 JNZ tRECIN
=3423 ItIOV CHKSUI1, ZERO

92A3 rooo =3428+ I'IOV CH<SUI1, .ZERO
92A5 14F9 =3432 'CftL DYTEIN

=3433 Ift)II BUFCNT, A
92fl7 E941 =3446+ MOil R1,IBlHNT
92A~ A1 =3447+ MOY ~1,A

92AA 14F9 =3451 CALL EYTEIN
=3452 I'l1'1011 Sl'lAHI, A

92AC 9931 =3465+ I'IOV 10:1, .SlftII
92AE A1 =34G6i' 1'1011 @R1,A
92flF 14F9 =3478 CflLL BYTEIN

=3471 ItIO\I Sl'fALO, A
92E1 B938 =3484+ I'IOV Ri,ISIflLO
92E3 fl1 =3485+ I'IOY @R1,A
9284 14f0 =341)9 CALL BYTEIN

=3490 IftlY RECT\'P,A
02868942 =359JI I'1OV Ri, 'RECTYF'
92B8 A1 =3594+ MOil m,A

=]598' ;
=3599 ; IlDATIN HEX DATA BYTE IN
=3519 fIDATIN: ItIOII A, BlfCNT

92E9 8941 =3519+ I'IOV 1<1, IBlfCNT
9200 F1 =3529+ lIOII A,m
92b'C W:C =3524 J2 R£COON
92BE 14F0 =3525 CALL BYTEIN
92C9 AA =3526 lIOII LORTA, A
92C1r490 =3527 ClU LSTORE
92C3 341'2 =3528 CALL INCSI1A

=3529 I'IDEC BlfCNT
92C5 B941 =3534+ I'llY Rl, IBlFCNT
92C7 F1 =3535+ MOV A,@R1
92Cll 97 =3539+ DEC A
92(,'9 A1 =3544+ 1'1011 @R1,A
92CA 4489 =3547 JIt' IOOTIN

=3548 ;
0:iCC 34CD =3549 RECOON: CfU CHARIN
92CE 0331- =3559 XRL A,'('?')
92D9 C6DB =3551 J2 CKSI'IOK
9202 033F =3552 XRL A,'('?') ; SWITCH BACK TO DATA ClflRACTER
92D4 348/l =3553 CAlL NIBIN2 ; JOIN SUBROUllNE ALREAD\' IN PROORESS
II2D6 14F2 =3554 CllL B\'TE11 ;DJnO

All mnemonics copyrighted © Intel Corporation 1976,
1-127

LOC OBJ

9200 FD
82D9 96f1

920013942
0200 F1
92DE C697

92E0 83

!J2E1 009C
92E3 24911

984E

98f8

98F0 3488
9IF2 47 '
0IlF3 All
98F4 3488

98F6 4A
88F7 All
88F8 ill
88F9 Ill)

99FA FA
88FB 83

0188 34C1)
81BA 113C6

01fI(; E6(;2
01BE 831'9
91C8 E6C9

LINE SOlJ:C[STAT[I£NT

=3555
=J55G
=3557 IIIJV
= 3573i' /'lOY
=3S77 JNZ
=3578 CKSf'O(: I'II'IIJ\I
=3587i /'lOY
= 35SC+ /'lOY
=3592 JZ
=3593 ;

A, Cl-l<Sltl
/l.. Clf(SIJI'I

CHI<ERR
/l.. R[CT'rr

R1, 1RECT\'P
A,@R1

I~CIN

AP·55A

; (~SlLT Foo /Of. ''?' CHIlRfICTERS IS lIS If
BYTE IN WAS CflLED.) "

=35S4 ; IXJE I£X FILE ca!R[CTLY RECEIVED
=3595 IXJE: RET
=35% ;
=3597 ; CI-I<ERR CI£CKSttI Ek'ROR IN INPUT RECORD DETEC1£:D
=3598 CII(ERk: It)\! LDATn.10CH
=3599 JIIP PlRROR
=3608 SIZECII<
=3603+ $IZE SET 78
=3694'1',
=3685+; **** __ ***._**** •••• ***._4_*""* **4**
=3614 ;
=3615 COOEIlLK 12
=3628+ mil 249
=3624 ;BVTElN eYTE 11f'U,[~II£,
=3625 ; RECEIVES TWO I£XIDECII'IAL CllARACm.'5 FRIll HE TM IIf'IJT DEYICE
=3626 ; AND ASSURES THEIl INTO A Sll¥.lLl BYTl OF DATA.,
=3627 D'1'lEIN: CALL NIBIN
=3628 BYTE! 1: 5WAf' A
=3629 /'IOV LDnTA, A
=3630 CfU NIBIN
=3631 ImL LDAT/1. A
=3648+ mL A, LooTA
=3668+ IIOY l()fITA, A
=3664 AI)[) A.CllKSlI'I
=3665 /'IOV CllKSlII, A
=3666 /'IOV A, LORTA
=3667 RET
=36GS SIZECH<
=3671+ SIZE SET 12
=3672+;

=3673+; ****-..... *.--**----=3602 ;
=3683 COOEBLK ~
=3693+ OI:G 449
=3697 ; NIBIN RECEIVES A I£XIDECIIR. CHftRRCTER IN) PROOlICES A 1'IRSKEl> FOlR BIT VALlE.
=3698 ; NOTE,· ~ ClECKING I.lOI£ TO VERIFY I£XIDECIIR. VALlDIT\'
=3699 NIBIN: C/U CHARIN
=3788 NIBIN2: ROO /l.. .-~
=3701
=3782
=3783
=3784

1M:
ADD
me

NIBB

; OCC=0F6-8FF FOR CllAROCTERS '8'-'9'
; CHARACTERS) '9' f'ROOlJCE OYEkfL~

; ACC=8"'5 FOR CIfIRIlCU:RS 'A' -'I·'
; ~ IF CHARRCTER BEllEEN 'S' IN> 'A'

=3705 ;
=3796 ;
=3787 ;

ACC=0F61Hl5H FOR ClflRACTERS '8''''F'

All mnemonics copyrighted @ Intel Corporation 1976.
1-128

intel'
LOC OGJ

91C2 !!3FA
91C4 0310

91C6 E6C9
B1GS 83

91C9 E:Aen
B1C1l 249fl

0015

01CD

B1L!) 1)449
1l1eF 537F
01D1 83

LIt£

=3708 NIBI3:
=37l.l9
=3710
=3711
=3712
=3713 ;

SOURCE STATEtENT

ADD n.I-·6
ADO . A.I1BH

JNC A'IfJ'F:
RET

AP-55A

;ACC=0fflt·0fFfl for.: CHfIkflC1ERS '€I'-'F'
;f1CC=OOfHlFlI FOR CHARACTlRS '0'-'F';
; OV£.f..'FLflI If f1IlO\J[15 JR!.(.

=3"114 ; fl'IERR ILLEGFt f£XIDECIMfll CfffllCTER ~,[CEIV£D
=$715 ASCERR i'KN LDAIn. leAH
=3716 JI'IP PERROR
=3717 SI2ECHK
=372l1t SIZE SET 21
=3721+;

=3722+; ******************~'************************'I"****************
=31'31 ;
=3,32 ;
=3733 CODE81K 5
=:>743+ ORG 461
=3747 ; CUMIN CHARACTER IIf'U) ROUTINE.
=3748; RECEI't'[S 01£ fl'".>CII CHARACTER FROI'1 11£ LOGICft READER DEVICE.
=3749 Ch'ARIN' CAU CIN
=3753 ANI.. n •• 7FH
=~Z751 RET
=1.752 SIZECHK
=375S'f SI2[51: T ~

=3756+ •
=3757+; t****************************~'***********************t******
=3l66 ;
=3767 ;
=3768 $EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-129

inter
LOC· 00,1

8572

9572 8931
9574 1'1
9575 8935
9S7? fl1

957lJ 8939
957A F1
9S7B 8934
1I!!711 A1

9S7E rooo
9SOO B865

Il582 14FC
9S84 1'1\
9S8S All
9S86 18
8587 84£2
9589 E696
958B 34F2
95ro FB
II5SE 9388
9599 E682
9592 D49Il
0594 A472

95% D400
959S B6/l7
9S9A 34D2
959C B8AE
959E 1'8
9S9F fl3
95A0 CCA7
95A2 B4flI)

. 95A4 18
85A5 A49E
~7 34D2
95A9 2310
9SAB S48D
0SfID 83

95AE 293A3838

Ap·55A

LIIf: SOO«I 5TATElENT

=3769 COO[[lLK 190
=3794i C»1G 1394
=3798 ; !-fILEO HEX FILE ooTPUT SlIlROUTIIf:
=3799 ; lIEN CALLED WITH F9=9 OOTPUT IS STfHJflRO lEX FILE FORPIflT.
=J009 ; WHEN CRLLED 101m: F0=1 ooll,\.IT IS rORllAlTED DA1A DUMP TO CRT
=3881 HFILEO: I'II'IOY 1E11H1.. SPfAHI
=3B17+ ~w R1, tsI1flHl
= 3S1e+ MO\I n, @R1
= 3B24t MOV Ri, lIIEIVII
=3825+ MO\I~, A
=3820 I'mV I'£I'ILO, SIRO
= 3S44+ MO\I Ri, 1Slft.0
= 3S45i· MO\I A, toR1
=3851+ 'ItJY R1, 1tE1L0
=3852+ MOY @R1, A
=38:iS ItIOY Clf(SU/'I, ~
=3860+ MO\I CllKSUI'I, lZERO
=3864 MOV 1"9, 1HEX8lf
=3865 ;
=3866 ; LDB\'TE LOAD /£XT B'r'TE FROI1 I'EI'IOR\' INTO lEX BLfFER
=3867 LOOVTE: CIU LFETt:f1
=3868 110V It, LDflTA
=3869 MOV @Re, A
=3879 INC R0
= :ro71 CALL CllPI'IAS
=3B72 ,Ill: OOFIL
=3873 CPU 1NC'"J1A
=3874 110''' A, R9
=387S OOD A, t· (IllRlN+HEXBlf)
= 3f;76 JNC L()[l\'TE
=3877 CAlL HRECO
=387S JMP IFILEO
=3879 ;
=3889 ; BUll 00 f£X FILE TRflNSI1ISSION·
=3881 ; PRINT OUT BlfFIR FOR LAST DArn RECORD
=3882 .; PRI NT OUT CAlf£D 'EOO-or· -FILE' RECORD
=3W3 ; RE1LRN.
=3884 oom. CAlL
=300S JFe·
=38CG CIU
=3887 MOV
=300S E1I>F1: MOY
=300s I1OYI'
=3899 JZ
=3891 CALL
=3892 Ill:
=3893 Ji'IF'
=3894 HFOO/£: CALL

IRECO
ffDOl£
TCRlFO
~.'8, I(L(Io/ EOFREC)

f\,@A
ffOONE
ClfIRO
R0
[N>f1
TCRLFO

=3895 I'IOY fl, ICNTRLZ
=3896 CllLL CfflRO
=3897 RET
=3898 ;
=:r099 ; EOFREC CHARACTER SkTING FC»1 t'fllH:D END-{f-fILE RECORD rOR
=3909 ; INT[l lEX rILE FORIIAT STf1NDARD.
=3901 [OFREC: 00 ' :OO000091Fr'

All mnemonics copyrighted @ Intel Corporation 1976.
1-130

inter
LOC OOJ

05B2 39393939
95B6 30314646
9SBA 00

0049

II68Il

Il689 FB
9601 9398

11603 8941
9605 A1
9606 3402
8688 2329
9600 B4CO
960C 8617
96IIE 233f\
9WI II4BI>

11612 8941
9614 F1
9615 3400

9617 8935
11619 F1
1161A34DB

961C 13934
961E F1
1161F34DB
11621 B62B
11623 27
11624 3408
962(; C42C
9(;28 2330
~B4BD

962C [:865
1162[8(;32
9630 C436
11632 2329
0634 E4BD
9&36 Fe
9m 3400
1lG391S

963A 13941
963C F1 .
11630 97

AP·55A

LINE SOlJ:CE STRTEI'lNT

=3902 DB 9 ; EIIl Of STR II«.i COO[BVTl
=39113 51ZECH<
= 3ge6l S 12E SET 73
=3997+;

=3988+; ""***********************""*~-'''******.**-************'I''*
=3917 ;
=3918;
=J919 COOEBlK99
=j94!1+ ORG 1536
=3953 ;~IIIECO HEXIDECIIR. REcoo) OOTPUT SEQlBa.
=3954 ; lEX BlfFER ALREAD\' LOOOCD.
=3955 URECO' MOV A,RQ
=3956 flOO A,I-fEXBlf
=3957 MtIOV BlfCNT, A
=3970+ I'IOV Ri, IBUFCNT
=3971l MOV ~,R

=3975 CALL TCRLFO
=3976 /lOY fl, I' ,
=3977 CALL !lAW
=J978 Jf9 FOOf'1
=3979 MOV A,I' :'
=3989 CIU CIlARO
=3981 ItIOY A, IllFCNT
=3990+ MOV RL IBUFCNT
=3991+ MOV A, @l.:1
=J995 CALL ()'{fEO
=3996 rDUl'\P1: tmV R, I'EI'IHI
=4005+ I'IOIJ Ri, tl'lEl'IHl
=4006+ !'IOV A,@R1
=4019 CALL B't'TE0
=4011 ItIOY A, 1'E1'l0
=4929+ MOV R1, II'IEIt.ll
=4921+ !'lOY A,@R1
=4825 C/lLl BYTEO
=4926 Jf9 FOUI'IF'2
=4927 CLR A
=4112!l CRI.L B'fTEO
=4929 JIll ooTO
=4039 FDltIP2: /lOY A, 1'='
=4031 CAll CHARO
=4932 ;ooTO DAHl OUTPUT
=4933 ooTO: MOV RfU/lEXBlF
=4034 ooT01: JF9 FDUIf'5
=4035 Jl'IP f-0UI'IP3
=403& F/.lUI'IP5: MOV A,l' ,
=49:17 CIU CHARO
=4038 FllUI'If'3: /'lOY A,@RIj
=4039 CI1I.L BYTEO
=4040 INC R9
=4041 1'IOJN2 BtfCNT I DAT01
=4046+ /lOY RLIBlfCNT
=4047+ /lOY A,@R1
=4051+ I)£C A

All mnemonics copyrighled © Inlel Corporation 1976.
1-131

inter
LO:; OOJ

063£ Ai
8QF 962E

9641 B648

9643 fI)

8644 37
8645 17
964(; 3400
9648 83

9849

9102

9102 231lD
8104 Il48I)

9106 239ft
9iDS B4BD
91DA 83

9100

9100 ffi
910C 6D
9100 AI)

910E FA
91DF 47
91E9 B4CB
91E2 FA
01E3 B4BB
91E5 83

91E6

91E6 539F
1J1E893f"6
91EA F6EF
81[C 93lA
91EE 83
01EF 9341

AP·55A

LINE

=4956+ 11)\1 I!R1., A
=496&+ JNZ DAT01
=4062 ;
=4IJ6J ; EN>REC EN) RECORD BEll«] TRANSMInEO
=4964 EIMC: JF9 FDUI1I'4
=4965 Ift)Y A, (;III(SIJI

. =4IlB1 + 11)\1 A, CfI(SIJI
=4885 CPL A
=4006 II«: A
=4987 Cfll BVTEO
=41J88 FDI..I?I'4: I<El
=4089 SIZECfI(
=4992+. SIZE SET 7J

=4994+; ******.***-*-.****~--.~-,-************
=41113 ;
=4194 COOEDLK 9
=4114+ ORG 4G6
=41Hl ; TCRLFO TfI'E (CR)<Lf') OUTPUT
=4119 TCRLrO: IIOV A, ICIMR
=4120 CALL CHfRO
=4121 IIOV A.ICI6LF
=4122 CALL CIfIRO
=4123 RET
=4124 SIZECHK
=41.27+ SIZE SlT 9
=4128+;
==4129'~; *****_**'1,**.* •• --*-**-********-************
=4138 ;
=4139
=4149i'
=4153 ; B\'TEO
=4154 B'1'TEO'
=4155
=4156
=4157
=4158
=4159
=41E.9
=41Gl
=4162

COOEBLKl1
0I«l 475

BYTE OUTPUT.
I10Y LDATR, A
ROO A, CHKSIJI
11)\1 CHKSltI. A
I10Y A, LooTR
SWff' A
au NlCO
I10Y A, LooTR
CALL NIBO
RET

=4163 SIZECll(
=4166t SIZE ~T 11
=4167'~;

=4168+;*--***-***-*****--­
=417'(;
=41711 COOEIllK 12
=4188+ oro 48(;

=4192 ; I£XfI<"..c IEXIDECIIR. NIsru::: TO ASCII C/IIRACTER mMRSION.
=4193 IlEXASC: ANI. A,WH
==4194 ROO A. '(-19)
=4195 JC I£XNIB
=4196 ROO A, '(19iJ 9')
=4197 RET
=4198 HEXNIB: AOO A, .('A')

All mnemonics copyrighted © Intel Corporation 1976.
1-132

inter Ap·55A

lOC OOJ lHE S()IEE STATEI£NT

91F1 83 =4199 RET
=4290 SIZEClI<
=4293+ SIZE SET 12
=42114+;
=429St; _-_******_ ••• *_ "' **.**.** •• ***.**
=4214 ;
=4215 ;
=4216 DECLARE BITSO, COOS1

9Il98 =4238 BITSO EQU 11 ;DATA ElITS F'llT OUT (l/ulJI)l~ M 51!}' BITS)
=4231 ;
=4232 COOEBU(38

84C9 =4252+ C41G 1225
=4256 ; HBDLRV Ift.r-BIT TIlE DELfI'"
=4257 IIBDLAY· Itl)',' H, IIlITHI

04C9 8927 =42n~ i'IOV 111, HITHI
94GB F1 =4274+ i'IOV A,@R1
84CC E945 =428&1 I'IOV Ri,1H
84CE Ai =4281+ I'IOV @Rj.,A

=4284 Itl)',' Ri,HBITlO
84CF 8926 =4380+ IIOV R1, IHBITlO
9401 rl =4381+ I'IOV A..1!R1
8402 A9 =4314+ IIOV 1o!1,A
8403 8407 =4317 Jrf' HB01
84D5 B900 =4318 IlOO2: 110 ... Ri,te
8407 (91)7 =4319 fib,!)!. DJN2 Rl,1I001

=4320 IIlJI'IZ H,18)2
II4D9 8945 =4~ I'IOV R1. IH
04D8 Fl =4326+ IIOY A, tlRl
040C 97 =43~ DEC A
84DD Ai =4~35+ I'IOV tlRl, A
940C 961>5 =4339l JNZ H002
94E9 83 =4341 RET

=4)42 SIZECII<
9918 =434:if SIZE SET 24

=4346+;

=4347+; *****.*********_ •• * ** '*****_****** ••• ***.(,*_*
=4356;
=4357 *EJEC1

AU mnemonics copyrighted © Intel Corporation 1976.
1-133

intJ
LOC OOJ

II5IlB

95B8 34EG

85BD 11944
II5IlF /l1

85CII fl94J
95C2 BiIlB
95C4 97
~F6CB
95C7 9geF
95C9 fl4CF
95CB 8948
~ 011
95CE 011
Il5CF 94C9
851>1 94C9
851>l 97
Il5D4 A7

85J)S 8944
951)7 F1
85DS G7
85D9 ft1

95DR 8943
II50C f1
9500 97
050C R1
05DF 96C5
05E1 8l

11827

11649

9649 B<'A3
06411 BiIJ8
9640 4640
864F 4640
OC51 5651
11653 5G51
9655 94C9
OC57 5651
0659 94C9

LII£

=4358
=4383+
=4387 ; NIIJO
=4388 NIBO:
=4389;
=4398 ; 0fIR0
=4391 ;
=4392 ClfRO:
=4485+

, =4496+
=4419
=4421+
=4422.
=4426
=4427 C01:
=4428
=4429
=4439 CO2:
=4431
=4432
=4433 COl:
=4434
=4435
=4436
=4437
=4442+
=4443+
=4447'1
=4452+
=4455
=4456
=4461+
=4462+
=4466+
=4471+
=4475+
=4477
=4478
=4481+ SIZE
=4482+;

AP·55~

S(lf<CE STATEl£NT

COOEBLK48
~ 1467

I'IISK ACe TO I'IfI(E I£X NIBIlIL lRflNSLIITE TO ASCII fIN) OOlPUT
CALL I£XASC

CiIF.A£ OOTPUT SIIlROOTII£
loR I TES TIE COOENTS IF TI£ /ICC TO TIE CRT D ISPLRY SCR£[N
IftJY F.'EGC,R

/lOY Ri, IREGC
IIOY tIR1, fl

/lIlY fl, BITSO ; SET IUf£R IF BITS TO BE TRflNSIIIlTED
IIOY 111.18
IIOY @R1,IBHSO

CLR C ; CLEfIR Cfm'
JC CO2
fill. 1"1. INOT TTYOUT
JII' (;03

m. Pi,'TI\'OOT
10' ; EYEN OUT 11«1 BRflIDf [J(ECUlION TIlES
10'
CILL
CRLL
CLR
crt
IIRRC

IIOY
IIOY
RRC
IIOY

IIDJIfZ
/lOY
/lOY
DEC,
/lOY
JIfZ

IlIOI..fI'1'
If30UlY
C
C

; SET IIIIT IIILL EYENTlfU \' BEeM: II SlIP BU

REGC ; r.1)mTE CIfIRflCTER RIGHT 01£ flIl,
RLIREGC
A, f!R1
R
tIR1.ll

; \ IIOYII«l II::XT ()/lTA BIT INTO ~
B, C01 ; ClECK IF C/flROCTER (fIN) STIP BlT<S» OM:

fiLlS
/l,@R1

A
@R1,A
C01

RET
SIZECH<
SH 39

=4483.;~.-­
=4492 ;
=4493
=4523+
=4527 ; CIN
=4528 ;
=4529 CIN:
=4539
=4531 CIe:
=4532
=4533 CIi:
=4534
=4535
=4536
=4537 C12:

COOEBLJ(47
ORG 1699

coosa. IIf'UT SIIIROU1Il£ IIIITS F~ It KEYSTROKE 1ft)
~ IIIlM 8 flITS IN REG ACe.
IIOY Ri,I8
/lOY tIR1, It) ; DATA BITS lOBE Rm>
JNT1 cle
JNT1 cle
JT1 CI1
JU el1
CALL ~'
JT1 CI1
CALL 1B>I.A't'

All mnemonics copyrighted © Intel Corporation 1976.
1-134

intel' AP·55A

LOC OIIJ LIN: sotm STAIDIEHT

965B 94C9 =4538 CfU IflDI..RY
IIG5D 5662 =45"".$9 JT1 CIJ ; C1£CK SID LIN: LEII[l
965F 97 =4549 CLR C ; DATfI BIT IN C'!'
9668 C465 =4541 JII' Cl4
96G2 97 =4542 CIl: CLI! C
9663 A7 =4543 (;f'l C
0664 90 =4544 to' ; EVEN OUT BmOf EXECUllOO TIlES
fIG65 98 =4545 C14: 10'
0666 ee =4546 NOr
9667 ee =4547 I«lP

=4548 m1C REGC
9668 8944 =4553+ I'IOV R1,IREGC
Il6GA F1 =4554+ IIOV A,~

0C6B 67 =4~-I RRC A
966C R1 =4563-1 IIOV @I/1,A

=4566 tl)JNZ El. CI2
11661) 8943 =4571+ IIOV R1,1B
9W" F1 =4572+ IIOV A..@R1
9679 97 =4576+ DEC A
9671 A1 =4581+ IIOV @fU,A
1lG72 %59 =4585+ 1HZ CI2

=4587 ItIOY A..REGC
9674 B944 =45%+ IIOV R1,IREGC
11676 F1 =4597+ IIOV A..@R1
9677 83 =4691 RET ; CIIRRACTER CO/fl.E1E

=46112 SIZECl-1<
IlIJ2F =4695t SIZE SET 47

=4696+;
=46117i; ******* _________ **'.:**
=4616 $EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-135

inter
LOC ooJ

82E~ B9J4
92E7 F1
I12ES RfI
82E9 F489
82EB B4E2
82ED E6FJ
82EF J4F2
82F1 44E9
82FJ 8J

09FC D478
eerE flA
09FF 8J

8678

11678 B9J7
II67A F1
II67B 9J7E
8670 BJ

967E !l4
967F 98
II6S9 9C
9681 A9
11682 S1
968J 81

Il6!l4 8931
B686 F1
9687 9698

AP·55A

L11£

4617 $ ItnUllE(:~9:1EPI!Er.ID»
=4618 COOEBLK 15
=46JJt ORO 741
=4637 ; COIFIL CIltRI) TO riLL fl)l)RESS SPfa: OCllEEN SIfl III) EIII .. mlllRTft
=46JS ; IN LOll BYTE (f /'IEPl
=4619 mtrIL: I1IKlY LDATA, 1ElL0
=4655i I'IOY RL 1tElL0
=4656+ I'IOY A, I!R1
=4669+ I'IOY LDA·, A, A
=4672 LrILL: CII.1 LSTORE
=4673 CfLL CI'fIft)

=4674 JlI: LrILL1
=4675 CfLL INCSIfl
=4676 JIf' U"ILL
=4677 LFILL1: RET
=4678 SIZECII{
=4681+ SIZE SET . 15
=4682+;
=468J+;**_*1 ... _IIIIII ... _*_ .. I ___ ***II .. IIIIII .. 44

=4692 ;
=4693 COOEIlI..K 4
=4698+ ORG 252
=4792 ; LmCH FETCI£S CIIlTENTS IF LOGICfl. 1£Im,' mDl<ESS DETERIIINED flY
=479J ; <TYPE>. <SIIfIll), & <SIft.O> INTO <LDflW.
=4794 LFETCH: CfU AFETCH
=4795 I'IOY LDATA, A
=4786 RET
=4797 SIZECHK
=4718+ SIZE SET 4
=4711-1;
=4712t;_*** * ***_**_** ___ ._*_**
=4721;
=4722 COOEDLK 75
=4752t ORO 1656
=4756;
=4757 ; RFETCH LOOICfl. FETCII SlIIROOTII£
=4758 ; FETCHS CIIlTENTS IF YRRIOOS /£I'KRY SPfICES TO OCC.
=4759 RFETCH: ItKlV A, H'PE
=4768+ I'IOY RL IH'PE
=4769+ /lOY A, @R1

=4771 ROO A, ILCII LFETBL
=4774 JIf'P @R

=4i'75 ;
=4776 LFETBL: DB
=4m DB
=4778 DB
=4779 DB
=4789 DB
=4781 DB
=4782 ;
=478J LFEPIt:
=4792+
=479J+
=4797
=4798

LOll LFEf'II
LOll l.FEDII
LCII LFEREG
LOll LFEINT
LCII LFEBRK
LOll Lf"ElJRl(

A, !MIl
1\'1.ISIRII
A.1!R1

l.FEDII
A.~O

All mnemonics copyrighled @ Inlel Corporalion 1976.
1-136

intJ
LOC OOJ

B689 8938
9600 F1
860C 93E9
IIG8E F698

9699 8938
8692 F1
9693 934E
8695 A9
9696 F1
9697 33
9698 94E1
969A &1
9698 83

969C 8939
869E: F1
969F 537F
96R1 C6fl5
96R3E487

86A5 13923
96A7 F1
96A8 83

96R9 8939
86ffi F1
~ 8329
96IlE fI9
96fF F1
9600 £:3

9681 94E1
96Il3 99F7
96B5 898S
96E7 99FD
96B9 8991
96B8 81
96BC 2391
96BE 86C1
OCCB 27
86C1 83

AP·55A

LINE !nm 51 ATEI£NT

=4897+ I'IOV RLISIft.O
=4898+ IIOY fl,@R1

=4812 roD A,I-OVSIZE
=4813 Je LFEDII
=4814 mv fl, SlR.O
=4823+ I'IOV R1,ISIflO
=4824+ /lOY A, I!R1
=4821) ADD fl, IOYIltF
=4829 /lOY Ri,R
=4839 /lOy A, I!R1
=4£:31 RET
=4832 LFEDII: CIU LPGSEL
=4833 mYX fl,1!R1

=4834 klT
=4835 i

=4836 LFER£C: IftlY A, SlR.O
=4845+ IIOY RL ISI'ft.O
=4846+ IKlY f1,@R1
=48S9 fH.. fl, 1911111118 i Cl£CK If LOW 7 BITS =II
=4851 J'l. LfERll
=4852 JIf' IJ'FET
=4S53 ;
=4£:54 LFE.RII: IftlY fl,EPRe

=4!l6Jt /lOY 1/1, tEPR8
=4S64'~ IIOY fl,@R1

=4S68 RET
=4869 ;
=4879 LFEINT: IIKlY R, SI1Al.O
=4879+ /lOY RL ISIRO

. =4889+ /lOY fl, I!R1
=4884 AOO A,tEPOCC
=4885 I«lY R1,A
=4886 IIOY R,m
=4887 RET
=4800 i

=4889 i LFEBRK LOGICIl. FETCH (J' BREAK-POINT DATA
=4899 LFEERK: ClLL LPGSEL
=4S91 All. Pi. INOT II8Il81I11l9B
=4892 ORI. 1'1, teeI:I91000B
=4893 All. 1'1, INOT IlII88891I1B
=4894 ~ 1'1, I989ge891B

=4895 mYX A, @R1
=4896 I'IOV R, 19111
=4897 JNI LFEBR1
=4£:98 CLR A
=4£:99 LfEBR1: RET
=4980 SIZECHK
=4993+ SIZE SET 74
=4994+;
=49f15+i-__ ** ___ ** •• ******* __ **_
=4914 $EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-137

inter AP·55A

LOC OOJ LItE SMCE STRTEIENT

=4915 COOEBLKSS
8798 =4958f am 1792

=4954;
=4955 ; LSTIJ:E LOOICII. STIllE SlIJROOTItE
=4956; STIllES cam:NTS (J LDfIm INTO YRRIOOS 1EIDl\' SM:ES.
=4957 LSTIIIE: IftJY fl,TYPE

8798 8937 =4966+ ..w R1,I'M'[
8782 Fl =4967+ ..w A, (IR1

9783 8386 =4971 fI)I) A, ILOW LSTTBL
8785 83 =4972 JII>P I!fl

=4973 ;
8786 ~ =4974 LSTIIJI.: DB LOW LSTPI1
11787 21 =4975 DB LOW LSTDII
11788 26 =4976 DB LOW LSTREG
8789 34 =4977 DB LOll LSTINl
878f1 30 =4978 DB LOW LSTBRI(
878/l 31) =4979 00 LOW LSTiiRl<

=4988;
=4981 LSTI'tI: /I'KlY fl,SlDtI

8~ 11931 =4998+ . ..w RL ISIftfI
878E Fl =4991+ ..w 'URl
878f' 9621 =4995 JNZ LSTDII

=4996 /I'KlY A, SlR.O
8711 8938 =5885+ IllY RLISlR.O
8713 F1 =5986+ ..w A, (IR1

8714 83E9 =5818 fI)I) Itl-OYSIZI:
8716 F621 =5811 Je LSTDII

=5912 /ftlY ItS/R.O
8718 8938 =5821+ IllY RLISIft..O
871R Fl =5822+ IIOY . fI, I!R1
8718 834£ =5826 fI)I) It IOYIltf
8710 A9 =5827 IllV RLA
871£ FA =5828 IllV ItLDflTA
871F Ai =5829 IllY f!R1, A
8728 83 =5838 RET

=5831 ;
8721 94£1 =5832 LSTDII: ClLL LPGSEL
9723 rA =5833 lIlY A,LDflm
8724 91 =5834 11M(!!H1, A
87~ 83 =5835 Rtf

;'5836 ;
=5837 LSTREG: PKIY It SlR.O

9726 8938 =5846+ IllV R1.ISIR.O
0728 Fl =!IIM7+ mY A, I!Rl
8729 5s7F =5851 IN.. A, 181lli111f1 ; CI£CK IF LOW IJ.'DER BITS = 8
8728 C62f' =5852 12 LSTh'8
8721> E4C3 =5853 JI1P EPSTIR

=5854 ;
. =5955 LSTR8: /I'KlY EPR8,LOATA

872F FA =5878" . mY ItLDflm
8lS8 11923 =5884+ IllV RLID'R8
9732 Ai =5885+ IllV f!R1, A
8733 83 =5888 RET

=51189 ;
=5898 LSTINl: IftIY ItSIR.O

All mnemonics copyrighted @ Intel Corporation 1976.
1-138

LOC IEJ

07148930
0736 F1
0737 0320
97J9 A9
97JA rR
0738 Ai
073C 03

973D 94£1
073F FA
0740 1246
0742 9ge1
9744 E448
9746 99FE
9749 991'7
974A 81
0749 890B
9740 03

004E

94E1

04E1 8937
94E3 r1
94E4 5301
94E6 47

94E7 8931
!l4E9 41
94EJl 4340
84EC 3A

94EI) 8930
94EF F1
WI! A9
94F1 93

9011

LINE

=5099-1
=5100+
=5104
=5195
=5196
=5197
=5199
=5199 ;

SIX.m: STATEIEHT

I10V
1m

ADD
IIOY
If.J\I
PlOY
RET

Ri,IS/ft.O
A,@R1

A,IEPOCC
Ri,A
A,LOAm
@R1,A

AP·55A

=5110 ; LSTIlRK LOGICRL STORE !W BmlK-POINT DATA
=5ill LSTBRK: CALL Lf'GSEL
=5112 t10V Ii, LOATA
=5113 JOO LSTBR1
=5114 0Rl· Pi, t999ll09918
=5115 JIf' LSTBR2
=5116 LSTBR1: ANI. Pi, INO r 1IIl0IIIlIl01B
=5117 L!::TBR2: AtI. 11., INOT 1l0Il011l01l0
=5119 I'KJ\IX A, @R1
=5119 OR!. Pi, tIl0Il0199IIB
=5129 RET
=5121 SIZECH<
=5124+ SIZE SET 7S
=5125+;
=5126+; ***----"*****_*_******_* __ *****
=51~ ;
=5136 COOEBl.I(17
=5156+ ORG 1249
=5160 ; LPGSEL LOGICAL PAGE SELIOCI.
=5161 ; SETS lJ' PORT 2 TO AOORf.SS Af'I'RtrRIATE BYTE !W RfIPI BLOCK.
=5162 LPGSEL: I'II1OV A, TVPE
=5171+ IIOV RUnoPE
=5172·. I10Y fl, @R1

=5176 IN. fl, t090Il0II81B ; tfASI(Off DlITR noPE SElECTIII BIT
=5177 SI«lP A
=5178 IQ\. A, SIflHI
=~104i roy R1, ISlftIi
=5195+ OR!. A, f!R1
~1!)9 ORL fl, 1019000098
=5199 OUTL P2, A
=5191 I'II'IOV n, SlfLO
=5200+ /lOY Ri, 1Slft.0
=5291+ /lOY A, @R1

=5205 I'IOV RL A
=5296 . RET
=5207 SIZECHK
=5219-1 SIZE SET 17
=52W;
=5212+;**-** __ ********** ___ *****-
=5221 ;
=5222 $EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-139

LOC OOJ

1I1F2

91F2 8938
01F4 11
01.F5 F1
01F6 96Ft
81f8 19
01F9 F1
01FR 17
01FB 31
91fC 83

02F4

02F4 8938
1l2f6 F1
02F7 07
02F8 21
Il2F9 96FF
02FD 19
02FC F1
Il2fl) 07
02FE 31
02FF 83

05E2 8930
05£4 F1
05E5 37

05£68932
05£1l 61

05£9 8931
~F1
05EC 37

AP·SSA

LII£ SOO1CE STRTEl£NT .

=5223 COOEBLK 11
=523".$~ OF:G 498
=5237 ; IN;!;I1A 11«:REl£NT ST~TII~ 1'E/IlR't' fl>DRESS WORD.
=5238 IN;!;I1A: I'KlY Ri, ISM.O
=5239 11«:11: It«: @R1

=5240 I«lY R. @R1

=5241 JN2 11«:111
=5242 It«: Ri
=5243 I'KlY A. @R1

=5244 It«: A
=5245 XCII) A. @R1

~46 11011: RET
=5247 SIZECII<
=5250+ SIZE SET 11
=5251+;

=5252+; ******.----.. ~*******"*-**-**-** =5261 ;
=5262 COOEBLK '12
=5277f (RG i'56
=5281 ; DECSIII DECREI£NT SIIfl lOW.
=5282 DECSIIA: I'KlY Ri, mo
=5283 IllY A. I!R1
~ DEC' A
=52re XCII A.1!R1
=5286 JNZ DECSIU
=5287 INC Ri
=52S8 I'KlY Pu I!R1
=5289 DEC 'A
=52ge XCII> II. IR1
=5291 DECSItt: RET
=5292 SIZECHK
=5295+ SIZE SET 12
=5296+;
=52S7·~;~** __ **. __ _
=5386 ;
=5387 COOEBLK 15
=5l32~ (RG 1~
=5336 i CIf'IfIS COI1PARE I£IllRY ADI1RESSES
=5337 i CIII'fRE SIfl BVTES WIlli BIA BYTES TO DETmlII£ RD.ATIYE IRlNlTWE.
=5338 i RETIIlNS WITH CfflRY=1 IFF (SIIfl))= <EIID.
=53.l9 ; IS ClLLEI) IfTER ACTItII IfIS BEEN PEIof~ til <S/II) TO DETmlIIf: IF
=5340 i TASK IS COII'LETED:
=5341 i IF CV=8 TIEN <SIll))= <ell) =) 1 ERIIItfiTl TASK.
=5342 i IF CV=1 llEN (SIll) < <EIfA) =) It«: SIll III) REI'IJlT.
=5343 CI'fttAS: Ift)\/ ft, SIflLO
=5352+ I'KlY Ri, .SlRO
=5353+ I'KlY A. @IIi
=5".$57 CPl. A
=5358 1ft)!) A. OR..O
=5364+ I'IlY Ri, 1EllAl.0
=5365+ ROO ft @R1

=5369 Ift)\/ ft SIIIIIII
=5~7Il+ IKlY RL ISIIlHI
=5379+ I'KlY ftl!R1
=5383 CPl. A

All mnemonics copyrighted @ Intel Corporation 1976.
1-140

LOC OOJ

Il5ED 11m
IJ5[f 71
~83

AP·55A

LIrE 5(Xm STfllEI£NT

=5384 IR>DC It ElRiI
=5398f ItlY RL IEIIIlI
=5391. flOOC A, I!R1
=5395 CII'RET: RET
=5j96 SlZECII<
=5399+ SIZE SCT 15
=5409+;
=5481+;*.*'I:*.********* _____ **-_
=54111 $EJECT

All mnemonics copy'ighled @ Inlel Co'po,alion 1976.
1-141

inter
lOC OOJ

974E

974E os

974F B93E
97~1 A1
975223f9
975462
8755 27
9756 3E
9757 3D
9758 FD
9759 97
07SA 3f
0758 OC
975C AA

0750 FD
07Sl 97
0?Sf 0346
0761 AS
9762 F9
9763 3D
0764 47
9765 3[

9766 BB!!4

9768 m
9769 61
9?6/1 Afl
976B 1'688
9760 eE91

076F B93C
9771 F1

LIIE

5411 $

=5412
=5447+
=5451 ;
=5452 ;
=5453 ;
=5454 TIINT:
=5455
=5468+
=5469+
=5473
=5474
=5475
=5476
=5477
=547lJ
=5479
=5489
=5481
=54!J2
=5483
=5484
=S4S5
=5486
=5487
=548S
=S4B9
=5499
=5491
=5492 ;

SIUCE STRIDENT

IlUl.OC(:F9:KOO.I'ro)
CODEBLK 199

OOG 1S79

Ap·55A

~ AM) DISPLA\' PROCESSINl ROOTII£
CfU[J) I'ERIOOIClLl \' loRN KIlO fH) DISPLAY fl.'E "fO BE fl.IYE.
5El R81
ItKJV AS/lYE, /1
~ R1,1ASf1Y[
IlO\l @I/1,A
~ A,'(-19H)
~ I, A ; REUB> TIllER INTEI<Yfl.
QR R
llOYD PSEGHI, A ; IoIRITE E;LRNK l'AlTERN TO SEG DRI~
llOYD PSEGlO, A
~ R,ruIDIG
DEC A
/'lOYD f'l)IGIT, A ; El£RGIZE CllAROCTER
f'IO\II) /1, PINF'UT ; lOOD RN\' SWnCH QOSURES
I'IOY "'DTPRT, A

IlO\l R, ~D JG
DEC A
AOO R, t<"...EGIR'
1'10'1 Re,A
IlO\l A,@R0
llOYD PSEGlO, A
SWAP R
/'lOYD PSEGHL Ii

; WRITE !£XT SEMNT PATTERN

; ADD ~IG DISPlAUENT TO B/1SE

; lOf{) ACe 101/ I£Xl SEGl'ENT PATTERN
; E.NflIllE RPPRIJ'RIATE SEMNTS

=5493 ; ********'1'**********************************_***********
=5494 ; THE tEXT CIflRACTER IS tor BEINl DISPLAYED.
=5495 ; Tff. KE\'f3OARI) SCAN I\'OUTIIE IS INTEGl<ATED INTO TI£ DISPLR\' SCAN.
=5496 ; WITH THE CURRENT ROW ENERGIZED, ClECK IF THERE ARE ANY IIRITS.
=5497 ; ********-*****joj."**.*******_***** __ ~,*****.**
=5498 ;
=5499 ; ROTATE BITS TlIROOlH THE CV IoIHlE INCREr£NTINl KE'r'lOC.
=5599 ;
=5501 ~
=5592 NXllOC: I'IRRC
=5514+ I'IOV
=5518+ RRC
=5529+ I'IOY
=55$2 JC
=5533 ~
=5534
=5535 ;

ROTCNT, IOC(lS
ROTPAT

A, ROTPflT
A
ROTI'flT, A

SCANS
K[I'FLG,11

; SET UP F~ (NCOlS) lOOPS TIm.GI 'NXllOC'

; ONE BIT IN C\' INDICI1TES KEY NOl OCWI
; IflRI(THAT RT lE.flST 0If:: m' WAS DETECTED
; \ IN Tff. ~RENT SCAN

=5536 ; ~"***************_**************_***t .. *
=5537 ; A KI:\";;TROO: WAS DElECTED FOR THE CURRENT COLUMN. m
=55:s8 ; rosITION IS IN REGISTER KE'r'lOC. su: IF S/1I'IE KEY SENSED UlST C\'ClE.

=5539 ; **>t-1<*******~'***
=5549 ;
=5541
=5550+
=55~1+

A, mtOC
Rl, tKE'r'lOC
A,~1

All mnemonics copyrighted © Intel Corporation 1976.
1-142

LOC OEJ

em 2C
em DC
e774 C67C

0776 B9JD
9778 8106
I177A 1:488

8nc B93D
8nE F1
ilIfF C6BB
9781 07

0782 !J93D
8784 Al
07ElS 968B

0787 Fe
07se B93B
97SA 111

0788 B93C
0780 11
07aE EC63
0790 EDIlS
iJ,'92 t;OOS

9794 B9:>C
0/96 Bllil0
lIns rl:
0799 969D

079B BCFf-
079D BE90

LIIE

=5555
=5556
=5557
=555e ;

AP·55A

5O.E[STATEI1ENT

XCH . A. LHSTK'r'
XRL A. LASTK'r'
J2 SCAN3

=5559 ; ***********-***************-*-**-**
=5568 ; A DIFFERENT KEY If1S R£AI) ON THIS C\'CLI:. THAN III THE PREVIOUS C\'CLE ..
=~561 ; SET NREPTS TO THE OCIlOONC[PARAME 1 Ell FOR A NEW COUNTDOWN.

=5562 ; ***** ___ t***********_*_*****ot-******,t,***~:*****
=5563 ;
=5564
=5SGS
=5566
=5567 ;

mil
I10V
JI1P

Rl.INREPTS
@R1.1G
SCAN5

=5560 ; ***** __ **,t:*_-************_*******************_**
=5569 ; SAI1E KE\' WAS DETECTED 3S III PREYIOOS CYCLE
=5578 ; L()()I(AT Nro'TS: IF ALREAD\' ZERO, DO NOTHING .

. =5571 ; • ELSE DECREI'IENT NRCPT!;.
=5572 ; IF THIS R£SIUS IN ZERO, /'lOVE LASTKY INTO KOOCUF.

=5573 ; ***:t:***_**~·*********-~******************************_***
=5574 ;
=5575 SCflNJ: I'IMOV A.NR[PTS
=5584+ MOY R1,INREPTS
=5585+ I10Y A,~1

=5589 12 WlN5 ; IF flLREflD\' ZERO
=5590 DEC A ; INDICATE ONE I'IORE SOCCESIVE KE.Y DETECTION
=5591 I'ItlOV NREl'T5. A
=5684+ MOY RLINREPTS
=5685~ I10V ~1.A

=5689 JHZ SCANS ; IF DECREMENT DOES NOl RESlU IN ZERO
=56HJ I'II'IOV KBD8UF. LASTK\' ; TO MflRK NEW KEY CUYJ.JRE
=5633+ !'lOY /), LflSTKY
=5639·~ I10Y R1,IKBOOUF
=5649+ MOY @FILA
=5643 ;
=5644 SCIlN5: MOV Ri.IKEYLOC
=5645 INC @R1

=5646 DlNZ ROTCNT, NXTLOC
=5647 DJNZ CURDIG, TIRET1
=5643 I10Y CURDIG. lICHf1RNO
=5649 ;

=5650 ; ******~:*****~::{:*****_***********,t,*********_*_*~:*****
=5651 ; THE FOLLOWING CODE SEG/'IENT IS IJSEl) L UIE KEYBOflRD SCAItlING ROUTINE;.
=5652 ; IT IS EXECUTED ONL \' AFTlR r. REfRESH SEQUENCE IS COI'IPLETEO

=5G53 ; **************************** *****'t:********'t"t .. *_**-...
=5654 ;
=5655 I'II'IOV KEYLOC, ZERO
=5666~ !'lOY R1, lIKEYLOC
=5667·~ I10Y @RL.ZERO
=5671 I10Y 11, KEYFLG
=5672 JHZ SCANS ; JUI1P IF AN\' KEYS WERE DHECl ED
=5673 MMOY LAST((Y. NEG1 ; CHANGE (LASTK\') WHEN NO KE\'5 lIRE DOWN
=56j'8+ MOil LAS1 K',', llNEG1
=5632 ~ANS: I10Y KE\fLG.1I0
=5683 ;

All mnemonics copyrighted @ tntet Corporation 1976.
1·143

inter
LOC ()(jJ

9791' 893F
07Ai F1
II1A2 CGAS
,,7M 07

87AS 893F
8lA7 Ai

limB B93E
OifIA r1
0700 93

07P.c IG4E
971'£ 83

81161

AP·55A

lifE SOIJ!CE STAT£]'I[NT

=5G85 !

=5636 ; KOOIDISP RETURN COO[- RESTIMS SYSTE" ~TATUS.
=5637 I'II'IOIJ A, RtlELA't'
=5696+ !'lOY Rj., IRDELflV
=569;'+ I'IOV R,@R1
=5791 JZ lIRETi
=5782 DEC A
=5793 I'IMO\I k'OCLAI', A
=5716-1 I'KlY R1, IRDELA\'
=5i'17+ tIOY @RLR
=5121 TIRETi: I'II1OY A,AS/We
=57J3-I !'lOY RLWJlYE
=5731'1 I'IOY A, INd.
=5735 RETR
=5736 ;
=5737 ;
=5738 ; TOFPOl. TIIa OVERFLOW POLLING sueROOTINE.
=5739 ; CfUED REl'EATEl'il..Y FROI'I IKID'ER I(BllIDISr /'lUST BE. fiLlYC.
=5740 ; I'OIITOR!; mE TIIG OYERF1.1101 FLAG <TIF) ANI) CALLS SERYICE
=5741 ; ROUTINE W/-IEN flPPROPR lATE.
=5742 TOFPOI.: JTF TI INT
=57·B RET
=::'744 SIZ[aI(
=5747·~ SIZE SET 97
=5748':"
=5749+; **:.:I:***'l"********* __ *********",,**!*****"'***~***,,""*"'*
=5758 $EJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-144

LOC oo.J

06;;2

OCC2 on!]
06C4 ND1
0f~C6 F4AC

0CC8 Bn!::
96Cfl 1'1
06CB F2C6
%CD 27
06eE 3E
06CF 3D
0(;[;0 '],7

OCDi 21
0GD2 GJ

01311

051'1 8:346
05F3 B90S
05F5 0000
051'7 18
05F6 E9F5

05FR 1l93A
05FC G1BS
95FE 33

06D3

961>3 5:;or
06D5 83EF
0607 A3

0600 AE

~INE

=5759 '
=57()9i'
=5793 ;

Ap·55A

SOliRCE ':;TATEMENT

(;OOEBLI, 17
ORG 17])

=57~4 ,kBD IN
=57:)5 ;

KE YBOARv INPUT ~.uBROUTl HE.

=5796 J

RETURNS ONL'~ flFTCR R NEW "EI'~1r<OKE liAS BEUI DlTECTED fIND DEBOUNCE\).
Vr.LUE OF m' rOSITION IN SWITCII IIflTRIX IS

=5797 ; RETURNED lfI TilE flCCUMULIlTOR.
=579B .; D I:;PLA" CIIRRflCTER NOW ON BLf:NK[[) Ill:/'ORE RETURNING.
=5;'99 KBD IN'
=5000
=5301 KBD I 1:
=5802
=5811,
=5S12i'
=5S16
=5S17
=5818
=5319
=5320
=5821

MOY XPCODL #3
CALL XPTEST
CALL TOFPOL
MMOV fL, kllDr.LIF

I",ov Ri. lIKBDBUF
1'10'/ A.@Rl

JEli' KIlDI1
(;LR A
MOVD P::;[(lIH, A
l'IOI/I) I'SEC,LO. A
CPL A
XCII A.@R1

=5822 RET
=582l 5IZECHK
=5826+ SIZE SET 17
=5['27-+,

=5G28+; ********~*****t.***********"'*********************************
=5837 ;
=5838 COOEBLK 1~
=5863+ ORG 1521
=5C67 ; CLEAR I<IllTES 'BLflNK' CHA~RCTERS INTO ALL DISPLAY REGISTERS.
=5868 ; RETURNS WInI NEXTPL 5£T TO LEFTMOST CllflRflCTER P051"1 ION
=5869 ; DOE5 NOT flFFECT ACe OR CV.
=5870 CLERR: MOY Re. I~EGMfIP
=5071 HOV R1.IClifiRNO
=5372 DBLAN!:: MOV @R0. lI0
=5873
=5874
=5075
=5886+
=5llB7+
=5891
=5092
=5395~ SIZE
=5896+;

It-.'C
DJNZ
I'II'IOY

MOV
MaY

RET
SIZECHK
SET 14

R0
Ri. DBLRNi'\
NEXTPL. CIIARNO

R1. INEXTPL
~R1. 1IC1IARNO

; STORE HIE lILflNK COOE
; POINT TO NEXT CHARACTER TO HIE LEFT

=589i'+; ****;:**~.***.f<:I:*****_*****.**.**_.****.***"'*****'t"** __
=5906;
=5907 COOECLK 44
=5937+ ORG 1747
=5941 ; OSF'ACC DISPLAY VALUE or LOW NIBBLE Of IICC
=5942 DSPACC: ANt. fl. IffH
=5943 ADD A, #OOPATS
=5944 MOVP A. @A
=5945 ; WDISP WRITES BIT f-'AlTERN IJOW IN ilCC INTO NEXT UiARfICTER rOSITlON
=5946 ; OF THE DISPLAY (NEXTPl). INCREMEN1S NEX1PL
=5947 ; RESULTS IN DI$PLA~' BEING FILLED LEFT TO RIGH"f. lHEN RESTARTING
=5940 WDISP: MOV DSPTMP. A

All mnemonics copyrighted @ Intel Corporation 1976.
1-145

inter AP·55A

LOC OOJ LINE SOlJ.'CE $TRTIJENT

0609 BF04 =~949 I10Y xrcOOE,14
9600 7401 =59~ CflLL XPTEST

=5951 MMOY Il,NEXTPL
96DD 893R =5960+ /'f0',' R1, INEXTPL
0CDF F1 =5961+ 110',' iI; ~1\'1
061:9 9345 =5965 000 Il, #$EGMflP·1
06£2 R9 =5966 tm R1,fl
960 FE =5967 !'lOY A, D5PTMf'
96E4 A1 =5968 !'lOY @ld,A

=5969 Ml)JN£ NEXTI'L, WI) ISPi
96E5 093A =5974+ I'IOY R1.iNEXTPL
96E7 Fl =5~75+ I10Y A,@R1
96ES 97 =5979+ DEC R
96E9 A1 =5984-1 110',' @R1,A
96EA 96EE =598S~ JNZ WDISP1
9(;[C !l10S =59'"j9 MOOf @Rl, .CHARNO
06EE 83 =5991 WDISP1: RET

=5992 .;
=5993 ; OOPAT$ IS TI:E BASE FOR THE TAIlI.(OF $EGMENT PATTERNS FOR HEX DIGITS.
=5994 ; I-IERE. THE FULL I-lEX SET (0··n IS INCllVED.
=5995 ;

IlIlEF =5996 DGPAT$ EQU f AND 0fFH
=5997 ;
=5998 ; FORI'IAT 1$ PGFEDCBA IN STANOORO SEY[N-Sl(i1'lENT ENCODINU C(JI\IENl ION
=5m; WHERE r REPRESEN1S TIlE DCCIIR POINT

96EF 3F =600Il DB 1l8111111B ; SEGMENT PATTERN FOR DIGIT '9'
0Cf9 96 =6091 DB eee09110C ; SEGl'ENT r'ATTERN FOR DIGIT '1'
96F1 5E =6092 DB 01111191113 j ~EG1'IENT PAT! ERN FOR DIG IT '2'
116F2 4F =6003 DB 91091111& ; SEGMENT PATTERN HlR 0 IG n '3'
116F3 66 =6004 DB 01109111113 ; SEMNT PATTERN FII: 0 IG IT ' 4'
06F4 61) =6995 01} 01101101& ; SEGMENT PATTERN FOR DIGIT '5'
96F5 7D =6006 Of) 91111191El ; SEGI1ENT PRTlERN FOR DIGIT '6'
96F6 97 =6807 Of) 00009111B ; SEGl'lENT PflTTERN FOR DIGIT '7'
06F7 7F =6900 I.lfl 91111111B . ; SEGl'ENT f'fITTERN FOR DIGn 's'
06f8 6"? =6999 DB 01100111B ; !;EGIlENT PATTERN FOR DIGIT '9'
96F9 77 =6010 00 911191110 ; SEGI1ENT PATTERN FOR DIGIT 'n'
86rA 7C =6011 Of) 91111100E: ; SEGI'fENT PATTERN FOR DIGIT 'B'
86rE 39 =6012 011 001110018 ; SEMNT PATTERN FOR DIGIT 'c'
96FC 5E =6013 Of) 019111100 ; $EGI1[NT PftTTE.RNTOR Dlull 'D'
96FD 79 =6914 DB 011110018 ; SEGMENT PATTERN FOk OIGIT 'E'
06FE 71 =6915 00 .811100018 ; SEGrlENT PATTERN rll: DIGIT 'F'

=6016 $IZECHI(
882C =6919+ SIZE. SET 44

=6920+;

=6921 t; ******************************-********************
=6039 ;
=6031 CODEEllK 12

94F2 =6051+ ORG 1266
=6055 ; DELAY SUBROUTINE IofIITS FOR TIlE NltIBER OF COItPLETE
=6056 ; DISPLAY SCANS CORRESPONDING TO THE ACC CllfTENTS.
=6057 ; USE!) WITH CRUDE Ill..l'Im INTI:RrRCES- AS WHEN OPERATOR SlW..D SEE
=6958 ; SOI'IE DISPLAY CHANGE IoIIIU: IT IS CHANGING:
=6959 DELI1Y: /'fI1OV ROELAY, It

94F2 893F =6072~ 1'10\1 R1, 'RI>ElR'o'
94F4 Ai =6073+ I'lO\l @R1,A

All mnemonics copyrighted © Intel Corporation 1976.
. 1-146

LOC OBJ

84F5 F4AC

9417 D93F
114F9 F1
I14FA 96F~
I14FC 83

87fIF

87fIF 8F95
9781 7401

07B3 B93B
9785 F1
97EJ6 113

LIM: SlUCE STATEPENT

=6877 ocLAI'1: CALL
=697B m:lV
=6987+ MOV
=6888 f I'tOV
=699'.1 JNZ
=6993 RET
=6B94 5 IZECHK

lOITOL
A, ROCLAI'

RLtRDELR\'
fi,~1

DELAY1

=6097+ SIZE SET 11
=6998+;

AP·55A

=6899+; ** ... *******~,*". **_********** ... ** .. *** _*** ..
=6198 ;
=6199 COO[8LK 8
=6144+ (IlG 1967
=6148 ; KeDl'OL POlL STATUS (f KE. I'SOARD INPUT ROOllNE.
=6149 ; RETURN loin II ACC BIT 7 =, 0 IF KEI'SOfIRD IWUT HIlS BEEN RECEIYED.
=6159 KBDI'OL. I'tOV XPCQDE, 115
=6151 CflL XPTEST
=6152 I'IIIOY n, K8DBI.Jf
=616H I10Y I~L .KElDBlf
=6162+ MOY A, ~1
=6166 RET
=6167 SlZECHK
=(;179+ SIZE 5[1 B
=6171+;

=6172+; ***",*.*~,**",*******,,*************-**********--****~,
=6181 SEJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-147

inter.
LOC OOJ

97E7

97E7 B9J9
9789 F1
971lR F4DO
97BC 2389
971£ F4D0
97C9 F4D9
97C2 83

900C

97C3

97C3 rA
97C4 F4D0

97C6 8939
9i'C8 F1
97C9 5371"
07CB F4D0
1l7Cl> F4D9
07CF 83

LINE

6182 $

=6183
=6218.

SCdJRC[STATEI£NT

IInUDE(:F9:LINK.I1OO)
COOECLK 15

ORG 1975

AP·55A

=6222) Ef'fET FETCH DflTIl B\'TE FROM Er INTERIft. RAP! ADDRESSED B\' 5IR.O.
=6223 EPFET: I1I1OV A, Sl'lALO
=6212+ MOY R1.. tSI'R.O
=6233+ MOY 1l.@R1
=6237 CALL EPrASS
=6238 MOY A •• 19999080B
=6239 CALL £l'PA5S
=6249 CALL EPPASS
=6241 RET
=6242 SIZECH<
=6245{ SIZE !.El 12
=624&+)

=6247+; ~ .. *****>t.***_",,**_**********_"'******'I"*****~"************
=6256 ;
=6257 COOEBLK 15
=6292~ ORO 1987
=6296) EPSTOR STORE DATA IN Loom IN EP INTERIR. RAt! AT (SIflO)
=6297' EPSTOR: MOY A. LOOTA
=6298 Cill El'PASS
=6299 I'II'IOV A. SIfl..O
=6300+ !«)II RL .SMALO
=6399+ /'lOY A. @R1

=6313 AN. A, 1011111111)
=6~14 CALL EI'Pf1S5
=6315 CALL EPPAS5
=6316 RET
=6~17 SIZECUK
=6329+ SIZE Sll 13
=6121+)

=6122+) *-*****"'****"''''************'''************-************
=6331 $EJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-148

intJ
LOC OIlJ

9700

9700 8m9
9702 91
97D3 99FE
9705 C982
971>7F400
9709 81
9700 BJ

9700

9700 F4f4
9700 Il99A
97Df 861"1
97E1 E9I)~

9788919
97E5 744f
97E7 B8BB
97E9 746R
97ED 99EF
97m Ilfl9E
97EF 249R
9i'Fl 744f
97f3 83

9919

AP·55A

LINE !>OI.RCE !il flTEMENT

=63J2 ; THE rOlLOIolING UTILITIES IN'r'Ol't'E INTERCIfINGES IlETloEEN TI£ 1'If' All) [Po
=6333 ;
=6334 COOEIlLK 11
=6369-1 ORG;:'000
=6373 ; EPPASS PASSES II SINGLE f'fII'<fIMETER BYTE TO HIE. [I' 1IiR!XXil HiE LIM<.
=6374 ; WRITE TIIC. CONTENTS Cf THE ACe TO TI~ LIM<;
=6$75 ; RELEASE TIlE fl';
=6376 ; Rl::fl) THE LINK INTO THE poGe;
=6377 ; RET~N.
=6370 EPPASS: OI\t
=637S 1'10'(;(
=6300 AIL
=6381 OR\.

P2 •• 99110099B
liR1.fI
Pl. INOT ENIlRPoPI
P1.ICNIlLNK

=6382 CAlL ~f'51 EP
=63!B IIOYX fl. @Rl
=6J84 RET
=638:> SIZECflK
=6333+ SIze SE.T 11
=6389-1;

; lNABlE llNK WRITES.
; WRITE ACe '10 LIN(.
; OI5ABll BREAKPOINTS.
; SET TO EREIlK ON LINK RlFERUU.

=6399+; **********.*************~.~,****'1"**-"'I-.****** ••• " •• *.*
=6399 ;
=6499 COOCBlK 2J
=6435+ ORG 2011
=6439 ; EPS1Er RELEASES EP TO RUN IN PRESENT "00[lRlTIL AN f1NTICIPAlm
=6449 ; IfflROWARE BREAK OCCURS.
=6441 ; (DUE TO SINGLl STEPPING, UNK Il'Coo[FETCH. ~ LINk DPoTA mCH.)
=6442 ; I'IUST OC~ WIlHIN fI FINITE NUlt3ER Of ClUES «49 I1f' CYClES)
=6443 ; OR IoIATCHDOG TIMER WILL RSSUME A COMtlUHICATIONS [R~OR
=6444 ; BETWEEN TI[If' I1lD EP.
=6445 EPSTEP: CALL EPREl
=6446 I'IOV R1, 119
=6447 EPSTE1: JNI EPSTE2
=6448 DJNZ Ri, EPSTEt
=6449 ORL Pl. iEPRSET
=6450 CtlLL EPERK
=6451 MOIJ [,\1, ilOlolWY1BA5+0IlS1ZE)
=6452 Cflll O't'LOAD
=6453 ANI.. Pi, INOT EPRSET
=6454 1'1011 LDATA, .9E1l
=6455 JIf' PERROR
=6456 trSTE2: CALL E~'IlRK

=6457 RET
=6458 SIZECHK .
=6461+ SIZE SI:."T 25
=6462+;

=6463+; **"'******************_*'1"'**** __ **_*********_
=6472 ;
=6473 ;
=6474 *EJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-149

intJ
LOC OOJ

1l7F4

07r4 99f7
07F6 890S
07F8 9fI3F"
07FA 8904
07FC 83

LINE

=6475
=6510~'

=6514 ; fJ'REL
=6515 ;
=6:116 ;
=6517 ;
=6518 ;
=6519 EPREL:
=6529
=6521
=6522
=6523
=6524
=6527+ SIZE
=652St;

=65:ro ;
=6519 ;

AP·55A

SOlE[STflTEI£NT

COOEBLK 9
ORG 2036

RELEASES Er TO m. IN PRESENT 1I00I:.
Sl:QUENCE IS AS FOLLOWS:
PUT 1'IEI'llR\' flRRA',' IN EP I'IOOE;
RAISE ISSTEP;
RETURN.
fK.
OR\..
IK.
ORL
RET
SIZECH<
SET 9

Pi. lOOT CLREFF
P1,ICLRBFF
P2. lOOT 010II08II0B
PL 10000010011

; CLEAR BREAK F IF.
; RE-OHlLE BREAK f IF.
; ElflBLE Er COOTRll. IF IEII fRRtW
; fREE EP TO RUN tllTIL 1J.'EflK.

=6540 COOEBI.J(11
034f =6588+ ORG 047

034F 99FB
03:51 8929
8353 B995
0355 E955
0357 9A48
0359 83

0351\

8J5A B865
9351: 0917
835E 2340
0:s60 3A
0361 ca
8362 C9
0363 81
0364 20
0365 91
0366 F9
83679661
8369 83

=G5B4 ; EPBRK REGAIN COOTROL Cf I'EJ'IOR',' ARRftY FRa'I EP.
=6565 ; DROP ISS1EP;
=6586 ; IIIIT 30 USECS.;
~7 ; PUT IDORY ARRfI\' IN If' i'IOOE;
=6508 ; RETLm
=6589 EPBRK: fK. PL lOOT 000001000 ; FRlEZE ElU.ATION PROCES!;(R.
=65S0 0I\'l Pi. II'IOOOUT ; SIGIR. EI' IS ooT RIHIING USER COOE.
=6591 t«lY Ri. 15
=6592 ()JNZ R1, $; 1>EUl\' FOR Ef' TO FINISH INSTROCTION.
=6593 ORL P2,I010001l001l ; SEIZE CONTROL or I'IEJ'I ARRfl','.
=6594 REl
=6595 SIZECHK
=6598+ SIZE SET 11
=6599";

=6609 ;
=6610 ;
=6611 COOEBLK 16
=6651+ ORG S5fJ
=6655 ; OYSWAP OVERLAY !;Wff.

=665C ; SWAPS BLOCK OF DAlf1B','TES (USER'S ~) BETIEEN '" RAI'I & EP PIt
=6657 0\I5IflP: /'lOY RIl,IOYIlI..f+OIlSIZE
=665S I10V Ri. IOYSIZE
=6659 /'lOY R. l01i10OO0eB
=6G60 OUTL Fr.?, A
=6661 OYSWi: DEC R0
=6662 I)(C R1
=,6663 I1OY'O< Ii, @R1
=66(;4 xi:H fl, @R0

=6665 ItJV;< @R1. A
=6666 I'IOV A, Rl
=6667 JHZ OYSII1
=6668 RET
=6669 SIZ[CHI{
=6672+ SIZE SET 16

All mnemonics copyrighted @ Intel Corporation 1976.
1-150

LOC OOJ

8361l

8J6A 1l91i'
936C 2340
9J6E 3f!
936r C9
8370 C9
8371 Fa
93"12 EJ
9373 91
8374 F9
8375 9G6f
8377 83

AP·55A

LINE S(uCE ~TRT[Il.NT

=6673+;

=6674+; ***-.*****-****~:*********~:*************-*********.*.
=6603 ;
=li684 COOEBLK 14
=6724+ (J.'G 874 .
=6728 ; ovum OYERLA'I' LOAD.
=6729 ; I'KM$ IlLOCK Of OOTAEYTES (flSSlllliD ~(''E) fRc.I PG3 10 EP PII.
=6739 ; TOP Of DIlTA BLOCK LOAI)(]) AI«) BLOCK lEMlTIl DETERtlIIf:D B\' 1!9 IliI Ri.
=67J1 OYLOOD: IIOY R1.IOYSIZE
=67J2 tIOV A, 1019080000
=e7J3 OUTl f'2, A
=6734 IIL01: DEC R8
=6735 ' DEC R1
=6736 MOY fl, R9
=G737 MOYP3 fI, @A
=6738 I'XJYX ~1, A
=6739 MOY fk R1
=6740 JNZ 191..01
=6741 RET
=6742 SIZECI-IK
=6745+ SIZE SET 14
=6746+;

=6747+; _****_******** __ *************11:****_************
=6756 $EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-151

inter AP·55A

lOC OOJ Uti: SOO!CE STRTDENT

=OlS7 ;
,=6758 ;
=6759 ;
=6768 ; 11£ REST (f lHIS PIOOllE COO'A1NS THE "INI-fOUTIJ1S IfIICH OYm.R'1'
=6761 ; 11£ EIllRTIIII f'ROCESSG< PI\'OG:RIf RfII 10 GIVE 11£
=6762; /lASTER PROCESSCJ: ACCESS 10 INlERIR. REGISTERS IN> RAIl IX- 11£ Ef'.
=6763 ;
=6764 ;
=6765 ;
=6766 DflTfW(22

8178 =6771+ ~ 80S
=6775 ;
=6776 ;0Y8- OYERI.RY 10 IIREfI(EP EXECU"l11II fIN) JlJIP TO lOCRTIIII 8II9H.
~mi lOCRTIIII II8SII REfICIEI) WITH T(J'-(f"-STfO. = RETWI OODRESS+2
=6778 ; DIE TO FIJ1CEI) "CAll" DURING IfIICH PC IllS INCREII.NTED.
=6779 ; lOC!; 88JH & 887H CfLll!99H TO SIIUlITE ~ ctN>1TI0N
=6789; IF BREAK ~ DURING INll"Rru'T C\'Cl.E.
=67!l1; SOl(!CE CODE FIJ:1 mNI--IDInm 0YERlA\'ED OYER lOll ImDER PROOkRII RAIl. .
=6782 ;

8378 =6783 0\IIl8RS EQU $

8378 =67fJ4 ~ OYIIBRS
8378 1489 =6785 CAll 089H
rnA 88 =6786 10>

=6787 i

8378 =6788 ~ 0Y9IIRS+883H
8378 1489 =6789 CIU 8891-1
837D 88 =6798 10>
837E 88 =6791 I«JI'

=6792;
837F =6793 ~ 0V9BflS+887H
837F 1489 ~f94 CIlll 8891-1
8381 88 =6795 10>
8382 88 =6796 N(J'

8383 88 =6797 I«JI'
8384 88 =6798 to'
8385 118 =6(99 NO!'
8386 88 =6S08 NOP
8387 88 =6881 10>
8388 88 =6882 NO/'
8389 88 =6883 NO!'
83SR 88 =6884 NOP
8388 88 =6885 10>

=6Il86 ;
838C =6S87 ORG· OY8IIRS+814H
838C 84w.) =6888 JI1I' 8891-1.

=6889 i

=6818 SIi::ECII<
8816 =6813+ SIZE SET 22

=6814+;
=6815+;-**-
=61124 $EJECT

All mnemonics copyrighted @ Intel Corporation t976.
1-152

inter AP·55A

LOC OOJ LINE SWkC[STATEI'ENT

=6825 DflTIIlLK 22
838E =68J9+ ORG 919

=6834 ;
=6835 ;fRJ- OYERLR't' TO SAVE STATUS DflTA IFTER 1lREfJ<,
=6IlJ6 ; fICC. TIPlER/COUNTER. PSW (WITH F1). & RflII LOC 9 PASSED SEQl(If1 Ifill Y
=68J7 ; 10 1'1'.
=6839 ; Slm:E COOE FOR "INI -IIlNITOR OVERLA\,ED OYER LOll ORDER I'ROGRffI RIll.
=68J9 ;

838E =6Il49OVJBAS EQU $
83CE =6841 ORG O'r'3IlAS
938E 9499 =6842 JI'IP MH
8399 09 =684J NOr

=6844 ;
8391 =6845 ORO, OV3IlAS+99JH
8391 83 =6846 RET
9392 09 =6847 NO!'
9393 09 =6Il48 NOI'
8394 09 =6849 Na'

=6S59 ;
9395 =6851 OOG fR3BAStll97H
9395 83 =6852 RET
85% 09 =6B53 NOf'

=CS54 ;
8'397 =6S55 ORG 0Y3IIA5+1l99H
839799 =6856 tIOVX ~.A

8398 42 =6857 I'IOY A. T
8399 99 =6858 I'KlYX @R8.A
8l9f1 C7 =6859 I'IOY A./'SW
8398 7611 =CS69 JF1 fR3B1
8390 53F7 =C861 IN.. 11. 1111191118
8311 =6862 0Y3Il1 roo *- (LOW 0Y3IlfIS)
939F 99 =6863 I'IOYX ~.fl
83A9 C5 =6864 sa RB0
83A1 Fe =C865 I'IOY A.Re
83R2 9499 =C866 JI'I' Il99H

=6867 ;
=6868 SIZECHK

9916 =687H SIZE SET 22
=6872+;
=6873+;_*('********_**('**"'****_* ___ *_
=6882 *EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-153

inter Ap·55A

LOC teJ ~ STAmEHT

DIlTIIlLK 22
83/14 OOG 932

=6892 ;
=689l ; 0Y1" OVERLAY 1 10 GIVE II' OCCESS TO Ef' RAIl LOCS. 01H-7FH.
=6894 ; !irud:E COOE FOR I'IINl-IDIITOR OYERLAYED OYER LI»I IR:lU: PROGRfII Rift
=6S95 ;

03A4 =6896 OV1B11S EQU $

83114 848A
8~t6 88

83A7
83A7 C3
8lAB 88
83119 88
8JA1 88

83f1l
8:s/13 83
83RC 88

888f1

83AE ee
83AF AS
8388 ee
8381 rID
8383 2e
8384 All
8385 8489

8313

, 838"/ Fe
8388 IH89

=6897 ;
=6898
=6899
=6988;
::(,981 DIm
=6982
=6983
=6984
=6905
=6986;
=6987 OOG
=6988
::(;989
=6918 ;
=6911 DIm
::(;9~
=6913;
=6914 OV1B1
=6915 ;
=6916
=6917
=6918
=6919
=6928
=6921
=6922
=6923;
=6924 0V1E12
=6925;
=6926
=6927
=6928;

0V181

OV1DllS+883H
RET
I«JP
I«IP
I«JP

OV1BAS+887H
I\'EJ
I«JP

0V1IIfIS+889H
I'IOVX @Re, A

EQU $·OY1BAS

I'IOVX fl,i'R8
!'lOY RIl,A
IIOYX fl,tlRIl
JB7 OV1B2
XCII fl,R0
!'lOY @RIl,A
JII' 80SH

EQU H~ OV1BAS

!'lOY 1I/@R8

JPI> 889H

=6929 SlZECII(
8816 =6932~ SIZE 5£T 22

=6933+;

=6934+; *~**~ .. * •• --*** ••• *****-****-**-­
=6943 $EJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-154

lllC OOJ

11381)
8300 83
83BE 88
83BF 1!8
IBee 88

1l3C1
83C1 83
1l3C2 88

1l3C3
1l3C3 90

1l3C4 00
83C5 AS
83C6 88
83C7 D·t
83C8 AS
83C9 CS
El3eA 7213
83CC AS

8313

83CD 88
83CE 62
IlJeF 00
9300 93

8817

LINE

=6944
=6949+
=6953;

AP·55A

S~ STATEMENT

DATABlK 23
ORG 954

=6954 ; 0112·- O\lERUlY TO RESTfJ1[EP STATUS SAYED ON BREAK fft) ~SlI£ USER'S PROORIlII.
=6955 ; SOURCI: CODE F~ I'IINHIONITOR OYERlA'l'ED OVER lOW OODI:R PROGr<fl/'I RA'l
=6956;
=6957 0V2BAS EQIJ $

=6958 ORG 0Y2I3IlS
=6959 . JMP 00IlH
=6969 I«lP
=6961 ;
=6962 ORG
=6963
=6964
=6965
=6966
=G967 ;
=6%8 ORG
=6969
=6979
=6971 ;
=6972 ORG
=6973
=6974 ;
=6975
=6976
=(,977
=(;978
=6979
=6988
=6981
=6982
=6933 ;
=691)4 OII2B1
=6985;
=6986
=6987
=69C1l
=6989
=6999
=6993+ sIze
=6994·t;

0V2BAS+88JH
RET
Na'
OOP
NOP

I'XJYX A.@RIl
MOV R0,A
/'IOYX A.,@R0

MOV f'SN,A
ClR F1
crl F1
JB3 0..,2&1
Cll': F1

EQU $-LOW 0Y2I3IlS

I10VX A,@RIl
/'lOY I,A
/'IOVX n,@R8
RElR
SIZECltK
SET 23

=6995+; *---*******-******-**********­
=7884 $EJECT

All mnemonics copyrighted © Intel Corporation 1976.
1-155

LOC OOJ

9301
8301 0A88
83D3 8fl
8304 9A7F
9306 F21>9
8300 83
931>9 F5
9300 9400

93DC
931)(; 28432931
9lE9 39373929
93[4 494[5445
93£8 4C

9199
I&"D
9199
119E9
99fl)

99Ft
9IlFF
9IIFD

AP·55A

LINE SOJ:CE STATlI£NT

7995 ;
79116 COOEBLK 11
7946+ ORG 977
7959 Xl'TEST: (R P2, 100II
7951 IN A,P2
7952 fH. f'2, I(NOT O~)
7953 JB7 $+3
7954 RLT
7955 SEL I1B1
7956 JII' S89H
7957 SIZECHK
7969+ SIZE SET 11
7961+;

79621·; _*************************** __ **_*_*_
7971 ;
7972
7112+
7116

COOEIILK 13
~ 98{)

00 '(C)1979 INlli'

7117 SIZEQI(
7129+ mE ~ 13
7121+;

7122+; -*******",*****'I"*******-*-~-*******-******
7131;
?i32;
7133 R'"~

7ilS-. PGSIZE SET ORGPG9-999I1 ; CVTES USED 00 POOE II
71364 PGSI2E SET 0RGI'G1-100H ; 8YlE!; USE!) 00 PflGf: 1
7137+ PGSIZE SET ORGPG2-299I1 ; BWES lJ'..ED 00 PfIGE 2
7138+ PGSIZE SET ORG'G3- 390H ; BYTB USED 00 PAGE 3
7139+ PGSlZE SET 1I!Gf'G4-49IlI1 ; BYTES lJ'..E) 00 PAGE 4
7149+ PGSlZE SET OOG'GS-599H ; BYl E5 USED ON PAGE S
7141+ PGSlZE SET ORGPG6-69011 ; BYTES USE!) 00 PffiE 6
7142+ PGSIZI:: SET ORGPG7·-79j,Jf ; BYTES Us£:() ON PAGE 7
7143+$[JECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-156

infef Ap·55A

LOC OOJ LIIE ~ ~IATEl£NT

7145 i-'.**-**-******-----
7146 i
7147 i FILL fl.L lHJSEI) I£IG:\' LOCArHJI5 lin H I«J' IWCOO£S
7148 ;

7149 ;******---*--*-**--7158 ;
7151 $GEN
Will;

81FD 7168 ~ IRGPG1
7161 REPT (2Il00 - 0RGI'G1)
i'162 DB 8
7163 EN>!!

81FD 99 7164+ DB 8
81FE 99 7165+ DB If
81FF 99 7166+ DB 8

7168 ;
7175 ;

83E9 7177 ORO 0RGf'G3
i>178 REPT (499H - 1m'(3)
7179 DB 8
7188 EN>II

83£9 99 7181+ 00 0
83EA 99 7182" DB 8
83EB 99 7183+ DB 0
8lEC 99 7184+ 00 " 93ED 99 7185" DB 8
Ir~ 99 7186·. DB 9
83EF 99 7187·' 00 8
83f"9 89 7183·: DB 8
83F1 89 7189+ DB 9'
93F299 7190i DB 8
93F3 89 7191+ DB 8
93F4 89 7192+ DB 8
83F5 89 7193+ 00 " 93F6 89 7194+ DB 8
93f"7 99 7195+ DB 9
931'8 89 7196+ DB 8
1l3F9 99 7197+ 00 " 93f"A 99 7198+ DB 9
93FB 99 7199+ DB 9
83FC 99 7289+ DB 8
93FD 99 7291~ 00 9
93FE 99 7292i' 00 9
93FF 99 7293+ 00 9

7295 i
94FD 7297 ORG (l1Gf'G4

7298 REPT (599H - ORGPG4)
7299 00 9
7219 ENDII

94FD 89 7211+ DB 8
84FE 99 7212+ DB 9
94FF 99 7213+ DB 9

7215 ;
95FF 7217 ORG ~

721B REPT (6911-1 - ORGPGS)

All mnemonics copyrighted @ Intel Corporalion 1976.
1-157

intJ Ap·55A

LOC OOJ LINE !i()lgE STRTEl'ENT

.7219 00 8
7220 EtI)II

05FF 00 7221+ DB 8
7223 ;

06FF 722S ORG IRGPGG
722G REPT (70IIl - ~)
7227 D8 8
7228 EtI)II

861'"F 00 7229t 00 8
7231 ;

87FD 7233 ORG 1:m'G7
7234 REPT (SIl0H - 0RGfG7)
7235 D8 II
7236 EtI)II

87FD 00 7237+ 00 8
87FE 00 7238+ DB 8
87FF 00 7239+ 00 8

7241 ;
7242 $EJECT

All mnemonics copyrighted @ Intel Corporation 1976.
1-158

intel' AP·55A

LFILL 46721 4676
LfILL1 4674 4677.
LPGSEL 4832 4890 5032 5111 5162.
LSTBR1 5113 51161
LSTBR2 !l115 5117.
LSTBRK 4978 4979 5111.
LSTDn 4975 4995 5911 5032.
LSlINT 4977 50981
LSTORE 2459 2615 3!l27 46n 4957.
LSTPII 4974 4981.
LSTR8 ~ 59551
LSTREG 4976 5037.
LSTTBL 4971 49741
110 551.
If1 5521
IR)[) 4301 1816 2386 2438 5358
/R.IOC 4351 5:>l14
I1AIN 1434 15391 1546 2349 2414 2417 2422 2427 2500 2620
1fl1N2 15441 3129
'fllm 1594 1609.
MIll! 16724 1674
111111)0 1798 18301
IIIINli 18311 1847
111111:1 17161 1762
I'IfIIIt> 1741 10011
IflIIll1 1742 17661
PIfH. 449.
IIlI.OCK 165. 1387 1315 1m
II>EC 471. J529
It)JNZ 4751 4041 4320 4456 4566 5%9
1011 11581 3824 4005
I£It.O 11491 3851 4020 4655
t1ERro1 1592 1reat
"III: 4611 1743 2011 2875
1IL01 67341 6748
IftlV 39St 1558 1574 1609 1628 1649 1682 1716 1766 1782 1881 1976 1994 2172 2248 ;m9

2464 2482 2541 2581 2714 2729 2756 2787 28115 2838 21156 2893 2923 2938 2953 296lJ
3802 3063 3091 3206 3225 J,44 3263 3283 3301 3322 J349 3423 3433 3452 3471 :S499
3519 :s557 3578 3801 3820 3855 3957 3981 39% 4811 4965 4257 4284 4392 4419 4587
4639 4759 4783 4798 4814 4836 4354 4870 4957 4~1 4996 5912 5937 5955 5999 :'116<1
5191 J343 5369 5455 5541 5575 :'1591 5619 5655 !l673 5687 ~793 5721 5802 51)('5 :'1951
6859 C978 6152 6223 6299.

IIOOO.JT S".$7I 3841 6599
11m. 445. (988 3631 51"(8
II'USEL 553.
ItRL 482.
I'tRLC 4941
I'RR 4861
ItRRC 4981 4437 4548 5592

11XCI' 455.
I'IXRI.. 450.
II:OLS 6141 5591
IEG1 729t 2341 5678
NEXTPl 1203. 2253 2259 5000 5886 5969 5974
NIBB 3792 370Bl1
NIllIN 3627 3638 :s699.
NIBIN2 3553 37991

All mnemonics copyrighled @ Inlel Corporation 1976.
1-159

inter AP·55A

NIfj() 4159 4161 43001
/QlRI(1521. 1928
IlMl.S 1381. 1416
IIm'TS 12381 5564 5584 5684
IIK:OO 11851 1662 lS:ro 2181 2469 2475 2723
~TlOC 55921 5646
IFTIII1 1991 1903 1984 1S8!I 1906 19221
IFTf112 1997 1908 19251
IFTOO3 1992 1999 1927. J

IFTI(Jf 11941 1641 1698 1791 1819
(l((lI'G0 1281 1488 1491 14491 1528 1529 1873. 1947 2157 2158 2239t 2234 2399 2367 2518 -:1651

2652 26741 2679 3148 .3399 3617 361S 36S1. 3685 3735 3771 3921 41116 4141 4189 4234
4368 4495 4628 4695 4696 47201 4724 4917 5138 ~ ~64 5389 5414 ~761 5848 ~ge'J

6833 6111 6185 6259 6336 6482 6477 6542 6613 6686 7898 7974 7135 ;>1~ i'1~3
ORGPGl 1291 1952 1!153 21531 2239 2240 22'J6I 2305 2386 2363. 2372 2523 2684 3153 3404 3698

3691 3739t 3740 3741 37651 3776 3926 4111 4112 4137. 4146 4147 41761 4185 4186 4213.
4239 4365 4588 4625 4i'29 49'.12 !l143 5239 5231 ~2601 5269 5314 ~19 5766 5&45 ~914

6938 6116 6198 6264 6341 6407 64S2 6547 6618 66!11 i'9B 7979 i'136 (159 716i1
(JiGPG2 1391 2377 2378 25141 2528 2529 2647. 2689 3158 3499 3419 36131 3781 3931 4244 4379

4585 4639 4631 4691. 4734 4927 5148 5274 5275 53951 5319 !l424 ~7?1 ~ ~919 690
6121 6195 ~9 6346 6412 6487 (;552 6623 6696 7918 7984 1'137 7169 1179

0RGPG3 131. 1334 .1335 13951 1877 1~78 1943. 6577 6578 668SI 6648 6649 66821 6721 6722 67551
6768 6769 68231 6827 682S 6SS1. 6885 6886 69;421 6946 6947 7993. 7943 t'944 78781 7199
7119 71391 7138 7176 7177

0RGPG4 132. 2694 2695 31441 3161 3786 3936 4249 4259 4)551 4375 45111 4739 4932 ~153 ,~154
52201 S"J24 5429 5776 5855 5924 6848 6849 6197. 6126 628Il 6274 6351 lA17 6492 6~7

6628 6791 7923 7889 7139 7296 7287
(J\'(J'(l5 133. 3168 3169 33981 3791 3792 39161 3941 4389 4381 4491. 4515 4(44 4937 !l~ !l339

54891 5434 5781 5869 5861 59051 592';/ 6131 6295 6279 6356 6422 6497 &S62 66:S3 6796
7928 7994 7140 7216 . 7217

0RIf'G6 1341 3946 3947 41921 4529 4~ 46151 4749 4159 4913. 4942 5439 !l7s6 ~787 !l8361 5934
5935 68291 6136 6219 6284 6361 6427 6592 6567 6638 6/11 1933 7899 7141 7224 7225

~G7 1351 4947 4948 51341 5444 :>445 ~757' 6141 6142 61!l81 6215 6216 62551 6289 6299 6Il9I
6366 6367 63981 6432 6433 64711 6597 6508 6537. 6572 6643 6716 7938 i'1f14 '(142 7232
7233

OOTClR 1624 19741 2556
00TI1SG 1797 1827 1975.
OUTUTL 1542 1973. 2326 2713 2993 3124 3185
0Y8BAS 3187 6783. 6784 67B8 6793 6887
0Y1B1 6898 6914.
0Y1B2 6919 6924.
0Y1BRS 1426 3281 6451 68%1 6991 6987 6911 6914 6924
0Y2B1 6981 69841
0Y2SAS 2921 6957. 6958 6962 6968 6972 6984
OY3B1 6868 6G62I ,
0Y38AS 3<:113 684111 6841 6845 6851 6855 G!lG2
0Yrllr 13191 4828 !l926 6657
0VUJAD 1427 2922 3188 3204 3282 6452 6731.
OYSIZE 6461 D21 1426 2921 31S7 3293 3281 4812 ~9 6451 66!l7 6651) 6731
0YSW1 66611 6667
IJY<'JIJ' 2985 2995 3186 6657.
Pm< 15181 1924
Pl>IGIT 5171 5489
~1S59 2212 23181 2633 3089 3599 3716 6455
PGmE 71351 71361 7137. 71381 11391 71481 71411 7142.
PINPUT 5291 5481
PlUS1 6991 2476

All mnemonics copyrighted @ Intel Corporation 1976.
1-160 .

inter AP·55A

,PlUSl 7141 2268
PRNT1 2899 20391
PRNT2 19941 2029
PSEGHI 5181 1414 5476 5491 5818
PSE!l.O 51.9t 1413 5477 5439 5819
RDELAY 12481 56% 5716 (:072 6007
RECDOO 3524 35491
RECTYI' 12751 3583 3587
REGC 1293. 4485 4442 4553 4596
REIJ/G 191. 1335 1401 1529 1878 1948 1S53 2158 2235 2240 2M 2396 2368 2m 23,8 2519

2524 ~ 2652 2688 2685 2699 2695 3149 3154 3159 3164 3169 3480 3495 3419 3618
3686 3691 3736 3741 3m 3777 3782 3787 3792 3922 3927 3932 3937 3942 3947 41117
4112 4142 4147 4181 4186 4235 4240 4245 4258 4361 4366 4371 4376 4381 4496 4S81
4586 4511 4516 4521 4621 4626 4631 4696 4,('25 4(39 4n5 4740 4(4:> 4759 491a 4923
4928 4933 4938 4943 4948 5139 5144 5149 5154 52'.16 .:>231 5265 5279 :>275 5319 5315
5320 5325 5339 5415 5429 5425 5439 5435 5449 5445 :>762 576., 57(2 57n 5782 578'(
5841 5846 5!l51 5856 5861 5919 5915 5929 5925 5939 5935 (:034 6839 6844 6949 6112
6117 6122 6127 .6132 6137 6142 C1SG 6191 6196 6291 629C 6211 6216 6268 62C5 6279
6275 6289 6285 629Il 6337 6342 6347 6352 6357 6362 6367 6403 6400 64B 641!l 6423
6428 6433 6478 6483 C488 6493 6498 6583 6588 6543 6548 6553 6553 6563 6568 6573
6578 6614 6619 6624 6629 6634 6639 6644 6649 6687 6692 6697 67112 6'(07 6712 6717
6722 6769 6C2S 6886 6947 i'OO9 7914 ?919 7924 7929 7934 7939 7944 ?975 1900 1'885
7999 7995 7199 7195 7119

RERROR 2317. 2348
RINT 15291 1923
ROTCNl 886. 5501 5646
ROTPflT C65I 5482 5507 5514 5529
RSlm: 2761 7133
SCf1N3 5557 55751
SCANS 5532 5566 5589 5699 564411
SCANS 5672 5682.
SEGPW 13111 2213 5486 587f1 5965
SING 1523. 1928
SIZE 1385. 1388 14394 1442 1863. 1866 1S33. 1936 2143. 2146 22291 2223 22861 2209 2353. 2356

25Il4I 2507 2637. 2649 26641 26(," :s1341 3m 33801 :na3 360311 3686 36711 3674 :f?291 3723
37551 3758 39061 3909 40921 4995 4127. 4139 41661 4169 4293. 4286 43451 4348 4481t 4484
46951 4688 4681. 4684 47101 4713 4903. 4986 51241 5127 52101 5213 52501 5253 :>2951 529\1
53991 5402 5747. 5759 5826. 5829 58951 5898 68191 611'.!2 69971 6100 61791 6173 6245. 6248
63201 6323 638S1 6391 6461. 6464 6527. 6530 6598. 6681 66721 C675 67451 6748 68131 6816
68711 6874 6932. 6935 69931 6996 7060t 7963 71291 7123

SIZECH 2791 1302 1436 1868 1930 2149 2217 2283 2359 2591 2634 2661 3131 3377 3689 366S
3717 3752 3993 4989 4124 4163 4200 4342 4478 4602 4C78 4791 4900 5121 5297 5247
5292 5396 5744 5823 5892 6816 6994 6167 6242 6317 6385 6458 6524 6595 6669 6742
6819 686S 6929 6999 7957 7117

Sl'lflfI 1122. 2487 2493 2772 34f.>5 3817 4m 4999 5184 5J78
S/IILO 11131 1671 1fJ:S1 24811 2557 2745 2869 2889 3314 3341 34\14 3844 4ll0i' 4023 4845 4879

5995 5021 5946 5099 5209 5238 5282 5352 6232 6398
STRCOII 1623 29371
STRGOC 1927 2954lI
STRtIEII 1922 1..'125 294711 2555
STRTIf' 1257. 1989 2003 2916
STROll 1973 2932.
STSIM: 3956 3962 3183.
TCRlFO 3886 3894 3975 41191
TIINT 54541 5742
TIRET1 5647 5791 5721.
TOFPOI.. 3846 5742. 5881 6077

All mnemonics copyrighted © Intel C?rporation 1976.
1-161

inter Ap·55A

TTYOOT 5J9I 4428 4439
lYPE 11761 1429 1579 1585 1748 1771' 1777 1822 2448 255IJ 3811 3872 4i'6a 4966 5171
lJ'Dfi)1 22G5I 2558 1371
If'IlOOR 2195 22481
YERSI«) 185111
\oI!RK 1'5221 1928
11>151' 2819 2939 2269 22i'4 2569 3m 59481
1I>1SP1 5988 59911
lIPCOOE 8m 1419 1519 2118 5799 5949 61!!9
Xf'TEST 1411 1549 2119 5889 5959 6151 (9591
~RO 6841 1579 1586 1778 2494 3428 3869 5667

CRO!>S IlEFEROCE CM'LETE

All mnemonics copyrighted @ Intel Corporation '1976.
1-162

intel' AP·55A

BRKFIL 2433 2437.
~ 24594 2499
ElfCNT 12661 344C 3519 3534 3970 ;990 4046
BlflEN 6621 B29 3875
B\'TE11 ~"54 36201
B\'1EIN 3432 3451 3470 3489 3525 3627.
INTEO 3995 4018 4825 4828 4839 4887 41541
eGO 29S6 30921
CGIHI 3819 38181
CGmIT 3822 38251
CGOSS 3821 30341
CGOTRR 3823 38m
CGOIIB 31128 30261
CllARCR 3393. 4119
CHARIN 3417 3549 3699 3749.
CHff!l.F 3394. 4121
CIm«l ~geI 13B 1349 1378 5648 5871 sea7 5998
CIiARO JS91 3896 397;' 3900 4831 4837 4128 4122 4392.
CH<ERR 3577 359St
CHKSUI'I sent :S428 3566 3573 JG64 3665 l860 4874 48e1 4155 4156
CI8 45:S1l 4531 4532
CI1 4533. 4533 4534 45$6
CI2 45371 4585
CI3 4539 4542.
CI4 4541 4545.
CIN 3749 45291
CKSI'IOK 3551 3578.
CLEM 1974 58781
CLRBFr 5341 C519 6520
OOINT 1836 1842 1845 185511
CI1PIfIS 3871 4673 5343.
CIf'RET 539SI
CNTRLZ 33951 3418 3423 3895
CNTTBL 3877 388811
CNTTRR 3003 3984 38911
C01 4427. 44'75
CO2 4427 4438.
C03 4429 4433.
COOEBI. 199t 1398 1526 1945 2155 2232 2298 2365 2516 2649 2(,77 3146 3'"s'J7 361~ 3683 3733

;769 3919 4184 4139 4178 4232 4358 4493 4618 4693 4722 4915 5136 5223 :i262 ~387

5412 ~759 5C38 5987 6831 6189 6183 6257 6334 648Il 6475 ,6548 6611 6684 7896 7072
eotm1 2487 24321
CMIL 1428 1432 2426 46391
~2429 2992t
COIISCR 2486 24361
OO'ISIZ 1596 1899#
CTfIll 1557 18981
CURl) IG 9201 547S ~84 5647 5648
DRTflBI. 244t 1332 1815 6766 6825 6833 6944
DAfO 4829 4033.
OOf01 48341 4860
DBlfN(2215 58721 5874
OOPNT 2936 29851
DBRK 1519. 1924
OCB ' 2045 21861
00fIlRK 2953 21221
OOIIIEII 2849 21161

All mnemonics copyrighted © Intel Corporation t976,
1-163

intJ AP·55A

D1:BI£t: 6381
DECUI/ 1791 5S4 689 616 632 648 678 6SS 789 715 m 756 m 7911 8117 824

848 869 8911 911 932 964 97J 932 991 111011 1989 1918 1112" 1816 1845 1854
1863 1872 1881 1896 1899 1188 1117 1126 1135 1144 1153 11G2 W1 1188 1189 ·1198
12tI7 1216 1225 1234 1243 1252 1261 1278 1279 12!18 1297 4216

[)[CSM 52e6 5291.
DECSIIl 26JIl 52S2I
DB.AY 3185 68591
0Cl.R\'1 6877' 6092
DERR(R 203l 20631
DfILL 2848 28961
DGO 2839 2894.
I)(J'fITS 5943 59961
OOR 2846 21081
DINTRG 2851 2124.
DLSl 2841 mal
DID) 2838 2092.
DID3RI< 2855 2129.
001£ 3419 3595.
DPA 2858 2135.
DPRBRK 2852 21281
Df'RI£II 2848 21141
DR[C 2842 21881
DRLl. 2843 21821
DR!! 2858 211111
DRUN 2935 29781
DSE: 2844 21941
DSGIDl 2834 29781
()<"...I'fICC 2276 2279 2'.!Il1 2328 2564 2566 59421
DSl'HI 226Il 22761
DSl'LO 2275 22891
I>SPIU 2273 22791
DSPIIID 22771 3375
DSPTI" 1841. 3199
DSPllf' 8281 5948 5967
DSS 2957 2133.
DTR 2859 2137.
DWBRK 2856 2131.
ELSIF1 2186 2188 22112.
ELSIF2 2284 2297 22m
E.'l'mI 11481 5398
Elft.O 1131. 5364
ENlJlNI(5291 3197 6381
EIfJRAII 5281 3197 6388
EN)f'1 3SIl8I 3893
ENDFIL 3872 3tlS4I
EIIlREC 48641
EorREC 3887 3991.
EPOCC 9691 2977 3219 3374 4384 5184
I:PIlRK 1425 3183 6450 6456 65891
EreNT 29211 3187 3125
EPCON1 2785 2tl85I
EPCONT 2728 2783.
EPFET 3319 3343 4!l52 62231
EPPASS 2937 2'J52 2967 29S2 3285 3224 3243 :s262 6237 6239 6248 6298 6314 6315 6378.
EPPCHI 19141 2779 2914 3362 :mo
EPPClO 111851 2752 2S21 3335

All mnel!1onics copyrighted © Intel Corporation 1976.
1-164

inter AP·55A

EPPSW 9781 2888 2847 2992 ~7 325(3292
EPRIl 9961 2932 3276 4863 5884
rna 3042 6445 6519.
EmT 311& 3122 3129.
EPRSET 536. 1433 29S4 29".-6 6449 6453
EPI\'IJN 2424 2,12'
EI'M1 3il461 3951
EPRUN2 3il5il 3962.
~3 3049 3856.
EF'RIJM 3929 3931 3039.
EPWl5 3057 3115.
EPRUN6 3081 3982 31191
EPSSTP 532.
EPSTE1 6447. 6448
EPSTE2 6447 645Gt
EI'STEP 29r.4 3194 319B 63&2 64451
El'STOR 21174 2920 3349 3369 5053 6297.
EPTIIfR 987. 2962 :mB
ERROR 741) 765 782 m 816 B33 lJ61 882 993 924 945
ERROR2 2324 23491
EXIlI0 2541. 2616
EXAIf1 2681 26181
EXA1!2 2619 2622.
EXAIt3 2624 2627.
EXAIM 2629 2632.
EXAtIS 2619 26131
EXfIIIN 2419 25401 2626 2631
EXPIIOO 555.
rDllt'1 3978 39961
~D111'2 4926 40301
FWf>34035 49381
fllUllP4 4064 4888.
F'DUII'5 4034 49361
Fltro-' 15981 1699
GOTBL 3916 3il19.
H 13il21 4289 4325
l1li>1 4317 431S1 4319
HBl>2 43181 4339
fIlDlR\' 42571 4433 4434 4535 4537 4538
IflITHI 19321 4273
IIlITLO 1923. 4399
II>flTIN 35191 3547
1£XRSC41931 4388
I£XBtf 1327. ~4 38~ 3956 4033
HEXNIB 4195 41981
IFOONE 3885 3898 38941
HFlLEO 2413 2421 38il1. 3878
~CIN 2416 3417. 342'l 3592
HRECO 3877 3BB4 39551
tl!EGA 19591
II!EGB 19681
HREGC 19771
Ift:OO 111861
Ift:GE 111951
IREGf 11941
1I1PlEl1 1855 23&5.
INCSIIA 1431 2625 3S2S 3673 4675 523111

All mnemonics copyrighted © Intel Corporation 1976.
1-165

AP·55A

INeN 52391
INCW1 5241 !;2461
INIT 14891
INITLP 14131 14~3

IIf'fI>1 2187. 2190
Ill'ADR 1035 21701 2498
Itf'KEV 1543 1675 1828 1846 2196 2345 2463 2588 2658t 3115 3119
INYfl.S 1346. 1381 1417
ITII' ml 1557 1590 1595 1597 1625 1626 1Mb 1647 1,85 1712 1715 1725 1732 1761 1838

1832 1333 1837
JOOlES 2408 24291
Jltl'TBL.2385 23991
JlorIL 2492 2426.
JTOOO 2491 2424.
JH1LST 2403 24191
JTOItOO 2400 2413.
JTIH:C 2404 24121
JTIH:L 2405 2416.
KIlDBlf 12121 2334 2349 'S6J~ 5811 6161
KOOI1 51)011 5816
KBOIN 2650 57991
KllOPtt 3847 3106 6150'
KCLRB 1515. 1908
KEY 7691 1544 1593 1749 1843 21C7 2292 2205 2322 2346 2468, 259tl 2597 2613 2622 2627

2C59 2783 3116 3129
KEYCLR 15051 2323 2628
KEYI)I1 15041 1923 1926
ID'EtIl 15811 1545 1844 2206 2347 2461 2618 3117
KEI'FIL 14991 1983
KEYFLG 9491 5533 5671 568"2
KEI'60 1512. 1902
KEI'lOC 1.<"211 5558 5644 5660 5666
KEI'lSl" 15101 1~
KEI'!IOD 15m 1901
KEI'NX1 15891 2'203 2623 2784 3121
Kl:I'f"AT 1583. 1929
KEI'PI1 15881 1923 1m
KEI'REC 15861 1905
KEI'RE(j 15891 1923
KEI'RI:.L 15821 1906
KEI'TRA 1587. 1929
KGORES 151~1 1909
K$ETB 15141 1997
LASTKI' 987. 5555 555G 5626 56::;3 !;6;'l)
LDflTA 7521 1B58 ;''211 231;' 232;' 2432 2436 2562 2565 2697 2614 2632 2828 2835 2919 3088

3321 3:S44 3346 Il67 :nre 3526 :i598 :S629 :s641 364B 3C69 :s666 3715 3868 4154 4157
41611 4662 4669 4795 5928 5lI:n 50i'1 5878 5106 Sill 6297 6454

LDBVTE 3867. 3876
LFllJR1 4897 489911
LFESRK 4700 4/81 4890#
LFEDPI 4m 4797 4813 4832.
LFEINT 4779 48701
LFIJ'I1 4776 4783.
LFER9 4851 48541
LrEREG 4778 483611
LmBL 4773 4776.
LFETCH 2561 3B67 4(04'

All mnemonics copyrighted @ Intel Corporation 1976.
1-166

intJ Ap·55A

pciGlO 898C RDElA\' 993F RECOON 82CC RECT'r'P 9942 I<£GC 9Il44 RE~ 9IJ95 ~9198 RINl ' 0011
ROTCNT 9983 ROlPAT Il982 r<sotE 9912 SCAN3 877C SCANS il78B SCflN8 97W SEGIIlf' 8846 SII«l IIII1fl
SIZE 801M) SIZECII 9911 S/ffll 11931 S/flO 8938 STRCOIt 11910 STRGOC 992C STRI£II {j926 STRTI1r 8948
smJTL 9919 S TSfIYE Il59II TCRLFO 91D2 TllNT 9('4£ '1IRETi 117f18 "I (fro. 970C flYruT 91148 1I'PE 9937
lI'M)1 917C l.IPOfIlR 9178 I/ERSI«l 9929 WBRK 9916 WD1SP 0600 1(/ 15P1 96EE XPCODE 9997 XP1E.ST 9301
ZERO 9999

fISSEIIJI. V CO'flL TE, I«) ERRORS

All mnemonics copyrighted @ Intel Corporation 1976,
1-167

inter AP,55A

ISIS':'II ASSEIRER S\'IIlOl CROSS REFERI:t-lC[, V2. 1 f1iGE 1

10 1851 1614 1629 1637 1659 1658 1721 1787 18(j6 1818 1977 1985 1m 2177 2388 2444
2546 2586 2719 2788 2796 2843 2857 2865 2898 2919 2!128 2943 2958 2m 3l1li7 :s868
3996 "t297 3215 3226 3234 3245 3253 3264 ·3272 3288 3392 :B19 3323 3331 ~359 3358
3434 3442 3453 3461 3472 3480 3491 3499 ~15 3562 3583 3631' 3~ 3966 39!!6 4891
4916 49,9 4393 4491 4592 4764 4788 48l.I3 4819 4841 4859 4875 4962 4986 5881 *7
5042 5995 5167 5189 5196 5348 5J60 5J74 5386 54!>6 ~ 5546 ~ ~92 ~ 5692
5794 5712 5726 5897 5956 6969 6868 6883 6157 6228 6]04

?flSfIYE 12354 546{j 5466 5722 5728
?B 1280t 4413 4413 4413 4419 4459 4469 4569 4579
?C9PNT 117. 146 7541 763 7711 ;'00 7GB. m 3051 814 !l22' 831 8391
?E:8R2 1191 754
?B9R3 1111 771
?00R4· 112. 700
'!BllR5 1131 005
?B9R6 114. 822
?E8R7 115. ~m

?B1PNT 1261 &59 867. 888 Il8SI 991 9991 9'& 9391 943 951.
?BOO 1191 867
?B1R3 1201 8S8
?B1R4 121. 909
?B1RS 1221 939
?C1R6 123. 951
?S1R7 1241
?IlCOOE 11m 1561 1561 1561 1567 1610 1616 2390
?BINOr 4151 1817 ;:387 2439 2909 3632 5179 5359 5385
?S1T50 4217. 4411.
?BUFCN 12621 3438 3444 3511 3517 3532 3542 :>')62 3968 J982 3!188 4044 4954
?BUFLE 6491
'tC1fllN 585. 5876
?CH<S\J 7911 3426 3426 3426 3558 3564 3571 35"71 3&58 3858 J858 4966 4972 4979 4979
?COIIST 1941 585 586 599 594 681 602 696 619 617 618 622 626 633 634 638

642 649 659 654 658 671 672 676 689 686 687 6~ 695 791 792 796
119 716 71? . 721 725 4217 421B 4222 4226

~I 9121
?OEE.:I«: 617.
?DSPTI HW. 3992 3998
?DSPTM 8981
?EIfl1l 11361 5JCB
?E/1Al.O 11271 5362
?[PflCC 9651 2969 2975 3211 . 3:l17
?EPPCH19191 2761 2m 2912 3354 3369
?EPPCL 1991. 2734 2759 2896 2814 21.19 3327 3333
?EPPSW 9741 2792 2798 . 2CJ9 2845 2894 2990 2939 2945 3249 3255 32B4 :Q9Il

?£PR9 9921 2924 2939 3268 3274 4S55 4861 !J969 5082
?EPm 983. 2954 2969 3238 3236
?FORM! 2951 1615 1634 1655 1600 1695 1722 1745 li'OC 1897 IB19 19a2 2999 2lI13 2178 2:ss9

2441 2445 2547 2587 2729 2735 2742 2762 2769 2793 . 2811 2818 2!;44 2862 2817 2899
2911 29'l9 2944 2959 2974 :sooa 3069 3997 3212 ~231 3259 3269 32t'9 3387 3328 :rJ55
3439 - 3458 3477 3496 3516 3531 3563 3504 3634 3638 3897 3814 3834 3841 ~963 39&7
4992 4917 4943 4871 4263 4279 4299 4297 4322 4398 4439 4458 4559 4568 4593 4645
4652 4765 4739 4894 4820 -4842 4869 4876 4963 4987 51192 5918 5943 5961 5968 ::i996
~16S 5181 5197 5349 5361 5375 5387 5461 5594 5547 ~581 5597 5616 5623 ~93 570SI
5727 589B 5!r.>7 5971 6965 69C4 6153 6229 6395

?F0RI12 3191 1638 1659 1692 1792 1986 2739 2749 2766 2776 2797 2815 2a25 2866 3216 3235
3254 3273 3311 :J332 3359 3443 3462 3481 3599 3811 3821 3838 3848 3967 4267 4277
4294 4304 4492 4649 4659 5965 59S1 5465 5691 5629 5636 57B 6969

?FORMJ 3391 1755 2923 2452 2887 3541 3651 495J 4332 4449 4468 45611 4578 5520 5981

All mnemonics copyrighted © Intel Corporation 1976.
1-168

inter AP.·55A

?H~"4 356.
?f0Rlf> 3801 1569 1516 1611 1&39 1(,51 lW4 1I1B 1(68 1784 18jj3 1978 1996 2174 2258 2331

2466 2484 2543 2583 2?1C 2731 27~ 2789 ~7 2840 285(; 2~ 2925 2948 295S 2979
3994 386S 3993 3200 3227 3246 3265 3285 ~393· 3324 j351 3425 3435 3454 3473 :S492
3512 3559 3580 3803 3339 3857 3959 3983 m8 4013 4067 4259 4286 4394 4412 4:,&9
4641 4761 4735 4S8tJ 4816 483B 4S56 4872 4959 49V3 499S 5814 5039 5&57 5992 ~1(.4
5193 ~345 ~371 5457 ~3 5577 ~593 5612 5C!l7 ~i'5 ~'9 5795 5723 :i894 ~77 5953
6961 6009 6154 6225 6391

?H 1298. 4262 4273 4323 433]
?HBITH 1928. 4258 4266 42/1
?HBITl 1919. 4285 4~3 4298
?HEXEU 13241
~GA 19551
?lIREGB 18641
?HRI:OC lBnl
?HREGD 10021
?IMGE 19911
?fRtiF 11991
?ITI'IP (741 1687 fi'1l3 1719 1710 1717 1723 1739 1730
?KEDEU 12981 2I~2 2332 23U 233:1 ~615 5637 5893 ~ 6153 6159
?KEY 757. 2582 2588 ;:595 2595
?KEYFL 933.
?KEVLO 1217. 5542 5548 565B 5658 5658 5664
?LASTK 8911 :J611 5619 5624 5631 5631 !:i676 ~76 5676
?L1>ATR 7491 2819 2826 2833 2833 3613 3639 3646 3646 s652 $658 ~ 4644 4669 4667 4667

5956 5Il64 5969 5076 5876
?LOOT 1333. 1383 139911 1442 1527. 1866 lB76. 1936 19461 2146 21564 2223 22m 2289 229:'" 2356

. 23661 2587 2517. 2649 26591 2667 267St 3137 3147 • 3383 339StI 3606 36161 3674 :S6841 3723
37341 3758 37791 3999 :m9. 4095 41951 4139 41491 4169 41791 4206 4233. 4348 43~94 4484
44944 4698 4619. 4684 46941 4713 4723. 4996 4916. ~127 SH7. t12H ~224i 5253 5263. ~~8

53001 5402 5413. 57S9 5769t 5S29 583,)' 589ll 59001 6022 69321 61!J!J 611111 6173 618# 6248
6258. 6323 6335. 6391 64011 6464 64761 6539 65411 6691 6612. 6675 66!l51 6748 6767. 6816
68261 6874 68841 6935 E845. 69% . 70071 '(863 (9nt 7123

?1'IIJ1l1 11541 3896 3822 3997 4003
~It.O 11451 J8I~ 3849 4912 4018 4649 4648 4653
?I'IINDX 156. 967 9711 971 97G 9301 989 985 9391 989 994 9981 998 1003 10071 1007

1912 19161 1916 1921 19251 1925 1039 19341 1934 1939 1043. 1943 1948 19S2t 1852 1!f.i7
1961. 1061 1966 1979 •. 1979 1975 19791 19(9 1004 19381 1088 1993 1997. 1997 11112 119611
1196 1111 11151 1115 1120 11241 1124 1129 11331 1133 1138 11421 1142 1147 11!i1l 1151
1156 11691 1169 1165 11691 1169 1174 1173. 1178 1183 11871 1187 1192 1196. 1196 1291
1295. 1295 1219 1214. 1214 1219 1223. 1223 1228 12:521 1232 1237 1241. 1241 1~46 1~

1258 1255 1259. 1259 1264 126SI 1268 1273 12171 1277 1282 12861 1286 1291 1295. 12~

1390 1394# 1394 1389 13m 1313 Hi7 13211 1321 1325 - 1329. 1329
?MSRVE 158. 587 Ge3 619 635 651 m 68S 193 718 742 759 '(76 m 819 fQl

851 872 893 914 935 967 976 985 'J94 1003 1912 1921 1039 1939 1!J4S 1957
1966 1975 1984 1993 111l'.1 1111 1129 1129 1138 1147 1156 1165 1114 1183 1192 1291
1219 1219 1228 1237 1246 1255 1264 1273 1282 1291 BOO 13!J9 1317 1~5 4219

?NCOL5 6911
?NEGl l16. 2338 5674
?NEXTP 11991 2251 2 .. '51 2251 2257 5873 5870 5878 5884 5~2 ~958 5972 ~9!l2
?Nr<EPT 1226. 5576 5582 5596 5692
?NlR'ICO 1181. 1654 1669 2173 2179 2467 24G7 2467 2473 2715 2721
?OPTIO 1199. 1633 lG39 1683 1691 1696 1183 1189 1892 1898
?OYBUF 13161
?O't'SIZ 633.
?PLUSl 686. 2465
?PLUS3 191. 2249

All mnemonics copyrighted @ Intel Corporation 1976.
1-169

inter AP·55A

?R1 991 4289 4385 4312 4312
?RAIl 193. %5 ~. 974 975 983 934 9'R 993 1f11l1 11l1l2 11119 11111 11119 111211 1928

1929 1937 1938 1946 11147 1955 1956 1964 1065 1973 1974 1982 1983 1991 11192 111l1l
11111 1199 1119 1118 1119 1127 1128 1136 1137 1145 1146 1154 1155 1163 1164 1172
1173 11Bl 1182 1199 1191 1199 121l1l 12tI8 1209 1217 1218 1226 1227 1235 1236 1244
1245 1253 1254 1262 1263 1271 1272 128Il 1281 1289 129Il 1298 129!1

'!REIl 191. 7411 741 745 757 758 762 (74 7i'5 (79 791 m 796 8Il8 8Il9 S13
S25 82C 839

?RBl 1921 849 C5Il B54 85S 879 071 875 879 1m B92 896 9IlIl 912 913 917
921 m 934 938 942

?RDEl1I 12441 5688 5694 5798 5714 61164 6879 6979 aIC5
'JRECr.' 1271. 3495 35Il1 3579 3585
?REGC 12S9I 4397 4493 444Il 4459 4551 4561 .45!J8 4594
?ROTCN 07111
?ROTPA 0491 5505 5512 5512 5521 5527 5527
?RSAYE lHI 591 595 697 611 623 627 639 643 655 659 677 681 692 696 "fIl7

711 722 726 746 763 700 797 814 831 855 859 1176 sae 897 991 91B
m 939 943 4223 4227

?SEGI'Vl 131lB1
7SIz[2551 1303 1437 1861 1931 2141 2218 22S4 2J51 2582 2635 2662 3132 3378 J6Il1 3669.

3718 3753 3!194 489Il 4125 4164 4281 4343 4479 46IlJ 4679 4798 49111 5122 ~ 52411
5293 5397 5745 5824 5!!93 61117 6Il95 6168 6243 6318 6386 6459 6525 6596 667{j 6743
6811 6869 6939 6991 iIl58 7118

?SI'IfIHI 11181 24115 2485 2485 2491 2757 2765 2770 345""1 3463 3S02 :sIlll! 3815 4784 47S0 4982
4988 51B2 5379 5376

?c..../1Al.O 1199. 2730 2731.) 2743 2861 2867 2B70 288B J3Il6 3312 3476 3482 3829 :sIl3? 3842 4799
4885 4815 4821 4837 4S43 4871 4877 4997 SIlIl3 5013 51119 5838 5844 ~ 5997 5192
5198 5344 5J58 6224 6239 631l1l 6396

?5 TART 1339. 1383 1383 1391 141151 1437 1437 1445 1533. 1861 1861 1869 1SS21 1931 1931 1939
1957. 2141 2141 2149 21621 221B 221B 2226 22441 2204 2284 2292 231111 2351 2351 2359
2JIl21 2592 2582 2519 2533. 2635 2635 2643 26561 2662 2662 267Il 26991 3132 JD2 3140
3m. 3378 3378 3386 34141 36Il1 l6II1 S609 3622. 3669 3669 3677 36951 mB 3718 3726
37451 3753 3753 3761 37961 3904 39Il4 3912 :>951. 4090 4Il90 4Il9S 41161 4125 4125 4133
41511 4164 4164 4172 41991 4281 4201 4209 42541 4343 4343 4351 43851 4479 4479 4487
4525. 4693 4603 4611 46351 46(9 4679 4687 471101 47118 4700 4716 4754. 49111 49111 4999
49521 5122 5122 51311 51591 5208 5208 5216 :k?351 5248 5248 5256 52791 5293 !:i2S3 ~301

53341 5397 5397 54Il5 54491 5745 5745 5753 5791. 5824 5824 5832 58651 5893 5893 5991
5939. 6817 61117 6025 68531 6Il95 6995 6103 61461 6168 6168 6176 62201 6243 6243 6251
62941 6'.$18 631B 6326 63711 6386 (;386 6394 64371 6459 6459 6467 65121 G525 6525 6533
6582. 6596 6596 6604 66531 6670 6670 6670- 61261 6743 6(43 6751 6m. 6811 6811 6819
6832. 6869 6869 6Il?7 699IlI 6939 6939 6938 69511 6991 6991 6999 78481 7Il58 i'058 i'966
71141 7118 7118 7126

?STRT" 1253. 1981 1987 1995 2801 21114 2024
?T'.'f'E 11721 1577 1577 1~77 1583 1746 1756 1769 1769 1769 1775 1829 2448 2446 2453 2542

2548 3IlIl3 3IlIl9 ' 3Il64 3979 4769 4766 4958 4964 ~163 5169
?tNlRY 4591 1744 2012 2876 3539 41142 4321 4438 4451 454~ 4567 5503 ~97f1

?VEI:SN 11146.
?XPCOD 8251
?2ERO 6711 1559 1575 1767 2483 3424 3856 56:l6
AFETCH 47114 47591
ASRYE 12391 5468 5730
ASCERR 3704 3711 37151
B 1284. 4415 4421 44(,1 4529 4571
BCOOE 1167. 1563 1569 1598 1616 2m
ElITSO 42381 4422
BRKEND 2462 2590.
BRKERR 3008 :<8SSI

All mnemonics copyrighted © Intel Corporation t976,
1-170

inter Ap·55A

LOC OOJ LINE SOURCE STflTEI1ENT

7243 00

USEk S~'lW..S
?II IlOO4 ?ASAYE 8992 ?B 8992 ?BIlf'NT eeec ?IlI'IR2 8993 ?88I<l 9004 ?BeR4 IJe9S ?E0R5 89!16
?IlIlR6 9997 ?B8Ri' 909S ?BiPNT 8087 ?B1R2 9993 ?B1R3 e994 ?B1~4 0085 ?B1R5 0ee6 '!B1R6 Il007
'!B1R7 898f) ?BCOOE 90e2 ?IlllO' 9922 ?BITSO 9003 ?BtfCN 9982 ~I£lUFLE 11883 ?t'lm 9003 ~1Q§(5lJ 809Il
?CQ6T 9983 ?CURD I 0001 ?DEBNC 0003 ?I)<".,/'n 0002 ?DSPTI1 8900 ?EIfIIH 0092 ?Elft.O 0092 ?EPACC IiOO2
?EJ'F'CH 8992 ?EPPCL 8002 ?EPPSW 0002 ?IJ'R0 ilOO2 ?EJ'TlI'I 09Il2 ?f0Rl'l1 9916 'ifDRl12 0818 ?f 0RtI3 9Il1Il
?FOOM4 9Il1C ?F0RI15 001E ?H 9002 ?IIH"iH 0082 ?llBlTL 0092 ?lUOO 9993 "?lfi:GA 89Il2 ?t-nGfJ 8002
?HF:EOC 09Il2 ?If(EGI) 0092 ?li:[G[9002 ?I-REGF 99Il2 ?ITII' 0009 ?KBOOU 9002 ?K£:~' eeee ?KEWL !lee1
?KEYLO IlOO2 ?LRSTK 0001 '!lDRTA 0909 ?LE:t«iT 99EII) ?lE1II1 8002 ?I1EI1I.O 8902 ?IIINDX 0075 ?I1SAYE 9991
?t«:Ol.S 8003 ?lEG1 M3 ?NEXTI' 0082 ?NREPT Il9Il2 ?tu1CO 0092 ?<rTlO 09!l2 'IOI/Blf 9093 ?OY!.ll 000J
?PUJS1 9993 ?PlUS3 8003 ?R1 9800 ?R~ 0002 ?Rf!8 8Il89 'tR81 !lOO1 ?RDELII 9802 ?RECW 90e2
?REOC IlI!82 ?ROTCN 11091 ?ROTPA 0001 ?RSAVE 009Il ?'"..EGIIl 9083 ?SIZE 800E ?SItAIH 0092 ?SIft.O 8082
?START 930C ?STRTI1 9002 ?TYPE 9992 ?I.tIAR'.' 992A ?YERSN 8002 ?XPCOO oooe ?ZERO 9993 AFETCH 96~
fl<".1lVE 993E ASCERR 81C9 El 9043 SCOOE 89j6 ElITSO 9900 BRKOO 8240 BRKI:RR 94A6 BRKr"IL 922E
IlRKNXT 9234 BLfCNT 9041 BlfL£:N 0019 BVTEl1 99F2 II~'TEIN 99F9 MEO 9108 CGO 0468 CGONB 947C
CGCfAT 9476 CGOSS 9489 CGOTRA 9480 CGOIIl ~76 CHARC~ il90D CllARlN 81CD ClmI000fI CHfIRIIO 0008
CHIlRO 958D CHKERR 92f1 CHKSUI1 0895 CI9 0640 Cit 9651 Cl2 9659 en 9662 CI4 0t65
CIN 9649 (;KSI1OI(921)13 ClUIR 95F1 CLRBFr 0000 CMl>INT 89I3A CMf'lf695E2 UlPRCT 115F0 CNTRLZ 9iI1A
CNTTBL 94A1 CNTTRA 94AfI cot 95C5 CO2 95CB cm 95Cf COOl£JI.. 9!l96 COI'ICBR 9228 COIt-IL 92[5
~9461 C(»ISIlR 922C COI1SIZ 8903 CTAB 0923 .CURD I G 0005 DfITOOL 908C DATO 962C DIlT01 962E
DEtfN(95F5 DBPNT 9144 OORK 8915 DCB 915A 00flBRI(9167 ~91C1 DEBta 9900 OCCl..Ali: 8003
DECSII1 92rF DECSI'IIl 9?F4 DELm' 94F2 DElfl'1'1 94F5 OCRROR 9131 DFILL 8148 000 9149 DGPAT~ 99£:F
OOR 8150 DINTRG 8169 DlST 914E DI'IOD 9146 DNOBRK 9168 DONE. 92E9 DPA 9172 DPRElRK 8165
I>PI\'I'IEft 8151' DREC 9151 DREL 0154 Dim 91C3 DRUN 8m D50 8157 DSGNON 0137 DSf'ACC 00>3
DSPIU !l1SE DSFtO 0194 DSPI'I1 B192 DSPI'IID 81S1l DSPTlII 0028 D5I'llf' 09Il6 DSS 91c/" 1)1k 91'/5
DWBRf(9160 ELSIF1 9007 ELSlf2 09£5 Emf-II 003J EI'1AI..O 0!l32 EtaNK 89Il2 " [NBRA/1 8991 ENDf1 959E
EII)fIL 9596 ENOREC 9641 EOfREC 05AE EPACC 9929 EPElRI(834F EPCNT 0441 EPCON1 94i1- EPCONT 941~
EPrET 9787 EPPflSS 9709 EPPClII 9925 Erf'CLO 0024 EPPSW 0021 EPRO 9923 Ef'RB. 97f 4 IOf'RET 94C7
EPRSET 8919 EPRUN 9489 EPRUN1 848A EPRUN2 9499 EPRUN3 9495 EPRlJN4 94S2 Ef'RIJl5 94B3 EPRI.tl6 948R
EPSSTP 9994 EPSTEi 87DF EPm207F1 EPSTEP 970B H'STIJI 97C3 EPTlI'IR 8922 ERROR2 81B6 [XA119 9258
EXAIIl 9270 EXAPI2 92£:1 EXAH3 028fl EXIlI4 0293 \:XAI'IS 9275 EXAI1IN 924F EXPI1CN 9989 FDIJ1P1 9617
FDlIIP2 8C28 FDUlf'3 9C36 rDUl'l'4 064S FDIJf'S 11632 FINDOI' 0942 GOTElL 9471 H 9945 HOOt 8407
1IID2 94D5 HBDlflY 94C9 flBlTHI 8927 HBITLO 11026 HDATIN 82B9 HEXASC 81E6 HEXIlUF 9!165 HEXNIB 9ill
ffl>ONE 1J:lfl7 HFILEO 9572 HRECIN 9297 HRECO 8699 HREGA 11021-1 IROO 992El li.'EOC 902C liREliD 082D
HREGE 892E IR:GF 1182F II'IPLEI'I 0200 INCSl'IA 01F2 INCW 91F4 INCW1 81FC INn 11909 INITLP 99IlE
INPADl 9OC7 1NPf:DR 9IlC9 INPKE'r' OOEC INVALS 0389 lTl'1I' 99Il4 J(;{)k[S 922C JIf'TBL 9296 JTOfIL 8222
J1000 922lI JTOLST 921Il JTImOD 029F JTOREC 9211 JTOREL 9216 KBOO..f 01138 KIlDIt 96C6 KBl>IN 00:2
KBDPOI.. 9M KCLRIl 999C KE'1' 0093 KE'lCLR 0017 KE'r'DI1 9916 KE~'EN> 9913 KEYF IL 9918 KE YF1G 9Il86
Kl~'GO 981E rntoc 983(; KEYLST 981C Kl ~'IIOD 981F KE'r'NXI 9912 m'PAT 9815 m'Pl1 001A m'REt; 9818
KEYREG 991B KEYREL 9814 KI.'YTRfi 0919 KGORES 9Il1D KSETB 9Il9B LASTKY 9Il94 LDATA 9982 LOOYTE 8582
LfEBR1 96C1 LFEBRK 86B1 . Lr~ 11698 LFtlNT 96AS LFEPI'I 11684 LFER9 96A5. LFEREG 969C LFElfJL 96(£
LFETCH 98FC LfILL 92E9 LFILLl 1k"f3 U1lSEl. 94f1 LSTBR1 9746 LSTER2 0748 LSTIJRl(!l7J1) ~TDI1 11721
LSlINT 97.>4 LSTORE 8789 LSTPII !l79C L~TR9 872F ~lREG 8726 ~T1BL 0796 I't9 9819 111 8929
/R)() 8924 IflDOC 8925 MAIN 8929 1'Il1N2 003~ IflINA 11052 IfllNB 8969 1'IA1NB9 II99E I'IAINB1 9IlA9
I'IAlNe1 0075 I'IAIND 9993 I'IAIN>l 8007 IIIH. ge26 IIllOCK 9Il82 !'IDEe 002C IIDJN<! 9020 IIEIIII OO:s5
I'Elt.O 8934 I'IERROR Il9IlC MINC 89211 111.01 836F I'IIOY 8928 I'IOOOUT 8928 MORI.. 1!927 PIPUSEl. 9Il48
I1RL 892E I1RLC 0931 IIRR 002F I'IRRC 8939 I1XCH 8929 MXRI. 0028 NCOLS 8904 Nl:.G1 HfF
NEXTPI.. 003f1 NIBI3 81C2 NIBIN 9188 NIBIN2 91BA NIBO 95BB N<J8RK 9!l18 NOYILS 91123 IfID'TS 8!l3D
NIJ[{)N 0038 NXTLOC 87CS OPTAB1 933f OPTAB2 9346 OPTAIB 8349 OPTION 8939 0RGPG8 9109 ORGPG1 II1FD
IJ1GPG2 9389 ORGPG3 93E9 0RGI'G4 84fD ORGPG5 95FF 0RGP66 96FF ORGPG7 I17FD OUTClR 9192 0UTl1SG 9194
OUTUTL 9109 0V9ElAS 9378 OV1B1 89!lR 0Y1B2 8313 OV1BAS 93A4 OY2B1 9~13 0\I2BAS 938R 0\I3t'1 9311
OY3BAS93SE 0VBlF 004E OYLOflD 936A OVSIZE 9817 0VSII1 9361 OYSlfl' 9~5A PBRK 9919 I'DIGIT 898t
F'ERRlJ: 819A PGSIZE OOFD PINPUT 999lJ PLUS1 0091 PLUS3 1le93 F'RNT1 8m f1.'NT2 9198 f'C..EGlil I!9!j()

All mnemonics copyrighted © Intel Corporati~n 1976.
1-171

intJ AP·55A

APPENDIX C
COMMAND SUMMARY

The following is a summary of the commands im­
plemented by the HSE-49 emulator monitor. Within each
command group, tokens in each column indicate op­
tions the user has when invoking those commands.

Tokens in square brackets indicate dedicated keys on
the keyboard (some keys having shared functions);
angle brackets enclose hex digit strings used to specify
an address or data parameter. Parameters in paren­
theses are optional, with the effects explained above.
The notation used is as follows:

<SMA> - Starting Memory Address for block command,
<EMA> - Ending Memory Address for block command,
<LOC> - LOCation for Individual accesses,
<DATA> - DATA byte.

Asterisks (*) indicate the default condition for each
command; thus that token is optional and serves to
regularize the command syntax.

Program/data entry and verific;ation commands:

[EXAMI [PROG MEMJ" <LOC> [.) [NEXl]
[DATA MEM) [PREy]
[REGISTER) [.)
[HWRE REG)
[PROG BRK)
[DATA BRK)

Program/data initialization commands:

[FILL) [PROG MEM)- <SMA> [.) <EMA> [,I <DATA> [.)
[DATA MEM)
[REGISTER)
[HWRE REG)
[PROG BRK)
[DATA BRK)

Intellec@ development system or TTY interface com­
mands (for transferring HEX format files):

[UPLOAD) [PROG MEM)' <SMA> [,) <EMA> [.)
[DATA MEM)
[REGISTER)
[HWRE REG)
[PROG BRK)
[DATA BRK)

.[DNLOAD) [PROG MEM)' [.)
[DATA MEM)
[REGISTER)
[HWRE REG)
[PROG BRK)
[DATA BRK)

Formatted data dump t9 TTY or CRT:

[LIST] [PROG MEM)' <SMA> [,) <EMA> [.)
[DATA MEM)
[REGISTER)
[HWRE REG)
[PROG BRK)
[DATA BRK)

All mnemonics copyrlghted©lntel Corporation 1976.

Program execution commands:

[GO) [NO BREAK)' «SMA» [.)
[WI BREAK) [,)
[SING STp)
[AUTO BRK)
[AUTO STp)

[GO/RSl] [NO BREAK)' [.)
[WI BREAK)
[SINGSTP)
[AUTO BRK)
[AUTO STP)

Breakpoint setting and c[earing:

[SET BRK) [PROG MEMJ" <LOC> «,) <LOC> ...) [.J
[DATAMEMJ .

[CLR BRKJ [PROG MEMJ' <LOC> ([,J <LOC> ...) [.J
[DATA MEM)

APPENDIX 0
ERROR MESSAGES

The following error message codes are used by the
monitor software to report an operator or hardware er­
ror. Errors may be c[eared by pressing [CLR/PREV] or
[END/.]. The format used for reporting errors is
"Error- .n" where "n" is a hex digit.

Operator Errors

1. IIlega[command initiator.

2. Illegal command modifier or parameter digit.

3. Illegal terminator for Examine command.

4. Illegal attempt to c[ear Error mode.

5-9. Not used.

Hardware Errors

A. ASCII error - non-hex digit encountered in data
field of hex f9rmat record.

B. Breakpoint error. Break logic activated though break­
pOints not enabled.

C. Hex format record checksum error. Note - the
checksum will not be verified if the first character of
the checksum field is a question mark ("?") rather
than a hexidecimal digit. This allows object files to
be patched using the ISIS text editor without the
necessity of manually recomputing the checksum
value.

D. Not used.

E. Execution processor failed to respond to a command
or parameter passed to it by the master processor.
EP automatically reset. EP internal status may be
lost. Program memory not affected.

F. Not used.

1-172

APPLICATION
NOTE

Ap·91

INTEL CORPORATION ASSUMES NO RESPONSIBIlITY FOR THE USE OF ANY CIRCUITRY OTHER THAN CIRCUITRY EMBODIED IN AN INTEL PRODUCT. NO OTHER CIRCUIT PATENT LICENSES ARE IMPLIED.
©INTElCORPORATlON.1979 AFN.(J1364A..()1

1-173

i~ AP·91

USING THE 8049 AS AN 80 COLUMN
PRINTER CONTROLLER
I. INTRODUCTION

This Application Note details using INTEL's 8049
microcomputer as a dot matrix printer controller.
Previous INTEL Application notes, (e.g. AP-27 and
AP-54) described using intelligent processors and peri­
pherals to control single printer mechanisms. This
Application note expands upon the theme established
in these prior notes and extends the concept to include
a complete bi-directional 80 column printer using a
single line buffer. For convenience this application
note is divided into six sections:

1. INTRODUCTION
2. ·PRINT MECHANISM DESCRIPTION
3. INTERFACE CIRCUITRY
4. SOFTWARE

. 5. CONCLUSION
6. APPENDIX

Over the last few years 80 column output devices have
become· somewhat of a defacto output standard for­
business and some data processing applications. It
should be mentioned that by no means is the 80
column format a "new" standard. 80 column computer
cards have been around for more than 20 years and
perhaps the existence of these cards in the early days
of computers is why the 80 column format is a standard
today.

Many CRT terminals use the 80 by N format and
to complement this a number of printers use this same
format. One reason, aside from those historic in
nature, for the 80 column standard is that 80 columns
of 12 pitch text on standard typewritten 8.5 inch by
11 inch paper completely fills up an entire line and al­
low ample room for margins. So, the 80 column format
is an aesthetically convenient format.

Printers are usually divided into either impact or non­
impact and a character or line oriented device. Impact
printers actually use some type of "striker" to place
ink on the paper. More often than not the ink is
contained on a ribbon which is placed between the
striker and the paper. ·Non-impact printers use some
means· other than direct pressure to place the charac­
ters on the paper. This type of printer is very fast be­
cause there is very little mechanical motion associated
with placing the characters on the paper .. However,
because the paper is required to be treated with a
special substance, it is not as convenient as an impact
printer. .

Character printers are capable of printing one charac­
ter at a time. (Any standard home typewriter is in
effect a character printer.) Line printers must print an

1-174

entire line at a time. Line printers are usually quite
a bit faster than character printers, but they usually
don't offer the print quality of character printers.

In recent years, the "computer boom" has caused the
price of printers to tumble markedly .. High volume
production, competition, and the tremendous demand
for reliable print mechanisms have all corttributed to
the decrease in price. Because of their simplicity, line
printer mechanisms have decreased in price faster
than other mechanisms. Therefore, when high quality
print is not needed, a line printer is a very attractive
choice.

This application note describes how to control all 80
column impact-line printer with an 8049/8039. The
complete software listing is included in the appendix.
The 8049 is the high-performance member of the MCS-
48TM microcontroller family. The Processor has all of
the features of the 8048 plus twice the amount of pro-·
gram and data memory· and an llMHz clock speed.
For details about the 8049, please refer to the MCS-48
user's manual.

II. PRINT MECHANISM DESCRIPTION

The model 820 printer is available from C . .ITOH
ELECTRONICS (5301 BEETHOVEN STREET, LOS
ANGELES, CA 90066). This inexpensive and simple
printer is ideal for applications requiring 80 columns
of dot matrix alpha-numeric information.

The model 820 printer is comprised of three basic
sub-assemblies; the chassis or frame, the paper feed .
mechanism, and the print head. The diagram in Fig­
ure 2.1 ~ves the physical dimensions of the basic print .
mechanis~. The basic chassis for the printer is con­
structed out of four sheet metal stampings. These
stampings are screwed together to form a sturdy base
on which all other components of the printer are
mounted.

The paper feed mechanism consists of a toothed wheel,
a solenoid, a tension spril)g, and a "catcher." When the
solenoid is activated, the arm of the solenoid pulls
against the spring and drags over the toothed wheel.
When the solenoid is released, its arm is pulled by the
spring, but this time the arm grabs a tooth on the
wheel and pulls the wheel forward which advances the
paper. A "catcher," which is merely a piece of plastic
held against the toothed wheel, is added. to assure
that the paper is advanced only one "tooth" position
each time the solenoid is activated.

The print head is comprised of seven solenoids which
are mounted in a common housing. The solenoids are
physically mounted in a circle, but their hammers are
positioned linearly along the vertical axis. These
seven vertically positioned hammers are the strikers
that actually do the printing. .

intJ Ap·91

9B8~0015
(251 0 ~ 04)

Q,

5.63 (143.0)·~ ~649(164'8):~

~2~1463(117.6)
..L _
T '1

" :' ., .,
" "

___ H

--1

1038
(263.6)

3.32. j3)
r--gL I MARGIN FOR HEAD

025 I ~-4 77 (121 2)~ CABLE ROUTING'
(64)

fu2~. --~-.1132(287.5),----------I

UNIT INCH (MM)

__ ~ ___ ".82 ± 0.015
(3002 ± 0.4)

DIMENSIONS IN INCH GOVERN

Figure 2.1 Physical Dimensions of C. ITOH Model
820 Printer

~~~~~ 
~ 
~ 
~.~~~ 

~ 
~ 
~~~~rx1 
Figure 2.2 "Formation" of a Character by a Dot

, Matrix Printer

PRINT
WIRE

2

3

4

5

6

7

1-----6.18(157.0)----

A motor. mounted toward the back of the print mech­
anism. drives a rubber toothed belt which turns a rol­
ler guide. A motor turns a guide that moves the
print head from right to left and left to right. By prop­
erly timing the current flow through the solenoids
while the print head is moving across the paper, char·
acters can be formed. Figure 2.2 illustrates how the
dot matrix printer "forms" its characters.

The timing pulses for the print head mechanism are
generated by an opto-electronic sensor. This sensor,
located on the left side plate of the printer, informs
the print controller.when to apply current to the print
head mechanism. This "on-board timing wheel" assures
that all characters will be properly spaced and that
they will all be "in-line" in a vertical sense.

The print mechanism is also equipped with two ad­
ditional sensors. Th~se are the left home position
sensor. located near the left front of the mechanism.
and the right home position sensor, located near the
right front of the print mechanism. These sensors
simply tell the controller when the print head is in
either the left or right home position. A complete
timing chart for the printer is shown in Figure 2.3.

III. INTERFACE CIRCUITRY
The manual supplied with the printer recommends
some specific interface circuitry. For the most part
the circuitry used in this Application Note followed
these suggestions. The circuitry needed to drive the
print head solenoid is shown in Figure 3.1. This same

1-175

intJ AP·91

MOTOR POWER

~:F -.J
,
I

~---------I 1-75-1(10 ms (IN CASE MOTOR OFFl ::: -

~::~-----,~--~------~ ~
DARK I r-----1 -I Nb~,o;;~L 1-

LEFT HOME FLAG

LIGHT -----.,;----------------------......11 1 .. "7"""---------------------------------

~
'ms._ 1_ -I -, 5ms(DELAYFORALlGNMENn

RIGHT HOME FLAG

I L TO R PAINT 179 m$ R TO L PRINT I
- 53BmsNOMINAl --NOMINAl-- 538msNOMINAl -

--t 1-~gM~~AI
TIMING PULSES J1' M J\M M
ISCALENOTPROPORTIONALI t -------!I--------- t --~ t ------~r------- , -~S_--

Tt T480 T, T~""

-I 1-'S-20ms -I I_lOoms

__________ ---'n nnFL_f1_ ON

PAPER FEED POWER OFF

Figure 2.3 Timing Diagram of C. ITOH
Model 820 Printer

+ 5V ~ 5%

Figure 3.1 Solenoid Drive Circuit

S' SOLENOID
Tr, 250633
A, 33OQ.lIBW
R2 13Q::t5°'o.5W
RJ lkO,l12W
o 38Z61
C l",F l00V
G SN74060A EQUIVALENT

(Eliminate R2 for Line Feed Solenoid)
circuit is used to drive the line feed solenoid except
that the current limiting resistor R2 is eliminated.
This resistor is not needed because the line feed solen­
oid is physically much larger than the print head sol­
enoids and can'tolerate much higher levels of current.

The print head drivers are connected to an 8212
latch. The latch is interfaced to the BUS PORT on the
8049 and is enabled whenever the WR pin and the BIT 4
of PORT 1 are coincidentally low. The line feed driver
is connected to PORT 1 BIT 1 of the 8049.

Note that the driver is simply a Darlington transistor
that is driven by an open collector TTL gate. Resistor
R2 is the current limiting resistor and diode D. capa­
citor C. and resistor R3 are used to "dampen" the in­
ductive spike that occurs when driving solenoid S.
This circuit is repeated for each of the seven solenoids
in the print head. It should be mentioned that. al­
though the type of Darlington transistor needed to
drive the print head is not critical. a collector current
rating of at least 5 amps and a breakdown voltage
(Vceo) of at least 100 volts is needed. Transistors that
do not meet these requirements will, be damaged by
the inductive kickback of the solenoids.

As mentioned in Section 2. the printer provides some
sensor interface signals that are derived via three opt(}­
electronic sensors. These signals must be amplified

(PAPER SLEWINGl

and converted to TTL levels in order to interface to
the controller. This conversion is accomplished with a
simple voltage comparator. Figure 3.2 'is a schematic
of the sensor interface circuitry. Note that hysterisis
is employed on the voltage comparators. This elimi­
nates "false" sensing,

33K

>"'1-.,.--0 OUTPUT

56K

Figure 3.2 Example of Sensor Circuit

Motor control is accomplished by using a Monsanto'
MCS-6200 optically-coupled TRIAC. This part is ideal
in this kind of application because it provides a simple
means of controlling a line-operated motor without
sacrificing the isolation needed for safe and reliable
operation. Figure 3.3 is a schematic of the motor driv­
ing circuit.

+5

YELLOW

\
soov 7TOR

rBLK/RED

NEU HOT
'---..--/

,'SVAC60HZ

Figure 3.3 Motor Driving Circuit

1-176

To interface 8049 to the outside world one 8212 latch
was used. This latch was connected to the BUS PORT
and is enabled by an INS or MOVX instruction coin­
cident with BIT 4 of PORT 1 being in a logical zero
state. In this configuration, the 8212 was used to hold
the data until read by the 8049. The connection of
the 8212 to the 8049 is shown in Figure 3.4 and the
parallel port timing diagram is shown in Figure 3.5.
The 8212 parallel port was connected to the LINE
PRINTER OUTPUT of an INTELLEC MICROCOM­
PUTER DEVELOPMENT SYSTEM.

INPU
LINE

BUSY

C ~ --i;
T -fa
S ~

20

~~

010
0"
Db
0:
01,
01.
Db
01.

gg; :
00,
Db~ 10
DO~ 1
DO.

8212 00,14
DOa 21

OS.

OS, <}--
INT

I
Figure 3.4 Connection of the 8212

Input Port to the 8049

DEl<>
DB.
DB,
DB,
DB.
DB,
De. 8049
DB,

RO

PI.

TO

DATA ~~------------------
-U

BUSY
~r-------------,~ __ _

ACKNLG --'----------L-S
I----VARIABLE TIME:----I

Figure 3.5 Parallel Port Timing

IV. SOFTWARE

As mentioned in Section 2, the bulk of the timing
needed to control the printer is actually generated by
the printer itself. Therefore, all the software must do
is harness these timing signals and turn on and off the
right solenoids at the right time.

To make things easy, the software needed to drive
the printer is broken into four separate routines.
These are:

1. INITIALIZATION ROUTINE
2. INPUT ROUTINE
3. OUTPUT ROUTINE
4. LOOKUP ROUTINE

The INITIALIZATION ROUTINE turns the motor on
and checks the opto-electronic sensors. If a failure is
found, the routine turns off the motor and loops on it­
self. This insures that the print mechanism is cycled
properly before characters are accepted for printing.

Ap·91

This routine also initializes all of the variables used by
the printer.

The INPUT ROUTINE reads the characters that are
present in the 8212 input port and writes them into the
8049's buffer memory. The routine then checks the
characters to see if a CARRIAGE RETURN (ASCII
OCH) has been transmitted. If a CR is detected, the
input routine automatically inserts a LINE FEED as
the next character. When the input routine detects a
LINE FEED, it stops reading characters and sets the
direction bits and the print bit in the status register.
This action evokes the OUTPUT ROUTINE. A detailed
flowchart of the INPUT ROUTINE is shown in Figure
4.1.

Figure 4:1 Input Routine Flowchart

1-177

AP·91

The OUTPUT ROUTINE initializes both the input and
output buffer pointers and then reads the characters
from the 8049's buffer memory. After a character
is read the OUTPUT ROUTINE calls the LOOKUP
ROUTINE which reads the proper bit pattern to form
that character. This bit pattern is then used to strobe
the solenoids. After each character is printed, the
OUTPUT ROUTINE calls the INPUT ROUTINE and
another character is placed into the buffer memory.
This type of operation guarantees that the input buffer
cannot "overrun" the output buffer. A flowchart
of the OUTPUT ROUTINE is shown in Figure 4.2.

Figure '4.2 Output Routine Flowchart

IV·I. HANDLING THE 1/0 BUFFER

Since the C. ITOH Model 820 printer is capable of
printing in both directions the 80 character buffer
must be manipulated in a manner as to allow maximum
input-output efficiency. This is accomplished by rever­
sing the "direction" of the buffer memory each time
the printer is printing from right to left. For simpli­
city, if it is assumed that the buffer is only five bytes
long, Figure 4.3 can be used to help explain the buffer
operation.

Initially the input buffer pointer is loaded with the ad·
dress of the first location in the buffer memory. As
characters are read, the input buffer pointer incre·
ments and fills the buffer memory as shown in Figure
4.3(b) through 4.3(f). When a CARRIAGE RETURN­
LINE FEED (CRLF) is encountered the input buffer
pointer and the output buffer pointer are reset back to
the first location. The OUTPUT ROUTINE then reads
the character from the first location in the buffer mem­
ory, increments the output buffer pointer and calls the
INPUT ROUTINE, which reads another character
from the parallel input port.

The OUTPUT ROUTINE, reads the e,ntire buffer, in­
serting space codes (20H) after a CR is detected,
and the input buffer pointer follo~s the output buffer
pointer as they "increment" up to the buffer memory.
When the OUTPUT ROUTINE has printed the last
character or space, the output buffer pointer and the
input buffer pointer are set to point at the last location
of the buffer memory. The OUTPUT ROUTINE then
reads the character from the last location of the buffer
memory and proceeds to "decrement" down the buffer
memory. Space codes are inserted until a CR is found.
Figure 4.3(1) to 4.3(0).

The input buffer pointer follows the output buffer
. pointer just as in the previous case. When the last,

or in this case the first character is printed, the output
buffer pointer and the input buffer pointer are set to'
point at the last location of the buffer memory. Now
the pointers are "decrementing" down the buffer
memory, but the printer is actually printing in a "nor­
mal" left to right fashion.

When the last character or space is printed, the output
buffer and the input buffer pointer are set to the first
location of the buffer memory and printing takes place
in a reverse or right to left manner. After this line
is printed, the print head and both buffer pOinters are
in the same position as they were initially. So, four
lines must be printed before the buffer pointers and
the print head complete a cycle. Each of these sit­
uations is handled separately by four different sub­
routines: CAS EO, CASEl, CASE2, and CASE3.

IV·II. TIMING

All critical timing for the printer controller came from
two basic sources; the timing sensors on the printer
and the internal eight-bit timer of the 8049.

The internal timer of the 8049 was used to control
the length of time the solenoids, were fired (600
microseconds) and was also used as a "one-shot" to
align the printer. This alignment is needed to make
the "backward" printing line up vertically with the
normal or forward printing. The "one-shot" is used to
measure the time from the last column of the last
character position until the right sensor flag is covered.

1-178

inter

4.3A

4.38

4.3C

4.30

4.3E

4.3F

4.3G

4.3H

4.31

4.3J

4.3K

4.3L

4.3M

4~3N

4.30

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFr:ER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

Ap·91

1 : 1 I

,
1

1 ,
A I B I c

1

1

IJ
1

4.3P

4.30

4.3R

4.35

4.3T

4.3U

4.3V

4.3W

4.3X

4.3Y

4.3Z

4.3AA

4.388

4.3CC

4.300

OUTPUT BUFFER·

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORy

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

OUTPUT BUFFER

BUFFER MEMORY

INPUT BUFFER

Figure 4.3 1/0 8uffer Handler

1-179

a

When the print head reverses direction and the right
sensor flag is uncovered. the timer is then used to
determine where to start printing in the reverse
direction.

The timer and the print wheel on the printer are used
to determine when to place a character. The strobe
from the print wheel informs the 8049 when to fire the
solenoids and the timer allows the proper spacing
between the characters .

. V. CONCLUSION

Although the full speed of the 8049 was not used
in this application. the high speed of the 8049 makes it
possible to "fine·tune" any critical timing parameters.
Additionally. the extra available CPU time could be
used to add an interrupt driven keyboard and display.
such as the ones discussed in AP-40. to the printer.
This would allow the printer to function as a complete
"terminal".

Very little attempt was made to optimize the software.
but still the entire program fits easily in 1.25K of
memory; 750 bytes for printer control and 500 bytes
for character lookup. Adding lower case to the printer
would require an additional 500 bytes of lookup table.
·The remaining 250 bytes should be used to add "user"
features such as tabs. double width printing. etc.

The high speed of the 8049 combined with its hard­
ware and software architecture make it an ideal choice
for controlling an 80 column. bi-directionalline printer.
The 1/0 structure of the 8049 minimizes the amount
of external hardware needed to control the printer and
the large amount of on-board program and data mem­
ory allow quite a sophisticated control program to be
implemented.

AP·91

1-180

...... ,

......
~

+ 5 VOLTS

-

11.0 MHZ
XTAL

2 XTAL 1
= 3 XTAL 2

I
15pF

rlRESET
P11~
PlO 27

P20~
P21 ~ ... 2,uF 8049
P23

<0 I 8039

TO 1
9

PSEN 10
WR 8
RD 12

DBa 13
DB1 14
DB2 15
DB3 16
DB. 17
DB5 18
DB6 19
DB7

APPENDIX A. SCHEMATIC DIAGRAM

~ LINE FEED
DRIVER

r---------------------------------,
OPTO·TRIAC

MOTOR DRIVER ~

,. THE 8212 AND THE 2716
A7 1 21 008 018 22 I WOULD NOT BE NEEDED IF
A6 2 19 007 017 20 , AN 8049 WAS USED INSTEAD
As 3 17 006 016 18 , OF AN 8039

2716 A4 4 15 005 8212 0151-1:..::..---,
AJ 5 10 004 014 9
A2 6 8 003 013 7
A1 7 6 002 012 5

8 4 DO, Db 3

l

L
~-----ll SOLENOID DRIVER #11

r---i SOLENOID DRIVER #21

r---1S0LENOID DRIVER #31

1 23 3 {>o-- BUSY
D01DS1 INT 011 5 DATA1
DO, 012 DATA2
003 013 7 DATA3
004 014 9 DATA4

L.---:~D05 8212 0,5 16 DATA5
L. ___ 1~5HD06 016 18 DATA6

L.. ___ --.;.1;M7 007 017 20 DATA7
L-____ ~1~~~D08 r-

8212

SOLENOID DRIVER #41

SOLENOID DRIVER #51

ll.i:= ISOLENOID DRIVER #61

DS2

~ J~"UV" I ~2
L-----IISOLENOID DRIVER #71

(

>
~

inter

dl (08 J

OBBa
B8BI
0811~

BD B3
9804
BOO~

BBB6
Bsa,
aBOF
aS26

~Eg

s
~

10
J.I
12
13
14
15
16
17
13
19
20
21
22
23
24
2S
26
27
2S
29
38
3 I
32
33
34
35
36
37
38
3q
4B
41
42
43

i IlB UF
OUTBUF
SAIIPHT
STBCHT
TEMPI
STATLIS

LI H CH T
,IUNK 1
"AX
F I P. ST
SEJE['T

AP·91

APPENDIX B. MONITOR LISTING

,"I, ,P.O.P.." IMPLE"ENTS CONTROL OF THE C ITDH "ODEL 82B
,'PINTER THE H"ROWARE CONFIGURATIDN IS AS SUCH:
:8212 INPUT PORT ON 8us • DATA INPUT
;8212 OUTPUT PORT DN BUS' OUTPUT TO SOLENOID HAM"ERS
;TI !HPUT • CHARACTER POSITIONING SENSOR ON PRINTER
,TB :HPU! • iNTERRUPT FRO" 8212 INPUT PORT
;PORT IB MOTOR ON, LOW' ON
,PORT 11 LIME FEED STROBE, LOW' ON
'PORT 16 • LEFT HARGIN SENSOR, LOW WNEN COYERED, HIGH WHEN OPEN
:PORT ,7 • RIGHT MARGIN SENSOR. LDU UHEN COVERED, HIGH UHEN OPEN
;TI • PIM 2 OF L"339, PRINT WHEEL SENSOR
:PORT 16 PIN 13 OF LM339
:PORT 17 • PIN \4 OF LH33'

:.~ .•.• ~ .. -.... ~.* •• * ••••••••• ~.~ ••••••••••••••••••••• •••••••••••

: SYP EM EOLIATES

E9U P.B
E9U Rl
E9U ~,;!

EgU R3
EDU R4
egU R5

egU R6
egU ~7
EQU 6FH
EQU ~BH

1-182

;POINTS AT INPUT LOCATION
:POINTS AT OUTPUT LOCATION
;STATUS FOR PRINTING
: STROBE COUNTER

;BIT LINE FEED SET
;BIT PRINT
:BIT CONTINUE
;BIT • CR FOUND
:BIT LF FOUND
:BIT LF FOUND IN PRINTING
;BIT 6 PRINT DIRECTION
;9 = RIGHT TO LEFT
:\ = LEFT TO RIGHT
:BIT 7 • BUFFER LOAD DIRECTION
;B = FIRST TO "AX
:\ = MAX TO FIRST
:THE LIKE COUNTER

:"AX BUFFER LOCATION
:BOTTOM OF BUFFER

intJ AP·91

LOt OBJ SE9 S OllP,(E 5THTEH£HT

.4
asBB 45 ORe aOOH

4.
'7 , J UM P on R '! HE IHTERRUPT LOCATIOHS
43

JaBB 15 4~ [IJ S I ; DOH' T LISE IHTERRUPTS
aBB 1 94BB 5B ,,' "P B L I H :BEGIH THE PROGRA"

51
BBBA 52 O~ G BAH

53
54 :START THE PROGRAH
55
56 'L O(IP LIN T II THE BUFFER F lLL S UP
57

BBBA FD 58 PRHT, HOV A,saTUS : GE T THE STATUS
DB OF 3211 5~ J B I lPRl1T : IF PRIHTIHG, [:DHTIHUE
BBBD 340B 60 CALL UIBUF :READ IHTO THE BUFFER
OB BF 04 BA 61 J"P PPIH :LOOP

62
63 ,T HIS ROll T I HE PRIHTS A LI HE
64 'p FIP.~T SA 'JE S THE STATUS
65 ,AHD THEH DE~ER"IHES WHHH DIRECTIOH TO PRIHT
6. 'AHP HCI!4 a MAHIPULATE THE BUFFER
67

DB II 34C' 69 LPRHT: ,IHP , T iI(HK : GO F I X UP TH E STATUS
aSI, F224 6~ LPRIH l' J87 [.~SE23 ; ,IUHP TO CASE 2 AHD 3
aSls 0417 70 ,I"P (~ SE 8J : ,I UHP TO CASE B AHD I

7 I
72 ,(.. 5 E 0 I ' L OA[II HG THE BUFFER FRO" FIRS T TO "AX
n

BBI7 B~2B 74 CASESl: HO '; (lUT9UF ,HIRST :SET UP OUTBUF
8019 8828 ~5 "0'; 1 H3llF, 'FIRST :SET UP IHBUF
BSIB FA lu "0'/ A, ,A'/PHT :GET THE SAYED STATU S
as lL 940[' , , CHL "[)TON ;TURN OH TNE MOTOR
BBJE [)2S2 ?a JBb (t-I SE 1 :PRINT F OW A RD
OB2B ~4 8 3 ~9 CPLL PP.HTBK :GET REAOV TO PRINT BACKWARDS
lJB22 B431 as JHP ("SE 0 ;PRIHT BACKWARDS

9 I'
82 :(~~E23 . L OA[II HG BUFFER FRDH MAX TO FIRST
B3

882'- B~6F 84 CASH3: NOV Ol! TaUF ""AX : SE T UP OUTBUF
ao 26 BBbF 35 HOV ,HBUF, 'HAX :SET UP IN8UF
0828 F~ a. MY A '; !1'Jp NT ; GE T THE PRINT STATUS
31329 '34 [1[.. 87 CALL HOHlIl ,: TURN OH THE HDTOR
aa28 D2C2 as \186 C ""E 3 ; PR I N T LEFT TO RIGNT
e92[1 9483 8~ CALL P~llTBK :GET READY TO PRINT BACKWARDS
aB2F 04 aD 98 \,I"P (H 5E 2 ,PP.INT RIGHT TO LEFT

~ I
92 HHC-T

1-183

inter AP·91

loe OBJ SED SOURCE STATEIIENT

Bnl FI 9J CASEI' IIOY A, .OUTBUF IGET THE CHARACTER
8132 34'1 H CAlL FKPRHT IADJUST FOR PRINTING
8134 8121 95 HOY .OUTBUF,12IH ,PUT A SPACE IN BUFFER RAN

·1136 F242 " JB7 FOC 'FOUND A CR
1138 '45E H CALL I NCT ST 'UPDATE OUTBUF
lilA CUE ,. JZ WATCHD I WAIT FOR" END
IIlC BF2B " "OY JUNK L 128H ICET A SPACE TO PRINT
813E '463 IBI CALL GTPRHT IGO PRINT A SPACE
1141 1431 IBI JIIP CASEI IlOOP
1142 BF28 112 FOC' HOY J UNU, 128H IGO PRINT THE LAST SPACE
1144 H6J 183 FOC I' CAlL GTPRNT IGO PRINT A CHARACTER
8146 945E 184 CAlL I KCTST)CHECK OUT BUFFER
8848 CiAE 115 JZ WATCHD IWAIT FOR THE END
8I4A FL 186 "OY A, IDUTBUF)GET THE CHARACTER'
884B B128 187 "OY tDUTBUF,12IH ,PUT A SPACE THERE
884D l491 188 CALL F KPRHT IFIX THE CHARACTER UP
114F AF IB' HOY JUNU,A) SAYE IT
1151 1444 118 " Jill' FOCI ,LOOP

111
112)

113 :CASE I. PRI NT! NG LEFT TO RIGHT. LOADING 8UFFER FRO"
114)FIRST TO UX
115

1152 FI 116 CASEI' "OY A.IOUTBUF eET THE CHARACTER
Bl53 3491 117 CAlL FKPRNT ADJUST FOR PRINTING
IISS AF liB "OY JUHU.A SAYE Ace
1156 8128 119 "OY .OUTBUF,128H PUT A SPACE IN THE BUFFER
1158 F262 121, JB7 CRFOHD FOUND A CR?
liSA 9463 121 CAlL GT PRHT GO PRINT THE CHARACTER
115C '4SE 122 CALL INCTST CHECK THE BUFFER
liSE C675 12l JZ . YATCH IS THE LAST CHARACTER BEING PRINTED?
8168 8452 124 J"P CASE I LOOP
8862 B128 125 CRFOKD. "OY tDUTBUF .128H PUT A SPACE IN THE BUFFER"IIEIIORY
1164 BF28 126 "OY J UKK I •• 28H PUT A SPACE IH TEIIP LOCAT 10K
II" 9463 127 CALL GTPRHT· GO PRINT THE SPACE
816B 945E 12B CAlL IHCTST CHECK THE BUFF ER
IIU Ci75 129 J2 YATCH LAST CHARACTER PRIHTtD?
8B6C Fl 131 "DY A, lOUT BUF GET THE NEXT CHARACTER
IB6D 3491 131 CALL FXPRHT ADJUST IT
IBiF 8462 Il2 JIIP CRFOHD LOOP

133 tEJECT

1-184

intJ
Lot OBJ

lI?l 947B
BB73 148A

BI75 27
8876 62
Bl77 55
Bl7B 3488
887A .,
887B F27A
8170 65
887E FD
117F 5285
8881 '4DF
8883 53FD
8185 53F8
8187 AD
IBBB FA
IIU B271
BBBB B4BA

BaeD FI
U8E 34'1
.891 8121
8892 F2'E
8894 9472
8896 t6AE
889B 8F28
189A 9463
IUC 8480
189E 8F 21
llAl '463
81A2 ,. 72
IIA4 .t6AE
llA6 F I
BlA? 3491
BlA' AF
IUA BI28
BlAC BUB

SEll

I J4
135
136
137 DOLF.
138
139
141
141
142
143 WATCN.
144
145
146
147 LOOPY.
14B
149
151
151
152
153
154 OYRI.
155
I"
157
158
159
I6B
161
162
163
164
165 CASE2.
166
167
168
169
178
171
172
173
174 FDCA'
1?5 FHRI'
176
177
178
179
188
181
182
183 $EJECT

AP·91

SOURCE STATE"ENT

JTHIS ROUTINE CALLS THE LINE FEED

L1HEFD
PRHT

;STROBE LINE FEED SOLENOID
;GO BACK TO THE PRINT ROUTINE

:THIS ROUTINE CO"PLETES A LINE WHEN THE PRINT
:NEAD IS "OYING LEFT TO RIGHT

CLR
"OY
STRT
CALL
IN
J87
STOP
noy
JB2
CALL
ANL
ANL
nOY
nOy
JB5
J"P

A
T, A
T
LDBUF
A, PI
LDOPW
TCNT
A,STATUS
OYRI
"OTOF
A,IBFDH
A,'BFBN
STATUS,A
A,SAYPNT
DOLF
PRNT

: ZERO Aci;
:ZERO TI"ER
:START THE TInER
:GO READ TNE LAST CHARACTER
:EXAnIH PORT ONE
:CNECK RICNT NAND SENSOR
) SlOP THE TI"ER
;GET THE STATUS
:JUHP IF CONTINUE IS SET
; TURN "DTOR OFF
:RESET BIT ONE
:RESE~ CONTINUE BIT
; RESTORE STATUS
ICET THE SAYE_ STATUS
:00 A LINE FEED IF BIT IS SET
IGO BACk TO PRINT ROUTIHE

;CASE 2, PRIHTING RIGHT TO LEFT, LOADING BUFFER FRO"
)"AK TO FIRST

"OY
CALL
noy
JB7
CALL
JZ
"OY
CALL
JftP
noy
CALL
CALL
JZ
noy
CALL
noy
"OY
J"P

A.eOUTBUF
FXPRNT
tOUTBUF, '28H
HCR
T>ECTST
WATCHD
JUHKI,128H
GTPRHT
CASE2
.1 UNK J, .2BH
GTPRNT
DE CrsT
WATCHD
~,UUTBUF

FXPRNT
JUNKI, ~
POUTBUF,128H
FDCRI

1-185

GET THE CHARACTER
ADJUST FOR PRINTING
PUT ~ SPACE IN BUFFER RA"
FIND A CR YET
CHECK THE BUFFER
IF ZERO YAIT FOR SENSOR FLAG
PUT SP~CE IN TE"P LOCATION
GD PRIHT SP~CE

LOOP
GET A SPACE
GD PRIHT THE CHARACTER
CHECK THE BUFFER
LEAH IF DDHE
GET A CHARACTER
ADJUST THE CHARACTER FOR PRINTING
SAYE IT
PUT A SPACE WHERE THE CHARACTER WAS
LOOP

inter Ap·91

LDC D8J SEa SOURCE SUTUENT

184
185 : THI S ROUTINE WAITS FOR THE SEHSOR,FLAGS TO BE COYEREO
186 :IIHEN PRINTIHG RIGHT TO LEFT
187

IIAE 3411 188 WATCHO: CALL LDBUF :GD READ THE LAST CHARACTER
1188 ., 18' IN A, PI JCET SENSOR IHFOR"ATION
IIBI 02AE 191 JU IIAltHD :'LOOP IF SEHSOR IS NOT COYERED
1183 FD 191 HOY A,STATUS JCET THE STATUS
1184 52BA 192 J82 OYR :SEE IF CONTI HUE IS SET I." 940F 193 CALL "OTOF :TURN THE ROTOR OFF
IIB8 UFo 194 ANL A,IIFOH :RESET BIT I
IUA 53FB 195 OYR : ANL A,IIFBH :RESET BIT 3
118C AD 196 HOY STATUS,A :RESTORE STATUS
IIBD FA 197 "DY A,SAYPHT :CET THE SAYED STATUS
Bl8E 8271 198 JB5 DOLF J DO A LI HE FEED
BlCI IUA 199 JRP PRHT J HIT

288
211 :CIISE l, PRIHTlNG LEFT TO RIGHT, LOADING BUFFER FRO"
282 :"IIK TO FIRST
283 I

IIC2 FI 214 CASEl : "OY A,'OUT8UF GET A CHARACTER
IICl 3491 285 CALL FKPRHT FIX FOR PRINTIHG
IIC5 AF 216 "OY JUHK),A S'AYE CHARACTER
.IC6 B128 287 HOY tOUTBUF,12BH PUT A SPACE IN THE 8UFFER
I.CB H02 288 JB7 CR'FNO LEAVE IF A CR IS FOUND
IICA 9463 219 CALL GTPRHT GO PRINT THE CHARACTER
IICC 9472 21B CALL DECTST CHECK THE BUFFER
18CE C675 211 JZ WATCH LEAVE IF DONE
8101 B4C2 212 J"P CASEl LOOP,
1802 BI21 213 CRF NO: HOY POUTBUF,128H PUT II SPACE IN THE BUFFER RA"
BI04 BF28 214 HOY JUHK1,'2BH GET A SPACE
1106 '463 215 CALL GTPRHT PRINT A SPACE
IIVB 9472 216 CALL DE CT S T CHECK THE BUFFER
810A C675 217 JZ WATCH LEAYE IF DONE
BlOC FI ,2.18 "OY A,tOUTBUF GET NEXT CHARACTER
liDO 3491 219 CALL FXPRNT ADJUST IT
BlOF 8402 228, J"P CRFNO LOOP

221 SEJECT

1-186

LOC OBJ

BIBB

BIBB n
BIBI B21C
BIB3 1287
8115 8981
IIB7 928F
8119 FE
IliA 438B
BIIC AE
BIBD 23FF
BIBF 721A
BIll H78
1113 19
1114 721A
8116 'JZU
8118 2413
IlIA 2488

IIIC 261F
III E 83

BlI F FD
Bl2B 5249
1122 9249
BI24 724A
1126 9406
B 128 3461
BI2A A8
8128 FD
112C F239
812E 18
812F 2378
8131 08
8132 %49
BI J4 F8
8135 17
1136A8_
BI37 2449
BI39 F8
BI3A B7
BI38 A8
BI3t 231F
BI3E 08
BI3F %49
BI41 18
1142 2449
BI44 FO
BI45 1249
BIH 9258
BI49 83

BI4A 9406
814C 2J8A
814E 2428

815B FP
BI51 3259
8153 4382
81SS 8348
BI57 AD
1158 83
8159 5268
8158 4384
8,150 1348
815F AD
1168 83

SE Q

222
223
224
225
226
227
228
229
231
231
232
233
234
235
236
237
238
2H
248
241
242
243
244
245
2H
247
248
249
258
251
252
253
254
255
256
257
258
259
268
261
262
263
264
265
2"
267
268
269
271
271
272
273
274
275
276
277
278
279
281
281
282
283
284
285
286
287
288
289
298
291
292
293
294

2" 2"
297

AP·91

ORG I BBH

L08UF: IN
JB5
J81
ORL

ARHD' J84
KOY
ORL
KOY
KOY

HOFF: J83
CALL

8UTlOP: IN
JB3
JB4
J"P

HOlF' J"P

A. PI
IN"ODE
ARNP
PI. 181 H
NOFF
A.L1NCNT
A.188N
L1HCHT.-A
A,IBFFN
NOlF
llHEFD
A. PI
NOLF
NOlF
8UTLOP
LDBUF

READ PORT I
8IT 5 = H = LINE "ODE
JU"P AROUHD IF "OTOR IS ON
TURN TNE "OTOR OFF
NO F OR" FEED
GET TNE LINE COUNTER
SET KS8
RESTORE THE LIHE COUHTER
SET ACC
JUKP IF NO lINE FEED
GO DO A IF DR FF
READ THE PORT
WAIT FOR SWITCH TO 8E RELEASED
WAIT FOR SWITCH TO 8E RELEASED
LOOP
lOOP

,FIRST SEE IF A CHARACTER IS PRESENT IN THE BUFFER

lNHOPE' JNTlI
RET

CHAR :IF CHARACTER PRESENT. READ IT
; IF NOT. EXIT ROUTINE

,IF THERE IS CHARACTER. READ IT

CHAR: "OY
JB2
JB4
JBl
CAll

GOOD: CALL
KOY
HOY
J87
INC
HOY
XRL
JNZ
Koy
DEC
KOY
J"P

SUBI: "OY
DEC
KOY
HOY
XRL
,INZ
INC
J"P

CETSTA: Koy
JBB
JB4

ARNDJP' RET

A.STATUS
ARHDJP
ARHDJP
LFCRCK
GTeAR
FXCHAR
PIHBUF.A
A, STATUS
SUBI
IH8UF
A,I"A~.I

A"IllBUF
ARHDJP
A.INBUF
A
IH8UF,A
ARHOJP
A.IHBUF
A
IHBUF.A
A.IFIRST-I
A,INBUF
ARHDJP
I HBUF
ARNOJP
A,STATUS
ARHDJP
~TBlTl

:GET THE STATUS
: IF COHTINUE IS SET. DON'T LOAD
:IF IF IS SET, DON'T LOAD
'WAS CR SET. SEE IF NEXT CHAR IS LF
'CD ~EAD A CHARACTER
:"AKE SURE IT IS OK
;SAYE CHARACTER IN BUFFER "EHORY
:GET THE STATUS
:IF BIT 7 IS SET DECRE"ENT BUFFER
:UPDATE IH8UF
:CET TOP
:ARE WE AT THE TOP?
: IF HOT ,GET THE STATUS
:GET IHBUF
: CHANGE 8V ONE
:PUT IT 8AC~

:GET THE STATUS
'GET IN8UF
;CHAHGE BY OHE
;PUT INBUF BACK
:GET THE BOTTO" OF THE 8UFFER
;TEST THE BUFFER
'IF HOT ZERO READ THE STATUS
:"DVE INBUF BACK
:CO GET STATUS
'CET THE STATUS
:IF BIT B SET. BYPASS
'IF LF IS FOUHD. SET THE STATUS
: EXIT

;THIS ROUTINE "FORCES· A LF AFTER A CR

LF CRCK: CALL
KDY
J"P

GreAR
A,I8AH
GOOD

;REAO A CHARACTER
;CET A lINE FEED
:JUMP BACK

;THIS ROUTIHE SETS THE STATUS BITS

STBITI' "OY
J8I
ORL
ADD
Koy
RET

STPRHT: JB2
ORL
ADD
HOY

8VEBVE: RET

A.STATUS
STPRNT
A .182H
A.I48H
STATUS,A

BYE8YE
A. tB4H
A. t48H
STATUS. A

1-187

LOAD 'tHE STATUS
IF STILL PRINTIHG, LEAYE
SET PRINT'8IT
UPDATE POSITION COUNTER
PUT STATUS BACK
EX IT ROUT! NE
CHECK CONTINUE 81T
SET COHTINUE BIT
UPDATE PRINT DIRECTION
~UT THE STATUS 8ACK
EX IT

inter AP·91

LOC OB,I SE" SOUHE ~,lH~E"'EHT

2'8 ;THIS ROUTIHE 'CONYERTS' LOWER CASE LET TERS TO
299 ;UPPER CASE
HI

8161 '7 3BI FKCHAR': CLR CLEAR THE CARRV
8162 537F 3B2 AIIL A.17FH SYRI P "S8
8164 AF 383 HDY JUH~J., A SAYE ACC
8165 B3AB 3B4 ADO A,IBABH SEE IF HUI/BER IS 6BH
BI67 E678 3B5 JHC F I HE : IF CARRV IS~'T SEL ,IU"P
81 " FF 386 "DY A, ,I UH~ I ; CE T Ace BACK
8UA 37 3B7 ePL " ; SUBTRACT 2BH FROI/ THE ACe
BI69 8328 388 ADD A,128H
8160 37 3B' CP L A
BHE 2474 31B J"P FIXDUH :JUHP TO TEST CR LF
Bl7B J7 311 FIHE: CPL A !HOW SUBTRACT ABH FRO" AC C
BI71 B3AB 312 ADO A,taASH
8173 37 313 CP L A
BI74 AF 314 FIXDUH: HOY JUHKI,.A ; SAY(A
8175 D3 BD 315 XRL A,teOH ,: IS CHAR~CTER A CR
BI77 ,67F 316 JHZ LFTEST ; IF IT IS HOT TEST LF
817' FD 317 "DY A.STATUS ; CE T THE STATUS
BI7A HB8 318 OH A,IBSH J SE T BIT 3
BI7C AD 319 HOY STATUS, A :RESTORE THE STATUS
BHD 248F 328 J"P F I XF I H ,: LEAYE
BI7F FF 321 LFTEST: HOY A,JlIHY.1 :CET CHARACTER BACK
BI88 038A 322 XR L A, IBAH ; IS IT A L F
BI82 C689 323 J2 FIXUP ; T F ITS HOT, WE ARE DOHE
8184 FF 324 HOY A.JUHKI :CET THE CHARACTER BAC~
8185 D3ac 325 XRL A,18CH ; IS IT A FOR" FEED
8187 '68F 326 JII2 F I XF I H ; IF HOT FOR" FEED, JUMP
8189 FD 321 F I X UP: HOY A,. STATUS ; CE T THE STATUS
BIeA 4318 328 ORL A,IIBH ; SE T BIT 4
81SC AD 32' HOY STATUS,A ,:RETURH TH E STAT US
8180 3458 338 CALL STBIlI ; SE T THE STATUS
818F FF 331 F I X F I H: HOY A . ,IUH~ 1 ;CET THE CHARACTER
LOC 08,1 SEg SOURCE STATEMEHT

8198 83 332 RET :EKIT FIx('HAR
333
334 .: T HI S ROUTIHE RECOGNIZES A LF, FF. AN[' CR
335 ;DURING THE PR I HT OPERATIOH
336 .: I T ALSO FORCES A SPACE IF A CHARACTER FOUHD
337 ,: I H THE SUFFER IS HOT I H THE LOOKUP TABLE
338

81~1 H 3H FXPRHT: HOY ,IUHKJ, A ; SA liE ACC
8192 03ac 34B XRL A, UCH :FDRM FEED
8134 C682 341 J2 FFFIX ,: CO SET FOR" FEED
BI96 FF 342 HO', A •• .1 UHK 1 :RESTORE CHARACTER
BU? 03BD 343 XU A. taOH :SEE IF IT IS A CR
8199 C6AB 344 J2 CRFIX :LEAYE IF IT IS
BI9B FF 345 HOY A,JUNK! ;GET ACC BACK
819C 03BA 346 XP.L A,IBAH :SEE IF IT IS A IF
BI9E C6AB 347 J2 LFFIX 'LEAH IF IT IS
BlAB FF 348 HOY A, ,I UHK 1 :CET CHARACTER BACK
81AI 53EB 34~ AIIL A,IBEBH .: SE E IF IT IS A CHARACTER
BIA3 %BD 358 ,IH2 I SCHAR ;IF IT IS JUHP
BIA5 232B 351 HOY A.12BI! :PUT A SPACE I H ACC
BIA? 83 352 RET ;HIT
BlAB 4398 353 CRFIX' ORt >.BBH ; SE T 81T 7
BIAA 83 354 RET : EX I T
BlAB FO 355 l F F IK' HOY A.STATUS :CET THE STATUS
BIAe 4328 356 ORt A,laH :SET LF BI T I II STATUS
BIAE AO 357 HOY STATUS, A :PlIT THE STATUS BACK
BIAF 2328 359 HOY A,12BH : CE T A SPACE
81Bl 83 35' RE T ; EXI T
8182 FO HB FFF IX: HOY A.STATLIS :CET THE STATUS
BIS3 4328 361 ORL A.12UH ,: SE T L1HE F fED BIT
BIB~ AO 362 HOY STATUS, A :PlIT THE STATUS BACK
UI B6 FE 363 HOY A,LlHCHT ; GE T THE LI HE COUHT
BIB7 4398 364 ORL A,18BH : SE T BIT 7
81B9 AE 365 PiOY L1HCHl,. A ,: PU T L1HE COUNT BAC~

BIBA 2328 366 ,HOY A,12BH :CET A SPA C E
BIBC 33 367 RET :EXIT
BIBD FF 368 lSCHAR' KOY A J LINk 1 :GET CHARACTER BACK
BIBE 533F 369 AHL A,I3FH :STRIP THE TWO "SB
BICB 93 37B RET : HIT

1-188

intJ Ap·91

LOt 08,1 ~H !.OURCE STHTE"EHT

371
H2 :THIS ROLITlHE PRIHTS THE CH~p.AeTER 1 H THE ACe
373

BICI AC 374 PRHTIT: HOY TEftPI.A ; SA'H CHARACTER
BIC2 E7 37S RL A :"ULTlPLY BY TWO
BIC3 E7 376 RL A :"ULTIPLY BY FOUR
BIC4 6C 377 ADD A,'TEHPI :ADO OHCE TO HULTIPLY BY 5

378
379 ;HOU SEE WHAT PAR T OF THE LO[o':UP TABLE TO USE
388

BICS 2C 381 XCH A.TE"PI :PUT CHARAC'TER I H A, TAR~ET IH TE"P I
BIC. 82CA 382 ,185 SHORT : ,IU"P TO HI CH A[IDRESS IF BIT 5 SET
81 CB 44AB 3B3 J"P PACEI :CO TO FIRST PART OF LOOKUP TABLE
BICA 6U8 384 SHORT: J"P PAGE2 ;GO TO SHOHD PACE OF LOOr.UP TABLE

3B5
3B6 :THIS ROUTIHE TRIC~ERS THE SOLEHOIDS FOR 6BB "ICROSECOHDS
387 ; AF T E P. WAITJH~ FOR THE HIGGER SI~HAL FRO" THE PRINTER
3BS : .

BICC AF 3B9 FIRE: HOY JUHKI,A : SAYE THE ACC
BICD FD 39B HOY A,STATUS :GET THE STATUS
BICE 0204 391 JB6 HTI : SEE IF FORWARD OR BACKWARDS
BlOB 5608 392 FIREX: JTl F I REX ; WA IT FOR T 1
BID2 2406 393 J"P FIREY : LEAVE
BID4 4604 394 NT 1 : JHTI NTI 'lOOP
8106 FF 395 FIREY: HOY A.JUNKI :GET ACC BACK
DID7 9B 396 HOYX PRB,A :TRIGGER THE SOLEHOID

397
398 :HOW ~ILL .BD HICROSECONOS
399

BI08 23F3 4BB HOY A, IBF3H :LOAD DELAY HUnBER
BIDA 62 4BI HDY T.A : PU T IT IH TI"ER
BIDB 55 482 STRT T ; START THE TIHER
BlOC I6EB 4B3 TSJTF: JTF KrDUN ;LOOP OH TlftER FLAG
81 DE 24 DC 4B~ J"P T SJTF
81 EB 27 4B5 ~TDUH: CLR A ;ZERO ACC
BIEI 9B 486 HDYK UB., A ;TURN OFF SOLEHOIDS
81 E2 65 4B7 STOP TCHT ;STOP THE TI"ER
81 E3 83 48S RET .: EX I T FIRE ROUTIHE

4B9 tE J ECT

1-189

inter AP·91

LOC OBJ SEQ SOURCE STATEKENT

418
411 ; •••• ~.~ ••••••• ~.~ •• ~ •••• ~ •••• ~.* •• ~ •••••• * •• ~ •••••• *.*~ •••••• *.
412
413 !THIS IS THE LOOkUP TABLE. THE "sa IS HOT USED; THE "SB - I
414 liS THE DOT TNAT IS THE TOP OF AHY GIVEN CHARACTER AHD THE
415 !LSB IS THE ['OT THAT IS THE BOTTOK OF ANY GIVEN CHARACTER
416
417 ; •••••••• **.* •• ~.*.~~ ~ .. ~ * •• * •••• ~.* *.* ••••• ~ •••
418

8288 419 ORC 288H
428) .

8211 3E 421 TABLE I' DB 3EH -
8281 41 422 DB 41H
8212 SO 423 DB SOH

·8213 59 424 DB 59H
8284 n 425 DB 4EH •••

426
8215 ?C 427 DB 7tH _ ... "
8216 12 428 DB 12H
8287 II 429 DB II H
8288 12 438 DB 12H
828' 7C 431 08 nH·

432
828A 7F 433 DB 7FH
8UB 49 434 DB 49H
828C H 435 DB 4~H
8280 H 436 DB 49H
821E 36 437 DB 36H •• ••

438
828F 3E 439 DB HH
8218 41 448 DB 41H
8211 41 441 DB 41H
8212 41 442 DB 41H •
8213 22 443 08 22H

4"
8214 7F 445 DB 7FH
8215 41 446 DB 41H
8216 41 447 08 41H
1217 41 448 DB 41H
12J8 3E 449 DB lEN

451
121' 7F 451 DB 7FH
821A ., 452 DB 49H
821B H 453 DB 49H
821C ., 454 DB 49H
8210 41 455 DB 41H

456 IEJECT

1-190

inter AP·91

LOC OBJ SE g SOURCE ST~TE"EHT

457
02lE 7F 458 DB 7FH
021F 89 45' DB O~H
0228 B9 468 DB 8~H

8221 89 461 DB 8~H

8222 81 462 DB BIH
463

8223 JE 464 DB JEH ... " ...
8224 41 465 DB 4 I H
0225 41 466 DB 41 H
8226 51 467 DB 51H
8227 71 468 DB 71H "

4"
8228 7F 478 D8 7FH
8229 88 471 DB 8SH
122A OB 472 DB BBH
822B 8B 473 DB BBH
822C 7F 4H DB 7FH III

475
822D 88 476 DB B8H
822E 41 477 DB 41 H
B22F 7F 478 DB 7FH
823B 41 47' DB 41 H
8231 HI 4B8 DB BOH

481
8232 21 482 DB 28H
8233 48 4B3 DB 48H
8234 48 484 D8 4BH
8235 41 4B5 DB 4BH
8236 3F 4B6 DB 3FH ... " ..

487
8237 7F 4B8 DB 7FH
8238 18 4 B' DB 88H
82l! 14 498 DB I4H . •
82JA 22 4'1 DB 22H
123B 41 4 ~2 DB 41H

H3
823& 7F 494 D8 7FH
823D 41 4'5 DB 4BH
823E 48 4% 08 4BH
823F 48 497 DB 48H
8248 48 498 DB 48H

499
1241 7F 58B DB 7FH ,.
8242 82 501 DB 82H
8243 Be 502 DB BCH
B244 82 58l DB 82H
8245 7F 584 DB 7FH " ..

585
8246 7F 506 DB 7FH
8247 84 587 DB 84H
824B 88 508 DB 88H
824' IB 50' DB 18H
024A 7F SIB DB 7FH :t ••

511 HJECT

1-191

inter AP·91

lOC OBJ SEQ SOURCE STATE"ENT

512
124B JE 51J DB lEH •• :fI".
824C 41 514 08 41H
8240 41 515 DB 41H
B24E 41 516 DB 41H
B24F 3E 517 DB lEH

518
8258 7F 519 DB 7FM
12'1 89 528 DB 89M
1252 8' 521 DB 89M
8253 89 522 DB 89M •
8254 B6 523 08 86H ••

524
1255 3E 525 08 lEH ._.:t.
8256 41 526 DB 41M
8257 51 527 08 SIH ••
8258 21 528 DB .21H
82" 5E 529 DB 5EH " *

518
825A 7F 531 DB 7FH ••••• ,,*
825B 89 532 DB B9H
USC U 53. DB 19H ..
8250 29 534 DB 29H
B25E 46 535 DB 46" ••

53.
825F 2i 537 08 26H ••
U68 4' 538 DB 49"
82U 4' 539 DB 49"
8262 49 548 08 49H
826l 32 541 08 32H

542
8264 81 543 08 81H
8265 81 544 DB 81H
82" 7F 545 DB 7FH
8267 81 546 DB 81H
826B 81 547 08 81H

548
82" 3F 549 08 3FH
826A 48 558 DB 48H
826B 48 551 DB 48H
BUt 48 552 DB 48H
8260 3F 55. DB lFH

554'
8HE IF 555 08 IFH : .. "
826F 28 556 08 28H
8278 48 557 DB 48H
8271 28 558 08 28H
8272 IF 55' DB IFH ." "."fI:

56D
8273 7F 561 DB ~FH
8274 28 562 08 28H
8275 18 563 DB 18H ••
8276 28 564 DB 2BH
8277 7F 565 08 7FH "'

566 fEJECT

1-192

inter AP·91

lOC 08J SEg SOURCE SHTE"EHT

567
827B 63 568 08 63H ••
827' 14 569 08 I4H • •
827A as 578 DB 88H
8278 14 571 DB 14H
B27C 63 572 08 63H •• ..

573
B27D 83 574 DB B3H ••
B27E 84 575 DB B4H
B27F 7B 576 DB 78H
828B 84 577 DB B4H
8281 B3 518 DB B3H' ••

579
8282 61 58B DB 61H ..
8283 51 581 DB 51H
8284 4' 582 DB 49H
B285 45 5B3 08 45H • •
8286 43 584 DB 43H ..

585
8287 7F 586 08 7FH
8288 7F 5B7 08 7FH
un H 588 DB 41H
828A 41 589 DB 41H
828B 41 "8 DB 41H

"I 82SC 82 B2 DB B2H
8280 84 593 DB B4H
828E 88 "4 DB B8H
828F 18 595 DB 18H
8298 28 5" DB 28H

"7
8291 41 598 DB 41H
8292 41 599 08 41H
8293 41 68D DB 41H
8294 7F 681 DB 7FH
829'- 7F 682 DB 7FH

6BJ
B296 18 6B4 DB IBH ..
8297 DB 6B5 DB B8H
8298 B4 6B6 08 84H
B2" DB 6B7 DB B8H
829A 18 688 DB IBH

6B9
B29B 4. 618 DB 48H
829C 4. 611 DB 4BH
8290 4B 612 08 4BH

. B29E 4B 613 DB UH
.29F 4. 614 DB 4BH

615 .EJECT

1-193

inter AP·91

loe OBJ SEQ SOURCE STATE"EHT

616
12A8 8811 617 PAGEl: "OY STBCHT. nIH ZERO STROBE COUNTER
12A2 FA 618 "OY A.·SAYPHT GET DIRECTIOH
12A3 37 619 CPl A FLIP BITS
IU4 0283 628 J86 BAKWRD IF BACKWARD JUHP OUT
12A6 Fe 621 lHO: "OY A. TE"PI GET THE TARGET
BU7 A3 622 "OYP A U GE T THE DATA
IUB Hce 623 CALL FIRE STROBE THE SOLENOIDS
IUR IC 624 INC T E"P I IHCRE"EHT THE POI HTER
12AB 18 625 INC STaCHT' IHCRE"ENT THE STROBE COUNTER
B2AC FB 6a HOY A,STBCHT GET THE STROBE COUNTER
B2AD 0385 627 XRL A ·185H IS IT FIH
UAF "A6 628 JHZ LHO REPEAT IF NOT FIYE

,8281 84AE 629 Jilp SETTI" GO BACK
1283 FC 638 BAKWRD: "OY A. TE"PI GE T THE TARGET
1284 nB4 631 ADD A.184H COKPEHSATE FOR GOING BACKWARDS
1286 AC 632 "OY TEKP LA SAYE IT
8287 FC 6ll LKLOI: "OY A.,TE"PI GET THE TARGET
12BB A3 634 "OYP A. IA GET THE DATA
B289 HCC 635 CALL FIRE STROBE THE SOLENOIDS
1288 FC 63' "DY A·TEKPI GE T TE"PI
Inc 87 637 DEC A DECREASE BY ONE
BUD AC 638 KOY TE"P J.. A PUT IT BACK
82BE IB 639 IHC STBCHT IHCREftEHT TNE STROBE CDUNTER
I2SF FB 648 HOY A,STBCHT GE T THE STROBE COUNTER
I2ca OU5 641 XRL A,185H IS IT FIH
I2C2 "B7 642 JNZ LKLOI REPEAT IF NOT FIYE
I2C4 84AE 643 J"P SETTI" GO BACK, CHARACTER IS DONE

644 fEJECT

1-194

inter AP·91

lOC OBJ SEQ SOURCE SlATE"EHl

645 ;.
BlBa 646 ORC 3BBH

647 ; .
648

8388 88 64~ DB BBH
a381 II 658 DB BBH
B312 aa 651 DB BBH
B313 88 652 DB BBH
lJa4 aa 653 DB BBH

654
a385 aa 65' DB BBH
1386 88 65& DB BBH
8Ja7 5F 657 DB 5FH
BlBB BB 658 08 BSH
BlB' IB 65' D9 BSH

66B
BJBA BS 661 OS BBH
8388 B7 662 OS B7H ...
B3BC BB 663 D8 S BH
B3U 87 664 OS S7H
830E aa 665 OS BBH

666
n8F 14 667 DB 14H · • 13IB 7F 668 DB 7~H :t ...

8311 14 6" 08 14H • •
BJ12 7F 678 DB 7FH
1313 14 671 08 14H · • 672
1314 24 673 08 ~4H
B315 211 674 08 ~AH

BJH 7F 675 08 7FH
8317 2A 676 DB 2AH . • •
B31B 12 677 DB HH

678
IJU 23 679 DB 23H ..
IJIA 13 681 DB IJH ••
83IB BS 681 DB BSH
nlc 64 682 DB 64H ••
BHU 62 683 DB 62H ..

6S4
13lE 36 685 DB lDH •• ••
831F 49 6S6 DB HH
832! 56 687 OS 56H • • ••
8321 2B 688 08 2BH •
8322 '8 689 08 5BH • •

6~B tEJECl

1-195

inter AP·91

l[le OS.I SE Q HU~(E ST~:EI'IEtn

691
8323 8B 692 [IS 88H
B324 99 693 OS 89H
B32~, B;> 694 [IB 87H ...
8326 B8 695 [lB BBH
932:' 9B 696 ['8 8BH

697
B329 It 693 [IB HH
9329 22 699 [IS 22H
B32A 41 788 [IB 41 H
B328 BB 7BI [IS B8H
832C 88 7B2 [IB 88H

;>B3
8320 BB 7B4 [IB BBH
832E BB lBS OS 8BH
832F 41 7B6 [Ie 41 H
B338 22 797 DB 22H
8331 It 79B [Ie ICH

789
8332 22 718 ['B ~2H

8333 14 711 [IS J4H
8334 7F 712 [,e ~ F H
833~ 14 ? 13 De 14 H
B3Jt. 2~ 714 [IB 22H

715
8337 9S 71 b DB BSH
8338 98 717 OB BSH
83H 7F 718 DB ?F H
833A BS 7B DB BSH
833B 88 729 ['B BSH

721
833t BB 722 [I,B BSH
8330 48 723 ['B 4SH
833E 3B 724 [Ie 3BH
83 JF B8 ?25 [IB SB~

8348 B8, 72\i [IB BBH
7""

8341 BB na [IB BSH " 8342 B8 729 OB BSH
8343 88 738 [Ie BSH
8344 Be 731 [,e BSH
8345 8B 732 [IB BSH

733
B346 88 734 ['S B8H
B34;> 8B ?3~ DB B8H
B34S 4B 736 ['B 4BH
B349 BB 737 ['8 BBH
B34A 8B 733 [19 B8H

733
834B 28 749 [IB 2BH
834C 18 74 l [IB 18 H
8340 8& 742 ['B BSH
834E 84 74 J ['8 B4~
B3H 82 ;>44 [lB B2H

745
B358 3E 746 [IB 3 E H ' ..
B3S1 51 747 [IB ,<1 H
B352 49 746 [IS 4~H

B353 45 749 [IB 45H
8354 JE 750 [IB JEH

751
8355 9B 752 [IS BSH
8356 42 753 [IB 42H
B357 7F 754 . (IB ;>FH
835S 4B 7~S [IS 4SH
8359 8B 756 [IS 8BH

757
83SA 62 759 [lB 62H
B35S 51 759 [IS ,<1 H . .
B3 SC 49 769 [IB 49H
B35D 49 761 [lB 49H
B3 SE 46 7ioC! [IB 4f.H

763
B3SF 21 (64 [18 < 1 H .
BHB 41 7';5 [IS 41 H

1-196

inter' Ap·91

l~C 08,1 ~E" ~OUP.(E 81H7;:"EHT

8361 4~ 76E P9 4~H

8362 4P 76 ;- pe 4 ['H .. .
8363 33 768 (.e 33H

769
8364 IS 778 (.e ISH
83.5 14 771 De 14H
836£ 12 712 (.e 12H
8367 7F 773 [.e 7FH • .to.,. •••
8368 18 774 De 18H

775
836~ 27 776 08 27H
836~ 45 777 OS 45H
8368 45 778 DS 45H
836C 45 779 [.s 45H
8360 39 788 [.s 3~H

791
8lOE 3C 782 De JrH ,..,. ..
830F 4A 783 I·e 4AH
8378 4~ 784 09 49H
8371 49 785 [.e 49H
8372 31 78. pe 31H

737
8373 8J 783 (.s 8JH
8374 71 789 [.e 7JH
8375 99 n8 (.e 89H
8376 85 791 DB a5H • .
8377 83 792 ['B a3H ..

7S3
8378 36 7H DB 3tjH
8379 49 795 08 49H
83lA 49 79i1 (.s 49H
837B 49 ;:'97 DB 49H
837C 36 798 D8 36H

799 $EJECT

1·197

inter AP·91

LOC OBJ SEQ SOUP.LE SHTE"ENT

8BB
B370 46 881 DB 46H ••
U7E 49 882 DB 49H •
B37F 4' 9BJ DB 49H
neB 29 884 DB 29H ..
B381 lE B85 DB IEH _.:t*

8Bb.
8382 BI 887 DB BBH
8333 BB 888 DB BBH
B384 14 aB' DB 14H • •
U8S B8 811 DB BIH
13U BB BII DB BlH

812
8387 8B 91J DB 88H
83SB 48 BI4 DB 4BH
138' 34 815 DB 34H ...
83BA B8 BI6 DB 88H
8389 B8 817 DB BlH

BI8
83BC BB 81' DB BSH •
83SD 14 828 DB 14H · • 83SE 22 821 DB 22H
838F 41 822 DB 41H
839. BB 823 08 IBH

824
8391 14 825 DB 14H • •
8392 14 82' DB 14H • · 8H3 14 B27 DB 14H • •
8394 14 828 08 14H · · 83'S 14 8n I'S 14H

8J8
8396 8B 831 I'B BBH
8397 41 832 DB 41H
8398 22 833 OS 22H
83" 14 8H DB 14H · : ..
B3'A B8 835 1'9 BaH

836
8398 82 837 08 B2H •
1J9C 81 836 08 B1H •
BHO " 839 08 5':4H ...
B3'E B5 S4B OS BSH • •
nn B2 841 08 B2H

842 $EJECT

1-198

intJ Ap·91

LOC 08J SEQ SOLIRL' E sa TEHENl

B3AB 988a 843 PACE2: HOV ,18CH., _88H :ZERO SHOBE COUHTER
83A. FA 844 HOV II·SAVPNl : GE 1 DIRECTION
83A3 37 845 CPL II : FL IP 8ITS
8lA4 02S5 8H JO. Bt:wrw : IF 8ACKWARD JUHP OUl
83A6 FC 847 Lr. HI: HOV A·TEHPI : GE 1 lHE TARGEl
83A7 836a 843 .:tDel A·H9k :.A~~IUSl 1 N E lAHEl
83A9 A3 849 HO'JP A.~A : GE 1 lHE DATA
B3AA HCC 858 CHL FIRE :SlR08E·THE SOLEIWIDS
BlAC IC 851 INC TEMP I : INCREHENT THE POIHTER
8lAD 10 852 IHC ST9LHT : IHCREHEHT THE STROBE COUNTER
BlAE FO B5] HOV II .• T8C lIT :GEl THE SlR08E COUNTER
8lAF IIl85 854 XRL II ,aSH : IS IT F]V E
8lBI 96;'6 855 ,,1HZ U:HI ; REPEAT IF HOT F lYE
83B3 34AE B56 JHP S Ell I H : GO 8ACK
8385 Fe 9S7 8KURO: HO'I A·TEHPI :GET THE TARGET
8386 8364 853 AO[I A.164H : COMPENSATE FOR GOIHG BACKUARDS
B388 AC 859 HOV TEMPI .. A : SAVE IT
8lB9 FC 86B L K H II : NOV A.1EHPI :GEl THE TARGET
B3BA Al 861 HOH A·~A :GEl THE 011 lA
8388 HCL 962 CALL FIRE :STR08E THE SOLEHOIlIS
8380 FC D'3 "OV II·TEMPI : GE 1 TE"PI
838E 87 8'4 DEC A : DECREASE BY ONE
838F AC 865 HO'J TEHPI .. A :PUl 11 9AU:
83eB 18 8&6 INC S10CHT :INCREHEHT THE STROBE ('QUIlTER
8lC I FB 867 NOV A,SlBCHT :GET THE STROH COUNTER
BlC2 D3BS 96B XRL A,185H : IS 11 F I V E
8JC4 %B~ ~69 \IHZ L r. H II :REPEAT IF HOT FIVE
83C6 84~E 87B J"P SEllIH :GO BliCK, LHARArTER IS [IOHE

871 SEJECT

1·199

intJ AP·91

Loe 08J SEQ SOURLE S1IITE"ENT

872
lUI 87J ORC 4DBH

874
8411 27 875 8CIN: CLR A :ZERO ArC
8411 ,. 876 "DYX fRB· A :TURN OFF THE SOLEHOIDS
BU2 '418 877 CALL SETUP , SE T UP THE PRINTER
G4B4 '4 JF 878 . CAll VARSET :SET UP THE SOFTWARE
14B6 B48A 879 J "P PRNT :GO 5 TART

88B
1488 23FE , 881 SETUP: "O~ A . IBH H :LDAD At r WITH VALUE TO TURN ON KOTOR
I4IA J' 882 DUYl Pl. A :TURN ON "OTOP.

88J
884 ,NOW DHA'I J, 2 SECON[>S WH IlE CHECKIIIG RIGHT SENSOR
885

8488 8CB5 886 "OY TE"PI.1B5H :LDAD DELAV VAlli E OHE
14BO 8FFF 887 SElFC: "OY ,IUHK I, I8FFH ;L[lA() [>ELAV IJAlUE TWO
BUF 8EfF 888 SEL FB : KOY l I NCHT ,ISfFH :LOAO DELAY IJALUE THREE
1411 B' 8S' SEL FA: IN A· PI , RE AD POP.T OHE
1412 J7 S9B CPL II :""r.E THINGS RIGHT
1413 F21D 891 ,187 OOHER : 1 S 91T 7 SET>
1415 EE 11 B92 DJNZ LIHCHT.SELFA ,S"ALL LOOP
B41? EF8F B'3 OJHZ ,I UHK 1 SELF8 ,:SIGGER LOOP
B4U ECBD B94 DJ H2 TEHP I SELFr : 81 GUST LOOP
B418 845A 895 ,I"P EP. RO R :SO"ETHIH~ IS WROHG

8%
8'7 'HOW "AH SURE THE RIGHT SEHSOR 15 rLEARED
898

B410 8FFF 89' DOHER: HOY JUHKI,IOFFH :SET UP DEL AV
B41F 8EfF 'BB SHF; HOY LI H~H T UFFH : S[IKE HORE [>HAY
1421 I' 'BI SELFI: IH A. PI :GET THE FL H~ IHFORKATIOH
1422 F22A U2 J87 oOHEF : IS FLAt rL eARED ,
1424 EE 21 9B3 DJHZ L1HCHT. SELFI :IF HOT LOOP
B426 EFIF 'B4 OJ HZ ,I UHK 1 .• ElF :LOOP 30"E "ORE
B428 845A '85 \,I"P ERROR iLEHYE IF FLAG IS HOT UNC O'HRED

'86
987 'NO~ CHEC~: THE LEFT SEHSO~ I H THE 5 AHE "ANHER AS THE
'B8 'RICHT SENSOR EXCEPT [IELA't [IHL V 2 5 SE~OH[lS

'B'
842A BCB4 '18 OOhEF : HOY TEKP 1 104H :LOAD [>ELAY
8He BFFF 911 SELFCC' HOY JUHKI.I8FFH : L OAt> [>ElAY
B42E 8EFF '12 SElF8B: HOY L I H['HT *SFFH : L(It~(1 [IE l~ '!' 3
B4 JB B' , '13 SElFAA: III A.Pl : RE A[> THE PORT
1431 37 • '14 CPt A : CHAlICE THIIIGS HROUIHI
1432 023C '15 J86 DOHEl :O~ IF BIT " I. " ZE R 0
B4J4 EE J8 '16 DJHZ LIHCHT SELFAA ;S"~LL LOOP
14J6 EF 2E 917 OJHZ ,I UHK I, SElFBB ;8IG~ER LOOP
B438 EC2C '18 OJH~ TEKP 1, SElF[C :BIGLEST LOOP
B4 JA 845A '1' J"P ERROR :S[lKETHINt IS ~RONG

84JC 8'Bl 92B [>OHEl : ORL P! .IDI H :TURN MOTOP. (IFF

B4 JE 8J '21 RE T :CO SACK
'22 ,
'23 'ND~ SE T UP THE VARIABLES
'24

B43F 23FE '25 YARSET: "[lY A UFEH : L (I~{) THE Tl HER
1441 62 '26 HOY T."
8442 55 ~27 STRT T :STH~T THE Tl HE R
8443 8B28 928 "[lY I HBUF, HI RST :LOAD INPUT BUFFER
B445 BEB8 !t29 KO'~ LIIHIH,IOBH :SET LI HE r OUH T
84 4~ BOBB 93B "[lY 5TATUS IBBH . SET FORWAR[I 8 I:

'31
'32 'HO~ 'CLEAP. THE RAft "REA BY ~RITIHt SPACE COl> E 5
'33

B4H 8928 ,J4 "DY OUTBUF.IFIRST :LOAD OUTSUF
B448 2328 935 CLR"EH: "DY A.'2BH : PUT SPACE C. 0 [IE IH A [[
844[> Al '36 "O'~ ~OllTBUF," ,: PU T SPACE ('O[>E IN OATH HEMOR'I
844E 19 '37 INC OUT8UF :UPDATE THE POI NTER
B44F F" '38 HOY A,OUTSUF ,KOYE THE POINTER I lIT H Arr
8458 0378 '39 XU A,IIHU(~l :SEE IF [lONE
B452 3HB '4B ,1HZ [LR"EK ;LOOP IF NOT CLEARE[>

'41
942 ,NOW rLEAR THE 8212
'43

8454 "EF 94. AHL PI,IBEFH :5E1 EHABLE 8 I T
B45& sa 945 KDYX A,UHBUF :CLEAR THE 8212 IHPUT BUFFER
8457 8'IB H. ORL PI. II 8 H ; RE SE T EHA8LE BIT

'47

1·200

inter Ap·91

LOC 08,1 5EQ SOURCE STA7E"EHT

H8 ,HOW EKIT VAR&ET
'4~

B45' B3 'SO RET :LEAVE IHITIALIZATIOH
'51
952 , THI5 ROUTINE TURIIS THE "OTOR OFF AHO LOOf'S

'53
B4 SA a'FF 954 ERROR: ORL PI,IBFFH :TURN OFF "OTOR
B45C 845t '55 DEAD: J"P HAD 'LOOP BECAUSE SO"ETHIHG IS WROHC

, 56
957 ,THESE ARE ALL SliBROUTIHES TH AT ARE CALLED
958

B45E I' 95~ 1 H[lST: IHC OUTSUF ;UPOATE THE POIHTER
B4 SF 2378 %B NOV ".tttHK+l :GET THE VALUE FOR THE LAST CHARACTER
B461 0' 961 XRL A.OUTBUF : ['0 THE TE S T
8462 83 962 RET :E:nT
8463 0' 963 G T P RH T: IN A.PI : RE AD PORT OHE
8464 37 964 CPL A :FLIP BITS
8465 ['263 %5 J86 GTPRHT :LOOP UHT lL SEHSOR IS Ulle-OVERED
846? 1608 966 TSTJTF' JIF PIT ;SEE IF TI"ER FLAG IS SET
B46' 8467 H? ,I"P T S T J IF :TEST FLAC
B46B .5 968 P] T : STOP TCHT 'STOP THE T IHER
B46C FF 96~ HOV A . ,I UHK I :GET THE CHARAI'TER
B460 34C1 978 CHL PRIlTI! ; PR I H T THE CHARACTER
B46F HIC ,? I CALL L HHOI'E ; GE T AHOTHER CHARACTER
04?] 33 972 RE T ,n:lT
8472 F~ ~7J ['E C T S T : HOY A.OUTBUF :GET OUTBUF
B473 07 ~74 DEC A 'RHUCE B'I' OHE
OH4 A~ !475 HO,Y OliTBUF·A 'PUT 8 AU:] H Oll T BUF
8475 D3]F 9:'':' XU A.fFIHT-] :SEE IF IT IS ALL THE WA'I DOWH
B477 33 977 RE T :E:OT

"8
979 ;THIS ROLITTHE ODES LI HE FEE['
'8B

BHe FE '81 L1HEF[" HOV A·LIHIHT :GET THE Ll HE COUHT
847; F23B ~a~ ~J8 7' [. 0 F F :IF BIT ~ IS SET, DO A fORHFEED
OHB HF[I ,a3 LF [.0: "Hl PI.IBFDH : T URIl OH THE SOLEHOID
847D BC4~ ~a4 H["I TE HP I • 4[J H : L Oft{, OllE [. E L "'I
OHF BFlJ 995 L F L PI' HOV .11) N~: I .~3H , LOA[' "HOTHER OELA'I
8481 Ef 81 996 LFLP2': ~JH< .1 U HK 1 LCLP;: 'lOOP
B483 H7F ~87 OJHZ TEMPI. LFLPI .LOuP SO HE HORE
848S 8'02 988 ORl PI.I02H :TURH OFf LF SOLEHOID
8497 1 E 981 IHC L! IltHT :UPltATE THE Ll HE COUtHE?
B488 fE ~~O NOV A.LltHAT 'GET THE L IllE tOUHT
B48~ [1328 ~ ~ I XP.L A t23H : IS PAGE DO HE
B488 %8F ~9.! .1 HZ 'HOTOOH : S~: If' OVER
B480 BESO 9'3 "0'1 L I tttH T ISOH :ZERD LI HE COUHTER

'~4
'35 ;HO~ ['E L il \' ~S HILLl5ECOH['S
'96

B48F BtaS ~97 HOHOH: HO'I TE HP I· ISBH :LOAO ['E LAY VALUES
OHI BFfF ~93 LOP I : HO'I .1 U HK I .• OFFH
84'33 EF~3 9~~ LOP 2: [ILl HZ' HI H~: I . L Of'2 '_GEHERATE OEL AI'
04~5 Et31 ISOS ['J Il' T E HP I· LOP 1
8497 SJ 1 BS 1 RE T : Ll HE FEED IS [10 HE

IB82
18B3 : T Hl S ROll T I HE (IOE S A FORM FEE [.
IB04

04~B O~ 1005 ['OF F : I H PI :GET THS &TATU&
B4~' H 1886 CPL' . FL If "CC
B4~A 53CB IBO~ "HL 10CBI< 'LE"VE OHL'I TWO Hsa'S
04n C69B 1888 J2 [l OfF :IF A n"e ISH' T COVERED, LOOP
049E 8901 180~ on P: IBIH :TURH THE HOTOR OF F
S4AB ':147Ee 101 B CALL l r :'0 'GO DO OHE Ll HE fEED
04A2 FE I B I I FFC>: : NOV A Ll HC H T :GET THE Ll HE COUHT
04A3 537F' J B 1 .? "HL " J7FH :ST~lP Bn SEYE.H
84 "S 03BB 1 B 13 XH " .• BOH : IS IT DOHE
B4.7 C6,,[I I B 14 ,I, F F DOHE :LE"VE IF IT IS
04.9 94?B lOIS CALL L r ['0 'STROBE THE SOLEHOIDS
84 AB 134 A2 1816 ,I"P FfO' : CHEU: T H.E fOR" fEED OU T
B4 AD 83 1817 FFOcrHE' RET :t::nT FORH fEEO

1013
B4 AE 23E8 1019 SET T] H: "0'./ A nEBH :GET [IE L A'l VALUE
BUB .2 1828 HOY ! " :PUT I H TIMER
B481 55 1821 STR! T :START THE TI HE Po

8482 83 182'2 RE T : E:nT
1823

1-201

inter AP·91

LOC 08J SEQ SOURCE STHTEKENT

8483 42 1824 PRMTBK: MY A."I , Gel THE TIHER
8484 37 1825 CPt A 'TWO$ COMPlEMENT Ace
8485 17 1B26 IHC
84810 17 1827 IHC . A·
8487 I? 1B2S IHC • B488 17 1829 INC A
848' 17 1838 INC)ADJUST "lIHER
848A 62 1831 MO" T.~)PUT IT BACr. IH THE TIMER
8UB 8' 1832 IULOOP: IH A. PI :READ PORT I
B4U HC8 1833 J87 CONPSr. : IF HUSOR I ~ HOT COVERED .. LEAVE
148E S488 I8J4 ,.IMP IllLOOP 'OTHERWISE LOOP
B4Ca 55 1835 CONPSr.: STRT T .:START THE TIHEP
UCI 16C5 183" CONPB: JTF ROTOPT : SEE IF RE A 0'/ TO PRINT
I4C3 84CI 1837 J"P LOMPS)OTHERWISE LOOP
84C5 23FF 1838 ROTOPT: HOY •. IIFFH) LOM' A
84C7 62 1839 MOY T.A)PUT IT IN THE TIHER
84CS 83 1848 RE T : EX IT

1841'
1842 ;TNI S ROUTINE ADJUSTS AND SAVES THE STATUS DURIN~ PRINTING
1843

84C' FD 1844 STACHK: HOY A,STATUS) GE T THE STATUS
84CA 9202 1845 JB4 LFSET .: SE T LINE FEED BIT
84CL AA 1846 84R ET : HOY SAVPNT .• :SAYE THE STATU&
B4eD 53C2 1847 ANL A, IBC2H :RESET EYERYTNI NG EXCEPT

1848 :DIRECTION ANO PRINT
84CF AD 1849 MOY STATUS.A)PUT THE STATUS BACK
841'8 8413 1858 JHP LPRNTI)HIT
84(J~ 4328 1851 LFser, OH A,IZ8H ; SET BIT 5
8404 SHe 1852 ,IMP 84RET , ,IU"~ BACK

1853
1854 ;THIS ROUTINE READS CHARACTER AHO PUTS IT IN T~E Ace
1855

8406 '!lEF 1856 GHAR: AHL Pl,18EFH .: SE T ENABLE BIT
84 DB 98 1857 "on A,@INBUF :REAO THE CHARACTER
04!" 9918 1858 ORL Pl,IIBH :RESET ENABLe BIT
841'8 93 185' RE T :HIT G.TCHAR

18&8
IBIoI !THIS ROUT-I NE TURNS THE "OTOR OH
1B102

840C 9'F£ 1863 "OTOH: ANL PI,IIFEH)TURN "OTOP. ON
840e 33 1864 RE T 'eXIT

1865
1866 ;THI S ROUTIHE TURN& THE HOTOP. OFF
1867

84DF 8'81' 1868 "OT OF : OAL PI, III H ;TURN "OTOR OFF
B4EI .83 18" RE T ; £KIT

1878
1871 END)OOHE

USER S'tH90lS
UHfl HI a;- ~R HDJf' 8141<1 B4RET BoIc(.(lAt:WRI, 9293 9ft] N 949B BKWR[l BJIIS ElUTlOP 011 :; (I ~. E B',' E BI68
LJiSEB 8831 UISEBl 8917 [~SE 1 DDS;: (~SE2 DBell c ASE23 BB;!" tASEJ BBC2 tHAP. 8lH (LPHE" 1344B
(OHPB 84CJ (OHPU BH8 U!F]X Dj AS [P.FIHI 81HIi. LRFOH[I B8'2 [IEAt! 845(, [lEOST 8472 (lOFF 04"8
[lOLF BII71 ['OHEf 842/01 bONEl 84 J[. [lONER 041 [I ERROR 84511 F DC B942 F[JtI B844 f[I(P Iuq,e
FlIeR! BlAB Hek 8411, F F!JDHE BolA!' ~ HI X 8182 F J HE B1 78 FJRE SHC, F I REX 81 DO F I REY o t[,t>

F UfoT aa~o F 1 XbUH 81 74 Fl ~F 1 H BISf F J :<lIP 8J 8~ F XCHAP. B161 FXPP.HT Bl '!II C,EHUI BI44 tOOt, 8128
L TC"~ B4I'f. Co TPkHT B4b3 1 HBUF IIBBB 1 HCTST 845E I HlOOF' 8488 I SCHAR 8180 JUt .. : I BOO7 .: J['UH BlEB
lOBUF B1 la LF CRC~ 814M If[lO 8478 LFFI X Bl AE\ lFlPl B47F lFlP .2 B481 lFSE T IH02 I.FTEST 81 ;OF

L IHrHT B886 LIHEH 847B U:HI 03~6 U.t1Jl 03B~ LHO D2At> It;:LOI B287 lH"ODE 81H L OOPW BO;'A

L OPI B4~1 lOP~ B4~3 LPRHT BD 11 lPRHll BII 13 ••• BBbF "OTOF B40F "OTOH 1J4['C 140fF 8111F
WOlf BI HI HOTOON B48F "T! 8104 ounUF BIIBI OYO IiDSN OVRI BB95 PAGE I Di!HB PAC;E2 B3kB
PIT BHE! PRHT BBBA PRHTBk 13"03 PPIH IT 81 Cl f!OlOPT 84r5 S kV'PHT 8882 SoELF 84 IF SelF 1 8421
SnFI:! 0411 &ElFAA D43a S,ElFB OIlBF s.ElFB8 842E s.EtFC 8480 SEl.FCC i4.2C ~E TT 1 H 84.:1E HTUP 841J[C
SHORT 81 r~ STACHK 84C~ &TATUS BIHlS S. TSC HT ilBD3 S. TBI T I 8158 5 TPRHT DIS!! SUBt 81 J9 TABt.Et D~D8

T E"P 1 SBB4 TSJTF 81 ['C T ST~ TF 846;" \lARSET e43F IdATe H 8875 W~TC NO BB~E

HSH"EtL'(('OHPlETE. HO~ ERRORS

1·202

MCS® .. 51 Application Notes & 2
Article Reprints

inter

~ Intel Corporation 1980

APPLICATION
NOTE

2-1

AP-69

May 1980

AFN-01S02A-01

intJ AP-69

P1.0

P1.1

P1.2

P1.3 PO.2

P1.4 PO.3

P1.5 PO.4
P1.6

P1.7 PO.6

VPO/RST PO.7

P3.D/RXD YDO/EA
P3.1/TXO PiiOGfALE

Pl.2I1NTO PSEN

Pl,-3.iNTi P2.7

P3.4/TO P2.6

P3.5/T1 P2.5

P3.6/WR P2.4

P3.7fiiD P2.3

XTAL2 P2.2

XTAL1 P2.1

V5S P2.0

Figure la. 8051 Microcomputer Pinout Diagram

1. INTRODUCTION

In 1976 Intel introduced the MCS-48'· family. consisting
of the 8048. 8748. and 8035 microcomputers. These parts
marked the first time a complete microcomputer system,
including an eight·bit CPU. 1024 8·bit words of ROM
or EPROM program memory. 64 words .of data memory.
I 0 ports and an eight-bit timertcounter could be inte­
grated onto a single silicon chip. Depending only on the
program memory contents. one chip could control a
limitless variety of products. ranging from appliances or
automobile engines to text or data processing equipment.
Follow-on products stretched the M CS-48'· architecture
in several directions: the 8049 ami 8039 doubled the
amount of on-chip memory and ran 83'ff faster; the 8021
reduced costs by executing a subset of the 8048 instruc­
tions with a somewhat slower clock; and the 8022 put a
unique two-channel 8-bit analog-to-digital converter on
the same NMOS chip as the computer, letting the chip
interface directly with analog transducers.

Now three !lew high-performance singlecchip microcom­
puters .. the Intel® 8051, 8751. and 8031-extend the
advantages of Integrated Electronics to whole new prod­
uct areas. Thanks to Intel's new HMOS technology, the
MCS-5I'· family provides four tli 'es the program'
memo'ry and twice the data memory as the 8048 on a
single chip. New I/O and peripheral capabilities both '
increase the' range of applicability and reduce total system
cost. Depending on the use, processing throughput
increases by two and one-half to ten times.

This Application Note is intended to introduce the reader
to the MCS-51'· architecture and features. While it does
not assume intimacy with the MCS-48'· product line on
the part of the reader. he/she should be familiar with

2-2

vss vee RST/VPO

. {RXD TXD
iNTo
mr1

PORT 3 TO

T1

WR
AD

}-.
}-"

~}~M'.
Figure lb. 8051 Microcomputer Logic Symbol

some microprocessor (preferably Intel's, of course) or
have a background in computer programming and digital
logic.

Family Overview

Pinout diagrams for the 8051. 8751. and 8031 are shown
in Figure I. The devices include the following features:

• Single-supply 5 volt operation using HMOS tech-
nology.

• 4096 bytes program memory on-chip (not on 8031).
• 128 bytes data memory on-chip.
• Four register banks.
• 128 User-defined software flags.
• 64 Kilobytes each program and external RAM

addressability.
• One microsecond instruction cycle with 12 MHz

crystal.
• 32 bidirectional I/O lines organized as four 8-bit

ports (16 lines on 8031).
• Multiple mode, high-speed programmable Serial

Port.
• Two multiple mode. 16-bit Timer/Counters.
• Two-level prioritized interrupt structure.
• Full depth stack for subroutine return linkage and

data storage.
• Augmented MCS-48'· instruction set.
• Direct Byte and Bit addressability.
• Binary or Decimal arithmetic.
• Signed-overflow detection and parity computation.
• Hardware Multiple and Divide in 4usec.
• Integrated Boolean Processor for control applica­

tions.
• Upwardly comp~tible with existing 8048 software.

AFN-01502A-04

intJ

All three devices come in a standard 40-pin Dual In­
Line Package, with the same pin-out, the same timing,
and the same electrical characteristics. The primary
difference between the three is the on-chip program
memory --different types are offered to satisfy differing
user requirements.

The 8751 provides 4K bytes of ultraviolet-Erasable,
Programmable Read Only Memory (EPROM) for
program development, prototyping, and limited pro­
duction runs. (By convention, I K means 2'" = 1024.
I k·-with a lower case "k"-equals IOJ = 1000.) This part
may be individually programmed for a specific applica­
tion using Intel's Universal PROM Programmer (UPP).
If software bugs are detected or design specifications
change the same part may be "erased" in a matter of
minutes by exposure to ultraviolet light and repro­
grammed with the modified code. This cycle may be
repeated indefinitely during the design and development
phase.

The final version of the software must be programmed
into a large number of production parts. The 8051 has
4K bytes of ROM which are mask-programmed with the
customer's order when the chip is built. This part is con­
siderably less expensive, but cannot be erased or altered
after fabrication.

The 8031 does not have any program memory on-chip,
but may be used with up to 64K bytes of external standard
or multiplexed ROMs, PROMs, or EPROMs. The '8031
fits well in applications requiring significantly larger or
smaller amounts of memory than the 4K bytes provided
by its two siblings.

(The 8051 and 8751 automatically access external pro­
gram memory for all addresses greater than the 4096 bytes
on-chip. The External Access input is an override for
all internal program memory-the 8051 and 8751 will
each emulate an 8031 when pin 31 is low.)

Throughout this Note, "8051" is used as a generic term.
Unless specifically stated otherwise, the point applies
equally to all three components. Table I summari7.es the
quantitative differences between the members of the
MCS-48'· and MCS-51'· families.

The remainder of this Note discusses the various MCS-51'·
features and how they can be used. Software and/or hard-

AP-69

ware application examples illustrate many of the concepts.
Several isolated tasks (rather than one complete system
design example) are presented in the hope that some of
them will apply to the reader's experiences or needs.

A document this short cannot detail all of a computer
system's capabilities. By no means will all the 8051 instruc­
tions be demonstrated; the intent is to stress new or
unique MCS-51'· operations and instructions generally
used in conjunction with each other. For additional hard­
ware information refer to the Intel MCS-S\'· Family
User's Manual. publication number 121517. The assembly
language and use of ASM51. the MCS-51'· assembler,
are further described in the MCS-S\'· Macro Assembler
User's Guide, publication number 9800937.

The next section reviews some of the basic concepts
of microcompu\er design and use. Readers familiar
with the 8048 may wish to skim through this section
or skip directly to the next. "ARCHITECTURE AND
ORGANIZATION."

MIcrocomputer Background Concepts.

Most digital cdmputers use the binary (base 2) number
system internally. All variables. constants, alphanumeric
characters, program statements, etc .• are represented by
groups of binary digits ("bits"), each of which has the
value 0 or I. Computers are classified by how many bits
they can move or process at a time.

The MCS-51'" microcomputers contain an eight-bit
central processing unit (CPU). Most operations process
variables eight bits wide. All internal RAM and ROM.
and virtually all other registers are also eight bits wide.
An eight-bit ("byte") v'ariable (shown in Figure 2) may
assume one of 2" = 256 distinct values. which usually
represent integers between 0 and 255. Other types of
numbers. instructions. and so forth are represented by
one or more bytes using certain conventions.

For example, to represent positive and negative values.
the most significant bit (D7) indicates the sign of the other
seven bits-O if positive. I if negative-allowing integer
variables. between -128 and +127. For integers with
extremely large magnitudes. several bytes are manipu­
lated together as "multiple precision" signed or unsigned
integers-16. 24. or more bits wide.

Table 1. Features of Intel's Single-Chip Microcomputers

EPROM ROM External Program Data Instr. Inputl
Program Program Program Memory Memory Cycle Output Interrupt Reg.
Memory Memory Memory (Int/Max) (Bytes) Time Pins Sources Banks

- 8021 - IK!IK 64 8.41,Sec 21 0 I
-- 8022 -- 2K'2K 64 8. 4"Sec 28 2 I

8748 8048 8035 IK:4K 64 2.5"Sec 27 2 2
8049 8039 2K,4K 128 1.36,ISec 27 2 2

8751 8051 8031 4K,64K 128 1.0"Sec 32 5 4
AFN-01S02A-05

2-3

intJ Ap·69

The letters "MCS" have traditionally indicated
a system or family of compatible Intel@> micro­
computer components, including CPUs, mem­
ories, clock generators, I/O expanders, and so
forth. The numerical suffix indicates the micro­
processor or· microcomputer which serves as
the cornerstone of the family. Microcomputers
in the MCS-48'· family currently include the
8048-series (8035,8048, & 8748). the 8049-series
(8039 & 8049), and the 8021 and 8022; the
family also includes the 8243, an I/O expander
compatible with each of the microcomputers.
Each computer's CPU is derived from the 8048,
with essentially the same architecture, address­
ing modes, and instruction set, and a single
assembler (ASM48) serves each.

The first members of the MCS-51'· family are
the 8051, 8751, and 8031. The architecture of
the 8051-series, while derived from the 8048,
is not strictly compatible; there are more
addressing modes, more instructions, larger
address spaces, and a few other hardware dif­
ferences. In this Application Note the letters
"MCS-51" are used when referring to archi­
tectural features of the 8051-series-features
which would be included on possible future
microcomputers based on the 8051 CPU. Such
products could have different ·amounts of
memory (as in the 8048/8049) or different
peripheral functions (as in the 8021 and 8022)
while leaving the CPU and instruction set
intact. ASM51 is the assembler used 9Y all
microcomputers in the 8051 family.

Two digit decimal numbers may be "packed" in an eight­
bit value, using four bits for the binary code of each digit.
This is called Binary-Coded Decimal (BCD) representa­
tion, and is often used internally in programs which
interact heavily with human beings.

Alphanumeric characters (letters, numbers, punctuation
marks, etc.) are often represented using the American
Standard Code for Information Interchange (ASCII)
convention. Each character is associated with a unique
seven-bit binary number. Thus one byte may represent

I 0

07 06 05 04 03 02 01 DO

Figure 2. Representation of Bits Within an Eight-Bit
"Byte" (Value shown = 01010001 Binary =
81 decimal).

a single character. and a word or sequence of letters may
be represented by a series (or "string") of bytes. Since the
ASCII code only uses 128 characters. the most significant
bit of the byte is not needed to distinguish between char­
acters. Often D7 is set to 0 for all characters. In some
coding schemes, D7 is used to indicate the "parity" of the
other seven bits--set or cleared as necessary to ensure
that the total number of "I" bits in the eight-bit code is
even ("even parity") or odd ("odd parity"). The KOSI
includes hardware to compute parity when it is needed.

, A computer program consists of an ordered sequence of
specific, simple steps io be executed by the CPU one-at­
a-time. The method or sequence of steps used collectively
to solve the user's application is called an ··,algorithm."

The program is stored inside the computer as a sequence
of binary numbers. where each number correspond~ to
one of the basic oper,ations ("opcodes") which the CPU
is capable of executing. In the 80S I. each program
memory location is one byte. A complete instr.uction
consists of a sequence of one or more bytes. where the
first defines the operation to be executed and additional
bytes (if needed) hold additional information. such as
data values or variable addresses. No instruction is longer
than three bytes.

The way in which binary opcodes and modifier bytes are
assigned to the CPU's operations is called the computer's
"machine language." Writing a program directly in
machine language is time-consuming and tedious. Human
beings think in words and concepts rather than encoded
numbers. so each CPU operation and resource is given a
name and standard abbreviation ("mnemonic"). Programs
are more easily discussed using these standard mnemonics.
or "assembly language." and may be typed into an Intei'·
Intellec® 800 or Series Il® microcomputer development
system in this form. The development system can mechan­
ically translate the program from assemhly language
"source" form to machine language' "object" code using a
program called an "assembler." The MCS-SI'· assemhler
is called ASMSI.

2-4

There are several important differences between a com­
puter's machine language and the assembly language used
as a tool to represent it. The machine language or instruc­
tion set is the set of operations which the CPU can
perform while a program is executing ("at run-time"). and
is strictly determined by the microcomputer hardware
design.

The assembly language is a standard (though more-or­
less arbitrary) set of symbols including the instruction ,et
mnemonics, but with additional features which further
simplify the program design process. For example.
ASMSI has controls for creating and formaning a pro­
gram listing. and a number of directives for allocating
variable storage and inserting arbitrary hytes of data into
the ohject code for creating table> of con,tants.

AFN-01502A·06

In addition. ASM51 can perform sophisticated mathe­
matical operations. computing addresses or evaluating
arithmetic expressions to relieve the programmer from
this drudgery. However. these calculations can only use
information known at "assembly time."

For example. the 8051 performs arithmetic calculations
at run-time. eight bits at a time. ASM51 can do similar
operations 16 bits at a time. The 8051 can only do one
simple step per instruction. while ASM51 can perform
complex calculaiions in each line of source code. How­
ever. the operations performed by the assembler may only
use parameter values fixed at assembly-time. not variables
whose values are unknown until program execution
begins.

For example. when the assembly language source line,

ADD A,#(LOOP_COUNT + I) * 3

is assemhled. AS M51 will find the value of the pre­
viously-defined constant "LOOP_COUNT" in an internal
symbol table. increment the value. mUltiply the sum by
three. and (assuming it is between -256 and 255 inclusive)
truncate the product to eight bits. When this instruction
is executed. the 8051 ALU will just add that resulting
constant to the accumulator.

Some similar differences exist to distinguish number
system ("radix") specifications. The 8051 does all com­
putations in binary (though there are provisions for then
converting the result to decimal form). In the course of
writing a program, though. it may be more convenient
to specify constants using some other radix, such as base
Hr.,On other occasions.it is desirable to specify the ASCII
code for some character or string of characters without
refering to tables. ASM51 allows several representations
for constants. which are converted to binary as each
instruction is assembled.

For example. binary numbers are represented in the

AP-69

assembly language by a series of ones and zeros
(naturally). followed by the letter "B" (for Binary); octal
numbers as a series of octal digits (0-7) followed by the
letter "0" (for Octal) or "Q" (which doesn't stand for any­
thing. but looks sort of like an "0" and is less likely
to be confused with a zero).

Hexadecimal numbers are represented by a series of hexa­
decimal digits (0-9,A-F). followed by (you guessed it) the
letter "H." A "hex" number must begin with a decimal
digit; otherwise it would look like a user-defined symbol
(to be discussed later). A "dummy" leading zero may be
inserted before the first digit to meet this constraint. The
character string "BACH" could be a legal label for a
Baroque music synthesis routine; the string '~OBACH" is
the hexadecimal constant BAC,.. This is a case where
adding 0 makes a big difference.

Decimal numbers are represented by a sequence of decimal
digits. optionally followed by a "D." If a number has no
suffix. it is assumed to be decimal-so it had better not
contain any non-decimal digits. "OBAC" is not a legal
representation for anything.

When an ASCII code is needed in a program. enclose the
desired character between two apostrophes (as in 'W) and
the assembler will convert it to the appropriate code (in
this case 23H). A string of characters between apos­
trophes is translated into a series of constants; 'BACH'
becomes 42H. 41 H, 43H. 48H.

These same conventions are used throughout the asso­
ciated Intel documentation. Table 2 illustrates some of the
different number formats.

2. ARCHITECTURE AND ORGANIZATION
Figure 3 blocks out the MCS-51'· internal organization.
Each microcomputer combines a Central Processing
Unit, two kinds of memory (data RAM plus program
ROM or EPROM), Input/Output ports. and the mode.

Table 2. Notations Used to Represent Numbers

Hexa- Signed
Bit Pattern Binary Octal Decimal Decimal Decimal

00000000 OB OQ OOH 0 0
00000001 IB IQ OIH I +1
...............
00000111 IIIB 7Q 07H 7 +7
00001000 1000B IOQ 08H 8 +8
00001001 100lB IIQ 09H 9 +9
00001010 10 lOB 12Q OAH 10 +10
............... .. '"
0000 1 1 1 1 IIIIB 17Q OFH 15 +15
00010000 looOOB 20Q IOH 16 +16
............... "
o 1 1 1 1 1 1 1 lllllllB 177Q 7FH 127 +127
10000000 10000000B 200Q 80H 128 -128
10000001 1000000lB 20lQ 81H 129 -127
...............
1 1 1 1 1 1 1 0 1l111l10B 376Q OFEH 254 -2
111111 II IIIIIIIIB 377Q OFFH 255 -I

AFN·01502A·07

2-5

AP-69

TIMER
CONTROL

Figure 3. Block Diagram of 8051 Internal Structure

status. and data registers and random logic needed for
a variety of peripheral functions. These elements com­
municate through an eight-bit data bus which runs
throughout the chip. somewhat akin to indoor plumbing.
This bus is buffered to the outside world through an I/O
port when memory or I/O expansion is desired.

Let's summarize what each block does: later chapters dig
into the CPU's instruction set and the peripheral registers
in much greater detail.

Central Processing Unit
The CPU is the "brains" of the microcomputer. reading
the user's program and executing the instructions stored
therein. Its primary elements are an eight-bit Arithmetic/
Logic Unit with associated registers A. B, PSW. and SP.
and the sixteen-bit Program Counter and "Data Pointer"
registers.

2-6

intJ AP-69

Arithmetic Logic Unit

The ALU can perform (as the name implies) arithmetic
and logic functions on eight-bit variables. The former
include basic addition. subtraction. multiplication. and
division; the latter include the logical operations AND.
OR. and Exclusive-OR. as well as rotate. clear. comple­
ment. and so forth. The ALU also makes conditional
branching decisions. and provides data paths and tem­
porary registers used for data transfers within the system.
Other instructions are built up from these primitive func­
tions: the addition capability can increment registers or
automatically compute program. destination addresses;
subtraction is also used in decrementing or comparing the
magnitude of two variables:

These primitive operations are automatically cascaded
and combined with dedicated logic to build complex
instructions such as incrementing a sixteen-bit register
pair. To execute one form of the compare instruction. for
example. the 8051 increments the program counter three
times. reads three bytes of program memory. computes a
register address with logical operations. reads internal
data memory twice. makes an arithmetic comparison of
two variables. computes a sixteen-bit destination address.
and decides whether or not to make a branch-all in two
microseconds!

An important and unique feature of the MCS-51 archi­
tecture is that the ALU can also manipulate one-bit as
well as eight-bit data types. Individual bits may be set.
cleared. or complemented. inoved. tested. and used in
logic computations. While support for a more primitive
data type may initially seem a step backwards in an era
of increasing word length. it makes the 8051 especially
well suited for controller-type applications. Such algo­
rithms inherent~1' involve Boolean (true/false) input
and output variables. which were heretofore difficult to
implement with standard microprocessors. These features
are collectively referred to as the MCS-51'· "Boolean
Processor." and are described in the so-named chapter
to come.

Thanks to this powerful ALU. the 8051 instruction set
fares well at both real-time control and data intensive
algorithms. A total of 51 separate operations move and
manipulate three data types: Boolean (I-bit). byte (8-bit).
and address (16-bit). All told. there are eleven addressing
modes-seven for data. four for program sequence con­
trol (though only eight are used by more than just a few
speciali7.ed instructions). Most operations allow several
addressing modes. bringing the total number of instruc­
tions (operation/addressing mode combinations) to III.
encompassing 255 of the 256 possible eight-bit instruc­
tion opcodes.

Instruction Set Overview

Table 4 lists these III instructions classified into five
groups:

2-7

• Arithmetic Operations
• Logical Operations for Byte Variables
• Data Transfer Instructions
• Boolean Variable Manipulation
• Program Branching and Machine Control

MCS-48'· programmers perusing Table 4 will notice the
absence of special categories for Input/Output. Timer!
Counter. or Control instructions. These functions are all
still provided (and indeed many new functions are added).
but as special cases of more generalized operations in
other categories. To explicitly list all the useful instruc­
tions involving I/O and peripheral registers would require
a table approximately four times as long.

Observant readers will also notice that all of the 8048's
page-oriented instructions (conditional jumps. JMPP.
MOVP. MOVP3) have been replaced with corresponding
but non-paged instructions. The 8051 instruction set is
entirely /loll-page-oriented. The MCS-48'· "MOVP"
instruction replacement and all conditional jump instruc­
tions operate relative to the program counter. with the
actual jump address computed by the CPU during instruc­
tion execution. The "MOVP3" and "JM PP" replacements
are now made relative to another sixteen-bit register.
which allows the effective destination to be anywhere in
the program memory space. regardless of where the
instruction itself is located. There are even three-byte
jump and call instructions allowing the destination to be
an,l'll'here in the 64K program address space.

The instruction set is designed to make programs efficient
both in terms of code size and execution speed. No
instruction requires more than three bytes of program
memory. with the majority requiring only one or two
bytes. Virtually all instructions execute in either one or
two instruction cycles-one or two microseconds with
a 12-MH7. crystal-with the sole exceptions (multiply
and divide) completing in four cycles.

Many instructions such as arithmetic and logical func­
tions or program control. provide both a short and a long
form for the same operation. allowing the programmer
to optimi7.e the code produced for a specific application.
The 8051 usually fetches two instruction bytes per instruc­
tion cycle. so using a shorter form can lead to faster
execution as well.

For example. any byte of RAM may be loaded with a
constant with a three-byte. two-cycle instruction. but the
commonly used "working regi~ters" in RAM may be
initiali7.ed in one cycle with a two-byte form. Any bit
anywhere on the chi p may be set. cleared. or comple­
mented by a single three-byte logical instruction using
two cycles. But critical control bits. I/O pins. and soft­
ware flags may be controlled by two-byte. single cycle
instructions. While' three-byte jumps and calls can "go
anywhere" in program memory. nearby sections of code
may be reached by shorter relative or absolute versions.

AFN-Q1502A-09

inter AP-69

(MSB) '(LSB)

I Cy I AC FO RS1 I RSO I OV

Symbol Position Name and Significance
CY PSW 7 Carry flag.

AC PSW6

FO PSW5

RSI PSW.4

RS PSW.3

Set/cleared by hardware or software
during certain arithmetic and logical
instructions.

Auxiliary Carry flag.
Set/cleared by hardware during addition
or subtraction instructions to indicate
carry or borrow out of bit 3.

Flag 0
Set/cleared/tested by software as a
user-defined status flag.

Register bank Select control bits I & O.
Set/cleared by software to determine
working register bank (see Note).

Symbol Position Name and Significance
OV PSW2 Overflow flag.

PSW.I

P PSWO

Note-

Set/cleared by hardware during arith­
metic instructions to indicate overflow
conditions.

(reserved)

Parity flag.
Set/cleared by hardware each instruc­
tion cycle to indicate an odd/even
number of "one" bits in the accumu­
lator. i.e .• even parity.

the contents of(RSI. RSO) enable the
working register banks as follows:

(0.0) .. Bank 0
(0.1) . Bank I
(I,O)---Bank 2
(1.1) -Bank 3

(OOH-07H)
(OSH-OFH)
(IOH-I7H)
(ISH-IFH)

Figure 4. PSW-Program Status Word Organization

A significant side benefit of an instruction set more
powerful than those of previous single-chip microcom­
puters is that it is easier to generate applications-oriented
,software. Generalized addressing modes for byte and bit
instructions reduce the number of source code lines
written and debugged for a given application. This leads
in turn to proportionately lower software costs. greater
reliability. and faster design cycles.

Accumulator and PSW

The 8051, like its 8048 predecessor, is primarily an
accumulator-based 'architecture: an eight-bit register
called the accumulator ("A") holds a sour.ce operand and
receives the result of the arithmetic instructions (addition.
subtraction, multiplication, and division). The accumula­
tor can be the source or destination for logical operations
and a number· of special data movement instructions.
including table look-ups and external RAM expansion.
Several functions apply exclusively to the accumulator:
rotates, parity computation, testing for zero, and so on.

Many instructions implicitly or eXp'licitly affect (or are
affected by) several status 'flags, which are grouped
together to form the Program Status Word shown in
Figure 4.

(The period wiihin entries under the Position column is
called the "dot operator," and indicates a particular bit
position within an eight-bit byte. "PSW.5" specifies bit 5
of the PSW. Both the documentation and ASM51 use
this notation.)

The mos!'''active'' statuS bit is called the carry flag (abbre­
viated "C"). This bit makes possible multiple precision
arithmetic 6perations including addition, subtraction,

2-8

and rotates. The carry also serves as a "Boolean accumu­
lator" for one-bit logical operations and bit manipulation.
instructions. The overflow flag (OV) detects when arith­
metic overflow occurs on signed integer operand~, making
two's complement arithmetic possible. The parity flag
(P) is updated after every instruction cycle with the even­
parity of the accumulator contents.

The CPU does not control the two register-bank select
bits, RS I and RSO. Rather, they are manipulated by
software to enable one of the four register banks. The
usage of the PSW flags is demonstrated in the Instruc­
tion Set chapter of,this Note.

Even though the architecture is accumulator-based, pro­
visions have been made to bypass the accumulator in
common instruction situations. Data may be moved from
any location on-chip to any register. address, or indirect
address (and vice versa), any register may be loaded with
a constant, etc., all without affecting the accumulator.
Logical operations may be performed against registers or
variables to alter fields of bits-without using or affecting
the accumulator. Variables may be incremented, decre­
mented, or tested without using the accumulator. Flags
and control bits may be manipulated and tested without
affecting anything else.

Other CPU Registers

A special eight-bit register ("B") serves in the execution of
the multiply and divide instructions. This register is used
in, conjunction with the accumulator as the second input
operand and to return eight-bits of the result.

The M CS-51 family processors include a hardware stack
within internal RAM, useful for subroutine linkage,

AFN-01S02A-10

infef

passing parameters between routines, temporary variable
storage, or saving status during interrupt service routines.
The Stack Pointer (SP) is an eight-bit pointer register
which indicates the address of the last byte pushed onto
the stack. The stack pointer is automatically incremented
or decremented on all push or pop instructions and all
subroutine calls and returns. [n theory, the stack in the
8051 may be up to a full 128 bytes deep. (In practice, even
simple programs would use a handful of RAM locations
for pointers, variables, and so forth-reducing the stack
depth by that number.) The stack pointer defaults to 7 on
reset, so that the stack will start growing up from location

8,just like in the 8048. By altering the pointer contents the
stack may be relocated anywhere within internal RAM.

Finally, a 16~bit register' called the data pointer (DPTR)
serves as a base register in indirect jumps, table look-up
instructions, and external data transfers. The high- and
low-order halves 'Of the data pointer may be manipulated
as separate registers (DPH and DPL, respectively) or
together using special instructions to load or increment
all sixteen bits. Unlike the 8048, look-up tables can there­
fore start anywhere in program memory and be of
arbitrary length.

Memory Spaces

Program memory is separate and distinct from data
memory. Each memory type has a different addressing
mechanism, different control signals, and a different
function.

The program memory array (ROM or EPROM), like an
elephant, is extremely large and never forgets informa­
tion, even when power is removed. Program memory is
used for information needed each time power is applied:
initiali7.ation values, calibration constants, keyboard
layout tables, etc., as well as the program itself. The pro­
gram memory has a sixteen-bit address bus; its elements

AP-69

2-9

are addressed using the Program Counter or instructions
which generate a sixteen-bit address.

To stretch our analogy just a bit, data memory is like a
mouse: it is smaller and therefore quicker than program
memory, and it goes into a random state when electrical
power is applied. On-chip data RAM is used for variables
which are determined or may change while the program
is running.

A computer spends most of its time manipUlating vari­
ables, not constants, and a relatively small number of
variables at that. Since eight-bits is more than sufficient
to uniquely address 128 RAM locations, the on-chip
RAM address register is only one byte wide. [n contrast
to the program memory, data memory accesses need a
single eight-bit value-a constant or another variable­
to specify a unique location. Since this is the basic width
of the ALU and the different memory . types, those
resources can be used by the addressing mechanisms,
contributing greatly to the computer's operating efficiency.

The partitioning of program and data memory is extended
to off-chip, memory expansion. Each may be added
independently, and each uses the same address and data
busses, but with different control signals. External pro­
gram memory is gated onto the external data bus by the
PSEN (Program Store Enable) control output, pin 29.
External data memory is read onto the bus by the RD
output, pin 17, and written with data supplied from the
microcomputer by the WR output, pin 16. (There is no
control pin to write external program ROM, which is by
definition Read Only.) While both types may be expanded
to up to 64K bytes, the external data memory may
optionally be expanded in 256 byte "pages" to preserve
the use of P2 as an I}O port. This is useful with a relatively
small expansion RAM (such as the [ntel® 8155) or for
addressing external peripherals.

Single-chip controller programs are finalized during the
project design cycle, and are not modified after produc­
tion. [ntel's single-chip microcomputers are not "von
Neumann" architectures common among main-frame
and miniccomputer systems: the M CS-51 ,. processor
dala memory-on-chip and external-may 1101 be used
for program code. Just as there is no write-control signal
for program memory, there is no way for the CPU to
execute instruct-ions out of RAM. [n return, this con­
cession allows an architecture optimized for efficient
controller applications: a large, fixed program located in
ROM, a hundred or so variables in RAM, and different
methoils for efficiently addressing each.

(Von Neumann machines are.helpful for software develop­
ment and debug. An 8051 system could be modified to
have a single off-chip memory space by gating together
the two memory-read controls (PSEN and RD) with a
two-input AND gate (Figure 5). The CPU could then
write data into the common memory array using W Rand

AFN-01S02A-l t

inter

8051 MEMORY WI! ~ 1miWII} TO

L-___ I'mi_IIII-I IiEIIliII ARRAY

Figure 5. Combining External Program and Data
Memory Arrays

external data transfer instructions, and read instructions
or data with the AND gate output and data transfer or
program memory look-up instructions.)

In addition to the memory arrays, there is (yet) another
(albeit sparsely populated) physical address space. Con­
nected to the internal data bus are a score of special­
purpose eight-bit registers scattered throughout the chip.
Some of these-B, SP, PSW, DPH, and DPL-have
been discussed above. Others-I/O ports and peripheral
function registers-will be introduced in the following
sections. Collectively, these registers are designated as the
"special-function register" address space. Even the accu­
mulator is assigned a spot in the special-function register
address space for additional flexibility and uniformity.

Thus, the M CS-SI'· architecture supports several distinct
"physical" address spaces, functionally separated at the
hardware level by different addressing mechanisms, read
and write control signals, or both:

• On-chip program memory;
.• On-chip data memory;
• Off-chip program memory;
• Off-chip data memory;
• On-chip special-function registers.

What the programmer sees, though, are "logical" address
spaces. For example, as far as the programmer is
concerned,. there is only one type of program memory,
64K bytes in length. The fact that it is formed by com­
bining on- and off-chip arrays (split 4K/60K on the 80S1
and 87S1) is "invisible" to the programmer; the CPU
automatically fetches each byte from the appropriate
array, based on its address.

(Presumably, future microcomputers based on the
MCS-SI ,. architecture may have a different physical split,
with more or less of"the 64K total implemented on-chip.
Using the' MCS-48'· family as a precedent, the 8048's 4K
potential program address space was split I K/ 3K between
on- and off-chip arrays; the 8049's was split 2KJ2K.)

Why go into such tedious details about address spaces?
The logical addressing modes are described in the Instruc­
tion Set chapter in terms of physical address spaces.
Understanding their differences now will payoff in under­
standing and using the chips later.

AP-69

2-10

Input/Output Ports

The MCS-SI'· I/O port structure is extremely versatile.
The 80S1 and 87S1 each have 32 I/O pins configured as
four eight-bit parallel ports (PO, PI, P2, and P3). Each pin
will 'input or output data (or both) under software con­
trol, and each may be referenced by a wide repertoire of
byte and bit operations.

In various operating or expansion modes, some of these
I/O pins are also used for special input or output func­
tions. Instructions which access external memory use'
Port 0 as a multiplexed address/data bus: at the beginning
of an external memory cycle eight bits of the address are
output on PO; later data is transferred on the same eight
pins. External data transfer instructions which supply
a sixteen-bit address, and any instruction accessing
external program memory, output the high-order eight
bits on P2 during the access cycle. (The 8031 alll'ays uses
the pins of PO and P2 for external addressing, but P I and
P3 are available for standard I/O.)

The eight pins of Port 3 (P3) each have a special function.
Two external interrupts, two counter inputs, two serial
data lines, and two timing control strobes use pIns of P3
as described in Figure 6. Port 3 pins corresponding to
functi9ns not used are available for conventional 1/0.-

Even within a single port, I/O functions may be combined
in many ways: input and output may be performed using
different pins at the same time, or the same pins at different
times; in parallel in some cases, and in serial in others; as
test pins, or (in the case of Port 3) as additional special
functions.

AP-69

(MS8) (LS8)

I RD I WR I Tl TO l'Nn I INTO I TXD I RXD I
Symbol Position Name and Significance Symbol Position Name and Significance
RD 1'3.7 Read data control output. Active low INTI 1'3.3 Interrupt I input pin. Low-level or

pulse generated by hardware when falling-edge triggered.
external data memory is read.

INTO 1'3.2 Interrupt 0 input pin. Low-level or
WR 1'3.6 Write data control output. Active low falling-edge triggered.

pulse generated by hardware when
external data memory b wriucn. TXD 1'3.1 Transmit Data pin for serial port in

UART mode. Clock output in shift
Tl 1'3.5 Timer/counter I external input or test register mode.

pin.
RXD 1'3.0 Receive Data pin fo'r serial port in

TO PH Timer/counter 0 external input or test UART mode. Data I/O pin in shift
pin. register mode.

Figure 6. P3-Alternate Special Functions of Port 3

Special Peripheral Functions

There are a few special needs common among control­
oriented computer systems:

• keeping track of elapsed real-time;
• maintaining a count of signal transitions;
• measuring the precise width of input pUlses;
• communicating with other systems or people;
• closely monitoring asynchronous external events.

Until now, microprocessor systems needed peripheral
chips such as timer/counters. USARTs. or interrupt con­
trollers to meet these needs. The 8051 integrates all of
these capabilities on-chip!

Timer/Counters

There are two sixteen-bit multiple-mode Timer/Counters
on the 8051. each consisting of a "High" byte (correspond­
ing to the 8048 "T" register) and a low byte (similar to· the
8048 prescaler. with the additional flexibility of being

2-11

software-accessible). These registers are called. naturally
enough. THO. TLO. TH I. and TLI. Each pair may be
independently software programmed to any of a d07en
modes with a mode register designated TMOD (Figure
7). and controlled with register TCON (Figure 8).

The timer modes can be used to measure time intervals.
determine pulse widths. or initiate events. with one-micro­
second resolution. up to a maximum interval of 65.536
instruction cycles (over 65 milliseconds). Longer delays
may easily be accumulated through software. Configured
as a counter. the same hardware will accumulate external
events at frequencies from D.C. to 500 KHz. with up to
sixteen bits of precision.

Serial Port Interface

Each microcomputer contains a high-speed, full-duplex.
serial port which is software programmable to function
in' four basic modes: shift-register I/O expander. 8-bit
UART. 9-bit UART. or interprocessor communications
link. The UART modes will interface with standard I/O
devices (e.g. CRTs. teletypewriters. or modems) at data
rates from 122 baud to 31 kilobaud. Replacing the
standard 12 MHz crystal with a 10.7 MHz crystal allows
110 baud. Even or odd parity (if desired) can be included
with simple bit-handling software routines. Inter-processor
communications in distributed systems takes place at 187
kilobaud with hardware for automatic add.ress/data
message recognition. Simple TTL or CM OS shift registers
provide low-cost I/O expansion at a super-fast I Mega­
baud. The serial port operating modes are controlled by
the contents of register SCON (Figure 9).

Interrupt Capability and Control

(Interrupt capability is generally considered a CPU
function. It is being introduced here since. from an appli­
cations point of view, interrupts relate more closely to
peripheral and system interfacing.)

AFN-01S02A-13

AP-69

(MSB) (LSB)

I GATE I CIT I M1 MO I GATE I CIT M1 MD I
~\

GATE

CjT

TIMER 1 TIMER 0

Gating control. When set, Timer/counter
"x"·is enabled only while "INTx" pin is
high and "TRx" control bit is set. When
cleared, timer/counter is enabled
whenever "TRx" control bit is set.

Timer or Counter Selector. Cleared for
Timer operation (input from internal
system clock). Set for Counter opera­
tion (input from "Tx" input pin).

M1
o

o

MO
o

o

Operating Mode
MCS-48 Timer. "TLx" serves as five­
bit prescaler.

16-bit timer· counter. "THx" and "TLx"
are cascaded~ there is 'no presca'ier.

8-bit auto-reload timer counter. "THx"
holds a value which is to be reloaded
into ··TLx·· each time it overflows.

(Timer 0) TLO is an eight-bit timer
counter controlled bv the
standard Timer 0 co~trol
bits. .
THO is an eight-bit timer
only controlled by Timer I
control bits.

(Timer I) Timer,counter I stopped.

Figure 7. TMOD-Timer/Counter Mode Register

(MSB) (LSB)

I TF1 I TR1 TFO I TRO IE1 IT1 lEO I ITO

Symbol Position Name and Significance
TFI TCON.7 Ti.mer I overflow Flag. Set by hardware

TRI TCON.6

TFO TCON.5

TRO TCON.4

on timer/counter overflow. Cleared
when interrupt processed.

Timer I Run control bit. Set/cleared
by software to turn timer/counter
on/off.

Timer 0 overflow Flag. Set by hardware
on timer/counter overflow. Cleared
when interrupt processed.

Timer 0 Run control bit. Set/cleared by
software to tUTn timer/counter on/off.

Symbol Position Name and Significance
lEI TCON.3 Interrupt I Edge flag. Set by hardware

ITI TCON.2

I Ell TCON.I

ITO TCON.O

when external interrupt edge detected.
Cleared when interrupt processed.

Interrupt I Type control bit. Sct cleared
by software to specify falling edge low
level triggered external interrupts.

Interrupt 0 Edge flag. Set by hardware
when external interrupt edge detected.
Cleared when interrupt processed.

Interrupt 0 Type control bit. Set 'cleared
by software to specify falling edge low
level lriggered external interrupts.

Figure 8. TCON-Timer/Counter Control/Status Register

AFN-01502A-14

2-12

Symbol Posillon Name and Significance
SMO SCON.7 Serial port Mode control bit O.

Sct/cleared by software (sce note).

SMI SCON.6 Serial port Mode control bit I.
Set/cleared by software (see note).

SM2 SCON.5 Scrial port Modc control bit 2. Set by
softwarc to disable reception of frames
for which bit 8 is zero.

REN SCON.4 Receiver Enable control bit. Set/clcared
by software to enable/disable serial
data reception.

TB8 SCON.3 Transmit Bit 8. Set/clcared by hard-
ware to determine state of ninth data
bit transmitted in 9-bit UART modc.

AP-69

Symbol Position Name and Significance
RB8 SCON.2 Receive Bit 8. Set/c1cared by hardware

to indicate stale of ninth data bil
received.

TI SCON.I Transmit Intcrrupt flag. Set by hard-
ware when byte transmitted. C1cared
by software after servicing.

RI SCON.O Received Inlerrupt flag. Set by hard-

Note-

ware when byte received. Cleared by
software after servicing.

the state of (SMO.SM I) "Ieets:
(0,0) --Shift register 110 expansion
(0.1)·-8 bit UART. variable data rate.
(1.0)--9 bit UART. fixed data rate.
(1.1)--9 bit UART. variable data rate.

Figure 9. SCON-Serial Port Control/Status Register

These peripheral functions allow special hardware to
monitor real-time signal interfacing without bothering
the CPU. For example, imagine serial data is arriving from
one CRT while being transmitted to another, and one
timer/counter is tallying high-speed input transitions
while the other measures input pulse widths. During all
of this the CPU is thinking about something else.

But how does the CPU know when a reception, transmis­
sion, count, or pulse is finished? The 8051 programmer
can choose from three approaches.

TCON and SCON contain status bits set by the hardware
when a timer overflows or a serial port operation is com­
pleted. The first technique reads the control register into
the accumulator, tests the appropriate bit, and does a
conditional branch based on the result. This "polling"
scheme (typically a three-instruction sequence though
additional instructions to save and restore the accu­
mulator may sometimes be needed) will surely be
familiar to programmers used to multi-chip microcom­
puter systems and peripheral controller chips. This
process is rather cumbersome, especially when monitoring
multiple peripherals.

As a second approach, the 8051 can perform a conditional
branch based on the state of any control or status bit or
input pin in a single instruction; a four instruction
sequence could poll the four simultaneous happenings
mentioned above in just eight microseconds.

Unfortunately, the CPU must still drop what it's doing
to test these bits. A manager cannot do his own work
well if he is continuously monitoring his subordinates;
they should interrupt him (or her) only when they need
attention or guidance. So it is with machines: ideally, the
CPU would not have to worry about the peripherals until
they require servicing. At that time, it would postpone the

background task long enough to handle the appropriate
device, then return to the point where it left off.

This is the basis of the third and generally optimal solu­
tion, hardware interrupts. The 8051 has five interrupt
sources: one from the serial port when a transmission or
reception is complete, two from the timers when over­
flows occur, and two from input pins INTO and INTI.
Each source may be independently enabled or disabled
to allow polling on some sources or at some times, and
each may be classified as high or low priority. A high
priority source can interrupt a low priority service
routine; the manager's boss can interrupt conferences
with subordinates. These options are selected by the inter­
rupt enable and priority control registers, IE and IP

. (Figures 10 and II).

2-13

Each source has a particular program memory address
associated with it (Table 3), starting at 0003H (as in the
8048) and continuing at .eight-.byte intervals. When an
event enabled for interrupts occurs the CPU automatically
executes an internal subroutine call to the corresponding
address. ·A us_er subroutine starting at this location (or
jumped to from this location) then performs the instruc­
tions to service that particular source. After completing
the interrupt service routine, execution returns to the
background program.

Table 3. 8051 Interrupt Sources and Service Vectors

Interrupt Service Routine
Source Starling Address

(Reset) OOOOH
External 0 0OO3H
Timer/Counter 0 OOOBH
External I OOl3H
Timer/ Counter I OOIBH
Serial Port 0023H

AFN-01502A-1S

inter AP-69

IMSB) ILSB)

ES ET1 EX1 ETO I EXO I
Symbol Position Name and Significance
EA IE.7 Enable All control bit. Cleared by

software to disable all interrupts.
independent of the stale of IE.4-IE.O.

ES

ETI

IE.6
IE.5

IE.4

IE.3

(reserved)
(reserved)

Enable Serial port control bit.
Set/cleared by software to enable
disable interrupts from TI or RI flags.

Enable Timer I control bit. SeUcieared
by software to enable/disable interrupts
from timer/counter I.

Symbol Position Name and Significance
EXI IE.2 Enable External interrupt I control bit.

ETO IE.I

EXO IE.O

Set cleared by software to enable
disable interrupts from INTI.

Enable Timer 0 control bit. Set cleared
by software to enable disable interrupts
from timer counter 0

Enable External interrupt 0 control bit.
Set cleared by software to enable
disable interrupts from INTO.

Figure 10. IE-Interrupt Enable Register

IMSB)

I - 1

Symbol Position
IP.7
IP.6
IP.5

PS IP.4~

PTI JP.3

ILSB)

PS PT1 I, px, 1 PT. I px. I
Name and Significance
(reserved)
(reserved)
(reserved)

Serial port Priority control bit.
Set/cleared by software to specify
high/low priority interrupts for Serial
port.

Timer I Priority control bit.
Set/cleared by software to specify
high/low priority interrupts for
timer/counter I.

Symbol POSition Name and Significance
PXI IP.2 External interrupt I Priority control

bit. Set cleared by software to specify
high low priority interrupt, for INTI.

PTO IP.I

PXO IP.O

Timer 0 Priority control bit.
Set cleared by software to specify
high low priority interrupts for
timer counter O.

External interrupt 0 Priority control
bit. Set cleared by software to specify
high low priority interrupts for INTO.

Figure 11. IP-Interrupt Priority Control Register

AFN-OtS02A-16

2-14

inter AP-69

Table 4. MCS-51'" Instruction Set Description

ARIIIIMHIC OPERA1IONS

!\tnernnnic I),,\cription Byte C)C
.\1)))

AIlD
ADD
AD))
AnnC
ADDC
A))))C
,\nlle
SllBB
SllHB
SllBB
SUnB
I"C
I'\;C
I'C
I'\C
me
mc
I)fT
!lIT
I'\;C
.\1(11
I>IV
J):\

A.Rn
·\.dITCct
A.lQ1RI
.\.udJta
'\.Rn
A.dlrcct
·\.Ca1 RI
,\.Ud.II.1
A.Rn
'\,dm:cl
A.@'Ri
A)tdata
A

Add rcgl'lcf 10 Ac,"umul.llnT I I

Rn
direct
(a\RI
A
Rn
dllect
~I\RI

DPI R
AI!
AU
A

Add dlreCl tntc 1U ,\n.'UIl1Ulalor
Add mUlrcct"RA\11ll Acculllul,l(nr
Add Immcdl:!lC data tn Accumulator
Add regl~tcr to Accumulatnr vdth c.lrr)
Add direct h~(c (() A "Ith c.!rr~ n.lg
Add mdm'ct R,\ M III A \Hlh c.trr~ fl<lg
Add ,mmedlate dat.ltll A \\lth C:lrr~ n.lg
Subtract regl\!cr lrom A wlIb Borro"
Subtract direct b\lI.: from A \\1I1t Bornl\l.
Suhtract Indllecl'RAM Irom·\" B(}mm
Suhlract Imllled dilt,. lrom A \\. Born)"
Incrt'ment Accumulator
InClement rcg"tel
Increment direct h\te
Increment Indirect' RAM
l>enement ,\n:ulllul.llor
Decrement reg"ter
Decrement due!:t b\le
Dc!:remcnt Indlrct:,'RAM
Im'rement Daw P(lmter
Mu!tlpl~ A & B
1l1\ldc A h\ B
Ilct:llllal Adlu,t Accumulator

I.O(;iCAI. OPERATIONS

I
I
I
I
I
I
I
I
I
I

:\Inernonic Or .. tinatiun 8~te ('~c
A\;I A.Rn A'\;i) rel!l~ler to Accut1lul.llor I I
A'\; 1 A,dlrecl A ·f) dl;eci h\le to Accumulator I
A\;/. A.@RI " ·1> Indlrect'RAM In Accurnul.ltor I
A\;I A.Mata ASD Immediate datil to Accul\lul.tlnr I
A\;L dlrect.A A \;D AccuTl1ulator 10 direct b\'le I
A'\; 1 dlrect.#data A 'iD Immedl..lte datJ to dln!ci byte
ORI A.Rn OR rt:gl~tt'r tll Accumulator
ORI A.dlrect OR dm.'ct h\te to Accumul..llor
ORI A,@JRI OR mdlrelt'RAM to Accul\lul ... I<)f
ORI A.#data OR Imrncdl.Jle data 10 Act:umulator
ORI duec1.A OR Accumulator to dIrect h\'tc
ORI dlrec\.*tdata OR Immcdlatc dat.1 to dlrcct h\ tc
XRI A.Rn Exc!u,,\e-OR rCJP~t~'r 10 AClllmuJatnr
XRI A.dlfl'cl Exclu'-I\e-OR duect h\le to Accumulator
.xRI A.(fURI Exciu"\e-OR IndirecI'RAM to A
XRI A.*"data Exclu~l\e-OR Immediate data to A
xRI t.hrect.A E'{clu~l\e-()R Accumulator 10 dlrccl b\te
.XRI dlrect.#dala E'(clu~ne-OR zmmcc.llate data to dlrec!
CI R A Clear Accumulator
CPI ~ Complement Accumulator
RI A Ro{att· Accumulator I cit
RIC A Rotale A I.ef! through the Carr) nag
RR A Rotate Accumulator Right
RRe A Rolate A Right through Cany nag
SWAP A Swap mhhlc' Within the Accumulator

[)AT·\ TRA \;~FER

VJnemunic Oe .. cription 8)te C)C
'l0V A,Rn M()\e regl~ter to Accumulator I
MOV A.l.llrect Mtl\e direct b\'te to Accunmlalor 2
M()V A.(aIRI M(J\e inum:cl'RAM 10 Accumulaltlr I
MOV \.tidala MO\t! lmmedlale d.lta to Accumuloltor
\10V Rn.A Mo\e Accumulator \l) Icg"tel
MOV H,n.dlfect Mo\e direct h~\c 10 reg"lef
\10\' Rn.*'d.II.1 Mo\e Immcdl.Jte Juta 10 regl,ler
MOV dlfCCt.A Mme Accumulator 10 d!r~'c! h~le
."-IO\' dlrcct.Rn Mine regl .. tef to direct hyle
\1()V dllcct.dlrect Mo\t! direct h\'te to dIrect
MOV dlrect,(,alRI Mo\e Indlrcct'RAM to direct b\tc
MOV I.hrect.tidata M(l\e ImmedlJlc data to dllecl inte
MOV (aIRI.A M(He Accumulator to mdllecl If AM
MOV (a1Rz,dlrect M<)\c dlfect h\te to mdlrect RAM
M()V «(lIRI.tidat •• MO\e Immedl:ltc data III mdlrect RAM
MOV IlP I R.#datll l!l I.oad Data Pmnter wllh a](I-blt comtant

3. INSTRUCTION SET AND ADDRESSING MODES

The 8051 instruction set is extremely regular. in the sense
that most instructions can operate with variables from
several different physical or logical address spaces. Before
getting deeply enmeshed in the instruction sct proper. it
is important to understand the details of the most
common data addressing modes. Whereas Table 4 sum­
mari7es Ihe instructions set broken down by functional

I
I
I
I
I ,

DATA TRANSFER (conI.)

Mnemonic De\cription B)le (')'C
MOVe A.CWA+DP"J R
Move A.@A+I'C
MOVX A.@lRo
MOVX A.@IJPrR
MOVX @RJ.A
MOVX (wDPI R.A

MIne Code hvtc reiatl\C to [)PfR 10 A
\10\C Code ",Ie rclatl\C to PC In A
Mmc E'I(,lcro.il RAM (1(·011 dddrlin A
Mmc E'(lcrn,J1 RAM (16·bn addr) to A
MO\~' A In E,lernoil RAM (H-hLt aodr)
Mmc A ttl r,lcrnal RAM (16-bll addr)
Pu,h direct tl\ Ie onto ,lac\..

I 2

PliSH direct
POP direct
XCH A.Rn
XCH A,dlrt'c!
XCH A.@lR,
X('HI) A.@lRI

Pop dIrect h~ic]rom ,tad..
[,(change rcg.'\l'r "11h Accumulalm
F,(changt' direct h~lc "11h AccumulalOr
E'(changc mdlrect RAM '\dlh A
Exch.angl' hl\\-nrdcr DIg:lIlnU RAM A

8()()I.EAN VARIARU: .I\IASIPt·I.ATlON

I
I
I
I
I

Mnemonic
elR C

De .. eriplion B)te ()c
Clear ('arr~ nag I I

n R h1l
SFI I! C
SE I H hit
('PI C
CPI bll
A\;I ('.bll
A \I C. hit
ORI C.hl!
ORI ('. bil
M()V Chit
MOV hlt.C

Clear direct hu
Set Cm~ !lag
Sel direct BII
Cumplement Carr~ tlJg
Complt'ment dln:ct hll
A'\; I) direct bll to C;.rr~ IIJ!,!
A '\;1> wmpkment ul dlfect hl1to Colrr~
OR direct hll ttl CJrr~ nag
OR cmnplemcTlt 01 direct hit tn Carr~
Mmc <IIrect hl1 to C:lrr~ nag
Mmc CJrr~ nag 10 ulrcclim

PROGRAM A:'On MAClII:'OI: CONTROL

\1nemonic
ACAI I .Iddrll
I CAl I addrlll
Rrl
REII
A.lMP addrll
I.lMP addrlfl
S.lMP rl'l
.1\.11)
.IZ
.1'\;/:
.IC
.I~e
.IB
.I",n
.I Be
CJ'\;F.
C.I'\E
C.I~E
eJ",E
1l.l",Z
f).I'Z
'op

(aIA+J)PI R
rei
rei
rei
rei
hlud
hll.rcl
bll.rel
A.d.rect.rd
A.*'dJla.ld
Rn.udata.rel
(wRI.#data.rel
Rn.rel
dlrel.'t.rel

I>e .. criprion
"h~olult' Subroutine ('a11
long: Suhroulllle ('.til
Return from ~uhroutlllt:
Return trnm mtcrrupt
Ah,olute .lump
IOl1g.l umr
Shorl .lump (relatne Jddr)
Jump IIldlfect rc\atl\e 10 the DPT R
Jump 11 Accumulalor" Zero
.lump II A<:cumulalnr l\ "I;tlt Zero
Jump II C .. rr:. nag" ~et
.lump II !'io ('arr~ flag
.lump J! dlreCI Bit ~et
.lump d dlfect Bit \l"ot ,et
Jump tI direct Hit 1\ ~et & Ck .. r hll
Compare direct 10 A & .lump II :"oiot Equal
CUTlIP Immed to A & Jump If '\;ot Equal
Comp Immed tu reg & Jump If "iol Equal
Comp Immed In Ind & Jump if :\lot Equal J
Decrcment reg,,,[er & Jumr If '\;01 Zero
l>ecremenl direct & .lum" II '\;ot I.ero
'n nper.llllln

:\'ote" un data addre in~ mode .. :
Rn Wnfl.lng reg"ter RO R 7

I
I
I
I
I ,

dITecl 12X Inlern:iI RAM locatlon~, an~ I 0 port. conlrol or ~Iatu~ rcgl~ter
(a)RI Inthrectilltermt! RAM iocatlUn addre~~ed h~ reg"ter RII or RJ
;idata X-bit cnn,tJnt mduded In in,tructlllll
#datal!l 16-hll con~tant mduded a~ h\te~ ~ &.' of In~tructmn
hit 12X ,ottv.arc nag~. an~ I 0 pm. conlrol or ,{.tIU, hl\

:'\iote .. on program addre in2 mode .. :
addrl!l De'tlTl.ltmn addre~~ tm I CAlI & I.lMP ma\ he otll\v.here "!lhm

the M-Kllnh~tl' prngrJm memnr~ Jddrc" ~pac~" .
addrll De~t1natHln addre .. , for ACAI I & A.lMP "II! rn: "!thm tht' 'arne

2-Klioh)IC pa!!t· 01 program m~'mor~ a, the tIT" h~le 01 the Inlhmlng
IIl~trLlctltln

rei S.lMP and all condillonJI tump~ mdude an X-hll ott,et h~,e R.Jn~e I~
+ 127 12X h~le, rel,ltl\C to flr,t byte 01 the fnllnv.mg lil,tructllln

All mnemonlc~ copynghted © Intel Corpnralmn 1979

group. this chapter starts with the addressing mode
classes and builds 10 include the related instructions.

Data Addressing Modes

MCS-51 assembly language instructions consist of an
operalion mnemonic and 7ero to three operands separated
by commas. In two operand instructions the destination
is specified first. then the source. Many byte-wide data

AFN·01502A-17

2-15

inter AP-69

. operations (such as ADD or MOV) inherently use the
accumulator as a source operand and/or to receive the
result. For the sake of clarity the letter "A" is specified in
the source or destination field in all such instructions.
For example, the instruction,

ADD A.<source>

will add the variable<source>to the accumulator, leaving
the sum in the accumulator.

The operand designated "<source>" above may use any
of four common logical addressing modes:

• Register-one of the working registers in the cur­
rently enabled bank.

• Direct-an internal RAM location, I/O port, or
special-function register.

• Register-indirect-an internal RA M location,
pointed to by a working register.

• Immediate data-an eight-bit constant incorporated
into the instruction.

The first three modes provide access to the internal RA M
and Hardware Register address spaces, and may therefore
be used as source or destination operands; the last mode
accesses program memory and may be a source operand
only.

(It is hard to show a "typical application" of any instruc­
tion without involving instructions not yet described. The
following descriptions use only the self-explanatory ADD
and MOV instructions to demonstrate how the four
addressing modes are specified and used. Subsequent
examples will become increasingly complex.)

Register Addressing

The 8051 programmer has access to eight "working regis­
ters," numbered RO-R 7. The least-significant three-bits of
the instruction. opcode indicate one register within this
logical address space. Thus, a function code and operand
address can be combined to form a short (one byte)
instruction (Figure 12.a).

The 805 I assembly language indicates register addressing
with the symbol Rn (where n is from 0 to 7) or with a
symbolic name previously defined as a register by the
EQUate or SET directives. (For more information on
assembler directives see the Macro Assembler Reference
Manual.)

Example I-Adding Two Registers Together

• REGAO~ ADD CONTENTS OF REGISTER 1
TO CONTENTS OF REGISTER (]

REGADR MOV A. RO
ADD A, RI
Mav flO. A

There are four such banks of working registers, only one
of which is active at a time. Physically, they occupy the
first 32 bytes of on-chip data RAM (addresses 0-1 FH).
PSW bits 4 and 3 determine which bank is active. A

2-16

hardware reset enables register bank 0; to select a
different bank the programmer modifies PSW bits 4 and
3 accordingly.

Example 2-Selecting Alternate Memory B.anks

PSW •• 000100008 • SELECT BANI!. :2

Register addressing in the 8051 is the same as in the 8048
family, with two enhancements: there are four banks
rather than one or two, and 16 instructions (rather than
12) can access them.

Direct Byte Addressing

Direct addressing can access anyon-chip variable or
hardware register. An additional byte appended to the
opcode specifies the location to be used (Figure 12.b).

Depending on the highest order bit of the direct address
byte, one of two physical memory spaces is selected.
When the direct address is between 0 and 127 (00H-7FH)
one of the 128 low-order on-chip RAM locations is used.
(Future microcomputers based on the MCS-51'· archi­
tecture may incorporate more than 128 bytes of on-chip
RAM. Even if this is the case, only the low-order 128
bytes will be directly addressable. The remainder would·
be accessed indirectly or via the stack pointer.)

Example 3 - Adding RA M Location Contents

.DIRADR ADD CONTENTS OF RAM LOCATION 41H
TO CONTENTS OF RAN LOCATION 40H

OIRADR
ADD
MOV 40H. A

All I/O ports and special function, control, or status
registers are assigned addresses between 128 and 255
(80H-OFFH). When the direct address byte is between
these limits the corresponding hardware register is
accessed. For example, Ports 0 and I are assigned direct
addresses 80H and 90H, respectively. A complete list is
presented in Table 5. Don't waste your time trying to
memorize the addresses in Table 5. Since programs using
absolute addresses for function registers would be difficult
to write or understand, AS M51 allows and understands
the abbreviations listed instead.

Example 4-Adding Input Port Data to Output Port
Data .

,PRTADR ADD DATA INPUT ON PORT J
TO DATA PREVl'OUSLY OUTPUT
ON PORT (]

PRTADR MOV A, PO
ADD A. PI
MOV PO. PI

Direct addressing allows all special-function registers in
the 8051 to be read, written, or used as instruction
operands. In general, this is the only method used for
accessing I/O ports and special-function registers. Ifdirect
addressing is used with special-function register addresses
other th(ln those listed, the result of the instruction is
undefined.

AFN-01502A-1a

The 8048 does nOl haye or need any generali/ed direct
addressing mude. since there arc only five special registers
(BUS. PI. P2. PSW. & T) rather than twenty. Instead. 16
special 8048 opcodes control output bits or read or write
each register to the accumulator. These functions arc all
subsumed by four of the 27 direct addressing instructions
of the 8051.

Table 5. 8051 Hardware Register Direct Addresses

Register Address Function

1'0 KOH* Port 0
SP KI H Stack Pointer
1>1'1. K2H Data Pointer (l.ow)
DPH H.'H Data Pointer (High)
'ICO~ HHH* Timer register
TMOD H9H Timer Mode register
11.0 HAH Timer 0 Low byte
11.1 KBH Timer I Low byte
rHO XCH Timer 0 High byte
rHI HDH Timer I High byte
1'1 90H* Port I
SCO:'>: 9XH* Serial Port Control regi~ter
SHliF 99H Serial Port data Buffer
P2 OAOH* Port 2
IF OAXH* Interrupt Enable regi!ttcr
1'.' OBOH* Port 3
II' OBXH* I ntcrrupt Prionty rcgi~ter
PSW ODOH* Program Statu~ Word
ACe OEOH* Accumulator (direct addre,,)
B OFOH* B rcgi!tter

• = hit addn:v .. :'lhlc: rcgl\lCr

Register-Indirect Addressing

How can you handle variables whose locations in RAM
arc determined. computed. or modified while the program
j; running? This situation arises when manipulating
se4uential memory locations. indexed entries within tables
in RAM. and mUltiple precision or string operations.
Regi,ter or Direct addressing cannot be used. since their
operand addresses are fixed at assembly time.

The 8051 solution is "register-indirect RAM addressing:'
RO and R I of each register bank may operate as index
or pointer registers. their contents indicating an address
into RAM. The internal RAM location so addressed is
the actual operand used. The least significant bit of the
instruction opcode determines which register is used as
the "pointer" (Figure 12.c).

In the 8051 assembly language. register-indirect addressing
is represented by a commercial "at" sign ("@") preceding
RO. R I. or a symbol defined by the user to be e4ual to
RO or R I.

Example 5 -I ndirect Addressing
. INOAOR ADD CONTENTS OF MEMORY LOCATJON

ADDRESSED BY REGISTER 1
TO CONTENTS OF RAM LOCATION
ADDRESSED av REGISTER 0

tNDADR MOV
ADD A. @Rl
MOV <!RO. A

AP-69

2-17

Indirect addressing on the 805 I is the same as in the
8048 family. except that all eight bits of the pointer register
contents are significant; if the contents point to a non­
existent memory location (i.e .. an address greater than
7FH on the 8051) the result of the instruction is undefined.
(Future microcomputers based on the MCS-5I'· archi­
tecture could implement additional memory in the
on-chip RAM logical address space at locations above
7FH.) The 8051 uses register-indirect addressing for five
new instructions plus the 13 on the 8048.

Immediate Addressing

When a source operand is a constant rather than a vari­
able (i.e. ~·the instruction uses a value known at assembly
time). then the constant can be incorporated into the
instruction. An additional instruction byte specifics the
value used (Figure 12.d).

The value used is fixed at the time of ROM manufacture
or EPROM programming and may not be altered during
program execution. In the assembly language immediate
operands are preceded by a number sign ("II"). The
operand may be either a numeric string. a symbolic
variable. or an arithmetic expression using constants.

Example 6 -~ Adding Constants Using Immediate
Addressing

• IMMADR ADO THE CONSTANT 12 IDECIMAL)
TO THE CONSTANT 34 (DECIMAL)
LEAVE SUM 1 N ACCUMULATOR

IMMADR MOV A •• 12
A. _34

The preceding example was included for consistency; it
has little practical value. Instead. ASM51 could compute
the sum of two constants at assembly time.

Example 7 -Adding Constants Using ASM5 I
Capabilities

,ASMSUM LOAD ACC WITH THE SUM OF
THE CONSTANT 12 (DECIMAL) AND
THE CONSTANT 34 (DECIMAL)

ASMSUM MCV

a.) Register Addressing:

ADD A,R

b.) Direct AddreSSing:

I : : >+.: : : /I : >+.++< : I
ADD A. direct

c.) Register-Indirect Addressing:

I : : +.+ : : I; I
ADD A.@R

d.) Immediate Addressing:

I : : >+.: : : II : : :-~..: : : I
ADD A.# data

Figure 12. Data Addressing Machine Code Formats
AFN·01502A-19

Addressing Mode Combinations

The above examples all demonstrated the use of the four
data-addressing. modes in two-operand instructions
(MOY. ADD) which use the accumulator as one
operand. The operations ADDC, SUBB. ANL. ORL.
and XRL (all to be discussed later) could be substituted
for ADD in each example. The first three modes mav be
also be used for the XCH operation or. in combinaiion
with the Immediate Addressing mode (and an additional
byte). loaded with a constant. The one-operand
instructions INC and DEC, DJNZ. and CJNE may all
operate on the accumulator. or may specify the Register.
Direct. and Register-indirect addressing modes.
Exception: as in the 8048. DJNZ cannot use the
accumulator or indirect addressing. (The PUSH and
POP operations cannot inherentlv address the
accumulator as a special register eith~r. However; all
three can direclll' address the accumulator as one of the
twenty special-function registers by putting the svmbol
"ACC" in the operand field.) .

Advantages of Symbolic Addressing

Like most assembly or higher-level programming
languages. ASM51 allows instructions or variables to be
given appropriate. user-defined symbolic names. This is
done for instruction lines by putting a label followed bv a
colon (":") before the instruction proper. as in the ab~ve
examples. Such symbols must start with an alphabetic
character (remember what distinguished BACH from
OBACH'!). and may include any comhination of letters.
numhers. 4uestion marks r"r') and underscores ("_"). For
very long names only the first J I characters are relevant.

Assemhly language programs may intermix upper- and
lowcr-ca,e letters arbitrarily. but ASM51 converh hoth '
to upper-case. For example. ASM51 will internallv
proccss an "I" for an "i" and. of course. "A_TOOTH" f~r
"a_tooth."

The underscore character makes symbols easier to read
and can eliminate potential ambiguity (as in the label for
a subroutine to switch two entires on a stack.
"S_EXCHANGE"). The underscore is significant.' and

would distinguish between otherwise-identical charact~r
strings.

AS M51 allows all variables (registers. ports. internal or
external RAM addresses. constants. etc.) to he assigned
labels according to these rules with the EQUate or SET
directive,.

Example 8 -- Symbolic Addressing of Yariables
Defined as RAM Locations

VAR 0 SET 20H
VAR=:I SET iii!IH

,SYMB_l ADD CONTENTS OF VAR 1
TO CONTENTS OF VAR. a

SVP1B_l MOV
ADO
"OV

A. VAR_O
1\, VAR_I
VAR_O, A

AP-69

Notice from Table 4 that the MCS-51" instruction set has
relatively few instruction mnemonics (abbreviations) for
the programmer to memorize. Different data types or
adclressing modes are determined by the operands
specified. rather than variations on the mnemonic. For
eX3mple. the mnemonic "MOY" is used by 18 different
instructions to operate on three data types (bit. bvte. and
address). The fifteen versions which move bvte v~riables
between the logical address spaces are diagrammed in
Figure 13. Each arrow shows the direction of transfer
from source to destination.

Notice also that for most instructions allowing register
addressing there is a corresponding direct addressing
instruction and vice versa. This lets the programmer
begin writing 8051 programs as if (s)hc has access to 128
different registers. When the program has evolved to the
point where the programmer has a fairlv accurate idea
how often each variable is used. he she ~av allocate the
working registers in each bank to the m~st "popular"
variables. (The assembly cross-reference option will show
exactly how often and where each symbol is referenced.)
If symbolic addressing is used in writing the source
program only the lines containing the symbol definition
will need to be changed: the assemhler will produce the
appropriate instructions even though the rest of the
program is left untouched. Editing only the first two lines
of Example 8 will shrink t he six-byte code segment
produced in half.

How are instruction sets "counted"? There is
no standard practice; different people assess­
ing the same CPU using different conventions
may arrive at different totals.

Each operation is then broken down according
to the different addressing modes (or com­
binations of addressing modes) it can accom­
modate. The "CLR" mnemonic is used by two
instructions with respect to bit variflbles ("CLR
C" and "CLR bit") and once ("CtR A") with
regards to bytes. This expansion yields the 111
separate instructions of Table 4.

,The method used for the MCS-51® instruction
set first breaks it down into "operations": a
basic function applied to a single data type. For
example, the four versions of the ADD instruc­
tion are grouped to form one operation -
addition of eight-bit variables. The six forms of
the ANL instruction for byte'variables make up
a different operation; the two forms of ANL
which operate on bits are considered still
another. The MOV mnemonic is used by three
different operation classes, depending on
whether bit, byte, or 16-bit values are affected.
Using this terminology the 8051 can perform
51 different operations.

AFN·01S02A-20

2-18

inter

Figure 13. Road map for moving data bytes

Example 9 - Redeclaring Example 8 Symbols as
Registers

VAR 0 SET RO
VAR::::1 SET R 1

,SYMB_2 ACD CONTENTS OF VAR_l
TO CONTENTS OF VAR_O

SYMIJ_2
ADD
MDV

A. VAR 0
A. VAR::::t
VAR_O. A

Arithmetic Instruction Usage - ADD, ADDe, SUBB
and DA

The ADD instruction adds a byte variable with the
acctimul<\tor. leaving the result in the accumulator. The
carry flag is set if there is an overflow from bit 7 and
cleared otherwise. The AC flag is set to the carry-out
from bit 3 for use by the DA instruction described later.
A [) DC adds the previous contents of the carry flag with
the two byte variables. but otherwise is the same as ADD.

The SUBB (subtract with borrow) instruction subtracts
the byte variable indicated and the contents of the carry
flag together from the accumulator. and puts the result
back in the accumulator. The carry flag serves as a
"Borrow Required" flag during subtraction operations:
when a greater value is subtracted from a lesser value (as
in subtracting 5 from I) requiring a borrow into the
highest order bit. the carry flag is set: otherwise it is
cleared.

When performing signed binary arithmetic. certain
combinations of input variables can produce results
which seem to violate the Laws of Mathematics. For
example. adding 7FH (127) to itself produces a sum of
OFEH. which is the two's complement representation of
-2 (refer back to Table 2)! In "normal" arithmetic. two
positive values can't have a negative sum. Similarly. it js
normally impossible to subtract a positive value ffOm a
negative value and leave a positive result - but in two's
complement there are instances where this too rna):
happen. fundamentally. such anomolies occur when the
magnitude of the resulting value is too great to "fit" into
the seven bits allowed for it: there is no one-byte two's
complement representation for 254. the true sum of 127
and 127.

AP-69

2-19

The MCS-51 ,. processors detect whether these situations
occur and indicate such errors with the OV flag. (OV may
be tested with the conditional jump instructions JB and
JNB. described under the Boolean Processor chapter.)

At a hardware level. OV is set if there is a carry out of bit 6
but not out .of bit 7. or a carry out of bit 7 but not out of
bit 6. When adding signed integers this indicates a
negative number produced as the sum of two positive
operands. or a positive sum from two negative operands:
on SUBB this indicates a negative result after subtracting
a negative number from a positive number. or a positive
result when a positive number is subtracted from a
negative number.

The ADDC and SUBB instructions incorporate the
previous state of the carry (borrow) flagto allow multiple
precision calculations by repeating the operation with
successively higher-order operand bytes. In either case.
the carry must be cleared before the first iteration.

If the input data for a multiple precision operation is an
unsigned string of integers. upon completion the carry
flag will be set if an overflow (for ADDC) or underflow
(for SUBB) occurs. With two's complement signed data
(i.e .. if the most significant bit of the original input data
indicates the sign of the string). the overflow flag will be
set if overflow or underflow occurred.

Example 10-String Subtraction with Signed Overflow
Detection

.SUBSTR SUBTRACT STRING INDICATED BY Rt
FROM STRING INDICATED BY RO TO
PRECISION INDICATED BV R2
CHECK FOR SIGNED UNDERFLOW WHEN DONE

SUBSTR CLR C ,DORROW= 0
SUBS1 MDV A.@RO

sUlle A, eRi ,SUBTRACT NEXT PLACE
MDV eRO. A
INC RO ,BUMP POINTERS
INC RI

R2. SUBSl ,LOOP AS NEEDED
WHEN DONE. TEST IF OVERFLOW DCCURED
ON LAST ITERATION OF LOOP

"NO av.DV_OK
(OVERFLOW RECOVERY ROUTINE)

DV_OK RET , RE'TURN

Decimal addition is possible by using the DA instruction
in conjunction with ADD and/or ADDC. The eight-bit
binary value in the accumulator resulting from an earlier
addition of two variables (each a packed BCDdigit-pair)
is adjusted to form two BCD digits offour bits each. If the
contents of accumulator bits 3-0 are greater than nine
(xxxx 1010-xxxx 1111). or if the AC flag had been set, six
is added to the accumulator producing the proper BCD
digit in the low-order nibble. (This addition might itself
set _ .. but would not clear - the carry flag.) If the carry
flag is set. or if the four high-order bits now exceed nine
(10 10xxxx-1111 xxxx), these bits are incremented by six.
The carry flag is left set if originally set or if either
addition of six produces a carry out of the highest-order
bit, indicating the sumof the original two BCD variables
is greater than or equal to decimal 100.

AFN-01502A-21

inter

Example II - Two Byte Decimal Add with Registers
and Constants

• DCCADO ADD THE CONSTANT L 2:34 (DECIMAL) TO THE
CONTENTS OF REGlSTER PAIR (R3) <";R;r,
(ALREADY A " BCD-DIGIT VARIABLE)

DeDADO MOV
ADD
DA
MOV
"DV
ADDC
DA
"OV
RET

Pt. R2
A •• 34H
A
RO!. A
/Ii. R:J
A,U2H
A
R3. Po

Multiplication and Division

The instruction "MUl AB" multiplies the unsigned
eight-bit integer values held in the accumulator and B­
registers. The low-order by'te of the sixteen-bit product is
left in the accumulator, the higher-order byte in B. If the
high-order eight-bits of the product are all 7ero the
overflow flag is cleared; otherwise it is set. The
programmer ,can poll OV to determine when the B
register is non-zero and must be processed.

"DIV AB" divides the unsigned eight~bit integer in the
accumulator by the unsigned eight-bit integer in the B­
register. The integer part of the quotient is returned in the
accumulator; the remainder in the B-register. If the B­
register originally contained OOH then the overflow flag
will be set to indicate a division error, and the values
returned will be undefined. Otherwise OV is cleared.

The divide instruction is also useful for purposes such as
radix conversion or separating bit fields of the
accumulator. A short subroutine can convert an eight-bit
unsigned binary integer in the accumulator (between 0 &
255) to a three-digit (two byte) BCD representation. The
hundred's digit is returned in one register (HUND) and
the ten's and one's digits returned as packed BCD in
another (TENON E).

Example 12 - Use of DIV Instruction for Radix
Conversion

,BINDeD CONVERT B-BIT BINARY VARIABLE IN Ace
TO 3-DIGIT PACKED DCD FORMAT

HUND
T£NDNE

BINDeD

HUNDREDS' PLACE LEFT IN VARIABLE 'HUNO',
TENS' AND ONES' PLACES IN' rfNONE •

EOU 21H
EOU 22H

MOV D •• 100 ,DIVIDE BY 100 TO
DIV AB ,DETERMINE NuMBER OF HUNDREDS

HUND, A
MOV A.tUO • DIVIDE REMAINDER BY to TO
XCH A. B ,DETERMINE" OF TENS LEFT
DIV AB • TENS CHHT IN Ace. REMAINDER

, DIGIT
SWAP A
ADD A, B ,PACII. BCD DIGITS IN Ace
MOV TENONE, A
RET

The divide instruction can also separate eight bits of data
in the accumulator into sub-fields. For example, packed
BCD data may be separated into two nibbles by dividing
the data by 16, leaving the high-nibble in the accumulator
and the low-order nibble (remainder) in B. The two digits
may then be operated on individually or in conjunction
with each other. This example receives two packed BCD

AP-69

digits in the accumulator and returns the product of the
two individual digits in packed BCD format in the

, accumulator .

Example 13-lmplementing a BCD Multiply Using
MPY and DlV

,t1ULBCD UNPACII., TWO BCD DIGITS RECEIVED IN AC:C.
FIND THEIR PRODUCT, AND RETURN PRODUCT
IN PACII.,ED BCD FORMAT IN ACC

MULBCD Mav
OIV

DIV
SWAP
DRL
RET

D, ItIOH
AS

,DIVIDE INPUT BY 16
• A So: IJ HOLD SEPARATED DIGI rs
, (EACH RIGHT JUSTIFIED IN REGISTERl
,A HOLDS PRODUCT IN BINARY FORMAT (0 -
,99(DECIMAl) = 0 - b3Hl
,DIvIDE PRODUCT BY lQ

• A HOLDS" OF TENS. D HOLDS REMAINDER

• PACt(DIGITS

logical Byte Operations - ANl, ORl, XRl

The instructions ANL. ORl, and XRl perform the
logical functions AND. OR. and / or Exclusive-OR on the
two byte variables indicated. leaving the results in the
first. No flags are affected. (A word to the wise - do not
vocalize -the first two mnemonics in mixed company.)

2-20

These operations may use all the same addressing modes
as the arithmetics (ADD. etc.) but unlike the arithmetics,
they are not restricted to operating on the accumulator.
Directly addressed bytes may be used as the destination
with either the accumulator or a constant as the source.
These instructions are useful for clearing (ANL), setting
(ORl). or complementing (XRl) one or more bits in a
RAM. output ports, or control registers. The pattern of
bits to be affected is indicated by a suitable mask byte.
Use immediate addressing when the patterl1 to be affected
is known at assembly time (Figure 14); use the
accumulator versions when the pattern is computed at
run-time.

I/O ports are often used for parallel data in formats other
than simple eight-bit bytes. For example, the low-order
five bits of port I may output an alphabetic character
code (hopefully) without disturbing bits 7-5. This can be a
simple two-step process. First. clear the low-order five
pins with an ANl instruction; then set those pins corres­
ponding to ones in the accumulator. (This example
assumes the three high-order bits of the accumulator are
originally zero.)

Example 14-Reconfiguring Port Size with logical
Byte Instructions

DUT_PX ANL Pt,ltl1100000B .CLEAR BITS PI 4 - PI 0
ORL PI. A • SET ""1 PINS CORRESONDING TO SET ACC

, BITS

1-__ 00_<_0._0_-111 direct address I LI ___ m_a'_k __ .J

ANL Pl. IIdala

Figure 14. Instruction. Pattern for logical Operation
Special Addressing Modes

AFN~O' 502A·22

AP-69

In this example, low-order bits remaining high may
"glitch" low for one machine cycle. If this is undesirable,
use a slightly different approach. First. set all pins
corresponding to accumulator one bits, then clear the
pins corresponding to leroes in low-order accumulator
bits. Not all bits will change from original to final state at
the same instant, but no bit makes an intermediate
transition.

Example 15~Reconfiguring I/O Port Size without
Glitching

AL T _px ORL
ORL
ANL
RET

Pl. A
A •• 111000008
P1. A

Program Control - Jumps, Calls, Returns

Whereas the 8048 only has a single form of the simple
jump instruction, the 8051 has three. Each causes the
program to unconditionally jump to some other address.
They differ in how the machine code represents the
destination address.

LJMP (Long Jump) encodes a sixteen-bit address in the
second and third instruction bytes (Figure 15.a): the
destination may be anywhere in the 64 Kilobyte program
memory address space.

The two-byte AJMP (Absolute Jump) instruction
encodes its destination using the same format as the 8048:
addless bits 10 through 8 form a three bit field in the
opcode and address bits 7 through 0 form the second byte
(Figure IS.b). Address bits 15-12 are unchanged from the
(incremented) contents of the P.e., so AJ M P can only be
used when the destination is known to be within the same
2K memory block. (Otherwise ASMSI will point out the
error.)

A different two-byte jump instruction is legal with any
n;arby destination, regardless of memory block
boundaries or "pages." SJ M P (Short Jump) encodes the
destination with a program counter-relative address in
the second byte (Figure IS.c). The CPU calculates the

a.) Long Jump (lJMP add(16)

ope ode Ilr-'-dd-"-S---'-d-d'-' -'11 addr7 - addrO

b) Absolute Jump (AJMP add(11):

c.) Short Jump (SJMP rei):

1 : : >+.: : : II.-.I _,el._" .. OI_I.el ---'

Figure 15. Jump Instruction Machine Code
Formats

destination at run-time by adding the signed eight-bit
displacement value to the incremented P.e. Negative
offset values will cause jumps up to 12K bytes backwards:
positive values up to 127 bytes forwards. (SJ M P with
OOH in the machine code offset byte will proceed with the
following instruction).

2-21

In keeping with the 8051 assembly language goal of
minimiling the number of instruction mnemonics, there
is a "generic" form of the three jump instructiom.
ASM51 recogni7es the mnemonic JMP as a "pseudo­
instruction," translating it into the machine instructions
l.J M p, AJ M p, or SJ M P. depending on the destination
address.

Like SJ M p, all conditionaljump instructions use relative
addressing. JZ (Jump if Zero) and JNZ (Jump if Not
Zero) monitor the state of the accumulator as implied by
their names, while JC (Jump on Carry) and .INC (Jump
on No Carry) test whether or not the carry flag is set. All
four are two-byte instructions, with the same format as
Figure IS.c. JB (Jump on Bit), JNB (Jump on No Bit) and
JBC (Jump on Bit then Clear Bit) can test any status bit
or input pin with a three byte instruction: the second byte
specifies which bit to test and the third gives the relative
offset value.

There are two subroutine-call instructions, LCAl.l.
(l.ong Call) and ACALL (Absolute Call). Each
increments the P.e. to the first byte of the following
instruction, then pushes it onto the stack (low byte first).
Saving both bytes increments the stack pointer by two.
The subroutine's starting address is encoded in the same
ways as LJ M P and A.I M P. The generic form of the call
operation is the mnemonic CAl.L. which ASMSI will
translate into LCALL or ACALL as appropriate.

The return instruction RET pops the high- and low-order
bytes of the program counter successively from the stack,
decrementing the stack pointer by two. Program
execution continues at the address previously pushed: the
first byte of the instruction immediately following the
call.

When an interrupt request is recogni7ed by the H051
hardware, two things happen. Program control is
automatically "vectored" to one of the interrupt service
routine starting addresses by, in effect, forcing the CPU
to process an LC ALL instead of the next instruction.
This automatically stores the return address on the stack.
(Unlike the 8048, no status information is automatically
saved.)

Secondly, the interrupt logic is disabled from accepting
any other interrupts from the same or lower priority.
After completing the interrupt service routine, executing
an RETI (Return from Interrupt) instruction will return
execution to the point where the background program
was interrupted -- just like RET ~ while restoring the
interrupt logic to its previous state.

AFN-Ot502A-23

AP-69

Operate-and-branch instructions - CJNE, DJNZ

Two groups of instructions combine a byte operation
with a conditional jump based on the results.

CJNE (Compare and Jump if Not Equal) compares two
byte operands and executes a jump if they disagree. The
carry flag is set following the rules for subtraction: if the
unsigned integer value of the first operand is less than
that of the second it is set; otherwise. it is cleared.
However. neither operand is modified.

The C.INE instruction provides. in effect. a one­
instruction "case" statement. . This instruction may be
executed repeatedly. comparing the code variable to a list
of "special case" value: the code segment following the
instruction (up to the destination label) will be executed
only if the operands match. Comparing the accumulator
or a register to a series of constants is a convenient way to
check for special handling or error conditions; if none of
the cases match the program will continue with "normal"
processing.

A typical example might be a word processing device
which receives ASCII characters through the serial port
and drives a thermal hard-copy printer. A standard
routine translates "printing" characters to bit patterns.
but control characters «DEL>' <CR>. <LF>. <BEL>.
·<ESC>. or<SP» must invoke corresponding special
routines. Any other character with an ASCII code less
than 20H should be translated into the<NUL>value.
~OH. and processed with the printing characters.

Example 16-Case Statements Using CJNE
CHAR

INTERP CJNE

RET
INTP I CJNE -

RET
INTP _2 C"'NE

RET
INTP _:3 CJNE

RET
INTP 4 CJNE -

RET
tNTP • CJNE -

RET
INTP _6 "C

MOV

PRINT!;

RET

R7 • CHARACTER. CODE VARIABLE

CHAR. '7FH. INTP __ 1
(SPECIAL ROUTINE FOR RUDOUT CODE)

CHAR. tIo07H. INTP __ 2
(SPECIAL ROUTINE FOR BELL CODE)

CHAR. 4tOAH. INTP __ 3
(SPECIAL ROUTINE FOR L.FEED CODE)

CHAR. IODH. INTP_4
<SPECIAL ROUTINE FOR RETURN CODE)

CHAR. 'lBH. INTP_5
(SPECIAL ROUTINE" FOR ESCAPE CODE)

CHAR .• 20H. INTP_6
(SPECIAL ROUTINE FOR SPACE CODE)

PRINTC ,JUMP IF CODe.> <:)OH
CHAR.'O • REPLACE CONTROL CHARACTERS WITH

• NULL CODE
• PROCESS STANDARD PRINTING
, CHARACTER

DJNZ (Decrement and Jump if Not Zero) decrements
the register or direct address indicated and jumps if the
result is not zero. without affecting any flags. This
provides a simple means for executing a program loop a
given number of times. or for adding a moderate time
delay (from 2 to 512 machine cycles) with a single
instruction. For example. a 99-usec. software delay loop
can be added to code forcing an 110 pin low with only
two instructions.

Example 17-lnserting a Software Delay with DJNZ
CL.R WR
1'10V R2, .49
D.JNZ R2."
SETB WR

The dollar sign in this example is a special character
meaning "the address of this instruction." It is useful in
eliminating instruction labels on the same or adjacent
source lines. CJNE and DJNZ (like all .conditional
jumps) use program-counter relative addressing for the
destination address.

Stack Operations - PUSH, POP

The PUSH instruction increments the stack pointer by
one. then transfers the contents of the single byte variable
indicated (direct addressing only) into the internal RA M
location addressed by the stack pointer. Conversely.
POP copies the contents of the internal RAM location
addressed by the stack pointer to the byte variable
indicated. then decrements the stack pointer by one.

(Stack Addressing follows the same rules. and addresses
the same locations as Register-indirect. Future micro­
computers based on the MCS-51 ,. CPU could have up to
256 bytes of RAM for the stack.)

Interrupt service routines must not change any variable
or hardware registers modified by the main program. or
else the program may not resume correctly. (Such a
change might look like a spontaneous random error.)
Resources used or altered by the service routine
(Accumulator. PSW. etc.) must be saved and restored to
their previous value before returning from the service
routine. PUSH and POP provide an efficient and
convenient way to save register states on the stack.

2-22

Example 18 - Use of the Stack for Status Saving on
Interrupts

L.OC_TMP EQU

OR.
L.JI'1P

OR.
SERVER PUSH

PUSH

PUSH
PUSH
PUSH
MOV

POP
POP

POP
POP

RETI

• REMEMBER LOCATION COUNTER

0003H • STARTING ADDRESS FOR INTERRUPT ROUTINE
SERVER ,.JUMP TO ACTUAL SERVICE ROUT INE LOCATEU

L.OC_TMP ,RESTORE L.OCATION COUNTER
psw
ACC • SAVE ACCUMUL.ATOR (NOTE DIRECT ADDRESSING

, NOTATION)
B • SAVE B REGISTER
DPL • SAVE DATA POINTER
DPH ,
PSW, '0000100013 • SELECT REGISTER IlANK 1

OPH
DPL
B
ACC
psw

,RESTORE REGISTERS IN REVERSE ORnER

· RESTORE PSW AND RE-SELE'CT OR IGINAL.
, REGISTER BANK
· RETURN TO MAIN PROGRAM AND RESTORE
• INTERRUPT L.OGIC

If the SP register held I FH when the interrupt was
detected. then while the service routine was in progress
the stack would hold the registers shown in Figure 16; SP
would contain 26H.

The example shows the most general situation; if the
service routine doesn't alter the B-register and data
pointer. for example. the instructions saving and
restoring those registers would not be necessary.

The stack may also pass parameters to and from
subroutines. The subroutine can indirectly address the
parameters derived from the contents of the stack
pointer.

AFN-01S02A-24

RAM
ADDR

7FH

26H

25H

2.H

23H

22H

21H

20H

IFH

DOH

OPH ..-(SP)

OPL

"
ACC

PSW

PC (HIGH)

PC (LOW)

Figure 16. Stack contents during interrupt

One advantage here is simplicity. Variables need not be
allocated for specific parameters. a potentially large
number of parameters may be passed. and different
calling programs may use different techniques for
determining or handling the variables.

For example. the following subroutine reads out a
parameter stored on the stack by the calling program.
uses the low order bits to access a local look-up table
holding bit patterns for driving the coils of a four phase
stepper motor. and stores the appropriate bit pattern
back in the same position on the stack before returning.
The accumulator contents are left unchanged.

Example 19 - Passing Variable Parameters to Sub­
routines Using the Stack

NXTPOS MOV
DEC
DEC
XCH

ANL
ADO
Move

RET
5TPTBL DB

D.
D. D.

RO. SP
• ACCESS LOCATION PARAMETER PUSHED INTO

A.@RO • READ INPUT PARAMETER AND SAVE
• ACCUMULATOR
,MASK ALL nUT LOW-ORDER TWO BITS

A •• 2 • ALLOW FOR OFFSET FROM Move TO TABLE
A. C!A PC ,READ LOOK-UP TABLE ENTRY

• PASS BACK TRANSLATED VALUE AND RESTORE

· Ace
• RETURN TO BACJI,GROUND PROGRAM

0110111113 ,POSITION 0
010111l1B ,POSITION 1
10011111B • POSITION 2
lO1011l1B ,POSITION 3

The background program may reach this subroutine with
several different calling sequences. all of which PUSH a
value before calling the routine and POP the result after.
A motor on Port I may be initialized by placing the
desired position (zero) on the stack before calling the
subroutine and outputing the results directly to a port
afterwards.

Example 20-Sending and Receiving Data Parameters
Via the Stack

A
PUSH Ace
CALL NXTPOS
PDP PI

AP-69

If the position of the motor is determined by the contents
of variable POSM I (a byte in internal RAM) and the
position of a second motor on Port 2 is determined by the
data input to the low-order nibble of Port 2. a six­
instruction sequence could update them both.

Example 21 - Loading and Unloading Stack Direct
from 1/0 Ports

POSI11 .ou 51

PUSH POSI11
CALL NXTPOS
POP PI
PUSH P'
CALL NXTPOS
pap P2

Data Pointer and Table Look-up instructions -
MOV, INC, MOVC, JMP

The data pointer can be loaded with a 16-bit value using
the instruction MOV DPTR. #dataI6. The data used is
stored in the second and third instruction bytes. high­
order byte first. The data pointer is incremented by INC
DPTR. A 16-bit increment is performed; an overflow
from the low byte will carry into the high-order byte.
Neither instruction affects any flags.

The MOVC (Move Constant) instructions (MOVC
A.@A+DPTR and MOVC A.@A+PC) read into the
accumulator bytes of data from the program memory
logical address space. Both use a form of indexed
addressing: the former adds the unsigned eight-bit
accumulator contents with the sixteen-bit data pointer
register. and uses the resulting sum as the address from
which the byte is fetched. A sixteen-bit addition is
performed; a carry-out from the low-order eight bit, may
propagate through higher-order bits. but the contents of
the DPTR are not altered. The latter form uses the incre­
mented program counter as the "base" value instead of
the DPTR (figure 17). Again. neither version affects the
flags.

2-23

a) MOVC A @ A + PC
(LOCAL TABLE
LOOK-UP)

b) MOVC A @l A+ DPTR
(GLOBAL TABLE
LOOK-UP)

c) JMP @ A+ OPTR
(GLOBAL INDIRECT
JUMP)

16-BIT I PC

~ACC

'-___ '6_-_"_,_T .. 1 ~~~~~I~~RESS

16-81T I DPTR

~ACC

,-___ '_6-_B'..!,T.J1 ~~~~~~~RESS

16-81T 1 OPTR

~ACC

'-___ '_6-_6'_T ..) LOADED INTO PC

Figure 17. Operation of MOVC instructions
AFN-01S02A-2S

AP-69

Each can be part of a three step sequence to access look­
up tables in ROM. To use the DPTR-relative version .

. load the Data Pointer with the starting address ofa look­
up table; load the accumulator with (or compute) the
index of the entry desired; and execute MOVC
A.@A+DPTR. Unlike the similar MOVP3 instructions
in the 8048. the table may be located anywhere in
program memory. The data pointer may be loaded with a
constant for short tables. Or to allow more complicated
data structures. or tables with more than 256 entries. the
values for DPH and DPL may be computed or modified
with the standard arithmetic instruction set.

The PC-relative version has the advantage of not
affecting the data pointer. Again. a look-up sequence
takes three steps: load the accumulator with the index;
compensate for the offset from the look-up instruction to
the start of the table by adding the number of bytes
separating them to the accumulator: then execute the
MOVC A.@A+PC instruction.

Let's look at a non-trivial situation where this instruction
would be used. Some applications store large multi­
dimensional look-up tables of dot matrix patterns. non­

linear calibration parameters. and so on in a linear (one­
dimensionali) vector in program memory. To retrieve
data from the tables. variables representing matrix
indices must be converted to the desired entry's memory
address. For a matrix of dimensions (MDIMEN x
NDIMEN) starting at address BASE and respective
indices INDEX I and INDEXJ. the address of clement
(INDEX!. INDEXJ) is determined by the formula.

Entry Address = BASE + (NDIMEN x INDEXI) +
INDEXJ

The code shown below can access any array with less than
255 entries (i.e .. an IIx21 array with 231 elements). The
table entries are defined using the Data Byte ("DB")
dire~tive. and will be contained in the assembly object
code as part of the accessing subroutine itself.

Example 22-Use of MPY and Data Pointer Instruc-
tions to Access Entries from a Multi­
dimensional Look-Up Table in ROM

,MATRXI LOAD CONSTANT READ FROM TWO DIMENSIONAL LOOK-UP
TABLE IN PROGRAM MEMORY INTO ACCUMULATOR

INDEXI
INDEXJ

I'IATRXI

BASEl

USING LOCAL. TADLE LOOK-UP INSTRUCl ION. 'Move A, (!A+P(
THE TOTAL NUMBER OF TABLE ENTRIES IS ASSUMED TO
BE SMALL. 1 E LESS THAN ABOUT 250 ENTRIeS)
TABLE USED IN THIS EXAMPLE IS (11)(21)
DESIRED ENTRY ADDRESS IS GIVEN BY THE FORMULA,
r (BASE ADDRESS) + (21)(INDEXI) + (INDEXJl]

EOU
EOU

Rb
23H

MOV A. INDEX I
MOV n. *21
MUl. AD
ADD A.INDEXJ

,FIRST COORDINATE OF ENTRY (0-10)
,SECOND COORDINATE OF ENTRY 10-20)

ALLOW FOR INSTRUCTION B'fTE BETWEEN "MOVC"
ENTRY (0. OJ

INC A
Move A. (fA+PC
RET
DB • (ef1tr~ 0.0)
DB , (entry 0,1)

DB , (entr~ 0,20)
DB 22 • (entry 1.0)

DB ' (f'f1tr~ 1.20)

DB 231 , (entry 10,20)

There are several different means for hranching to
sections of code determined or selected at run time. (The
single destination addresses incorporated into
conditional and unconditional jumps, are. of course.

'determined at assembly time). Each has ad\'antages for
different applications.

The most common is an N-way conditional jump based
on some variable. with all of the potential destinations
known at assembly time. One of a numb~r of small
routines is selected according to ,the \'alue of an index
variable determined while the program is running. The
most efficient way to solve this problem is \\ ith the
MOVe and an indirect jump instruction. ming a short
table of one byte offset values in ROM to indicate the
relative starting addresses of the several routines.

.IMP @A+DPTR is an instruction which performs an
indirect jump to an address determined during program
execution. The instruction adds the eight-bit unsigned
accumulator contents with the contents of the sixteen-hit
data pointer. just like MOVC A.@A+DPTR. The
resulting sum is loaded into the program counter and is
used as the address for subsequent instruction fetches.
Again. a sixteen-bit addition is performed; a carry out
from the low-order eight bits may propagate through the
higher-order bits. In this case. neither the accumulator
contents nor the data pointer is altered.

The example subroutine below reads a byte of RA Minto
the accumulator from one of four alternate addre"
spaces. as selected by the contents of the \ariable
MEMSEI.. The address of the byte to he read is
determined by the contents of RO (and optionally R I). It
might find use in a printiniperminal application. where
four different model printers all use the same ROM code
but use diffcrent types and SiICS' of buffer memory for
different speeds and options.

Example 23 -- N-Way Branch and Computed Jump
Instructions via JMP @ ADPTR

MEMSEL Eau R3

JUMP _4 MOV A, MEMSEL
HOV
MOVC
JHP

OPTR, *"MPTBL
A, \tA"'OPTR

JMPTaL DB
@A ... OPTR
MEMSPO-JMPTBL
MEMSPI-JMPl"BL
MEMSP2-JMPTBL
MEMSP3-JMPTaL

DB
DB
DB

MEMSPO MOV A. GlRD • READ FROM INTERNAL RAM
RET

MEMSPI MOVX A, \tRO ,READ FROM 256 BYlES OF EXl"ERNAL RAM
RET

MEMSP2 MOV DPL. RO
Mav DPH, RI
MOVX A. eOPTR ,READ FROM b4K BYTES OF EXTERNAL RAM
RET •

MEI"ISP3 MOV A. RI
ANL A. *07H
ANL P1.*llI11000n
ORL PI. A
I10VX A,@RO • READ FROM 41'. BYTES OF EXl"ERNAL RAM
RET

Note that this approach is suitable whenever the sile of
jump table plus the length of the alternate routines is Ie"
than 256 bytes. The jump table and routines may he
located anywhere in program memory. independent of
256-byte program memory pages.

AFN-Ol ~02A-26

2-24

For applications where up to 12K destinations must be
,elected. all of which reside in the same 2K page of
program memory which ma5' be reached by the two-byte
ab,olute jump instructions. the following techni4ue may
be u,ed. In the above mentioned printing terminal
example. this se4uence could "parse" 12K different codes
for ASCII character, arriving via the X()SI serial port.

Example 24·- N- Way Branch with 128 Optional
Destinations

OPTION EOU R3

MDv A. OPTION
Rl ,MULTIPLY DV 2 FOR ~ !lyrE .JlJMP TI\IiI.E
MDV
JMP

INSTilL A,JMP
A.)Mf'
A,JMP

A,JMP
A,JMP

DPTR •• INsrDL ,FIRST ENrR"I' IN ,JUMP TAlliE
lM+DPTR ,JUMP INTO ,JUMP TABLE.

PROCOQ • 128 CONSECUT I VE
rRQCOl ,AJMP INSTRUCTIONS

PROC7E
PRQC7F

The de,tination, in the jump table (PROCOO­
PROC7F) are not all necc"arily uni4ue routine,. A large
number of 'pecial control codes could each be processed
with their own uni4uc routine. with the remaining
printing characters all causing a branch to a common
routine for entering the character into the output 4ueue.

In those rare situations where even 12K options arc
insufficient. or where the de,tination routines may cross a
2K page boundary. the above approach may be modified
slightly as shown below.

Example 25-256-Way Branch Using Address Look­
Up Tables

RTEMP EGU

JMP25b MDV DPTR •• AORTDl , FIRST ENTRY IN TABLE OF ADDRESSES
MDv A, OPTION
elR
Rle ,MULTIPLY BY 2 rOR 2 DYTE ,JUMP

LDW128
INC DPH

LQW128 MDv RTEMP, A • SAVE Ace FOR HIGH I)YTE READ
Move A.@'A+DPTR • READ LOW In'TE FROM JUMP TADLE
leCH. A. 'HEMP
INC A
MOVC A, @A+DPTR , GET LOW-ORDER BYTE FROM TABLF"
PUSH ACC
MDV A, RTEMP
Move A, eA+[JPTR • GET HIGH--ORDER B't'TE FoROM TABLE
PUSH ACC
THE TWO ACC PUSHES HAVE PRODUCED
A "RETURN ADDRESS" ON THE STACK WHICH CORRE5PO"lDS
TO THE DESIRED STARTING ADDRESS
IT MAY BE REACHED BY POPPING THE STACK
INTO THE PC

ADRTBL OW PRocoa ,UP TO 256 CONSECUTIVE DATA
DW PRDCOl ,WORDS INDICATING STARTING ADDRESSES

PRDCFF

DUMNY CODE ADDRESS DEFINITIONS NEEDED BY ABOVE
TWO EXAMPLES

PRDcaa NDP
PRDcal NOP
PRDca2 NOP
PRDC7E: NOP
PRDC7F NOP
PROCFF" NOP

4. BOOLEAN PROCESSING INSTRUCTIONS

TAULE

The commonly accepted terms for tash at either end of
the computational vs. control application spectrum are.
respectively. "number-crunching" and "bit-banging".

AP-69

Prior to the introduction of the MCS-51'· family. nice
number-crunchers made bad bit-bangers and vice versa.
The X051 is the industry's first single-chip micro­
computer designed to crunch and bang. (In some circles.
the latter techni4ue is also referred to a, ··bit.-twiddling".
Either is correct.)

Direct Bit Addressing

A number of instructIOns operate on Boolean (one-bit)
variables. using a direct bit addressing mode comparable
to direct byte addressing. An additional byte appended to
the opeode specifics the Boolean variable. I 0 pin. or
control bit used. The state of any of these bits may be
tested for "true" or "false" with the conditional branch
instructions .IB (.lump on Bit) and .INB (Jump on Not
Bit). The JBC (Jump on Bit and Clear) instruction
combines a test-for-true with an unconditional clear.

As in direct byte addressing. bit 7 of the address byte
switches between two physical address spaces. Values
between 0 and 127 (00H-7FH) define bits in internal
RA M locations 20H to 2FH (Figure I Xa); address bytes
between 128 and 255 (XOH-OFFH) define bits in the 2 x
"special-function" register address space (Figure I Xb). If
no 2 x "special-function" register corresponds to the
direct bit address used the result of the instruction is
undefined.

Bits so addressed have many wondrous properties. They
may be set. cleared. or complemented with the two byte
instructions SETB. CLR. or CPI.. Bits may be moved to
and from the carry flag with MOV. The logical ANL and
ORL functions may be performed between the carry and
either the addressed bit or its complement.

Bit Manipulation Instructions - MOV

The "MOV" mnemonic can be used to load an
addressable bit into the carry flag ("MOV C. bi!"') or to
copy the state of the carry to ,uch a bit ("MOV bit. C').
These instructions are often used for implementing serial
110 algorithms via software or to adapt the standard I 0
port structure.

It is sometimes desirable to ··re .. arrange·· the order of I 0
pins because of considerations in laying out printed
circuit boards. When interfacing the X051 to an
immediately adjacent device with "weighted:' input pins.
such as keyboard column decoder. the corresponding
pins are'lik~ly to be ,not aligned (Figure 19).

There is a trade-off in "scrambling" the interconnections
with either interwoven circuit board traces or through
software. This is extremely cumbersome (if not
impossible) to do with byte-oriented computer
architectures. The 8051"s unique set of Boolean
instructions makes it simple to move indiVidual bits
between arbitrary locations.

AFN·Q1502A-27

2-25

infef AP-69

••) RAM BII Addresses. b.) Hardware Register Bit Addresses .

RAM Direct
BII Addresses

Hardware

BYTE (MSB) (LSB) Byle (MSB) (LSB) Register

1 1
-.... Symbol

7FH OFFH

OfOH F7 FO

2FH 7F 7E 7D 7C 7B 7A 79 7B OEOH E71E61ESIE41ul E21E11EO ACC

2EH 77 76 75 74 73 72 71 70

2DH 6F 6E 6D 6C 6B 6A 69 6B OOOH D71 D61 Dsl D41 D31 D21D11DO PSW

2CH 67 .. 65 .. 63 62 61 50

28H SF SE SD SC 58 SA 59 58

2AH 57 56 55 54 53 52 51 SO DOSH - I - I - I BC I DB I BA I B9 I BB IP

29H 4F 4E 4D 4C 4B 4A 49 ..
2BH 47 .. 4S .. 43 42 41 40 OBOH B7 I B6 I BS I 8. I 83 I B2 I 81 I 80 P3

27H 3F 3E 3D 3C 3B 3A 3. 38

26H 37 36 35 34 33 32 31 30 DASH AF I - I - I AC I AB I AA I A9 J AB IE

2SH 2F 2E 2D 2C 2B 2A 29 2.

2.H 27 26 25 24 23 22 21 20 OAOH A7 I AS I AS I A4 I A3 I A2 I A1 I AD P2

23H 1F 1E 1D 1C 1B 1A 19 ,.
22H 17 16 15 14 13 12 11 10 9BH .F I 9E I 9D I 9C I •• I .A I •• 1 •• SCON

21H OF DE OD DC DB OA 09 O.

20H 07 06 OS 04 03 02 01 50 90H .71"1.5 1"1.3 1.2 1"1 90 P1

1FH
Bank 3

1BH BBH BF I BE I BD I BC I BB I BA I B. I .. TeON

17H

Bank 2

10H BOH B7 I .. I BS I B. I 83 I B2 I B1 I BD PO

DFH
Bank 1

DSH

D7H

Bank 0
DOH

Figure 18. Bit Address Maps

ALE J
PSEN J

P2.7 J [
-, (LSB) .- AD P2.6
-' '-

8351 P2.5 --, r A1
-' '-

8751

P2.4 '- -' A2
-' '- DECODER

P2.3
--, r A3
-' '-

~
A4 P2.2 -' (MSB) '-

P2.1 J [

P2.D J [

Figure 19. "Mismatch" Between 110 port and
Decoder

Example 26-Re-ordering I/O Port Configuration

OUT _PI RRC A ,MOVE ORIGINAL Ace 0 INTO CV
MOV P2 6. C ,STORE CARRY TO PIN P26
RRC A • MOVE ORIGINAL Ace 1 INTO CY
MOV p;, :i. C • STORE CARRY TO PIN P25
RRC A ,MOVE ORIGINAL Ace 2 INTO CY
MOV PO! 4. C • STORE CARRY TO PIN P24
RRC A ,MOVE ORIGINAL Ace 3 INT~ CY
MOV P2 3. C • STORE CARRY TO PIN P23
RRC A , MOVE ORIGINAL ACC 4 INTO CY
MOV P2 2. C • 5TO~E CAF<~Y TO PIN P22

Solving Combinatorial Logic Equations - ANL, ORL

Virtually all hardware designers are familiar with the
problem of solving complex functions using
combinatorial logic. The (.echnologies involved may vary
greatly. from IT. dtiple contact relay logic. \acuum tubes.
TTL. or CMOS fo more esoteric approache, likc fluidic,.
but in each case the goal is (he same: a Boolean
(true false) function is computed on a number of
Boolean \ ariables.

AFN-01502A-28

2-26

inter AP-69

b.} Relay logic.

a.) TTL

CR.

Q ~ (U • (V + W) + eX • Y) + Z

z

Figure 20. Implementations of Boolean functions

Figure 20 shows the logic diagram for an arbitrary
function of six variables named U through Z using
,tandard logic and relay logic symbols. Each is a solution
of the eljuation.

Q = (U • (V + W» + (X. Y) + Z
(While this eljuation could be reduced using Karnaugh
Map' or algebraic techniljues. that is not the purpose of
this example. Even a minor change to the function
cljuation would reljuire re-reducing from scratch.)

Mo,t digital computers can solve eljuations of this type
with ,tandard word-wide logical in,tructions and
conditional jumps. Still. such software solutions seem
,omewhat sloppy because of the many paths through the
program thc computation can take.

A"umc U and V arc input pins being read by different
input ports. Wand X are stutus bit, for two peripheral
controllers (read as I 0 ports). and Y and Z are software
Ilag' set or cleared earlier in the program. The end re,ull
must bc written to an output pin on some third port.

For the sake of comparison we will implement this
function with ,oftware drawn from thrce proper suhsets
of the MCS-SI ,. instruction set. The first two
implcmentations follow the flow chart shown in Figure
21. Program flow would embark on a route down a test­
and-branch tree and leaves either the "Truc" or "Not
rruc" cxit ASAP. These exits then write the output port
"ith the data previously written to the,ame port with the
re,ull bit respectivcly one or lero.

In the first case. we assume there are no instructions for
addrc"ing individual bits other than special flags like the
carry. Thi, b typical of many older microproce!>Sors and
mainframe computers designed for number-crunching.
MCS-SI'· mnemonics arc u,ed hcre. though for most
othcr machines thc issue would be even further clouded
h~ thcir usc of operation-specific mnemonic, like

2-27

INPUT. OUTPUT. l.OAD, STORE. etc .. instead of the
uni\er,al MOV.

(CONTINUE)

Figure 21. Flow chart for tree-branching logic
implementation

inter

Example 27 - Software Solution to Logic Function of
'Figure 20, Using only Byte-Wide Logical
Instructions

• BFUNCI SOL e Po RANDOM LOGIC FUNCTION OF b
V~RIABLES BY L.OADING AND MASKING THE APPROPRIATE
BJTS IN THE ACCUMULATOR. THEN EXeCUTING CONDITIONAL
..rUMPS BASED ON ZERO CONDITION
(APPROACH useD BY BYTE-ORIENTED ARCHITECTURES)
BYTE AND MASK VALUES CORRESPOND TO RESPECTIVE
BYTE ADDRESS AND BIT POSITION

OUTBUF EOU 22H • OUTPUT PIN STATE MAP

TESTV "OV A. P2
ANL A •• 00000100B
JNl TESTU
"OV Po. TCON
ANL A •• OOloaaoon
JZ TEST](

TESTU "OV A. PI
ANL A.4tOOOOODIOD
IN' sera
MOV A. TCON
ANL A •• 000010000
JZ TESTZ
HOV A.20H
ANL A •• 00000001B

J' SETO
.",ov A.2IH
ANL I'll, .000000100
JZ SETG

eLRO A. CUTBUF
A •• lll10111D
Duro

SEra "OV 'A.OUTBUF
ORL A •• 00001000B

aUTa HOV OUTBUF, A
"OV P;3. Po

. Cumbersome, to say the least, and error prone. It would
be hard to prove the above example worked in all cases
without an exhaustive test.

Each move/mask/conditional jump instruction
sequence may be replaced by a single bit-test instruction
thanks to direct bit addressing. But the algorithm would
be equally convoluted.

Example 28 - Software Solution to Logic Function of
Figure 20, Using only Bit-Test
Instructions

• BFUNC2 SOLVE A RANDOM LOGIC FUNCTION OF £,
VARIABLES BY DIRECTLY POLLINO EACH BIT
(APPROACH USINC MCS-51 UNIQUE BIT-TEST
INSTRUCTION CAPABILITY)
SYMBOLS USED IN LOGIC DIAGRAM ASSIGNED TO
CORRESPONDING 80:51 BIT ADDRESSES

BIT
BIT
BIT
BIT
BIT
BIT
BIT

TEST _V ..18
JNB

TEST U ..IS
TEST=:X ..INB

JNB
TEST_Z ,JNB
CLR_O CLR

J"P
SET _0 SETB
NXTTST

PI 1
P2 2
TFO
lEI
20H 0
21H 1
P3 3

V. TEST_U
w. TEST_J(
U. SET_O
x. TEST_Z
Y.SET_Q
Z. SET_O
G
NXTlST
o

, (CONTINUATION OF PROGRAM)

A more elegant and efficient 8051 implementation uses
the Boolean ANL and ORL functions to generate the
output function using straight-line code. These
instructions perform the corresponding logical
operations between the carry flag ("Boolean
Accumulator") and the addressed bit, leaving the result in
the carry. Alternate forms of each instruction (specified
in the assembly language by placing a slash before the bit
name) use the complement of the bit's state as the input
operand.

AP-69

These instructions may be "strung together" to simulate a
multiple input logic gate. When finished, the carry flag
contains the result, which may be moved directly to the
destination or output pin. No flow chart is needed - it is
simple to code directly from the logic diagrams in Figure
20.

Example 29-Software Solution to Logic Function of
Figure 20, Using the MCS-51 (TM)
Unique Logical Instructions on Boolean
Variables

2-28

.IJFUNC3 SOLI,IE A RANDOM LOGIC FUNCTION OF 6
VARIAIKES USINQ STRAIGHT-LINE LOGICAL INSTRUCTIONS
ON MCS-51 BOOLEAN VARIABLES

MOV
ORL
ANL
HOV
MOV
ANL
ORL
ORL
"OV

c. v

c.u
Fa, C
c. x
C,IY
C, FO
C,/Z

,OUTPUT OF OR GATE
• OUTPUT OF TOP AND GATE
,SAVE INTERMEDIATE STATE

,OUTPUT OF BOTTOM AND GATE
, INCL.UDE VAL.UE SAVED ABOVE
,INCLUDE LAST INPUT VARIABLE
,OUTPUT COMPUTED RESULT

Simplicity itself. Fast, flexible, reliable, easy to design,
and easy to debug.

The Boolean features are useful and unique enough to
warrant a complete Application Note of their own .
Additional uses and ideas are presented in Application
Note AP-70, Using the Intel" MCS~51" Boolean
Processing Capabilities, publication number 121519.

5. ON-CHIP PERIPHERAL FUNCTION
OPERATION AND INTERFACING

1/0 Ports

The I/O port versatility results from the "quasi­
bidirectional" output structure depicted in Figure 22.
(This is effectively the structure of ports I, 2, and 3 for
normal I/O operations. On port 0 resistor R2 is disabled
except during multiplexed bus operations, providing

INTERNAL
BUS

WRITE
PULSE

BUS
CYCLE
TIMING

READ/MODIFY I
WRITE

REAO

Figure 22, Pseudo-bidirectional 1/0 port circuitry
AFN-01502A-30

e"entially open-collector output>. ror full electrical
characteri,tic, ,ee the lber', Manual.)

An output latch bit a>sociated with each pin is updated by
direct addre\Sing instruction, when that port i, the
de,tination. The latch ,tate is buffcred to the oUbide
world by R I and 0 I. which may drive a ,tandard TTL
input. (in TTL term,. 01 and R I resemblc an opcn­
collector output with a pull-up re,istor to Vcc.)

R2 and 02 represent an "activc pull-up" deviec enablcd
momentarily when a 0 previously output changes to a I.
Thi, "jerb"thc output pin to a I level morc 4uickly than
thc paS\i,'c pull-up. improving ri,c-time significantly if
thc pin i, driving a capacitive load. Note thattne active
pull-up i, only activated on (}-to-I transitions at the
output latch (unlike thc X04X. in which 02 i, acti,ated
whcncver a I i, writtcn out).

Opcration, u,ing an input port or pin a, the sourcc
operand usc the logic level of the pin itself. rather than the
output latch contents. This level is affected by both the
microcomputer it,elf and whatever device the pin is
connected to externallv. The value read is cssentiallv the
"OR-tied" function of'O I and the cxternal device. if the
extcrnal device is high-impedencc. such as a logic gate
input or a 1hree state output in thc third state. then
reading a pin will rencctthe logic level previously output.
To u,e a pin for input. the corresponding output latch
mu,t be ,ct. The external device may then drive the pin
with cithcr a high or low logic signal. Thus the same port
may be u,cd a, both input and output by writing ones to
all pin,,,used as input' on output operations. and ignoring
all pin, u,ed a, output on an input operation.

In one operand instructions (INC, DEC, DJNZ and the
Boolean CPL) the output latch rather than thc input pin
Ic\cl i, u,ed a, the source data. Similarly. two operand
in,tructions using the port as both one source and the
dc,tination (AN\.. OR\.. XRL) u,c the output latches.
Thi, cn,urc, that latch bits corresponding to pins used a,
inputs will not bc cleared in the proces> of executing these
in~tructi{)ns.

The Boolean operation JBC tests the output latch bit.
rathcr than the input pin. in deciding whether or not to
jump. Like the byte-wise logical operations. Boolean
operations which modify individual pins of a port leave
the other bits of the output latch unchanged.

A good example of how these modes may play together
may be taken from the hosl-processor interface expected
by an X243 I 0 expander. Even though the 8051 does not
include X048-type instructions for interfacing with an
8243. the parts can be interconnected (Figure 23) and the
rrotocol may be emulatcd with simplc software.

AP-69

Example 30 -- Mixing Parallel Output. Input. and
Control Strobes on Port 2

'rm24~1 IN~'I'l r,,\T.\ ~1"'f1 t,~J 8 •. ; J I ,,~ I .f·Ar~Df ~
COM,Eer; oj TO f','.l-P r'"

Po.!" • I' '·1 MIMIC CS
P;' I -p -~ lJ"::E"D AS iNP'JTS

To: 'H ~£AD /rJ l,,".

" 1t1l01001""","
I',' A . OUTPuT INSTfllJCl HITI ell!.!!
!',' .. ~ AI L INC f:Dr.E f1F. PIH1(,

Ijlll 1'.:!.4IOOOClII!IB .SET FO,", IN!,1,"
I-It! ~t_AI' INI-IJ! u"r.\
.f ' Il[T<}i-JN I-I_U" HI .t'

ror-,>nr;" .;11\1'

Serial Port and Timer applications

Configuring thc 8051's Scrial Port for a given data ratc
and prolocol re4uirc> cs>cntially thrce short ,cclions of

software. On power-up or hardware resel the serial port
and timer control word, mu,t bc initiali/cd to thc
appropriate value,. Additional software i, abo needed in
the transmit routine to load thc ,erial port data rcgister
and in the receive roulinc to unload the data a, it arrives.

This i, be,t illu,trated through an arbitrary example.
A"umc the 80S1 will communicate "ith a CRT
operating at 2400 baud (bits per second)_ Each character
b transmitted as ,even data bits. odd parity. and one stop
bit. This re,ult, in a character rale of 2400 10=240
characters per second.

For the sake of clarity. the transmit and rcceive
subroutines arc driven by simple-minded soflware status
polling code ralher than interrupts. (It might heir 10 refer
back to Figures 7-9 showing the control word formats.)
The serial port must be iniliali7cd to 8-bit UART mode
(MO. M 1=01). enabled to receivc all messages (M2=O.
REN=I). The nag indicating that the transmit register i,
free for more data will be artificially ,et in order tolctthe
output software know the output register is av'ailable.
This can all be set up with one instruction. .

2-29

Example 31 -- Serial Port Mode and Control Bits

8351
8751

,SPINlT INITIALIZE SERIAL PORT
FOR B-B r T UART MO[lF
r. seT TRANSMIT READY FLAG

SCON. "010100103

8243

P2.7
} INPUTS

P2.&

P2.5 CS
P2.4 PROG

P2.3 P23

P2.2 P22
P2.1 P21
P2.0 P2.

P'

PS

P'

P7

F.igure 23. Connecting an 8051 with an 8243
I/O Expander

AFN-01502A-31

inter AP-69

Timer I will be used in auto-reload mode as a data rate
generator. To achieve a data rate of 2400 baud. the timer

must divide the I M Hz internal clock by 32 x (desired
data rate):

I x H)"
(32) (2400)

which equals 13.02 rounded down to 13 instruction
cycles. The timer must reload the value -13. or OF3H.
(ASMSI will accept both the signed decimal or hexa­
decimal representations.)

Example 32 -Initializing Timer Mode and Control BiH
• TllNIT INITIALIZE TII'tER 1 FOR

AUTO-RELOAD AT 32*2400 HZ
eTa USED AS GATED lib-BIT COUNTER)

TIINIT MOY TeoN. _110100108
THI. "-13 "OV

SEn TRI

A ~imple subroutine to transmit the character passed to it
in the accumulator must first compute the parity bit.
insert it into the data byte. wait until the transmitter is
available. output the character. and return. This is nearly
as easy said as done.

Example 33 -Code for UART Output. Adding Parity.
Transmitter Loading

,SP OUT ADD 000 PARITY TO Ace AND
- TRANSMIT WHEN SER I AL PORT READY

SP_OUT MOV
ePl
MOV
JNB
elR
MOV
RET

e. P
e
Ace 7, c
TI ••
11
SBUF. A

A simple minded routine to wait until a character is
received. set the carry flag if there is an odd-parity error.
and return the masked seven-bit code in the accumulator
is equally short.

Example 34-Code for UART Reception and Parity
Verification

.SP_IN INPUT NEXT CHARACTER FROM SERIAL PORT
SET CARRY IFF ODD-PARITY ERROR

5P _IN JNB RI. f;

ClR Rl
MOV A.SBUF
MOV C. P
CPl C
ANl A. "7FH
RET

6. SUMMARY

This Application Note has described, the architecture.
instruction set. and on-chip peripheral features of the
first three members of the MCS-SI T• microcomputer
family. The examples used throughout were admittedly
(and necessarily) very simple. Additional examples and
techniques may be found in the MCS-SI ,. User's Manual
and other application notes written for the MCS-48'· and
MCS-SI T• families.

Since its introduction in 1977. the MCS-48'· family has
become the industry standard single-chip
microcomputer. The MCS-.5IT. architecture expands the
addressing capabilities and instruction set of its
predecessor while ensuring flexibility for the future. and
maintaining basic software compatability with the past.

Designers already familiar with the 8048 or 8049 will be
able to take with them the education and experience
gained from past designs as ever-increasing system
performance demands force them to move on to state-of-"
the-art products. Newcomers will find the power and
regularity of the 80S I instruction set an advantage in
streamlining both the learning and design processes.

Microcomputer system designers will appreciate the 80S I
as basically a single-chip solution to many problems
which previouslv required board-level computers.
Designers of real:time control systems will find the high
execution speed. on-chip peripherals. and interrupt
capabilities vital in meeting the timing constraints of
products previously requiring discrete logic designs. And
designers of industrial controllers will be able to convert
ladder diagrams directly from testcd-and-true TTL or
relay-logic designs to microcomputer'software. thanks to
the unique Boolean processing capabilities.

11 has not been the intent of this note to gloss over the
difficulty of designing microcomputer-based systems. To
be sure. the hardware and software design aspects of any
ncw computer system are nontrivial tasks. Howevcr. the
system speed" and level of integration of the MCS-SI'·
microcomputers. the power and flexibility of the
instruction set. and the sophisticated assembler and other
support products combine to give both the hardware and
software designer as much of a head start on the problem
as possible.

AFN-01502A-32

2-30

APPLICATION
NOTE

AP-70

April 19BO

Using the Intel MCS®-51 Boolean
Processing Capabilities

@ Intel Corporation, 1988

JOHN WHARTON
MICROCONTROLLER APPLICATIONS

2-31
Order Number: 203830-001

intJ AP-70

1.0 INTRODUCTION

The Intel microcontroller family now has three new
members: the Intel® 8031, 8051, and 8751 single-chip
microcomputers. These devices, shown in Figure 1, will
allow whole new classes of products to benefit from
recent advances in Integrated Electronics. Thanks to
Intel's new HMOS technology, they provide larger pro­
gram and data memory spaces, more flexible I/O and
peripheral capabilities, greater speed, and lower system
cost than any previous-generation single:chip micro­
computer.

Pl.0 - - yee

Pl.l- - PO.O

Pl.2- - PO.l

Pl.3 - - PO.2

P1.4 - - PO.3

Pl.S- - PO.4

Pl.6- - PO.S

Pl.7 - - PO.6

RST - - PO.7

P3.0lRXD - - YPP/EA

P3.lITXD - - PI'!O'G/ALE

P3.21iNTo - - PSEN

P3.3/1NTI - - P2.7

P3.41TO - - P2.6

P3.S/TI - - P2.S

P3.6/WR - - P2.4

P3.7/AD - - P2.3

XTAL2 - - P2.2

XTALl - - P2.1

YSS - - P2.0

203830-1

Figure 1.8051 Family Pinout Diagram

Table 1 'summarizes the quantitative differences be­
tween the members of the MCS®-48 and 8051 families.
The 8751 contains 4K bytes of EPROM program mem­
ory fabricated on-chip, while the 8051 replaces the
EPROM with 4K bytes of lower-cost mask­
programmed ROM. The 8031 has no program memory
on-chip; instead, it accesses up to 64K bytes of program
memory' from external memory. Otherwise, the three
new family members are identical. Throughout this
Note, the term "8051" will represent all members of the
8051 Family, unless specifically statecI otherwise.

The CPU iIi each microcomputer is one of the indus­
try's fastest and most efficient for numerical calcula­
tions on byte operands. But controllers often deal with
bits, not bytes: in the real world, switch contacts can
only be open or closed, indicators should be either lit or
dark, motors are either turned on or off, and so forth.
For such control situations the most significant aspect
of the MCS®-51 architecture is its complete hardware
support for one-bit, or Boolean variables (named in
honor of Mathematician George Boole) as a separate
data type.

The 11051 incorporates a number of special features
which support the direct manipulation and testing of
individual bits and allow the use of single-bit variables
in performing logical operations. Taken together, these
features are referred to as the MCS-51 Boolean Proces­
sor. While the bit-processing capabilities alone would be
adequate to solve many control applications, their true
power comes when they are used in conjunction with
the microcomputer's byte-processing and numerical ca­
pabilities.

Many concepts embodied by the Boolean Processor will
certainly be new even to experienced microcomputer
system designers. The purpose of this Application Note
is to explain these concepts and show how they are
used.

For detailed information on these parts refer to the
Intel Microcontroller Handbook, order number
210918. The instruction set, assembly language, and use
'of the 8051 assembler (ASM51) are further described in -
the MCS®-Sl Macro Assembler User's Guide for DOS
Systems, order number 122753.

Table 1. Features of Intel's Single-Chip Microcomputers

EPROM ROM External Program Data Instr. Inputt
Interrupt Reg.

Program Program Program Memory Memory Cycle Output
Memory Memory Memory (InttMax) (Bytes) Time Pins

Sources Banks

8748 8048 8035 1K4K 64 2.5/Jos 27 2 2
- 8049 8039 2K4K 128 1.36/Jos 27 2 2

8751 8051 8031 4K64K 128 1.0/Jos 32 5 4

2-32

inter AP-70

2.0 BOOLEAN PROCESSOR
OPERATION

The Boolean Processing capabilities of the 8051 are
based on concepts which have been around for some
time. Digital computer systems of widely varying de­
signs all have four functional elements in common (Fig­
ure 2):

• a central processor (CPU) with the control, timing,
and logic circuits needed to execute stored instruc­
tions:

• a memory to store the sequence of instructions mak­
ing up a program or algorithm:

• data memory to store variables used by the pro­
gram:
and

• some means of communicating with the outside
world.

The CPU usually includes one or more accumulators or
special registers for computing or storing values during
program execution. The instruction set of such a
processor generally includes, at a minimum, operation
classes to perform arithmetic or logical functions on
program variables, move variables from one place to
another, cause program execution to jump or condi­
tionally branch based on register or variable states, and
instructions to call and return from subroutines. The
program and data memory functions sometimes share a
single memory space, but this is not always the case.
When the address spaces are separated, program and
data memory need not even have the same basic word
width.

A digital computer's flexibility comes in part from
combining simple fast operations to produce more com-

PROGRAM
MEMORY

DATA
MEMORY

TIMING &
CONTROL

ACCUMULATOR
& REGISTERS

CENTRAL
PROCESSING
UNIT

plex (albeit slower) ones, which in turn link together
eventually solving the problem at hand. A four-bit CPU
executing multiple precision subroutines can, for exam­
ple, perform 64-bit addition and subtraction. The sub­
routines could in turn be building blocks for floating­
point multiplication and division routines. Eventually,
the four-bit CPU can simulate a far more complex "vir­
tual" machine.

In fact, any digital computer with the above four func­
tional elements can (given time) complete any algo­
rithm (though the proverbial room full of chimpanzees
at word processors might first re-create Shakespeare's
classics and this Application Note)! This fact otTers lit­
tle consolation to product designers who want pro­
grams to run as quickly as possible. By definition, a
real-time control algorithm must proceed quickly
enough to meet the preordained" speed constraints of
other equipment.

One of the factors determining how long it will take a
microcomputer to complete a given chore is the num­
ber of instructions it must execute. What makes a given
computer architecture particularly well- or poorly-suit­
ed for a class of problems is how well its instruction set
matches the tasks to be performed. The better the
"primitive" operations correspond to the steps taken by
the control algorithm, the lower the number of instruc­
tions needed, and the quicker the program will run. All
else being equal, a CPU supporting 64-bit arithmetic
directly could clearly perform floating-point math fast­
er than a machine bogged-down by multiple-precision
subroutines. In the same way, direct support for bit
manipulation naturally leads to more efficient pro­
grams handling the binary input and output conditions
inherent in digital control problems.

INPUTI
OUTPUT
PORTS

REAL
WORLD

203830-2

Figure 2. Block Diagram for Abstract Digital Computer

2-33

AP-70

Processing Elements

The introduction stated that the 8051's bit-handling ca­
pabilities alone would be sufficient to solve some con­
trol applications. Let's see how the four basic elements
of a digital computer-a CPU with associated registers,
program memory, addressable data RAM, and I/O ca­
pability-relate to Boolean variables.

cpu. The 8051 ·CPU incorporates special logic devoted
to executing several bit-wide operations. All told, there
are 17 such instructions, all listed in Table 2. Not
shown are 94 other (mostly byte-oriented) 8051 instruc­
tions.

Program Memory. Bit-processing instructions are
fetched from the same program memory as other arith­
metic and logical operations. In addition to the instruc-

Table 2. MCS-S1TM Boolean
Processing Instruction Subset

Mnemonic Description Byte eyc

SETB C Set Carry flag 1 1
SETB bit Set direct Bit 2 1
CLR C Clear Carry flag 1 1
CLR bit Clear direct bit 2 1
CPL C Complement Carry flag 1 1
CPL bit Complement direct bit 2 1

MOV C.bit Move direct bit to Carry flag 2 1
MOV bit.C Move Carry flag to direct bit 2 2

ANL C.bit AND direct bit to Carry flag 2 2
ANL C.bit AND complement of direct 2 2

bit to Carry flag
ORL C.bit OR direct bit to Carry flag 2 2
ORL C.bit OR complement of direct 2 2

bit to Carry flag

JC rei Jump if Carry is flag is set 2 2
JNC rei Jump if No Carry flag 2 2
JB bit.rel Jump if direct Bit set 3 2
JNB bit.rel Jump if direct Bit Not set 3 2
JBC bit.rel Jump if direct Bit is set & 3 2

Clear bit

Address mode abbreviations

C-Carry flag.
bit-12B software flags, any 110 pin, control or status
bit.
rei-Ali conditional jumps include an B·bit offset byte.
Range is + 127 -12B bytes relative to first byte of the
following instruction.

All mnemonics copyrighted@ Intel Corporation 1980.

tions of Table 2, several sophisticated program control
features like multiple addressing modes, subroutine
nesting, and a two-level interrupt structure are useful in
structuring Boolean Processor-based programs.

Boolean instructions are one, two, or three bytes long,
depending on what function they perform. Those in­
volving only the carry flag have either a single-byte
opcode or an opcode followed by a conditional·branch
destination byte (Figure 3a). The more general instruc­
tions add a "direct address" byte after the opcode to
specify the bit affected, yielding two or three byte en­
codings (Figure 3b). Though this format allows poten­
tially 256 directly addressable bit locations, not all of
them are implemented in the 8051 family.

2-34

opcode

SETBC
CLRC
CPLC

opcode

JC
JNC

I displacement I
rei
rei

a.) Carry Control and Test Instructions

opcode I I bit address

SETB bit
CLR bit
CPL bit

ANLC, bit
ANLC,! bit
ORLC, bit
ORLC,! bit
MOVC, bit

MOV bit,C

opcode I I bit address I displacement I
JB bit, rei

JNB bit, rei
JBC bit, rei

b.) Bit Manipulation and Test Instructions

Figure 3. Bit Addressing Instruction Formats

AP-70

RAM
Byte (MSB)

7FH~
I~

2FH

2EH

20H

2CH

2BH

2AH

29H

28H

27H

26H

25H

24H

23H

22H

'21H

20H

lFH

18H
17H

10H
OFH

08H
07H

00

7F

77

6F

67

SF

57

4F

47

3F

37

2F

27

1F

17

OF

07

7E 70 7C 7B 7A

76 75 74 73 72

6E 60 6C 6B 6A

66 65 64 63 62

5E 50 5C 5B SA

56 55 54 53 52

4E 40 4C 4B 4A

46 45 44 43 42

3E 3D 3C 3B 3A

36 35 34 33 32

2E 20 2C 2B 2A

26 25 24 23 22

1E 10 1C 1B 1A

16 15 14 13 12

OE 00 OC OB OA

06 05 04 03 02

Bank 3

Bank 2

Bank 1

Bank 0

a.) RAM Bit Addresses

(LSB)

-...:..

79 78

71 70

69 68

61 60

59 58

51 50

49 48

41 40

39 38

31 30

29 28

21 20

19 18

11 10

09 08

01 00

Direct Bit Addre.le. Hardware
B~t. Regl.ter
Addre •• (MSB) (LSB) Symbol

OFFH

OFOH

OEOH

OOOH

OB8H

OBOH

OA8H

OAOH

98H

90H

88H

80H

F7 FO B

E7 EO ACC

07 DO PSW

B8 IP

B7 BO P3

AF A8 IE

A7 AO P2

9F 98 SCON

97 90 P1

8F 88 TCON

87 80 PO

203830-3

b.) Special Function Register Bit Addresses

Figure 4. Bit Address Maps

Data Memory. The instructions in Figure 3b can oper­
ate directly upon 144 general purpose bits forming the
Boolean processor "RAM." These bits can be used as
software flags or to store program variables. Two oper­
and instructions use the CPU's carry flag ("C") as a
special one-bit register: in a sense, the carry is a "Boole­
an accumulator" for logical operations and data trans­
fers.

Input/Output. All 32 I/O pins can be addressed as indi­
vidual inputs, outputs, or both, in any combination.
Any pin can be a control strobe output, status (Test)
input, or serial I/O link implemented via software. An
additional 33 individually addressable bits reconfigure,
control, and monitor the status of the CPU and alI on­
chip peripheral functions (timer counters, serial port
modes, interrupt logic, and so forth).

2-35

intJ AP-70

(MSB) (LSB)

I CY ! AC ! FO RS1 RSO OV

Symbol Position Name and Significance
CY PSW.7 Carry flag.

Set/ cleared by hardware or
software during certain arith­
metic and logical iristructions.

AC PSW.6 Auxiliary Carry flag.
Set/cleared by hardware dur­
ing addition or subtraction in­
structions to indicate carry or
borrow out of bit 3.

FO PSW.5 Flag O.
Set/cleared/tested by soft­
ware as a user-defined status
flag.

RS1 PSW.4 Register bank Select control
bits.

RSO PSW.3 1 & O. Set/cleared by software
to determine working register
bank (see Note).

OV

P

PSW.2

PSW.1

PSW.O

Note-

Overflow flag.
Set/cleared by hardware dur­
ing arithmetic instructions to
indicate overflow conditions.

(reserved)

Parity flag.
Set/cleared by hardware each
instruction cycle to indicate an
odd/even number of "one"
bits in the accumulator, i.e.,
even parity.

the contents of (RS1, RSO)
enable the working register
banks as follows:
(0,0) - Bank 0 (00H-07H)
(0,1) - Bank 1 (OBH-OFH)
(1,0) - Bank 2 (10H-17H)
(1,1)-Bank3 (1BH-1FH)

Figure 5. PSW-Program Status Word Organization

(MSB) (LSB)

! RD.! WR! T1! TO !INT1!INTO! TXD I RXDI

Symbol Position Name and Significance

RD P3.7 Read data control output.

INT1

INTO

P3.3 Interrupt 1 input pin.
Low-level or falling-edge trig-
gered.

P3.2 Interrupt 0 input pin.
Low-level or falling-edge trig-
gered. Active low pulse generated by

hardware when external data
memory is' read.

TXD P3.1 Transmit Data pin for serial

WR

T1

TO

P3.6

P3.5

P3.4

Write data control output.
Active low pulse generated by
hardware when external data
memory is written.

Timerlcounter 1 external input
or test pin.

Timerlcounter 0 external input
or test pin.

port in UART mode. Clock out-
put in shift register mode.

RXD P3.0 Receive Data pin for serial
port in UART mode. Data 110
pin in shift register mode.

Figure 6. P3-Alternate 1/0 Functions of Port 3

Direct Bit Addressing

The most significant bit of the direct address byte se­
lects one of two groups of bits. Values between 0 and
127 (DOH and 7FH) define bits in a block of 32 bytes of
on-chip RAM, between RAM addresses 20H and 2FH
(Figure 4a). They are numbered consecutively from the
lowest-order byte's lowest-order bit through the high­
est-order byte's highest-order bit.

2-36

Bit addresses between 12S and 255 (SOH and OFFH)
correspond to bits in a number of special registers,
mostly used for I/O or peripheral control. These posi­
tions are numbered with a different scheme than RAM:
the five high-order address bits match those of the reg­
ister's own address, while the three low-order bits iden­
tify the bit position within that register (Figure 4b).

AP-70

Notice the column labeled "Symbol" in Figure 5. Bits
with special meanings in the PSW and other registers
have corresponding symbolic names. General-purpose
(as opposed to carry-specific) instructions may access
the carry like any other bit by using the mnemonic CY
in place of C, PO, Pt, P2, and P3 are the 805t's four
I/O ports: secondary functions assigned to each of the
eight pins of P3 are shown in Figure 6.

Figure 7 shows the last four bit addressable registers.
TCON (Timer Control) and SCON (Serial port Con­
trol) control and monitor the corresponding peripher­
als, while IE (Interrupt Enable) and IP (Interrupt Pri­
ority) enable and prioritize the five hardware interrupt
sources. Like the reserved hardware register addresses,

the five bits not implemented in IE and IP should not
be accessed: they can not be used as software flags.

Addressable Register Set. There are 20 special function
registers in the 805t, but the advantages of bit address­
ing only relate to the 11 described below. Five poten­
tially bit-addressable register addresses (OCOH, OC8H,
OD8H, OE8H, & OF8H) are being reserved for possible
future expansion in microcomputers based on the
MCS-51 architecture. Reading or writing non-existent
registers in the 8051 series is pointless, and may cause
unpredictable results. Byte-wide logical operations can
be used to manipulate bits in all non-bit addressable
registers and RAM.

2-37

intJ AP-70

(MSB) (LSB)

I TF1 I TR1 I TFO I TRO IIE1 1,IT1 IlEa liTO I

Symbol Position Name and Significance

TF1 TCON.7 Timer 1 overflow Flag.

TR1 TCON.6

TFO TCON.S

Set by hardware on timer/
counter overflow. Cleared
when interrupt processed.

Timer 1 Run control bit.
Set!cleared by software to turn
timer/counter on/off.

Timer 0 overflow Flag.
Set by hardware on timer/
counter overflow. Cleared
when interrupt processed.

IE1

IT1

lEO

TCON.3 Interrupt 1 Edge flag.
Set by hardware when exter­
nal interrupt edge detected.
Cleared when interrupt pro"
cessed.

TCON.2 Interrupt 1 Type control bit.
Set!cleared by software to
specify falling edgellow level
triggered external interrupts.

TCON.1 Interrupt 0 Edge flag.
Set by hardware when exter­
nal interrupt edge detected.
Cleared when interrupt pro­
cessed.

ITO TCON.O Interrupt 0 Type control bit.
TRO TCONA Timer 0 Run control bit. Set!cleared by software to

Set! cleared by software to turn specify falling edgellow level
timer/counter on/off. triggered external interrupts.

a.) TCON-Timer/Counter Control/Status Register

(MSB) (LSB)

I SMa I SM1 I SM2 I REN I TBS I RBSI TI I RI I

Symbol Position Name and Significance

SMO SCON.7 Serial port Mode control bit o.
Set! cleared by software (see
note).

SM1 SCON.6 Serial port Mode control bit 1.
Set!cleared by software (see
note).

SM2 SCON.S Serial port Mode control bit 2.
Set by software to disable re­
ception of frames for which bit
B is zero.

REN SCONA Receiver Enable control bit.
Set/cleared by software to en­
able/disable serial data recep­
tion.

TBB SCON.3 Transmit Bit B.
Set! cleared by hardware to de­
termine state of ninth data bit
transmitted in 9-bit UART
mode.

RB8

TI

RI

SCON.2 Receive Bit B.
Set/cleared by hardware to in­
dicate state of ninth data bit
received.

SCON.1 Transmit Interrupt flag.
Set by hardware when byte
transmitted. 'Cleared by soft­
ware after serviCing.

SCON.O Receive Interrupt flag.
Set by hardware when byte re­
ceived. Cleared by software
after servicing.

Note- the state of (SMO, SM1)
selects:
(O,O)-8hift register I/O

expansion.
(O,1)-8-bit UART, variable

data rate.
(1,O)-9-bit UART, fixed data

rate.
(1,1)-9-bit UART, variable

data rate.

b.) SCON--5erial Port Control/Status Register

Figure 7. Peripheral Configuration Registers

2-38

inter AP-70

(MSa) (lSa)

I EA I - I - I ES I En EX1 ET1 I EXO I
Symbol Position Name and Significance

EA IE. 7 Enable All control bit.

ES

ET1

Cleared by software to disable
all interrupts, independent of
the state of IE.4-IE.O.

IE.6 (reserved)

1E.5

IE.4

IE.3

Enable Serial port control bit.
Set! cleared by software to en­
able/disable interrupts from TI
or RI flags.

Enable Timer 1 control bit.
Set! cleared by software to en­
able/disable interrupts from
timer/counter 1.

EX1 1E.2

ETO 1E.1

EXO lE.O

Enable External interrupt 1
control bit. Set! cleared by
software to enable/disable in­
terrupts from I NT1.

Enable Timer 0 control bit.
Set! cleared by software to en­
able/disable interrupts from
timer/counter o.
Enable External interrupt 0
control bit. Set! cleared by
software to enable/disable in­
terrupts from INTO.

c.) IE-Interrupt Enable Register

(MSa) (lSa)

I - I - I - I PS PT1 PX1 I PTO I PXO I
Symbol Position Name and Significance

PS

IP.7 (reserved)
IP.6 (reserved)
IP.5 (reserved)

IP.4 Serial port Priority control bit.
Set/cleared by software to
specify high/low priority inter­
rupts for Serial port.

PX1

PTO

IP.2

IP.1

External interrupt 1 Priority
control bit. Set! cleared by
software to specify high/low
priority interrupts for INT1.

Timer 0 Priority control bit.
Set/ cleared by software to
specify high/low priority inter­
rupts for timer/counter O.

PT1 IP.3 Timer 1 Priority control bit. PXO IP.O External interrupt 0 Priority
Set!cleared by software to control bit. Set!cleared by
specify high/low priority inter- software to specify high/low
rupts for timer/counter 1. priority interrupts for INTO.

d.) IP-Interrupt Priority Control Register

Figure 7. Peripheral Configuration Registers (Continued)

The accumulator and B registers (A and B) are normal­
ly involved in byte-wide arithmetic, but their individual
bits can also be used as 16 general software flags. Add­
ed with the 128 flags in RAM, this gives 144 general
purpose variables for bit-intensive programs. The pro­
gram status word (PSW) in Figure 5 is a collection of
flags and machine status bits including the carry flag
itself. Byte operations acting on the PSW can therefore
affect the carry.

Instruction Set

Having looked at the bit variables available to the Boo­
lean Processor, we will now look at the four classes of

2-39

instructions that manipulate these bits. It may be help­
ful to refer back to Table 2 while reading this section.

State Control. Addressable bits or flags may be set,
cleared, or logically complemented in one instruction
cycle with the two-byte instructions SETB, CLR, and
CPL. (The "B" affixed to SETB distinguishes it from
the assembler "SET" directive used for symbol defini­
tion.) SETB and CLR are analogous to loading a bit
with a constant: 1 or O. Single byte versions perform the
same three operations on the carry.

The MCS-5l assembly language specifies a bit address
in any of three ways:

• by a number or expression corresponding to the di­
rect bit address (0-255):

AP-70

• by the name or address of the register containing the
bit, the dot operator symbol (a period: "."), and the
bit's position in the register (7 -0): .

• in the case of control and status registers, by the
predefined assembler symbols listed in the first col­
umns of Figures 5-7.

Bits may also be given user-defined names with the as­
.sembler "BIT" directive and any of the above tech­
niques. For example, bit 5 of the PSW may be cleared
by any of the four instructions.

Logical Operations. Four instructions perform the logi­
cal-AND and logical-OR operations between the carry
and another bit, and leave the results in the carry. The
instruction mnemonics are ANL and ORL; the absence
or presence of a slash mark ("/") before the source
operand indicates whether to use the positive-logic val­
ue or the logical complement of the addressed bit. (The
source operand itself is never affected.)

USR_FLG BIT PSW.5 User Symbol Definition

Bit-test Instructions. The conditional jump instructiolls
"JC rei" (Jump on Carry) and "JNC rei" (Jump on
Not Carry) test the state of the carry flag, branching if
it is a one or zero, respectively. (The letters "rei" de­
note relative code addressing.) The three-byte instruc­
tions "JB bit.rel" and "JNB bit. rei" (Jump on Bit and
Jump on Not Bit) test the state of any addressable bit in
a similar manner. A fifth instruction combines the
Jump on Bit and Clear operations. "JBC bit. rei" condi­
tionally branches to the indicated address, then clears
the bit in the same two cycle instruction. This operation
is the same as the MCS-48 "JTF" instructions.

CLR OD5B Absolute Addressing
CLR PSW.5 Use of Dot Operator
CLR FO Pre-Defined Assembler

Symbol
CLR USR_FLG User-Defined Symbol

Data Transfers. The two-byte MOY instructions can
transport any addressable bit to the carry in one cycle,
or copy the carry· to the bit in two cycles. A bit can be
moved between two arbitrary locations via the carry by
combining the two instructions. (If necessary, push and
pop the PSW to preserve the previous contents of the
carry.) These instructions can replace the multi-instruc­
tion sequence of Figure 8, a program structure appear­
ing in controller applications whenever flags or outputs
are conditionally switched on or off.

SET
DESTINATION

BIT

ISOLATE
SOURCE

BIT

NO

CLEAR
DESTINATION

. BIT

203830-4

Figure 8. Bit Transfer Instruction Operation

All 8051 conditional jump instructions use program
counter-relative addressing, and all execute in two cy­
cles. The last instruction byte encodes a signed dis­
placement ranging from -128 to + 127. During execu­
tion, the CPU adds this value to the incremented pro­
gram counter to produce the jump destination. Put an­
other way, a conditional jump to the immediately fol­
lowing instruction would encode OOH in the offset byte.

A section of program or subroutine written using only
relative jumps to nearby addresses will have the same
machine code independent of the code's location. An
assembled routine may be repositioned anywhere in
memory, even crossing memory page boundaries, with­
out having to modify the program or recompute desti­
nation addresses. To facilitate this flexibility, there is an .
unconditional "Short Jump" (SJMP) which uses rela­
tive addressing as well. Since a programmer would have
quite a chore trying to compute relative offset values
from one instruction to another, ASM51 automatically
computes the displacement needed given only the desti­
nation address or label. An error message will alert the
programmer if the destination is "out of ~ange."

The so-called "Bit Test" instructions implemented on
many other microprocessors simply perform the logi­
cal-AND operation between a byte variable and a con­
stant mask, and set or clear a zero flag depending on
the result. This is essentially equivalent to the 8051
"MOY C.bit" instruction. A second instruction is then
needed to conditionally branch based on the state of the
zero flag. This does not constitute abstract bit-address­
ing in the MCS-51 sense. A flag exists only as a field

2-40

AP·70

within a register: to reference a bit the programmer Table 3. Other Instructions Affecting
must know and specify both the encompassing register the Carry Flag
and the bit's position therein. This constraint severely

Mnemonic Description Byte eyc
limits the flexibility of symbolic bit addressing and re-
duces the machine's code-efficiency and speed. ADD A,Rn Add register to 1

Accumulator
Interaction with Other Instructions., The carry flag is ADD A,direct Add direct byte to 2

also affected by the instructions listed in Table 3. It can Accumulator
be rotated through the accumulator, and altered as a ADD A,@Ri Add indirect RAM to
side effect of arithmetic instructions. Refer to the Us- Accumulator
er's Manual for details on how these instructions oper- ADD A,#data Add immediate data 2

ate. to Accumulator
ADDC A,Rn Add register to

Accumulator with

Simple Instruction Combinations Carry flag
AD DC A,direct Add direct byte to 2

By combining general purpose bit operations with cer- Accumulator with
tain addressable bits, one can "custom build" several Carry flag
hundred useful instructions. All eight bits of the PSW ADDC A,@Ri Add indirect RAM to
can be tested directly with conditional jump instruc- Accumulator with
tions to monitor (among other things) parity and over- Carry flag
flow status. Programmers can take advantage of 128 AD DC A,#data Add immediate data 2
software flags to keep track of operating modes, re- to Acc with Carry flag
source usage, and so forth. SUBB A,Rn Subtract register from

Accumulator with
The Boolean instructions are also the most efficient borrow
way to control or reconfigure peripheral and I/O regis- SUBB A,direct Subtract direct byte 2
ters. All 32 I/O lines become "test pins," for example, from Acc with borrow
tested by conditional jump instructions. Any output pin SUBB A,@Ri Subtract indirect RAM
can be toggled (complemented) in a single instruction from Acc with borrow
cycle. Setting or clearing the Timer Run flags (TRO and SUBB A, # data Subtract immediate 2
TRI) turn the timer/counters on or off; poIling the data from Acc with
same flags elsewhere lets the program determine if a borrow
timer is running. The respective overflow flags (TFO MUL AB Multiply A & B 4
and TFI) can be tested to determine when the desired DIV AB Divide A by B 4
period or count has elapsed, then cleared in preparation DA A Decimal Adjust 1
for the next repetition. (For the record, these bits are all Accumulator
part of the TCON register, Figure 7a. Thanks to sym- RLC A Rotate Accumulator
bolie bit addressing, the programmer only needs to re- Left through the Carry
member the mnemonic associated with each function.
In other words, don't bother memorizing control word

flag
RRC A Rotate Accumulator

layouts.) Right through Carry

In the MCS-48 family, instructions corresponding to
flag

some of the above functions require specific opcodes. CJNE A,direct.rel Compare,direct byte 3 2

Ten different opcodes serve to clear complement the to Acc & Jump if Not
software flags FO and FI, enable/disable each inter- Equal
rupt, and start/stop the timer. In the 8051 instruction CJNE A, #data.rel Compare immediate 3 2

set, just three opcodes (SETB, CLR, CPL) with a direct to Acc & Jump if Not
bit address appended perform the same functions. Two Equal
test instructions (JB and JNB) can be combined with CJNE Rn, # data. rei Compare immed to 3 2,

bit addresses to test the software flags, the 8048 I/O register & Jump if Not
pins TO, TI, and INT, and the eight accumulator bits, Equal
replacing IS more different instructions. CJNE @Ri,#data.rel Compare immed to 3 2

indirect & Jump if Not
Table 4a shows how 8051 programs implement soft- Equal
ware flag and machine control functions associated

All mnemonics copyrighted @ Intel Corporation 1980. with special opcodes in the 8048. In every case the
MCS-51 solution requires the same number of machine
cycles, and executes 2.5 times faster.

2-41

inter AP-70

Table 4a. Contrasting 8048 and 8051 Bit Control and Testing Instructions

8048
Bytes Cycles ,...Sec

8x51 Bytes Cycles & ,...Sec
Instruction Instruction

Flag Control
CLR C 1 1 2.5 CLR C 1 1
CPL FO 1 1 2.5 CPL FO 2 1

Flag Testing
_JNC offset 2 2 5.0 JNC rei 2 2

JFO offset 2 2 5.0 JB FO.rel 3 2
JB7 offset 2 2 5.0 JB ACC.7.rel 3 2

Peripheral Polling
JTO offset 2 2 5.0 JB TO.rel 3 2
JN1 offset 2 2 5.0 JNB INTO.rel 3 2
JTF offset 2 2 5.0 JBC TFO.rel 3 2

Machine and Peripheral Control
STRT T 1 1 2.5 SETB TRO 2 1
EN 1 1 1 2.5 SETB EXO 2 1
DIS TCNT1 1 1 2.5 CLR ETO 2 1

Table 4b. Replacing 8048 Instruction Sequences with Single 8x51 Instructions

8048 Bytes Cycles p.Sec 8051 Bytes Cycles & ,...Sec Instruction Instruction

Flag Control
Set carry

CLR C
SETB C CPL C = 2 2 5.0 1 1

Set Software Flag
CLR FO
CPL FO = 2 2 5.0 SETB FO 2 1

Turn Off Output Pin
ANL P1.#OFBH = 2 2 5.0 CLR P1.2 2 1

Complement Output Pin
IN A.P1
XRL A.#04H
OUTL P1.A = 4 6 15.0 CPL P1.2 2 1

Clear Flag in RAM
MOV RO.#FLGADR
MOV A.@RO
ANL A.#FLGMASK
MOV @RO.A = 6 6 15.0 CLR USER FLG 2 1

2·42

AP-70

Table 4b. Replacing 8048 Instruction Sequences with Single 8x51 Instructions (Continued)

8048
Bytes Cycles].LSec Instruction

Flag Testing:
Jump if Software Flag is 0

JFO $+4
JMP offset = 4

Jump if Accumulator bit is 0
CPL A
JB7 offset
CPL A = 4

Peripheral Polling
Test if Input Pin is Grounded

IN A.P1
CPL A
JB3 offset = 4

Test if Interrupt Pin is High
JN1 $+4
JMP offset = 4

3.0 BOOLEAN PROCESSOR
APPLICATIONS

4

4

5

4

So what? Then what does all this buy you?

10.0

10.0

12.5

10.0

Qualitatively, nothmg. All the same capabilities could
be (and often have been) implemented on other ma­
chines using awkward sequences of other basic opera­
tions. As mentioned earlier, any CPU can solve any
problem given enough time.

Quantitatively, the differences between a solution al­
lowed by the 80S I and those required by previous ar­
chitectures are numerous. What the 8051 Family buys
you is a faster, cleaner, lower-cost solution to micro­
controller applications.

The opcode space freed by condensing many specific
8048 instructions into a few general operations has been
used to add new functionality to the MCS-51 architec­
ture-both for byte and bit operations. 144 software
flags replace the 8048's two. These flags (and the carry)
may be directly set, not just cleared and complemented,
and all can be tested for either state, not just one. Oper­
ating mode bits previously inaccessible may be read,
tested, or saved. Situations where the 80S I instruction
set provides new capabilities are contrasted with 8048
instruction sequences in Table 4b. Here the 80S I speed
advantage ranges from Sx to ISx! \

2-43

8x51 Bytes Cycles &].LSec
Instruction

JNB FO.rel 3 2

JNB ACC.7.rel 3 2

JNB P1.3.rel 3 2

JB INTO.rel 3 2

Combining Boolean and byte-wide instructions can
produce great synergy. An MCS-SI based application
will prove to be:

o simpler to write since the architecture correlates
more closely with the problems being solved:

• easier to debug because more individual instructions
have no unexpected or undesirable side-effects:

• more byte efficient due to direct bit addressing and
program counter relative branching:

• faster running because fewer bytes of instruction
need to be fetched and fewer conditional jumps are
processed:

• lower cost because of the high level of system-inte­
gration within one component.

These rather unabashed claims of excellence shaH not
go unsubstantiated. The rest of this chapter examines
less trivial tasks simplified by the Boolean processor.
The first three compare the 8051 with other micro­
processors; the last two go into 80S I-based system de­
signs in much greater depth.

Design Example # 1-Bit Permutation

First off, we'll use the bit-transfer instructions to per­
mute a lengthy pattern of bits.

AP-70

A steadily increasing number of data communication
products use encoding methods to protect the security
of sensitive information. By law, interstate financial

- transactions involving the Federal banking system must
be transmitted using the Federal Information Pro­
cessing Data Encryption Standard (DES).

Basically, the DES combines eight bytes of "plaintext"
data (in binary, ASCII, or any other format) with a 56-
bit "key", producing a 64-bit encrypted value for trans­
mission. 'At the receiving end the same algorithm is
applied to the incoming data using the same key, repro­
ducing the original eight byte message. The algorithm
used for these permutations is fixed; different user-de­
fined keys ensure data privacy.

It is not the purpose of this note to describe the DES in
any detail. Suffice it to say that encryption/decryption
is a long, iterative process consisting of rotations, exclu­
sive -OR operations, function table look-ups, and an
extensive (and quite bizarre) sequence of bit permuta­
tion, packing, and unpacking steps. (For further details
refer to the June 21, 1979 issue of Electronics maga­
zine.) The bit manipulation steps are included, it is ru­
mored, to impede a general purpose digital supercom­
puter trying to "break" the code. Any algorithm imple­
menting the DES with previous' generation micro­
processors would spend virtually all of its time diddling
bits.

The bit manipulation performed is typified by the Key
Schedule Calculation represented in Figure 9. This step
is repeated 16 times for each key used in the course of a
transmission. In essence, a seven-byte, 56-bit "Shifted
Key Buffer" is transformed into an eight-byte, "Permu­
tation Buffer" without altering the shifted Key. The
arrows in Figure 9 indicate a few of the translation
steps. Only six bits of each byte of the Permutation
Buffer are used; the. two high-order bits of each byte are
cleared. This means only 48 of the 56 Shifted Key Buff­
er bits are used in anyone iteration.

Different microprocessor architectures would best im­
plement this type of permutation in different ways.
Most approaches would share the steps of Figure lOa:

• Initialize the Permutation Buffer to default state
(ones or zeroes):

• Isolate the state of a bit of a byte from the Key
Buffer. Depending on the, CPU, this might be ac­
complished by rotating a word of the Key Buffer
through a carry flag or. testing a bifin memory or an
accumulator against a,mask byte:

• Perform' a conditional jump based on the carry or
zero flag if the Permutation Buffer default state is
correct:

• Otherwise reverse the corresponding bit in the per­
mutation buffer with logical operations and mask
bytes.

Each step above may require several instructions. The
iast three steps must be repeated for all 48 bits. Most
microprocessors would spend 300 to 3,000 microsec­
onds 'on each of the 16 iterations.

Notice, though, that this flow chart looks a lot like
Figure 8. The Boolean Processor can permute bits by
simply moving them from the source to the carry to the
destination-a total of two instructions taking four
bytes and three microseconds per bit. Assume the Shift­
ed Key Buffer and Permutation Buffer both reside in
bit-addressable RAM, with the bits of the former as­
signed symbolic names SKB_1, SKB_2, ... SKB_
56, and that the bytes of the latter are named PB_1,
... PB_8. Then working from Figure 9, the software
for the permutation algorithm would be that of Exam­
ple 1a. The total routine length would be 192 bytes,
requiring 144 microseconds.

Permuted and Shifted 56-Bit Key Buffer

~ ~

-----------------~-----------------~ ------------------~------------------14151117 21 " " 3233:M

PERMUTATION BYTE 1 PERM BYTE 2 PERM BYTE 3 PERM BYTE 4 BYTE 5 BYTEe

48-Bit Key Kr

Figure 9. DES Key Schedul,e Transformation

2-44

PERM BYlEr PERM 8YlE8

203830-5

SET PERMUTATION
BUFFER BIT

PC2111

AP·70

(LEAVE PERMUTATION
BUFFER BIT
CLEAREDI

REPEAT
FOR EACH
alTOF
SHinED
KEY
BUFFER
148 TIMESI

203830-6

Figure 10a. Flowchart for Key Permutation Attempted with a Byte Processor

2-45

inter AP-70

~
I CLEAR ACCUMULATOR I

LOAD BIT MAPPED ONTO BIT 5 OF
PERMUTATION BYTE INTO CARRY

I ROTATE LEFT INTO ACC. I

LOAD BIT MAPPED ONTO BIT 4
OF PERMUTATION BYTE INTO CARRY

I ROTATE LEFT INTO ACC. I

,
LOAD BIT MAPPED ONTO BIT 0
OF PERMUTATION BYTE INTO CARRY ,

I ROTATE LEFT INTO ACC. J ,
STORE ACC. INTO PERMUTATION
BUFFER

I ,

REPEAT
FOR EACH
BYTE OF
PERMUTATION
BUFFER
(8 TIMES)

Figure 10b. DES Key Permutation with Boolean Processor

2-46

203830-7

infef Ap·70

The algorithm of Figure lOb is just slightly more effi­
cient in this time-critical application and illustrates the
synergy of an integrated byte and bit processor. The
bits needed for each byte of the Permutation Buffer are
assimilated by loading each bit into the carry (1 J.l.s.)
and shifting it into the accumulator (1 J.l.s.). Each byte
is stored in RAM when completed. Forty-eight bits
thus need a total of 112 instructions, some of which are
listed in Example lb.

Worst-case execution time would be 112 microseconds,
since each instruction takes a single cycle. Routine
length would also decrease, to 168 bytes. (Actually, in
the context of the complete encryption algorithm, each
permuted byte would be processed as soon as it is as­
similated-saving memory and cutting execution time
by another 8 J.l.s.)

To date, most banking terminals and other systems us­
ing the DES have needed special boards or peripheral
controller chips just for the encryption/decryption pro­
cess, and still more hardware to form a serial bit stream
for transmission (Figure Ila). An 8051 solution could
pack most of the entire system onto the one chip (Fig­
ure lib). The whole DES algorithm would require less
than one-fourth of the on-chip program memory, with
the remaining bytes free for operating the banking ter­
minal (or whatever) itself.

Moreover, since transmission and reception of data is
performed through the on-board UART, the unen­
crypted data (plaintext) never even exists outside the
microcomputer! Naturally, this would afford a high de­
gree of security from data interception.

2-47

Example I. DES Key Permutation Software.

a.) "Brute Force" technique

MOV C,SKB_I
MOV PB_I.I, C
MOV C,SKB_2
MOV PB_4.0,C
MOV C,SKB_3
MOV PB_2.5,C
MOV C,SKB_4
MOV PB_I.O,C

MOV C,SKB_55
MOV PB_5.0,C
MOV C,SKB_56
MOV PB_7.2,C

b.) Using Accumulator to Collect Bits

CLR A
MOV C,SKB_14
RLC A
MOV C,SKB_17
RLC A
MOV C, SK1Lll
RLC A
MOV C,SKB_24
RLC A
MOV C,SKB_I
RLC A
MOV C,SKB_5
RLC A
MOV PB_I,A

MOV C,SKB_29
RLC A
MOV C,SKB_32
RLC A
MOV PB_B,A

AP·70

l
CONTROL AND ADDRESS BUSSES

DISPLAY

CPU RAM ROM

KEYBOARD

SYSTEM DATA BUS

DATA
ENCRY'
PTiON
UNIT

I
I

TO
MODEM

203830-8

a.) Using Multi-Chip Processor Technology

'" DISPLAY r ..

r
KEYBOARD

~

..

P2

8051
PO

P1

T.D

R.D ...
TO
MODEM

203830-9

b.) Using One Single-Chip Microcomputer

Figure 11. Secure Banking Terminal Block Diagram

Design Example # 2-Software
Serial 1/0

An exercise often imposed on beginning microcomput­
er students is to write a program simulating a UART.
Though doing this with the 8051 Family may appear to
be a moot point (given that the hardware for a full
UART is on-chip), it is still instructive to see how it
would be done, and maintains a product line tradition.

As it turns out, the 8051 microcomputers can receive or
transmit serial data via software very efficiently using
the Boolean instruction set. Since any I/O pin may be a
serial input or output, several serial links could be
maintained at once.

2-48

Figures 12a and 12b show algorithms for receiving or
transmitting a byte of·data. (Another section of pro­
gram would invoke this algorithm eight times, synchro­
nizing it with a start bit, clock signal, software delay, or
timer interrupt.) Data is received by testing an input
pin, setting the carry to the same state, shifting the
carry into a data buffer, and saving the partial frame in
internal RAM. Data is transmitted by shifting an out­
put buffer through the carry, and generating each bit
on an output pin.

A side-by-side comparison of the software for this com­
mon "bit-banging" application with three different mi­
croprocessor architectures is shown in Table Sa and 5b.
The 8051 solution is more efficient. than the others on
every count!

AP-70

PIN

SET CARRY CLEAR CARRY

203830-10

a.) Reception

203830-11

b.) Transmission

Figure 12. Serial 110 Algorithms

2-49

AP-70

Table 5. Serial 1/0 Programs for Various Microprocessors

a.) Input Routine.

BOBS

I~ SFRI'OR I
A"I MASK
.IZ 10
CMC

10. I XI HI..SERBlIF
MOV A.M
RR
MOV M.A

RFSlll TS:

K I"STRITTiO~S
14 BYTES
56 S rATES
19 uSEC

b.) Output Routine.

BOBS

I XI HI .SfRBlI~
MOV A.M
RR
MOV
1:-;
.IC

10. A:-;I
.IMP

HI: ORI
O'"l:OIIT

M.A
SERPORT
HI
'lOT MASK
C'IT
MASK
SFRI'OR r

RESULTS:

10lNSTRUCTIO)l;S
20 BYTES
72 STATES
24 uSEC

HI:

("'"

B04B

CI R C
.1"10 10
CPI ("
MOV RfI .• SFRBI'r
MOV A.@RO
RRC A
MOV @RfI.A

7 I~S I R l TTlO~S
9 BY I FS
9 CYCI.ES

12.5 uSFC

B048

MOV RO.'SERBII~
MOV A.@RO
RRC A
MOV @RO.A

.IC HI
A'\1. SERPRT .• '\oT MASK
.IMP C:-;T
ORI. SERPRT.'MASK

K I)I;STRlICTiONS
13 BYTES
II CYCLES
27.5 uSEC

8051

MO\' C.SERI'I"

MOV A.S[RBl·r
RRC A
MOV SERBIIF.A

4 I,\S rRl'CTIO'\S
7 BYTES
4 CYCI.FS
4 uSFC

8051

MOV A.sERBl'F
RRC A
MOV SERBl'F.A

MOV SERPI'\.C

4 INSTR UCTIONS
7 BYTES
5 CYCLES
5 uSEC

203830-30

Design Example # 3-Combinatorial
Logic Equations

Figure 13 shows TTL and relay logic diagrams for a
function of the six variables U through Z. Each is a
solution of the equation.

Next we'll look at some simple uses for bit-test instruc­
tions and logical operations. (This example is also pre­
,sented in Application Note AP-69.)

Virtually all hardware designers have solved complex
functions using combinatorial logic. While the hard­
ware involved may vary from relay logic, vacuum
tubes, or TTL or to more esoteric technologies like flu­
idics, in each case the goal is the same: to solve a prob­
lem represented by a logical function of several Boolean
variables.

Q. = (U • (V + W)) + (X. '1) + Z

Equations of this sort might be reduced using Kar­
naugh Maps or algebraic techniques, but that is not the
purpose of this examp1e. As the logic complexity in­
creases, so does the difficulty of the reduction process.
Even a minot; change to the function equations as the
design evolves would require tedious re-reduction from
scratch.

2-50

AP-70

u

v

w

x
y

z

r----a

203830-12
Q = (U • (V + W)) + (X. Y) + Z

a.) Using TTL

v

u

y

CR1

CR2

a

z

203830-13

b.) Using Relay Logic

Figure 13. Hardware Implementations of Boolean Functions

For the sake of comparison we will implement this
function three ways, restricting the software to three
proper subsets of the MCS-Sl instruction set. We will
also assume that U and V are input pins from different
input ports, Wand X are status bits for two peripheral
controllers, and Y and Z are software flags set up earli·
er in the program. The end result must be written

2-51

to an output pin on some third port. The first two im­
plementations follow the flow-chart shown in Figure
14. Program flow would embark on a route down a
test-and-branch tree and leaves either the "True" or
"Not True" exit ASAP-as soon as the proper result
has been determined. These exits then rewrite the out­
put port with the result bit respectively one or zero.

AP-70

FUNCTION
IS FALSE

CLEAR a

Figure 14. Flow Chart for
Tree-Branching Algorithm

FUNCTION
IS TRUE

203830-14

Other digital computers must solve equations of this
type with standard word-wide logical instructions and
conditional jumps. So for the first implementation, we
won't use any generalized bit-addressing instructions.
As we shall soon see, being constrained to such an in­
struction subset produces somewhat sloppy software
solutions. MCS-51 mnemonics are used in Example 2a:
other machines might further cloud the situation by
requiring operation-specific mnemonics like INPUT,
OUTPUT, LOAD, STORE, etc., instead of the MOV
mnemonic used for all variable transfers in the 8051
instruction set.

The code which results is cumbersome and error prone.
It would be difficult to prove whether the software
worked for all input combinations in programs of this
sort. Furthermore, execution time will vary widely with
input data.

Thanks to the direct bit-test operations, a single in­
struction can replace each move mask conditional jump
sequence in Example 2a, but the algorithm would be
equally convoluted (see Example 2b). To lessen the
confusion "a bit"' each input variable is assigned a sym­
bolic name .

. A more elegant and efficient implementation (Example
2c) strings together the Boolean ANL and ORL func­
tions to generate the output function with straight-line
code. When finished, the carry flag contains the result,
which is simply copied out to the destination pin. No
flow chart is needed-<:ode can be written directly from
the logic diagrams in Figure 14. The result is simplicity
itself: fast, flexible, reliable, easy to design, and easy to
debug.

An 8051 program can simulate an N-input AND or·
OR gate with at most N + 1 lines of source program­
one for each input and one line to store the results. To
simulate NAND and NOR gates, complement the car­
ry after computing the function. When some inputs to'
the gate have "inversion bubbles", perform the ANL or
ORL operation on inverted operands. When the first
input is inverted, either load the operand into the carry
and then complement it, or use DeMorgan's Theorem
to convert the gate to a different form.

2-52

Example 2. Software Solutions to Logic Function of
Figure 13.

a.) Using only byte-wide logical instructions

:BFUNCI SOLVE RANDOM LOGIC
FUNCTION OF 6 VARIABLES
BY LOADING AND MASKING
THE APPROPRIATE BITS IN
THE ACCUMULATOR. THEN
EXECUTING CONDITIONAL
JUMPS BASED ON ZERO
CONDITION. (APPROACH USED
BY BYTE-ORIENTED
ARCHITECTURES. 1 BYTE AND
MASK VALUES CORRESPOND TO
RESPECTIVE BYTE ADDRESS
AND BIT POSITIONS.

OUTBUF DATA 22H
;OUTPUT PIN STATE MAP

inter

TESTV: MOV A,P2
ANL A,#OOOOOlOOB
JNZ TESTU
MOV A,TCON
ANL A,#OOlOOOOOB
JZ TESTX

TESTU: MOV A,Pl
ANL A,#OOOOOOlOB
JNZ SETQ

TESTX: MOV A,TCON
ANL A,#OOOOlOOOB
JZ TESTZ
MOV A,20H
ANL A,#OOOOOOOlB
JZ SETQ

TESTZ: MOV A,21H
ANL A,#OOOOOOlOB
JZ SETQ

CLRQ: MOV A,OUTBUF
ANL A,#llllOlllB
JMP OUTQ

SETQ: MOV A,OUTBUF
ORL A,#OOOOlOOOB

OUTQ: MOV OUTBUF,A
MOV P3,A

b.) Using only bit-test instructions

:BFUNC2 SOLVE A RANDOM LOGIC
FUNCTION OF 6 VARIABLES
BY DIRECTLY POLLING EACH
BIT. (APPROACH USING
MCS-51 UNIQUE BIT-TEST
INSTRUCTION CAPABILITY.)
SYMBOLS USED IN LOGIC
DIAGRAM ASSIGNED TO
CORRESPONDING 8x51 BIT
ADDRESSES.

AP-70

2-53

U BIT Pl.l
V BIT P2.2
W BIT TFO
X BIT IEl
Y BIT 20H.O
Z BIT 21H.l
Q BIT P3.3
,
TEST_V: JB V,TEST_U

JNB W,TEST_X
TEST_U: JB U,SET_Q
TEST_X: JNB X,TEST_Z

JNB Y,SET_Q
TEST_Z: JNB Z,SET_Q
CLR_Q: CLR Q

JMP NXTTST
SET_Q: SETB Q
NXTTST:(CONTINUATION OF

: PROGRAM)

c.) Using logical operations on Boolean variables

:FUNC3 SOLVE A RANDOM LOGIC
FUNCTION OF 6 VARIABLES
USING STRAIGHT_LINE
LOGICAL INSTRUCTIONS ON
MCS-51 BOOLEAN VARIABLES.

;
MOV C,V
ORL C,W
ANL C,U
MOV FO,C
MOV C,X
ANL C,Y
ORL C,FO
ORL C,Z

MOV Q,C

;OUTPUT OF OR GATE
;OUTPUT OF TOP AND GATE
;SAVE INTERMEDIATE STATE

;OUTPUT OF BOTTOM AND GATE
;INCLUDE VALUE SAVED ABOVE
;INCLUDE LAST INPUT
;VARIABLE
;OUTPUT COMPUTED RESULT

inter AP-70

An upper-limit can be placed on the complexity of soft­
ware to simulate a large number of gates by summing
the total number of inputs and outputs. The actual total
should be somewhat shorter, since calculations can be
"chained," as shown. The output of one gate is often
the first input to another, bypassing the intermediate
variable to eliminate two lines of source.

Design Example # 4-Automotive
Dashboard Functions

Now let's apply these techniques to designing the soft­
ware for a complete controller system. This application
is patterned after a familiar real-world· application
which isn't nearly as trivial as it might first appear:
automobile turn signals.

Imagine the three position turn lever on the steering
column as a single-pole, triple-throw toggle switch. In
its central position all contacts are open. In the up or
down positions contacts close causing corresponding
lights in the rear of the car to blink. So far very simple.

Two more turn signals blink in the front of the car, and
two others in the dashboard. All six bulbs flash when
an emergency switch is closed. A thermo-mechanical
relay (accessible under the dashboard in case it wears
out) causes the blinking.

Applying the brake pedal turns the tail light filaments
on constantly ... unless a turn is in progress, in which
case the blinking tail light is not affected. (Of course,
the front turn signals and dashboard indicators are not
affected by the brake pedal.) Table 6 summarizes these
operating modes.

Table 6. Truth Table for Turn-Signal Operation

Input Signals Output Signals

Brake Emerg.
Left Right Left Right

Left Right
Turn Turn Front Front

Switch Switch
Switch Switch & Dash & Dash

Rear Rear

0 0 0 0 Off Off ' Off Off
0 0 0 1 Off Blink Off Blink
0 0 1 0 Blink Off Blink Off

0 1 0 0 Blink Blink Blink Blink
0 1 0 1 Blink Blink Blink Blink
0 1 1 0 Blink Blink Blink Blink

1 0 0 0 Off Off On ' On
1 0 0 1 Off Blink On Blink
1 0 1 0 Blink Off Blink On

1 1 0 0 Blink Blink On On
1 1 0 1 Blink Blink On Blink
1 1 1 0 Blink Blink Blink On

2-54

Ap·70

But we're not done yet. Each of the exterior turn signal
(but not the dashboard) bulbs has a second, somewhat
dimmer filament for the parking lights. Figure 15
shows TTL circuitry which could control all six bulbs.
The signals labeled "High Freq." and "Low Freq." rep­
resent two square-wave inputs. Basically, when one of
the turn switches is closed or the emergency switch is
activated the low frequency signal (about 1 Hz) is gated
through to the appropriate dashboard indicator(s) and
turn signal(s). The rear signals are also activated when
the brake pedal is depressed provided a turn is not be­
ing made in the same direction. When the parking light
switch is closed the higher frequency oscillator is gated
to each front and rear turn signal, sustaining a low-in­
tensity background level. (This is to eliminate the need
for additional parking light filaments.)

In most cars, the switching logic to generate these func­
tions requires a number of multiple-throw contacts. As
many as 18 conductors thread the steering column of
some automobiles solely for turn-signal and emergency
blinker functions. (The author discovered this recently
to his astonishment and dismay when replacing the
whole assembly because of one burned contact.)

A multiple-conductor wiring harness runs to each cor­
ner of the car, behind the dash, up the steering column,
and down to the blinker relay below. Connectors at

L. TURN
EMERG

BRAKE

R.TURN

each termination for each filament lead to extra cost
and labor during construction, lower reliability and
safety, and more costly repairs. And considering the
system's present complexity, increasing its reliability or
detecting failures would be quite difficult.

There are two reasons for going into such painful detail
describing this example. First, to show that the messiest
part of many system designs is determining what the
controller should do. Writing the software to solve
these functions will be comparatively easy. Secondly, to
show the many potential failure points in the system.
Later we'll see how the peripheral functions and intelli­
gence built into a microcomputer (with a little creativi­
ty) can greatly reduce external interconnections and
mechanical part count.

The Single-Chip Solution

The circuit shown in Figure 16 indicates five input pins
to the five input variables-left-turn select, right-turn
select, brake pedal down, emergency switch on, and
parking lights on. Six output pins turn on the front,
rear, and dashboard indicators for each side. The mi­
crocomputer implements all logical functions through
software, which periodically updates the output signals
as time elapses and input conditions change.

1---.... ------ L. DASH

L. FRNT

L. REAR

}--.... +----- R. DASH

R.FRNT

R.REAR

PARK --------------~---~~

LO.
FREO.

OSCILLATOR

HI.
FREO.
OSCILLATOR

Figure 15. TTL Logic Implementation of Automotive Turn Signals

2-55

203830-15

inter AP-70

BRAKE
PEDAL

EMERGENCY
SWITCH

PARKING
LIGHTS

TURN
SWITCH

....

MODE
SENSORS

LE"

RIGHT

+12V

SIGNAL
CONDITIONING

8051

Pl.5
Pl.0

Pl:l P1.I

Pl.2
P1.7

Pl.3

P2.0

Pl.4

P2.1

P2.2

+12V

LE"
FRONT

RIGHT
FRONT

LE"
OASHIOA.IID

RIGHT
DASHBOARD

LE"
REAR

RIGHT
.)r--~~--' REAR

•
CONTROLLER OUTPUT SIGNAL

BUFFERS BULBS

203830-16

Figure 16. Microcomputer Turn-Signal Connections

Design Example # 3 demonstrated that symbolic ad­
dressing with user-defined bit names makes code and
documentation easier to write and maintain. Accord­
ingly, we'll assign these I/O pins names for use
throughout the program. (The format of this example
will differ somewhat from the others. Segments of the
overall program will be preSented in sequence as each is
described.)

INPUT PIN DECLARATIONS:
;(ALL INPUTS ARE POSITIVE-TRUE LOGIC)

BRAKE BIT Pl.O ;BRAKE PEDAL
;DEPRESSED

EMERG BIT Pl.l ;EMERGENCY BLINKER
;ACTIVATED

PARK BIT Pl.2 ;PARKING LIGHTS ON
I_TURN BIT Pl.3 ;TURN LEVER DOWN
R_TURN BIT P1.4 ;TURN LEVER UP

OUTPUT PIN DECLARATIONS:

I~FRNT BIT Pl.5 ;FRONT LEFT-TURN
;INDICATOR

R_FRNT BIT Pl.6 ;FRONT RIGHT-TURN
;INDICATOR

I_DASH BIT Pl.7 ;DASHBOARD LEFT-TURN
;INDICATOR

R_DASH BIT P2.0 ;DASHBOARD RIGHT­
;TURN INDICATOR

I_REAR BIT P2.l.;REAR LEFT-TURN
;INDICATOR

R_REAR BIT P2.2 ;REAR RIGHT-TURN
;INDICATOR

Another key advantage of symbolic addressing will ap­
pear further on in the design cycle. The locations of
cable connectors, signal conditioning circuitry, voltage
regulators, heat sinks, and the like all affect P.C. board
layout. It's quite likely that the somewhat arbitrary pin
. assignment defined early in the software design cycle
will prove to be less than optimum; rearranging the I/O
pin assignment could well allow a more compact mod­
ule, or eliminate costly jumpers on a single-sided board.
(These considerations apply especially to automotive
and other. cost-sensitive applications needing single­
chip controllers.) Since other architectures mask bytes
or use "clever" algorithms to isolate bits by rotating
them into the carry, re-routing an input signal (from bit
I of port I, for example, to bit 4 of port 3) could require

. extensive modifications throughout the software.

The Boolean Processor's direct bit addressing makes
such changes absolutely trivial. The number of the port
containing the pin is irrelevent, and masks and complex

2-56

intJ AP-70

program structures are not needed. Only the initial
Boolean variable declarations need to be changed;
ASM51 automatically adjusts all addresses and symbol­
ic references to the reassigned variables. The user IS
assured that no additional debugging or software verifi­
cation will be required.

;INTERRUPT RATE
SUB_DIV DATA
;HIGH-FREQUENCY

HLFREQ BIT
;LOW-FREQUENCY

LO_FREQ BIT

JMP
ORG
INIT

SUBDIVIDER
20H

OSCILLATOR BIT
SUB_DIV,O

OSCILLATOR BIT
SUB_DIV,7

OOOOH

ORG lOOH
;PUT TIMER 0 IN MODE 1
INIT; MOV TMOD,#OOOOOOOlB
;INITIALIZE TlMER REGISTERS

MOV TLO,#O
MOV THO,#-l6

;SUBDIVIDE INTERRUPT RATE BY 244
MOV SUB_DIV,#244

;ENABLE TIMER INTERRUPTS
SETB ETO

;GLOBALLY ENABLE ALL INTERRUPTS
SETB EA

;START TIMER
SETB TRO

;(CONTINUE WITH BACKGROUND PROGRAM)

;PUT TIMER 0 IN MODE 1
;INITIALIZE TIMER REGISTERS

;SUBDIVIDE INTERRUPT RATE BY 244
;ENABLE TIMER INTERRUPTS
;GLOBALLY ENABLE ALL INTERRUPTS
;START TIMER

Timer 0 (one of the two on-chip timer counters) re­
places the thermo-mechanical blinker relay in the dash­
board controller. During system initialization it is con­
figured as a timer in mode 1 by setting the least signifi­
cant bit of the timer mode register (TMOD). In this
configuration the low-order byte (TLO) is incremented
every machine cycle, overflowing and incrementing the
high-order byte (THO) every 256 J.Cos. Timer interrupt 0
is enabled so that a hardware interrupt will occur each
time THO overflows.

An eight-bit variable in the bit-addressable RAM array
will be needed to further subdivide the interrupts via
software. The lowest-order bit of this counter toggles
very fast to modulate the parking lights: bit 7 will be

2-57

"tuned" to approximately I Hz for the turn- and emer­
gency-indicator blinking rate.

Loading THO with -16 will cause an interrupt after
4.096 ms. The interrupt service routine reloads the
high-order byte of timer 0 for the next interval, saves
the CPU registers likely to be affected on the stack, and
then decrements SUB_DIY. Loading SUB_DIY.
with 244 initially and each time it decrements to zero
will produce a 0.999 second period for the highest-or­
der bit.

ORG OOOBH ;TIMER 0 SERVICE VECTOR
MOV THO,#-l6
PUSH PSW
PUSH ACC
PUSH B
DJNZ SUB_DIV,TOSERV
MOV SUB_DIV,#244

The code to sample inputs, perform calculations, and
update outputs-the real "meat" of the signal control­
ler algorithm-may be performed either as part of the
interrupt service routine or as part of a background
program loop. The only concern is that it must be exe­
cuted at least serveral dozen times per second to pre­
vent parking light flickering. We will assume the for­
mer case, and insert the code into the timer 0 service
routine.

First, notice from the logic diagram (Figure 15) that
the subterm (PARK • H_FREQ), asserted when the
parking lights are to be on dimly, figures into four of
the six output functions. Accordingly, we will first
compute that term and save it in a temporary location
named "DIM". The PSW contains two general purpose
flags: FO, which corresponds to the 8048 flag of the
same name, and PSW.l. Since the PSW has been saved
and will be restored to its previous state after servicing
the interrupt, we can use either bit for temporary stor­
age.

DIM BIT PSW.l ;DECLARE TEMP
;STORAGE FLAG

MOV C,PARK

ANL HLFREQ

MOV DIM,C

;GATE PARKING
;LIGHT SWITCH
;WITH HIGH
;FREQUENCY
;SIGNAL
;AND SAVE IN
;TEMP. VARIABLE

This simple three-line section of code illustrates a re­
markable point. The software indicates in very abstract
terms exactly what function is being performed, inde-

AP-70

pendent of the hardware configuration. The fact that
these three bits include an input pin, a bit within a
program variable, and a software flag in the PSW is
totally invisible to the programmer.

Now generate and output the dashboard left tum sig­
nal.

MOV C,L_TURN ;SET CARRY IF
; TURN

ORL C,EMERG ;OR EMERGENCY
;SELECTED

ANL C,LO_FREQ ;GATE IN 1 HZ
;SIGNAL

MOV LDASH,C ;AND OUTPUT TO
;DASHBOARD

To generate the left front tum signal we only need to
add the parking light function in FO. But notice that the
function in the carry will also be needed for the rear
signal. We can save effort later by saving its current
state in FO.

MOV FO,C ;SAVE FUNCTION
:SO FAR

ORL C,DIM :ADD IN PARKING
;LIGHT FUNCTION

MOV L_FRNT,C ;AND OUTPUT TO
:TURN SIGNAL

Finally, the rear left tum signal should also be on when
the brake pedal is depressed, provided a left tum is not
in progress.

MOV C,BRAKE ;GATE BRAKE
;PEDAL SWITCH

ANL C,L_TURN ;WITH TURN
;LEVER

ORL C,FO ;INCLUDE TEMP.
;VARIABLE FROM DASH

ORL C,DIM

'MOV L_REAR, C

;AND PARKING
;LIGHT FUNCTION
;AND OUTPUT TO
;TURN SIGNAL

Now we have to go through a similar sequence for the
right-hand equivalents to all the left-tum lights. This
also gives us a chance to see how the code segments

. above look when combined.

MOV C.R_TURN ;SET CARRY H­
;TURN

ORL C.EMERG ;OR EMERGENCY
;SELECTED

ANL C,LO_FREQ ;IF SO. GATE IN 1
;HZ SIGNAL

MOV R_DASH.C ;AND OUTPUT TO
;DASHBOARD .

MOV FO.C ;SAVE FUNCTION
;SO FAR

ORL C.DIM ;ADD ni PARKING.
;LIGHT FUNCTION

MOV R_FRNT.C ;AND OUTP~T TO
;TURN SIGNAL

MOV C.BRAKE ;GATE BRAKE
:PEDAL SWITCH

ANL C. R_TURN' ;WITH TURN
;LEVER

ORL C.FO ;INCLUDE TEMP.
;VARIABLE FROM
;DASH

ORL C.DIM ;AND PARKING
;LIGHT FUNCTION

MOV R_REAR.C ;AND OUTPUT TO
;TURN SIGNAL

(The perceptive reader may notice that simply rear­
rapging the steps could eliminate one instruction from
each sequence.)

Now that all six bulbs are in the proper states, we can
return from the interrupt routine, and the program is
finished. This code essentially needs to reverse the
status saving steps at the beginning of the interrupt.

Table 7 Non-Trivial Duty Cycles

Sub_Div Bits Duty Cycles
7 6 5 4 3 2 1 0 12.5% 25.0% 37.5% 50.0% 62.5% 75.0% 87.5%

X X X X X 0 0 0 Off Off Off Off Off Off Off
X X X X X 0 0 1 Off Off Off Off Off Off On
X X X X X 0 1 0 Off Off Off Off Off On On
X X X X X 0 1 1 Off Off Off Off On On On
X X X X X 1 0 0 Off Off Off On On On On
X X X X X 1 0 1 Off Off On On On On On
X X X X X 1 1 0 Off On On On On On On
X X X X X 1 1 1 On On On On On On On

2-58

infef AP-70

POP B

POP ACC
POP psw
RETI

;RESTORE CPU
;REGISTERS.

Program Refillemellts. The luminescence of an incan­
descent light bulb filament is generally non-linear: the'
50% duty cycle of HI_FREQ may not produce the
desired intensity. If the application requires, duty cy­
cles of 25%, 75%, etc. are easily achieved by ANDing
and ORing in additional low-order bits of SUB_DIY.
For example, 30 H/ signals of seven different duty cy­
cles could be produced by considering bits 2-0 as
shown in Table 7. The only software change required
would be to the code which sets-up variable DIM;

MOV C,SUB_DIV.l;START WITH 50
;PERCENT

ANL C,SUB_DIV.O;MASK DOWN TO 25
, ;PERCENT

ORL C,SUB_DIV.2;AND BUILD BACK TO
;62 PERCENT

MOV DIM,C ;DUTY CYCLE FOR
;PARKING LIGHTS.

Interconnections increase cost and decrease reliability.
The simple buffered pin-per-function circuit in Figure
16 is insufficient when many outputs require higher­
than-TTL drive levels. A lower-cost solution uses the
8051 serial port in the shift-register mode to augment
I/O. In mode 0, writing a byte to the serial port data
buffer (SBUF) causes the data to be output sequentially
through the "RXD" pin while a burst of eight clock
pulses is generated on the "TXD" pin. A shift register
connected'to these pins (Figure 17) will load the data
byte as it is shifted out. A number of special peripheral

8051

P3.0 I------""i DATA 07

P3.1 I----..... ~ eLK

driver circuits combining shift-register inputs with high
drive level outputs have been introduced recently.

Cascading multiple shift registers end-to-end will ex­
pand the number of outputs even further. The data rate
in the I/O expansion mode is one megabaud, or 8 fLs.
per byte. This is the mode which the serial port defaults
to following a reset, so no initialization is required.

The software for this technique uses the B register as a
"map" corresponding to the different output functions.
The program manipulates these bits instead of the out­
put pins. After all functions have been calculated the B
register is shifted by the serial port to the shift-register
driver. (While some outputs may glitch as data is shift­
ed through them, at 1 Megabaud most people wouldn't
notice. Some shift registers provide an "enable" bit to
hold the output states while new data is being shifted
in.)

This is where the earlier decision to address bits sym­
bolically throughout the program is going to payoff.
This major I/O restructuring is nearly as simple to im­
plement as rearranging the input pins. Again, only the
bit declarations need to be changed.

LFRNT BIT B.O ;FRONT LEFT-TURN
;INDICATOR

R_FRNT BIT B.l ;FRONT RIGHT-TURN
;INDICATOR

LDASH BIT B.2 ;DASHBOARD LEFT-TURN
;INDICATOR

R_DASH BIT B.3 ;DASHBOARD RIGHT-TURN
;INDICATOR

LREAR BIT B.4 ;REAR LEFT-TURN
;INDICATOR

R_REAR BIT B.5 ;REAR RIGHT-TURN
;INDICATOR

+12V

01 00

8·BIT SHIFT REGISTER

203830-17

Figure 17. Output Expansion Using Serial Port

2-59

AP-70

The original program to compute the functions need
not change. After computing the output variables, the
control map is transmitted to the buffered shift register
through the serial port.

MOV SBUF,B ;LOAD BUFFER AND TRANSMIT

The Boolean Processor solution holds a number of ad­
vantages over older methods. Fewer switches are re-

. quired. Each is simpler, requiring fewer poles and lower
current contacts. The flasher relay is eliminated entire­
ly. Only six filaments are driven, rather than 10. The
wiring harness is therefore simpler and less expensive-­
one conductor for each of the six lamps and each of the
five sensor switches. The fewer conductors use far few­
er connectors. The whole system is more reliable.

And since the system is much simpler it would be feasi­
ble to implement redundancy and or fault detection on
the four main turn indicators. Each could still be a

P1.5 ~-+-i'"

P1.6 ~--+-....

PH I--+--r

P2.0 1--+-('"

P2.1

P2.2 ~-+-t'

+5V

TO I------t.-_

standard double filament bulb, but with the filaments
driven in parallel to tolerate single-element failures ..

Even with redundancy, the lights will eventually fail.
To handle this inescapable fact current or voltage sens­
ing circuits on each main drive wire can verify that
each bulb and its high-current driver is functioning
properly. Figure 1~ shows one such circuit.

Assume all of the lights are turned on except one: i.e.,
all but one of the collectors are grounded. For the bulb
which is turned off, if there is continuity from + 12V
through the bulb base and filament, the control wire, all
connectors, and the P.C. board traces, and if the tran­
sistor is indeed not shorted to ground, then the collec­
tor will be pulled to + 12V. This turns on the base of
Q8 through the corresponding resistor, and grounds the
input pin, verifying that the bulb circuit is operational.
The continuity of each circuit can be checked by soft­
ware in this way.

WIRING
HARNESS

I

+12V

203830-18

Figure 18

2-60

AP-70

Now turn all the bulbs on, grounding all the collectors.
Q7 should be turned off, and the Test pin should be
high. However, a control wire shorted to + 12V or an
open-circuited drive transistor would leave one of the
collectors at the higher voltage even now. This too
would turn on Q7, indicating a different type offailure.
Software could perform these checks once per second
by executing the routine every time the software count­
er SUB_DIV is reloaded by the interrupt routine.

DJNZ SUB_DIV,TOSERV
MOV SUB_DIV,#244
ORL Pl,#lllOOOOOB

ORL P2,#00000111B
CLR LFRNT

JB TO ,FAULT

SETB L_FRNT

CLR L_DASH
JB TO ,FAULT
SETB L_DASH
CLR L_REAR
JB TO ,FAULT
SETB L_REAR
CLR R_FRNT
JB TO ,FAULT
SETB R_FRNT
CLR R_DASH
JB TO ,FAULT
SETB R_DASH
CLR R_REAR
JB TO ,FAULT
SETB R_REAR

;RELOAD COUNTER
;SET CONTROL
;OUTPUTS HIGH

;FLOAT DRIVE
;COLLECTOR
;TO SHOULD BE
;PULLED LOW
;PULL COLLECTOR
;BACK DOWN

;WITH ALL COLLECTORS
SHOULD BE HIGH .

;IF SO. CONTINUE WITH

GROUNDED. TO

INTERRUPT
ROUTINE. .

JB TO,TOSERV
FAULT:

TOSERV:

;ELECTRICAL
;FAILURE
;PROCESSING
;ROUTINE
;(LEFT TO
;READER'S
;IMAGINATION)
;CONTINUE WITH
; INTERRUPT
;PROCESSING

2-61

The complete assembled program listing is printed in
Appe~dix A. The resulting code consists of 67 program
statements, not counting declarations and comments,
which assemble into 150 bytes of object code. Each pass
through the service routine requires (coincidently)
67 /-Ls plus 32 /-Ls once per second for the electrical test.
If executed every 4 ms as suggested this software would
typically reduce the throughput of the background pro­
gram by less than 2%.

Once a microcomputer has been designed into a system,
new features suddenly become virtually free. Software
could make the emergency blinkers flash alternately or
at a rate faster than the turn signals. Turn signals could
override the emergency blinkers. Adding more bulbs
would allow multiple taillight sequencing and syncopa­
tion-true flash factor, so to speak.

Design Example # 5-Complex Control
Functions

Finally, we'll mix byte and bit operations to extend the
use of 8051 into extremely complex applications.

Programmers can arbitrarily assign I/O pins to input
and output functions only if the total does not exceed
32, which is insufficient for applications with a very
large number of input variables. One way to expand the
number of inputs is with a technique similar to multi­
plexed-keyboard scanning.

Figure 19 shows a block diagram for a moderately com­
plex programmable industrial controller with the fol­
lowing characteristics:

• 64 input variable sensors:

• 12 output signals:

• Combinational and sequential logic computations:

• Remote operation with communications to a host
processor via a high-speed full-duplex serial link:

• Two prioritized external interrupts:

• Internal real-time and time-of-day clocks.

While many microprocessors could be programmed to
provide these capabilities with assorted peripheral sup­
port chips, an 8051 microcomputer needs no other inte­
grated circuits!

The 64 input sensors are logically arranged as an 8x8
matrix. The pins of Port 1 sequentially enable each col­
umn of the sensor matrix: as each is enabled Port 0
reads in the state of each sensor in that column. An
eight-byte block in bit-addressable RAM remembers
the data as it is read in so that after each complete scan .
cycle there is an internal map of the current state of all
sensors. Logic functions can then directly address the
elements of the bit map.

intJ AP-70

+5V
I""

fl.0UF

~
XTALl VCC RST

12M~Z

~ XTAL2

SERIAL \
LINK I

RETURN
LINES

0 8 16 24 32 40 48 56
).,

1 57

2 58
~~ -~rss 8.8
f-~ SENSOR

4 I- MATRIX
60

rs~ 61

6 62

7 15 23 31 39 47 55 63

t ~

/~
SCAN
LINES

RXD

TXD

PO.O

PO.l

PO.2

PO.3

PO.4

PO.5

PO.6

PO.7

Pl.0

Pl.l

Pl.2

Pl.3

Pl.4

Pl.5

Pl.6

Pl.7

-INTO -INTl

8051

P3.4

P3.5

P3.6

P3.7

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

ALE

PSEN

VSS EA

'J:J

f--- N.C

r--- N.C.

I ASYNCHRONANS
I INTERRUPTS

MACHINE
ACTUATORS

203830-19

Figure 19. Block Diagram of 64-lnput Machine Controller

The computer's serial port is configured as a nine-bit
UART, transferring data at 17,000 bytes-per-second.
The ninth bit may distinguish between address and data
bytes.

The 8051 serial port can' be configured to detect bytes
with the address bit set, automatically ignoring all oth­
ers. Pins INTO and INTI are interrupts configured re­
spectively as high-priority, falling-edge triggered and
low-priority, low-level triggered. The remaining 12 I/O
pins output TTL-level control signals to 12 actuators.

2-62

There are several ways to implement the sensor matrix
circuitry, all'logically similar. Figure 20a shows one
possibility. Each of the 64 sensors consists of a pair of
simple switch contacts in series with a diode to permit
multiple contact closures throughout the matrix.

The scan lines from Port 1 provide eight un-encoded
active-high scan signals for enabling columns of the
matrix. The return lines on rows where a contact is
closed are pulled high and read as logic ones. Open
return lines are pulled to ground by one of the 40 kfl.
resistors and are read as zeroes. (The resistor values
must be chosen to ensure all return lines are pulled
above the 2.0V logic threshold, even in the worst-case,

inter AP-70

where all contacts in an enabled column are closed.)
Since PO is provided open-collector outputs and high­
impedance MOS inputs its input loading may be con­
sidered negligible.

The circuits in Figures 20b-20d are variations on this
theme. When input signals must be electrically isolated
from the computer circuitry as in noisy industrial envi­
ronments, phototransistors can replace the switch diode
pairs and provide optical isolation as in Figure 20b.
Additional opto-isolators could also be used on the con­
trol output and special signal lines.

The other circuits assume that input signals are already
at TTL levels. Figure 20c uses octal three-state buffers
enabled by active-low scan signals to gate eight signals
onto Port o. Port 0 is available for memory expansion
or peripheral chip interfacing between sensor matrix
scans. Eight-to-one multiplexers in Figure 20d select
one of eight inputs for each return line as determined
by encoded address bits output on three pins of Port I.
(Five more output pins are thus freed for more control
functions.) Each output can drive at least one standard
TTL or up to 10 low-power TTL loads without addi­
tional buffering.

Going back to the original matrix circuit, Figure 21
shows the mediod used to scan the sensor matrix. Two
complete bit maps are maintained in the bit-addressable
region of the RAM: one for the current state and one
for the previous state read for each sensor. If the need
arises, the program could then sense input transitions
and or debounce contact closures by comparing each
bit with its earlier value.

The code in Example 3 implements the scanning algo­
rithm for the circuits in Figure 20a. Each column is
enabled by setting a single bit in a field of zeroes. The
bit maps are positive logic: ones represent contacts that
are closed or isolators turned on.

2-63

Example 3.
INPUT_SCAN: ;SUBROUTINE TO READ

;CURRENT STATE
;OF 64 SENSORS AND
;SAVE IN RAM 20H-27H

MOV RO.#20H ;INITIALIZE
;POINTERS
;FOR BIT MAP MOV RI,#28H

MOV A,#80H

SCAN; MOV PI,A

RR A

MOV R2,A

MOV A,PO

XCH A.@RO

MOV @RI,A

INC RO
INC RI
MOV A,R2

;BASES .
;SET FIRST BIT
;IN ACC
;OUTPUT TO SCAN
;LINES
;SHIFT TO ENABLE
;NEXT COLUMN
;NEXT
;REMEMBER CUR­
;RENT SCAN
;POSITION
;READ RETURN
;LINES
;SWITCH WITH
;PREVIOUS MAP
;BITS
;SAVE PREVIOUS
;STATE AS WELL
;BUMP POINTERS

;RELOAD SCAN
;LINE MASK

JNB ACC,7;SCAN;LOOP UNTIL ALL
;EIGHT COLUMNS
; READ

RET

inter AP-70

+ SV

J +8x4K

"56"
8051

"0" "8" RETURN
...J......

~~ ~...L.S!z r,lllNES ~

- I- PO.O

"1" "9" "57"

~-1- ~...L.S7
......I.- '
~SZ

- r- T PO.l

1 I~ - PO.2 I 1

+-4 1
I

PO.3
I

I I
PO.4

I

1+ '-+ I
PO.S

PO.&

"7" "15" "63"

...... ~ --L- -L...

...... ~ ,~~
f0- r PO.7

8x40K

=:.;--

Pl.0

Pl.l

Pl.2

Pl.3

Pl.4

Pl.S

Pl.&

Pl.7

SCAN
LINES

203830-20

a.) Using Switch Contact/Diode Matrix

Figure 20. Sensor Matrix Implementation Methods

2-64

infef AP-70

+SV

+8.4K

*
~ .- ~ .r- RETURN

~, "0" C)lA'~ ~¥:rJ"56" "LINES

T L- 1 -- PO.O r- r-

~'l"
~ .-. ~

Cr~l (~'*}S7" r=-- -r--- 1 ~ PO.l

1 - t- PO.2

-- PO.3 ,
I I~I

I I

I
PO.4 ,

'+1+1
po.s

PO.6

*'
n.r-I I IC ~¥¥)"63" C ~A'~"lS"

1 .,...
f- t- 1 -C-

PO.7

8.40K *~ ;.

-
Pl.0

Pl.l

Pl.2

Pl.3

Pl.4

Pl.S

Pl.6

PH

SCAN
LINES

203830-21

b.) Using Optically-Coupled Isolators

Figure 20. Sensor Matrix Implementation Methods (Continued)

2-65

intJ AP-70

ilIiiiii iit!t!!! Itrnnr 805

;: '"
.., .. ;: '"

.., .. ;:
~ ~ ~ >- >- >-

'" '" '" '"
'"

.., .. ;: '" ~ ~ ~ >-
'" '"

.., ..
>- ~ '"

N M .., ..­
>0 > > > > _ _ _ N

.., ..
C! C!

'" '"

I 1 ~r-+-+-+-4-4-4-4-~~~-+-+-+-+~----4-~I~+-+-+-4-4-~~---~POO
~+-+-+-4-4-4-4---~~-+-+-+-+~----4-----~+-+-4-4-~~--~po,

~r-+-+-+-4-+-----~~~-+-+-+----+-------~+-+-+-rl-4---~P02

~+-+-+-4-+-------~~-+-+-+----4---------~+-4-4-~--~P03

~+-+-+-+---------~~~-+----+-----------o~+-4-4----I PO.4
L..-r_r_r_----------.... +4-----r_------------o...-+-+--_l po.s
~+-I-------------~-+----r_----------~+--_l PO.6

~r_--------------...... ----r_-------------~--_l PO.7

I I I I I

I 11l1 __ ~~~.~ E eo .•
----------------------1 Pl.S

~---_l Pl.7

c.) Using TTL Three-State Buffers

Figure 20. Sensor Matrix Implementation Methods (Continued)

L-..--

203830-22

AP-70

-

rrlll!)! rrrri!it nrrnn
DO 01 02 03 04 05 06 07 DO 01 02 03 04 05 06 07

74151 74151 74151

C BAY S C' B A Y 5 C B A Y S

l~
'--------I---I--+--+--------+-+-+--I-------l PO.O

'----------+-++-+------1 PO.l

'--t-r+-rH---t--t--t---+-------i PO.2

4-+-+---Hf----f----l------i PO.3

'-i-t-----+-++-+-------<~ PO.4

'-+---+--+--+---+------1 PO.5

'----t-t-t--+------J PO.6

'-------J PO.7

I II 11 II 11 Il ~-
1 1 1 1 ~ Pl.0

'---------t - -+~_+~_+<~--+4~-H~----<~ Pl.l
'--_______ _ L-...... _ _ _ _~~-----_<~ Pl.2

203830-23

d.} Using TTL Data Selectors

Figure 20. Sensor Matrix Implementation Methods (Continued)

2-67

inter AP-70

INITIALIZE MAP
BUFFER POINTERS
AND SCAN MASK

OUTPUT SCAN
MASK TO SCAN

LINES;
STORE SHIFTED

MASK

READ RETURN
LINES AND UPDATE

BIT MAPS

Figure 21. Flowchart for
Reading in Sensor Matrix

203830-24

What happens after the sensors have been scanned de­
pends on the individual application. Rather than in-

venting some artificial design problem, software corre·
sponding to commonplace logic elements will be dis­
cussed.

Combinatorial Output Variables. An output variable
,,:,hich is a simple (or not so simple) combinational
function of several input variables is computed in the
spirit of Design Example 3. All 64 inputs are represent­
ed in the bit maps: in fact, the sensor numbers in Figure
20 correspond to the absolute bit addresses in RAM!
The code in Example 4 activates an actuator connected
to P2.2 when sensors 12, 23, and 34 are closed and
sensors 45 and 56 are open. .

Example 4.

Simple Combinatorial Output Variabl~s.

;SET P2.2=(12) (23) (34) (45) (56)
MOV C,12
ANL C,23
ANL C,34
ANL C, 45
ANL C, 56
MOV P2.2,C

Intermediate Variables. The examination of a typical
relay-logic ladder diagram will show that many of the
rungs control not outputs but rather relays whose con­
tacts figure into the computation of other fjlnctions. In
effect, these reiays indicate the state of intermediate
variables of a computation.

The MCS-51 solution can use any directly addressable
bit for the storage of such iptermediate variables. Even
when all 128 bits of the RAM array are dedicated (to
input bit maps in this example), the accumulator, PSW,
and B register provide 18 additional flags for intermedi­
ate variables.

For example, suppose switches 0 through 3 control a
safety interlock system. Closing any of them should de­
activate certain outputs. Figure 22 is a ladder diagram
for this situation. The interlock function could be re­
computed for every output affected, or it may be com­
puted once and save (as implied by the diagram). As

- the program proceeds this bit can qualify each output.

2-68

inter
Example 5. Incorporating Override signal into actu­
ator outputs.

CALL INPUT_SCAN
MOV C,O
ORL C,l
ORL C,2
ORL C,3
MOV FO,C

COMPUTE FUNCTION 0

ANL C, FO
MOV PLO,C

COMPUTE FUNCTION 1

ANL C, FO
MOV Pl,l,C

COMPUTE FUNCTION 2

ANL C, FO
MOV Pl,2,C

"0"

1
"1"

.--~ I---+-----i
"2"

"3"

203830-25

Figure 22. Ladder Diagram for
Output Override Circuitry

AP-70

2-69

Latching Relays. A latching relay can be forced into
either the ON or OFF state by two corresponding input
signals, where it will remain until forced onto the oppo­
site state-analogous to a TTL Set/Reset flip-flop. The
relay is used as an intermediate variable for other calcu­
lations. In the previous example, the emergency condi­
tion could be remembered and remain active until an
"emergency cleared" button is pressed.

Any flag or addressable bit may represent a latching
relay with a few lines of code (see Example 6).

Example 6. Simulating a latching relay.

;I_SET SET FLAG 0 IF C=l
LSET: ORL C,FO

MOV FO,C

;I_RSET RESET FLAG 0 IF C=l
LRSET: CPS C

ANL C,FO
MOV FO,C

Time Delay Relays. A time delay relay does not re­
spond to an input signal until it has been present (or
absent) for some predefined time. For example, a bal­
last or load resistor may be switched in series with a
D.C. motor when it is first turned on, and shunted from
the circuit after one second. This sort of time delay may
be simulated by an interrupt routine driven by one of
the two 8051 timer counters. The procedure followed
by the routine depends heavily on the details of the
exact function needed: time-outs or time delays with
resettable or non-resettable inputs are possible. If the
interrupt routine is executed every 10 milliseconds the
code in Example 7 will clear an intermediate variable
set by the background program after it has been active
for two seconds.

Example 7. Code to clear USRFLG after a fixed
time delay.

NXTTST;

JNB USR_FLG,NXTTST
DJNZ DLAY_COUNT,NXTTST
CLR USR_FLG
MOV DLAY_COUNT,#200
, ..

intJ AP-70

Serial Interface to Remote Processor. When it detects
emergency conditions represented by certain input
combinations (such as the earlier Emergency Override),
the controller could shut down the machine immediate­
ly and/or alert the host processor via the serial port.
Code bytes indicating the nature of the problem could
be transmitted to a central computer. In fact, at 17,000
bytes-per-second, the .entire contents of both bit maps
could be sent to the host processor for further analysis
in less than a millisecond! If the host decides that con­
ditions warrant, it could alert other remote processors
in the system that a problem exists and specify which
shut-down sequence each should initiate. For more in­
formation on using the serial port, consult the MCS-51
User's ManuaL

Response Timing

One difference between relay and programmed indus­
trial controllers (when each is considered as a "black
box") is their respective reaction times to input chang­
es. As reflected by a ladder diagram, relay systems con­
tain a large number of "rungs" operating in paralleL A
change in input conditions will begin propagating
through the system immediately, possibly affecting the
output state within milliseconds.

Software, on the other hand, operates sequentially. A
change in input states will not be detected until the next
time an input scan is performed, and will not affect the
outputs until that section of the program is reached.
For that reason the raw speed of computing the logical
functions is of extreme importance.

Here the Boolean processor pays off. Every instruction
mentioned in this Note completes in one or two micro­
seconds-the minimum instruction execution time for
many other microcontrollers! A ladder diagram con­
taining a hundred rungs, with an average of four con­
tacts per rung can be replaced by approximately five
hundred lines of software. A complete pass through the
entire matrix scanning routine and all computations
would require about a millisecond: less than the time it
takes for most relays to change state. .

A programmed controller which simulates each Boole­
an function with a subroutine would be less efficient by
at least an order of magnitude. Extra software is needed
for the simulation routines, and each step takes longer
to execute for three reasons: several byte-wide logical
instructions are executed per user program step (rather
than one Boolean operation): most of those instructions
take longer to execute with microprocessors performing
mUltiple off-chip accesses: and calling and returning
from the various subroutines requires overhead for
stack operations.

In fact, the speed of the Boolean Processor solution is
likely to be much faster than the system requires. The
CPU might use the time left over to compute feedback'
parameters, collect and analyze execution statistics,
perfoTm system diagnostics, and so forth.

Additional Functions and Uses

With the building-block basics mentioned above many
more operations may be synthesized by short instruc­
tion sequences.

Exclusive-OR. There are no common mechanical devic­
es or relays analogous to the Exclusive-OR operation,
so this instruction was omitted from the Boolean
Processor. However, the Exclusive-OR or Exclusive­
NOR operation may be performed in two instructions
by conditionally complementing the carry or a Boolean
variable based on the state of any other testable bit.

;EXCLUSIVE-;OR FUNCTION IMPOSED ON CARRY
;USING FO IS INPUT VARIABLE.
;XOR_FO: JNB FO,XORCNT ;("JB" 'FOR X-NOR)

CPL C
;XORCNT: ••••••••

XCH. The contents of the' carry and some other bit may
be exchanged (switched) by using the accumulator as
temporary storage. Bits can be moved into and out of
the accumulator simultaneously using the Rotate-

2-70

inter AP-70

through-carry instructions, though this would alter the
accumulator data.

;EXCHANGE CARRY WITH USRFLG
XCHBIT: RLC A

MOV C,USR_FLG
RRC A
MOV USR_FLG,C
RLC A

Extended Bit Addressing. The 8051 can directly address
144 general-purpose bits for all instructions in Figure
3b. Similar operations may be extended to any bit any­
where on the chip with some loss of efficiency.

The logical operations AND, OR, and Exclusive-OR
are performed on byte variables using six different ad­
dressing modes, one of which lets the source be an im­
mediate mask, and the destination any directly address­
able byte. Any bit may thus be set, cleared, or comple­
mented with a three-byte, two-cycle instruction if the
mask has all bits but one set or cleared.

Byte variables, registers, and indirectly addressed RAM
may be moved to a bit addressable register (usually the
accumulator) in one instruction. Once transferred, the
bits may be tested with a conditional jump, allowing
any bit to be polled in 3 microseconds-still much fast­
er than most architectures-or used for logical calcula­
tions. (This technique can also simulate additional bit
addressing modes with byte operations.)

Parity of bytes or bits. The parity of the current accu­
mulator contents is always available in the PSW, from
whence it may be moved to the carry and further
processed. Error-correcting Hamming codes and simi­
lar applications require computing parity on groups of
isolated bits. This can be done by conditionally comple­
menting the carry flag based on those bits or by gather­
ing the bits into the accumulator (as shown in the DES
example) and then testing the parallel parity flag.

Multiple byte shift and CRC codes

Though the 8051 serial port can accommodat~ eight- or
nine-bit data transmissions, some protocols involve
much longer bit streams. The algorithms presented in

2-71

Design Example 2 can be extended quite readily to 16
or more bits by using multi-byte input and output buff­
ers.

Many mass data storage peripherals and serial commu­
nications protocols include Cyclic Redundancy (CRC)
codes to verify data integrity. The function is generally
computed serially by hardware using shift registers and
Exclusive-OR gates, but it can be done with software.
As each bit is received into the carry, appropriate bits
in the multi-byte data buffer are conditionally comple­
mented based on the incoming data bit. When finished,
the CRC register contents may be checked for zero by
ORing the two bytes in the accumulator.

4.0 SUMMARY

A truly unique facet of the Intel MCS-51 microcomput­
er family design is the collection of features optimized
for the one-bit operations so often desired in real-world,
real-time control applications. Included are 17 special
instructions, a Boolean accumulator, implicit and direct
addressing modes, program and mass data storage, and
many I/O options. These are the world's first single­
chip microcomputers able to efficiently manipulate, op­
erate on, and transfer either bytes or individual bits as
data.

This Application Note has detailed the information
needed by a microcomputer system designer to make
full use of these capabilities. Five design examples were
used to contrast the solutions allowed by the 8051 and
those required by previous architectures. Depending on·
the individual application, the 8051 solution will be eas­
ier to design; more reliable to implement, debug, and
verify, use less program memory, and run up to an or­
der of magnitude faster than the same function imple­
mented on previous digital computer architectures.

Combining byte- and bit-handling capabilities in a sin­
gle microcomputer has a strong synergistic effect: the
power of the result exceeds the power of byte- and bit­
processors laboring individually. Virtually all user ap­
plications will benefit in some way from this duality ..
Data intensive applications will use bit addressing for
test pin monitoring or program control flags: control
applications will use byte manipulation for parallel I/O
expansion or arithmetic calculations.

It is hoped that these design examples give the reader
an appreciation of these unique features and suggest
ways to exploit them in his or her own application.

I\)

~

ISIS-II MCS-51'MACRO ASSEMBLER VI.O
OB~ECT MODULE PLACED IN FO AP70 HEX
ASSEMBLER INVOKED BY' F1.asm51 ap70 sre d~te(328)

LOC OB~ LINE SOURCE

0090
0091
0092
0093
0094

0095
0096
0097
OOAO
OOAI
00A2

00A3

0020
0000
0007

OODI

2
3
4
:;
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 +1

$XREF TITLE(AP-70 APPENDIX)
.**

THE FOLLOWING PROGRAM USES THE BOOLEAN INSTRUCTION SET
OF THE INTEL E051 MICROCOMPUTER TO PERFORM A ~UMBER OF
AUTOMOTIVE DASHBOARD CONTROL FUNCTIONS RELATING TO
TURN SIGNAL CONTROL. EMERGENCY BLINKERS. BRAKE LIGHT
CONTROL. AND PARKING LIGHT OPERATION.
THE ALGORITHMS AND HARDWARE ARE DESCRIBED IN DESJGN
EXAMPLE .4 OF INTEL. APpLICATION NOTE AP-70.

"USING THE INTEL MCS-51<TM)
BOOLEAN PROCESSING CAPABILITIES"

i**"'**************************************.***************

INPUT PIN DECLARATIONS
(ALL INPUTS ARE POSITIVE-TRUE LOGIC·

INPUTS ARE HIGH WHEN'RESPECTIVE SWITCH CON1ACT IS CLOSED)

BRAKE BIT PI 0 BRAKE PEDAL DEPRESSED
EMERG BIT PI I EMERGENCY BLINKER ACTIVATED
PARK BIT PI. 2 PARKING LIGHTS ON
L_TURN BIT PI 3 TURN LEVER DOWN
R_TURN BIT PI 4 TURN LEVER UP

OUTPUT PIN DECLARATIONS'
(ALL OUTPUTS ARE POSITIVE TRUE LOGIC
BULB IS TURNED ON'WHEN OUTPUT PIN IS HIGH.)

L_FRNT BIT PI 5 FRONT LEFT-TURN INDICATOR
RJRNT BIT PI 6 FRONT RIGHT-TURN INDICATOR
L_DASH BIT PI 7 DASHBOARD LEFT-TURN INDICATOR
R_DASH BIT P2 0 DASHBOARD RIGHT-TURN INDICATOR
L_REAR BIT P2 I REAR LEFT-TURN INDICATOR
R_REAR BIT P2 2 REAR RIGHT-TURN INDICATOR

S_FAIL BIT P2. ;) ELECTRICAL SYSTEM FAULT INDICATOR

INTERNAL VARIABLE.DEFINITIONS·

SUB DIV DATA 20H INTERRUPT·RATE SUBDIVIDER
HI_FREG BIT SUB DIV 0 HIGH-FREGUENCY OSCILLATOR BIT
LO_FREG. BIT SUB_DIV 7 LOW-FREGUENCY OSCILLATOR BIT'

DIM BIT PSW I PARKING LIGHTS ON FLAG

j===
$E~ECT

203830-26

0»
Or::
::s­
-0
"'3 &0»
~2:"'O

-"'0 "'OCD m z
Oce CC-,_
... :s>< m.
35'»

a. 1_. -·n !Lm -.-::so cc-.

l

»
l'
o

I\)

~

LOC ODJ

0000 020040

0000
OOOB 7:18CFO
OOOE CODO
0010 0154

0040
0040 758AOO
0043 758CFO
0046 758961

0049 7520F4
004C D2A9
004E D2AF
0050 D28C
0052 80FE

0054 D52038
0057 7520F4

005A 4390EO
005D 43A007
0060 C295
0062 20S428
0065 D295
0067 C297
0069 208421
006C D297
006E C2Al
0070 20B41A
0073 D2Al
0075 C296
0077 20B413
007A D296
007C C2AO
007E 20B40C
0081 D2AO
00B3 C2A2
00B5 20B405
OOBB D2A2

aOSA 200402
OOBD B2A3

LINE

49
50
51
5~
53
54
55
56
57
5B
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
7B
79~

BO
Bl
B2
B3
84
85
B6
87
BB
B9
90
91
92

SOURCE

ORG
LJMP

ORG
MOV
PUSH
AJMP

ORG
INIT MOV

MOV
MOV ~

MOV
SETB
SETB
SEHI
SJMP

UPDATE DJNZ
MOV

ORL
ORL
CLR
JB
SETB
CLR
JB
SETB
CLR
JB
SETB
CLR
JB
SETB
CLR
JB
SETB
CLR
JB
SETB

OOOOH
INIT

OOOBH
THO. 11-16
PSW
UPDATE

0040H
TLO.1I0
THO.1I-16
TMOD.1I01100001B

SUB_DIV.1I244
ETO
EA
TRO
$

SUB_DIV. TOSERV
SUB_DIV.1I244

PI.llll100000B
P2.1I00000IIIB
L_FRNT
TO. FAULT
L_FRNT
L_DASH
TO. FAULT
L_DASH
L_REAR
TO. FAULT
L_REAR
RJRNT
TO. FAULT
R_FRNT
R DASH
TO. FAULT
R_DASH
R_REAR
TO. FAULT
R_REAR

RESET VECTOR

TIMER 0 SERVICE VECTOR
HIGH TIMER BYTE ADJUSTED TO CONTROL INT RATE
EXECUTE CODE TO SAVE ANY REGISTERS USED BELOW

(CONTINUE WITH REST OF ROUTINE)

ZERO LOADED INTO LOW-ORDER BYTE AND
-16 IN HIGH-ORDER BYTE GIVES 4 MSEC PERIOD
B-BIT AUTO RELOAD COUNTER MODE FOR TIMER I.

16-BIT TIMER MODE rOR TIMER 0 SELECTED
SUBDIVIDE INTERRUPT RATE BY 244 FOR I HZ
USE TIMER 0 OVERFLOWS TO INTERRUPT PROGRAM
CONFIGURE IE TO GLOBALLY ENABLE INTERRUPTS

'KEEP INSTRUCTION CYCLE COUNT UNTIL OVERFLOW
START BACKGROUND PROGRAM EXECUTION

EXECUTE SYSTEM TEST ONLY ONCE PER SECOND
GET VALUE FOR NEXT ONE SECOND DELAY AND
GO THROUGH ELECTRICAL SYSTEM TEST CODE
SET CONTROL OUTPUTS HIGH

FLOAT DRIVE COLLECTOR
TO SHOULD BE PULLED LOW
PULL COLLECTOR BACK DOWN
REPEAT SEQUENCE FOR L_~DASH.

L REAR.

R_FRNT.

R __ DASH.

AND R _REAR

93
94
95

WITH ALL COLLECTORS GROUNDED. TO SHOULD BE HIGH
IF 50. CONTINUE WITH INTERRUPT ROUTINE

96 JB
97 FAULT~ CPL
98
99 +1 SEJECT

TO. TOSERV
S_FAIL ELECTRICAL FAILURE PROCESSING ROUTINE

(TOGGLE INDICATOR ONCE PER SECOND)

203830-27

l

l>
."

I
o

_.
LOC OB.! LINE SOURCE

I I t 100 CONTINUE WITH INTERRUPT PROCESSING
101
102 1> COMPUTE LOW BULB INTENSITY WHEN PARKING LIGHTS ARE ON
103

008F A201 104 TOSERV. MOV C. SUB_DIV I START WITH 50 PERCENT.
0091 8200 105 ANL C. SUB_DIV 0 MASK DOWN TO 25 PERCENT.
0093 7202 lOb ORL C.SUB_DIV 2 BUILD BACK TO b2. 5 PERCENT.
0095 B292 107 ANL C.PARK GATE WITH PARKING LIGHT SWITCH.
0097 92Dl 108 MOV DIM.C AND SAVE IN TEMP. VARIABLE

109
110 2) COMPUTE AND OUTPUT LEFT-HAND DASHBOARD INDICATOR
III

0099 A293 112 MOV C. L_TURN SET CARRY IF TURN
009B 7291 113 ORL C.EMERG OR EMERGENCY SELECTED.
009D 8207 114 ANL C.LO_FREQ IF SO. 'GATE IN 1 HZ SIGNAL
009F 9297 115 MOV L_DASH.C AND OUTPUT TO DASHBOARD

lib
117 3) COMPUTE AND OUTPUT LEFT-HAND FRONT TURN SIGNAL
liB

OOAI 92D5 119 MOV FO.C SAVE FUNCTION SO FAR
00A3 7201 120 ORL C.DIM ADD IN PARKING LIGHT FUNCTION
00A5 9295 121 MOV L_FRNT. C AND OUTPUT TO TURN SIGNAL

122
123 4) COMPUTE AND OUTPUJ LEFT-HAND REAR TURN SIGNAL

I I
» I\J 124 "U

~ 00A7 A2?0 125 MOV C.BRAKE GATE BRAKE PEDAL SWITCH I

"'" 00A9 BO'13 126 ANL C./L_TURN WITH TURN LEVER 0
OOAB 7205 127 ORL C.FO INCLUDE TEMP VARIABLE FROM DASH
OOAD 72D1 128 ORL C.DIM AND PARKING LIGHT FUNCTION
OOAF 92Al 129 MOV L_REAR. C AND OUTPUT TO TURN SIGNAL.

130
131 5) REPEAT ALL OF ABOVE FOR RIGHT-HAND COUNTERPARTS
132

00B1 A294 133 MOV C. R_TURN SET CARRY IF TURN
00B3 72'11 134 ORL C.EMERG OR EMERGENCY SELECTED
00B5 8207 135 ANL C. LO_FREQ IF SO. GATE IN I HZ SIGNAL
00B7 ?2AO 13b MOV R_DASH.C AND OUTPUT TO DASHBOARD.
OOB? '1205 137 MOV FO.C SAVE FUNCTION SO FAR.
OOBB 7201 138 ORL C.DIM ADD IN PARKING LIGHT FUNCTION
OOBD ?2?b 139 MOV R FRNT. C AND OUTPUT TO TURN SIGNAL.
OOBF A2?O 140 MOV C:-ORAKE GATE BRAKE PEDAL SWITCH
00C1 BO?4 141 ANL C./R_TURN WITH TURN LEVER
00C3 72D5 142 ORL C.FO INCLUDE TEMP VARIADLE FROM DASH
00C5 72DI 143 ORL C.DIM AND PARKING LIGHT FUNCTION
00C7 92A2 144 MOV R_REAR. C AND OUTPUT TO TURN SIGNAL.

145
14b RESTORE STATUS REGISTER AND RETURN
147

OOC? DODO 148 POP PSW RESTORE PSW
OOCD 32- 14'1 RETI AND RETURN FROM INTERRUPT ROUTINE

150
:51 END

203830-28

_.
XREF SYMBOL TABLE LISTING t
NAME TYPE VALUE AND REFERENCES

BRAKE N BSEG 0090H 204* 125 140
DIM N BSEG . OODIH 4511 lOB 120 12B 13B 143
EA N BSEG OOAFH 611
EMERG N BSEG 0091H 2111 113 134
ETO N BSEG 00A9H 63
FO N BSEG 00D5H 119 127 137 142
FAULT L CSEG OOBDH 75 7B BI B4 B7 90 9711
HI_FRECl N BSEG OOOOH 42.
INlT L CSEG 0040H 50 5BII
L_DASH N BSEG 0097H 3211 77 79 115
L_FRNT N BSEG 0095H 30 .. 74 76 121
L_REAR. N IlSEG OOAIH 34 .. 80 82 129
L_TURN N IlSEG 0093H 23. 112 126
LO_FRECl "N IlSEC 0007H 4311 114 135
PI N DSEG 0090H 20 21 22 23 24 30 31 32 72
P2 N DSEG OOAOH 33 34 35 37 73
PARK N IlSEG 0092H 22.. 107
PSW N DSEG OODOH 45 54 14B
R_DASH N IlSEG OOAOH 3311 B6 BB 136

I I
l> I\)

.!.J RJRNT N BSEG 0096H 3U B3 B5 139 "'CI
R_REAR N BSEG OOA2H 3511 B9 91 144 I

01
R_TURN N IlSEG 0094H 2411 133 141 0
SJAIL. N IlSEG 00A3H 3711 97
SUB_DIV N DSEG 0020H 41 .. 42 43 62 69 70 104 105 106
TO N IlSEG 00B4H 75 7B Bl B4 B7 90 96
TOSERV L CSEG OOBFH 69 96 10411
THO N DSEG OOBCH 53 59
TLO N DSEG OOBAH 5B
TMOD N DSEG 00B9H 60
TRO N BSEG OOBCH 65
UPDATE L CSEG 00548 55 6911

ASSEMBLY COMPLETE. NO ERRORS FOUND

203830-29

~INTEL CORPORATION, 1984

APPLICATION
NOTE

2-76

AP-223

October 1984

ORDER NUMBER: 270032-001

Ap·223

1.0 INTRODUCTION

This is the third application note that Intel has produced
on CRT terminal controllers. The first Ap Note (ref. I),
written in 1977, used the 8080 as the CPU and required
41 packages including 11 LSI devices. In 1979, another
application note (ref. 2) using the 8085 as the controller
was produced and the chip count decreased to 20 with 11
LSI devices.

Advancing technology has integrated a complete system
onto a single device that contains a CPU, program mem­
ory, data memory, serial communication, interrupt con­
troller, and lIO. These "computer-on-a-chip" devices are
known as microcontrollers. Intel's MCS®-51 microcon­
troller was chosen for this application because of its highly
integrated functions. This CRT terminal design uses 12
packages with only 4 LSI devices.

This application note has been divide" into five general
sections:

1) CRT Terminal Basics
2) 8051 Description
3) 8276 Description
4) Design Background
5) System Description

2.0 CRT TERMINAL BASICS

A terminal provides a means for humans to communicate
with a computer. Terminals may be as simple as a LED
display and a couple of push buttons, or it may be an
elaborate graphics system that contains a full function
keyboard with user programmable keys, color CRT and
several processors controlling its functions. This appli­
cation note describes a basic low cost terminal containing
a black and white CRT display, full function keyboard
and a serial interface.

2.1 CRT Description

A raster scan CRT displays its images by generating a
series of lines (raster) across the face of the tube. The
electron beam usually starts at the top left hand comer
moves left to right, back to the left of the screen, moves
down one row and continues on to the right. This is re­
peated until the lower right hand of the screen is reached.
Then the beam returns to the top left hand corner and
refreshes the screen. The beam forms a zigzag pattern as
shown in Figure 2.1.0.

Two independent operating circuits control this movement
across the screen. The horizontal oscillator controls the
left to right motion of the beam while the vertical controls
the top to bottom movement. The vertical oscillator also
tells the beam when to return to the upper left hand comer
or "home" position.

br--------
--~--------t , .

-

- - RETRACE LINES
DISPLAYED LINES

Figure 2.1.0 Raster Scan

As the electron beam moves across the screen under the
control of the horizontal oscillator, a third circuit controls
the current entering the electron gun. By varying the cur­
rent, the image may be made as bright or as dim as the
user desires. This control is also used to tum the beam
off or "blank the screen".

When the beam reaches the right hand side of the screen,
the beam is blanked so it does not appear on the screen
as it returns to the left side. This "retrace" of the beam
is at a much faster rate than it traveled across the screen
to generate the image.

The time it takes to scan the whole screen and return to
the home position is referred to as a, "frame". In the
United States, commercial television broadcast uses a hor­
izonal sweep frequency of 15,750Hz which calculates out
to 63.5 microseconds per line. The frame time is equal
to 16.67 milliseconds or 60Hz vertical sweep frequency.

Although this is the commercial standard, many CRT dis­
plays operate from 18KHz to 30KHz horizonatal fre­
quency. As the horizontal frequency increases, the number
of lines per frame increases. This increase in lines or
resolution is needed for graphic displays and on special
text editors that display many more lines of text than the
standard 24 or 25 character lines.

Since the United States operates on a 60Hz A.C. power
line frequency, most CRT monitors use 60Hz as the ver­
tical frequency. The use of 60Hz as the vertical frequency
allows the magnetic and electrical variations that can mod­
ulate the electron beam to be synchronized with the dis­
play, thus they go unnoticed. If a frequency other than
60Hz is used, special shielding and power supply regu-

2-77

AP·223

lating is usually required. Very few CRTs operate on a
vertical frequency other than 60Hz due to the increase in
the overall system,cost.

The CRT controller must generate the pulses that define
the horizontal and vertical timings. On most raster scan
CRTs the horizontal frequency may vary as much as
500Hz without any noticeable effect on the quality of the
display. This variation can change the number of hori­
zontal lines from 256 to 270 per frame.

The CRT controller must also shift out the information to
be displayed serially to the circuit that controls the electron·
beam's intensitY as it scans across the screen. The circuits
that control the timing associated with the shifting of the
information are known as the dot clock and the character
clock. The character clock frequency is equal to the dot
clock frequency divided by the number of dots it takes to
form a character in the horizontal axis. The dot clock
frequency is calculated by the following equation:

Dot Clcok (Hz) = (N + R)*D*L *F

where

N is the number of displayed characters per row,
R is the number of character times for the retrace,
D is the number ·of dots per character in the hori-

zontal axis,
L is the number of horizontal lines per frame,
F is the frame rate in Hz.'

In this design N = 80, R = 20, D = 7, L = 270, and
F = 60Hz. Plugging in the numbers results in a dot clock
frequency of 11.34MHz.

The retrace number may vary on each design because it
is used to set the left and right hand margins on the CRT.
The number of dots per character is chosen by the designer
to meet the system needs. In this design, a 5 x 7 dot matrix
and 2 blank dots between each character (see Figure 2.1.1)
makes D equal to 5+2=7.

Figure 2.1.1 5 x 7 Dot Matrix

The following equation can be used to figure 'the number
of lines per frame:

L=(H*Z)+V

where
H is the number of horizontal lines per character,
Z is the number of character lines per frame,
V ,is the number of horizontal line times during the

vertical retrace

In this design H is equal to the 7 horizontal dots per
character plus 3 blank dots between each row which adds
up to 10. Also 25 lines of characters are displayed, so
Z = 25. The vertical retrace time is variable to set the top
and bottom margins on the CRT and in this design is equal

. to 20. Plugging in the numbers gives L=270 lines per
frame.

2.2 Keyboard

A keyboard is the common way a human enters commands
and data to a computer. A keyboard consists of a matrix
of switches that are scanned every couple of milliseconds
by a keyboard controller to determine if one of the keys
has been pressed. Since the keyboard is made up of me­
chanical switches that tend to bounce or "make and
break" contact everytime they are pressed, debouncing
of the switches must also be a function of the keyboard
controller. There are dedicated keyboard controllers
available that do everything from scanning the keyboard,
deb~uncing the keys, decoding the ASCII code for that
key closure to flagging the CPU that a valid key has been
depressed. The keyboard controller may present the in­
formation to the CPU in parallel form or in a serial data
stream.

This Application Note integrates the function of the key­
board controller into the 8051 which.is also the terminal
controller. Provisions have been made to interface the
8051 to a keyboard that uses a dedicated keyboard con­
troller. The 8051 can accept data from the keyboard con­
troller in either parallel or serial format.

2.3 Serial Communications

Communication between a host computer and the CRT
terminal can be in either parallel or serial data format.
Parallel data transmission is needed in high end graphic
terminals where great amounts of information must be
transferred.

One can rarely type faster than 120 words per minute,
which corresponds to 12 characters per second or 1 char­
acter per 83 milliseconds. The utilization of a parallel port
cannot justify the cost associated with the drivers and the
amount of wire needed to perform this transmission. Full
duplex serial data transmission requires 3 wires and. two

AP-223

IICC r---------- -------------,

~
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Pl.0

P1.1
P1.2

Pl.3

Pl.4
Pl.5

Pl.6

Pl.7

RST
P3.0/RXD

P3.11TXD

P3.21INTO

P3.311NTI
P3.41TO
P3.51TI

P3.6JWR

P3.7/Ro
XTAL2

XTALI

VSS

Vee
PO.O/ADO

PO.I/ADI

PO.21AD2

PO.31AD3
PO.4/AD4

PO.S/ADS

PO.61AD6

PO.7/AD7
EAtvPP
ALElPRDG

PSEN

P2.7/A15

P2.61AI4

P2.5/A13

P2.4/A12

P2.31All

P2.21AI0

P2.1/A9

P2.0/A8

~_,/l_"="_' ________ J

Figure 3.0.0 8051 Block Diagram

drivers to implement the communication channel between
the host computer and the terminal. The data rate can be
as high as 19200 BAUD in the asynchronous serial format.
BAUD rate is the number of bits per second received or
transmitted. In the asynchronous serial format, 10 bits of
information is required to transmit one character. One
character per 500 microseconds or 1,920 characters per
second would then be trasmitted using 19.2 KBAUD.

This application note uses the 8051 serial port configured
for full duplex asynchronous serial data transmission. The
software for the 8051 has been written to support variable
BAUD rates from ISO BAUD up to 9.6 KBAUD.

3.0 8051 DESCRIPTION

The 8051 is a single chip high-performance microcon­
troller. A block diagram is shown in figure 3.0.0. The
8051 combines CPU; Boolean processor; 4K x 8 ROM:
128 x 8 RAM; 32 110 lines; two 16-bit timer/ event.
counters; a five-source, two-priority-level, nested inter­
rupt structure; serial I/O port for either mUltiprocessor
communications, I/O· expansion, or full duplex UART;
and on-chip oscillator and clock circuits.

3.1 CPU

Efficient use of program memory results from an instruc­
tion set consisting of 49 single-byte, 45 two-byte and 17
three-byte instructions. Most arithmetic, logical and
branching operations can be performed using an instruc­
tion that appends either a short address or a long address.
For example, branches may use either an offset that is
relative to the program counter which takes two bytes or
a direct 16-bit address which takes three bytes to perform.
As a result, 64 instructions operate in one machine cycle,
45 in two machine cycles, and the multiply and divide
instruction execute in 4 machine cycles.

The 8051 has five addressing modes for source operands:
Register, Direct, Register-Indirect, Immediate, and
Based-Register-plus Index-Register-Indirect Addressing.

The Boolean Processor can be thought of as a separate
one-bit CPU. It has its own accumulator (the carry bit),
instruction set for data moves, logic, and control transfer,
and its own bit addressable RAM and 110. The bit­
manipulating instructions provide optimum code and
speed efficiency for handling on chip peripherals. The

2-79

AP-223

Boolean processor also provides a straight forward means
of converting logic equations directly into software.' Com­
plex combinational logic functions can be resolved without
extensive data movement, byte masking, and test-and­
branch trees.

3.2 On-Chip Ram

The CPU manipulates operands in four memory spaces.
These are the 64K-byte Program Memory, 64K-byte Ex­
ternal Data Memory, I 28-byte Internal Data Memory, and
128-byte Special Function Registers (SFRs). Four Reg­
ister Banks (each with 8 registers), 128 addressable bits,
and the Stack reside in the internal Data RAM. The Stack
size is limited only by the available Internal Data RAM
and its location is determined by the 8-bit Stack Pointer.
All registers except for the Program Counter and the four
8-Register Banks reside in the SFR address space. These
memory mapped registers include arithmetic registers,
pointers, I/O ports, and registers for the interrupt system,
timers, and serial channel.

Registers in the four 8-Register Banks can be addressed
by Register, Direct, or Register-Indirect Addressing
modes. The 128 bytes of internal Data Memory can be
addressed by Direct or Register-Indirect modes while the
SFRs are only addressed directly.

3.3 1/0 Ports

The 8051 has instructions that can treat the 32 I/O lines
as 32 individually addressable bits or as 4 parallel 8-bit
ports addressable as Ports 0, 1,2, and 3.

Resetting the 8051 writes a logical 1 to each pin on port 0
which places the output drivers into a high-impedance
mode. Writing a logical 0 to a pin forces the pin to ground.
and sinks current. Re-writing the pin high will place the
pin in either an open drain output or high-impedance input
mode.

Ports 1, 2, and 3 are known as quasi-bidirectional I/O
pins. Resetting the device writes a logical one to each pin.
Writing a logical 0 to the pin will force the pin to ground
and sink current. Re-writing the pin high will place the
pin in an output mode with a weak depletion pullup FET
or in the input mode. The weak pullup FET is easily
overcome by a TTL output ..

Ports 0 and 2 can also be used for off-chip peripheral
expansion. Port 0 provides a multiplexed low-order ad­
dress and data bus while Port 2 contains the high-order
address when using external Program Memory or more
than 256 byte external Data Memory.

Port 3 pins can also be used to provide external interrupt
request inputs, event cpunier inputs, the serial port TXD

and RXD pins and to generate control signals used for
writing and reading external peripherals.

3.4 Interrupt System

External events and the real-time-driven on-chip periph­
erals require service by the CPU asynchronous to the ex­
ecution of any particular section of code. A five-source,
two-level, nested interrupt system ties the real time events
to the normal program execution.

The 8051 has two external interrupt sources, one interrupt
from each of the two timer/counters, and an interrupt from
the serial port. Each interrupt vectors the program exe­
cution to its own unique memory location for servicing
the interrupt. In addition, each of the fi~e sources can be
individually enabled or disabled as well as assigned to
one of the two interrupt priority levels available on the
8051.

Up to two additional external interrupts can be created by
configuring a timer/counter to the event counter mode. In
this mode the timer/counter increments on command by
either the TO or Tl pin.' An interrupt is generated when
the timer/counter overflows. Thus if the timer/counter is
loaded with the maximum count, the next high-to-Iow
transition of the event counter input will cause an intenupt
to be generated.

3.5 Serial Port

The 8051' s serial port is useful for linking peripheral de­
vices as well as multiple 8051 s through standard asyn­
chronous protocols with full duplex operation. The serial
port also has a synchronous. mode for expansion of I/O
lines using shift registers. This hardware serial port saves
ROM code and permits a much higher transmission rate
than could be achieved through software. The processor
merely needs to read or write the serial buffer in response
to an interrupt. The receiver is double buffered to eliminate
the possibility of overrun if the processor failed to read
the buffer before the beginning of the next frame.

The full duplex asynchronous serial port provides the
means of communication with standard UART devices
such as CRT terminals.and printers.

The reader should refer to the microcontroller handbook
for a complete discussion of the 8051 and its various
modes of operation.

4.0 8276 DESCRIPTION

The 8276's block diagram and pin configuration are shown
in Figure 4.0.0. The following sections describe the gen­
eral capabilities of the 8276.

2-80

AP-223

LC3 VCC
LC2 NL
LC1 NC
LCO LTEN

DATA
BDRY RVV

BUS US VSP
BUFFER HRTC GPA1

VRTC GPAo
ltD HLGT
WR INT

UNE NC CCLK
COUNTER

DBa CC6
DB1 CCs

ROW
DB2 CC4

COUNTER DB3 CC3
DB4 CC2
DBs CC1

MRTC DBs CCo
VRTC DB7 C!

RASTER TIMING MLGT GND C/P
AND RVV

VIDEO CONTROL LTEN
VSP

Figure 4.0.0 8276 Block Diagram

4.1 CRT Display Refreshing

The 8276, having been programmed by the system de­
signer for a specific screen format, generates a series of
Buffer Ready signals. A row of characters is then trans­
ferred by the system controller from the display memory
to the 8276's row buffers. The row buffers are filled by
deselecting the 8276 CS and asserting the BS and WR
signals. The 8276 presents the character codes to an ex­
ternal character generator ROM by using outputs
CCO-CC6. The parallel data from the outputs of the char­
acter generator is converted to serial information that is
clocked by external dot timing logic into the video input
of the CRT.

The character rows are displayed on the CRT one line at
a time. Line count outputs LCO-LC3 select the current
line information from the character generator ROM. The
display process is illustrated in Figure 4.1.0. This process
is repeated for each display character row. At the begin­
ning of the last display row the 8276 generates an interrupt
request by raising its INT output line. The interrupt request

is used by the 8051 system controller to reinitialize its
load buffer pointers for the next display refresh cycle.

Proper CRT refreshing requires that certain 8276 param­
eters be programmed at system initialization time. The
8276 has two types of internal registers; the write only
Command (CREG) and Parameter (PREG) Registers, and
the read only Status Register (SREG). The 8276 expects
to receive a command followed by 0 to 4 parameter bytes
depending on the command. A summary of the 8276's
instruction set is shown in Figure 4.1:1. To access the
registers, CS must be asserted along with WR or RD. The
status of the C/P pin determines whether the command or
parameter registers are selected.

The 8276 allows the designer flexibility in the display
format. The display may be from I to 80 characters per
row, I to 64 rows per screen, and 1 to 16 horizontal lines
per character row. In addition, four curser formats are
available; blinking, non-blinking, underline, and reverse
video. The curser position is programmable to anywhere
on the screen via the Load Curser command.

2-81

1st
Character

1st
Character

2nd
Character

2nd
Character

AP-223

3,d 4th
Character Character

First Line of a Character Row

3,d 4th
Character Character

5th
Character

5th
Character

6th
Character

6th
Character

7th
Character

7th
Character

oo ••• ooo.ooo.oo ••••• oooooooob •••• oooo ••• ooo.ooo.o
0.000.00 •• 00.00.0000000000000.000.00.000.00.000.0

Second Line of a Character Row

1st 2nd 3,d 4th 5th 6th
Character Character Character Character Character Character

7th
Character

Third Line of a Character Row

1st 2nd 3rd

• • •
4th 5th 6th

Character Character Character Charlcter Character Character
7th

Character

Seventh Line 01 a Character Row

Figure 4.1.0 8276 Row Display

4.2 CRT Timing

The 8276 provides two timing outputs for controlling the
CRT. The Horizontal Retrace Timing and Control (HRTC)
and Vertic·al Retrace Timing and Control (VRTC) signals
are used for synchronizing the CRT horizontal and vertical
oscillators. A third output, VSP (Video Suppress), pro­
vides a signal to the dot timing logic to blank the video
signal during the horizontal and vertical retraces. LTEN
(Light Enable) is used to provide the ability to force the

video output high regardless of the state of the VSP signal.
This feature is used to place the cursor on the screen and
to control attribute functions.

RVV (Reverse Video) output, if enabled, will cause the
system to invert its video output. The fifth timing signal
output, HLGT (highlight) allows the flexibility to increase
the CRT beam intensity to a greater than normal level.

2-82

AP-223

NO. OF
PARAMETER

COMMAND BYTES NOTES

RESET 4 Display format
parameters required

START 0 DMA operation
DISPLAY parameters included in

command

STOP 0 -
DISPLAY

RED LIGHT 2 -
PEN

LOAD 2 Cursor X, Y position
CURSOR parameters required

ENABLE 0 -
INTERRUPT

DISABLE 0 -
INTERRUPT

PRESET 0 Clears all internal
COUNTERS counters

Figure 4.1.1 8276 Instruction Set

4.3 Special Functions

4.3.1 Special Codes

The 8276 recognizes four special codes that may be used
to reduce memory, software, or system controller over­
head. These characters are placed within the display mem­
ory by the system controller. The 8276 performs certain
tasks when these codes are received in its row buffer
memory.

1) End of Row Code - Activates VSP. VSP remains
active until the end of the line is reached. While VSP
is active the screen is blanked.

2) End Of Row-Stop Buffer Loading Code - Causes the
Buffer Ready control logic to stop requesting buffer

" transfers for the rest of the row. It affects the display
the same as End of Row Code.

3) End Of Screen Code - Activates VSP. VSP remains
active until the end of the frame is reached.

4) End Of Screen-Stop Buffer Loading Code - Causes
the Buffer Ready control logic to stop requesting buffer
transfers until the end of the frame is reached. It affects
the display the same way as the End of Screen code.

4.3.4 Programmable Buffer Loading
Control

The 8276 can be programmed to request 1, 2, 4, or 8
characters per Buffer load. The interval between loads is
also programmable. This allows the designer the flexibility
to tailor the buffer transfer overhead to fit the system
needs.

Each scan line "requires 63.5 microseconds. A character
line consists of 10 scan lines and takes 635 microseconds
to form. The 8276 row buffer must be filled within the
635 microseconds or an under run condition will occur
within the 8276 causing the screen to be blanked until the
next vertical retrace. This blanking will be seen as a flicker
in the display.

5.0 DESIGN BACKGROUND

A fully functional, microcontroller-based CRT terminal
was designed and constructed using the 8051 and the 8276.
The terminal has many of the functions that are found in
commercially available low cost terminals. Sophisticated
"features such as programmable keys can be added easily
with modest amounts of software.

The 8051 's functions in this application note include: up
to 9.6K BAUD full duplex serial transmission; decoding
special messages sent from the host computer; scanning,
debouncing, and decoding a full function keyboard; writ­
ing to the 8276 row buffer from the display RAM without
the need for a DMA controller; and scrolling the display.

The 8276 CRT controller's functions include: presenting
the data to the character generator; providing the timing
signals needed for horizontal and vertical retrace; and pro­
viding blanking and video information.

5.1 Design Philosophy

Since the device count relates to costs, size, and reliability
of a system, arriving at a minimum device count without
degrading the performance was a driving force for this
application note. LSI devices were used where possible
to maintain a low chip count and to make the design cycle
as short as possible.

PUM-51 was chosen to generate the majority of the "soft­
ware for this application because it models the human
thought process more closely than assembly language.
Consequently it is easier and faster to write programs using
PLlM-51 and the code is more likely to be correct because
less chance exists to introduce errors.

2-83

AP-223

PUM-51 programs are easier to read and follow than
assembly language programs, and thus are easier to mod­
ify and customize to the end user's application. PUM-51
also offers lower development and maintenance costs than
assembly language programming.

PUM-51 does have a few drawbacks. It is not as efficient
in code generation relative to assembly language and thus
may also run slower.

This application note uses'the 8051's interrupts to control
the servicing of the various peripherals. The speed of the
main program is less critical if interrupts are used. In the
last two application notes on terminal controllers, a cri­
terion of the system was the time required for receiving
an incoming serial byte, decoding it, performing the func­
tion requested, scanning the keyboard, debouncing the
keys, and transmitting the decoded ASCII code must be
less than the vertical refresh time. Using the 8051 and its
interrupts makes this time constraint irrelevant.

5.2 System Target ,Specifications

The design specifications for the CRT terminal design is
as follows:

Display Format
• 80 characters/display row
• 25 display lines

Character Format
• 5 x 7 character contained within a 7 x 10 frame
• First and 'seventh columns blanked
• Ninth line curser position
• Programmable delay blinking underline curser

Control Characters Recognized

• Backspace
• Linefeed
• Carriage Return
• Form Feed

Escape Sequences 'Recognized
• ESC A, Curser up
• ESC B, Curser down
• ESC C, Curser right
• ESC D, Curser left
• ESC E, Clear screen
• ESC F, Move addressable curser

.• ESC H, Home curser
• ESC J, Erase from curser to the end the screen
• ESC K, Erase the current line

Characters Displayed
• 96 ASCII Alphanumeric Characters

Characters Transmitted
• 96 ASCII Alphanumeric Characters
• ASCII Control Character Set
• ASCII Escape Sequence Set
• Auto Repeat

Display Memory

• 2K x 8 static RAM

Data Rate
• Variable rate from 150 to 9600 BAUD

CRT Monitor
• Ball Bros TV-12, 12MHZ Black and White

Keyboard
• Any standard undecoded keyboard (2 key lock-out)
• Any standard decoded keyboard with output enable pin
• Any standard decoded serial keyboard up to 150 BAUD

Scrolling Capability

Compatible With Wordstar

2-84

6.0 SYSTEM DESCRIPTION

A block diagram of the CRT terminal is shown in figure
6.0.0. The diagram shows only the essential system fea­
tures. A detailed schematic of the CRT terminal is con­
tained in the Appendix 7. I.

The "brains" of the CRT terminal is the 8051 microcon­
troller. The 8276 is the CRT controller in the system, and
a 2716 EPROM is used as the character generator. To
handle the high speed portion of the CRT, the 8276 is
surrounded by a handful of TTL devices. A 2K x 8 static
RAM was used as the display memory.

I
Following the system reset, the 8276 is initialized for
curser type, number of characters per line, number of
lines, and character size. The display RAM is initialized
to all "spaces" (ASCII 20H). The 8051 then writes the
"start display" command to the 8276. The localliine input
is sampled to determine the terminal mode. If the terminal
is on-line, the BAUD rate switches are read and the serial '
port is set up for full duplex UART mode. The processor
then is put into a loop waiting to service the serial port
fifo or the 8276.

The serial port is programmed to have the highest priority
interrupt. If the serial port generates an interrupt, the pro­
cessor reads the buffer, puts the character in a generated
fifo that resides in the 8051's internal RAM, increments
the fifo pointer, sets the serial interrupt flag and returns.

AP-223

SERIAL
COMMUNICATIONS

CHANNEL

Figure 6.0.0 CRT Terminal Controller Block Diagram

The main program determines if it is a displayable char­
acter, a Control word or an ESC sequence and either puts
the character in the display buffer or executes the appro­
priate command sent from the host computer.

If the 8276 needs servicing, the 8051 fills the row buffer
for the CRT display's next line. If the 8276 generates a
vertical retrace interrupt, the buffer pointers are reloaded
with the display memory location that corresponds to the
first character of the first display line on the CRT. The
vertical retrace also signals the processor to read the key-
board for a key closure. .

6.1 Hardware Description

The following section describes the unique characteristics
of this design.

6.1.1 Peripheral Address Map

The display RAM, 8276 registers, and the 8276 row buff­
ers are memory mapped into the external data RAM ad­
dress area. The addresses are as follows:

Read and Write External
Display RAM - Address 1000H to 17CFH
Write to 8276 row buffers
from Display RAM - Address 1800H to IFCFH
Write to 8276 Command
Register (CREG) - Address OOOIH
Write to 8276 Parameter
Register (PREG) - Address OOOOH
Read from 8276 Status
Register (SREG) - Address 0001H

Three general cases can be explored; reading and writing
the display RAM, writing to the 8276 row buffers, and
reading and writing the 8276's control registers.

As mentioned previously the 8051 fills the 8276 row buffer
without the need of a DMA controller. This is accom­
plished by using a Quad 2-input mUltiplexor (Figure 6.1.0)
as the transfer logic shown in the block diagram. The
address line, P2.3, is used to select either of the two
inputs. When the address line is low the RD and WR lines
perform their normal functions, that is read and write the

8051 P2.3~

8051 WR 1A SEL -
Y1 1--8276 WR

-
8051 RD 1B

+5V 2A Y2 1--8276 BS

>---- 2B

- 3A Y3 1--8276 RD

3B

-

If>-P2.4 DISPLAY RAM CS

Figure 6.1.0
Simplified Version Of The Transfer Logic

2-85

AP-223

8276 or the external display RAM depending on the states
of their re~ctive chip selects. If the address line is high,
the 8051 RD line is transfonned into BS and WR signals
for the 8276. While holding the address line high, the
8051 executes an external data move (MOVX) from the
display RAM to the accumulator which causes the display
RAM to output the addressed byte pnto the data bus. Since
the multiplexor turns the same 8051 RD pulses into BS
and WR pulses to the 8276, the data bus is thus read into
the 8276 as a Buffer transfer. This scheme allows 80
characters to be transferred from the display RAM into
the 8276 within the required character line time of 635
microseconds. The 8051 easily meets this requirement by
accomplishing the task within 350 microseconds.

6.1.2 Scanning The Keyboard

Throughout this project, provision have been made to
make the overall system flexible. The software has been
written for various keyboards and the user simply needs
to link different program modules together to suit their
needs.

FROM
8051

8051
DATA
BUS

P2.0

P2.1

P2.2

,-

PO.7

PO.O

,

-A

-B

L
1C

2C

L
1G

2G

5V

10kO

1N4305~

74156

2YO

2Y1

2Y2

2Y3

1YO

1Y1

1Y2

1Y3

6.1.2.1 Undecoded Keyboard

Incorporating an undecoded keyboard controller into the
other functions of the 8051 shows the flexibility and over
all CPU power that is available. The keyboard in this case
is a full function, non-buffered 8 x 8 matrix of switches
for a total of 64 possible keys. The 8 send lines are con­
nected to a" 3-to-8 open-collector decoder as shown in
Figure 6.1.1. Three high order address lines from the 8051
are the decoder inputs. The enabling of the decoder is
accomplished through the use of the PSEN signal from
the 8051 which makes the architecture of the separate
address space for the program memory and the external
data RAM work for us to eliminate the need to decode
addresses externally. The move code (MOVC) instruction
allows each scan line of the keyboard to be read with one
instruction.

The keyboard is read by bringing one of the eight scan
lines low sequentially while reading the return lines which
are pulled high by an external resistor. If a switch is

, ~ ~ , , ~, ~

'< '< '< '< '< '< '< '<

'< '< '< '< '< '< '< '<

'< '< '< '< '< '< '< '<

'< '< '< '< '< '< '< '<

'< '< '< '< '< '< '< '<

'< '< '< '< '< '< '< '<

'< '< '< '< '< '< '< '<

'< '< '< '< '< '< '< '<

SWITCH MATRIX

Figure 6.1.1 Keyboard

2-86

AP-223

NO. OF
PARAMETER

COMMAND BYTES NOTES

RESET 4 Display format
parameters required

START 0 DMA operation
DISPLAY parameters included in

command

STOP 0 -
DISPLAY

RED LIGHT 2 -
PEN

LOAD 2 Cursor X, Y position
CURSOR parameters required

ENABLE 0 -
INTERRUPT

DISABLE 0 -
INTERRUPT

PRESET 0 Clears all internal
COUNTERS counters

Figure 4.1.1 8276 Instruction Set

4.3 Special Functions

4.3.1 Special Codes

The 8276 recognizes four special codes that may be used
to reduce memory, software, or system controller over­
head. These characters are placed within the display mem­
ory by the system controller. The 8276 performs certain
tasks when these codes are received in its row buffer
memory.

1) End of Row Code - Activates VSP. VSP remains
active until the end of the line is reached. While VSP
is active the screen is blanked.

2) End Of Row-Stop Buffer Loading Code - Causes the
Buffer Ready control logic to stop requesting buffer
transfers for the rest of the row. It affects the display
the same as End of Row Code.

3) End Of Screen Code - Activates VSP. VSP remains
active until the end of the frame is reached.

4) End Of Screen-Stop Buffer Loading Code - Causes
the Buffer Ready control logic to stop requesting buffer
transfers until the end of the frame is reached. It affects
the display the same way as the End of Screen code.

4.3.4 Programmable Buffer Loading
Control

The 8276 can be programmed to request I, 2, 4, or 8
characters per Buffer load. The interval between loads is
also programmable. This allows the designer the flexibility
to tailor the buffer transfer overhead to fit the system
needs.

Each scan line'requires 63.5 microseconds. A character
line consists of 10 scan lines and takes 635 microseconds
to form. The 8276 row buffer must be filled within the
635 microseconds or an under run condition will occur
within the 8276 causing the screen to be blanked until the
next vertical retrace. This blanking will be seen as a flicker
in the display.

5.0 DESIGN BACKGROUND

A fully functional, microcontroller-based CRT terminal
was designed and constructed using the 8051 and the 8276.
The terminal has many of the functions that are found in
commercially available low cost terminals. Sophisticated
features such as programmable keys can be added easily
with modest amounts of software.

The 8051's functions in this application note include: up
to 9.6K BAUD full duplex serial transmission; decoding
special messages sent from the host computer; scanning,
debouncing, and decoding a full function keyboard; writ­
ing to the 8276 row buffer from the display RAM without
the need for a DMA controller; and scrolling the display.

The 8276 CRT controller's functions include: presenting
the data to the character generator; providing the timing
signals needed for horizontal and vertical retrace; and pro­
viding blanking and video information.

5.1 DeSign Philosophy

Since the device count relates to costs, size, and reliability
of a system, arriving at a minimum device count without
degrading the performance was a driving force for this
application note. LSI devices were used where possible
to maintain a low chip count and to make the design cycle
as short as possible.

PUM-51 was chosen to generate the majority of the 'soft­
ware for this application because it models the human
thought process more closely than assembly language.
Consequently it is easier and faster to write programs using
PUM-51 and the code is more likely to be correct because
less chance exists to introduce errors.

2-83

AP-223

PUM-51 programs are easier to read and follow than
assembly language programs, and thus are easier to mod­
ify and customize to the end User's application. PUM-5l
also offers lower development and maintenance costs than
assembly language programming.

PUM-51 does have a few drawbacks. It is not as efficient
in code generation relative to assembly language and thus
may also run slower.

This application note uses' the 8051's interrupts to control
the servicing of the various peripherals. The speed of the
main program is less critical if interrupts are used. In the
last two application notes on terminal controllers, a cri­
terion of the system was the time required for receiving
an incoming serial byte, decoding it, performing the func­
tion requested, scanning the keyboard, debouncing the
keys, and transmitting the decoded ASCII code must be
less than the vertical refresh time. Using the 8051 and its
interrupts makes this time constraint irrelevant.

5.2 System Target Specifications

The design specifications for the CRT terminal design is
as follows:

Display Format
• 80 characters/display row
• 25 display lines

Character Format
• 5 x 7 character contained within a 7 x 10 frame
• First and 'seventh columns blanked
• Ninth line curser position
• Programmable delay blinking underline curser

Control Characters Recognized

• Backspace
• Linefeed
• Carriage Return
• Form Feed

Escape Sequences 'Recognized

• ESC A, Curser up
• ESC B, Curser down
• ESC C, Curser right
• ESC D, Curser left
• ESC E, Clear screen
• ESC F, Move addressable curser
'. ESC H, Home curser,
• ESC J, Erase from curser to the end the screen
• ESC K, Erase the current line

Characters Displayed
• 96 ASCII Alphanumeric Characters

Characters Transmitted
• 96 ASCII Alphanumeric Characters
• ASCII Control Character Set
• ASCII Escape Sequence Set
• Auto Repeat

Display Memory

• 2K x 8 static RAM

Data Rate
• Variable rate from 150 to 9600 BAUD

CRT Monitor
• Ball Bros TV-12, 12MHZ Black and White

Keyboard
• Any standard undecoded keyboard (2 key lock-out)
• Any siandard decoded keyboard with output enable pin
• Any standard decoded serial keyboard up to 150 BAUD

Scrolling Capability

Compatible With Wordstar

2-84

6.0 SYSTEM DESCRIPTION

A block diagram of the CRT terminal is shown in figure
6.0.0. The diagram shows only the essential system fea­
tures. A detailed schematic of the CRT terminal is con­
tained in the Appendix 7.1.

The "brains" of the CRT terminal is the 8051 microcon­
troller. The 8276 is the CRT controller in the system, and
a 2716 EPROM is used as the character generator. To
handle the high speed portion of the CRT, the 8276 is
surrounded by a handful of TTL devices. A 2K x 8 static
RAM was used as the display memory.

I

Following the system reset, the 8276 is initialized for
curser type, number of characters per line, number of
lines, and character size. The display RAM is initialized
to all "spaces" (ASCII 20H). The 8051 then writes the
"start display" command to the 8276. The locallline input
is sampled to determine the terminal mode. If the terminal
is on-line, the BAUD rate switches are read and the serial .
port is set up for full duplex UART mode. The processor
then is put into a loop waiting to service the serial port
fifo or the 8276.

The serial port is programmed to have the highest priority
interrupt. If the serial port generates an interrupt, the pro­
cessor reads the buffer, puts the character in a generated
fifo that resides in the 8051's internal RAM, increments
the fifo pointer, sets the serial interrupt flag and returns.

Ap·223

SERIAL
COMMUNICATIONS

CHANNEL

Figure 6.0.0 CRT Terminal Controller Block Diagram

The main program determines if it is a displayable char­
acter, a Control word or an ESC sequence and either puts
the character in the display buffer or executes the appro­
priate command sent from the host computer.

If the 8276 needs servicing, the 8051 fills the row buffer
for the CRT display's next line. If the 8276 generates a
vertical retrace interrupt, the buffer pointers are reloaded
with the display memory location that corresponds to the
first character of the first display line on the CRT. The
vertical retrace also signals the processor to read the key-
board for a key closure. .

6.1 Hardware Description

The following section describes the unique characteristics
of this design.

6.1.1 Peripheral Address Map

The display RAM, 8276 registers, and the 8276 row buff­
ers are memory mapped into the external data RAM ad­
dress area. The addresses are as follows:

Read and Write External
Display RAM - Address 1000H to 17CFH
Write to 8276 row buffers
from Display RAM - Address 1800H to IFCFH
Write to 8276 Command
Register (CREG) - Address OOOIH
Write to 8276 Parameter
Register (PREG) - Address OOOOH
Read from 8276 Status
Register (SREG) - Address OOOIH

Three general cases can be explored; reading and writing
the display RAM, writing to the 8276 row buffers, and
reading and writing the 8276's control registers.

As mentioned previously the 8051 fills the 8276 row buffer
without the need of a DMA controller. This is accom­
plished by using a Quad 2-input multiplexor (Figure 6.1.0)
as the transfer logic shown in the block diagram. The
address line, P2.3, is used to select either of the two
inputs. When the address line is low the RD and WR lines
perform their normal functions, that is read and write the

8051 P2.3~

- 1A SEL -8276WR 8051 WR Y1
-

8051 RD 18

+5V 2A Y2 -8276 BS

~ 2B

L....- 3A Y3 f--8276 RD

3B

-

l{>-P2.4 DISPLAY RAM CS

Figure 6.1.0
Simplified Version Of The Transfer Logic

2-85

AP-223

8276 or the external display RAM depending on the states
of their re~ctive chip selects. If the address line is high,
the 8051 RD line is transfonned into BS and WR signals
for the 8276. While holding the address line high, the
8051 executes an external data move (MOVX) from the
display RAM to the accumulator which causes the display
RAM to output the addressed byte _onto the data bus. Since
the multiplexor turns the same 8051 RD pulses into BS
and WR pulses to the 8276, the data bus is thus read into
the 8276 as a Buffer transfer. This scheme allows 80
characters to be transferred from the display RAM into
the 8276 within the required character line time of 635
microseconds. The 8051 easily meets this requirement by
accomplishing the task within 350 microseconds.

6.1.2 Scanning The Keyboard

Throughout this project, provision have been made to
make the overall system flexible. The software has been
written for various keyboards and the user simply needs
to link different program modules together to suit their
needs.

8051
DATA
BUS

~

PO.7

po.o

5V

10kO

6.1.2.1 Undecoded Keyboard

Incorporating an undecoded keyboard controller into the
other functions of the 8051 shows the flexibility and over
all CPU power that is available. The keyboard in this case
is a full function, non-buffered 8 x 8 matrix of switches
for a total of 64 possible keys. The 8 send lines are con­
nected to a- 3-to-8 open-collector decoder as shown in
Figure 6.1.1. Three high order address lines from the 8051
are the decoder inputs. The enabling of the decoder is
accomplished through the use of the PSEN signal from
the 8051 which makes the architecture of the separate
address space for the program memory and the external
data RAM work for us to eliminate the need to decode
addresses externally. The move code (MOVC) instruction
allows each scan line of the keyboard to be read with one,
instruction.

The keyboard is read by bringing one of the eight scan
lines low sequentially while reading the return lines which
are pulled high by an external resistor. If a switch is

-

1N4305 --,.. , ,
"

, .~,

FROM
8051

P2.0

P2.1

P2.2

PSEN

74156

-A 2YO '< '< '< '< '< '<

-B 2Y1 '< '< '< '< '< '<

L 1C 2Y2 '< '< '< '< '< '<

2C 2Y3 '< '< '< '< '< '<

--L
1G 1YO '< '< '< '< '< '<

2G 1Y1 '< '< '< '< '< '<

1Y2 '< '< '< '< '< '<

1Y3 '< '< '< '< '< '<

SWITCH MATRIX

Figure 6.1.1 Keyboard

2-86

'< '<,

'< '<

'< '<

'< '<

'< '<

'< '<

'< '<

'< '<

AP-223

closed, the data bus line is connected through the switch
to the low output of the decoder and one of the data bus
lines will be read as a O. By knowing which scan line
detected a key closure and which data bus line was low,
the ASCII code for that key can easily be looked up in a
matrix of constants. PUM-51 has the ability to handle
arrays and structured arrays, which makes the decoding
of the keyboard a trivial task.

Since the Shift, Cap Lock, and Control keys may change
the ASCII code for a particular key closure, it is essential
to know the status of these pins while decoding the key­
board. The Shift, Cap Lock, and Control keys are there­
fore not scanned but are connected to the 8051 port pins
where they can be tested for closure directly.

The 8 receive lines are connected to the data bus through
germanium diodes which chosen for their low forward
voltage drop. The diodes keep the keyboard from inter­
fering with the data bus during the times the keyboard is
not being read. The circuit consisting of the 3-to-8 decoder
and the diodes also offers some protection to the 8051
from possible Electrostatic Discharge (ESD) damage that
could be transmitted through the keyboard.

6.1.2.2 Decoded Keyboard

A decoded keyboard can easily be connected to the system
as shown in Figure 6.1.2. Reading the keyboard can be
evoked either by interrupts or by software polling.

The software to periodically read a decoded keyboard was
not written for this application note but can be accom­
plished with one or two PUM-51 statements in the
READER routine.

A much more interesting approach would be to have the
servicing of the keyboard be interrupt driven. An addi­
tional external interrupt is created by configuring timer/
counter 0 into an event counter. The event counter is

initialized with the maximum count. The keyboard con­
troller would inform the 8051 that a valid key has been
depressed by pulling the input pin TO low. This would
overflow the event counter, thus causing an interrupt. The
interrupt routine would simply use a MOVC (PSEN is
connected to the output enable pin of the keyboard con­
troller) to read the contents of the keyboard controller onto
the data bus, reinitialize the counter to the maximum count
and return from the interrupt.

6.1.2.3 Serial Decoded Keyboard

The use of detachable keyboards has become popular
among the manufacturers of keyboards and personal com­
puters. This terminal has provisions to use such a key­
board.

The keyboard controller would scan the keyboard, de­
bounce the key and send back the ASCII code for that
key closure. The message would be in an asynchronous
serial format.

The flowchart for a software serial port is shown in Figure
6.1.3. An additional external interrupt is created as dis­
cussed for the decoded keyboard but the use in this case
would be to detect a start bit. Once the beginning of the
start bit has been detected, the timer/counter 0 is config­
ured to become a timer. The timer is initialized to cause
an interrupt one-half bit time after the beginning of the
start bit. This is to validate the start bit. Once the start bit
is validated, the timer is initialized with a value to cause
an interrupt one bit time later to read the first data bit.
This process of interrupting to read a data bit is repeated
until all eight data bits have been received. After all 8
data bits are read, the software serial port is read once
more to detect if a stop bit is present. If the stop bit is
not present, an error flag is set, all pointers and flags are
reset to their initial values, and the timer/counter is re­
configured to an event counter to detect the next start bit.
If the stop bit is present, a valid flag is set and the flags
and counter are reset as previously discussed.

KEYBOARD 8051
CONTROLLER

SCAN BUS PORTO
KEYBOARD " v

DATA

I " READY TO

RECEIVE v CS PSEN

FIgure 6.1.2 Using A Decoded Keyboard

2-87

AP-223

RETURN

RETURN

RETURN

Figure 6.1.3 Flowchart for the Software Serial Port

6.1.4 System Timings

The requirements for the BALL BROTHERS. TV-12
monitor's operation is shown in table 6.1.0. From the
monitor's parameters, the 8276 specifications and the sys­
tem target specifications the system timing is easily cal­
culated.

The 8276 allows the vertical retrace to be only an integer
mUltiple of the horizontal character lines. Twenty-five dis­
play lines and a character frame of 7 x 10 are required
from, the target specification which will require 250 hor­
izontal lines. If the horizontalfrequency is to be within

2-88

500 Hz of 15,750 Hz, we 'must choose either one or two
character line times for horizontal retrace. To allow for a
little more margin at the top and bottom of the screen,
two character line times was chosen for the vertical re­
trace. This choice yields 250 + 20 = 270 total character
lines per frarr. r . Assuming 60 Hz vertical retrace fre­
quency:

60 Hz * 270 = 16,200 Hz horizontal frequency
and

1116,200 Hz * 20 horizontal sync times = 1.2345 mil­
liseconds

AP-223

Table 6.1.0 CRT Monitor's Operational Requirements

PARAMETER
Vertical Blanking Time

(VRTC)

Vertical Drive Pulsewidth

Horizontal Blanking Time
(HRTC)

Horizontal Drive Pulsewidth

Horizontal Repetition Rate

The 1.2345 milliseconds of retrace time meets the nominal
VRTC and vertical drive pulse width time of .3mSec to
1.4mSec for the Ball monitor.

The next parameter to find is the horizontal retrace time
which is wholly dependent on the monitor used. Usually
it lies between 15 and 30 percent of the total horizontal
line time.

Since most designs display a fixed number of characters
per line it is useful to express the horizontal retrace time
as a given number of character times. In this design, 80
characters are displayed, and it was experimentally found
that 20 character times for the horizontal retrace gave the
best results. It should be noted if too much time was given
for retrace, there would be less time to display the char­
acters and the display would not fill out the screen. Con­
versely, if not enough time is given for retrace, the char­
acters would seem to run off the screen.

One hundred character times per complete horizontal line
means that each character needs:

(1116,200 Hz) 1100 character times = 617.3 nanoseconds

If we multiply the 20 character times needed to retrace
by 617.3 nanoseconds needed for each character, we find
12.345 microseconds are allocated for retrace. This value
falls short of the 25 to 30 microseconds required by the
horizontal drive of the Ball monitor. To correct for this,
a 74LS 123 one-shot was used to extend the horizontal
drive pulse width.

The dot clock frequency is easy to calculate now that w~
know the horizontal frequency. Since each character is
formed by seven dots in the horizontal axis, the dot clock
period would be the character clock (617.3 nanoseconds)
divided by the 7 which is equal to 11.34 MHz. The basic
dot timing and CRT timing are shown in the Appendix.

RANGE
800 /-Lsec nominal

300 /-Lsec "" PW "" 1.4 ms

11 JLsec nominal

25 JLSec "" PW "" 30 /-Lsec

15,750 +500 pps

6.2 Software Description

6.2.1 Software Overview

The software for this application was written in a "fore­
ground-background" format. The background programs
are all interrupt driven and are written in assembly lan­
guage due to time constraints. The foreground programs
are for the most part written in PUM-51 to ease the pro­
gramming effort. A number of subroutines are written in
assembly language due to time constraints during exe­
cution. Subroutines such as clearing display lines, clearing
the screen, and scanning the keyboard require a great deal
of 16 bit adds and compares and would execute much
slower and would require more code space if written in
PUM-51. The background and foreground programs talk
to each other through a set of flags. For ~xample, the
PUM-51 foregrounp program tests "SERIAL$INT" to
determine if a serial port interrupt had occurred and a
character is waiting to be processed.

6.2.2 The Background Program

Two interrupt driven routines, VERT and BUFFER, (see
Fig. 6.2.0) request service every 16.67 milliseconds and
617 microseconds respectively. VERT's request comes
during the last character row of the display screen. This
routine resets the buffer pointers to the first CRT display
line in the display memory. VERT is also used as a time
base for the foreground program. VERT sets the flag,
SCAN, to tell the foreground program (PUM-51) that it
is time to scan the Keyboard. VERT also increments a
counter used for the delay between transmitting characters
in the AUTO$REPEAT routine.

The BUFFER routine is executed once per character row.
BUFFER uses the multiplexor discussed earlier to fill the
8276's row buffer by executing 80 external data moves
and incrementing the Data Pointer between each move.

2-89

AP·223

RE-INITIALIZE
8278

ROW BUFfER
POINTER TO THE

TOP OF THE
DISPLAY

RETURN

RETURN

Figure 6.2.0 Flowcharts For
VERT and BUFFER Routine

The MOVX reads the display RAM and writes the char­
acter into the row buffer during the same instruction.

SERBUF is an interrupt driven routine that is executed
each time a character is received or transmitted through
the on-chip serial port. The routine first checks if the
interrupt was caused by the transmit side of the serial port,
signaling that the transmitter is ready to accept another
character. If the transmitter caused the interrupt, the flag
"TRANSMIT$INT" is set which is checked by the fore­
ground program before putting a character in the buffer
for transmission.

If the receiver caused the interrupt, the input buffer on
the serial port is read and fed into the fifo that has been
manufactured in the internal RAM and increments the fifo
pointer ."FIFO." The flag "SERIAL$INT" is then set,
telling the foreground program that there is a character in
the fifo to be processed. If the read character is an ESC
character, the flag "ESCSEQ" is set to tell the foreground
program that an escape sequence is in the process of being
received.

6.2.3 The Foreground Program

The foreground program is documented in the Appendix.
The foreground progra~ starts off by initializing the 8276

as discussed earlier. After all variables and flags are ini­
tialized, the processor is put into a loop waiting for either
VERT to set SCAN so the program can scan the keyboard,
or for the serial port to set SERIAL$INT so the program
can process the incoming character.

The vertical retrace is used to time the delay between
keyboard scans. When VERT gets set, the assembly lan­
guage routine READER is called. READER scans the
keyboard, writing each scan into RAM to be processed
later. READER controls two flags, KEYO and SAME.
KEYO is set when all 8 scans determine that no key is
pressed. SAME is set when the same key that was pressed
last time the keyboard was read is still pressed.

After READER returns execution to the main program,
the flags are tested. If the KEYO flag is set the main
program goes back to the loop waiting for the vertical
retrace or a serial port interrupt to occur. If the SAME
flag is set the main program knows that the closed key
has been debounced and decoded so it sends the already
known ASCII code to the AUTO$REPEAT routine which
determines if that character should be transmitted or not.

If KEYOand SAME are not set, signifying that a key is
pressed but it is not the same key as before, the foreground
program determines if the results from the scan are valid.
First all eight scans are checked to see if only one key
was closed. If only one key is closed, the ASCII code is
determined, modified if necessary by the Shift, Cap Lock,
or Control keys. The NEW$KEY and VALID flags are
then set. The next time READER is called, .if the same
key is still pressed, the SAME flag will be set, causing
the AUTO$REPEAT subroutine to be called as just dis­
cussed. Since the keyboard is read during the vertical
retrace, 16.67 milliseconds has elapsed between the de­
tection of the pressed key and reverifying thai the key is
still pressed before transmitting it, thus effectively de­
bouncing the key.

The AUTO$REPEAT routine is written to transmit any
key that the NEW$KEY flag is set for. The counter that
is increl1}ented each time the vertical refresh inteIplpt is
serviced causes a programmable delay between the first
transmission and subsequent auto repeat transmission.
Once the NEW$KEY character is. sent, the counter is
initialized. Each time the AUTO$REPEAT routine is
called, the counter is checked. Only when the counter
overflows will the next character be transmitted. After the
initial delay, a character will be transmitted every other
time the routine is called as long as the key remains
pressed.

6.2.3.1 Handling Incoming Serial Data

One of the criteria for this application note was to make
the software less time dependent. By creating a fifo to
store incoming characters until the 8051 has time to pro-

2-90

AP·223

cess them, software timing becomes less critical. This
application note uses up to 8 levels of the fifo at
9.2KBAUD, and I level at 4.8KBAUD and lower. As
discussed earlier, the interrupt service routine for the serial
port uses the fifo to store incoming data, increments the
fifo pointer, "FIFO", and sets SERIAL$INT to tell the
main program that the fifo needs servicing. Once the main
program detects that SERIAL$INT is set the routine
DECIPHER is executed.

DECIPHER has three separate blocks; a block for decod­
ing displayable characters, a block for processing Escape
sequences, and a block for processing Control codes. Each
block works on the fifo independently. Before exiting a
block, the contents of the fifo are shifted up by the amount
of characters that were processed in that particular block.
The shifting of the characters insures that the beginning
of the fifo contains the next character to be processed.
FIFO is then decremented by the number of characters
processed.

Let's look at this process more closely. Figure 6.2.I-A
shows a representation of a fifo containing 5 characters.
The first three characters in the fifo contain displayable
characters, A, B, and C respectively with the last two
characters being an ESC sequence for moving the curser
up one line (ESC A) and FIFO points to the next available
location to be filled by the serial port interrupt routine, in
this case,S.

TOP-.. 41H (A) 41H (A)

42H (B) 42H(B)

43H (C) 43H(C)

1BH (ESC) TOP-" 1BH (ESC)

41H (A) 41H (A)

FIFO-. FIFO-..

(A) (8)

TOP-.. 1BH (ESC)

41H(A)

FIFO-..

(C)

FIGURE 6.2.1 FIFO

2-91

When DECIPHER is executed, the first block begins look­
ing at the first character of the fifo for a displayable char­
acter. If the character is displayable, it is placed into the
display RAM and the software pointer "TOP" that points
to the character that is being processed is incremented to
the next character. The character is then looked at to see
if it too is displayable and if it is, it's placed in the display
RAM. The process of checking for displayable characters
is continued until either the fifo is empty or a non-dis­
playable character is detected. In our example, three char­
acters are placed into the display RAM before a non­
displayable character is detected. At this point the fifo
looks like figure 6.2.I-B.

Before entering the next block, the remaini'ng contents of
the fifo between TOP, that is now pointing to I BH and
(FIFO-I) are moved up in the fifo by the amount of char­
acters processed, in this example three. TOP is reset to 0
and FIFO is decremented by 3. The serial port interrupt
is inhibited during the time the contents of the fifo and
the pointers are being manipulated. The fifo now looks
like figure 6.2.I-C.

The execution is now passed to the next block that pro­
cesses ESC sequences. The first location of the fifo is
examined to see if it is an ESC character (lBH). If not,
the execution is passed to the next block of DECIPHER
that processes Control codes. In this case the fifo does
contain an ESC code. The flag ESC$SEQ is checked to
see if the 8051 is in the process of receiving an ESC
sequence thus signifying that the next byte of the sequence
has not been received yet. If the ESC$SEQ is not set, the
next character in the fifo is checked for a valid escape
code and the proper subroutine is then called. The fifo
contents are then shifted as discussed for the previous
block. Due to the length of time that is needed to execute
an ESC code sequence or a Control code, only one ESC
code and/or Control code can be processed each time
DECIPHER is executed.

If at the end of the DECIPHER routine, FIFO contains a
0, the flag SER$INT is reset. If SER$INT remains set,
DECIPHER will be executed immediately after returning
to the main program if SCAN had not been set during the
execution of the DECIPHER routine, otherwise DECI­
PHER will be called after the keyboard is read.

6.2.4 Memory Pointers and ScrOlling

The curser always points to the next location in display
memory to be filled. Each time a character is placed in
the display memory, the curser position needs to be tested
to determine if the curser should be incremented to the
beginning of the next line of the display or simply moved
to the next position on the current display line. The curser
position pointers are then updated in both the 8276 and
the internal registers in the 8051.

AP-223

When the 2000th character is entered into the display
'memory, a full display page has been reached signaling
the need for the display to scroll. The memory pointer
that points to the display memory that contains the first
character of the first display line, LINEO, prior to scrolling
contains 1800H which is the starting address of the dIsplay
memory. Each scrolling operation adds 80 (SOH) to LINEO
which will now point to the following row in memory as
shown in figure 6.2.2-B. LINEO is used during the vertical

MEMORY LOCATION
18DDH

LINED

MEMORY
LOCATION

184FH

'"---t-ROW (80 CHAR)

DURING FIRST
PAGE

MEMORY
LOCATION

lF80M

A) BEFORE SCROLLING

-LINEO

MEMOR
LOCATIO

18ADH

Y-
N

~

I
fj'

NEW TEXT
INSERTED HERE

C) AFTER 2ND SCROLLING OPERATION

refresh routine to re-initialize the pointers associated with
filling the 8276 row buffers.

The display memory locations that were the first line of
the CRT display now becomes the last line of the CRT
display. Incoming characters are now .entered into the
display memory starting with 1800H, which is now the
first character of the last line of the display screen.

MEMORY LOCATION
1800H

LINED

MEMORY
LOCATION

1850H

NEW TEXT
INSERTED HERE

B) AFTER 1ST SCROLLING OPERATION

LINEO

MEMORY
LOCATION

18FOH

-- ~

f.-
I

NEW TEXT
INSERTED HERE

D) AFTER 3RD SCROLLING OPERATION

MEMORY LOCATION
1800H

LINED

NEW TEXT
INSERTED HERE

E) AFTER 24TH SCROLLING OPERATION

LINED

NEW TEXT
INSERTED HERE

F) AFTER 25TH SCROLLING OPERATION

Figure 6.2.2 Pointer Manipulation During Scrolling

2-92

Ap·223

6.2.5 Software Timing

The use of interrupts to tie the operation of the foreground
program to the real-time events of the background program
has made the software timing non-critical for this system.

6.3 System Operation

Following the system reset, the 8051 initializes all on­
chip peripherals along with the 8276 and display ram.
After initialization, the processor waits until the fifo has
a character to process or is flagged that it is time to scan
the keyboard. This foreground program is interrupted once
every 617 microseconds to service the 8276 row buffers.
The 8051 is also interrupted each 16.67 milliseconds to
re-initialize LINEOand to flag the foreground program to
read the keyboard.

2-93

As discussed earlier, a special technique of rapidly moving
the contents of the display RAM to the 8276 row buffers
without the need of a DMA device was employed. The
characters are then synchronously transferred to the char­
acter generator via CCO-CC6 and LCO-LC2 which are
used to display one line at a time. Following the transfer
of the first line to the dot timing logic, the line count is
incremented and the second line is selected. This process
continues until the last line of the character is transferred.

The dot timing logic latches the ouput of the character
ROM in a parallel in, serial out synchronous shift register.
The shift register's output constitutes the video informa­
tion to the CRT.

AP-223

Appendix 7.1 CRT Schematics

~¢

,,~D~;-:. L39::::-_D_BI-7+++-+-+-I-D ... BO~_-:3:fI: :~ J DN~n
·38 4 5 7 AO

+5V ~~ vce 37 7 7 6 6

~ \ 38 a , 9 5

~ AST

.---.............. -fGND

~ 5V~ EA
~ INTO

~
SERIALIN~

SERIALDUT~
o 74156--2!

BAUD­

BAUD­
aAUD-

INT1
RXD
TXO

P10
P11

P12
P13 .,4

6051

35 13 L 12 •
34 14 S 15 3
33 17 3 18 2

pO.7 t'3=2c.....-'H-t-t-t-+++--,,16'i ~ t"""c..... __ "';''iA7
30

ALE 11 E

'\7'
'-------------:,~: 00

11
13

15
16
17

~---------------------__tD7

t 12~
vee GND

2K)(B
STATIC

RAM

A10tii­

Alt;.-
AI

CAP LOCK­
CLEAR TO SEND­

READY- P15
SHFT- P1.

CDNTROL_

-
P17

TO

AD r.-;'7,..-_______________________ -r:'8:......J20 J21

WR 1&

LOCAL- 11 .2.0 P2A 26

I

5V

t6
...! 1AVCC SEC

p..--.! 18 1/2 ~ Wii.2n
5

+5V --+-t---i 2A

10
'---;3B

4A

7'157 7
1/2 r----- as em

113 ~iii8276

4D 8TB GND

15~

2-94

PSEN ---t- 1 G

L 'G

GND

V

'"
'"

'"

. '(

, '(. '(
'('('('('(

'('('('('(

'('('('{ '(

AP·223

1"817'61514'3'2 hD1 DO

ceo 21 vee

" -E-AO " ..
--.!.Ri)
~Wii • ee, " 2

~cs 7 . • ~ 3

---!iiS co
.

'('(

'('{

'('(

l ,,[
14 Rl
I CEXT!

GO --f ~~XT2
R2 ::c ~

CLR 11
eLK

Q' ___ '_V---"--+":'l:~ 74123 :~
9 AI GHD

2-95

Vee GHD_ .. co

"
Oe 7 , · !,: ~: · 2 · 7 11 11

5 , 1'2 10 • ~ •
7 I" , · ~

eLK

" co

7
4 ,

eH

~, • • GNO

<ce
CR

QH "

Appendix 7.2 Dot Timing

CHARACTER

1:=;89.9"'
COUNTER

STATE

DOT
CLOCK

74S163
COUNTER
OUTPUTS

QC

CHARACTER
CLOCK

CHARACTER
CLOCK TO

8276

8278 b CHARACTER
OUTPUT
(CCo-CC6)

SHIFT
REGISTER
OUTPUT
(74186)

g: '::'Kl°pF+_~
330 330

D
A
T
A

B
U
S

112 74123

AP-223

617n.

FIRST CHARACTER SECOND CHARACTER THIRD CHARACTER

FIRST CHARACTER VIDEO OUT SECOND CHARACTER VIDEO OUT

I

1K

VIDEO OUT

+V CRT

1K HORIZONTAL
MONITOR

DRIVE

+V

lK VERTICAL
DRIVE

Q2

112 74123

2-96

intJ AP-223

Appendix 7.3 CRT System Timing

CHARACTER A 2 I 3 I 4 I···A H HH HH······I H~~ I 1 :-

-1-fHl--f1--n~ n n n r rvL~
LATCH LATCH LATCH LATCH LATCH I ~ f- I I I LATCH:-- :--

CHAR 1 CHAR 2 CHAR 3 CHAR 4 CHAR 80 CHAR 1

SAMPLE
HRTC

HRTC_h

(82701 II
~~~~r-r-r-r-~~--~-+-~ II 

4 I 
r-

:-- :--

--oo~ I- ,l .. MAX 

CHAR CODE - FIRST SECOND 

18276'_ ~R ~ 
ROW 

'-tv::~1v :--~t-!V:--t-
1-lf\I-V\ 1--V\t-If\I--t-

N 
ROW 
N+1 

L'NE C~~ --+-t--+-t--t--t--t-+--I'----t--t--t--+-t--t--HH-+.lX't_t--t_+-t_+--Ir-+_r--t-_ 
LOAD LOAD LOAD LOAD 

SHIFT 
LOAD REGISTER 

LOADING CHAR X 

VIDEO 

1 OUTPUT 

I 

CHt" 1 CHAR 2 CHAR 3 _'-

I VIDEO VIDEO VIDEO 
! FOR 1ST FOR 2ND FOR 3RD 

CHAR CHAR CHAR 

CHAR 80 

VIDEO 
FOR BOTH 

CHAR 

2-97 



AP-223 

Appendix 7.4 Escape/Control/Display Character Summary 

BIT 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

CONTROL 
CHARACTERS 

000 001 

@ P 
NUL DLE 

A 
SOH DCl Q 

a R 
STX DC2 

C S 
ETX DC3 

0 T 
EOT DC4 

E U 
ENQ NAK 

F V 
ACK SYN 

. $' W 
III1L ETB 

EI x 
.'~" CAN 

I Y 
HT EM 

J Z 
LF sua 

K :'., t·: 
VT : liSe .. ,' .', 

L 
FF FS 

.... : .. 
II· ;~.". GS 

N \ 

SO RS 

0 

SI US -

010 011 

SP 8 

I I 

2 

= 3 

$ 4 

% 5 

• 6 

7 

( 8 

) 9 

: 

+ ; 

- = 

I ? 

DISPLAYABLE 
CHARACTER 

100 101 

@ P 

A Q 

B R 

C S 

0 T 

E U 

F V 

G W 

H X 

I Y 

J Z 

K [ 

L 

M J 

N 1\ 

0 -

110 111 010 011 

P 

A Q 

B R 

C S 

0 T 

E U 

F V 

G W 

H X 

I Y 

J Z 

K 

L 

M 

N 

0 

ESCAPE 
SEQUENCE 

100 

• A 

+ B 

-...c 
"'-0 

CLR E 

HOME H 

EOS I 

EL J 

NOTE: Shaded blocks - functions terminal will react to. Other. can be generated but are Ignored upon receipt. 

2-98 

101 110 111 



AP-223 

Appendix 7.5 Character Generator 

As previously mentioned, the character generator used in 
this terminal is a 2716 EPROM. A IK by 8 device would 
have been sufficient since a 128 character 5 by 7 dot matrix 
only requires 8K of memory. A custom character set could 
have been stored in the second IK bytes of the 2716. Any 
of the free 110 pins on the 8051 could have been used to 
switch between the character sets. 

The three low-order line count outputs (LCO-LC2) from 
the 8276 are connected to the three low-order address lines 
of the character generator. The CCO-CC6 output lines are 
connected to the A3-A9 lines of the character generator. 

The output of the character generator is loaded into the 
shift register. The serial output of the shift register is the 
video output to the CRT. 

Let's assume that the letter "E" is to be displayed. The 
ASCII code for "E" (45H) is presented to the address 
lines A2-A9 of the character generator. The scan lines 
(LCO-LC2) will now count from 0 to seven to form the 
character as shown in Figure 7.5.0. The same procedure 
is used to form all 128 possible characters. For reference 
Appendix 7.6 contains the HEX dump of the character 
generator used in this terminal. 

45H = 01000101 
Address to Prom = 01000101 

Character generator output 

Rom Address 
228H 
229H 
22AH 
22BH 
22CH 
22DH 
22EH 
22FH 

= 228H - 22FH 
Depending on state of Scan 
lines. 

Rom Hex Output 
3E 0 

Bit Output' 
1234567 

02 )()OCK)( 
02 
OE 
02 
02 
3E 
00 

Bits 0, 6 and 7 are not used. 
'note bit output is backward from convention. 

Figure 7.5.0 Character Generator 

2-99 



AP-223 

Appendix 7.6 Hex Dump of the Character Generator 

:10~~a0~3~lA~0a~~~0~00~a~~3a~~a~00a~0aa~0EF 
:133~lA3~~0~0a000~~a0~A~~a~0A3~~~J~0~~~~aEq 
:10~~2~300~~~33aA00aaJAaa~AJ~00aA0~0~0a~~~~ 
:10~~3032~330~00000~000a~00a~~030~0~0A0~a:A 
:1~a~4A~2~~~3~~a0~003~0~Aa~30~~0~03~~aaa38H 
: 10:1;~53::33~:,.1""~aa:~A3m'laa0303(~3~i'~,,a0i~rM~03.~'" 
: 10"~'iJaa~ aaa;na~Hm2a~i0000~A;' a0~.l(IJ~~~~03 :~9' 
:10037J3~3A3030a0023"0~~0aa003300a0.03::3~0aJ 
:1032R"a3a3a033~::3330~3~J0300a0~03"0~~A00370 
:10a~3Ja0a00Aa00~a000~82~lC331C2~03~3aA~A3C 
: Hl\iAM::33ti"'M03a~~0t'l~::Hl~~~3~(~~3~~3a ~w~a"r~ 5~~ 
:10~~~B~t'l33~~a0J0~~~a~03~30~t'l~0~~"~~0~~~~4~ 
: 1 ~"3::0 3:~" 31Dt'l ~0 J ~AI~a ~<l3~'3a r'~00""330~~""~ 3~ 
:1~3~D~~0~3~O~W~~1A33~3~~"t'l~~~03~~0A~~~3~2A 
:1~"JE~~3~"""~~~3~~A~~A~A~A~~~~"~~~~~~~O~10 
:1033f~~3t'l~t'l1~t'l~"~~~~~~~~31A~~A3~q~~t'l~0~t'l~9 
:IA~1~~~~~"~B~3a~A~A"1~~00~18A~381~3~~glJBF 
:1~~1IA~~141414~0~A003A~~14143~143EI4143AC3 
:10~12~~3333C~'lC2BIE0qJ33~2~1~"q143230~::3~9 
: lliln 303:i1l4 3l1.0A(l4 2~1 ?2'::VIt'l1R::'l83 :l~A30;l"ali"t'l23 
: 1:;J"14033~3;~ A2;'J2~~4 ABt'larH!l"2A202Al A~!W~{l1 
: Hit'l15~3"~82AIC~·31C2AAq:lr~t'l3t'lCjI·m 3t::."q~Fn~!l~9::> 
: 10~n ~".~~"30a .1A~i'l~30 B'MIM 0"33("~3CAr-lA11"A~ 3F 
: HUI7;MI'lI'l~~il~1"'~IJ"aI'l18:l :1"3201 ~:lA 'M ~23~~nq 
:1~31BJ331C22322A2~221C03A93CA~1A~~131C~~21 
:lAAI913:'lC222~lC02A23E1~3E2~1~lq2~221C0I'lRF 
: 1~l'llM3:n:.n 81412 3~1 '-'HI;'03::021 t::2A2~221CW~:7 
: 10Jlt:H~~338.H~~21E22221:"'''3E2rnw:,g14 ~4 !W~":n 
:1~~IC~3~lC22221C22221cnAIC22223C2"13qEq17q 
:lA31D0A~a~~3A~01A11q1a~1J3~3~R~1~1JB1q~4f3 
:10alE~1~1033~402~~AR130~M3103E~~3~9~1A3~59 
:10~lfJa~14AqI02~1~~9~4A~lC222"'19I'lq18AA0~21 
: 10n:i:'3tHC222A3A. lM23:W~ar:!l422223e22221'l/n2 
:lA321~~::31E24241C24241E11'lIC22~2A2A2221Cg"74 
:lA~22"a~lE24242424241~A03~~202~~A2~23E~14: 
: 1 (i::32 3~'A131::ri2020S"2A2~2~;nC(l2A2 3.lI.22223C03r;~ 
: 1~~J24{~~1l2222223i222222J~lC!B;'R!' 9'~R 131Cfl~44 
: H'325:n17:~2 02f12~2i~221C!1:l2212Clll.W)1A1222:~~E€ 
: lli:W;~a~A2 ;.'l2~ ;112(-\2 i~23F.:'il('J223')2A2A2?2?22W~ 32 
:10~27J~3222~2~32222222~OlC22222222221:~192 
: l:~(~28·.~;'~1t:::22221 E~2\'2'~2r~~IC2222?22A122:"'~r'E 
: 101J29!l ~~1 t:: 22221 i::'~A 1222M3'::Cl2"21C2~2~lE3~Er.; 
: HM2AI1 ~"3E';B("8.H~ '~a B:' 3'l;12222222222221CCneq 
:lOIJ2~~~~222222222214~qAJ222222222A3r.;220~~E 
: llia2C;,j"~222214W:H42222.J:'l22222214!i813:.' 9 ~~t::4 
: 1('J32D!~A:'13t:: 2{n ~lagli4"23r:~:nCA·1:14041'l4 A.llCA11R 
: lIi1'l2t::W-lMl il:'2Cl40':H~2 ;,):'lW1"392~2 ;1 2 i'2 ~ 2"3 ~.l":;(IJ 
:1~32f~~0~81C2A~3~BJR~3~~3~~~~A~~A~~~~17~12 
: 1 !1~30;lOt'l1~9~n 1 (~Yl:IY'3:1(l:1::l:1~~'~:~ 3'::2(nC22'3:"~4i:: 
:10~31~~0~2A21A2G22221E~~~",a038~4~4A~3q~~3~ 
: 13ti32Wl:12i-l202:::322222 '3CrH~"~::l113q24aC~4dq ~~')~ 
: 10"330il03R24040t::iH ~4"4 r'iI~f'l:1:HC22?23C2!lI3CM 
: H~I.n400('Ja2!' 21 ~2t;222222i100 8(i111 ~:H~;'R ";J~9'Htl4:i 
: 11l~35~:'ln'''''''02~2:i21lA42418(12(122212.";J~1~?2('J:;'::3 
: 10.,3t):M:Hl ~m8(~8~ 3~8~39;'/,.,a'~\~3 3~2A21\2222(~~7f 
:10337A~A::3~l~11\2;222222~~~a~('JIR2424241R~~3~ 
: 1 ("03B':1:13~~A:~ It:22221t:(.'l2"2"'~l'la lC2 2223'::2~20"J 
: 10~39;M~~33;nA2r,32:'2;;'2:.l3:":l~~3q141A2rHC~1q7 
: 1 ""3M' J~~~;'RICA ~(-IR" q9~:l(l~~':l~ 22222232 4C"~"9'; 
:10i13~003;'3~"222222140~"~~J~~22222A1EI4f'l:l~~ 
: 1 ~1~' 3Cvl:~3a:, ~!12214!1 'U 42 2~lil" ;m:l22? 2 22 3(: 2J3A~f 
: 1"~3D!'~'MW~(Br: 10:"8l'4 3t::~:;j188qA9'Bq9R91 ~H2f 
: 10:n~~;,a:'BAS~" 3lB Atl$iA ..,338 ~C9.~91219~9100:M51 
:IYla3f0~3393i19C2dd0~1~a~a3~~3~~A00~~~00:l~95 

2-100 



AP-223 

Appendix 7.7 Composite Video 

In this design it was assumed that the CRT monitor re­
quired a separate horizontal drive, vertical drive, and 
video input. Many monitors require a composite video 
signal. The schematic shown in Figure 7.7.0 illustrate how 
to generate a composite video from the output of the 8276. 

5 OK :J 4.7K 
74LS221 

5 
2 2Q 

B, 
1 

A, 3 

.f"" t--5Y 

K 

HRTe 

2.2 

470pF 14 .001"F 
6 II 

" 15 
ex ex 

" 7 

The dual one-shots are used to provide a small delay and 
the proper horizontal and vertical pulse to the composite 
video monitor. The delay introduced in the horizontal and 
vertical timing is used to center the display. The 7486 is 
used to mix the vertical and horizontal retrace. Ql mix 
the video and retrace signals along with providing the 
proper D.C. levels. 

10K L 5 OK 
74LS221 

5 
2Q 2 ./ B, 

5y2 - 1 
~ 

A, 
~ 2. 

VRTC 

2K 

.1"F 
6 14 

.05 
II II 

" 
ex cx 

" 7 15 
- Rxex- -RXCX 

4 
0, B2~ 0 B2~ I 7486~ I 5Y 

7486 +5 

6800 

1KO 
+5 

1KO 
COMPOSITE VIDEO 

VIDEO 
1500 OUT 

-= 

Figure 7.7.0 Composite Video 

2-101 



AP-223 

Appendix 7.8 Software Documentation 

\ 

/**********************************************************.*.***************** 
******************.*.****.****.*.*********.******************.***************** 
******* 
***.* •• 
***.*** 

SOF"lWARE IXJC(roNTATIl~ roR TIlE 8051 
TEIfo\INAL aJn'R)LLER APPLICATICN 00l'E 

.t*t ••• 
*.***.* 
*.***** 

.****** **** ••• 
************************.*.**********************.*******.*.********.**.*** •••• 
*********.* •• ***.******.****************** •• ***********************.* •••• ****** 

MIMlRi MAP ASSOCIATED WITH PERIPHERAL DMCES (USING tOJX): 

8051 WR AND READ DISPLAY Rl\M- ADDRESS 100OH'ro 17CE1f 
8051 WR DISPIAY R!\M TO TIlE 8276- ADDRESS 1800H TO lR:EH 
8276 CXMWID ADDRESS- ADDRESS OOOlH 
8276 PARlIMI!lrER ADDRESS- ADDRESS OOOOH 
8276 srATUS RIDISl'ER- ADDRESS OOOlH 

MIMlR':( MAP roR READIm TIlE KElOOARl) (USING MJI.lI:): 

KElOOARl) ADDRESS- ADDRESS 10FFH'ro 17FFH 

/*******~*****~**.*** BrARl' MAIN PIOORAM. **.**** •• ******* •••• **.****/ 

/* BEGIN B'f FUlTING TIlE AOCII CODE roR BLANK IN TIlE DISPLAY R!\M* / 

INIT: . 
{nu. 2000I.o::ATICNS IN TIlE DISPLAY R!\M WITH SPJ!C:!;S (AOCII 20H)} 

/* INITIALIZE FOINl.'ERS, R!\M BITS, Ell'C. 

IINITIALIZE FOINI'ERS AND FLAGS} 
INITIALIZE TOP OF TIlE CRr DISPIAY "LINEO"=180OH} 
INITIALIZE 8276 BUFFER POINl'ER "RASTER" =180OH} 
INITIALIZE DISPIAY$R!\M$POINTER=OOOOH} 

/* INITIALIZE TIlE 8276 */ 

RESEr TIlE 8276} . 
INITIALIZE 8276 ro 80 ClIARl\C1'E1VRJ } 
INITIALIZE 8276 'ro 25,R:MS PER FRAME} 
INITIALIZE 8276 'ro 10 LINES PER lO'I} 

*/ 

INITIALIZE 8276 oro NCN-BLIIIONG UNDERLINE aJRSER} 
INITIALIZE aJRSER TO IDlE FOSITICN (00,00) (UPPER LEFt' HAND CORNER)} 
mARl' DISPIAY} 
ENABLE 8276 lNl'ERlIJPl'} 

/* SET UP 8051 lNl'ERlIJPl'S AND PRlORITIFS * / 

\ EXTE!;NAL IN!'ERHlPl'S ARE EDGE SENSITIVE} , I SERIAL roRl' HAS HIGHEsr lNl'ERlIJPl' PRloRi:~} 

\ ENABLE <X'l'Em'U, IN1'ERR.lP1'Sj 

2-102 



AP-223 

/*PRX:EaffiE SCANNER: THIS Proc:EIlJRE OCANS THE KEI:'OOARD AND DEl'ElMINES IF A 
SINGLE VALID KEI:' lIAS BEEN PUSHED. IF TRJE THEN THE AOCII BJUlVALENl' 
WILL BE TRANSMITTED ro THE HDSr CXloIR1IER. * / 

SCANNER: 

{ENABLE 8051 GIDBPJ.. INl'ERIUPT BIT I 

/* ProGlWfolABLE DELAY IDR THE aJl5ER BLINK */ 

IF {30 VERI'ICAL RETRl\CE IN1'ERH1Pl'S HAVE cxnJRRED (CllRSER$COONI'=lm) I THEN 
00, 

!cx:Ml'I.aIENl' aJRSERSCN} 
CLEAR CURSER$CXlJNl'1 

IF {aJRSER IS TO BE OFF (aJRSER$CN=0)} THEN {roVE aJRSER OFF THE SCREEN} 
CALL LOl\D$CURSER, 

END, 

IF (THE LOCAL$LlNE &m'lOI lIAS CIIAI.'lm 9l'ATE) 'mEN 
00, 

IF {IN LOCAL rolE} 'mEN (DISABLE SERIAL PORI' IIfl'ERHJPl') 
ELSE CALL CHEXJ<$BAUD$RATE, 

ENDI 

00 WHILE {INBE"lWEEN VERl'ICAL REFRESHES} 
IF (THE FIFO lIAS A CllAlll'CmR TO ProcESS (SERIAL$INr=I)) 'mEN CALL DEX:IPHER, 

ENDI 

CALL READER, 

IF ('1F.E PRESEN!' PRESSED KEY: IS ~ TO THE LA9l' Y.Ell PRESSED AND VALID=I) THEN 
CALL AU'IO$REPEAT, 

ElSE 
00, ' 

IF (A KEY: IS PRESSED IllT mr THE S/\ME CIlE AS THE LA9l' KEY:OOARD OCAN) THEN 
00, 

IF {CNLY CIlE KEY: IS PRESSED} 'mEN l' GEr THE' AOCII ,COOE FOR IT} 
SEll' NEW$KE:l AND VALID FU.GS} 

ELSE RESEll' VALID AND NEW$KEll FU.GS} 
END I 
ELSE {THE KEY:BOARD MU9l' oor HAVE A REI:' PRESSED SO RESEll' VALID$KE:l AND NEW$KEll FLIIGSI 

!'NOl 

ooro SCANNERI 
END I 

/* Proc:EIlJRE AUTO$REPFAT: THIS Proc:EIlJRE WILL PERFOIM AN AU'IO REPFAT ~ION 
B'i TRANSMITl'ING A CllAlll'CmR EVER{ 0l'HER TIME THIS OCUl'INE IS CALLED. 
THE AU'lU REPFAT ~I(!iI IS ACTIVATED AFrER A FIXED DELAY PERIOD AFrER THE 
FIR9l' CHARACI'ER IS SEN!'* / 

AU'lU$REPFAT: 

IF (THE RE!l PRESSED IS NEl'I (NEW$KE:l=I) THEN 
00, 

!CLEAR THE DIVIDE B'i 'J.W) COONl'ER "'1'RAN1MIT$TOGGLE") 
INITIALIZE THE DELAY COONl'ER "'1'RAN!MIT$O:XJNr" TO ODOH} 

CALL '1'RAN!MITI /* FIR9l' CHARl\CTER */ 
{CLEAR NEW$KE!{} 

ENDI 

2-103 



ELSE 
00; 

IF {TRANSMIT$OXINl' IS !Ul' EWAL ro O} THEN 
00; -

AP-223 

{INCREMEN!' TRlINSMIT$OXINl'} 
IF TRANSMIT$OXINl'=OFFH THEN 
00; 

~IEAR ~:sJ.r$OXlNl'} 

/*DFLAY BEl'WEEN FIRSI' CHARl\CTER AND THE SEXnID * / 
/*SEXXlND CHARl\CTER * / 

END; 
END; 
ELSE 
00; 

{'!URN THE ClJRSER Cti WRING THE Al1lO REPEAT rutCl'ICti} 
IF TRANSMIT$TOOOIE = 1 THEN 

CALL TRANSMIT; 
{CCMPLEMENI' TRANSMIT$'roaE} 

/* 2 VERl' FRI\MES BEl'WEEN 3m> 'ro Nm CHARl\CTER */ 
/* 3m> THRXJGH Nl'3 CHARl\CTER */ 

END; 
];lID; 

/* PRX:EWRE TRANiMIT- CN::E THE Hoor a:MP!1I'ER SIGNALS THE 8051H BY' BRINGING 
- THE CIEAR-ro-SEND LINE IDN, THE AOCII CIlARl\CTER IS R1l' mro THE SERIAL PORT.*/ 

TRlINiMIT : 
PR:cEWRE; 
IF {THE TER-IINAL IS Cti-LINE} THEN 
00; . ' IWAIT um'IL THE CLEAR$'ro~SEND LINE IS IDN AND um'IL THE 8051 SERIAL PORl' TX IS !Ul' BUS{ 

TRANSMIT THE ASCII CODEI 
CLFAR THE FLAG "TRANSMIT$mr~. THE SERIAL PORl' SERVICE lO1l'INE WILL 8m' THE FLAG 
WHEN THE SERIAL PORT IS FINISHED TRlINiMITTING} 

END; 
ELSE {THE TER-IINAL IS IN THE LOCAL KlIlE} 
00; !R1l' THE AOCII COIlE IN THE FIFO} 

INCREMEN!' THE FIFO POINl'ER} 
8m' SERIAL$mr} . 

END; 
END TRANSMIT; 

2-104 

(TRANiMIT$INT=l) } 



AP-223 

/* PKlCELURE DEX:!IP!lER: THIS PKlCELURE DEIXlDES THE HOSl' CCMPUTER' S MESSAGES AND DEl'ER>\.INES 
WHEl'HER IT IS A DISPLAYABLE CHAAACTER, CXJNl'IDL SEX;;lUENCE, OR AN ESCAPE S~ 
THE PKlCELURE THEN N:l'S l\OX)RDINGLY * / 

DEX:!IPHER: 
STARl'$DEX:!IPHER: 

VALID$RECEPTION=O; 
00 WHILE {THE FIFO IS NO!' EMPl"i AND THE CHAAACTER IS DISPLAYABLE) 

ROCEIVE={ASCII CODE) 
CALL DISPLAY, 
{NEXT CHAAACTER) 

END, 

IF CI!ARACl'ERS WERE DISPLAYED) '!HEN 
DlSABIE SERIAL PORT INl'ERRlPr) 
M:lVE THE REMAINING CXlmNI'S OF THE FIFO UP 'lXl THE BmINNING OF THE FIR)) 
ENABLE SERIAL PORT INl'ERRlJPI'1 
SE:r THE VALID$RECEPTION FLAG 

IF {nm FIR) IS EMPl"i) THEN {CLEAR THE "SERIAL$Im FLAG AND REll.'URN) 

IF I'lliE NEXT CHARACl'ER IS AN "ESC" CODE } THEN 
00: 

{I£lCK AT THE CHAAACTER IN THE FIR) AFI'ER 'lliE ESC CODE AND CALL THE CDRREX:!T SUBR:Ul'INE} 

b..u. UP$<lJRSER: 
CALL 00i'lN$<lJRSER: 
CALL RIGHr$<lJRSER: 
CALL LEE'r$<lJRSER: 
CALL CLEAR$SCREm: 
CALL H)V$CURSER: 
, 
CALL HCME: 
: 
CALL ERASE$FH:M$CURSER$'ro$END$OF~: 
CALL BLINE: 

/* ESC A */ 
/* ESC B */ 
/* ESC c */ 
/* ESC 0 */ 
/* ESC E */ 
/* ESC F */ 

/* ESC H */ 

/* ESC J */ 
/* ESC K */ 

M:lVE 'lliE mNl\INING CXlmNI'S OF THE FIR) UP 'lXl 'lliE BmINNING OF THE FIR)} 
ENABLE THE SERIAL PORT INl'ERRlJPI'} IDISABLE THE SERIAL PORT INl'ERRlJPI'} 

SE:r THE "VALID$RECEPTIW" FLAG} 

IF {nm FIro IS EMPl"i} THEN {CLEAR THE SERIAL$Im FLAG AND REll.'URN} 
END: 

2-105 



IF (THE NEXT CHl\Rl\CTER IS A OONrIVL CODE} TIIDI 
!Xl; 

(CALL THE RIGHI' SUBRXlTlNE} 

CALL LEIT$aJRSER; 
, 
CALL LINE$FEED; 
, 
CALL CLEAR$SCREEN; 
CALL CARRI1lGE$REll'URN; 

AP-223 

/* err.. H */ 

/* err.. J */ 

/* err.. L */ 
/* err.. M */ 

IDVE THE REMAINING cxNrENrS OF THE FlED UP oro THE BEXiINNIro OF THE ),'UU} 
ENABLE THE SERIAL PORI' INrERRJPT} IDISABLE THE SERIAL PORl' INl'ERHJPl'} 

~ TIlE "VALID$REX:EPl'ICN" FLI\G} 
END; . 

IF (NJ VALID CODE WAS RB::EIVED ("VALID$REX:EPl'ICNn IS O)} TIIDI 
('IHR:M THE CHl\Rl\CTER oor AND MOllE TIlE RI!Ml\INI~ a:NrEN1'S OF TIlE FlED) 
{up ro THE BEX3INNING} 

IF {THE FlED IS EMPlY} TIIDI {CIEAR'l.'Ire SERIAL$INl' FLI\G AND llElUm} 

END DOCIPlIER; 

/* POOCEiXlRE DISPLAY: THIS PRJCEIlJRE WILL TAKE TIlE BiTE IN RAM IABELED 
REX:EIVE AND PUl' IT INrO TIlE DISPLAY RAM. * / 

DISPLAY: 

{PUl' IN'ro THE DISPLAY RAM ILCPa'ICN POINl'ED oro Bi nDISPLAY$RI\M$POINl'ER 
THE a:NrEN1'S OF RB::EIVE} '. 

IF {THE END OF THE DISPLAY MJM)Rl HAS BEEN REI\CHED} TIIDI 
{RESET nDISPLAY$RAM$POINl'ER" oro TIlE BEX3INNI~ OF TIlE RAM} 

ELSE 
{INCR&IENl' "DISPLAY$RAM$POINl'ER"} 

IF {THE aJRSER IS IN TIlE IA9l' OOIa!N OF THE CRr DISPLAY} TIIDI 
!Xl; 

{IDVE THE aJRSER BAQ{ oro THE BEX3INNIro OF TIlE LINE} 
IF {'.mE NEW DISPIAY RAM ILCPa'ICN HAS A IH)-()F-LINE CHAWCl'ER IN IT} TIIDI 

CALL FILL; 

IF {1liE aJRSER IS CN THE IA9l' LINE OF TIlE CRr DISPlAY} TIIDI 
CALL SClVLL; 

ELSE 

END; 
ELSE 

{IDVE THE aJRSER oro TIlE NEXT LINE} 

{m::R&IENl' THE CURSER oro THE NEXT IlX:ATICN} 

{'!URN THE aJRSER CN } 
CALL LCl!\OCURSER; 
END DISPlAY; 

2-106 



AP-223 

/* PRX:EnJRE LINE$FEEO */ 

LINE$FEED: 

IF {WE OJRSER IS IN THE Ll\Sr LINE OF THE CRr DISPLIIY} THEN 
CALL SCHJLL, 

ELSE 
00, 

IIfJVE WE aJRSER ro THE NEKT LINE} 
'lUR-I WE aJRSER OO} 

CALL I£lNl$aJRSER, 
J;M), 

IF {WE DISPLIIY$RAM$POINTER IS 00 THE Ll\Sr LINE IN THE DISPLIIY RAM} THEN 
{1fJVE THE DISPLIIY$RAM$POINl'ER ro THE FIR9l' LINE IN THE DISPIAY RAM} 

ELSE 
{1fJVE THE DISPLIIY$RAM$POINTER ro THE NEKT LINE IN WE DISPIAY RAM} 

IF {WE FIR9l' CHARlCl'ER IN THE NEW LINE OONl'AINS AN mD-OF-LINE CHARlCl'ER } TIIEN 
CALL FILL, 

/* 

SCHJLL: 

*/ 

~~vkrICAL REl1'Ri\CE INl'ERRlPl'} 

IF {WE FIR9l' LINE OF THE CRl' CONl'AINS THE Ll\Sr LINE OF THE DISPIAY MEM)R{} TIIEN 
IfJVE THE POINl'ER "LINEO" ro THE m;x;:oom;«; OF THE DISPLIIY MEM)R{} 

ELSE 
{1fJVE "LINEO· ro THE NEKT LINE IN THE DISPLIIY MIM)R{} 

{ENABLE VERl'ICAL RErRllCE Im'ERRUPl'} 

/* PRX:EnJRE CLEAR OCREEN */ 

CLEAR$SCREE2'I : 

CALL lDoIE, 
CALL ERlISE$FIOI$aJRSER$TO$END$OF$OCREE:N, 

2-107 



AP·223 

/* PR:lCEIlJRE 10m: 'l1IIS PKlCEIXlRE MJ\IES THE ClIRSER 10 THE 0,0 POSITICN */ 

lIME: 

{MJ\IE THE ClIRSER PO{iITICN 10 THE UPPER LEFr IIi\ND CORmR OF THE CRr} 
{'l'Um TIlE Cl1RSER CN} 
CALL I£lAO$ClJRSERI 
{MJ\IE TIlE DISl'lAY$lV\M$POINTER ro TIlE CO~ LOCM'ICN IN TIlE DISPLAY RAM} 

/* PKJCEnJRE ERASE FID4 Cl1RSER ro END OF SCREEN: */. 

ERASE$FlOt$CURsER$'ID$END$OF~: 

CALL BLINEI /* ERASE Cl1RRENl' LINE */ 

IF {TIlE ClIIQ:R IS NOr CN THE LASl' LINE OF THE CRr DISPIAY} 'l'IIEN 
9l'ARTING WITH.THE tmKT LINE,PUT AN END-QF-LINE CHARI\C1'ER (OFlH) 
IN TIlE DISPLAY RAM LOCM'ICNS 'l1IAT CORRESl'QID ro TIlE BECJ:NNIN; OF 
THE CRr DISPLAY LINES UNTIL TIlE B:Il.'l'CM CF THE CRr SCREEN lIAS BEf1I1 RFJ\CHID} 

/*PRXEIllRE MJII$aJRSER: 'IlIIS PRX:EIXJRE IS USED IN ~OO WITH WJRDSl'AR 
IF A ESC F IS REI:EIVED FlOI TIlE HOSr CCMlUIER, TIlE 'J.'ERoIINAL CXNl'OOLLER WILL 
READ TIlE NEXT TW) BlrTE 10 DE'l'ERUNE WHERE ro MJ\IE THE ClIRSER. THE FIRSI' BlrTE 
IS THE RJW INFOR>lATICN FULLCMED Blr TIlE CXlUJ:IN INFU!W.TICN * / 

MJV$CURSER: 

{
WAIT UNTIL TIlE FIR> lIAS REX:ElVED THE NEXT TW) CHARl'Cl'ERS} 
MJ\IE TIlE ClIIQ:R ro THE LOCM'ICN SPECIFIED IN THE ESCAPE sa;;oFNCE}. 
MJ\IE TIlE DISPLAY$RAM$POINTER ro THE <XlRRl'n' LOCM'ICN} 

IF TIlE FIRSl' CHARl'Cl'ER IN THE mw LINE lIAS AN END-OF-LINE CHARI\C1'ER} 'l'HQiI 
CALL FILLI 

ENDI 

IDISI\BLE TIlE SERIAL PORl' INl'ERlIlPl'} 
MJ\IE TIlE RlH\IN CCNl'ENl'S OF THE FIFU UP TW) LOCM'ICNS IN MEM)R{} 
DEX:RE%oIrNr TIlE FIR> Hi TW)} 

mABLE TIlE SERIAL PORl' INl'ERlIlPl'} 

/* PR:lCEIlJRE LEFl' Cl1IQ:R: 'IlIIS PR:lCEIlJRE MJ\IES THE Cl1RSER LEFr <tiE CXlUMI 
Hi SUBl'Rl\CTING 1 OF TIlE ClIIQ:R CXlID!N RAM LOCM'ICN 'l'IIEN CALL WI\D Cl1RSER * / 

LEFr$Cl1IQ:R: 

IF {TIlE Cl1RSER IS NOr IN TIlE FI~ LOCM'ICN OF A LINE} 'l'IIEN 
00, 

IMJ\IE 'l'IIE WIQ:R LEFl' Hi <tiE LOCM'ICN} 
TORN TIlE WIQ:R CN} 

CALL LOI\D$CXJRSERI 
{DEX:RE%oIrNr TIlE DISPLAY$RAM$POINTER Hi <tiE} 

END; . 

2-108 



AP-223 

/* PKJCEOORE:· RIGHr CURSER: THIS PRX:E:!lJRE: MJVES THE CURSER RIGHr CNE COlllMN 
BY AIDING 1 ro THE CURSER COIllMN RAM IDCATICN THEN CALL IllAD CURSER * / 

RIGHr$CURSER: 

IF (THE ClJRSER IS NOl' IN THE LASr l'OSITICN OF THE CRT LINE) THEN 
00; 

!MJVE THE OJRSER RIGHr BY CNE IDCATICN} 
rum THE OJRSER CN} 

CALL IllAD$CURSER; 
(IOCREMml' THE DISPLAY$RAM$POINTER BY CNE} 

END; 

END RIGHr$OJRSER; 

/* PRX:E:!lJRE: UP OJm: THIS PRX:E:!lJRE MJVES TIlE OJRSER UP QIE lO/ 
BY SUBl'Rl\Cl'ING 1 ro TIlE ClJRSER R:M RAM IDCATICN THEN CALL IllAD CURSER * / 

UP$OJRSER: 

IF ('lllE ClJRSER IS NOl' CN THE FIRSI' LINE OF THE CRT DISP!.i\Y} THEN 
00; 

!MJVE THE OJRSER UP QIE LINE} 
rum CN TIlE OJRSER} 

CALL I.<lAD$CURSER; 

IF 1'lllE DISPLIIY$RAM$POINTER IS IN THE FIRSI' LINE OF DISPLIIY MEM)Ri} THEN 
MJVE TIlE DISPLIIY$Rl\M$POINTER ro THE LASr LINE OF DISPLAY MEM)Ri} 

ELSE 
(MJVE THE DISPLIIY$RAM$POINTER UP QIE LINE IN DISPLlIY MiH)Ri} 

IF ('lllE FIRSI' IDCATICN OF THE NEW LINE CONl'AINS AN END-OF-LINE CHARI\Cl.'ER) THEN 
CALL FILL; 

/* PRJCEWRE IXX<JN CURSER: THIS PRX:E:!lJRE: MJVES THE OJRSER llCMN ONE lO/ 
BY AIDING 1 ro THE OJRSER R:M RAM IDCATICN THEN CALL IllAD CURSE!R * / 

IXMN$OJRSER: 

IF (THE CURSER IS NOl' 00 THE LASr LINE OF THE CRT DISPLAY} THEN 
00; 

!'!URN THE OJRSER oo} 
MJVE 'lllE CURSE!R TO THE NEKT LINE} 

CALL IllAD$CURSER; 

IF 1'lllE DISPLIIY$RAM$POINTER IS NOl' ON THE LASr LINE OF THE DISPLlIY MEM)Ri} THEN 
MJVE THE DISPLlIY$Rl\M$POINTER ro THE NEXT LINE IN 'lllE DISPLlIY MEM)Ri} 

ELSE 
(MJVE THE DISPLAY$RAM$POINTER ro THE FIRSI' LINE IN THE DISPLlIY MEM)Ri) 

IF ('lllE FIRSI' CHA.Rl\Cl'ER IN THE NEW LINE IS AN END-OF-LINE CHARI\Cl.'ER) THEN 
CALL FILL; 

END OOWN$CURSER; 

2-109 



Ap·223 

/* */ 

CARRIAGE$REl1'URN : 

{
MJVE TIlE DISPU\Y $RAM$POINl'ER 'ro TIlE Bl!GINNIm or TIlE aitl:RENr LINE IN TIlE DISPLAY MEHlRi} 
IDVE TIlE OJRSER 'ro TIlE Bl!GINNIm OF TIlE aJRRmr LINE or TIlE CRr DISPLAY} 
'rum TIlE OJRSER oo} . 

CALL I£Wl$aJRSER; 

/* PRJCEIlJRE UWl etmSER: UWl omsER TAKEs THE VAWE HEID IN Rl\M J\ND 
IDI\DS IT mro TIlE 8276 etmSER REX;ISTER. * / 

UlAD$OJRSER: 
PKJCE[(JRE; 
IF {TIlE aJRSER IS rn} 'l'Hm 

{MJVE TIlE aJRSER BAa< 00'r0 THE CRr DISPLAY} 

{
DISABLE IIJFFER INl'ERRlPl'} 
WRITE'ro THE 8276 etmSER REX;ISl'ERS THE X,'i LOCATIooS} 
ENABLE IIJFFER INl'ERRlPl'} 

/* PIVCEilJRE CHEn< IWlD RATE: TKIS PRJCEIlJRE RFADS THE THREE PORr PINS 00 PI AND SETS UP 
TIlE· SERIAL PORr FOR TIlE Sm:IFIED IWlD RATE * / . 

CHEn<$BAUD$RATE : 

ISET TIMER 1 oro MODE 1 AND AU'lU REUlI\D} 
'rum TIMER rn} . 
ENABLE SERIAL PORr INTERRJPl'} 
READ MUD RATE SWITCIIES J\ND SET UP REUlI\D VAWE} 

; 
'l'Hl=040H; 
'l'Hl=OAOH; 
THl=OOOO; 
THl=0E8H; 
'l'Hl=OF4H; 
'l'Hl=OFAII; 
'l'Hl"OFL'iI; 

.. /* 00 IS NOr AL'!.£liED * / 
/* 150 BI\UD * / . 
/* 300 BI\UD * / 
/* 600 IWlD */ 
/* 1200 IWlD */ 
/* 2400 IWlD */ 
/* 4800 BIWD */ 
/* 9600 BI\UD * / 

2-110 



AP-223 

/* PllXmJRE READER: THIS PRJCEnJRE IS WRI'lTEN IS ASS:J;MBLY IJ\W1l\GE. 'mE 
EXTElWIL PRX:mJRE SCIINS TIlE 8 LINES OF TIlE KE'{OOMI) AND READS TIlE RSl'I.Im 
LINES. 'mE grAWS OF TIlE 8 REI.'URN LINES ARE '!.'Hal sroRED m INI.'ERUIL 
MEM)R{ ARRAY CALLED c:tJRRENl'$KE'i * / 

READER: 

{mITIALIZE FrAGS "KElr0"=0, "SAME"=l, 0 CXXlN1'ER=0} 

00 UNTIL {ALL 8 KE'{OOMI) SCIIN LINES ARE READ} 
{READ KE'{OOMI) SCIIN} 
IF {ID KE'{ WAS PRESSED} TmN 

{meREMan' 0 <XXlNl'ER} 
ELSE 
IF {'mE KE'{ PRESSED WAS NC1l' TIlE SAME Kg{ THAT WAS PRESSED TIlE IASr TIME 

'mE KE'{001\RD WAS READ} TmN . 
{CIEAR "SAME" AND WRITE NEH SCIIN RESUIJr TO CURRENr$KE{ RAM ARRAY} 

IF JALL '8 SCIINS DIOO'T HAVE A KE'{ PRESSED (0 <XXlNl'ER=;8)} TmN 
SElr KE'{O, AND CLFAR SAME} 

END READER; 

/* PKlCEllJRE BLANK: THIS EXTEINAL PKlCEllJRE FILLS LINEO WIT!! SPACES (20H ASCII) 
OORING TIlE scroLL RCUl'INES.*/ 

BLANK: 

00 1= {BmINNING OF TIlE em' DISPLAY (LINEO)} TO {LINEO + SOH} 
{DISPLAY RAM POINl'ED TO BY "I" = SPlICE (ASCII :'20H)} 
NEXT I 

END; 

END BLANK; 

/* PKlCEllJRE BLINE: THIS EXTElWIL PllXmJRE BLA!l<S FR:M TIlE CURSER ro TIlE END OF 
'mE DISPIAY LINE * / 

BLINE: 

00 1= {aJRRENl' aJRSER POSITIOO eN CRr DISPLAY} ro Imp OF ~} 
{DISPlAY RAM POINl'ED TO BY "I" = SPlICE (ASCII 20H) J 
NEXT I 

END; 

END BLINE; 

/* PllXmJRE FILL: THIS EXTElWIL PllXmJRE FILLS A DISPlAY LINE WITH SPACES·/ 

FILL: 

00 1= {BEGINNING OF TIlE LINE THAT TIlE aJRSER IS eN} TO {END OF TIlE lUi} 
{DISPlAY RAM POINTED TO BY "I" = SPlICE (ASCII 2OH)} 
NEXT I 

END; 

END FILL; 

2-111 



AP-223 

Appendix 7.9 Software Listings 

PL/M-51 ~ILER 

ISI5-II PL{M~51 vl.1 
CCMPItER lNV\:l(ID S'i: P1MS1 :F1:CRl'P1M.SlC 

$OPl'IMIZE (1) 
$OOINl'IIECroR 
$lO! (J:.AR;E) 

/*********** ••• ***************,,**,.************* ••• **._ ••• ,-,--.",--,_._-,._.­-",._.-.. ,-._.-._._._.,_ ... _._--_ ... ,---,_._-" ... "._ ... ,-,_._ .. ,-_._,----.,., 
******. ",""" 
....... P1M51 SOFlWARE FOR THE 8051 TERoIINAL ...... .. 
••••••• a:lNl'R:lLLER APPLIcro.'ICN NOl'E ....... . . ,-,_.- -,-"-,-.,.,-"-,-_._,_._ .. _,-"-,--,.-.,"-*-*.-.-.. _--,.,.,-... ,.,---,-,-,-----,_._,.-.... _--,--................ " .... _, ....... _, ... ,_ .. , ... --""-,-"_.-.-,-,-".,--

MlM>Rl MAP AS~IA'I'ED WITH PERIPHERAL I>INICES (USING MO\Il(): 

8051 WR AND READ DISPlAY RIlM- ADDR&SS 1000H 'l'O 17CFH 
8051 WR DISPlAY RIlM 'l'O THE 8276-- ADDR&SS 1800H oro 1mB 
8276 O»IAND ADDR&S5- ADDR&SS OOOlH 
8276 PARI\ME:l'ER ADDR&S5- ADDR&SS 000011 
8276 91'A'lUS REIiISl'ER- ADDR&SS OOOlH 

ADDR&SS 10FFH oro' 17FFH 

THE FOLI.amiIG SOFlWARE SWl'l'CIIES Kl91' BE SJ!:r NXORDn«; oro THE 'l'iPE OF 
~1KlMD '!HAT IS ron«; oro BE USED. 

*/ 

Slfl- SEll' WHm usm:; AN tJNDJOCXlIlEo ~1KlMD IS oro BE USED 
SW2- SJ!:r WHm usn«; A 0E:XlDID OR A SERIAL 'l'iPE OF Im:iOOMD 

tJNDIiXDDED ~BOf\H)- CRrPrM.OB.1 ,CRrASM.OBJ ,KElCBD.OBJ ,PI.H5l.LIlI 
, DEXDDED KE:lllClMI>-CIm'lM.OB.1 ,CRrASM.OB.1 ,DEXXDE.OB.1 ,P1H51.LIB 

0Erl\CHED KElCBOIIRO-CRl'PIM.OB.1 ,CRrASM.OB.1 ,DEll'ACH',OB.1 ,PI.H5l.LIB 

$SJ!:r (SWl) 
$l\ESEr (SW2) 

2·112 



AP-223 

PLjM-51 cnlPILER 

CRl'$CXJNTR)LLER: 
1 1 00; 

2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 1 

10 1 
11 1 
12 1 

13 1 

I*t •••• _ •• * ••••••• DECLARE LITERALS * •••• ******* •••• *******./ 

O&:U\RE LI£ LI'l'ERALI.Il 'L<X:AL$LINE$CIIi\M1E'; 
D&:U\RE Rm LITERALLY 'RmISTER'; 
O&:U\RE ClJ~ LI'l'ERALI.Il 'ClJRrnl'; 
O&:U\RE SERIAL$SERVICE LITERALLY 'SERIlJF'; 
O&:U\RE DISPIAY$RAM$POINTER LITERALLY 'POINT'; 
D&:U\RE 5ERIAL$INT LITERALLY 'SERINl"; 
D&:U\RE TRl\NSMlT$INT LITERALLY ''j.'mIlll' , ; 
D&:U\RE ClJRSER$(X)IaIN LI'l'ERALI.Il 'ClJRSER' I 
D&:U\RE LI\Sl'$KE:i Lr:rEIIALIN 'L9l1W('; 
D&:U\RE ClJRSER$CCIJNl' LITERALLY '<XXlIll"; 
D&:U\RE 9:I\N$INT LITERALLY '9:I\N'; 

/********* RmISTER D&:~IONS FOR THE 8051 *****************/ 

/********* ~TE REGISTERS ********/ 

D&:U\RE 
PO ~TE AT (80H) REG, 
P1 ~TE AT (90H) REG, 
P2 ~ AT (OAOH) Rm, 
P3 ~ AT (OBOH) REG, 
PSW ~TE AT(OOOH) REG, 
N:r. ~TE AT(OEOH) Rm, 
B ~ AT(OFOH) Rm, 
SP ~ AT (81H) REG, 
DPL ~ AT (82H) REG, 
DPH ~TE AT (83H) Rm, 
KX:.N ~ AT (87H) REG, 
'l1XN ~ AT (88H) REG, 
'lM:D ~TE AT (898) REG, 
TLO BlCTE AT (BAH) REG, 
TL1 ~ AT (8BH) REG, 
'm0 ~ AT(IlCH) REG, 
'ffi1 ~ M(8DH) REG, 
IE ~ AT(OABH) Rm, 
IP- ~ AT(OBBH) REG, 
~ ~ AT (988) REG, 
SBUF ~ AT (998) REG; 

2-113 



PL/M-51 CXMPILER 

14 1 

$&JEX:T 
/********* BIT REGISTERS ********/ 

/********* PSW Brrs ********/ 
DECIARE 

Ci. BIT 
PC BIT 
FOBIT 
RSI BIT 
RSO BIT 
(JIJ BIT 
P BIT 

Nr(OD7I1) 
AT (OD6H) 
AT (OD5I1) 
AT (OD4H) 
AT (OD3H) 
AT (OD2II) 
AT (ODCH) 

REG, 
REG, 
REG, 
REG, 
REG, 
REG, 
REG, 

/********* TOON BITS ********/ 
TFI BITAT(9FH) REG, 
TRl BIT AT (8E11) REG, 
TFO BIT AT (8ril) REG, 
TRO BIT AT(BCII) REG, 
IEl BIT AT (8BH) REG, 
ITI BIT AT (BAlI) REG, 
lEO BIT AT (89H) REG, 
ITO BIT AT (88H) REG, 

/********* IE BITS ********/ 
FA BIT AT (OAFH) REG, 
ES BIT AT(OPCH) REG, 
Ell'l BIT AT(OABH) REG, 
EKI BIT AT(OAAH) REG, 
Ell'0 BIT AT(CA9H) REG, 
EKO BIT AT (CABH) REG, 

/********* IP BITS ********/ 
PS BIT AT (OBCH) REG, 
Prl BIT AT (OBBH) REG, 
PXl BIT AT(OBl\H) REG, 
PrO BIT AT(OB9H) REG, 
PXO BIT AT (OBBH) REG, 

/********* P3 BITS ********/ 
RD BIT AT (OB7I1) REG, 
WR' BIT AT (OB6H) REG, 
Tl BIT AT(OBSH) REG, 
TO BIT AT (OB4H) REG, 
INrl BIT AT(OB3H) REG, 
INrO BIT AT(OB2II) REG, 
TXD BIT AT (OBlH) REG, 
RXD BIT AT (OBCH) REG, 

/********* SOON BITS ********/ 
9010 BIT AT (9FH) REG, 
f:Ml BIT AT (9EH) REG, 
5M2 BIT AT(9rii) REG, 
HEN BIT AT(9CH) REG, 
TBB BIT AT (9BH) REG, 
RBB BIT AT (9AH) REG, 
TI BIT 'AT (99H) REG, 
RI BIT AT (9BH) REGl 

AP-223 

2-114 ' 



AP-223 

PL/M-51 CXMPlLER 

15 1 

$1illCl' 
$IF SWI 

/**************** DECLARE CONSTANTS·············*·······*·/ 
DOCIARE UM$SCAN (16) SI'rucruRE 

(KEY' (B) BITE) cnlSI'ANl' 

('890-' , 5CH,5E11,OBH,OOH, 
1* SCAN 0, SHIFl' KE!l =0; 8,9,0,-, \,~, BI\Cl( SPACE *1 

'uiop' ,5BH,'@' ,OAH, 7El1, 
1* SCAN 1, SHIFl' =0; u,i,o,p,[,@, LINE FEED, DELETE *1 

'jk1;:' ,00H,OOO,'7', 
1* SCAN 2, SHIFl' =0; j ,k,l,;,:, RE:1'tJm, 7 *1 

'm' ,2CH,'.' ,OOH, 'I' ,OOH,OOH,OOH, 
1* SCAN 3, SHIFl' =0; m,a:MIA,.,1 *1 

OOH 'azxcvbn' 
1* SCAN'4, SHIFT ~O; a,z,x,c,v,b,n *1 

'y' ,OOH,OOH,' dfgh', 
1* SCAN 5, SHIFl' =0; y, SPACE, d,f ,g,h *1 

09H, 'qwsert' ,OOH, 
1* SCAN 6, SHIFl' =0; TAB,q,w,s,e,r,t *1 

lBH,' 123456' ,OOH, 
1* SCAN 7, SHIFl' =0;ESC,1,2,3,4,5,6 *1 

28H,29H,00H, '=', 7CH, 7EH!O~H'OOH, 
1* SCAN 0, SHIFl' =1; (,) ,=, , , BI\Cl( SPACE *1 

'UIOP',OOH,00H,QAH,7ElI, 
1* SCAN 1, SHIFl' =1; U,I,O,P, LINE FEED, DELETE *1 

'JKLt*',00H,OOO,27H, 
1* SCAN 2, SHIFl' =1; J ,K,L,+,*, RE:1'tJm, , *1 

'M<>' ,OOH,3El1,OOH,00H,00H, 
/* SCAN 3, SHIFl' =1; M,<,>,? *1 

OOH, 'AZXCVBN' , 
1* SCAN 4, SHIFl' =1; A,Z,X"C,V,S,N *1 

'Y' ,OOH,OOH,' DFGH', 
.1* SCAN 5, SHIFl' =1; Y, SPACE, D,F ,G,H ·1 

09H, '~' ,OOH, 
1* SCAN 6, SHIFl' =1; TAB, Q,W,S,E,R,T *1 

lBH,' 1 "t$%&' ,OOH); 
I" SCAN 7, SHIFl' =1; ESC, 1,',i ,$,%,& *1 
$ENDIF 

2-115 



AP-223 

PL;M-51 <DU'ILER 

16 1 

INRlT 

17 1 

$FJl;rl' 
/*****·········**·*DECLARE ~ABLES*********··***··***·I 

Da::IARE 

$IF SW2 

BIT M(OB4H) 
$ENDIF 
$IF awl 

CAP$UXl< 
SIIIFl'$KJ;Y 
CXNrR)L$KEt' 

$ENDIF 
LOCAI.$LINE 
CLEAR$TO$SEND 

REX;, 

BIT AT (095H) 
BIT M(096H) 
BIT M(097H) 

BIT M(OBSH) 
BIT M(093H) 

Dl\TA$TEIMINAL$1lFAIJ'i BIT M (094H) 

DEX;IARE ( 

$IF SWl. 
SlIME, 
VALID$KE\! , 
KElCO, 
LI\ST$SIIIFl'$KJ;Y , 
LI\ST$CXNl'IPL$KJ;Y , 
LI\ST$CAP$UXl< , 

$ENDIF ' 

$IF SW2 
lCVFLG, 
Sile, 
B'lCFIN, 
KBDlNl', 
ERROR, 

$ENDIF 

NEJI$KEY , 
TRl\N9UT$TOOOLE, 
aJRSBR$CN, 
SElW\L$lNl' , 
SCAN$mr, 
TRAN9UT$lNl' , 
ESCSBQ, 
VALID$IIECEPTICN, 
LtC, 
mSP) BIT PUBLIC; 

REX;, 
REX;, 
REX;, 

REX;, 
REX;, 
REX;, 

2-116 



AP·223 

PL/M-51 mlPILER CRl'CXNl'RJLLER 

$FJ:EI::T 

18 1 DEX:IARE 

I, 
J, 
K, 
ASCII$KR{, 
TRANSoIIT$COONl' , 
TEMP, 
SHIFf, 
ClJRSER$COL, 
ClJRSER$COUlMN , 
ClJRSER$RlW , 
ClJRSER$COONl' , 
nro, 
REX:EIVE) B'iTE PUBLIC; 

$IF &'W1 
19 1 DEX:IARE LAS'l'$KR{ (8) BiTE PUBLIC; 

$ENDIF 

$IF SW2 
DEX:IARE LAS'l'$KR{ (2) B'iTE PUBLIC; 
$ENDIF 

20 1 DEX:IARE SERIAL (16) B'iTE PUBLIC; 

21 1 DEX:IARE DISPIAY$RAM(7Cm) B'iTE AT (lOOOH) AllXILIARI!' ; 

22 1 DEX:IARE 

PAlWIFJl'ER$AOORIilSS B'iTE AT (OOOOH) AllXILIARI!' , 
Cll+WID$AIDllF.9S B'iTE AT (OOOlH) AllXILIARt'; 

23 1 DEX:IARE ( 

DISPIAY$RAM$POINrER, 
RASTER, 
LINEO, 
L) \aU) PUBLIC, 

2-117 



AP·223 

PL/M-51 CXJoIPILER 

24 2 
25 1 

26 2 
27 1 

28 2 
29 1 

30 1 

31 1 

$EJa:T 

/* PRX:EIlJRE READER: TIIIS PRX:EIlJRE IS WRITI'EN IS ASSEMBL'l IANQJAGE. THE 
EXTElW\L PRX:EIlJRE OCANS THE 8 LINES OF THE KE'i1lOMO AND READS THE RErum 
LINES. THE srA'lUS OF THE 8 RE1'Ul!N LINES ARE THEN SIDRED IN INl'ERNAL 
MEMJRi ARRAY CALLED CURRENTSKE'i. THE PRX:EEOORE CON1'OOLS 2 srATUS FLAGS; 

KE't0 AND SAME. KE't0 IS SET IF ALL 8 OCANS READ NO KE'i WAS PRESSED. 
IF ALL 8 SCANS ARE THE SlIME AS THE LASl' READIN3 OF THE KE'iIlOARD, THEN 
SAME IS SET. */ 

/* PRX:EIlJRE BIJ\Ii{: THIS EXTElW\L PRX:EIlJRE FILLS LINEO OCAN WITH spm (2OH ASCII) 
WRIN3 THE SCRJLL RlJTINFS. * / 

BIJ\Ii{: PRX:EIlJRE EXTElW\L; 
END BIJ\Ii{; 

/* PRX:EIlJRE BLINE: THIS ~ PRJCEIXJRE BIJ\li{S FlOi THE CURSER 'lO THE END OF 
.THE DISPIAY LINE */ 

BLINE: PRX:EIlJRE ElC'l:'ElR-lAL; 
END BLINE; 

/* PRX:EIlJRE FILL: THIS Ell'l'ERIAL, PRX:EIlJRE FILLS THE CURSER· LINE 
WITH SPlICES*/ 

FILL: 
PRX:EIlJRE EXTElW\L; 
END FILL; 

2-118 



AP-223 

PL/M-51 a:MPILER CRlXXNl'OOLLER 

32 1 

33 2 

34 2 
35 2 
36 2 
37 2 
38 3 
39 3 
40 3 
41 3 
42 3 
43 3 
44 3 
45 3 
46 3 
47 3 
48 1 

49 1 

50 2 
51 2 
52 2 
53 2 
54 2 
55 2 
56 2 
57 1 

58 1 

59 2 
60 2 
61 2 
62 2 
63 1 

/* PR:JCEI:XJRE CHEO< IWlD RATE: THIS PR:JCEI:XJRE REllDS THE THREE roRl' PINS 00 Pl !\NIl SErS UP 
THE SERIAL roRl' rnR THE SPECIFIED Bl\UORATE */ 

CHEO<$BI\UO$RATE: 
PR:JCEI:XJRE; 
sa:N=70H; /* IDeE 1 

ENABLE REI:EPrIoo*/ 
TMOD=TMOD OR 20H; /* TIMER 1 l\I1ro RELOI\D */ 
TRl=l; /* TIMER 1 (II * / 
ES=l; /* ENABLE SERIAL INl'ERRJPl'*/ 
ENSP=l; /* SERIAL INl'ERRJPl' MASK FLAG */ 
00 CASE (Pl AND 0711); 

; /* 00 IS NOr l\LICMED * / 
THl=040H; /* 150 IWlD */ 
TH1=OAOH; /* 300 IWlD */ 
TH1=ODOH; /* 600 IWlD */ 
TH1=0E8H; /* 1200 IWlD */ 
TH1=OF4H; /* 2400 IWlD * / 
TH1=0FAH; /* 4800 IWlD */ 
TH1=0FtII; /* 9600 IWlD */ 

END; 
END CHEO<$IWJD$RATE; 

/* PR:JCEI:XJRE LOI\D aJRSER: LOI\D amBER TJ\KES THE VAllIE HELP IN Bi\H AND 
LOI\DS IT INro THE 8276 CURSER REGISTERS. */ 

LOAD$CllRSER: 
PR:JCEI:XJRE; 
IF aJRSER$CN=l THEN 

aJRSER$COL=CURSER$OOIJMl; 
EK1=0; /* DISABLE WFFER· INrERHJPr */ 
<XMWID$AIDRESS=8OH, /* INITIALIZE amsER CXMoWID * / 
PARl\MEll'ER$AOORESS=CURSER$OOL, 
PARNoIEll'ER$ADDRESS=CUISm$R::M, 
EK1=1; /* ENABLE WFFER INrERHJPr * / 
END LOAD$CllRSER; 

/* PR:JCEI:XJRE CARRI.!lGE$RJmlllN */ 

CARRI1IGE$REll'URN : 
PR:JCEI:XJRE; 
DISPIAY$RAM$roINl'ER=DISPIAY$RAM$roINl'ER-aJllSER$CX>IaI; 
aJRSER$OOlllMN=O; 
aJRSER$CII=l; 
CALL LOI\D$aJRSER; 
END CARRIAGE$REl1'URN; 

2·119 



AP·223 

PL/M-51 cnu>ILER CRl'CXJNI'R:lLLER 

64 1 

65 2 
66 3 
67 3 
68 3 
69 3 
70 3 
71 3 
72 3 

73 3 
74 3 
75 4 
76 4 
77 4 
78 4 
79 3 
80 1 

81 

82 
83 
84 
85 
86 
87 
88 
89 

90 
91 
92 
93 
94 
95 
96 
97 

1 

2 
3 
3 
3 
3 
3 
3 
3 

3 
3 
4 
4 
4 
4 
3 
1 

/* PRJCEIlJRE!O'IN CURSER: THIS PKlCEllJRE tOJES TIlE CURSER !O'IN OOE IDI 
B'i AlIlING 1 TO TIlE CURSER lUI RlIM LOCATICN TIlEN C1ILL UlN) CURSER */ 

IX)iN$CURSER: 
PKlCEllJRE : 
IF CURSER$RJW < 18H THEN 
DO; 

<llRSER$<l'I=1; 
CURSER$RJWoCURSER$RJW + 1; 
C1ILL LOI\D$CURSER: 
IF DISPIAY$RlIM$FOINTER < 78011 THEN 

DISPIAY$Rl\M$FOINTER=OISPtA'!$Rl\M$FOINl'ER +5011; 
ELSE 

DISPIAY$Rl\M$FOINTER= (DISPIAY$Rl\M$FOINTER-78011) ; 
L=DISPIIIY$RAM$FOINTER-aJRSER$CXlUJolN; 
IF DISPIIIY$RlIM(L)=OFlH TIlEN 
00; 

C1ILL FILL; 
DIS~$RlIM(L)=2011; 

END; 
END; 
END DCHI$CURSER; 

/* UXl{ POR END OF*/ 
/* LINE CIWU'Cl'ER */ 
/*IF TRUE FILL LINE*/ 
/*W1TH SPACES */ 

/* PRlCBIllRE UP 0ffiSBR: THIS PH:x:EwRE MJIIES TIlE aJRSER UP OOE IDI 
B'i SUBl'Rl'.C'l'mJ 1 'lO TIlE aJRSER IDI RAM LOCATItN THEN C1ILL UlIID 0ffiSBR * / 

UP$(lffiSER: 
PRlCBIllRE; 
IF CURSER$IUI >0 TIlEN 
DO, 

CURSER$1Ol=CURSER$1DI _. 1; 
aJRSER$CN=1; 
C1ILL UlI\D$C1JRSER; 
IF DISPIAY$Rl\M$FOINTER<5OH THEN 

DISPIIIY$Rl\M$FOIN1'ER=DISPIIIY$Rl\M$POIN1'ERI-78011; 
ELSE 

DISPIIIY$Rl\M$FOINTER=DISPIAY$Rl\M$POINTER - SOlI; 
L=DISPIAY$Rl\M$POIN'l'ER-CURSER$(X)UJoIN; 
IF DISPIAY$RlIM(L)=OFlH '!'HEN 
00; 

C1ILL FILL; 
DISPIIIY$RAM (L) =2011; 

END; 
ENO; 
END UP$CURSER; 

2-120 

/* LQCl{ POR END OF LINE* / 
/* CiIl'JIl\C'lER * / 
/* IF TRUE FILL WITH * / 
/* SPACES */ 



AP·223 

PLjM-51 CD1PlLER CRl'CCNl'RJLLER 

98 1 

99 2 
100 3 
101 3 
102 3 
103 3 
104 3 
105 3 
106 1 

107 1 

108 2 
109 3 
110 3 
III 3 
ll2 3 
ll3 3 
ll4 3 
ll5 1 

/* PRX:EIl.JRE RIGHI' aJRSER: THIS PRX:EIl.JRE !ofJVES THE aJRSER RIGHI' ONE COLUMN 
B'f AIDING 1 ro THE aJRSER COLUMN RAM ID:ATION THEN CALL WAD aJRSER */ 

RIGIfl'$CURSER: 
PRX:E!lJRE; 
IF aJRSER$OJLUMN < 4m THEN 
00; 

<lJRSER$OJLUMN=CURSER$OJLUMN + 1; 
aJRSER$CN=l; 
CALL WAD$CURSER; 
DISPLAY$RAM$POINTER=DIS~$RAM$POINTER +1; 

END; 
END RIGIfl'$CURSER; 

/* PRX:EIl.JRE LEFT aJRSER: THIS PRX:EIl.JRE !ofJVES THE aJRSER LEFT ONE COLUMN 
B'f SUBl'RlCl'INi 1 ro THE aJRSER COIllMN RAM ID:ATION THEN CALL WAD aJRSER * / 

LEFT$CURSER: 
PRX:EIl.JRE; 
IF aJRSER$C.OI1Mi >0 THEN 
00; , 

<lJRSER$C.OI1Mi=CURSER$OJUI.IN - 1; 
aJRSER$CN=1; 
CALL WAD$CURSER; 
DISPLAY$RAM$POINTER=DIS~$RAM$POINTER -1; 

END; 
END LEFr$aJRSER; 

2·121 



Ap·223 

PI.;'M-51 (XMplLER CRr<X:NrOOLLER 

116 1 

117 3 
lIB 3 
119 2 
120 2 
121 2 
122 3 
123 3 
124 3 
125 3 
126 3 

127 3 
12B 2 

129 3 
130 4 
131 4 
132 4 
133 4 
134 4 

135 4 
136 3 
137 2 
13B 2 
139 2 
140 2 
141 2 

142 2 
143 2 
144 2 
145 2 
146 3 
147 3 
148 3 
149 3 
150 2 
151 3 
152 3 
153 3 
154 2 
155 2 
156 1 

1* PRX:EIlJRE mv$aJRSER: THIS PRX:EIlJRE IS USED IN ~ON WITH IDRDSl'AR 
IF A Es::: F IS REr:EIVED Ftm 'mE IIOSI' CDIPUl'ER, 'mE TEHUNAL COOTIVLLER WILL 
READ THE NEXT 'lKl If{TE ro DEJl'ERIIINE WHERE ro MJIIE THE OJRSER. THE FIRSI' If{TE 

'IS THE RM mro~ION FOIJ.aoiED If{ 'mE COIa1N INFO~ION' *1 

mv$aJRSER: 
PRX:EIlJRE 1 
00 WHILE FIFO<41 I· WAIT UNTILL THE mv$aJRSER PARl\MEll'ERS*1 
END 1 1* ARE REr:ElVED INro THE FIFO "I 
TEMPo<lJRSER$R:Ml 
OJRSER$RM=;SERIAL (2) 1 
IF OJRSER$JOoI>TEMP 1'IIm 
001 

L=DISPLAY$RAM$POINTE:RI- ( (OJRSER$!O'l-TEMP)· SOH) 1 
IF L> 7CE1l 1'IIm 1* IF OOT OF RAM RI\OOE *1 

DISPLAY$RAM$POINTER=L-7DOHl 1* RAP AmlND ro BEGINNING *1 
~ ~~RIIM~ 

ENDl 
~ 

001 

DISPLAY$RIIM$POINTER=Ll 

IF OJRSER$R:M<TEMP 1'IIm 
001 

L= (TEMP-O.lRSER$R:M) * 50Hl 
IF DISPLAY$RIIM$POINrER<L 1'IIm 1* IF OOT ~ RAM Ri\OOE*I 

DISPLAY$RIIM$POINrER=(7D(J{- (L-DISPLAY$RI\M$POINrER» 11* RAP AmlND ro END ~ RIIM*I 
~ 

DISPLAY$RI\M$POINrER=DISPLAY$RI\M$POINrER-Li 
ENDl 

ENDl 
TEMPo<lJRSER$COImNl 
OJRSER$COImN=SERIAL (3) i 
IF OJRSER$COJ:aIN>TEMP 1'IIm 

DISPLAY$RI\M$POINrER=DISPIAY$RI\M$POINTER+ (~) i 
ELSE 

DISPLAY$RIIM$FOINrER=DISPIAY$RI\M$POINTER- (TEMP-O.lRSER$COUlMN) 1 
aJRSER$CN=11 
CALL LOAD$OJRSERi 
L=DISPLAY$RI\M$POINTER-aJRSER$COUJoINl 
IF DISPLAY$RIIM(L)=OFlH 1'IIm 1* UXI< FOR END FO LINE CIIARl\CTER*1 
001 

CALL FILLl 1* IF TRlE FILL WTI'H SPl\CES *1 
01 SPLAY $RIIM (L) =2OHl 

ENDl 
ES=Oi 
00 1=2 ro FIFO-21 

SERIAL (I) =SERIAL (1+2) 1 
ENDl 
FlFO=FIFO-21 
ES=ENSPl 
END MO\I$OJRSERi 

2-122 



AP-223 

PL/M-51 CCMPILER CRl'CXNI'IVILER 

157 1 

i58 2 
159 2 
160 3 
161 3 
162 4 
163 4 
164 4 
165 4 
166 3 
167 4 
168 4 
169 4 
170 4 
171 3 
172 1 

173 1 

174 2 
175 2 
176 2 
177 2 
178 2 
179 1 

/* PR:X:EllJRE ERASE FlU! CURSER 'IO END OF S::~: * / 

ERASE$FI01SCURSER$TO$END$OF$SC~: 
POCCELURE; 
CALL BLINE; 
IF CURSER$lO'l < lSH THEN 
00; 

/* ERASE QJRRENl' LINE * / 

L=DISPLAY $ RIIM$POINrER-aJRSER$(X)IlJMNt SOH; /* GEr NEXT LINE */ 
00 WHILE (L < 7DOH) AND (L <> (LINEO AND 7FFH)); 

DISPLA¥$RIIM(L)=OFlH; /* ERASE UNTIL LINEO OR */ 
L=LT50H; /* END OF DISPLAY RAM*/ 

END; 
L=O; 
00 WHILE L <> (LINEO AND 7FFH); /* ERASE UNTIL LINEO */ 

DISPLA¥$RAM(L)=OFlH; 
L=LT5OH; 

END; 
END; 
END ERASE$FI01SCURSER$TO$END$OF$S::~; 

/* PR:X:EllJRE IDlE: THIS PR:X:EllJRE mvES THE QJRSER'IO THE 0,0 POSITIai */ 

IDlE: 
POCCELURE; 
QJRSER$RJit-:00 I 
QJRSER$CX)llJoIN=OO; 
QJRSER$Qi=l; 
CALL I.O.>!D$O.JRSER; 
DISPLAY$RAM$POINl'ER=(LINEO AND 7mI); 
END IDlE; 

2-123 



AP-223 

PL/M-51 <XMPILER CRl'CCNl'IDLLER 

180 1 

181 2 
182 2 
183 ,1 

164 1 

185 2 
186 2 
187 2 
188 2 
189 -2 

190 2 
191 1 

192 1 

193 2 
194 2 
195 2 

196 3 
197 3 
198 3 
199 3 
200 2 
201 2 
202 2 

203 2 
204 2 
205 3 
206 3 
207 3 
208 3 
209 1 

/* PIDCEllJRE ClEAR OCREEN * / 

CLFAR$SCREEN: 
PRJCEIl.JRE; 
CALL HCME; 
CALL ERASE$FR:M$CURSER$TO$END$OF$SCREEN; 
END 'CLFAR$SCREEN; 

/* */ 

scroLL: 
PRJCEIl.JRE ; 
CALL BLI\II(; 

EKO=O; /* DISABLE VERl'ICAL REFRESH INl'ERRJPl' */ 
IF LINEO= lF80H THEN 

LINEO= 180011; 
ELSE 

LINEO= LINE0+5OH; 
EKO=l; /* ENABLE VERl'ICAL REFRESH INl'ERRJPl' * / 
END SCROLL; 

/* PIDCEllJRE LINE$FEED * / 

LINE$FEED: 
PRJCEIl.JRE; 
IF CURSER$RM=18H THEN 

CALL SCIDLL; 
ELSE 
00; _ 

CURSER$RM= CURSE:R$RMtl; 
~=1; 
CALL UlI\D$CURSER; 

END; _ 
IF DISPLAY$RAM$POINl'ER >77ftf THEN 

DISPIAY$RAM$POINl'ER=DISPLAY$RAM$POINl'ER-78OH; 
ELSE 

DISPLAY$RAM$POINl'ER=DISPLAY$RAM$POIN.l'ERI-5OH; 
L=DISPLAY$RAM$POINl'ER-CURSE:R$I1m; 
IF DISPIAY$RAM(L)=OFlH THEN /* UXJ( IDR END OF LINE OIARI\CTER*/ 
00; 

CALL FILL; /* IF THJE FILL WITH SPACES */ 
DISPLAY$RAM(L)=2OH; 

END; 
END LINE$FEED; 

2-124 



210 1 

211 2 
212 2 
213 2 
214 2 

215 2 
216 3 
217 3 
218 3 
219 3 
220 4 
221 4 
222 4 
223 4 
224 3 
225 3 
226 3 

227 3 
228 2 

229 2 
230 2 
231 1 

AP-223 

/* PRlCEIlJRE DISPLAY: THIS PRlCEIlJRE WILL TAKE TIlE B:iTE IN !WI LABELED 
Ra::ElVE AND PUT IT INID TIlE DISPLAY !WI. * / 

DISPLAY: 
PRlCEIlJRE; 
DISPLAY$!WI(DISPLAY$RAM$POINTER)=Ra::EIVE; 
IF DISPLAY$!WI$POINTER=7CEll THEN /* IF END OF !WI */ 

DISPLAY$IWI$POINTER=OOOH; /* RAP AIOJND ro BEJGINNI~ * / 
ELSE 

DISPLAY$RAM$POINTER=DISPLAY$!WI$POINl'ERf-l; 
IF aJRSER$COLlM/=4Ell THEN 
00; 

ClJRSER$COlllMN=OOH ; 
L=DISPLAY$RAM$POINTER; 
IF DISPLAY$!WI(L)=OFlH THEN 
00; 

CALL FILL; 
DISPLAY$IWI(L)=2OH; 

END; 
IF aJRSER$RlW=18H THEN 

CALL SCOOLL; 
ELSE 

aJRSER$RlW=OJRSER$HlW+-l; 
END; 
ELSE 

aJRSER$COlllMN=CURSER$COUMfT1; 
C!JRSER$(N=1; 
CALL uwx::uRSER; 
END DISPLAY; 

2-125 



232 1 

233 2 

234 2 
235 3 
236 3 
237 3 
238 3 
239 3 
240 2 
241 3 
242 3 
243 3 
244 4 
245 4 
246 4 
247 4 
248 3 
249 3 
250 3 
251 3 
252 2 
253 3 
254 3 
255 3 
256 3 
257 2 
258 3 
259 3 
260 3 
261 3 
262 3 
263 4 
264 5 
265 5 
266 5 
267 5 
268 5 
269 5 
270 5 
271 5 
272 5 
273 5 
274 5 
275 5 
276 5 
277 5 
278 4 
279 3 

$E.JECl' 

/* PRlCEIlJRE DEX:IPHER: 'nUS PR:lCEnJRE DEXXlDES THE HOSl' CCMPUTER'S MESSAGES AND DE:I'ERUNES 
WIIE1'HER IT IS A DISPLAYABLE CHARACl'ER, a:Nl'lVL ~, OR AN EOCAPE SIQJENCE 
THE PRlCEIlJRE THEN 1CrS lIOCQRDIWIN */ 

DECIPHER: 
PRlCEIlJRE; 
srARl'$DECIPHER: 
~ID$ReCEPTION=O; 
1=0; 
00 WHIloE (I<FIro) AND (SERIAL (I»lm). AND (SERIAL(I)<7m1l 

mx::EIVE=SERIAL (I) ; 
CALL DISPLAY; 
1=1+1; 

ENDI 
IF 1>0 THEN 
00; 

ES=O; /* DISIIBLE SERIAL INTE:RRJPl' NJIloE IIJVItC FIro *1 
K=FIFO-II 
00 J=O 'lO KI /* KlVE FIro *1 

SERIAL(J)=SERIAL(I); 
1=1+11 

ENDI 
FIFOoK; 
ES=ENSPI /* DII\BLE sERIAL INTE:RRJPl' * / 
~ID$ReCEPTION=1; 

END; 
IF FIro=O THEN 
00; 

SERIAL$INT=01 
ooro END$DECImER; 

END; 
IF (SERIAL (0) =lBH) THEN 
00; 

IF (ESC$SSQ=1) AND (FIro<2) THEN 
ooro END$DECImER; 

K=(SERIAL(l) AND sm)-4OH; 
IF (K >0111) AND (K<IX:H) THEN 
00; 

00 CASE; K/ 

END; 
ES=O; 

; 
CALL UP$QJRSER; 
CALL OCMN$CUlQlR; 
CALL RIGIll'$CURSER, 
CALL loEFT$CUlQlRl 
CALL~; 
CALL MJV$aJlQlR; 
; 
CALL IDlE, 

/* ESC A */ 
/* ESC B */ 
/* ESC c */ 
/* ESC D */ 
/* ESC E */ 
/* ESC F */ 

/* ESC H */ 

1* ESC J */ 
/* ESC K */ 

/* DISI\BLE SERIAL INl'ERRIPl'S WHILS IIJVItC FIro * / 

2-126 



AP-223. 

PLIM-51 CXMPILER CRTa:NrIDLLER 

280 4 00 1=0 'ID (FIEO-2) I 
281 4 SERIAL (I)=SERIAL (I+2) I /* rovE FIR) * / 
282 4 ENDI 
283 3 FIro=FIEO-21 
284 3 FS=ENSPI /* ENABLE SERIAL INI'ERRJPl'S */ 
285 3 VALID$RECEPTION=11 
286 3 IF FIro=O THEN 
287 4 00; 
288 4 SERIAL$INT=OI 
289 4 <DID END$DEX::IPHERI 
290 4 ENDI 
291 3 END; 
292 2 IF (SERIAL(O» 07H) AND (SERIAL(O)<Dm) THEN 
293 3 001 
294 4 00 CASE (SERIAL (0) - OBHll 
295 4 CALL LEF'l'$CURSERI /* CTL H */ 
296 4 I 
297 4 CALL LINE$FEEDI /* CTL J */ 
298 4 I 
299 4 CALL CIEAR$SCREEN; /* CTL L */ 
300 4 CALL CARRIJ\GE$~1 /* CTL M */ 
301 4 ENDI 
302 3· FS=OI /* DIsruY.E SERIAL INI'ERRJPl'S WHILE MJIlIN:; FIR) * / 
303 4 00 1=0 'ID (FIro-l); 
304 4 SERIAL(I)~(I+l)1 /* rovE FIR) * / 
305 4 END; 
306 3 FIro=FIEO-l1 
307 3 FS=ENSPI /* ENABLE SERIAL INI'ERRJPl'S * / 
308 3 VALID$RECEPTION=11 
309 3 END; 
310 2 IF VALID$RECEPTION=O THEN 
311 3 00; 
312 3 FS=OI 
313 4 00 1=0 'ID (FIEO-l) I /* IF CHARACTER IS UNREroGNIZED THEN */ 
314 4 SERIAL(I)=SERIAL(I+l)/ /* TRASH IT * / 
315 4 END; 
316 3 FIro=FIEO-ll 
317 3 FS=ENSP; 
318 3 ENDI 
319 ' 2 IF FIro=O THEN 
320 2 SERIAL$INT=OI 
321 2 END$OEX:IPHER: 

END OEX:IPHERI 

2-127 



AP-223 

PL/M-51 CCMPlLER CRl'CXNI'R:lLLER 

322 1 

323 2 
324 3 
325 4 
326 4 
327 3 
328 3 
329 3 
330 2 

331 3 
332 3 
333 3 
334 3 
335 1 

336 1 

337 2 
338 3 
339 3 
340 3 
341 3 
342 3 
343 3 
344 2 

345 3 
346 4 
347 4 
348 4 
349 5 
350 5 
351 5 
352 5 
353 4 
354 3 

355 4 
356 4 
357 4 
358 4 
359 4 
360 4 
361 3 
362 1 

/* PfCCEI:XlRE TBAN::MIT- THIS l'RXmlRE UXl<S AT THE ClEAR ro SENO PIN FOR lIN l\CrlVE 
IJ:JN SIGlAL. CNCE THE MAIN CCMIUl'ER SIGNlILS THE 8051 TIlE ASCII CHARACTER IS RJT 
lNi'O THE SERIAL PORt'. * / 

TRlIN::MIT : 
PfCCEI:XlRE; 
IF LOCAL$LINE =1 THEN 
00; 

00 WHILE (ClEAR$'ro$SEm=l) OR (TR!IN!MlT$INT=0); 
ENO; 
SBUF=ASCII$KE:{ ; 
TRlIN!MlT$INT=O; 

ENO; 
ELSE 
00; 

SERIAL (FIFO) =ASCII$KE:{; 
FIFO=FIFOH; 
SERIAL$INT=l; 

ENO; 
ENO TRl\N!MlT; 

/* l'RXmlRE AIm)$REPFAT: THIS l'RXmlRE WILL PERFORoi lIN AIm) REPEAT mterIOO 
AFTER A FIXED DELAY FERIOD */ 

AIm)$REPEAT: ' 
PfCCEI:XlRE ; 
IF ~=1 THEN 
00; 

TRlIN::MIT$'roX;LE=O; 
TRlIN!MlT$CXJUNI'=ODO/I; 
CALL TRlIN!MlT; 
NEW$KE'{=O; 

ENO; 
ELSE 
00; 

IF TRlIN::MIT$CXJUNI' <> OOH THEN 
DO; 

/* FIRSl' CHARACTER * / 

TRl\N!MlT$CXJUNI''''l'Rl\N!MlT$COONl't 1; , 
IF TR!IN!MlT$CXJUNI'=OFm THEN /*TSAY BImiEEN FIRSl' CHARACTER AND THE SBnID * / 
00; 

CALL TR!IN!MlT; /*SBnID CHARACTER */ 
TR!IN!MlT$CXXJNl'=00; 

mo, 
ENO; 
ELSE 
~I 

0JRSER$QI=1; 
ClJRSER$CnlNr=O, 
IF TR!IN!MlT$'l'ClOOLE = 1 THEN /* 2 VERt' Fl1l\Im3 BEll'WI!iSN 3m ro Nl'H CHARACTER * / 

CALL TR!IN!MlT; /* 3m TIIRXJGH tmI CHARACTER */ 
TRlIN!MlT$'l'ClOOLE= 1m' TRl\N9UT$'l'ClOOLE; , 

mo, 
ENO; 
mo Ai1ro$REPFAT; 

2-128 



AP-223 

PL/M-51 a:MPILER 

363 1 

364 2 
365 2 

366 1 
367 1 
368 1 
369 1 
370 1 
371 1 
372 1 
373 1 
374 1 
375 1 
376 1 
377 1 

378 2 
379 2 
380 2 

381 1 
382 1 
383 1 
384 1 

385 1 
386 1 
387 1 

388 1 

389 1 

/***** •••••• ********* STARr MAIN PRDG~ ***********.*****.*********/ 
/* BmIN Erl FU'lTING J\SCII CODE FOR BlANK IN TIlE DISPLAY Rl\M; * / 

INIT: 
00 L=O ro 7Cm; 

DISP~$Rl\M(L)=20H; 
aID; 

/* INITIALI ZE roINl'ERS, Rl\M BITS, El'C. * / 

ESC$SEQ=O; 
SCAN$INT=O; 
SERIAL$INT=O; 
FIFO=O; 
ClJRSER$COONl'=O; 
IU:=O; 
DATA$TEa!INAL$RFAD'i=1; 
Ta:tI=OSH; 
LINEO=180OH; 
RASl'ER=180OH; 
DISP~$Rl\M$roINTER=OOOOH; 
TRANSMIT$INT=l; 

$IF SWl 

00 1=0 ro 7; 
LAST~(I)=OOH; 

aID; 

VALI~=O; 
LAST$SlUfT$KRi=l; 
LAST$COO1'R:)L~=1; 
LAST$CAP$UXX=1; 
$ENDIF 

$IF SW2 
lCVFLG=0; 
S'lIC=O; 
ErlFIN=O; 
KBDINT=O; 
ERlVR=O; 
$ENDIF 

/* INITIALIZE TIlE 8276 */ 

CCMWID$AIDRESS=OOH; 
PARAMEll'ER$AlDRESS=4Eli; 
PARI\MEll'ER$AlDRESS=58H; 

PARAMEll'ER$AlDRESS=89H; 

PARAMEll'ER$AlDRESS=0F9H; 

/* RESEr TIlE 8276 */ 
/* NORW. lOiS, 80 CIIARl\Cl'ElVlUi */ 
/* 2 lUi CXlJNl'S PER VERrICAL RETRI\CE 

25 lOiS PER FRl\ME */ 
/* LINE 9 IS TIlE UNDERLINE lOSITIOO 

10 LIN&S PER lUi */ 
/* OFFSET LINE CXlUN1'ER, N:II-'l'RANSPARml' FIElD ATl'RIBl1l'E 

2-129 



Ap·223 

PL/M-51 CXMPILER CRr<XNrOOLLER 

390 1 

391 1 
392 1 
393 1 
394 1 
395 1 

396 1 
397 1 

398 1 
399 1 
400 1 

401 1 
402 1 

403 1 

404 1 
405 1 
406 2 
407 2 
408, 2 
409 2 
410 2 
411 2 
412 2 
413 1 
414 2 
415 2 
416 3 
417 3 
418 3 
419 3 
420 2 

421 2 
422 2 

423 2 
424 2 
425 2 
426 2 

'l'EMP=O:M-IANI$AOORESS 1 

aJRSER$OJLtIlN=OOHI 
OlRSER$RJW=OOHI 
aJRSER$OJL=OOHI 
CALL LOI\D$aJRSERI 
'l'EMP=O:M-IANI$AilDRESSI 

CXMWID$AOORESS=OEOHI 
'l'EMP=O:M-IANIAOORESS 1 

CXMWID$AOORESS=23Hl 
CXl+WID$AOORESS=OAOHI 
'l'EMP=O:M-IANI$AOORESS 1 

N:N-BLUI{ING UNDERLINE aJRSER, 20 CHARlICTER CCUNl'S PER 
OORI ZCNl'AL REl'RIlCE * / 

/* PRESE!!' 8276 CXXJNl'ERS * / 

/* srANT DISPLA¥ */ 
/* ENABLE INI'ERlUPrS * / 

/* SE!1' UP INI'ERlUPrS AND PRIORITIES * / 

$IF SW1 
IP=lOHI 
IE=8SHI 
$ENDIF 

$IF SW2 
IP=lOHI 
IE=87Hl 
'JM)D=OSHi 
TLO=OFmI 
THO=OFmI 
TRO=11 
$ENDIF 

/* SERIAL OORT lIAS mGlll:Sl' PRIORI'lY * / 
/* ENABLE 8051 EKTERW. INl'ERHlPrS */ 

/* SERIAL OORT lIAS mGlll:Sl' PRIORI'lY * / 
/* ENABLE TIMERO INTERRlPl'*/ 
/* TIMER 0 =EVm1' CCXJNl'ER */ 

/* INITIALIZE CCXJNl'ER TO FFFFH*/ 

/* PRJCEiIJRE SCl\NNER: TmS PRJCEiIJRE OCANS THE KEl{BO!IlID AND DEl'EIM[NES IF A 
SItKiLE VlILID KEl{ lIAS BEEN PUSHED. IF TRlE '1'IIm THE AOCII EXJJIVALENr 

WILL BE TRANfMITTEO TO THE oosr a:MPIlTER. * / 

SCANNER: 
FA=11 
Dl\TA~$REI\D'i=OI 
IF aJRSER$COONl'=lHI THEN 
DOl 

aJRSER$CN=tUl' aJRSER$(N1 
QJRSER$COONl'=OOI 
IF aJRSER$C.N=O THEN 

aJRSER$OJL=7FHi 
CALL LOI\D$QJRSERI 

ENDI 
IF LIC<>IOCAL$LINE THEN 
DOl 

IF IOCAL$LINE=O THEN 
DOl 

ENSP=OI 
ES=OI 

ENDI 
E£.SE 

CALL CHEII<$IWJD$RATEI 
LIC=IOCAL$LINEI 

END 1 
$IFSWl 
DO WHILE OCAN$INT=O, 

IF SERIAL$INT=l THEN 
CALL DEX:IFHERI 

END 1 

/* PRJGRl\IoMABLE aJRSER BLINK * / 

/* IF IlXAL/LINE lIAS CHANGED srAIDS * / 

/* WAIT UNITL VERl'ICAL RE'l'RI\CE BEroRE * / 
/* SClINNIm THE KEl{BWlD* / 

2-130 



AP-223 

PL/M-51 mlPILER CRl'ONl'IDLLER 

427 1 
428 1 

429 1 
430 1 

431 2 
432 3 
433 3 
434 3 
435 4 
436 4 
437 4 
438 3 
439 4 
440 4 
441 4 
442 3 
443 4 
444 4 
445 5 
446 5 
447 5 
448 5 
449 4 
450 5 
451 5 
452 5 
453 5 
454 4 

455 5 
456 5 
457 5 

458 6 
459 6 
460 6 

461 7 
462 7 
463 7 
464 7 
465 8 
466 8 
467 8 
468 8 

469 8 
470 7 
471 6 
472 5 
473 5 
474 5 
475 5 
476 5 
477 5 
478 4 
479 3 

480 4 
481 4 
482 4 
483 3 
484 2 

CALL READER; 
IF VALID$KEX =1 AND SIIME=1 AND (IASl'$SHIFl'~E'l=SHIFl'$KEX) AND 

(IASl'$CAP$LOCK=CAP$LOCK) AND (IASl'$O:lNTIVL$KEX=<XNl'IDL$KE'l) TmN 
CALL AU'ID$REPFAT; 

ELSE 
00; 

IF KE'lO=O lIND SAME=O THE2'l 
00; 

TEMP =0; 
K=O; 
00 WHILE IASl'$KEX(K)=O; 

K=K+1; 
END; 
TEMP=IASl'$KEX (K); 
00 I=(K+1) ro 7; 

TEMP=TEMPtIASl'$KEX (Ih 
END; 
IF TEMP=IASl'$KEX (K) TmN 
00; 

J=O; 
00 WHILE (TEMP lIND OlH)=O; 

TEMP=SHR (TEMP,I); 
J=;J+1; 

END; 
IF TEMP > 1 THEN 
00; 

VALID$KEX=O; 
NEW$KE'l=0; 

END; 
ELSE 
00; 

IF CCNl'HJL$KEX=0 TmN 
ASCII$KEX= (IDW$SCAN (K) .KE'{ (J» lIND 1m; 

ELSE 
00; 

IF SHIFl'$KEX=O TmN 
ASCII$KEX=IDW$SCAN (K+OSH).KE'{ (J); 

ELSE 
00; 

ASCII$KEX=IDW$SCAN (K).KE'{ (J); 
IF (CAP$LOCK=O) lIND (ASCII$KEX>6OH) lIND (ASCII$KEX<7BII) THEN 

ASCII$KEX=ASCII$KEX-2OH; 
IF LIC=O THEN 
00; 

IF ASCII$KEX=lBH THEN 
F.'lC$SEQ=1; 

ELSE 
F.'lC$SEQ=0; 

END; 
END; 

END; 
IASl'$SHIFl'$KEX =SHIFl'$KEX ; 
IASl'$CAP$LOCK=CAP$LOCK ; 
IASl'$CCNl'HJL$KE'l=CCNrIDL$KEX ; 
VALID$KEX=1; 
NEW$KE'l =1; 

END; 
END; 
ELSE 
00; 

VALID$KEX=O; 
NEW$KE'l =0; 

END; 
END; 

END; 

$ENDIF 2-131 



priM-51 CDlPILER CRl'CXNrH)LLER 

$E.Ja:T 

$IF SW2 
. IF SERIAL$INT=1 THEN 

CALL OEI:IPHER, 
IF KBDINr =1 THEN 
00, 

IF ERROR =0 THEN 

AP-223 

00, 
ASCII~=LST~(1), 
.N&i$KE'{=1, 
CALL l\l1lO$REPFAT, 
KIlDINr=O, 

485 1 
486 1 

END; 
ERROR=O, 
KBDINr=O, 
END; 
$ENDIF 

ooro SCANNER; 
END; 

KnlLE ~IOO: 
CXDE SIZE 
CCN9l'ANl' SIZE 
DIRECr VARIABLE SIZE 
INDIRECr VARIABLE SIZE 
BIT SIZE 
BIT-AOORESSABLE SIZE 
AllXILIARi VARIABLE SIZE 
MAXlMM Sl'l\£]( SIZE 
RmISl'ER-BANK (S) USED: 
1056 LINES RFAD 
o PRJGRI\M ERROR(S) 

END OF PL/M-51 CDlPILATICl'I 

(Sl'ATIC+OIIERlAYAIILE) 
.. 08E6H 22780 
.. 0080R l2BD 

2IHI-00il 4501- 00 
00Ht-00il . 00t- 00 
108+0011 160+ 00 
OIlHtOOH 00t- 00 

.. 000011 00 
= OOOCH 120 

o 

2-132 



AP·223 

Cr<TASI'i 

I~I~·~I ~~S·51 ~A~~~ A5~e~BLEK V2.1 
O~J~Cl MOu~LE PLA~Eu 1~ :fl:C~TASM.~BJ 
A~S~~~L~R I~VuK,O all AS_51 IFl:~HrA~~.SriC 

LUC uBJ L~~r. 

1 
I! 
oS 
II 
) 

II 
7 
e .. 

~OuR~E 

I'U.,LlC BLAI\K 
PU.,UC BLlr.E 
I'UIILIC F lLL 

IV 
1L 
Ii! 
IJ 
14 
I::' 
ID 

EX1R~ IIAIA (LlI\Ev,kA~TER,pulhT,S~RIAL,fI~O,CUR~Er<,~OUNl,L) 
~xrR~ lilT (St:R'Nl,~SCSEQ,TRN~NT,SCAN~ 

000.5 bOe!O 

Oull tlOe!A 

OU2J !lOe!D 

OU2~ (;0110 
Ov2l COtO 
OU2~ COIIO 
Ou2d 13500UO F 
Ou2t; 05UOUO F 
OU31 78UI 
oun ~2 
ou3" u5uO F 
003b !J2uO F 
ou38 ilOilO 
ou3A uOt;O 
Ou3C [JOllO 
01l3~ J2 

003~ COl)O 
Oulll COtO 
OUIU COSl! 
OUIl) COb3 
O.ull 7 IIt'A 
Oull'i uOll3 
OUII., uOtl2 
Oullu uO,O 
OullF 1i01I0 
Ou51 32 

17 , 
III 
1'1 , 
20 
21 
2il 
2J 
24 
2) 
211 
21 
211 
29 vEkT: 
3U 
31 
32 
H' 
3" 
3~ 
3b 
37 
311 
H 
4(1 

41 
lie! 
III 
411 tlUH~1l1 
4~ 

lib 
117 
Ii II 
110; 
511 

51 
51! 
5J 
s~ 

CSEG AIlu3H) 
llJMP VENT 

EXIRh CCUE (UEIACHJ 
CSfG AHuBH) 
LJMP UE I ACM 

CSEG ATCOI3H~ 
UMP IIUfFER 

CSfG A f( U2,5Hl 
~JMP ~EhBUF 

CSEG 

PU:>H 
PUSM 
PU5M 
MOV 
MOV 
MOY 
MOYX 
lr.tC 
:iElB 
1'01' 
POP 
POP 
~ErI 

.. U:iM 

.. us .. 
PU:. .. 
"US~ 
ACALL 
1'01' 
1'01' 

1'81\ 
ACt; 
OOH 
HA:>1IiR,L1NI;O 
nAliT~Rt 1, L ~r.tt.O+1 
HO,.OlH 
A,ARII 
COU~ r 
SCA~ 
UOH 
AC!; 
pSiI 

PSiI 
AC~ 
IiFL 
",p" 
II~A 

uP" 
uPL 

POt' AC~ 
1'01" I"S~ 

riEII 

'3':i .1 :.EJELT 

2-133 

,N~EUEU IF D~CUDI;D K~Y~OARIi 15 U~Eu 

,FILL ai76 Ruw BUFFEH 

,STICK SI;RIAL INFOHMATIOr.t INTO THE FIFU 

,PUSH HEw USt:D B1 I'LM51 

,REINITIALIZI; NA~TER TO LINEO 

leLR 81!76 INTEriRUPl rLAG 

,INCH CUHSER CUUNT R~GlSTEH 
,FOR DEBOUNCt: HOuTINE 
IPOP RIiGlSTEHS 

IF~LL ~216 RUW BuF~EH 
,POP Rf.GISIEHS 



AP-223 

M~S-51 ,.,A\.RiJ AS~EI"ALE" CIH ASM 

LUC OBJ LH\t. :'OuH!.:E 

510 
Ou5o! 30'lqull 51 liEreBuFI JNd uq~~,eVEIi ,n lHAN:'MII Bll ~Ul S~l THE~ !.:HEC~ HE~EIV~ 
Ou5~ ~2'1q 5a CL~ "C;q~ ,eLR T~A~8MIliSI0~ INIEIiRUPT FLAG 
Ou57 u2UO F S~ SEre 1 ~I\ 11,1 lS~Tb TRA~S INl FOt( PLM51 :'TATUS CHECK 
0115'1 20"@o!8 6U liVER; JB 'Iel<,IiCdA\.K ,IF HI NOT SliT GuBACK 
0051; ~OUI 61 1'0liH III 
0115" Aq9q ~c MOV I(1,8ul:l' ,R~Au liSuF 
OU&II (;298 6~ CL~ Uqll~ ,CLEAR R I a IT 
Oubi! ~OUo 6~ PUSH P5~ ,PUSH HEGIUIiRII US~O BY PLM51 
0064 (;0':'0 65 I'U:l1i At!.: 
OU611 COuo 6b PU:lH 001< 
0060 L2110 F 67 CLI( t.scSt.G , ,CLR EliC S~QUENCt. fLAG 
OUbA 111uO F U MOV A, UtR HL ,GEl StRIAl rlfO RAM STAHT LUCATION 
Ou&e eSOO F 6'1 AOU A,r II'C ,AI'IO FI~u HO~ fAI( INTO THE FIFU I'1E ARE 
Ou6E 1'8 H MO~ HO,A ,PuT IT 1I1T0 RU 
006F tq 71 MOV A, HI 
OU7U 1;2,,7 7a CLH UE711 ,CLR Bn 7 OF AC~ 
OU7o! FE> 13 MOV GiRU," ,PUT DATA IN FIFO 
oun b41BII2 741 CJNE A,t1taH,OvEHl ,IF OATA IS NOT A ESC KEY THEN GO UV~R 
007b U200 F 7~ :lETB ~SC8r;g ,S~l EliC SEQUENCt. fLAG 
011711 u5vO F 7b \lVtRll INC FIfe ,MOV FIF~ TO NtXT LOCATION 
OU7A u2UO F 71 SETB Shlr.T ,SET StRIAL INT bIT FOW PLM51 5T4TUS CHECK 
OU7e UOIiO 111 POP OOH ,PQP R~G18lEHS' 
Ov7E UO~O 1'1 POP -'CC 
01/8u UOUO 8U POI' PU 
01182 UOUI 81' t>OP 0111 
0i/811 ,32 82 60tlACKI HETI 

83 
OU8~ COUO 811 alANKI t>USH PBrI ,PUSH HE. USED BY I'LM51 
0081 CO~O .,~ PUSH ACe 
oue'l COll2 811 PU5~ UPL 
00811 COel3 87 PUSH IlPH 
008u eouo 811 PUSH 0011 
0~8F 85UOll2 F 89 ~10V UPl,I.INEU+l ',GET l1NEO INFU 
00'1.: 65110b3 F 'Iv MOV I)Pn,lINEO ,AND PUT IT INTO DHH , 
O~'I~ 78S0 '11 ft,OV HO,.SOH ,NUMbER OF CHAHA(;T~RS IN A lINE 
00'17 (4eO 'I': I~OTYE Tl MOV A,.2011 ,ASCII SPAcE CHAHACTER 
Ou'l'l FO 93 MOVX .ePTR,A ,MOV Te DISPLAY HAM 
OU'lA A3 q" INC LlPTR ,IriCR TO ~~XT UI~PI.AY HAM lOCATION 
Ou'la UetA 'l~ UJNZ HO ,~UlYE'l ,IF ALI. 5011 lOCATIUNS ARE I';OT FILLEO 

'1b ,GU DO MORI: 
ou'lu uOUO '17 POP UOtl IPUP REGISTEWS 
Ou'lF OOb3 '16 POP LIP 11 
OOAl uOb2 '19 POP OPL 
OuA5 OOt.O lOU POP ACC 
OuA~ uOuo 101 POP Ph 
OuAI o!2 IOo:! HET 

103 +1 ~EJECT 

2-134 



AP·223 

M(;S-Sl "'A~RII AS.:iE~BL.Eh CHTAS,', 

LUC uBJ L 1M. ~OuRL.E 

1011 
OUAa (;OuO 10~ ~L1Nt.: PU~11 ,.S~ ,PIISH kEijISTtR~ UStD BT PLMSl 
OUAA 1.01::0 1011 PU:;" ACL. 
OUAI.: 1.0d2 lQ1 PliO)" liPL. 
OUAt (;Oll~ 10d PU:;" uP" 
OUBII COuO 109 PU~H uOn 
008~ 115UOb3 F l1u MOV uPr., rC IN I ,Gt::T CURHE~T OlSPLAY HAM LUCAT10~ 
OOB:! IISUOll2 F 111 MOV IlPL,,.C!~r+l 
Ou811 113d310 111: URL uPI1,lfl0H ;StT BiT 1~ ~OH hAM ADuRC:SS UECOul~G 
OuBd ABUO F l1J MOV ~O,CIjR~Ek ,GtT CUR:;Ek ~OLUMN I~FO 10 Tt::LL HO~ 

1111 ,FAR I~TO THt kO~ YOU ARE 
OuBu /4o!O 11~ ~ohTlI MO~ A,*2UH ,ASC1I S~A~E ChAKACT~R 
OUBf- rO lib MOVX .1lr'TH,A ,MOV TU UISPLAy HAM 
OuCU A3 111 tNC UPIR ,INCH TO ~t::XT UI~PLAY HAM LoCATlUJII 
OUCl ~8 1111 .IN' HO 
OUCo! a8~OF8 1l'i CJNE HO,.~OH,'O'~Tl ,IF NOT AT THE EI~D O~ THt. LII~E 

12U , CONTINIJE 
OuCS 1I0UO 121 POP UOI1 ,PUP RtGlS1EHS 
OUC7 ",Od3 12c POP UP., 
OuC9 uOel2 12J POP UPL 
OUCII uO':;O 1211 1'01' ACC 
OUCu LlOUO 12~ POP PS~ 
OuCF o!2 1211 HET 

121 
OuDCI COUO 12d FILL: PUSH t'h ,PUIH HE&ISTtRS UltD BY PLM5l 
OuOo! L.OtO 129 PUSH ACC 
OClOli COll2 1311 PUSH UPL. 
ouOo coa3 131 PUSH IIPH 
OUOII COUO 13o! PUSH UOh 
OIlOA C3 13J CLR C 
OuOIl 0500113 F 134 MO~ LiPI1,L. ,GET BtGINNING Or L.INE RAM LOCATION 
00011. lISCl082 F 13~ MOW LlPL,L+l ,CALCUL.ATEU ~y PLM~l 
DuEl 16311310 130 URL IIPh,UuH ,lET BIT l~ FON UIIiPLAY RAM AOUREU UECOuE 
a liE It {811F 131 MOY HO,IIIFH ,lET UP COUNTE" FON SOH LOCATIUNS 
OIlEo A3 1311 INC LlPTR ' ,GO PAST THE OF1" 
ouE1 1~C!O 13'1 CaNTi!l MOV A,.2uH ,ASCII IPACE CHAHACTtR 
OOE'I FO 140 MOVX .Of'TH,A ,MUVE 10 DII~LAY RAM 
OIlEA 43 141 INc LlP1R ,INCH TO NEXT uISPL.AY HAM LOCATION 
OuEII Ll8~A 140t DJNZ HO,Cut.T2 IIF ALL 19 LUCATIO~I HAVE NOT SEEN FILL.Eu 

ll1j ,THEN CO~TINuE 
OvEu LlOUO 1411 POP UOh ,PUP R~GUTEHS 
OuEf uOU 14~ POP OPh 
0llF1 UOui! 140 POP LiPL. 
OuF3 \l01i0 141 POI' II'CI. 
OuF!i UOuo 1l1li POP PSII 
OVF1 o!2 14'1 HEr 

l!iu 
151 
,Sot +I iIIEJEcT 

2-135 



AP-223 

"loS-51 1'1 AI,; 11", ASlIEpeLEh CI<TASI' 

LuC ",eJ u,.,~ ~OURI.E 

15J 
15" 1++++++++++++++++···+·++++++++++++++++·++++++++++·+·++++++++++++++++ 
15:. /ThI~ ~OuT!~t ~C~E~ uIdPLAI hAM UATA T~ HO~ ~UFFtR O~ ~27& 
ISb 1++++++++++++++++·++++++++++++++++++++++++··+·++++++++++++++++++++++ 
151 

OuFo ~IDI! !50 1I0 .. Nj,1 AJMP UltAC"E 
151j 

OuFA "5UO~3 F !6u IJMAI ,.,0 V UPh,"A;)Tc.A iLuAI) xFj,R Pull\TtR H!GIt IIYlE 
OuFIJ 0500112 F 16, MOV "PI.,"A:lTtA+l ILUAIl XFER PUII\T/:R Luw IHTI: 
OIOv c.O H:~ MOIIX A, .. D~Th 
0104 1<3 1605 lNC "PIR 
010~ ~Oa31'3 16 .. JB lIel~, DUOliE /H !Nl1 H!GH, TIIEI\ UMA !5 OVEK 
010~ j,O lb~ MOVX A,.OI'T" 
OIOb A3 16& lNC uPIR 
0107 to 167 MOIIX A,.C!'lri 
010& A3 160 lNC UPIA 
0101j to 169 MOVX A,iaCI'TR 
OIOA A3 17u INC UPIA 
OIOb to 171 Mal/X A,.Ol'lK 
OIOC A3 17~ lNC IIPIR 
010~ j,0 173 MOYX A, .. Of'l" 
0101:. A3 17 .. lNC I)PI" 
0101' to 17~ MOIIX A ... Ct'lN 
011u A3 1711 INC UPTR 
0111 iO 177 MO~X A ... D!'Tk 
Oll~ A3 170' INC IWIR 
01U to 1711 Mal/X A, .. DPlK 
011'1 A3 180 INC IJPIR 
011:a t.0 181 TEI\I MOIIX A.;'01'1II 
o lib A3 leo! INC I)PIR 
0117 EO 183 MOIIX A ... OP1K 
01111 A3 18'1 INC LlPTA 
0119 EO 18~ MOYX A ... OPll< 
OILA A3 1811 INC' UPTA 
01111 to 1117 MOIIX A· ... OpT" 
011~ A3 18~ lN~ UPIR 
011U fO 189 MOIIX .A, .. OPT" 
011~ 113 l'1U INC PPTR 
01H j,0 II/I MOIIX A,.OPTic 
012U A3 I 'I.:! INC IAPIA 
0121 &:0 1'1l MOVI( A ... OPTN 
01U A3 111 .. INC ,-PU 
012~ to 1<l:i MDVI( A,ciO!'lH 
0124 A3 III., INC uF TI< 
012~ 100 1'17 MOIIX A, .. O.-Tre 
012b A3 111~ If\'C "PIR 
0121 iO 1"'1 MOIIX A, .. Ct"k 
012b A3 cOU lNC uPIH 
012'1 j,0 .:01 IWtNIYI MOIIX A,.Or'll< 
01U A3 cO;! lNC ~PI~ 
01211 EO ~O:S MOVI( A ... CPT" 
012t; A~ cO" IN(. UPTR 
01211 to .:o~ MOVX A, .. Ct'T" 
012t. A3 ~Ob iNC UPTR 
012~ 1:.0 ':01 MOIIX ",,,e!'TH 

2·136 



AP-223 

"l..s·~ I ~lAI.Ru ASti~~,B~E" C~TASI'; 

lUC uBJ ll~t. ~OuRI,;E 

013U A3 cOb lN~ uF1R 
0131 t.0 cO~ MOVX A,~C"1~ 
013, A3 .:10 lNI,; uFIR 
013j t.O .:11 ~IO V X A, .. Ot'l" 
O13~ A3 .:\" IN(; uP I R 
013!) t.O "D MllVX A, .. C~1 .. 
013b A3 C1~ I~C VPH 
0131 t.O d!;i MOVX A, .. Ct'1K 
013b A3 "10 lNC VPIR 
013<; cO ell MOVX A,~Ct'1K 
1)13A 1<3 .:1b lNC ~P1R 

0130 to .:I~ MOVX A, .. Ct'1~ 
013C A3 ~2U INC ",PIR 
013u t.O .:21 THIRI Y I MOVX A, .. O~l~ 
013t. A3 ~u INC IIPlR 
o 13F to c2~ MOVX A,,,OPT~ 

014U A3 .:211 lNC vP1R 
0141 t.0 .:2:<> MOVX A, .. CPT" 
014~ 43 ,20 INC UP1R 
Olll~ ';0 ~21 MOVX A, .. Cr'T~ 
Olllij A3 ~2d INC IIP1R 
Olll!:> t.0 .:2~ MOVX A, .. OP1" 
01110 A3 23U INC LlP1R 
01111 eO ,,3~ MQVX A, .. 0i'1tc 
01411 A3 ,3i: INC UP 1R 
014'1 t.0 ,3:S MOVX A, .. 01'11( 
014A A3 e311 INC UPIR 
014b 100 23~ MOVX A, .. OPTIl 
OLlie 43 <30 INC UP1R 
014U t.0 231 MOVX A, .. OP1iC 
014t A3 ii3b INC UPIR 
0111~ t.o c39 MOVX A,~0t'1iC 
0150 A3 cliV INC UPIR 
0151 t.0 ;:41 fOl<TY : MO~X A, .. Ol"l" 
Ols~ A3 cae INC IIPIR 
015~ 1:.0 eaJ MOVX A, .. OI"T" 
01511 A3 24'1 INC UPTR 
015:; t.O "II!;i MOVX A, .. OP11l 
OISb A3 ellb INC UPIR 
0157 t.O .: 47 MOVX A, .. Ct'TIl 
015b A3 .:4b INC LlP1R 
015'1 1:0 ,a~ MOVX A, .. O~lK 
015A A3 e5U lNC UP"/R 
OIStl t.o ,51 MOVX A, .. Ol'lH 
015(, A3 ':5, INC uP1R 
015U to .. Sj MOVX A, .. Ot'l~ 
OIS~ A3 c5q INC uPIR 
o 15f t.0 e5~ MCVX A, .. CI'TK 
0160 A3 ,51> INC uf IR 
0161 to ':51 MOVX A,~Ot'l~ 

016~ A3 .:5ij It>iC IiPIR 
0163 t.O ,,5~ ,;0 v x A,~Ct'l~ 
01/>4 A3 ,,6~ l~C ~P1~ 
Ol/>~ t.0 ,61 f HTY: ';0 v x A,~Ol"lK 
0160 A3 .:6c lNI,; UPIR 

2-137 



AP·223 

r.t~S·51 ~,A~RU ASbE~PL.Et< CI<TIISM 

Lue U~J L.~~ bOuR~E 

0161 1:0 .6~ l'IOYX A."O~T" 
016~ 1\3 .bq I",L IJFI~ 
oat; 1:0 e6~ MOVX. A ... CrTI< 
OlbA A~ ,,6b !NL UP/R 
01611 LO ,,67 MOYX A ... CrT" 
Olb!; A3 ebb !f(C ~FI~ 
01bl) 1:0 ~6~ MOYX A ... Ol'l" 
0161: A3 c7u INC UPIR 
01b~ ~O ,,71 MVX A.&Ol'l" 
0170 A3 ~U !NC UP1~ 
0171 ~O c7J MOYX A ... Cl'l" 
017e: 1\3 ,,7 .. INC uPTR 
017,:, 1:0 c:7~ MOVX A ... Cl'll< 
017'1 A! ~7b !NC UPIR 
017~ ~O e17 MOVX A ... Ol'll< 
017b A3 c7d IN~ UPjR 
017; 1:0 ,,7'1 l'IOYX 1I,401'1H 
odll 113 ,eo INC uPTR 
0179 t.0 ,~81 &IATYI MOVX A ... Ol'll( 
017A A3 c8c INC UPIR 
017b 1'.0 c8J MOVX .,,,OI'T" 
017L A3 c8'1 INC UP1~ 
017U 1:0 ,p~ MOYX A,,,Ol'll( 
0171: 113 C8b INC UPIR 
017F 1::0 i!87 MOVX 1I, .. Ot>TI( 
018v A3 28t1 INC uPTR 
0181 1:0 C:8'i MOVX A ... Ol'll( 
018" A3 ,,'Iv INC UPIR 
OHj 1:0 ,'11 MOVX 1I •• 01'1IC 
OIS" A3 ,'I, INC UPIR 
018~ 1:0 cqJ ·MOVX 1I, .. OI'TIC 
018b A3 ,q~ INC OPTR 
0187 1:0 ,q~ MOVX A, .. Ol'lH 
01BB A3 ,qb INC UPIR 
01119 1:0 0:91 MOVX A ... CPTH 
018A A3 ,,'III INC OP 1 R' 
01811 1:0 2"9 MOVX 11 ... 01'11( 
018~ A3 3011 INC upa 
018U 1:0 301 :;EVNTY I MOVX ..... OI'TI( 
o lilt A3 ~Oi! INC uP1R 
Olef. to 30J MOVX 1I,,,OI'T" 
OI'1U A3 JO~ !N(; UPT~ 
01'11 ~O JO~ MOVX A, .. OI'TI< 
01'l~ A3 jOb INC IIPTR 
OlfJ~ 1;0 ·JOI MOVM A,,,Cl'l" 
0194 A3 JOII INC IIPIR 
Ol"~ 1:0 JO'l I'IOVX A ... Ol'll( 
~l'1b 43 JIO 11\C liP 1R 
01'11 1:0 JI! MOVX A, .. Cl'lH 
01'111 A3 jl~ !NC IIPIR 
01'1'1 1:0 ~l':' MOvM A, .. Ct-ll'( 
OlqA 43 Jlq INC lJPIR 
Ol'lb 1:0 31~ MCVX A ... C!"l1< 
01'1(; A3 JIb I1\t; IIPI' 
01QU lO J II I'IOVX A, .. C~TK 

2-138 



AP-223 

"'1.8-'51 MALRu AS:.E,'Hl.t" C"TAS~. 

Lue uBJ L1~t. ~OuRLE 

01Qt. A3 Jill !!',I: ~~ 1" 
01QF t.O Jl'i ,-,0 v X A,~C~TK 

OlAv A3 ,2u U~I: ~F I h 
01Al t.O J21 t.lbHTY ; ~,O VX A,~C~lH 

OIAe! A3 J2~ 11\1- "Pl. 
'2J 

OIA') i:.'5t13 ,)2~ I.Ht'.C,,: MOV A,UFI1 
OlA~ D~IFuC .)2::> (;Jt;E ~,#l~."DuNt'. 

01Ao ~5112 32b ~,OV A,L-PL 
OIAA tlQuOu7 327 (;Ji;E A,~OIJOM,uC"E 
01AI) 15U018 F J2u MO~ .ont.R,#18n 
011:10 1500uO F J2~ ~,Ov ,U~Tt.Ii+1 ,#yOh 
o 1IIj ~2 BU riET 

331 
01B~ u5u3uO F J3~ 1l0NE: MO~ kAtlTt.R,Dt'H 
01B1 b5112uO F J3~ MOV "A~Ti:Ii+l,Di'L 
OlBA i!2 3!~ IiET 

33~ 
01BII (;3 Bo IlMADNEI CLR C 
OIBC t'.5112 HI MOV A,LlFI. 
OIBi:. c!QQF HIS ADLl A,IIHD IADU 7'1 Tu tlUFFt.R PUINT~R 
OlCu F'5u2 33~ MOV I)PL,A 110 GI;; T Tu ~EXT 018~I.AY LiNE 
01Cc: ~OOF JQU JNC L~tCI\ lIN THE DISFLAY Mt.MURY 
OlC .. u'5113 ~41 1NC uPH 
OICb 1101)8 J4e! :iJMP CH:CII 

34,S 
jD" 
j"::> tNLI 

2-139 



AP·223 

"I,;S~51 I~A .. Ru AS:.E~BLf .. Ct<TA5,¥, 

5yMIIOI. I itjLt I.I:.Tl"" 

r-; A ... E T Y P E II _ L 
U E A T T R I B L T ~ S 

Ace. · D AUC" OuEUI' A 
8LA'IoK. e AUe .. ove!>!' A PuB 
81.1,,£ • C AuOI< OUAIIM A PUB 
BUFFEr< C jolO" OU3~M A 
CHECK. C AUOI< 01AJM A 
CUNTI. · · C AuO .. aI/Bull A 
Cut;T2. C AIIC" OuEll' A 
CUU .. T. 0 AuOt< HT 
CuRIiEk 0 AuOt< EXT 
OIlO .. E. C AUC" OuFIlM A 
OMA, , C AUOre OuFAM A 
OMAOIllt. ,C AUD" 048111'1 A 
DONI;. · C AUO .. 01SOIIl A 
OPM. · 0 AuCI( OU!31l A 
DPL. · 0 AOOI'I OU8ell A 
E lGHTY C AuOH ,OU1M A 
EseSEw a AUCH EXT 
FIFe; · D AUC" ExT 
FIFTY. C AUDte 016~M A 
FILL · · • C AuCH !lOCUM A PuB 
FuRTY • e AIlDH 015111 A 
GUBAC" C AIlCI< oueOiM A 
L. . . 0 AUOte ExT 
LINI;.O. D AIlDt< EXT 
NUTYE T C AIlDI< OUHM A 
OvEk · e AUel< OU5'lM A 
aVEIH. e AuOH OuHI! A 
PI/IhT. D AUDI< ExT 
pi; .... · 0 AuDH OUOl/H A 
IlASIEH 0 Aile" ExT 
SbUF , D AUCn OU"9M A 
S(;Ah · e AUOk EXT 
SI:RljUF · · e AUO .. OUSc!M A 
SI:RIAL 0 AIlCI< EXT 
SI;.RINI e AIlOH ExT 
SI:VNlY C AUDt< OleUM A 
SIX I Y. · · e AuCI< 017'lM A 
H.N. · e ALiCI< 011:iH A 
THInTY C AuO" 013uH A 
Tkhlhl B A"OH EAT 
hEhTY C AuCI( Ol"~H A 
III:R'I · C AUDI< Ou2:>H A 

R~GlSTEIt IjAI\IKlSJ UStO: u 

ASS~"ljLY ~O~PLEre, he e"ROR~ ~OUNIJ 

2-140 



AP-223 

K~Ybfl 

I~I~-lI '~S-S1 ~A~R~ A5~E~BLEK .2.1 
C~J~Cl MOUULE PLALE~ 1~ :~l;K~Y~D.ODJ 
A~S~'DL~R I~VuK~~ e,: ASPS1 :Fl:~EIBU.~N~ 

LuC uBJ l1~t 

~ 

j 

~ 

~ 

b 
1 
d 
9 

IV 
II 
Ie 
I~ 
Iq 
15 
1& 
II 
Ib 
1'1 
2U 
21 
U 
23 
2~ 
2~ 
2& 
27 
211 
29 
3V 
!I 
3e 
!~ 
341 
3~ 
!b +1 

~OURL.E 

,****************************************************t •• * •• _._.*. _____ .• _ 
i****tt- •• **_**_._.,._._._ ... _ .... __ ****_. __ •• __ *_* __ .*_ .. i ••••• _._*._ .. _ 
; •• *­
; ••• t , .... ~OrTnA~E FuR RtAUI~G AN UNuE~OUEu 

K~YIIO"Ru 

... -
t.t_ 

* ••• 
;._.. *t._ 
, ... *----_._-_.* .. _--.--._ .. **_._ .. _.*-** ••••••• _._._---*.* .... _*.-._ .. _-. i'-**-.*-_.-._.'*--_.' .. _--*._ ... ------_.-._-_ .. -... *. t •••• tt_._* ___ •• __ _ , 
1 
1 , 

I 

fHlS CU~lAl~b lHt bOfTwAkE NtEUEu '0 S~A~ AN UNDtCuO~O KtY!lOARu 
THIS P"CG~A~ ~uSI ~E LI~~EU TO THE ~Arh PRUGkAMS Tu FUNCTION 

M~~URY MA~ FOH KEA01NG ~EY !lOARD (UerhG ~UV~) 

AOURcS~ rCH KEY ~OARU 10FFH TO 17FFH 

I'UbLlC REAL/Ell 
~XTRh u_,_ (LSTKfYJ 
tXTRN lilT (KtYU,~AME) 

, ••• * ••• *.***** ••••••••••• **** •• ******.*********.*********************** 
i* * 
1* ·R~"CEH·HOUTINE.· * 
J * * 
~*********.***********ft******************************* **_ •• *._.**_ •• **** 
~EJE~T . 

2-141 



AP-223 

~~5-51 MAI..RU AS~H~I.E" K~Y",O 

LIlC lJ8J L!~t ~OuRI.E 

! I 
!~ ~NUEI..OuEu_KEYBuA"C 8~G~ENT CuD~ .-.- 3~ "StG U~D~CuO~O_K~YUCAR~ 
U\I 
QI 
4" 

OuOU COuO U.s rcEADtRI I'USH t'S~ ;PUSH "Eb USED BY ~LM51 
OuO~ ~O~O 4~ PUll!; ACI.. 
OuOu COll2 4:1 ~U:;~ IiFL. 
OVOb 1..01l! 4" PUS .. UPh 
OUOIl cava 41 I'US .. UOn 
,0vOA caul UII PUS .. Vlh 
ovOC COv2 4'1 I'US .. v21i 
OuOt COv3 50 PUSH V3H 
0010 9010fF 51 MOV uPH,HOfFH ,INITIALIZ~ uPTR TU KEY80ARD 

50! , AIlDWESS 
001'3 l'IuO 53 MOV KI,.OOI1 ,CL.R ltRO COUNTEN 
OUI~ 1800 F 54 MOV itO, ilLS IKI'.Y ,GET KEYIiOARu HAM ~OlNTEH 
0017 '/llve 5~ MOV 1;3,110811 ,INITIAL1Zt LOUP CUUNTfR 
Oul'l L2UO F '5b ClR KEYO ,INITtAlIZt PlM51 STATUS 81TS 
Oull! D2\10 F 51 SETB SAI',E 
ovlll b&U2 511 MOIlEI MOv 0211,GiRO ,MUV LAST ~EYBUAKO SCAN 10 OeH 
Oull' 104 59 ClH A 
Ov20 93 60 MOVC A,,,AtDPTH ,SCAN KEYBUAHO 
0021 F4 &1 CPL A ,INVERT 
002~ bOv5 6" JZ lEHD ,IF SCAN ~AS lERU ~O INCREMENT lERU COUNTER 
OU2~ tl5vU4 63 CJNE A,u2H,NTUME ,CUMPAHE ~ITH LA5T SCAN IF NOT THE SA~E 

64 ,THEN ClR 5AME B1T AND ~HITE NE~ INFURMATIO~ 

6~ ,TU HA~ 
OU21 11005 6b SJMP i:GLJAL. IIF EQUAL. JMP uVER INCH OF ZERU !:OuNIEH 
OU29 v501 61 lEHOI INC 01H lINCH ZERO CUUNTtR 
OU2D 1i50i!ID 611 CJNE A,1I2H,rHUME 
QU2t us 69 I;QUALI INC kO ,STEP TO ~tXT 5CAN RAM lOCATION 
002F v5113 7U INC liP" INtXT KEYBOAHD lUOREua 
ov31 URtA 71 LlJNZ H3,IIURt IIF LOOP COUNTER NUT 0, 5CAN A~AIN 
0113.3 b'lllSII4 U. CJNE kl,.OSH,bACK ,CHECK TO aEt 1F ALL 8 SCANS WHERE 0 
OU36 u2110 F 7.5 SETB liE YO ,IF YE3 5E1 KEYO BIT 
011311 Ci!OO F 711 Cll< II Ar',f 
Ou3A 1)003 7::; DACK; POP UlH 
O,v3~ CiOUe! 1b POP v211 ,POP RtGlSTEHS 
003~ U001 71 PDP 01H 
Ov40 IJOVO 711 PDP 0011 
Ou4i! 1)0113 79 PDP UPIi 
OU4Q 1.10112 8u POP OPL 
Ou40 1)0100 e1 PDP Ace 
004ij uOuo tlr!' POP t'S~ 
OuliA a 8J kET 

84 
,IF ~CAN ~Ai NUT THE' Ou411 ,.." 8::0 NTSAME; 1'10'1 GRO,A SAME TH~N PUT NE~ 

8" ,SCAN INtO I~TU NAM 
Ou4~ C2uO F 81 Clk lj~I"E ; CLR BAh ~ IT 
OU4t IIOU£ 80 SJMP ttUAL. ,GU UD "UR~ 

89 
9U 
91 tNU 

2-142 



A(.C. 
BAC" • 
Dt'H •• 
Of'L.. 
EWUAL.. 
K~Yv ••••••• 
L:iTI\EY 
IIURt;. • 
N1SAM~ •• 
P~\\ ••• 
Ilf.ALiEk 
SAMt;. • 
U~D~C~Dt;.D_KtY~OARU 

Z~RU • • • • • • • 

Y P E 

o AIJC" 
C AuCk 
o AUC" 
o AUCH 
C AI-Cil 
e AUCH 
o AIJCH 
C AUOH 
C AUC" 
o ALiC" 
C AUCk 
e AUC" 
C St;.G 
CAliOn 

R~GlSTEH ~A~K(5l U5~CI u 

AP-223 

V A L. U E 

OuE~H 
Ou3AH 
Ou8.1H 
Ou8~~ 

Ou2EH 

Ol/lUH 
OUlltiH 
Ol/DOH 
OuOUH 

Ol/SUH 
OU29H 

A 
R 
A 
A 
fI 

R 
R 
A 

EXT 
EXT 

R PUB 
EXT 

R 

A T T RIB UTE 5 

St.G=L~OtCuDt.D_Kt.Y~OARLi 
StG=L~DtCUD~D_KEYDOAR~ 

StG=LNDtCUDtD_KEY~OARU 

r;tL.=LNII 
StG;L~Dt.CUDEO_KtYpOAR~ 

A~Sl~~L.Y COMPLETE, ~C E"RUR~ fOuNu 

·2-143 



AP·223 

l~r~·,r ~~S·51 ~A~~~ ~S~E~eLEK vc.1 
O~JtCT ~OUULE PL-~EU ,~ IfIIOtCUOt.uSJ 
A'St~bLtR r~VuKtD ~'I AS~51 ;FlluECOUE.SkC 

LUC UeJ 1.1t.t 

~ 

~ .. 
~ 
b 
I 
~ 

'I 
10 
11 
10= 
loS 
1~ 

IS 
110 
11 
III 
1'1 
20 
21 
i!C 
2~ 
21f 
2:i 
26 +1 

.OlJR~E 

i,*-*._a_*_** •• *_ •• *_ .. _ .... *.*.-*.,_.-.,.,, ____ .. ,._*,t**"'" 
J**-, •• *.-.a.",_.**-_ .. -.*-.. _--*-._.---.- .. __ .. -----**"'t'*' 
1"*' i*--­'**.* 

~G~T~AriE FUR OtCuD~O KEY~OARu 

,*.a __ a.,., __ , ••• *_._. __ ..... ___ * __ •• __ ••• _. ______ • __ .**t'"", 
;***********************************~*.***.*********.**a*""" 

PU~L1C OtTACh 
EXTR~ UArA (1.81KtYJ 
EXTR~ ~IT (~BOlhTI 

,*.*.* •• *.*****.***.*.***.********.** ••• ** •• * •••• **.**t*****.*** •• 
i* * 
I. ~O~CUD~· INTfRHUPT RUUTI~E FuR O~CODtD KEY~OARU8 * 
'* • ,****.***.** •• ** •••••• *.*.* ••••••• *******.***.******_.t******.**.* 
:liEJEL:T 

2-144 



AP-223 

"'loS-51 MACRu As~E.'·BLEh [lIoCuO~ 

Lue uBJ LlH ~OlJRI.E 

21 
211 UEI.OuEu_KErSlJAHO 5tG~E~1 CUUt 
?~ HStG DtCUO~C_K~Y~CA"U 
3\1 

OUOIl ~OuO 31 uETAI.H: I'U~H I'Sn ,PUSH KEIIIS'ltN:> 
auoe (;002 Jo: ~U;;H ~PL. IU~ELI ~Y PloM~1 
Ou04 ';0(13 3J I'US~ uF ... 
ouOt> ~OtoO 34 t'l!S~ AC~ 
OUOIl ~OoO~F 3~ MCV IIF1~,.1I0FFH ,AUOHE:iS FuR KI:Y~OAHU 
OU~II 10 4 30 CLI< II 
OuO(; '13 31 Move A, .. A+OPIK ,FtT(;H ASCII BYTt 
OuOU 1-5110 F 311 MOV L.SIKI:Y"I,A ,MuV TU ~E~OHY TU ~E RtAu ~Y PL~~1 
ouOF U2110 F !9 .lETS ~Bulr.l ,Lt. T PLM~ 1 K.;Or. IHtRt 18 A BYTI: 
Dull 15<1CfF 4U Mall l~u,1I0rFH ,S~T CUU~TtR TU ~FFFH ~O INTtRI<UPT 
Oul'l ISoArF 41 MOV Tlu,1I0rFH ,ON THE ~EXT FALL.ING EIIGI: UF TV 
Oul7 UOIoO ~~ 1'01' Ace 
OuI9 uOCl3 ~~ 1'01' UFH ,PUP RliGlS1EHS 
OUIIl uO<l2 44 POP UPL 
Oull) uOuO ~~ 1'01' !'Sil 
OulF J2 40 riElI 

~7 

UII 
4'1 
511 
51 t.NU 

2-145 



AP-223 

~ A ,.. E T y F E V A L U E A T T R I B U T E 5 

AL;C. · . 0 A~Ch OUEUH A 
·.O~C~O~O_K~YDaARU C S~G OV2oJH R~L;Lld I 

Otrp.Ch C AUOh OvOUH fI PUB 5"G;DtC~D~O_KtYDaARu 
DI'H. · 0 HOI< Ou6jH A 
OI'L. · 0 A~Dh OV6.!H 
KbOiNl P A~C" EXT 
Ll:>TIIEY 0 A~OI< EAT 
P:'.I'< • · . . . . 0 A~C" OUaUH A 
THO. · 0 AIiOh oue .. H A 
n.o. · 0 AL.OI< Ou6AH 

RI;GU rEh tlANKlS) US~DI V 

A:.SI;~!dL y COI~PLE IE. lie EkRURS faUNu 



AP·223 

O~TACM 

I~I~·lI ~~S·51 ~A~w~ ~S~t~HLEk V2.1 
ObJ~CI M1Ulll.E PL~~EIJ .11\ H);OtTACtt.UAJ 
A~S~~uL~R I~VuKtD HI: AS,S1 :FI:uEIA~H.S~C 

Lue uBJ Ll!\t 

1 
C 
oS 
~ ., 
b 

I 
0 
~ 

IV 
11 
Ie 
U 
Iq 
15 
10 
11 
lij 

I" t1 

, .. *.----- ... _.*.- ... -.- .... -_ .... _-.-.---._ ... -._._.- lII_t*tttlllt •••• __ i.**.-.-•.. _ .. -.-----_._.-._--- .. _--.--_._-_ ...... ---. **.ti.tfl.llltt_. _ 
,fI**. , .... 
i t .--

~C~T~AKE FuR A StRIAL OR DtTACHA~Lt 
~EYBIJAI<D 

_ t •• 

.111.­_ .. -
1**** tilitt 

J*.- •• I11-- •. ----_._.-.---.-.* ...... __ ._------.-* ... *_.- ~***.********** ; •• *. ___________ ••• _ ••• ______ •• _. __ • ______ • __ • ____ • ___ *_lIIlIIflifllllt _____ _ 

IHIS COI\IAl~~ lHt ~DfT~AHE NfE~EU TO PtRFOHM A SUFr~ARt ~EHIAL 
~OHT FOR StRIAL ~EYBUAHDS A~u UETACHABLE K~YbOARU. THl~ PRUGHAM MUST 
~E LIN~Eu Tt THE MAI~ PROGHA~S FuR U~E. 

I 
~EJEI,;T 

2-147 



AP-223 

"~S-51 ":.~lIu· A5;;E"~L.~" Dt.TACh 

LuC uHJ L!"t. :.O"RI.E 

21.1 
i!1 
U 

OuB4I i!J lM'~ I t.GU Tv 
2 .. 
i!~ 
i!o PUI)LlC OI:TACI'I 
n r.XrRI~ UAH (1.8IKt.YJ 
i!o ~xrRh all lRC~~Lb,SYhC,bYF1~J 
2'1 Exr~1\ lilT (1(1)01'-1 I ,~MI<OH) 
3u 
31 
3c 
33 
3q 
3~ TIMEN U LOAD ~ALuE~ FOH UI~Fr.R'NT BAUD RATcS 
31> uSED wLTh UEIACHA8LE KEV,ijOARDS 
31 
311 
]Ii 
IIU IIAUD STAHT BLT Dt:;T!:CT M':SliAliE DHt.C r 
III 110 UirAo!H ODF4l:1H 
llii 1511 OFQOIlH OEIIOIIH 
~J 
441 
II!'! 
lib 

OUOU 117 STARTO t:;QU UOIiH ,LOw BYT!: FON 150 IIAUD 
OVF4I lUI STARTl Ulu IIF"H ,HIGH dV,TE FUR 150 BAUD 
OuOu 119 MES8AGtO "Qu UOUH ,LUW BYT, FDN 15u IIAuD 
OuEIl 511 MESSAGtl EQu UEIIH ,HIGH uY.lE FOR 150 BAUD 

51 1'1 iiEJECT 

2-148 



I}' 
t: co 

~~5-51 ~A~RII AS~E'B~E~ Dt HCn 

lliC _UBJ 

OuOU L;OuO 
OuOe !:0o;0 
OU04 cOuOl! 
OuOl eOll44A 
OUOA 1;2uO 
oooe 15tjCf4 
OOOF 7511AuO 
OUli:: t589 
001'1 ~2t:.i! 
OUl& F5b'l 
oull1 bOeB 

OUIA ~OIlOlO 
OUILI eOIl4:S11 
OIli!U L1i!UO 
OU2e 7500110 
0025 7511Ct8 
Ou211 7511AUO 
01/211 11018 

01/2L1 15C1Ct8 
01/31/ 7511AOO 
Ou3;S cOUOlll 
0113& t5uO 
00311 1021:14 
Ou3A 13 
OU311 f5uO 
Ou3u :.Ou6 
OU3f li21/0 
OUII1,C2t7 
OUll3 f5UO 
Oull5 1100;0 
OU47 \JOuO 
OUII'I 32 

F 

F 

F 

F 
F 

F 
F 

F 

F 

F 

l.L ~ t 

5, 
SJ 

bOURLE 

5~ ,**-******.*.**. __ ._ •••• _ •• _******_*_**_ •• *.*_.* •• * __ .***_.** •• _.a __ • __ ._** ___ * 
S!:I ; * * 
51>;* "Co;lACH" IftltHkU~T RUU1I~E FUR Ot:.TACHAdlt ~EYBUA~D~ * 
51 ; * • 
5ti ;***********************************************_*****'a**,.a*"*"'t.tt*,,_.,. 
59 
6U 
,~I 

~c 

6~ 
64 
6~ 
61> 
61 
6b 
6<; 
7U 
71 
7c 
73 
74 
75 
76 
77 
7& 
79 
eu 
B1 
Be 
S;S 
SII 
S5 
eb 
Sf 
811 
89 
'IV 
ell 
'Ie 
qJ 
9'1 
9~ 
9b 
97 
'Ill 

uEIALHABLE_KtYIIOARu ~E~~t:.NI COllE 
HStG DETACHAlIlt~KEYBIIA~D 

UEIALHI PUSH 
I'U51< 
JB 
JB 
liETB 
1'10 V 
MOV 
~.OV 

ClH 
MOV 
SJMP , 

VALIIII JB 

: 

JB 
SETB 
MOV 
MOV 
MOV 
IiJMP 

"'XTBlll MOV 
MOV 
JB 
MOV 
MOV 
HRC 
MOV 
JNC 
SETB 
CUe 
MOV 

fII~lI POP 
POi' 
WETI 

I'SII 
AC~ 
HC vFLG, IIAUD 
!M'LI,HSl 
"CvF~G 
HO,IISIAHTl 
TlU,1IS 'AHTU 
A,Hue 
UEe~ 
T~I.iD,A 
1'11\1 

IiYI\C,I\ntIII 
IM'LI,HSI 
SYI\C 
lS 'fK t Y, IUIOH 
TI<U,.I'ESSAGEl 
TLu,.I't:SSAGEO 
1'11\1 

I~U,.IIt:.SUGEl 
TL 0, IIHSSAGEu 
tlYFII\,IiTUP 
A,L8TKtY 
1:,I~PIJJ 
A 
L5IKtY,A 
FII\I 
Il VI' I" 
IIE7" 
LS1KtHI,A 
ACC 
1'5 ... 

:PUSH kEfi15TtR:. ,UStO BY I'LM51 

,IF HEI:Elllt flAG S~T G~T NtXT IlIT 
:11' TO IS A 1 THtN NUT A STAHT BIT 
,IF 10 18 U THtN 11 A IiTART bIT 
ISET TIMER TU IN1EkRUPT IN THE "IOOlt UF STAHT BIT 

18tT TIM~R CUU~TtR TU lIMEH MOuE 

IGU tlACK TU PRUGt<A" 

,CHECK IF vA~IU IiTARl tilT HAIi dEEN StEN 
IIF NOl CHfCK IF VALID START BIT 
Ill' YEa 8ET SYNC 
I I~n LSTilEY 

ISET TIM~R FUR 1 BIT TIME 
lAND GU 6ACK TU MAIN PHOGRAM 

ISET TIMtR FUR 1 BIT TIME 
ICHECK TO SEE iF ALL 8 BITs HAVE BEEN HECEIVtD 
IGET ~URI<ING RtG1SJE" 
IGET NEXT all FRuM T1 

Ill' NO CARHY THE~ NOT OOI\E 

,CLR Bll 7 
,MOV FINAL CUOt 10 LsTKV.l 

» 
~ 
I\) 
(0) 



~CS-51 M~~RU AS~E~~LE" DI:TACH 

lUC u~J Ll~1: :;OUR(;E 

q'j I 
OU4A 301>4u5 lOU :iTuP; JNI> ~~I'l 1 ,t.R" .IIF NOT 1 IHI:N NuT A VALID STOP ~IT 
Ou4u u2uO F 101 SETS IIBu II,T ;Tt.LL PL~ A ~YrE I~ HEADY 
Ou4f u20000 F AOe JMP 1<51 lAND GO ~A~K TU ~A1N PI<O~RAM 

10j I 
OuS~ ui!oO F 10~ I;RI<I SETB t~"C" 
00S4 (;2uO F 10~ kS I: ell< kCvFLG ,CLEAR FlA~S 

005b 1:2uo F lOb ClH ~YhC 

Ou50 C2uO F 101 ell( IIVt 11\ 
OuSA I;SIlQ 100 MOv A, l~uD 

Ou5e .,21:2 10'1 :lEIB IIE2~ ISt.T T1MtR 0 Tu LOuNIEI< MOuE 
OuSt. "Soq 1111 MOv l~LC,A 

Ou6u 151:1CtF 111 ~OV f~u,1I0~Fri 1St.' CU~I\TtR TU fF~FH 50 INTt.R"UPT 
Ooe.:s 15dAf'F 111: MOv ILu,/lOFFH ION hEXT FALLING EUGt. OF Tu 
006& 1:I0u" lIj 5JMP fIliI 

114 
11 !I 
11b 
117 

~ lid t.N" ):00 
"lJ ... . 

C11 I\) 
0 I\) 

Co) 



~ A ,.. E 

ACC 
ByFH • 
Dt TACH. 
·DtTACHAoLt_~EYBUAnC 
el<R 
E~RuR • 
Flt-;l •• 
II,PIlT 
KtlO!Nf •• 
L~T~EY. 
Mt:.S~AI>EU •• 
"t:.S:'At;El •• 
~H~IT. 
p~~ • • • 
~CVFL(; •• 
R~T ••• 
STAHTU •• 
STAHTI •• 
STOI' •• 
SYNC. 
Tu ••• 
THO • 
TI.O • • 
TMOll. 
VALID 

o~ TACh 

I T P t:. 

~ ACuR 
b ACUR 
C AOuR 
c :.EG 
~ ACuR 
tI AOuR 
~ ACUR 
g /lOUR 
b ACL)R 
U ACUR 

NL"a 
NLI'a 

L: ACLiR 
U AOuR 
tI ACUR 
C ACuR 

NL~B 

Nl:I'B 
I: AOUR 
tI AOUR 
II AOOR 
U AOuR 
U ACUR 
U AOUR 
I: ADOR 

V A l. U t 

VOUOH 
UOb8H 
UO~2H 

A 

OO'l5H H 
VOIlOH." A 

VOUOH A 
UOt.8H A 
VOc!OH H 
UOUOIi A 

UO!i.4H R 
UOOOH A 
UOF4H A 
004AH H 

OOtlOH." A 
uoseH A 
U08AH A 
U089H A 
UOIAH R 

RfGIS1EH bANK(S) UStOl U 

A5St~IlLY ~OMPLETE, NO EKROR~ FOUNU 

AP-223 

c;X\ 

tXT 
t:XT 

,Xl 

tXl 

2-151 

A I \ " I tI U T t:. :, 

:.Eb:uEIACMABI.E_KtYbOARU 
"EI.:uN1T 
~Eb=UE1ACHABl.E_KtYtlOARO 

&Eb=UE\AC~ABI.E_KtYbOARil 



APPENDIX B 
REFERENCES 

AP-223 

1. John Murray and George Alexy, CRT Terminal Design 
Using The Intel 8275 and 8279, Intel Application Note 
AP-32, Noy., 1977. 
2. John Katausky, A Low Cost CRT Terminal Using The 
8275, Intel Application Note AP-62, Noy., 1979. 

2-152 



APPLICATION 
BRIEF 

AS-38 

September 1989 

Interfacing the 82786 Graphics 
Coprocessor to the 8051 

@ Intel Corporation, 1989 

RICK SCHUE 
REGIONAL APPLICATIONS SPECIALIST 

INDIANAPOLIS, INDIANA 

2-153 

Order Number: 270528-002 



AB-3S 

Interfacing the 82786 to the 8051 presents some inter­
esting challenges, but can be accomplished with a little 
additional logic and software. Since the 82786 looks 
like a DRAM controller to the host CPU, wait states 
are often required when accessing the coprocessor. 
Since wait states are not supported by the 8051, latch­
ing transceivers and dummy read and write cycles are 
used to communicate with the 82786. Byte swapping is 
also required in the external logic to allow the 8 bit 
8051 to read an~ write the 16 bit graphics memory 
supported by the 82786. This byte swapping is accom­
plished with the latching transceivers as well. All of the 
control logic is implemented in an Intel 5C060 EPLD, 
allowing the entire interface to fit into three 24 pin 
DIPs. 

HARDWARE 

Figure I shows the interface between the 8051 bus and 
the 82786. Figure 2 shows a typical 8051 CPU design 
needed to complete the circuit. In this design the 82786 
is mapped into an 8K byte window in 8051 data memo­
ry space. ~he upper address bits are used as a "page 
select" and are provided by 1/0 pins on the 8051. The 
5C060 EPLD contains the control logic for the trans­
ceivers and address decoding for the 82786. An equiva­
lent circuit for the EPLD is shown in Figure 3; the 
".ADF" file is shown in Figure 4. The 82786 data 
memory is mapped into one 8K block (AOOOH­
BFFEH), the 82786 registers are mapped into another 
(8000H-807EH), and the transceivers are mapped into 
a third block of memory (COOOH-COOIH). 

OPERATION 

Operation. of the interface is as follows. For reading the 
graphics memory, the 8051 sets the upper address bits 
(PORT 1.0-1.3) and then performs a dummy read op­
eration to the desired location in graphics memory 
(AOOOH thru BFFEH). The dummy read cycle pro-

vides the address and RD/WR information to the 
82786, which runs a cycle and deposits the 16 bit result 
into the latching transceivers at the end of the read 
cycle, as indicated by SEN. This event clears the BUSY 
flip flop in the EPLD. When the BUSY signal goes 
inactive, the 8051 reads the low byte from the latching 
transceiver at address COOOH and the high byte free 
address COOIH. 

For write cycles, the 8051 writes the low byte of the 
word into the latch at address COOOH and the high byte 
into address COOIH. Next the upper address bits are set 
with PORTl and a dummy write cycle is performed in 
graphics memory at the desired address (AOOOH­
BFFEH). Like in the read example, the 82786 runs a 
memory cycle at this point, enabling the outputs of the 
latching transceivers at the proper time in the write 
cycle, as indicated by SEN going active. 

Accessing the registers inside the 82786 is done in ex­
actly the same fashion, except that the 82786 is ad­
dressed in locations 8000H through 807EH. This caus­
es the EPLD to drive the MIlO pin low during these 
cycles. 

DESIGN NOTES 

74F543's are used for the latching transceivers in this 
design, although 74HCT646's could be used to reduce 
the total power consumption. Some changes to the 
EPLD would be required in this case. The interface 
assumes that all memory accesses to the 82786 are 
word references; accordingly, BHE is grounded at the 
82786. All addresses generated by the 8051 must be 
even byte addresses, the only byte operations allowed 
are the reads and writes to the latching transceivers. 
The design shown here incorporates hardware work­
arounds for the earlier "C-step" 82786; the current 
"D-step" part will work in the design as well. Addition­
al information regarding the 82786 can be found in the 
"82786 Graphics Coprocessor User's Manual", Intel 
publication number 231933. 

2-154 



inter AB-38 

I , IOCI~ - ~ ~oa 7""'i(j"'"\ 

g . . [oa~ 

~ "" ~ 
?oa~ 

~ ~=:;!l:;!~c~>H 
~ I!S u 

"1 ~ITITIT ~1·rr~11 ~~;=~~~~i! 

~I vv' v,vl , LOOTt'(j""\ 

.\-\" " . " .. -\ -
~ zoo TSi" II . . 'OG "ii""'iO"o 

.. - - - 0- : 2 '" ~ "" ~ 
tOO 'Li"'7a""" ~ ~~~~~~.~,\I 

~ ~ 
* . "r TITITr Ttr~11 

""'1')"'1/') -.. , 100' T""'iQ""\ -
~ tDa'i""""'ii" 

r0- t-;< • 

+1- =: ~ ~i~r--111 ~ 
too'iT"7i'iO"'\ 

... '" ... 2: .~ "" : ~~~l:l~:i~>H t'oo'7i"""'i"ia" 

:O:~::;::.1D:il>H~ 

"J ~I·I·I·I =1 ~I ~I ~1·rr~11 ~ 
~=:!l:2~:C!ig~ 

LtIO"i"""i"iO' 

"1"1" • .. " = -TeT - , 
~ II r-- t--;c: M 

zoo"i""'7io'" . 
'l "" ~ 

too'ii'Taij"'. 

"li 
~ " f-r ~ ~~~l:;!~c=J1 ,.oa~ 

ft II 

"~l :1:1:1:1:1:1:lr~~1 -
- iiil lll~ ~l~l~lHI~ i H ~ ~ ~ ~ ~ ~ - II ~ ij Q e °IB ~W~Slil~ ~F· . ~ Ii; ~ :c :c i :Ii: z: ::I Z ::I 

.'~HEaHq >'d~ >'a >'a~; HH 55 ~5uunHU~ ~H~H~P~· 
~ ~ 

~~;;S;;;S;;'=~~~~~~~.~~d~~ Hhiiid~~ ~~~ii~&:!t8 B!8~SS.8 

tl1tt, I iii ~ il ~ ~il ~ilii88§Seii~1i~ ~ ; ; a ; "'~I """" Ci CD i:i:C II iii :i :ii<; :; ::; i i <; 6 i: i: i:O 

~ ~I~rll -l~l -" · " ~i~rll 
=~ 

.. ::! f;2 N 2 = -"=.~~ -~~,,~. 

~3~=;;;~·S,\l! ~ ~ B =; ~; ~;;:i,\l! 

~ 
o ~ o ; 

~ $ 
~ 3~~~~;~~.~e~ g~~;~;~~.~ee 
I~~ ~ " t t t t ~~II ~l"f" . " . . . . ~ =1:L,1 

II ....--
I 

~~~~~:2~~~~~~:l~<~ 

~ ~

UU'" ii

~= ~ ::: N • " ~l·A
j UB ... H;jg

§

~ ~~S~d~; >'d 1-

~ ;l :! =- " -

:c:c:c

Figure 1

2-155

o • ~!~'-ill

, ,
~ ;

,

~

~.
II

~
B88~SS.8

I}>~
...... c
~ ;

I\)

AS-232

P1.7 ~
P1.6 ;-

Pl.4 f- ___ PORT1.2 BANK SELECT
P 1.5 !- '.J"o PORTl.3}

P 1.3 "'" PORTl.l
P1.1 1-+-..... -tXTAL2 P1.2 --'"" PORTl.O

+h
5K

2N79~
5K ~I

P1.0 ...L..+5 10ul

9 T+ 'l5'Y
RESET RESET

:~ * I - A15 PSEN I --'"" A14
A15 ~~ I ~ A13

RO­
WR-

A14 26 91 ~UU
A13 ~. ~. ;,~~

tJ ...
o

...
_ <> ~ 0

A12 2! A12 A12
All 3 21 All All

A!g 4 !~O !~O
AS AS AS

§ A12
All
Al0
A9
AS

SOC31 NCj1..

07 9 ~ A7
06 5 5 A6

.., 05 AS ...
::;04 1 6A4~ ~
t;03 67 A3.... ::l
~025 ~A2'"
.... ~ 10 !~

Il'TxO
+5

1---_:>A7

~=::gA6 I- A5

~=::gA4 I- A3

~=::gA2 I- Al
t::::--_:>AO

1.B:K +5 19 07

- 07 18 06 I"
Vee
CE2
Vss

06
05
04
03
02
01

_ DO

06 17 05
05 16 04

5K 04 :~ 03
2 1------.... wlr-f""1 g~ 12 g~

~ 1 00
lN4148 00 BUSY

270528-2

(

~
m

I
w
CO

intJ

sen

@D-elk

AB-38

786esn

rdn

015
wrn

014 hlbonkn
013n NANDJO----+_t-1~_OI

~o--~-+_t~~i-..; rdn
00

786rdn

786rdn 10--+---.

oehn

lehn

oeln

leln

t----t \OS FQ r--..... --t ~)---i ... ·~IJO ______ o_e_w_n __ -{

..... t---iR

S Q~_b_u~sY~ ____________ ~BUSYl

786rdwr SON F >-':"::'::;"::'::':"-'--1 R L-__ ~~ ~ __ ~

270528-3

Figure 3. 8051182786 Control EPLD (5C060-55) Equivalent Circuit

2-157

INTEL
August 11, 1987
1-003
o
5C060

AB-38

8051/82786 Control Logie for 8051 Demo .Board
786 I/O 8000H-807FH
786 Memory AOOOH-BFFFH
Registers COOOH,COOIH
OPTIONS: TURBO=ON
PART: 5C060
INPUTS: A15@23,A14@14,A13@11,AO@2,RD/@10,WR/@9,SEN@8,CKK
OUTPUTS: 786CS/@15,786RD/16,OEH/@17,LEH/@18,OEL/@19,LEL/@20,
LEW/@21,OEW/@22,READ@4,BUSY@3
NETWORK:
a15 = INP (A15)
a14 = INP (A14)
a13 = INP (A13)
aO = INP (AO)
rdn = INP (RDIl
wrn = INP (WRIl
sen = INP (SEN)
elk = INP (CLK)
a14n = NOT (a14)
a13n = NOT (a13)
aOn = NOT (aO)

. 786esn = NAND (a15,a14n)
786CS/ = CONF (786esn,VCC)
786rdn = OR (786esn,rdn)
786RD/ = CONF (786rdn,VCC)
hibankn = NAND (a15,a14,a13n,aO)
10ba.nkn = NAND (a15,a14,a13n,aOn)
oehn = OR (hiba.nkn,rdn) .
OEH/ = CONF (oeh.n,VCC)
lehn = OR (hiba.nk.n,wrn)
LEH/ = CONF (leh.n,VCC)
oeln = OR (lobankn,rdn)
OEL/ = CONF (oeln,VCC)
leln = OR (lobankn,wrn)
LEL/ = CONF (leln,VCC)
oewn = NAND (sen,write)
OEW/ =' CONF (oewn,VCC)
lew = AND (sen, read)
qO = NORF (lew,elk,GND,GND)
ql = NORF (qO,elk,GND,GND)
q2 = NORF (ql,elk,GND,GND)
q2n = NOT (q2)
lewn = NAND (ql,q2n)
LEW/ = CONF (lewn,VCC)
786wr = NOR (786esn,wrn)
786rd = NOT (786rdn)
READ, read = SOSF (786rd,elk,786wr,GND,GND,VCC)
wr.ite = NOT (read)
786rdwr = OR (786rd,786wr)
BUSY = SONF (786rdwr,elk,sen,GND,GND,VCC)
END$

Figure 4.

2-158

intJ APPLICATION
BRIEF

AB-39

December 1987

Interfacing the Densitron LCD to
the 8051

@ Intel Corporation, 1987

RICK SCHUE
REGIONAL APPLICATIONS SPECIALIST

INDIANAPOLIS, INDIANA

2-159
Order Number: 270529-001

AB-39

INTRODUCTION

This application note details the interface between an
80C31 and a Densitron two row by 24 character
LM23A2C24CBW display. This combination provides
a very flexible display foot format (2x24) and a cost
effective, low power consumption microcontroller suit­
able for many industrial control and monitoring func­
tions.

Although this applications brief concentrates on the
80C31, the same software and hardware techniques are
equally valid on other members of the 80S 1 family, in­
cluding the 8031, 87S1, and the 8044.

HARDWARE DESIGN

The LCD is mapped into external'data memory, and
looks to the 80C31 just like ordinary RAM. The regis­
ter select (RS) and the read/write (R/W) pins are con­
nected to the low order address lines AO and AI. Con­
necting the R/W pin to an address line is a little unor­
thodox, but since the R/W line has the same set-up
time requirements as the RS line, treating the R/W pin
as an address kept this pin from causing any timing
problems.

The enable (E) pin of the LCD is used to select the
device, and is driven by the logical OR of the 80C31 's
RD and WR signals AND'ed with the MSB of the ad­
dress bus. This maps the LCD into the upper half of the
64 KB external data space. If this seems a little waste­
ful, feel free to use a more elaborate address decoding
scheme.

With the address decoding shown in the example, the
LCD is mapped as follows:

Address Function Read/Write?

8000H Write Command to LCD Write Only
8001H Write Data to LCD Write Only
8002H Read Status from LCD Read Only
8003H Read Data from LCD Read Only
8004H

to No Access
FFFFH

2-160

Undefined results may occur if the software attempts to
read address 8000H or 8oo1H, or write to address
8oo2H or 8003H.

TIMING REQUIREMENTS

The timing requirements of the Densitron LCD are a
little slow for a full speed 80C3I. The critical timing
parameters are the enable pulse width (PW E) of
4S0 ns, and the data delay time during read cycles
(tDDR) of 320 ns. The 8OC31 is available at clock
speeds up to 16 MHz, but at this speed these parame­
ters are violated. Since the 80C31 lacks a READY pin,
the only way to satisfy the LCD timing requirements is
to slow the clock down to 10 MHz or lower. A conve­
nient crystal frequency is 7.3728 MHz since it allows all
standard baud rates to be generated with the internal
timers.

SOFTWARE

The code consists of a main module and a set of utility
procedures that talk directly to the LCD. This way the
application code does not have to be concerned with
where the LCD is mapped, 'or the exact bit patterns
needed to control it. The mainline consists of a call to
initialize the LCD, and then it writes a message to the
screen, waits, and then erases it. It repeats this indefi­
nitely.

The utility procedures include functions to initialize the
display, send data and ads to the LCD, home the cur­
sor, clear the display, set the cursor to a given row and
column, turn thl? cursor on and off, and print a string of
characters to the display. Not all the functions are used
in the software example.

REFERENCES

INTEL Embedded Controller Handbook, 210918

INTEL PL/M-Sl User's Guide, 121966

DENSITRON Catalog LCDMD-C

!!
I\) CD
, C

(j) II)
:'" 4 A7

~ 5- 6 A6
116 6 AS
6 7 A4
15 8 A3
9 9 A2
._ ~Al

-AO
+5 27C64 6264LP

(OPTIONAL)

+5

~
(.) ...
N
o
~
'" N
~
~

Vee
GND

+5

-12

270529-1

t

l>
l1J .
(.0)
CD

inter AB·39

Main_module: DO:

Delay: PROCEDURE (count) EXTERNAL:
DECLARE count WORD:

END Delay:

Initialize_LCD: PROCEDURE EXTERNAL:
END Initialize_LCD:

Clear display: PROCEDURE EXTERNAL:
END Clear_display:

LCD_print: PROCEDURE EXTERNAL:
END LCD_print: '

DECLARE LCD_buffer (48) BYTE PUBLIC.
sign_on_message (*) BYTE CONSTANT

('INTEL 8051 DRIVES LCD - ,
'2 ROWS BY 24 CHARACTERS ').

i BYTE:

/* This is the start of the program */'

/* Initialize the LCD */
CALL Initialize_LCD:
CALL Clear_display:

/* Now enter an endless,loop to display the message */
DO WHILE 1:

END:

/* Copy the message to the buffer */
DO i = 0 to 47:

LCD_buffer(i) = sign_on_message (i) :
END:

/* Now print out the buffer to the LCD */
CALL LCD_print:

/* wait a while */
CALL Delay(2000) ;

/* now clear the screen */
CALL Clear_display: '

/* of DO WHI~E */

END Main_module:

Main Module

2-162

inter

LCD_IO_MODULE: DO;

DECLARE LCD_buffer (48)
LCD_command
LCD_data
LCD_status
LCD_busy
i

AB-39

BYTE EXTERNAL,
BYTE AT (08000H) AUXILIARY,
BYTE AT (08001H) AUXILIARY,
BYTE AT (08002H) AUXILIARY,
LITERALLY'lOOO$OOOOB',
BYTE;

Delay: PROCEDURE (msec) PUBLIC;

/* This procedure causes a delay of n msec */

DECLARE msec WORD,
i WORD;

IF'msec> 0 THEN DO;
DO i = 0 to msec - 1;

CALL Time(5) ; /* .2 msec delay */
END;

END Delay;

LCD_out: PROCEDURE (char) PUBLIC;

DECLARE char BYTE;

/* wait for LCD to indicate NOT busy */
DO WHILE (LCD_status AND LCD_busy) < > 0;
END;

/* nOW send the data to the LCD */
LCD_data = char;

END LCD out;

LCD Driver Module

2-163

inter AB·39

LCD_command_out: PROCEDURE (char) PUBLIC;

DECLARE char BYTE;

/* wait for LCD to indicate NOT busy */
DO WHILE (LCD_status AND LCD_busy) < > 0;
END;

/* now send the command to the LCD */
LCD_command = char;

Home_cursor: PROCEDURE PUBLIC;

CALL LCD_command_out(OOOO$OOlOB) ;

END Home_cursor;

Clear_display: PROCEDURE PUBLIC;

CALL LCD_command_out (OOOO$OOOlB);

END Clear_display;

Set_cursor: PROCEDURE (position) PUBLIC;

DECLARE position BYTE;

IF position> 47 THEN position = 47;
IF position < 24 THEN CALL LCD_commapd_out(080H + position) ;
ELSE CALL LCD_command_out(OCOH + (position - 24));

END Set_cursor;

C~rsor_on: PROCEDURE PUBLIC;

CALL LCD~command_out(OOOO$llllB) ;

END Cursor_on;

Cursor_off: PROCEDURE PUBLIC;

CALL LCD_command_out(OOOO$llOOB);

END Cursor_off;

LCD Driver Module (Continued)

.2-164

inter AB·39

LCD_print: PROCEDURE PUBLIC;

/* This procedure copies the contents of the LCD_buffer
to the display */

CALL SeLcursor(O) ;
DO i = 0 to 23;

CALL LCD_out(LCD_buffer(i});
END;
CALL Set_cursor(24) ;
DO i = 24 to 47;

CALL LCD_out(LCD_buffer(i));
END;

END LCD_print;

Initialize_LCD: PROCEDURE PUBLIC;

CALL Delay(lOO) ;
CALL LCD_command_out(38H) ;
CALL LCD_command_out(38H) ;
CALL LCD_command_out(06H) ;
CALL Clear_display;

/* Function Set */

/* entry mode set */

CALL Home_cursor;
CALL Cursor_off;
CALL Set_cursor(O} ;

END Initialize_LCD;

LCD Driver Module (Continued)

2-165

APPLICATION
BRIEF

AB-40

December 1987

32-Bit. Math Routines for the 8051

® Intel Corporation, 1987

RICK SCHUE
REGIONAL APPLICATIONS SPECIALIST

INDIANAPOLIS, INDIANA

2~166

Order Number: 270530-001

inter AB-40

Here are some easy to use 16- and 32-bit math routines
that take the pain out of calculations such as PID
loops, AID calibration, linearization calculations and
anything else that requires 32-bit accuracy.

, The package is written to interface with PL/M-51. Pa­
rameters are passed as 16-bit words to the routines,
which perform operations on a 32-bit "accumulator"
resident in memory. The foJlowing functions are per­
formed:

Load_16 (word_param)

Loads a 16-bit -RD into the low half of the 32-bit "ac­
cumulator", zeros upper 16 bits of accumulator.

Load_32 (word_hi,word_lo)

Loads word_hi into upper 16 bits of accumulator, word
lo_into Lower 16 bits.

Low_16

Returns the lower 16 bits of the accumulator, bits 0
through 15.

Mid_16

Returns the middle 16 bits of the accumulator, bits 8
through 23.

High_16

Returns the upper 16 bits of the accumulator, bits 16
through 31.

MuLl6 (word_param)

Multiplies the 32-bit accumulator by the 16-bit word
supplied, result left in accumulator.

Div_16 (word_pararn)

Divides the 32-bit accumulator by th~ 16-bit word sup­
plied, result left in accumulator.

Add_16 (word_param)

Adds the 16-bit word supplied to the 32-bit accumula­
tor.

Sub_16 (word_param)

Similar to Add_16 but for subtraction.

Add_32 (word_hi,word_lo)

Forms a 32-bit value for word_hi and word_lo and
adds it to the accumulator.

Sub_32 (word_hi,word_lo)

Similar to Add_32 but for subtraction.

APPLICATION

Typical applications have 16-bit "input" values and
produce 16-bit "output" values, but require 32-bit val­
ues for intermediate results. An example would be
reading a 12-bit AID, performing some gain and offset
calculation on the raw AID data to produce a calibrat­
ed 16 bit result. Doing this is a simple task with this
math package.

CALL Add_16 (offset_value);

CALL Mul_16 (gain_factor);

,. gain is in units of 1,256 .,

result = Mid_16;

In this example the accumulator was loaded with the
raw AID value and then the offset was applied. The
gain3actor was "pre-multiplied" by 256 (8 bits), giving
it a granularity of 11256. The result was extracted from
the "middle" 16 bits of the accumulator (bits 8 to 23) to
account for the scaling factor of 256 introduced in the
multiply step.

The package requires about 384 bytes of ROM and 30
bytes of RAM. Individual routines can be deleted to
conserve RAM if they are not used.

2-167

intJ AB·40

CODE SOURCE LISTINGS

CODE SOUICE LISTINGS

,
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC
PUBLIC

Load_16, ?Load_16?byte
Load 32, ?Load 32?byte
Mul 16, ?Mul 16?byte
Div-16, ?Div-16?byte
Add-16, ?Add-16?byte
Sub-16, ?Sub-16?byte
Add-32 , ?Add-32?byte
Sub -32, ?Sub -32?byte
r.ow:16, Mid~16, High_16

;
Math 32 Data
Math:32:Code
;
RSEG Math 32 Data
?Load 16?byte: -OS 2
?Load:32?byte: OS 4
?ml_16?byte: OS 2
?Div_16?byte: OS 2
?Add_16?byte: OS 2
?Sub_16?byte: OS 2
?Add 32?byte: OS 4
?Sub:32?byte: OS 4
OP 0:' OS 1
ap-l: OS 1
OP-2: OS 1
ap-3: OS 1
'IMP 0 OS 1
'IMP-l OS 1
'IMP-2 OS 1
'IMP:3 OS 1
;
RSEG

DATA
COOE

2-168

270530-1

inter

Load 16:
;Lead
I'fJV
MOV
~V

I'fJV
RE:l'

Load 32:

AB-40

the lower 16 bits of the OP registers with ~~e value supplied
OP 3,fO
OP-2,fO
O(), ?Load_16?byte
OP_O,?Load_i6?byte + 1

;Lead all the OP registers with the value supplied
MOV OP 3,?Load 32?byte
MeV OP-2,?Load-32?byte + 1
MOV OP-l,?Load-32?byte + 2
MeV OP-0,?Lead-32?byte + 3
RE:l' - -

Low 16:
-iReturn the lower 16 bits of the OP registers

MOV R6,OP 1
MOV R7,OP-0
RE:l' -

Mid 16:
-;Return the middle 16 bits of the OP registers

MeV R6,OP 2
MeV R7,OP:)
RE:l'

High 16:
;Return the high 16 bits of the OP registers
MOV R6,OP 3
MOV R7,OP=Z
RE:l'

Add 16:
-iAdd

CLR mv
ADDC
MOV
MeV
ADOC
MOV
MOV
AOOC
MOV
MOV
/\DOC
I!IJV
RE:l'

the 16 bits supplied by the caller to the OP registers
C
A,OP 0
A,?Add_16?byte + 1 ;1ow byte first
OP O,A
A,'OP 1
A,?Add_16?byte ;high byte + carry
OP I,A
A,OP 2
1'.,40- ;propagate carry only
OP 2,1'.
A,OP 3
1'.,40- ;propagate carry only
OP_3,A

2-169

270530-2

inter

Add 32:
-;Add

CLR
rov
ADOC
I'IJV
I:'IJV
AOOC
I'CN
I'DV
AOOC
I'DV
I'CN
ACre
I'CN
RET

Sub 16:

the 32 bits supplied_ by
C
A,OP 0
A,?Add 32?byt= + 3
OP O,A-
A,OP 1
A,?Add 32?byte + 2
OP 1,A-
A,OP 2
A,?Add 32?byte + 1
OP 2,A-
A,OP 3
A,?Add 32?byte
OP_3,A-

AB-40

the caller to tne OP registers

;lowest byte flrst

;mid-lowest byte + carry

;mid-highest byte + carry

;highest byte + carry

-;Subtract the 16 bits supplied by the caller from the OP registers
CLR
I:'IJV
SUBS
I'DV
I'DV
SUBS
l"I:N
I'CN
SUBB
l"I:N
l'DV
SUBB
I'CN
RET

Sub 32:

C
A,OP 0
A,?sUb 16?byte + 1
OP O,A-
A,OP 1
A, ?SUb 16?byte
OP 1,A-
A,OP 2
A,tO-
OP 2,A
A,OP 3
A,.O-
OP_3,A

;low byte first

; high byte + carry

;propagate carry only

;propagate carry only

-;Subtract the 32 bits supplied by the caller fran the OP registers
CLR
I'CN
SUBB
I'CN
I:'IJV
SUBS
I'CN
I:'IJV
SUBS
I:'IJV
I'CN
SUBB
I'CN
RET

C
A,OP 0
A,?SUb 32?byte + 3
OP O,A-
A,OP 1
A,?SUb 32?byte + 2
OP l,le
A,OP 2
A,?SUb 32?byte + 1
OP 2,A-
A,OP 3
A,?SUb 32?byt;
OP_3,A-

;lowest byte first

;mid';lowest byte + carry

;mid-highest byte + carry

;highest byte + carry

2-170

270530-3

AB-40

Mul 16:
-iMultiply the 32 bit OP with the 16 value supplied

I:'DV 'll1P 3,10 iclear out upper 16 bits
I:'DV niP-2, to
;Genecate the lowest byta of the result
I:'DV S,OP a
MaV A,?HUl l6?byte+l
MlJL lIB -
I:'DV 'll1P a,A ilow-order result
I:'DV 'll1P-l,a ihigh order result
iNa.I generate the next higher order byte
I:'DV a,op 1
I:'DV A, ?Mill 16?byte+l
!f1L lIB -
ADD A, 'll1P 1
I:'DV niP l-;A
I:'DV A,a-
ADOC A,niP 2
I:'DV niP 2-;A
JNC Mul-loopl
INC niP-3

Mul loopl: -
-I:'DV S,OP a

I:'DV A,?HUl l6?byte
!ilL lIB -
ADO A,niP 1
I:'DV 'll1P l-;A
I:'DV A,a-
ADOC A, 'll1P 2
I:'DV 'll1P 2-;A
JNC Mul-loop2
INC 'll1P:)

ilow-order result
save
get high-order result
include carry from previous operation
save

propagate carry into niP_3

i la.l-order result
save
get high-order result
include carry from previous operatioo
save

propagate carry into 'll1P_3
Mul loop2:

-; Now start IoOrking on the 3rd byte
I:'DV S,OP 2
MaV A,?HUl l6?byte+l
MUL lIB -
ADD A, 'll1P 2
I:'DV 'll1P 2-;A
I:'DV A, a-
ADOC A,'IMP 3
I:'DV niP 3-;A
i Now the other half
I:'DV S,OP 1

;low-order result
save
get high-order result
include carry from previous operation
save

I:'DV A,?HUl_16?byte
MlJL AS
ADO A,niP 2
MaV 'IMP 2-; A
MaV A,S-
ADOC A, 'll1P _ 3
I:'DV 'll1P 3, A
; Now finish off the
/!IN S,OP 3

;low-order result
; save
i get high-order ,result
; include carry from previous operation
; save

highest order byte

I:'DV A,?Mul_16?byte+l

2-171

270530-4

AB-40'

~ AS
ADD A,TMP_3 ;low-order result
HOV TMP 3,A ; save
; Forget about the high-order result, this is only 32 bit math!
I'DV a,op 2
I'DV A,?MUl l6?byte
~ AS -
ADD A,TMP 3 ;low-order result
I'DV ' 'IMP 37A ; save
; Now 'ole are all done, nove the TMP values back into OP
HOV OP O,'IMP 0
HOV OP-l,'iMP-l
HOV OP-2,TMP-2
HOV OP-3,'IMP-3
REI' - -

270530-5

2-172

AB-40

Div 16:
-;This divides the 32 bit OP register by the value supplied

I:'OV R7,.0
:-OV R6,fO ; zero out partial r~mainder
I:'OV 'IMP 0,.0
:-OV 'IMP-l,iO
l"l:N 'IMP-2,fO
I:'OV 'IMP-3, to
I:'OV Rl,?Div 16?byte
I:'OV RO,?Div-16?byte+l

;load divisor

l"l:N RS,'32 -
;This begins the loop

Div loop:
-CALL Shift 0
tiN A,R6 -
RU: A
I'PV R6,A
I'PV A,R7
au:: A
l"l:N R7,A

;loop count

;shift the dividend and return MSB in C
;shift carry into LSB of partial remainder

;now test to see if R7:R6 >= Rl:RO
CLR C
I'PV A,R7
suea A,Rl
JC Cant sub

; subtract Rl from R7 to see if Rl < R7
; A = R7 - Rl, carry set 1f R7 < Rl

oat this poInt R7>Rl or R7=Rl
JNZ Can sub ;junp if R7>Rl
;if R7 .. aI, test for R6>=RO
CLR C
l"l:N A,R6
SUBS A,RO ; A = R6 - RO, carry set if R6 < RO
JC Cant sub

Can sub: -
-;subtract the divisor from the partial remainder

CLR C
I:'OV A,R6
SUBB A,RO
I'PV R6,A
I'PV A,R7
SUBB A,Rl
l"l:N R7,A
SE'I'B C
JMP Quot

Cant sub:

A=R6-RO

A = R7 - Rl - Borrow

shift a 1 into the quotient

;shift a a into the quotient
CLR C

Quot:
;shift the carry b1: lnto the quotient
CALL Shift Q
; Test for COmpetlcn
DJNZ RS,Div loop
; Now we are all done, rove the 'IMP values back into OP
l"l:N OP O,TMP 0
I'PV OP:l,'IMP:l

2-173

270530-6

infef

I'DV
I'DV
RET

Shift D:

AB-40

OP 2,'IMP 2
O(),'IMP:)

;shift the dividend one bit to the left and return the ~B in C
CLR C
I'DV A,OP 0
RLC A -
I'DV OP O,A
1'01 A,OP 1
RLC A -
I'DV OP 1,A
I'J)V . A,OP 2
RLC A -
1'01 OP 2,A
1'01 A,OP 3
RLC A -
1'01 OP_3,A
RET

Shift Q:
;shift the quotent one bit to the left and shift the C into LSB
1'01
RIC
I'DV
1'01
RIC
1'01
I'DV
RLC
I'DV
I'J)V
RLC
I'DV
RET

A,'IMP 0
A -
'IMP O,A
A,'lMP 1
A -
'IMP 1,A
A,'lMP 2
A -
'IMP 2,A
A,'lMP 3
A -
'IMP_3,A

2-174

270530-7

APPLICATION
BRIEF

AB-12

October 1987

Designing a Mailbox Memory for
Two 80C31 Microcontrollers Using

. EPLDs

© Intel Corporation, 1987

K. WEIGL & J. STAHL
INTEL CORPORATION
MUNICH, GERMANY

2-175
Order Number: 292016-002

AB-12

INTRODUCTION

Very often, comple;x systems involve two or more mi­
crocontrollers to fulfill the requirements defined by a
given objective. Since the nature of microcontrollers
does not allow for easy dual-port memory design (no
"READY" input; no "HOLD/HLDA" interface; port­
oriented I/O etc.), design engineers are faced with the
problem of interchanging information (data and status)
between those microcontrollers. This application brief
describes the design of a mailbox for exchanging infor­
mation between two 80C3ls, using a SC060 H-EPLD
as a "back-to-back" register, and a SC031 H-EPLD as
an arbitration vehicle to control the actions of the
CPUs.

THE 5COGO MAILBOX

In this application, the 16 macrocells of the SC060 are
grouped into two sets of 8 so called "ROlF" (register
output with input feedback) primitives to implement
the two 8 bit bus interfaces needed. The grouping is
done according to the following picture.

The SC060 allows for independent clocking of 8 macro­
cells on each side of the chip, the two clock inputs are
used to clock data from the microcontroller bus into
the chip. To read the data written into the mailbox by
one of the controllers, the RDA- (controller A is read­
ing) or RDB- (controller B is reading) line must be
pulled low by activating the read command (IRD). In
order to avoid spurious read-cycles, the /RD com­
mands from both microcontrollers are logically
"ORed" together with an active high CS-signal (Chip
Select) inside the SC060. The CS-signal for both ports is
derived from address line AI5. Therefore, whenever
AI5 becomes a logic "I" (true), the mailbox is activat­
ed and ready to take or submit data.

Address range for the mailbox: FOOO Hex to FFFF
Hex
(Upper 12 kbyte)

5C060

2-176

inter AB-12

THE 5C031 "MAILBOX CONTROLLER"

To keep the two microcontrollers informed about the
status of their mailbox, the 5C031 is programmed to
supply the following signals to both controllers:

/OBFA: "OUTPUT BUFFER FULL" FOR Me A

/OBFB: "OUTPUT BUFFER FULL" FOR Me B

/IBEA: "INPUT BUFFER EMPTY" FOR Me A

/IBEB: "INPUT BUFFER EMPTY" FOR Me B

/INTA: INTERRUPT TO Me A

/INTB: INTERRUPT TO Me B

The next section will discuss the meanings of these sig­
nals in more detail.

Output Buffer Full: This flag is set whenever the con­
troller writes into its own output
buffer. The flag remains valid, until
the second controller has read the
data. The flag is automatically re­
set to its inactive state when this
read cycle is accomplished.

NOTE:
Both controllers can access (read or write) the mail­
box simultaneously.

Input Buffer Empty: This flag indicates that there is no
message in the mailbox. The flag
will become inactive as soon as
one microcontroller places a mes­
sage for the other one (or vice ver­
sa).

Example: IIBEA remains
"LOW" until microcontroller B
places a message for controller A
into the mailbox for A. IIBEA
will go "HIGH" as soon as con­
troller B has accomplished its
write cycle, and will not go
"LOW" again until microcontrol­
ler A has read the message.

Interrupt: The 5C031 is programmed to supply inter­
rupts to both microcontrollers involved, on
one of the following events.

1. The IOBF flag of the opposite microcon­
troller becomes active; e.g. if controller A is
placing a message for controller B, controller
B receives an interrupt the same time as
IOBFA becomes valid or vice versa.

2. The IIBE flag of the opposite microcon­
troller goes active, indicating that this con­
troller has received the message; e.g. if con­
troller B reads the message stored by con­
troller A, its IIBEB flag goes active and con­
troller receives an interrupt indicating that
the buffer is empty.

The signals described above are necessary to accom­
plish a secure handshake without overwriting messages
accidentally. In addition to that, the 5C031 is issuing
the actual write commands for the two register sets in­
side the 5C060. The /WRA and /WRB signals are re­
sults oflogical "AND" functions between the appropri­
ate CS- and /WR signals from the microcontrollers.
Therefore, spurious write cycles are unlikely to happen.

NOTE:
This design can also be efficiently implemented in a
single 5CBIC EPLD.

2-177

AB-12

A B
AOO-A07 ill " ill .~ AOO-A07

PO

i'r L. 74HCT373 ~
00-07 00-07 .:"\1 PO

AO-A7 AO-A7
~ 74HCT373 ~ .

~-~ ~r ~r ~~ CE OE OE CE

r- ~ "
027C64 027C64

~ . ~ ALE ALE
A8-A15 A8-12 A8-12 A8-A15

P2 I' P2
OECS CSOE

PSEN - - ~~ ~L. - I---:- l- PSEN

A
00-07 00-07

P80C31BH ~ AO-A7 AO-A7 ~ P80C31BH

RAM RAM
It

A15 A8-12 A8-12 A15

iID WR CS CS WR iID

Rii P3.7 I I I I- RDP3.7
WRP3.6 I- WRP3.6

5C060

lOA lOB
0-7 0-7

~- ROA ROB I----'
CSA CSB

I"'" WA WB f-

5C031

WA WB - WRA WRB -
'--- ROA ROB -

CSA CSB
P3.4 OBrA OBrB P3.4
P3.5 IBEA IBEB P3.5

RST P3.2INTO INTA INTB INTOP3.2

r RST OE

1 RESET RESET --
292016-1

Block Diagram

2-178

WB

lOAD

10Al

IOA2

IOA3

10M

10AS

IOA6

IOA7

ROA
CSA

AB-12

5C060 "BACK TO BACK REGISTER"

~~ -r- L ~ ~~ t-
o- '-

~ ~ _~ L ~ " r.. - ~
'- -

1 A
~ _ L - " r.. ~
'- -

1 -- L -- " r.. ~
- -

1 A -r- L r-r--
t.... 1/:r _ 0-

1 A -r- L r-r--
L ~I--:r _

... 0-

1 A r--r- L r-~
L ...1

0- '-

1 A
~ ... L ... ~

L ~
'-- -"--

,

:V- La:

2-179

lOBO

10Bl

IOB2

IOB3

IOB4

IOB5

IOB6

IOB7

WA

ROB
CSB

292016-2

AB-12

5C031 "MAIL BOX CONTROLLER"

WRA -_:::;~~'-""J---"""--------------D- WA
CSA

JO<P--.----+I>--IBEB

ROB OBrA

INTA

RST

INTB

ROA
OBrB

IBEA

CSB
WB

WRB

OE
292016-3

2-180

inter AB-12

5C060 REGISTER ADF

JUERG STAHL
INTEL ZUERICH
March 27, 1986
80C31 MAILBOX MEMORY USING 5C060 / 5C031
1
5C060

LB Version 3.0, Baseline 17x, 9/26/85
PART: 5COSO

******************** ** EXAMPLE .ADF **

INPUTS: WB81, CSA82, CSB814, nRDA811, nRDB823, WA813
OUTPUTS: 1087815, IOA7810, IOBS81S, IOAS89,

rOB5817, IOA588, IOB4818, IOA487,
IOB3819, IOA386, IOB2820, IOA285,
IOB1821, IOA184, IOB0822, IOA083

NETWORK:
IOB7,DB7 ROlF (DA7,WAC,GND,GND,RDBC)
IOA7,DA7 ROlF (DB7,WBC,GND,GND,RDAC)
IOB6,DB6 ROlF (DA6,WAC,GND,GND,RDBC)
IOA6,DA6 ROlF (DBS,WBC,GND,GND,RDAC)
IOB5,DB5 ROlF (DA5,WAC,GND,GND,RDBC)
IOA5,DA5 ROlF (DB5,WBC,GND,GND,RDAC)
IOB4,DB4 ROlF (DA4,WAC,GND,GND,RDBC)
IOA4,DA4 ROlF (DB4,WBC,GND,GND,RDAC)
IOB3,DB3 ROlF (DA3,WAC,GND,GND,RDBC)
IOA3,DA3 ROlF (DB3,WBC,GND,GND,RDAC)
IOB2,OB2 ROlF (DA2,WAC,GND,GND,RDBC)
IOA2,DA2 ROlF (DB2,WBC,GND,GND,RDAC)
IOB1,OBl ROlF (DA1,WAC,GND,GND,RDBC)
rOA1,OAl ROlF (DB1,WBC,GND,GND,RDAC)
IOBO,DBO ROlF (DAO,WAC,GND,GNO,RDBC)
IOAO,DAO ROlF (DBO,WBC,GND,GND,RDAC)
WAC = INP (WA)
RDBC = AND(CSBI,RDBI)
WBC = INP (WB)
RDAC = AND(CSAI,RDAI)
CSB! = INP (CSB)
nRDBI = INP(nRDB)
nRDAI = INP(nRDA)
CSA! INP(CSA)
RDAI NOT(nRDAI)
RDBI = NOT(nRDBI)

END$

2-181

292016-4

intJ

JUERG STAHL
INTBL ZUERICH
March 27, 1985

AB-12

5C060 REGISTER LEF

******************** ** BXAMPLE .LEF **
80C31 MAILBOX MEMORY USING 5COSO / 5C031
1

5COSei

LB Version 3.0, Basel iDe 17x, 9/2S/85
LEF VersioD 1.0 BaseliDe 1.51 02 Feb 1987
PART:

5COSO
INPUTS:

WB81, CSA82, CSB814, nRDA811, nRDB823, WA813
OUTPUTS:

NETWORK:

IOB7815, IOA7810, IOB6816, IOA689, IOB5817, IOA588, IOB4818, IOA487,
IOB3819, IOA386, IOB2820, IOA285, .IOB1821, IOA184, IOB0822, IOA083

WBC = INP(WB)
WAC = IHP(WA)
CSAI = INP(CSA)
CSBI = INP(CSB)
nRDAI = INP(nRDA)
nRDBI = INP(nRDB)
IOB7, DB7 ROIF(DA7, WAC,
IOA7, DA7 ROIF(DB7, WBC,
lOBS, DBS ROIF(DA6, WAC,
IOAS, DAS ROIF(DB6, WBC,
IOB6, DB5 ROIF(DA5, WAC,
IOA6, DA6 ROIF(DB5, WBC,
IOB4, DB4 ROIF(DA4, WAC,
IOA4, DA4 ROIF(DB4, WBC,
I,OB3, DB3 ROIF(DA3, WAC,
IOA3, DA3 ROIF(DB3, WBC,
IOB2, DB2 ROIF(DA2, WAC,
IOA2, DA2 ROIF(DB2, WBC,
lOBI, DB1 ROIF(DA1, WAC,
IOA1, DA1 ROIF(DB1, WBC,
lOBO, DBO ROIF(DAO, WAC,
10AO, DAD ROIF(DBO, WBC,

GND,
GND,
GND,
GND,
GND,
GND,
GND;
GND,
GND,
.GND,
GND,
GND,
GND,
GND,
GND,
GND,

GND, RDBC)
GND, RDAC)
GND, RDBC)
GND, RDAC)
GND, ROBC)
GND, RDAC)
GND, RDBC)
GND, RDAC)
GND, RDBC)
GND, RDAC)
GND, RDBC)
GND, RDAC)
GND, ·RDBC)
GND, RDAC)
GND, RDBC)
GND, RDAC)

EQUATIONS:
RDAC CSAI * nRDAI';

RDBC CSB~ * nRDBI';

END$

2-182

292016-5

inter AB-12

5C060 REGISTER UTILIZATION REPORT

Logic Optimizing Compiler Utilization Report
FIT Ve~aion 1.0 Baseline 1.Oi 2/6/87

***** Design implemented successfully

JUBRG STAHL
INTEL ZUERICH
Ma~ch 27, 1986
80C31 MAILBOX MEMORY USING 5C060 / 5C031
1
5C060

LB Veraion 3.0, Baseline 17x, 9/26/85

5C060

WB - I 24:- Vcc
CSA - 2 23:- nRDB

10AO - 3 22:- lOBO
lOA! - 4 21: - lOBI
IOA2 - 5 20:- IOB2
IOAJ - 6 19:- IOB3
10A4 - 7 18:- 10B4
10A5 - 8 17:- IOB5
IOA6 - 9 16:- IOB6
IOA7 -:10 15:- 10B7
nRDA -: II 14: - CSB

GND -:12 13:- WA

'*INPUTSU

Na.e Pin Resource MCell II PTerms

WB INP

CSA 2 INP

nRDA 11 IMP

GND 12 GND

2-183

"""""""""""'" " EXAMPLE .RPT FILE "

"""""""'*"""'"

Feeds:
MCella Oil Clea~

9
10
11
12
13
14
15
16

9
10
11
12
13
14
15
16

1
2
3
4
5
6
7
8
9

Clock

CLKI

292016-6

inter AB·12

5C060 REGISTER UTILIZATION REPORT (Continued)

10
11
12
13
14
15
16

WA 13 INP CLK2

CSB 14 INP 1
2
3
4
5
6
7
8

nRDB 23 INP 1
2
3
4
5
6
7
8

Vee 24 Vee

"OUTPUTSn

Feeds:
Na.e Pin Resource HCell , PTerm. MCells OB Clear Clock

IOAO 3 ROlF 9 1/ 8

10Al 4 ROlF 10 1/ 8 2

IOA2 5 ROlF 11 1/ 8 3

IOA3 6 ROlF 12 1/ 8 4

IOA4 7 ROlF 13 1/ 8 5

IOA5 8 ROlF 14 1/ B 6

IOA6 9 ROlF 15 1/ B 7

IOA7 10 ROlf 16 1/ B 8

IOB7 15 ROlF 8 1/ 8 16

IOB6 16 ROlf 7 1/ 8 15

lOBS 17 ROlf 6 1/ B 14

1084 18 ROlf 5 1/ 8 13

1083 19 ROlF 4 1/ 8 12

1082 20 ROlf 1/ 8 11

lOBI 21 ROlf 2 1/ 8 10 292016-7

[080 22 ROlF 11 8 9

. All Resources used

nPART UTILIZATIONn

100lr Pine
100lr MacroCelb
12' Ptera.

292016-8

2-184

inter AB-12

5C031 ARBITER ADF

JUBRG STAHL
INTBL ZUBRICH
Msrch 28, 1986
80e31 MAILBOX MBMORY USING 5C06Q / 5C031
2
5C031

LB Version 3.0, Baseline 17x, 9/26/85
PART: 5C031

******************** ** BXAMPLE .ADF **

INPUTS: RST,nWRA,nRDB,CSA,nRDA,nWRB,eSB,nOB
OUTPUTS: WA,nOBrA,nIBBB,nINTA,nINTB,nOBFB,nIBBA,WB
NBTWORK:
nWRA = INP(nWRA)
nRDB = INP(nRDB)
RST = INP(RST)
eSA = INP(CSA)
nRDA = INP(nRDA)
nWRB = INP(nWRB)
eSB INP(eSB)
nOB INP(nOB)
WRA NOT(nWRA)
WRB NOT(nWRB)
RDA NOT(nRDA)
RDB NOT(nRDB)
OE = NOT(nOE)
nRST = NOT(RST)
WA = CONF(WAd,YCC)
WAd = AND(CSA,WRA)
WB = eONF(WBd,YeC)
WBd = AND(eSB,WRB)
nRB = NAND(RDB,eSB)
nRA = NAND(RDA,eSA)
nWAd = NOT(WAd)
nWBd = NOT(WBd)
nOBFA,nOBFA COCF(nOBFAd,OE)
nOBrB,nOBFB = COer(nOBFBd,OE)
nIBEA,nIBEA = COCF(nIBBAd,OE)
nIBBB,nIBBB = COCF(nIBBBd,OE)
nINTA = CONF(nINTAd,OE)
nINTB = eONF(nINTBd,OB)
nINTAd AND(nOBFA,nIBBA)
nINTBd AND(nOBFB,nIBBB)
nOBFBd NAND(nRA,nIBBA,nRST)
nOB FAd NAND(nRB,nIBBB,nRST)
nIBEBd NAND(nWAd,nOBFA)
nIBBAd NAND(nWBd,nOBFB)

ENDS

2-185

292016-9

AB-12

5C031 ARBITER LEF

JUBRG STAHL
INTEL ZUERICH
March 2B, 1986
80C31 MAILBOX MEMORY USING 5C060 / 5C031
2
5C031

LB Version 3.0, Baseline 17x, 9/26/85
LBF Yersion 1.0 Baseline 1.5i 02 Feb 1987
PART:

5C031
INPUTS:

************"**'***
" BXAMPLE .LBF "
"""'**"**'*"'*'

RST, nWRA, nRDB, CSA, nRDA, nWRB, CSB, nOB
OUTPUTS:

NITWORK:
WA, nOBFA, nIBBB, nINTA, nINTB, nOBFB, nIBEA, WB

RST = INP(RST)
nWRA = INP(nWRA)
nRDB = INP(nRDB)
CSA = INP(CSA)
nRDA = INP(nRDA)
nWRB = INP(nWRB)
CSB = INP(eSB)
nOE = INP(nOI)
WA = CONF(WAd, VCC)
nOBFA, nOBFA = COeF(nOBFAd, 01)
nIBBB, nIBIB = eOCF(nIBBBd, OB)
nINTA = CONF(nINTAd, OB)
nINTB = CONF(nINTBd, 01)
nOBFB, nOBFB = COCF(nOBFBd, 01)
nIBBA, nIBBA = COCF(nIBEAd, OB)
WB = CONF(WBd, YCC)

EQUATIONS:

IINDS

WBd = CSB * DWRB';

nlBEAd CSB * nWHB'
+ nOBFB ';

nOBFDd (nIBIA * RST' * CSA'
+ nIDBA * RST' * nRDA)';

nINTBd nOBFB * nIBBB;

nlNTAd nOBFA ,_ nIBEA;

nIBKBd CSA' nWRA'
+ nOBFA';

OK = ~OB';

nOBFAd = (nIBBB * RST' * CSB'
+ nIBBB * RST' , nRDB)';

WAd = eSA , nWRA';

2-186

292016-10

inter AB·12

5C031 ARBITER LEF (Continued)

Logic Optimizing Compiler Ut'ilization Report
FIT Version 1.0 Baseline 1.0i 2/6/87

****. Design i.plemented successfully

JUERG STAHL
INTEL ZUERICH
Mareh 28, 1986
80C31 MAILBOX MEMORY USING 5C060 / 5C031
Z
5C031

LB Version 3.0~ Baseline 17x, 9/26/85

5C031

GND - 1 20:- Vee
GND 2 19:- WB
nOI! 3 18:- WA
CSB - 4 17:- nOBFB

nWRB 5 16:- nINTB
nRDA 6 15:- nINTA

CSA 7 14: - nIBBS
nRDB B 13:- nOBFA
nWRA - 9 12: - nIBEA

GND -: 10 11: - RST

nINPUTsn

Naae Pin Reeource Meell • PTeras

nOB 3 INP

CSB 4 INP

nWRB 5 INP

nRDA 6 INP

CSA 7 INP

DRDB 8 INP

nWRA 9 INP

GND 10 GND

RST 11 INP

Vee 20 Vee

2-187

************************* ** EXAMPLE .RPT FILE **

Feeds:
MCells OJ! Clear

3
4
5
6
7
B

I
7
B

1
B

3

2
3
6

7

2
6

3
7

1
2

Preset

292016-11

infef

UOUTPUTS**

Na.e Pin Resource

nIBEA 12 cocr

nOarA 13 cocr

nIBEB 14 cocr

nINTA 15 CONr

nINTB 16 CONr

nOBra 17 cocr

WA 1a CONr

WB 19 CONr

UNUSED RESOURCES

Na.e Pin Resource

1
2

**PART UTILIZATIONn

88. Pina
100. MacroCe11s
1a. pter ••

AB·12

5C031 ARBITER UTILIZATION REPORT

MCell ,
a

7

6

5

4

3

2

MCell

PTer ••

2/ a

2/ a

2/ a

1/ a

1/ a

2/ 8

1/ a

1/ a

PTer ••

2-188

Feed.:
MCe11. OE Clear Pre.et

3
5

5
6

..
7

4
a

292016-12

inter APPLICATION
NOTE

AP-252

September 1987

Designing With The 80C51BH

TOM WILLIAMSON
MCO APPLICATIONS ENGINEER

Order Number: 270068·002

2·189

AP·252

CMOS EVOLVES

The original CMOS logic families were the 4000-series
and the 74C-series circuits. The 74C-series circuits are
functional equivalents to the corresponding numbered
74-series TTL circuits, but have CMOS logic levels and
retain the other well known characteristics of CMOS
logic.

These characteristics are: low power consumption, high
noise immunity, and slow speed. The low power con­
sumption is inherent to the nature of the CMOS circuit.
The noise immunity is due partly to the CMOS logic
levels, and partly to the slowness of the circuits. The
slow speed is due to the technology used to construct
the transistors in the circuit.

The technology used is called metal-gate CMOS, be­
cause the transistor gates are formed by metal deposi­
tion. More importantly, the gates are formed after the
drain and source regions have been defined, and must
overlap the source and drain somewhat to allow for
alignment tolerances. This overlap plus' the relatively
large size of the transistors themselves result in high
electrode capacitance, and that is what limits the speed
of the circuit.

High speed CMOS became feasible with the develop­
ment of the self-liligning silicon gate technology. In this
process polysilicon gates are deposited before the
source and drain regions are defined. Then the source
and drain regions are formed by ion implantation using
the gate itself as a mask for the implantation. This elim­
inates most of the overlap capacitance. In addition, the'
process allows smaller transistors. The result is a signif­
icant increase in circuit speed. The 74HC-series of
CMOS logic circuits is based on this technology, and
has speeds comparable to LS TTL, which is to say
about 10 times faster than the 74C-series circuits.

The size reduction that contributes to the higher speed
also demands an accompanying reduction in the maxi­
mum supply voltage. High-speed CMOS is generally
limited to 6V.

WHAT IS CHMOS?

CHMOS is the name given to Intel's high-speed CMOS
processes. There are two CHMOS processes, one based
on an n-well structure and one based on a powell struc­
ture. In the .n-well structure, n-type wells are diffused
into a p-type substrate. Then the n-channel transistors.
(nFETs) are built into the substrate and pFETs are
built into the n-wells. In the p-well structure, p-type
wells are diffused into an n-type substrate. Then the
nFETs are built into the wells and pFETs, into the

substrate. Both processes have their advantages and
disadvantages, which are largely transparent to the
user.

Lower operating voltages are easier to obtain with the
powell structure than with the n-well structure. But the
powell structure does not easily adapt to an EPROM
which would be pin-for-pin compatible with HMOS
EPROMs. On the other hand the n-well structure can
be based on ,the solidly founded HMOS process, in
Wllich nFETs are built into a p-type substrate. This
allows somewhat more than half of the transistors in a
CHMOS chip to be constructed by processes that are
already well characterized.

Currently Intel's CHMOS microcontrollers and memo­
ry products are n-well devices, whereas CHMOS mi­
croprocessors are powell devices.

Further discussion of the CHMOS technology is pro­
vided in References I and 2 (which are reprinted in the
Microcontroller Handbook).

THE MCS®·51 FAMILY IN CHMOS

The 80C51BH is the CHMOS version of Intel's original
8051. The 80C31BH is the ROMless 80C51 BH, equiva­
lent to the 8031. These CHMOS devices are architec­
turally identical with their HMOS counterparts, except
that they have two added features for reduced power.
These are the Idle and Power Down modes of opera­
tion.

In most cases, an 80C51BH can directly replace the
8051 in existing applications. It can execute the same
code at the same speed, accept signals from the same
sources, and drive the same loads. However, the
80C51BH covers a wider range of speeds, will emit
CMOS logic levels to CMOS loads, and will draw about
1/10 the current of an 8051 (and less yet in the reduced
power modes). Interchangeability between the HMOS
and CHMOS devices is discussed in more detail in the
final section of this Application Note.

It should be noted that the 80C51BH CPU is not static.
That means if the clock frequency is too low, the CPU
might forget what it was doing. This is because the
circuitry uses a number of dynamic nodes. A dynamic
node is one that uses the note-to-ground capacitance to
form a temporary storage cell. Dynamic nodes are used
to reduce the transistor count, and hence the chip area,'
thus to produce a more economical device.

This is not to say that the on-chip RAM in CHMOS
microcontrollers is dynamic. It's not. It's the CPU that
is dynamic, and that is what imposes th, minimum
clock frequency specification.

2-190

intJ AP-252

LATCHUP

Latchup is an SCR-type turn-on phenomenon that is
the traditional nemesis of CMOS systems. The sub­
strate, the wells, and the transistors form parasitic pnpn
structures within the device. These parasitic structures
turn on like an SCR if a sufficient amount of forward
current is <;Iriven through one of the junctions. From
the circuit designer's point of view it can happen when­
ever an input or output pin is externally driven a diode
drop above Vee or below V ss, by a source that is capa­
ble of supplying the required trigger current.

However much of a problem latchup has been in the
past, it is good to know that in most recently developed
CMOS devices, and specifically in CHMOS devices, the
current required to trigger latchup is typically well over
100 rnA. The 80C5IBH is virtually immune to latchup.
(References 1 and 2 present a discussion of the latchup
mechanisms and the steps that are taken on the chip to
guard against it.) Modern CMOS is not absolutely im­
mune to latchup, but with trigger currents in the hun­
dreds of rnA, latch up is certainly a lot easier to avoid
than it once was.

A careless power-up sequence might trigger a latchup
in the older CMOS families, but it's unlikely to be' a
major problem in high-speed CMOS or in CHMOS.
There is still some risk incurred in inserting or remov­
ing chips or boards in a CMOS system while the power
is on. Also, severe transients, such as inductive kicks or
momentary short-circuits, can exceed the trigger cur­
rent for latchup.

For applications in which some latchup risk seems un­
avoidable, you can put a small resistor (lOOn or so) in
series with signal lines to ensure that the trigger current
will never be reached. This also helps to control over­
shoot and RFI.

LOGIC LEVELS AND INTERFACING
PROBLEMS

CMOS logic levels differ froin TTL levels in two ways.

Logic State
74HC 74HCT

VIH 3.5V 2.0V

VIL 1.0V O.8V

VOH 4.9V 4.9V

VOL O.1V O.1V

First, for equal supply voltages, CMOS gives (and re­
quires) a higher "logic I" level than TTL. Secondly,
CMOS logic levels are Vee (or VDD) dependent,
whereas guaranteed TTL logic levels are fixed when
Vee is within TTL specs.

Standard 74HC logic levels are as follows:

VIHMIN = 70% of Vee
VILMAX = 20% of Vee
VOHMIN = Vee - O.lV, IIOHI :s; 20/LA
VOLMAX = O.lV, Ilod :s; 20 /LA

Figure I compares 74HC, LS TTL, and 74HCT logic
levels with those of the HMOS 8051 and the CHMOS
80C5IBH for Vee = 5V.

Output logic levels depend of course on load current,
and are normally specified at several load currents.
When CMOS and TTL are powered by the same Veo
the logic levels guaranteed on the data sheets indicate
that CMOS can drive TTL, but TTL can't drive
CMOS. The incompatibility is that the TTL circuit's
V OH level is too low to reliably be recognized by the
CMOS circuit as a valid VIH.

Since HMOS circuits were designed to be TTL-compat­
ible, they have the same incompatibility.

Fortunately, 74HCT-series circuits are available to ease
these interfacing problems. They have TTL-compatible
logic levels at the inputs and standard CMOS levels at
the outputs.

The 80C5IBH is designed to work with either TTL or
CMOS. Therefore its logic levels are specified very
much like 74HCT circuits. That is, its input logic levels
are TTL-compatible, and its output characteristics are
like standard high-speed CMOS.

NOISE CONSIDERATIONS

One of the major reasons for going to CMOS has tradi­
tionally been that CMOS is less susceptible to noise. As
previously noted, its low susceptibility to noise is

Vee = 5V

LSTTL 8051 80C51BH

2.0V 2.0V 1.9V
O.8V 0.8V 0.9V

2.7V 2.4V 4.5V
O.5V O.45V 0.45V

Figure 1. Logic Level Comparison. (Output voltage levels depend on load current.
Data sheets list guaranteed output levels for several load currents. The output

levels listed 'here are for minimum loading.)

2-191

inter AP·252

partly due to superior noise margins, and partly due to
its slow speed.

,
Noise margin is the difference between VOL and VIL,
or between VOH and VIH. IfVOH from a driving cir­
cuit is 2.7V and VIH to the driven circuit is 2.0V, then
the driven circuit has 0.7V of noise margin at the logic
high level. These kinds· of comparisons show that an
all-CMOS system has wider noise margins than an all­
TTL system.

Figure 2 shows noise margins in CMOS and LS TTL
systems when both have Vee = 5V. It can be seen that
CMOS/CMOS and CMOS/CHMOS systems have an
edge over LS TTL in this respect.

Noise margins can be misleading, however, because
they don't say how much noise energy it takes to induce
in the circuit a noise voltage of sufficient amplitude to
cause a logic error. This would involve consideration of
the width of the noise pulse as compared with the cir­
cuit's response speed, and the impedance to ground
from the point of noise introduction in the circuit.

When these considerations are included, it is seen that
using the slower 74C- and 4OOO-series circuits with a 12
or 15V supply voltage does offer a truly improved level
of noise immunity, but that high-speed CMOS at 5V is
not significantly Better than TTL.

One should not mistake the wider supply voltage toler­
ance of high-speed CMOS for Vee glitch immunity.
Supply voltage tolerance is a DC rating, not a glitch
rating.

For any clocked CMOS, and most especially for VLSI
CMOS, Vee decoupling is critical. CHMOS draws

Noise Margin for

Interface
Vee = 5V

Logic Low Logic High
VIL-VOL VOH-VIH

74HCto 74HC 0.9V 1.4V

LSTTL to LSTTL 0.3V 0.7V

LSTTL to 74HCT 0.3V 0.7V

LSTTL to 80C51 BH 0.3V 0.7V

74HCt080C51BH O.SV 3.0V

SOC51BH to 74HC O.SV 1.0V

Figure 2. Noise Margins for CMOS
and LS TTL Circuits

current in extremely sharp spikes at the clock edges.
The VHF and UHF components of these spikes are not
drawn from the power supply, but from the decoupling
capacitor. If the decoupling circuit is not sufficiently
low in inductance, Vee will glitch at each clock edge.
We suggest that a 0.1 p.F decoupler cap be used in a
minimum-inductance configuration with the microcon­
troller. A minimum-inductance configuration is one
that minimizes the area of the loop formed by the chip
(Vee to V ss), the traces to the decoupler cap, and the
decoupler cap. PCB designers too often fail to under­
stand that if the traces that connect the decoupler cap
to the Vee and Vss pins aren't short and direct, the
decoupler loses much of its effectiveness.

Overshoot and ringing in signal lines are potential
sources of logic upsets. These can largely be controlled
by circuit layout. Inserting small resistors (about lOOn.)
in series with signal lines that seem to need them will .
also help.

The sharp edges produced by high-speed CMOS can
cause RFI problems. The severity of these problems is
largely a function of the PCB layout. We don't mean to
imply that all RFI problems can be solved by a better
PCB layout. It may well be, for example, that in some
RFI-sensitive designs high-speed CMOS is simply not
the answer. But circuit layout is a critical factor in the
noise performance of any electronic system, and more
so in high-speed CMOS systems than others.

Circuit layout techniques for minimizing noise suscepti­
bility and generation are discussed in References 3
throllgh 6.

UNUSED PINS

CMOS input pins should not be left to float, but should
always be pulled to one logic level or the other. If they
float, they tend to float into the transition region be­
tween 0 and I, where the pullup and pulldown devices
in the input buffer are both conductive. This causes a
significant increase in ICC. A similar effect exists in
HMOS circuits, but with less noticeable results.

In 80C51BH and 80C31BH designs, unused pins of
Ports 1, 2, and 3 can be.ignored, because they have
internal pullups that will hold them at a valid Logic 1
level. Port 0 pins are different, however, in not having
internal pullups (except during bus operations).

When the 80C51BH is in reset, the Port 0 pins are in a
float state unless they are externally pulled up or down.
If it's going to be held in reset for just a short time, the
transient float state can probably be ignored. When it
comes out of reset, the pins stay afloat unless

2-192

AP-252

they are externally pulled either up or down. Alterna­
tively, the software can internally write Os to whatever
Port 0 pins may be unused.

The same considerations are applicable to the
80C3IBH with regards to reset. But when the
80C3lBH comes out of reset, it commences bus opera­
tions, during which the logic levels at the pins are al­
ways well defined as high or low.

Consider the 80C3IBH in the Power Down or Idle
modes, however. In those modes it is not fetching in­
structions, and the Port 0 pins will float if not external­
ly pulled high or low. 1'he choice of whether to pull
them high or low is the designer's. Normally it is suffi­
cient to pull them up to Vee with 10k resistors. But if
power is going to be removed from circuits that are
connected to the bus, it will be advisable to pull the bus
pins down (normally with 10k resistors). Considera­
tions involved in selecting pullup and pulldown resistor
values are as follows.

vee
80e51BH

R

..JQh.!!!:...
po.x 1-------E~1Ef~ll

vee
IOl=R+ lIl

270068-1

Figure 3a. Conditions defining the minimum
value for R. PO.X is emitting a logic low. R must

be large enough to not cause IOL to exceed
data sheet specifications.

Yep:
80C51BH

R
.J!d... ...!!!i.

po.x r----<----ExL.-g:lI~rL

YOH = yce -(IL.l + IIH) x R

270068-2

Figure 3b. Conditions defining the maxilTlum
value for R. PO.X is in a high impedance
state. R must be small enough to keep

VOH acceptably high.

PULLUP RESISTORS

If a pullup resistor is to be used on a Port 0 pin, its
minimum value is determined by IOL requirements. If
the pin is trying to emit a 0, then it will have to sink the
current from the pullup resistor plus whatever other
current may be sourced by other loads connected to the
pin, as shown in Figure 3a, while maintaining a valid
output low (VOL)' To guarantee that the pin voltage
will not exceed 0.45V, the resistor should be selected so
that IOL doesn't exceed the value specified on the data
sheet. In most CMOS applications, the minimum value
would be about 2k n.

The maximum value you could use depends on how
fast you want the pin to pull up after bus operations
have ceased, and how high you want the VOH level to
be. The smaller the resistor the faster it pulls up. Its
effect on the VOH level is that V OH = Vee - (ILl +
IIH) X R. ILl is the input leakage current to the Port 0
pin, and IIH is the input high current to the external
loads, as shown' in Figure 3b. Normally VOH can be
expected to reach 0.9 Vee if the pullup resistance does
not exceed about 50k n.

Pulldown Resistors

If a pulldown resistor is to be used on a Port 0 pin, ,its
minimum value is determined by VOH requirements
during bus operations, and its maximum value is in
most cases determined by leakage current.

During bus operations the port uses internal pullups to
emit Is. The D.C. Characteristics in the data sheet list
guaranteed VOH levels for given IOH currents. (The "-"
sign in the IOH value means the pin is sourcing that
current to the external load, as shown in Figure 4,) To
ensure the V OH level listed in the data sheet, the resis-

80C51BH ~ ..J!!!..
pO.x: ----;r_--- E~-g::C:L

R

~

IOH = YOH + IIH
R

270068-3

Figure 4a. Conditions defining the minimum
value for R. PO.X is emitting a 1 in a bus

operation. R must be large enough to not cause
IOH to exceed data sheet specifications.

2-193

AP-252

VOH I I 1'1+ IIHS:: IOH

tor has to satisfy where IIH is the input high current to
the external loads.

When the pin goes into a high impedance state, the
pulldown resistor will have to sink leakage current
from the pin, plus whatever other current may be
sourced by ,other loads connected to the pin, as shown
in Figure 4b. The Port 0 leakage, current is ILl on the
data sheet. The resistor should be selected so that the
voltage developed across it by these currents will be
seen as a logic low by whatever circuits are connected
to it (including the 80CSIBH). In CMOS/CHMOS ap­
plications, SOk n is normally a reasonable maximum
value.

aOCS1BH ~

Po.xt---_---- E~1J':JitL

R

VOL = (Ill + IIL)xR

270068-4

Figure 4b. Conditions defining the maximum
value for R. PO.X is in a high impedance state.

R must be small enough to keep VOL
acceptably low.

Q
FROM PORT

LATCH

DRIVE CAPABILITY OF THE
INTERNAL PULLUPS

There's an important difference between HMOS and
CHMOS port drivers. The pins of Ports 1,2, and 3 of
the CHMOS parts each have three pullups: strong, nor­
mal, and weak, as shown in Figure S. The strong pullup
(p I) is only used during O-to-l transitions, to hasten the
transition. The weak pullup' (p2) is on whenever the bit
latch contains a 1. The "normal" pullup (p3) is con­
trolled by the pin voltage itself.

The reason that p3 is controlled by the pin voltage is
that if the pin is being used as an input, and the external
source pulls it to a low, then turning offp3 makes for a
lower IlL. The data sheet shows an "ITL" specification.
This is the current that p3 will source during the time
the pin voltage is making its I-to-O transition. This is
what IlL would be if an input low at the pin didn't tum,
p3 off.

Note, however, that this p3 tum-off mechanism puts a
restriction on the drive capacity of the pin if it's being
used as an output. If you're trying to output a logic
high, and the external load pulls the pin voltage below
the pin's YIHMIN spec, p3 might tum off, leaving only
the weak p2 to provide drive to the load. To prevent
this happening, you need to ensure that the load doesn't
draw more than the IOH spec for a valid YOH. The idea
is to make sure the pin voltage never falls below its own
YIHMIN specification.

READ
PORT PIN

VCC VCC VCC

270068-5

Figure 5. 80C51BH Output Drivers for Ports 1, 2 and 3

2-194

AP-252

POWER CONSUMPTION

The main reason for going to CMOS, of course, is to
conserve power. (There are other reasons, but this is the
main one.) Conserving power doesn't mean just reduc­
ing your electric bill. Nor does it necessarily relate to
battery operation, although battery operation without
CMOS is pretty unhandy. The main reason for conserv­
ing power is to be able to put more functionality into a
smaller space. The reduced power consumption allows
the use of smaller and lighter power supplies, and less
heat being generated allows denser packaging of circuit
components. Expensive fans and blowers can usually be
eliminated.

A cooler running chip is also more reliable, since most
random and wearout failures relate to die temperature.
And finally, the lower power dissipation will allow
more functions to be integrated onto the chip.

The reason CMOS consumes less power than NMOS is
that when it's in a stable state there is no path of con­
duction from Vee to Vss except through various leak­
age paths. CMOS does draw current when it's changing
states. How much current it draws depends on how
often and how quickly it changes states.

.

\ ~ SIINN:;USOIDAL CLOCK SIGNAL

~ --Y
IY RECTANGULAR CLOCK SIGNAL

-l.SMHz CLOCK FREQ

270068-6

Figure 6. 80C51BH ICC vs. Clock Frequency

CMOS circuits draw current in sharp spikes during log­
ical transitions. These current spikes are made up of
two components. One is the current that flows during
the transition time when pullup and pulldown FETs are
both active. The average (DC) value of this component
is larger when the transition times of the input signals
are longer. For this reason, if the current draw is a
critical factor in the design, slow rise and fall times
should be avoided, even when the system speed doesn't
seem to justify a need for nanosecond switching speeds.

The other component is the current that charges stray
and load capacitance at the nodes of a CMOS logic
gate. The average value of this current spike is its area
(integral over time) multiplied by its rep rate. Its area is
the amount of charge it takes to raise the node capaci­
tance, C, to Vee. That amount of charge is just C x
Vee. So the average value of the current spike is C x
Vee x f; where f is the clock frequency.

This component of current increases linearly with clock
frequency. For minimal current draw, the 80C52BH-2
is spec'd to run at frequencies as low as 500 kHz.

Keep in mind, though, that other component of current
that is due to slow rise and fall times. A sinusoid is not
the optimal waveform to drive the XTALI pin with.
Yet crystal oscillators, including the one on the
80C51BH, generate sinusoidal waveforms. Therefore, if
the on-chip oscillator is being used, you can expect the
device to draw more current at 500 kHz, than it does at
1.5 MHz, as shown in Figure 6. If you derive a good
sharp square wave from an external oscillator, and use
that to drive XTALl, then the microcontroUer will
draw less current. But the external oscillator will prob­
ably make up the difference.

The 80C5IBH has two power-saving features not avail­
able in the HMOS devices. These are the Idle and Pow­
er Down modes of operation. The on-chip hardware
that implements these reduced power modes is shown
in Figure 7. Both modes are invoked by software.

CPU

INTERRUPT
SERIAL PORT

TIMER/COUNTERS

270068-7

Figure 7. Oscillator and Clock Circuitry Showing Idle and Power Down Hardware

2-195

inter AP-252

Idle: In the Idle Mode (IDL = 0 in Figure 7), the CPU
puts itself to sleep by gating off its own clock. It doesn't
stop the oscillator. It just stops the internal clock signal
from getting to the CPU. Since the CPU draws SO to 90
percent of the chip's power, shutting it off represents a
fairly significant power savings. The on-chip periperals
(timers, serial port, interrupts, etc.) and RAM continue
to function as normal. The CPU status is preserved in
its entirety: the Stack Pointer, Program Counter, Pro­
gram Status Word, Accumulator, and all other regis­
ters maintain their data during Idle.

The Idle Mode is invoked by setting bit 0 (IDL) of the
PCON register. PCON is not bit-addressable, so the bit
has to be set by a byte operation, such as

ORL PCON.#l

The PCON register also contains flag bits GFO and
GFl, which can be used for any general purposes, or to
give an indication if an interrupt occurred during nor­
mal operation or during Idle. In this application, the
instruction that invokes Idle also sets one or both of the
flag bits. Their status can then be checked in the inter­
rupt routines.

While the device is in the Idle Mode, ALE and PSEN
emit logic high (V OH), as shown in Figure S. This is so
external EPROM can be deselected and have its output
disabled.

The port pins hold the logical states they had at the
time the Idle was activated. If the device was executing
out of external program memory, Port 0 is left in a high
impedance state and Port 2 continues to emit the high
byte of the program counter (using the strong pullups
to emit Is). If the device was executing out of internal
program memory, Ports 0 and 2 continue to emit what­
ever is in the PO and P2 registers.

Pin
Internal Execution

There are two ways to terminate Idle. Activation of any
enabled interrupt will cause the hardware to clear bit 0
of the PCON register, terminating the Idle mode. The
interrupt will be serviced, and following RET! the next
instruction to be executed will be the one following the
instruction that .invoked Idle.

The other way is with a hardware reset. Since the clock
oscillator is still running, RST only needs to be held
active for two machine cycles (24 oscillator periods) to
complete the reset. Note that this exit from Idle writes
Is to all the ports, initializes all SFRs to their reset
values, and restarts program execution from location O.

Power Down: In the Power Down Mode (PD = 0 in
Figure 7), the CPU puts the whole chip to sleep by
turning off the oscillator. In case it was running from
an external oscillator, it also gates off the path to the
internal phase generators, so no internal clock is gener­
ated even if the external oscillator is still running. The
on-chip RAM, however, saves its data, as long as Vee
is maintained. In this mode the only Icc that flows is
leakage, which is normally in the micro-amp range.

The Power Down Mode is invoked by setting bit 1 in
the PCON register, using a byte instruction such as

ORL PCON.#2

While the device is in Power Down, ALE and PSEN
emit lows (VOL), as shown in Figure S. The reason they
are designed to emit lows is so that power can be re­
moved from the rest of the circuit, if desired, while the
SOCS5IBH is in its Power Down mode.

The port pins continue to emit whatever data was writ­
ten to them. Note that Port 2 emits its P2 register data
even if execution was from external program memory.

External Execution

Idle Power Down Idle Power Down

ALE 1 0 1 0

PSENI 1 0 1 0

PO SFR Data SFR Data High-Z High-Z

P1 SFR Data SFR Data SFR Data SFR Data

P2 SFR Data SFR Data PCH SFR Data

P3 SFR Data SFR Data SFR Data SFR Data

Figure 8. Status of Pins iO Idle and Power Down Modes. "SFR data" means the port pins emit their
internal register data. "PCH" Is the high byte of the Program Counter.

2-196

AP-252

Port 0 also emits its PO register data, but if execution
was from external program memory, the PO register
data is FF. The oscillator is stopped, and the part re­
mains in this state as long as Vee is held, and until it
receives an external reset signal.

The only exit from Power Down is a hardware reset.
Since the oscillator was stopped, RST must be held ac­
tive long enough for the oscillator to re-start and stabi­
lize. Then the reset function initializes all the Special
Func'tion Registers (ports, timers, etc.) to their reset
values, and re-starts the program from location O.
Therefore, timer reloads, interrupt enables, baud rates,
port status, etc. need to be re-established. Reset does
not affect the content of the on-chip data RAM. If Vee
was held during Power Down, the RAM data is still
good.

USING THE POWER DOWN MODE

The software-invoked Power Down feature offers a
means of reducing the power consumption to a mere
trickle in systems which are to remain dormant for
some period of time, while retaining important data.

The user should give some thought to what state the
port pins should be left in during the time the clock is
stopped, and write those values to the port latches be­
fore invoking Power Down.

VCCI
CI

1,..1

If Vee is going to be held to the entire circuit, one
would want to write values to the port latches that
would deselect peripherals before invoking Power
Down. For example, if external memory is being used,
the P2 SFR should be loaded with a value which will
not generate an active chip select to any memory de­
vice.

In some applications, Vee to part of the system may be
shut off during Power Down, so that even quiescent
and standby currents are eliminated. Signal lines that
connect to those chips must be brought to a logic low,
whether the chip in question is CMOS, NMOS, or
TTL, before Vee is shut off to them. CMOS pins have
parasitic pn junctions to Vee, which will be forward
biased if Vee is reduced to zero whfle the pin is held at
a logic high. NMOS pins often have FETs that look
like diodes to Vee. TTL circuits may actually be dam­
aged by an input high if Vee = O. That's why the
80C51BH outputs lows at ALE and PSEN during Pow­
er Down.

Figure 9 shows a circuit that can be used to turn Vee
off to part of the system during Power Down. The cir­
cuit will ensure that the secondary circuit is not de-en­
ergized until after the 80C31BH is in Power Down, and
that the 80C3lBH does not receive a reset (terminating
the Power Down mode) before the secondary circuit is
re-energized. Therefore, the program memory itself can
be part of the secondary circuit.

R VCC2

1,..1

20K

270068-8

Figure 9. The 80C318H de-energizes part of the circuit (VCC2) when it goes into Power Down.
Selections of Rand Q2 depend on VCC2 current draw.

2-197

AP-252

In Figure 9, when Vee is switched on to the 80C3lBH,
'capacitor CI provides a power-on reset. The reset func­
tion writes Is to all the port pins. The 1 at P2.6 turns
Q lon, enabling Vee to the secondary circuit through
transistor Q2. As the 80C31 BH comes out of reset, Port
2 commences emitting the high byte of the Program
Counter, which results in the P2.7 and P2.6 pins out­
putting Os. The 0 at P2.7 ensures continuation of Vee
to the secondary circuit.

The system software must now write·a I to P2.7 and a 0
to P2.6 in the Port 2 SFR, P2. These values will not
appear at the Port 2 pins as long as the device is retch­
ing instructions from external program memory. How­
ever, whenever the 80C31BH goes into Power Down,
these values will appear at the port pins, and will shut
off both' transistors, disabling Vee to the secondary cir­
cuit.

Closing the switch Sire-energizes the secondary cir­
cuit, and at the same time sends a reset through C2 to
the 80C3lBH to wake it up. The diode DI is to prevent
CI from hogging current from C2 during this'second­
ary reset. D2 prevents C2 from discharging through the
RST pin when Vee to the secondary .circuit goes to
zero.

~, J'
::::--'VIh--"'-"""-~1_

270068-9

a. Using a pFET

+12V

12K

2N3904

P2.7'-'lM,--...,..-_---1

P2.6

270068-28

b. Using an nFET

Figure 10. Using Power MOSFETs
to Control VCC2

USING POWER MOSFETs to
CONTROL Vee

Power MOSFETs are gaining in popularity (and avail­
ability), The easiest way to control Vee is with a Logic
Level pFET, as shown in .Figure lOa. This circuit al­
lows the full Vee to be used to turn the device on.
Unfortunately, power pFETs are not economically
competitive with bipolar transistors of comparable rat­
ings.

Power nFETs are both economical and available, and
can be used in this application if a DC supply of higher
voltage is available to drive the gate. Figure lOb shows
how to implement a Vee switch using a power nFET
and a (nominally) + 12V supply. The problem here is
that if the device is on, its source voltage is + SV. To
maintain the on state, the gate has to be another 5 or
lOY above that. The "12V" supply is not particularly
critical. A miniinally filtered, unregulated rectifier will
suffice,

BATTERY BACKUP SYSTEMS'

Here we consider drcuits that normally draw po}Ver
from the AC line, but switch to battery operation in the
event 'of a power failure. We assume that in battery
operation high-current loads will be allowed to die
along with the AC power. The system may continue
then with reduced functionality, monitoring a control
transducer, perhaps, or driving an LCD. Or it may go
into a bare-bones survival mode, in which critical data
is saved but nothing else happens till AC power is re­
stored.

In any case it is necessary to have some early warning
of an impending power failure so that the system can
arrange an orderly transfer to battery power. Early
warning systems can operate by monitoring either the
AC line voltage or the unregulated rectifier output, or
even by monitoring the regulated DC voltage. .

Monitoring the AC line voltage gives the earliest warn­
ing. That way you can know within one or two half-cy­
cles of line frequency that AC power is down. In most
cases you then have at least another half-cycle of line
frequency before the regulated Vee starts to fall. In a
half-cycle of line frequency an 80CSIBH can execute
about 5,000 instructions-plenty of time to arrange an
orderly transfer of power.

The circuit in Figure II uses a Zener diode to test the
line voltage each half-cycle, and a junction transistor to
pass the information on to the 80CS lBH. (Obviously a
voltage comparator with a suitable reference source can

2-198

AP-252

~II~
VCC

80C51BH
80C31BH

VCC2

= BACKUP
:::=:BATTERY

<-i
I-~----t INTO

.011'1

VSS

270068-10

Figure 11. Power Failure Detector with Battery Backup. When AC power falls,
VCC1 goes down and VCC2 is held.

perform the same function, if one prefers.) The way it
works is if the line voltage reaches an acceptably high
level, it breaks over Zl, drives Ql to saturation, and
interrupts the 80C5IBH. The interrupt would be tran­
sition-activated, in this application. The interrupt serv­
ice routine reloads one of the C5IBH's timers to a value
that will make it roll over in something between one
and two half-cycles of line frequency. As long as the
line voltage is healthy, the timer never rolls over, be­
cause it, is reloaded every half-cycle. If there is a single
half-cycle in which the line voltage doesn't reach a high
enough level to generate the interrupt, the timer rolls
over and generates a timer interrupt.

The timer interrupt then commences the transition to
battery backup. Critical data needs to be copied into
protected RAM. Signals to circuits that are going to
lose power must be written to logic low. Protected cir­
cuits (those powered by Vee2) that communicate with
unprotected circuits must be deselected. The microcon­
troller itself may be put into Idle, so that it can contin­
ue some level of interrupt-driven functionality, or it
may be put into Power Down.

Note that if the CPU is going to invoke Power Down,
the Special Function Registers may also need to be cop­
ied into protected RAM, since the reset that terminates
the Power Down mode will also intialize all the SFRs
to their reset values.

The circuit in Figure II does not show a wake-up
mechanism. A number of choices are available, howev­
er. A pushbutton could be used to generate an inter­
rupt, if the CPU is in Idle, or to activate reset, if the
CPU is in Power Down.

Automatic wake-up on power restoration is also possi­
ble. If the CPU is in Idle, it can continue to respond to
any interrupts that might be generated by QI. The in­
terrupt service routine determines from the status of
flag bits GFO and GFI in PCON that it is in Idle be­
cause there was a power outage. It can then sample
Veel through a voltage comparator similar to ZI, Ql
in Figure 11. A satisfactory level of Veel would be
indicated by the transistor being in saturation.

But perhaps you can't spare the timer that is the key to
the operation of the circuit in Figure 11. In that case a
retriggerable one-shot, triggered by the AC line voltage,
can perform essentially the same function. Figure 12
shows an example of this type of power failure detector.
A retriggerable one-shot (one halfofa 74HC123) moni­
tors the AC line voltage through transistor Q 1. Q I re­
triggers the one-shot every half-cycle of line frequency.
If the output pulse width is between one and two half­
cycles of line frequency, then a single missing or low
half-cycle will generate an active low warning flag,
which can be used to interrupt the microcontroller.

The interrupt routine takes care of the transition to
battery backup. From this point Veel mayor may not
actually drop out. The missing half-cycle of line voltage
that caused the power down sequence may have been
nothing more than a short glitch. If the .i\C line comes
back strong enough to trigger the one-shot while Vee I
is still up (as indicated by the state of transistor Q2),
then the other half of the 74HCI23 will generate a
wake-up signal.

2-199

intJ .AP-252

VCC1

20K

VCC2

1f.!74HC123

VCC2

12K

47K 1,.1

BACKUP
BATTERY

1/1/1/1

12K . A VCC RIC C

Q CLR

B

A V99

Q WAKE-iiP
Q WAKE-UP

1f.!74HCl23

iNTo
(BOC51BH)

270068-11

Figure 12. Power Failure Detector uses retriggerable one-shots to flag Impending power outage and
generate automatic wake-up when power returns. .

Having been awakened, the 80C5IBH will stay awake
for at least another half-cycle of line frequency (another
5,000 or so instructions) before possibly being told to
arrange another transfer of power. Consequently, if the
line voltage is. jittering erratically around the switch­
over point (determined by diode Zl), the system will
limp along ex.ecuting in half-cycle ,units of line frequen­
cy.

On the other hand, if the power outage is real and
lengthy, Veel will eventually fall below the level at
which the backup battery takes over. The backup bat­
tery maintains power to the 8OC5IBH, and to the
74HC123, and to whatever other circuits are being pro­
tected during this outage. The battery voltage must be
high enough to maintain V cCMIN specs to the
80C5IBH.

If the microcontroller is an 80C3l BH, executing out of
external ROM, and if the C3IBH is put into Idle dur­
ing the power outage, then the external ROM must also
be supplied by the battery. On the other hand, if the
C31BH is put into Power Down during the outage,
then the ROM can be allowed to die with the AC pow­
er. The considerations here are the same as in Figure 9:
Vee to the ROM is still up at the time Power Down is
invoked, and we must ensure (through selection of di­
ode Z2 in Figure 12) that the 80C3IBH is not awak­
ened till ROM power is back in spec.

POWER SWITCHOVER CIRCUITS

Battery backup systems need to have a way for the
protected circuits to draw power from the line-operated
power supply when that source is available; and to
switch over to battery power when required. The
switchover circuit is simple if the entire system is to be
battery powered in the event of a line power outage. In
that case a pair of diodes suffice, as shown in Figure 12,
provided V ccMIN specs are still met after the diode
drop has been subtracted from its respective power
source.

The situation becomes more complicated when part of
the circuit is going to be allowed to die when the AC
power goes out. In that case it is difficult to maintain
equal V ccs to protected and unprotected circuits (and
possibly dangerous not to).

The problem can be alleviated by using a Schottky di­
ode instead of a lN400l, for its lower forward voltage
drop. The lN5820, for example, has a foward drop of
about O.35V at lAo

Other solutions are to use a transistor or power MOS­
FET switch, as shown in Figure 13. With minor modifi­
cations this switch can be controlled by port pins.

2-200

inter AP-252

VCC2

vcel

I 1
270068-27

a. Using a pnp Transistor

VCC2

-TILril
~ I I

270068-12

b. Using a Power MOSFET

Figure 13. Power Switchover Ckts.

80C31BH + CHMOS EPROM

The 27C64 and 87C64 are Intel's 8K byte CHMOS
EPROMs. The 27C64 requires an external address
latch, and can be used with the 80C3IBH as shown in
Figure 14a. In most 8031 + 2764 (HMOS) appli-

cations, the 2764's Chip Enable (CE) pin is hardwired
to ground (since it's normally the only program memo­
ry on the bus). This can be done with the CHMOS
versions as well, but there is some advantage in con­
necting CE to ALE, as shown in Figure 14a. The ad­
vantage is that if the 80C3IBH is put into Idle mode,
since ALE goes to a 1 in that 'mode, the 27C64 will be
deselected and go into a low current standby mode.

The timing waveforms for this configuration are shown
in Figure 14b. In Figure 14b the signals and timing
parameters in parenthesis are those of the 27C64, and
the others are of the 80C31BH, except Tprop is a pa­
rameter of the address latch. The requirements for tim­
ing compatibility are

TAVIV - Tprop > tACC
TLlIV> tCE
TPLlV> tOE
TPXIZ> tDF

If the application is going to use the Power Down mode
then we have another consideration: In Idle, ALE =
PSEN = I, and in Pow~r Down, ALE = PSEN = O.
In a realistic application there are likely to be more
chips in the circuit than are shown in Figure 14, and it
is likely that the nonessential ones will have their Vee
removed while the CPU is in Power Down. In that case
the EPROM and the address latch should be among
the chips that have Vee removed, and logic lows are
exactly what are required at ALE and PSEN.

But if Vee is going to be maintained to the EPROM
during Power Down, then it will be necessary to de-

PSENr---------------------~Oi

270068-26

Figure 14a. 80C31BH + 27C64

2-201

intJ AP-252

270068-13

Figure 14b. Timing Waveforms for aoC31BH +
. 27C64

select the EPROM when the CPU is in Power Down. If
Idle is never invoked, CE of the EPROM can be con­
nected to P2.7 of the 80C31BH, as shown in Figure
15a. In normal operation, P2.7 will be emitting the
MSB of the Program Counter, which is 0 if the pro­
gram contains less than 32K of code. '!)ten when the
CPU goes into Power Down, the Port 2 pins emit P2
SFR data, which puts a 1 at P2.7, thus deselecting the
EPROM. .

If Idle and Power Down are both going to be used, CE
of the EPROM can be driven by the logical OR of ALE
and P2.7, as shown in Figure 15b. In Idle, ALE = 1
will deselect the EPROM, and in Power Down, P2.7 =
1 will deselect it.

P2.7 CE
OOCmBH-----------~~27~64

270068-14

a. Power Down is used but not Idle.

01 {ALE~. _ CE
80C31BH P2.7~ 27':164

270068-15

b. Idle and Power Down both used.

Figure 15. Modifications to 80C31BH/27C64
Interface

Pulldown resistors are shown in Figure 14a under the
assumption that something on the bus is going to have
its Vee removed during Power Down. If this is not the
case~ pullups can be used as well as pulldowns.

The 87C64 is like the 27C64 except that it has an on­
chip address latch. The Port 0 pins are tied to both
address and data pins of the 87C64, as shown in Figure
16a. ALE drives the EPROM's ALE/CS input. During
ALE high, the address information is allowed to flow
into the EPROM and begin accessing the code byte. On
the falling edge of ALE the address byte is internally
latched. The AO-A7 inputs are then ignored and the
same bus lines are used to transmit the fetched code

. byte from the 00-07 pins back to the 80C31 BH.

The timing waveforms for this configuration are shown
in Figure 16b. In Figure 16b the signals and timing
parameters in parentheses are those of the 87C64, and
the others are of the 80C31BH. The requirements for
timing compatibility are

TLHLL> tLL

TAVLL> tAL

TLLAX> tLA

TLLlV> tACL

TPLlV> tOE

TLLPL> tCOE

TPXIZ> tOHZ

The same considerations apply to the 87C64 as to the
27(:64 with regards to the Idle and Power Down
modes. Basically you want CS = 1 if Vee is main­
tained to the EPROM, and CS = OE = 0 if Vee is
removed. .

SCANNING A KEYBOARD

There are many different kinds of keyboards, but alpha­
numeric keyboards generally consist of a matrix of 8
scan lines and 8 receive lines as shown in Figure 17.
Each set of lines connects to one port of the microcon­
troller. The software has written Os to the scan lines,
and Is to the receive lines. Pressing a key connects a
scan line to a receive line, thus pulling the receive line
to a logic low.

The 8 receive lines are ANDed to one of the external
interrupt pins, so that pulling any of the receive lines
low generates an interrupt. The interrupt service rou­
tine has to identify the pressed key, if only one key is
down, and convert that information to some useful out­
put. If more than one key in the line matrix is found to
be pressed, no action is taken. (This is a "two key lock­
out" scheme.)

2-202

inter Ap·252

On some keyboards, certain keys (Shift, Control, Es­
cape, etc.) are not a part of the line matrix. These keys
would connect directly to a port pin on the microcon­
troller, and would not cause lock-out if pressed simulta­
neously with a matrix key, nor generate an interrupt if
pressed singly.

Normally the microcontroller would be in idle mode
when a key has not been pressed, and another task is
not in progress. Pressing a matrix key generates an in-

r
10K XS

PO
~

SOC31BH

P2

ALE

PSEN

terrupt, which terminates the Idle. The interrupt serv­
ice routine would first call a 30 ms (or so) delay to
debounce the key, and then set about the task of identi­
fying which key is down.

First, the current state of the receive lines is latched
into an internal register. If a single key is down, all but
one of the lines would be read as Is. Then Os are written
to the receive lines and Is to the scan lines, and the scan
lines are read. If a single key is down, all but one of

/s 0,,-07

S7C64

-"
1s / Ao-A7

/5) A,.-A'2

CE

OE

270068-16

Figure 16a. 80C31BH + 87C64

270068-17

Figure 16b. Timing Waveforms for 80C31BH + 87C64

2-203

inter AP-252

these lines would be read as Is. By locating the single 0
in each set of lines, the pressed key-can be identified. If
more than one matrix key is down, one or both sets of
lines will contain multiple Os.

A subroutine is used to determine which of 8 bits in
either set of lines is 0, and whether more than one bit is
O. Figure 18 shows a subroutine (SCAN) which does
that using the 8051 's bit-addressing capability. To use
the subroutine, move the line data into a bit-address­
able RAM location named LINE, and call the SCAN
routin~. The number of LINE bits which are zero is
returned in ZERO_COUNTER. If only one bit is
zero, its number (1 through 8) is returned in ZERO_
BIT.

The interrupt service routine that is executed in re­
sponse to a key closure might then be as follows:

rC

'--
'---

RESPONSE_TO_KEY_CLOSURE:
CALL DEBOUNCE_DELAY
MOV LINE, PI; ;See Figure 17.
CALL SCAN
DJNZ ZERO_COUNTER ,REJECT
MOV ADDRESS ,ZERO_BIT
MOV P2,#OFFH; ;See Figure 17.
MOV P1,#0
MOV LINE,P2
CALL SCAN
DJNZ ZERO_COUNTER ,REJECT
XCH A,ZERO_BIT
SWAP A
ORL' ADDRESS ,A
XCH A,ZERO_BIT
MOV P1,#OFFH
MOV P2,#O

REJECT: CLR EXO
RETI

80C51BH

PI P2

SCAN UNES ._---A.----_, -

f---"
i------"

RECEIVE
UNES

INTO

270068-18

Figure 17. Scanning a Keyboard

2-204

AP-252

SCAN: MOV ZEROSOUNTER, .0 ZERO_COUNTER counts the number of Os in LINE.
.JB LINE. 0, ONE Tost LINE bit O.
INC ZERO_COUNTER If LINE 0 = 0, inc~ement ZERO_COUNTER
MOV ZERO_BIT, .1 and record that line number I is active.

ONE: .JB LINE.I,TWO Procedure continues for other LINE bits.
INC ZEROSOUNTER
MOV ZERO_BIT,82 Line number 2 is active.

TWO: .JB LINE.2,THREE
INC ZERO_COUNTER
MOV ZERO_BIT,83 Line number :3 is active.

THREE: .JB LINE. 3, FOUR
INC ZERO_COUNTER
MOV ZERO_B IT, .4 Line number 4 is active.

FOUR: .JB LINE. 4, FIVE
INC ZEROSOUNTER
MOV ZERO_B IT, .5 Line number 5 .. active.

FIVE: .JB LINE.5,SIX
INC ZERO_COUNTER
MOV ZERO_B IT, 86 Line number 6 is active

SIX: JB LINE. 6, SEVEN
INC ZERO_COUNTER
MOV ZERO_BIT,87 Line number 7 is active.

SEVEN: JB LINE. 7, EIGHT
INC ZERO_COUNTER
MOV ZERO_BIT, fiB Line number B is active.

EIGHT: RET
270068-19

Figure 18. Subroutine SCAN Determines Which of 8 Bits in LINE is Zero

Notice that RESPONSE_TO_KEY_CLOSURE
does not change the Accumulator, the PSW, nor any of
the registers RO through R7. Neither do SCAN or DE­
BOUNCE_DELAY.

What we corne out with then is a one-byte key address
(ADDRESS) which identifies the pressed key. The
key's scan line number is in the upper nibble of AD­
DRESS, and its receive line number is in the lower
nibble. ADDRESS can be used in a look-up table to
generate a key code to transmit to a host computer,
andlor to a display device.

The keyboard interrupt itself must be edge-triggered,
rather than level-activated, so that the interrupt routine
is invoked when a key is pressed, and is not constantly
being repeated as long as the key is held down. In edge­
triggered mode, the on-chip hardware clears the inter­
rupt flag (EXO, in this case) as the service routine is
being vectored to. In this application, however, contact
bounce will cause several more edges to occur after the
service routine has been vectored to, during the DE­
BOUNCE~ELA Y routine. Consequently it is neces­
sary to clear EXO again in software before executing
RETI. .

The debounce delay routine also takes advantage of the
Idle mode. In this routine a timer must be preloaded
with a value appropriate to the desired length of delay.
This would be

. I d (osc kHz) x (delay time ms)
timer pre oa = 12

,

For example, with a 3.58 MHz oscillator frequency, a
30 ms delay could be obtained using a preload value of
- 8950, or DDOA, in hex digits.

In the debounce delay routine (Figure 19), the timer
interrupt is enabled and set to a higher priority than the
keyboard interrupt, because as we invoke Idle, the key­
board interrupt is still "in progress". An interrupt of
the same priority will not be acknowledged, and will
not terminate the Idle mode. With the timer interrupt
set to priority I, while the keyboard interrupt is a prior­
ity 0, the timer interrupt, when it occurs, will be ac­
knowledged and will wake up the CPU. The timer in­
terrupt service routine does not itself have to do any­
thing. The service routine might be nothing more than
a single RETI instruction. RET! from the timer inter­
rupt service routine then returns execution to the de­
bounce delay routine, which shuts down the timer and
returns execution to the keyboard service routine.

DRIVING AN LCD

An LCD (Liquid Crystal Display) consists of a back­
plane and any number of segments or dots which will
be used to form the image being displayed. Applying a
voltage (nominally 4 or 5V) between any segment and
the backplane causes the segment to darken. The only
catch is that the polarity of the applied voltage has to
be periodically reversed, or else a chemical reac-

2-205

intJ AP-252

DEBOUNCE_DELAV:
MOV , . TL!, ITL! J'RELOAD ,
MOV TH1, ltTHIJ'RELOAD ,
SETB ETI
SETB PTI
SETB TRI
ORL peON, II

Preload law bvte.
PTeload high b~te.
Enable Timer 1 inteT'T'upt.
Set Timer 1 interrupt to hlgh pT'ioT'ity.
Start tlmer 1'unning.
Invoke Idle mode.

The next instruction wl11 not be executed until' the delay time'l out.

CLR
CLR
CLR
RET

TRI
PTI
ETI

Stop th e t 1me".
Back to priority 0 (if desired).
Disable Timer 1 inter1'upt (if desired>.
Continue keyboard scan.

270068-20

Figure 19. Subroutine DEBOUNCE_DELAY Puts the 80C51BH into Idle During the Delay Time

tion takes place in the LCD which causes deterioration
and eventual failure of the liquid crystal.

To prevent this happening, the backplane and all the
segments are driven with an AC signal, which is de­
rived from a rectangular voltage waveform. If a seg­
ment is to be "oft" it is driven by the same waveform as
the backplane. Thus it is always at backplane potential.
If the segment is to be "on" it is driven with a wave­
form that is the inverse of the backplane waveform.
Thus it has about 5V of periodically changing polarity
between it and the backplane~

With a little software overhead, the 80C51BH can per­
form this task without the need for additional LCD
drivers. The only drawback is that each LCD segment
uses up one port pin, and the backplane uses one more.
If more than, say, two 7-segment digits are being driv­
en, there aren't many port pins left for other tasks.
Nevertheless, assuming a given application leaves
enough port pins available to support this task, the con­
siderations for. driving the LCD are as follows.

Suppose, for example, it is a 2-digit display with a deci-'
mal point. One port (TENS_DIGIT) connects to the 7
segments of the tens digit plus the backplane. Another
port (ONES_DIGIT) connects to a decimal point plus
the 7 segments of the ones digit. . ,

One of the 80C51 BH's timers is used to mark off half­
periods of the drive voltage waveform. The LCD drive
waveform should have a rep ·rate between 30 and 100
Hz, but it's not very critical. A half-period of 12 ms will
set the rep rate to about 42 Hz. The preload/reload
value to get 12 ms to rollover is the 2's complement
negative of the oscillator frequency in kHz: if the oscil­
lator frequency is 3.58 MHz, the reload value is
- 3580, or F204 in hex digits.

Now, the 80C51BH would normally be in Idle, to con­
serve power, during the time that the LCD and other

tasks are not requiring servicing. When the timer rolls
over it generates an interrupt, which brings the
80CSIBH out ofldle. The service routine reloads the
timer (for the next rollover), and inverts the logic levels
of all the pins that are connected to the LCD. It might
look like this:

LCD_DRIVE_INTERRUPT:
MOV TL1.#LOW(- XTAL_FREQ)
MOV TH1.#HIGH(- XTAL_FREQ)
XRL TENS_DIGIT.#OFFH
XRL ONES_DIGIT.#OFFH
RETI

To update the display, one would use a look-up.table to
generate the characters. In the table, "on" segments are
represented as. Is, and "off" segments as Os. The back­
plane bit is represented as a 0 .. The quantity to be dis­
played is stored in RAM as a BCD value. The look-up
table operates on the low nibble of the BCD value, and
produces the bit pattern that is to be written to either
the ones digit or the tens digit. Before the new patterns
can be written to the LCD, the LCD drive interrupt has
to be disabled. That is to prevent a polarity reversal
from taking place between the times the two digits are
written. An update subroutine is shown in Figure 20.

USING AN LCD DRIVER

As was noted, driving an LCD directly with an
80C51BH uses a lot of port pins. LCD drivers are avail­
able in CMOS to interface an 80CS1BH to a 4-digit
display using only 7 of the CS1BH's I/O pins. Basical­
ly, the C51BH tells the LCD driver what digit is to be
displayed (4 bits) and what position it is to be displayed
in (2 bits), and toggles a Chip Select pin to tell the
driver to latch this information. The LCD driver gener­
ates the display characters (hex digits), and takes care
of the polarity reversals using its own RC oscillator to
generate the timing.

2-206

intJ AP-252

Figure 25 shows an 80CSlBH working with an
ICM72IIM to drive a 4-digit LCD, and the software
that updates the display.

One could equally well send information to the LCD
driver over the bus. In that case, one would set up the
Accumulator with the digit select and data input bits,
and execute a MOVX@ RO,A instruction. The LCD
driver's chip select would be driven by the CPU's WR
signal. This is a little easier in software than the direct
bit manipulation shown in Figure 21. However, it uses
more I/O pins, unless there is already some external
memory involved. In that case, no extra pins are used
up by adding the LCD driver to the bus.

RESONANT TRANSDUCERS

Analog transducers are often used to convert the value
of a physical property, such as temperature, pressure,
etc., to an analog voltage. These kinds of transducers
then require an analog-to-digital converter to put the
measurement into a form that is compatible with a digi­
tal control system. Another kind of transducer is now
becoming available that encodes the value of the physi­
cal property into a signal that can be directly read by a
digital control system. These devices are called reso­
nant transducers.

Resonant transducers are oscillators whose frequency
depends in a known way on the physical property being
measured. These devices output a train of rectangular
pulses whose repetition rate encodes the value of the
quantity being measured. The pulses can in most cases
be fed directly into the 80CSlBH, which then measures
either the frequency or period of the incoming signal,
basing the measurement on the accuracy of its own
clock oscillator. The 80C51BH can even do this in its
sleep; that is, in Idle.

UPDATE_LCD'
CLR
MOV
MOV
SWAP
ANL
MOVC
MOV
MOV
ANL
MOVC
MOV
MOV
MOV
SETB
RET

ETI
DPTR. #TABLE_ADDRESS
A, BCD_VALUE
A
A.IOFH
A.@A+DPTR
TENS_DIGIT. A
A. BCD_VALUE
A. lIOFH
A. (!A+DPTR
c. DEC lMAL]OJ NT
ACC. 7. C
ONES_DIGIT. A"
ETI

When the frequency or period measurement is complet­
ed, the CSlBH wakes itself up for a very short time to
perform a sanity check on the measurement and con­
vert it in software to any scaling of the measured quan­
tity that may be desired. The software conversion can
include corrections for nonlinearities in the transduc­
er's transfer function.

Resolution is also controlled by software, and can even
be dynamically varied to meet changing needs as a situ­
ation becomes more critical. For example, in a process
controller you can increase your resolution ("fine tune"
the control, as it were) as the process approaches its
target.

The nominal reference frequency of the output signal
from these devices is in the range of 20 Hz to SOO kHz,
depending on the design. Transducers are available that
have a full scale frequency shift 2 to 1. The transducer
operates from a supply voltage range of 3V to 20V,
which means it can operate from the same supply volt­
age as the 80CSlBH. At 5V, the transducer draws less
than S rnA (Reference 7). It can normally be connected
directly to one of the CSlBH's port pins, as shown in
Figure 22.

FREQUENCY MEASUREMENTS
Measuring a frequency means counting pulses for a
known sample time. Two timer/counters can be used,
one to mark off the sample time and one to count puls­
es. If the frequency being counted doesn't exceed SO
kHz or so, one may equally well connect the transducer
signal to one of the external interrupt pins, and count
pulses in software. That frees up one timer, with very
little cost in CPU time.

The count that is directly obtained is TxF, where T is
the sample time and F is the frequency. The full scale

Disable LCD drive Interrupt.
Look-up table begins at TABLE_ADDRESS
Digits to be displaqed.
Move tens digit to low nibble
Mask off high nibble
Tens digit pattern to accumulator
Update LCD tens digit.
Digits to be displayed
Mask of' tens digit
Ones digit pattern to accumulator
Add decimal point to segment

pattern. Update LCD dec imal pOint
and ones digit

Re-enable LCD drive 1nterrupt.

270068-21

Figure 20. UPDATE_LCD Routine Writes Two Digits to an LCD

2-207

range is Tx(Fmax-Fmin). For n-bit resolution

1 LSB = Tx(Fmax-Fmin)
2n

AP-252

Therefore the sample time required for n-bit resolution
is

For example, 8-bit resolution in the measurement of a
frequency that varies between 7 kHz and 9 kHz would
require, according to this formula, a sample time of 128
ms. The maximum acceptable frequency count would
be 128 ms X 9 kHz = 1152 counts. The minimum
would be 896 counts. Subtracting 896 from each fre­
quency count (or presetting the frequency counter' to
- 896 = OFC80H) would allow the frequency to be
reported on a scale of 0 to FF in hex digits. 2n

T = ""Fm-ax--F:::-m-i'-n

aOC51BH

1} DIGIT '\
2 SELECT

M} L. ~,{ '\ C. PORT
81 DATA D.

82 INPUT

83

CS ."
270068-22

Figure 21a. Using an LCD Driver

UPDATE_LCD:
MOV
SETa
SETS
CALL
CLR
CALL
MOV
CLR
SETS
CALL
CLR
CALL
RET

SHIFT _AN~L~OAD

MOV
RLC
MOV
RLC
MOV
RLC
MOV
CLR
SETB
RET

A. DISPLAY_HI
DIGIT _SELECT_2
DIGIT _SELECT_1
SH I FT _AND _LOAD
DIGIT _SELECT_1
SHIFT_AND_LOAD
A.DISPLAY_LO
DIGIT _SELECT_2
DIGlT_SELECT_1
SHIFT _AND_LOAD
DIGIT_SELECT_1
SHIFT_ANO_LOAD

A
DATA_iNPUT _B3. C
A
DATA_INPUT _B2. C
A
DATA_INPUT_BI.C
A
DATA_INPUT _BO. C
CHIP _SELECT
CHIP _SELECT

High b~te of 4-dig.t disp1a~.
Select leftmost digit 09 LCD.

(Digit address = lIB.)
High nibble of high byte to selected digit
Select second digit of LCD (address = 10D)
Low nibble of high byte to selected digit.
Low by teo of 4-dlgit d1splay.
Select third digit 4. LCD.

(Oig1t address = 01B.)
Hlgh nibble of low byte to seletted dLg!t.
Select fourth digit (address = OOB),
Low nibble of low byt,e to selec:ted dIgit.

MS8 to carr~ bit (CV)
CV to Data Input pin 83.
Next bit to CV.
tv to Data Input pin B2
Next bit to CV
CV to Data Input pin 91
Last bit to cv.
CV to Data Input pin BO.
Toggle Chip Select.
O-to-l transition latches info.

Figure 21b. UPDATE_LCD Routine Writes 4 Digits to an LCD Driver

2-208

270068-23

AP-252

VCC

vcc t-

t-
aOC51BH

RESONANT INTO
TRANSDUCER OR

TO

\-'" 270066-24

Figure 22. Resonant Transducer Does Not
Require an AID Converter

To implement the measurement, one timer is used to
establish the sample time. The timer is preset to a value
that causes it to roll over at the end of the sample time,
generating an interrupt and waking the CPU from its
Idle mode. The required preset value is the 2's comple­
ment negative of the sample time measured in machine
cycles. The conversion from sample time to machine
cycles is to mUltiply it by 1/12 the clock frequency. For
example, if the clock frequency is 12 MHz, then a sam­
ple time of 128 ms is

(128 ms) x (12000 kHz)/12 =' 128000 machine cycles.

Then the required preset value to cause the timer to roll
over in 128 ms is

-128000 = FEOCOO, in hex digits.

Note that the preset value is 3 bytes wide whereas the
timer is only 2 bytes wide. This means the timer must
be augmented in software in the timer interrupt routine
tlil three bytes. The 80C5IBH has a DJNZ instruction
(decrement and jump if not zero) that makes it easier to
code the third timer byte to count down instead of up.
If the third timer byte counts down, its·reload value is
the 2's complement of what it would be for an up-coun­
ter. For example, if the 2's complement of the sample
time is FEOCOO, then the reload value for the third
timer byte would be 02, instead of FE. The timer inter­
rupt routine might then be:

TIMER_INTERRUPT_ROUTINE:
DNJZ THIRD_TIMER_BYTE,OUT
MOV TLO,#O
MOV THO,#OCH
MOV THIRD_TIMERBYTE,#2
MOV FREQUENCy,COUNTER_LO

;Preset COUNTER to -896:
MOV COUNTER_LO,#80H
MOV COUNTER_HI,#OFCH

OUT: RETI

At this point the value of the frequency of the transduc­
er signal, measured to 8 bit resolution, is contained in
FREQUENCY. Note that the timer can be reloaded on
the fly. Note too that the timer can be reloaded on the
fly. Note too that for 8-bit resolution only the low byte
of the frequency counter needs to be read, since the
high byte is necessarily 0. However, one may want to
test the high byte to ensure that it is zero, as a sanity
check on the data. Both bytes, of course must be re­
loaded,

PERIOD MEASUREMENTS

Measuring the period of the transducer signal means
measuring the total elapsed time over a known Dumber,
N, of transducer pulses. The quantity that is directly
measured is NT, where T is the period of the transduc­
er signal in machine cycles. The relationship between T
in machine cycles and the transducer frequency F in
arbitrary frequency units is

Fxtal
T = -F- x (1/12),

where Fxtal is the 80C51BH clock frequency, in the
same units as F.

The full scale range then is Nx (Tmax-Tmin). For
n-bit resolution.

Ns(Tmax-Tmin)
1LSB= 2"

Therefore the number of periods over which the elapsed
time should be measured is

2" N=--­
Tmax-Tmin

However, N must also be an integer. It is logical to
evaluate the above formula (don't forget Tmax and
Tmin have to be in machine cycles) and select for N the
next higher integer. This selection gives a period mea­
surement that has somewhat more than n-bit resolu­
tion, but it can be scaled back if desired.

For example, suppose we want 8-bit resolution in the
measurement of the period of a signal whose frequency
varies from 7.1 kHz to 9 kHz. If the clock frequency is
12 MHz, then Tmax is (12000 kHz/7.1 kHz) x (1/12)
= 141 machine cycles. Tmin is II ~ machine cycles.
The required value for N, then, is 256/(141-111) =

8.53 periods, according to the formula. Using N = 9
periods will give a maximum NT value of 141 x 9 =
1269 machine cycles. The minimum NT will be III X
9 = 999 machine cycles. A lookup table can be used to

2-209

inter AP-252

scale these values back to a range of 0 to 255, giving
precisely the 8-bit resolution desired.

To implement the measurement, one timer is used to
measure the elapsed time, NT. The transducer is con­
nected to one of the external interrupt pins, and this
interrupt is configured to the transition-activated mode.
In the transition-activated mode every I-to-O transition
in the transducer output will generate an interrupt. The
interrupt routine counts transducer pulses, and when it
gets to the predetermined N, it reads and clears the
timer. For the specific example cited above, the inter­
rupt routine might be:

INTERRUPT~RESPONSE:
. DJNZ N,OUT

MOV N,#9
CLR EA
CLR TRI
MOV NT_LO,TLI
MOV NT_HI,THI
MOV TLl,#9
MOV THl,#O
SETB TRI
SETB EA
CALL LOOKUP_TABLE

OUT: RETI

In this routine a pulse counter N is decremented from
its preset value, 9, to zero. When the counter gefs to
zero it is reloaded to 9. Then all interrupts are blocked
for a short time while the timer is read and cleared. The
timer is stopped during the read and clear operations,
so "clearing" it actually means presetting it to 9, to
make up for the 9 machine cycles that are missed while
the timer is stopped.

The subroutine LOOKUP -,-TABLE is used to scale
the measurement back to the desired 8-bit resolution. It
can also include built-in corrections for errors or non­
linearities in the transducer's transfer function.

The subroutine uses the MOVC A, @ A + DPTR
instruction to access the table, which contains 270 en­
tries commencing at the 16-bit address referred to as
TABLE. The subroutine must compute the address of
the table entry that corresponds to the measured value
of NT. This address is

DPTR = TABL + NT - NTMIN,

where NTMIN = 999, in this specific example.

LOOKUP_TABLE:
PUSH
PUSH
MOV
ADD
MOV
MOV

ACC
PSW
A,#LOW(TABLE-NTMIN)
A,NT_LO
DPL,A
A,#HIGH(TABLE-NMTIN)

ADDC
MOV
CLR
MOVC
MOV
POP
POP
RET

A,NLHI
DPH,A
A
A,@A+DTPR
PERIOD,A
PSW
ACC

At this point the value of the period of the transducer
signal, measured to 8 bit resolution, is contained in PE­
RIOD.

PULSE WIDTH MEASUREMENTS

The 80C51BH timers have an operating mode which is
particularly suited to pulse width measurements, and
will be useful in these applications if the transducer
signal has a fixed duty cycle.

In this mode the timer is turned on by the on-chip
circuitry in response to an input high at the external
interrupt pin, and off by an input low, and it can do this
while the 80C5IBH is in Idle. (The "GATE" mode of
timer operation is described in the Intel Microcontrol­
ler Handbook.) The external interrupt itself can be en­
abled, so the same I-to-O transition from the transducer
that turns off the timer also generates an interrupt. The
interrupt routine then reads and resets the timer.

The advantage of this method is that the transducer
signal has direct access to the timer gate, with the result
that variations in interrupt response time have no effect
on the measurement.

Resonant transducers that are designed to fully exploit
the GATE mode have an internal divide-by-N circuit
that fixes the duty cycle at 50% and lowers the output
frequency to the range of 250 to 500 Hz (to control
RFI). The transfer function between transducer period
and measurand is approximately linear, with known
and repeatable error functions.

HMOS/CHMOS Interchangeability

The CHMOS version of the 8051 is architecturally
identical with the HMOS version, but there are never­
theless some important differences between them which
the designer should be aware of. In addition, some ap­
plications require. interchangeability between HMOS
and CHMOS parts. The differenceS that need to be con­
sidered are as follows:

External Clock Drive: To drive the HMOS 8051 with
an external clock signal, one normally grounds the
XTALI pin and drives the XTAL2 pin. To drive the
CHMOS 8051 with an external clock signal, one must
drive the XT ALl pin and leave the XT AL2 pin uncon­
nected. The reason for the difference is that in the

2-210

intJ AP-252

HMOS 8051, it is the XTAL2 pin that drives the inter­
nal clocking circuits, whereas in the CHMOS version it
is the XT ALl pin that drives the internal clocking cir­
cuits.

There are several ways to design an external clock drive
to work with both types. For low clock frequencies (be­
low 6 MHz), the HMOS 8051 can be driven in the same
way as the CHMOS version, namely, through XTALI
with XT AL2 unconnected. Another way is to drive
both XT ALl and XT AL2; that is, drive XT ALl and
use and external inverter to derive from XTALI a sig­
nal with which to drive XTAL2.

In either case, a 74HC or 74HCT circuit makes an ex­
cellent driver for XTALI and/or XTAL2, because nei­
ther the HMOS nor the CHMOS XTAL pins have
TTL-like input logic levels.

Unused Pins: Unused pins of Ports I, 2 and 3 can be
ignored in both HMOS and CHMOS designs. The in­
ternal pullups will put them into a defined state. Un­
used Port 0 pins in 8051 applications can be ignored,
even if they're floating. But in 80C5IBH applications,
these pins should not be left afloat. They can be exter­
nally pulled up or down, or they can be internally
pulled down by writing Os to them.

8031/80C31BH designs mayor may not need pullups
on Port O. Pullups aren't needed for program fetches,
because in bus operations the pins are actively pulled
high or low by either the 8031 or the external program
memory. But they are needed for the CHMOS part if
the Idle or Power Down mode is invoked, because in
these modes Port 0 floats.

Logic Levels: If Vee is between 4.5V and 5.5V, an
input signal that meets the HMOS 8051's input logic
levels will also meet the CHMOS 80C5IBH's input log­
ic levels (except for XTALl/XTAL2 and RST). For
the same Vee condition, the CHMOS device will re~ch
or surpass the output logic levels of the HMOS device.
The HMOS device will not necessarily reach the output
logic levels of the CHMOS device. T~is is an impo~~nt
consideration if HMOS/CHMOS mterchangeablhty
must be maintained in an otherwise CMOS system.

HMOS 8051 outputs that have internal pullups (Ports
1,2, and 3) "typically" reach 4V or more if IOH is zero,
but not fast enough to meet timing specs. Adding an
external pullup resistor will ensure the logic l~ve!, b~t
still not the timing, as shown in Figure 23. If tImmg IS
an issue, the best way to interface HMOS to CMOS is
through a 74HCT circuit.

Idle and Power Down: The Idle and Power Down
modes exist only on the CHMOS devices, but if one

CMOS~I!_
HMOS

TTL VIH

270068-25

Figure 23. O-to-1 Transition Shows Unspec'd
Delay (Llt) in HMOS to 74HC Logic

wishes to pre&erve the capability of interchanging
HMOS and CHMOS 8051s the software has to be de­
signed so that the HMOS parts will respond in an ac­
ceptable manner when a CHMOS reduced power mode
is invoked.

For example, an instruction that invokes Power Down
can be followed by a "JMP $":

CLR EA
ORL PCON.#2
JMP $

The CHMOS and HMOS parts will respond to this
sequence of code differently. The CHMOS part: going
into a normal CHMOS Power Down Mode, will stop
fetching instructions until it gets a ha~dware reset. ~he
HMOS part will go through the motIons of executmg
the ORL instruction, and then fetch the JMP instruc­
tion. It will continue fetching and executing JMP $ un­
til hardware reset.

Maintaining HMOS/CHMOS 8051 interchangeability
in,response to Idle requires more planning. The HMOS
part will not respond to the instruction that puts the
CHMOS part into Idle, so that instructionneeds.to.be
followed by a software idle. This would be an Idhng
loop which would be terminated by the same conditions
that would terminate the CHMOS's hardware Idle.
Then when the CHMOS device goes into Idle, the
HMOS version executes the idling loop, until either a
hardware reset or an enabled interrupt is received. Now
if Idle is terminated by an interrupt, execution for the
CHMOS device will proceed after RETI from the in­
struction following the one that invoked Idle. The in­
struction following the one that invoked Idle is the
idling loop that was inserted for the HMOS d.evice. At
this point, both the HMOS and CHM~S devices ~ust
be able to fall through the loop to contmue executIOn.

2-211

intJ AP-252

One way to achieve the desired effect is to define a
"fake" Idle flag, and set it just before going into Idle.
The instruction that invoked Idle is followed by a soft­
ware idle:

SETB
ORL
JB

IDLE
PCON,#l
IDLE,$

Now the interrupt that terminates the CHMOS's Idle
must also break the software idle. It does so by clearing
the "Idle" bit:

CLR IDLE
RETr

Note too that the PCON register in the HMOS 8051
contains only one bit, SMOD, whereas the PCON reg­
ister in CHMOS contains SMOD plus four other bits.
Two of those other bits are general purpose flags. Main­
taining HMOS/CHMOS interchangeability requires
that these flags not be used.' '

REFERENCES
I. Pawlowski, Moroyan, Alnether, "Inside CMOS

Technology," BYT$ magazine, Sept., 1983. Avail­
able as Article Reprint AR-302.

2. Kokkonen, Pashley, "Modular Approach to C-MOS
Technology Tailors Process to Application,"
Electronics, May, 1984. Available as Article Reprint
AR-332.

3. Williamson, T., Designing Microcontroller Systems
for Electrically Noisy Environments, Intel Applica­
tion Note AP-125, Feb. 1982.

4. Williamson, T., "PC Layout Techniques for Mini­
mizing Noise," Mini-Micro Southeast, Session 9,
Jan., 1984.

5. Alnether, J., High Speed Memory System Design Us­
ing 2147H, Intel Application Note AP-74, March
1980.

6. Ott, H., "Digital Circuit Grounding and Intercon­
nection," Proceedings of the IEEE Symposium on
Electromagnetic Compatibility, pp. 292-297, Aug.
1981.

7. Digital Sensors by Technar, Technar Inc., 205 North
2nd Ave., Arcadia, CA 91006.

2-212

APPLICATION
NOTE

Enhanced Serial Port
on the 83C51FA

BETSY JONES
ECO APPLICATIONS ENGINEER

AP-410

November 1987

© Intel Corporation, 1987 Order Number: 270490-001
2-213

AP-410

The serial port on the 8051 has been enhanced on the
83CSIFA with the addition of two new features: Auto­
matic Address Recognition and Framing Error Detec­
tion. Automatic Address Recognition facilitates multi­
processor communications by reducing CPU overhead.
Framing Error Detection increases communication reli­
ability by checking each reception for a valid stop bit.

This Application Note explains how to use these new
features with samples of code for typical applications.
A section is also included which reviews how to set up
the serial port for multiprocessor applications.

MULTIPROCESSOR
COMMUNICATIONS'

In applications where multiple controllers jointly per­
form a task, the master controller must be able to com­
municate selectively with individual slaves. To do this,
the master first identifies the target slave (or slaves)
with an address byte and then transmits a block of data.
The target slaves must be able to identify their own
address before receiving any dat~ bytes.

The serial port on the 8051 provides a 9-bit mode to
facilitate multiprocessor communication. The 9th bit
allows the controller to distinguish between address
and data bytes. In this mode, a total of II bits are
received or transmitted: a ~tart bit (0), 8 data bits (LSB
first), a programmable 9th bit, and a stop bit (I). See
Figure below.

The 9th bit is set to I to identify address bytes and set
to' 0 for data bytes. A typical data stream is seen below:

ADDRESS BYTE
08 = 1

DATA BYTE
08 = 0

DATA BYTE I ...
08 = 0

Initially the slave is set up to only receive address bytes.
Once it receives its own address, the slave reconfigures
itself to receive data. On the 8051 serial port, an ad­
dress byte interrupts all slaves for an address compari­
son. On the 83C5IFA, however, Automatic Address
Recognition allows the addressed slave to be the only
one interrupted; that is, the address comparison occurs
in hardware, not software. With this feature, the master
controller can establish communication with one or
more slaves without all the slaves having to respond to
the transmission.

AUTOMATIC ADDRESS
RECOGNITION

Automatic Address Recognition reduces the CPU time
required to service the serial port. Since the CPU is
only interrupted when it receives its own address, the
software overhead to compare addresses is eliminated.
This would also effectively reduce the sophistication of
the serial protocol when numerous controllers are shar­
ing the same serial link.

This same feature can also be used in conjunction with
the Idle Mode to reduce the system's overall power
consumption. For instance, a master may need to com­
municate with only one slave at a time. With all slaves
in Idle Mode, only that one slave would be interrupted
to respond to the master's transmission. Without Auto­
matic Addressing, each slave would have to "wake up"
to check for its address. Limiting the interruptions re­
duces the amount of current drawn by the system and
thus reduces the power consumption.

In multiprocessor applications the serial port is config­
ured in either of the 9-bit modes (Mode 2 or 3). Mode 2
has a fixed baud rate whereas Mode 3 is variable. For
more information on the different serial port modes re­
fer to the "Serial Port Set Up" section. .

Aufomatic Address Recognition is enabled by setting
the SM2 bit in SCaN. Each slave has its SM2 bit set
waiting for an address byte (9th bit = I). The Receive
Interrupt (RI) flag will get set when the received byte
corresponds to either a Given or Broadcast Address.
The slave then clears its SM2 bit to enable reception of
data bytes (9th bit = 0) from the master.

The master can selectively communicate with groups of
slaves by using the Given Address. Addressing all
slaves at once is possible with the Broadcast Address.
These addresses are defined for each slave by two new'
Special Function Registers: SADDR and SADEN.

A slave's individual address is specified in SADDR.
SADEN is a mask byte that defines don't-cares to form
the Given Address. These,don't-cares allow flexibility
in the user-defined protocol to address one or more
slaves. The following is an example of how to define
Given Addresses and selectively address different
slaves.

STOP BIT

NINTH DATA BIT
270490-1

inter AP-410

Slave 1
SAOOA 1111 0001
SAOEN 1111 101Q

GIVEN 1111 OXOX

Slave 2
SAOOA 1111 0011
SAOEN 1111 1001

GIVEN 1111 OXX1

The SADEN bytes have been selected such that bit 1
(LSB) is a don't-care for Slave I's Given Address, but
bit 1 = 1 for Slave 2. Thus, to selectively communicate
with just Slave 1 an address with bit 1 = 0 would be
used (e.g. 1111 0000).

Similarly, bit 2 = 0 for Slave I, but is a don't-care for
Slave 2. Now to communicate with just Slave 2 an ad­
dress with bit 2 = I would be used (e.g. 1111 0111).

Finally, to communicate with both slaves at once the
address must have bit I = I and bit 2 = O. Notice,
however, that bit 3 is a "don't-care" for both slaves.
This allows two different addresses to select both slaves
(1111 0001 or III I 0101). If a third slave was added
that required its bit 3 = 0, then the latter address could
be used to communicate with Slave I and 2 but not
Slave 3.

The master can also communicate with all slaves at
once with the Broadcast Address. It is formed from the
logical OR of SADDR and SADEN with zeros defined
as don't-cares. For example, the Broadcast address for
Slave I would be formed as follows:

SADDR = 1111 0001 =D-
BROADCAST = 1111 lXll

SADEN = 11111010

270490-2

The don't-cares also allow flexibility in defining the
Broadcast Address, but in most applications a Broad­
cast Address will be OFFH.

SADDR and SADEN are located at address A9H and
B9H, respectively. On Reset, SADDR and SADEN are
initialized to OOH which defines the Given and Broad­
cast Addresses as XXXX XXXX (all don't-cares). This
assures the 83C51FA serial port to be backwards com­
patible with the other MCS®~51 products which do not
implement Automatic Addressing.

FRAMING ERROR DETECTION

Framing Error Detection is another new feature on
83C51FA serial port which allows the receiving con­
troller to check for valid stop bits in Modes I, 2, or 3. A
missing stop bit can be caused, for example, by noise on
the serial lines or transmission by two CPUs simulta­
neously.

If a stop bit is missing a Framing Error bit FE will be
set. This bit can then be checked in software after each
reception to detect communication errors. Once set, the
FE bit must be cleared in software. A valid stop bit will
not clear FE.

The FE bit is located in SCON and shares the same bit
address as SMO. To determine which is accessed, a new
control bit called SMODO has been added in the PCON
register (see figures below). If SMODO = 0, then ac­
cesses to SCON.7 are to SMO. If SMODO = I, then
accesses to SCON.7 are to FE.

PCON: Power Control Register (Not Bit Addressable)

I SM001 I SMODO I-I POF I GF1 I GFO I PO IIOL I

Address = 87H

SCON: Serial Port Control Register (Bit Addressable)

I SMO/FE I SM1 I SM2,I AEN I TBSI ABSI TI I All

Address = 98H

SERIAL PORT SOFTWARE

The following sections of code show examples of how
to invoke Automatic Addressing and Framing Error
Detection. Routines for both the slave and master are
given. Code is also included to initialize both serial
ports; however, for more information on setting up the
serial port refer to the next section.

For this example, the master and slave are transmit­
ting/receiving at 9600 baud with a 12 MHz crystal fre­
quency. To obtain this baud rate, the serial port is con­
figured in Mode 3 and Timer 2 is used as the baud-rate
generator.

Listing I shows the initialization for the slave. Notice
that Automatic Addressing and Framing Error Detec­
tion are enabled. The Given and Broadcast addresses
for this slave are taken from Slave I in the previous
example. A temporary byte has also been defined to
store the incoming data byte.

The slave will remain in Idle Mode until it is interrupt­
ed by its own address. At that point, it clears the SM2

2-215

inter AP·410

Listing 1. Initialization Routine for the Slave

ORG OOH
LJMP INIT

ORG 0023H
LJMP SERIAL_PORT_INTERRUPT

TEMP DATA 30H

INIT: MOV SCON, #OFOH

ORL PCON, #40H
MOV RCAP2H, #OFFH­
MOV RCAP2L, #OD9H
MOV T2CON, #34H

INTERRUPTS: SETB EA
SETB ES

ADDRESSES: MOV SADDR, # 11110001
MOV SADEN, # 11111010

ORL PCON, #OlH

Temporary storage byte

Mode 3, enable Auto Addressing
and reception
FE bit accessed (SMODO = 1)
Reload values for 9600 Baud

Timer 2 set up, TR2 = 1 turns
timer on

Enable global interrupt
Enable serial port interrupt

Define Given & Broadcast
Addresses
GIVEN = 1l1l0XOX
BROADCAST = 11111X11

Invoke Idle Mode

Listing 2. Receive Routine for the Slave

SERIAL_PORT INTERRUPT:
PUSH PSW
CLR RI

CLR SM2

RECEIVE_DATA:
JNB RI, $
MOV C, SCON.7
JC FRAMING_ERROR
MOV TEMP, SBUF

CLR RI

SETB 5M2

POP PSW
RETI

FRAMING_ERROR:
CLR SCON.7
CLR C '

•
•
•

POP PSW
RETI

RI set when address is
recognized & must be cleared
in software
Reconfigure slave to receive
data bytes

Wait for RI to be set
Check for framing error

Receive data byte & store
in temporary location
Clear flag for next
reception
Re-enable Automatic
Addressing

Clear FE bit

Error routine left up to
the user

2-216

inter AP-410

Listing 3. Initialization and Transmit Routines for the Master

GIVEN_l
MESSAGE_l

equ
data

1l1l0001B
30H

INIT: MOV SCON, #ODOH
MOV RCAP2H, #OFFH
MOV RCAP2L, #OD9H
MOV T2CON, #34H

Mode 3, REN = 1
9600 Baud

Timer 2 set up, TR2 = 1

TRANSMIT_ADDRESS:
CLR TI
SETB TBB Mark 1st byte as an address

byte (9th bit = 1)
MOV SBUF, #GIVEN_l
JNB TI, $

Send address
Wait for transmission
complete

CLR TI Clear flag for next
transmission

TRANSMIT_DATA:
CLR TBB Mark 2nd byte as a data

byte (9th bit = 0)
MOV SBUF, MESSAGE_l
JNB TI, $

Send data byte

CLR TI

bit to enable reception of data bytes. Depending on the
user's protocol, more than one data byte may actually
be received. This example, however, assumes only one
byte of data follows each address byte.

Listing 2 shows the receive routine. Notice that when
the data byte is received, the software checks for a
framing error. The error routine could, for example,
send an error message to the master and ask the master
to re-transmit the last message. Before exiting the rou­
tine the SM2 is set to I to reenable Automatic Address­
ing. Once the slave has responded to the master's com­
mand, it could also put itself back into Idle Mode to
wait for, the next message.

The initialization routine for the master in Listing 3 is
very similar to the slave. In this example, however, the
master does not need Automatic Addressing; it is sim­
ply transmitting address and data bytes. GIVEN_l is
a byte to address the slave in the above example.
MESSAGE_l is a register that contains the data byte
sent to this slave. Its value is arbitrary for the sample
code.

SERIAL PORT SET UP

This section describes how to initialize the 83C51FA
serial port for multiprocessor applications. Two differ­
ent modes are available which provide 9-bit operation:

Mode 2 which has a fixed baud rate and Mode 3 which
has a .variable baud rate. Baud rates can be generated
by either Timer 1 or Timer 2 (available on the
83C51FA but not the 8051). Deciding which mode and
timer to use is determined by the desired baud rate and
clock frequency of the particular application.

Another consideration is the tolerance needed between
serial ports. Since the serial port re-synchs its receiver
at every start bit, only 8 or 9 bit-times are available to
accumulate timing errors. As a result, the receiver and
transmitter only have to be within about 5% of each
other's baud rate. Allowing equal error to both trans­
mitter and receiver, only about 2% accuracy is actually
needed.

Following is a discussion of both Modes 2 and 3 and
examples of how to program each. The mode selection
bits (SMO and SMl) are located in SCON. The REN
bit must also be set to enable reception.

SCON: Serial Port Control Register (Bit Addressable)

I SMO I SM1 15M2 I REN I TBB I ABB I TI I AI

Address = 98H

Mode SMO
2 1

3

SMl
o

Baud Rate
Fosc/64 or
Fosc/32
Variable

2-217

intJ Ap·410

Example 1. Serial Port Mode 2

Frequency
Desired Baud Rate

MOV SCON, #OBOH

= 12 MHz = 375 kBaud = 1/32 (Osc Freq)

Serial port Mode 2

ORL PCON, #80H

Automatic Addressing (SM2 = 1),
reception enabled (REN = 1)
SMODl = 1 to double baud rate

Mode 2

Mode 2 uses a fixed baud rate of 1/32 or 1/64 of the
oscillator frequency depending on the value of the
SMODI bit in PCON. This mode basically offers a
choice of two high-speed baud rates. With a 12 MHz
clock frequency, baud rates of 187.5 kbaud or 375
kbaud can be obtained.

None of the timer/counters need to be set up for Mode
2. Only the SFRs SCON and PCON need to be defined.

PCON: Power Control Register (Not Bit Addressable)

I SMOD1 I SMOOO I-I PDF I GF1 I GFO I PO IIOL I

Address = 87H

The baud rate in this mode is calculated by:

2SMODl X Osc Freq
Mode 2 Baud Rate = 64

SMOD1 = 0,

SMOD1 = 1,

Baud Rate = 1/64 Osc Freq

Baud Rate = 1/32 Osc Freq

Mode 3

Mode 3 of the serial port has a variable'baud rate gener­
ated by either Timer 1 or Timer 2. The baud rate is
generated by the rollover rate of the selected timer. The
timer is operated in an auto-reload mode so it will roll
over to the- reload value selected in software.

Baud rates based otT Timer 2 have less granularity so
that almost any baud rate can be obtained at a given
clock frequency. However, Timer 1 is sufficient if the
desired baud rate can be obtained at the specified clock
frequency. Remember baud rates only need about 2%
accuracy.

Timer 1 Set Up

To generate baud rates Timer I is usually configured in
8-bit auto-reload mode (Mode 2). The mode select bits

are Ml and MO located in TMOD. To turn on Timer 1
the TR1 bit in TCON must be set. Also, the Timer 1
interrupt should be disabled in this application so that
when the timer overflows it does not generate an inter­
rupt.

TMOD: Timer/Counter' Mode Control Register
(Not bit addressable)

IGATEI CIT I M1 I MO IGATEI CIT IM1 I MO I
\, I\, I

Timer 1
Address = 89H

Timer 0

TCON: Timer/Counter Control Register
(Bit addressable)

I TF1 I TR1 I TFO I TRO IIE1 IT1 I lEO liTO I
Address = 88H

The formula for calculating the baud rate is given be­
low. THI is the reload value for Timer 1 when it over­
flows.

K x Osc Freq
Baud Rate = 32 x 12 x [256 - (TH1)1

K = 1 if SMOD1 ,;. o.
K = 2 if SMOD1 = 1. (SMOD1 is at peON.7)

If the baud rate is known, the reload value THI can be
calculated by:

TH1 = 256 _ K x Osc Freq
384 x Baud Rate

THI must be an integer value. Rounding off THI to
the nearest integer may not produce the desired baud
rate with the 2% accuracy required. In this case, anoth­
er crystal frequency may have to be chosen.

Refer to Table 1 for timer reload values for commonly
used baud rates.

2-218

intJ AP-410

Table 1. Commonly Used Baud Rates Generated by Timer 1

Baud Rate OscFreq SMOD1
Timer 1

TMOD Reload Value

62.5K 12 MHz 1 20 FFH
19.2K 11.06 MHz 1 20 FDH
9.6K 11.06 MHz 0 20 FDH
4.BK 11.06 MHz 0 20 FAH
2.4K 11.06 MHz 0 20 F4H
1.2K 11.06 MHz 0 20 EBH
300 6MHz 0 20 CCH
110 6MHz 0 20 72H

Example 2. Serial Port Mode 3, with Timer 1 as Baud-Rate Generator

Frequency = 11.0 MHz
Desired Baud Rate = 19.2 kBaud

TH1 = 256 _ (2) x (11.0 x 106)

(32) x (12) x (19200)

= 253 = FDH

MOV SCON, #OFOH Serial port Mode 3, SM2 = 1,
.,REN=l

SMOD1 = 1
Timer 1 Mode 2

ORL PCON, #BOH
MOV TMOD, #20H
MOV TH1, #OFDH Reload value for desired baud

rate
SETB TR1 Turn on Timer 1

It can be seen that the exact frequency to generate the
standard baud rates (19.2K, 9600, 4800, etc.) is
11.06 MHz. However, it is not necessary to use this
exact frequency. With a 2% tolerance any crystal value
from 10.8 MHz to 11.3 MHz is sufficient.

Timer 2 Set Up

Timer 2 has a special baud-rate generator mode which
transmits and receives at the same baud rate. This
mode is invoked by setting both the RCLK and TCLK
bits in T2CON. To turn Timer 2 on the TR2 bit should
also be set.

Unlike Timer 1, this mode does not require that the
timer overflow interrupt be disabled. That is, when
Timer 2 is in the baud-rate generator mode, its inter­
rupt is disconnected froin the Timer 2 overflow. This

interrupt then becomes available as a third external in­
terrupt. (For more information on external interrupts,
refer to the chapter "Hardware Description of the
8051" in the Embedded Controller Handbook.)

T2CON: Timer/Counter 2 Control Register
(Bit Addressable)

ITF2IEXF2IRCLKITCLKIEXEN2ITR2Ic/T2lcP/RL21

Address = C8H

This formula for calculating the baud rate is given be­
low. (RCAP2H, RCAP2L) is the 16-bit reload value
when Timer 2 overflows.

B d R te = Gsc Freq
au a 32 x [65536 - (RCAP2H, RCAP2L))

where (RCAP2H, RCAP2L) is a 16-bit unsigned inte­
ger.

2-219

intJ AP-410

To obtain the reload value for RCAP2H and RCAP2L
the above equation can be rewritten as:

Table 2. Commonly Used Baud Rates
Generated by Timer 2

(RCAP2H. RCAP2L) = 65536 - 32 ~S::U~ate

Refer to Table 2 for reload values' for commonly used
baud rates.

Notice that when using Timer 2, most standard baud
rates can be .obtained at 12 MHz.

Baud Rate

375K
9.6K
4.SK
2.4K
1.2K
300
110
300
110

OscFreq

12MHz
12 MHz
12MHz
12MHz
12MHz
12MHz
12MHz
6MHz
6MHz

Timer 2

RCAP2H RCAP2L

FF FF
FF 09
FF B2
FF 64
FE CS
FB 1E
F2 AF
FO SF
F9 57

Example 3. Serial Port Timer with Timer 2 as Baud-Rate Generator

Frequency
Desired Baud Rate

(RCAP2H, RCAP2L)

MOV SCON, #OFOH

MOV RCAP2H, #OFFH
MOV RCAP2L, #OD9H
MOV T2CON, #34H

=
=

=
=

12 MHz
9600 Baud

65536 -
(12 x 106)

(32) x (9600)

65497 = FFD9H

Serial port Mode 3, SM2 = 1,
REN = 1
Reload values for de.sired
baud rate
Timer 2 as baud rate
generator, turn on Timer 2

2-220

inter APPLICATION
BRIEF

AB-41

September 1988

Software Serial Port Implemented
with the peA

BETSY JONES
ECO APPLICATIONS ENGINEER

@ Intel Corporation, 1988
2-221

Order Number: 270531-002

intJ AB-41

For microcontroller applications which require more
than one serial port, the 83C51FA Programmable
Counter Array (PCA) can implement additional half­
duplex serial ports. If the on-chip UART is being used
as an inter-processor link, the PCA can be used to in­
terface the 83C51FA to additional asynchronous lines.

This application uses several different Compare/Cap­
ture modes available on the PCA to receive or transmit
bytes of data. It is assumed the reader is familiar the
PCA and ASM51. For more information on the PCA
refer to the "Hardware Description of,the 83C51FA"
chapter in the Embedded Controller Handbook (Order
No. 210918).

Introduction

The figure below shows the format of a standard IO-bit
asynchronous frame: I start bit (0), 8 data bits, and I
stop bit (I). The start bit is used to synchronize the
receiver to the transmitter; at the leading edge of the
start bit the receiver must set up its timing logic to
sample the incoming line in the center of each bit. Fol­
lowing the start bit are eight data bits which are trans­
mitted least significant bit first. The stop bit is set to the
opposite state of the start bit to guarantee that the lead­
ing edge of the start bit will cause a transition on the
line. It also provides a dead time on the line so that the
receiver can maintain its synchronization.

Two of the Compare/Capture modes on the PCA are
used in receiving and transmitting data bits: When re­
ceiving, the Negative-Edge Capture mode allows the
PCA to detect the start bit. Then using the Software

, Timer mode, interrupts are generated to sample the in­
coming data bits. This same mode is used to clock out
bits when transmitting.

This Application Note contains four sections of code:

(I) List of variables
(2) Initialization routine

(3) Receive routine
(4) Transmit routine.

A complete listing of the routines and the test loop
which was used to verify their opera~ion is found in the
Appendix. A total of three half-duplex channels were
run at 2400 Baud in the test program. The listings
shown here are simplified to one channel (Channel 0).

Variables

Listing I shows the variables used in both the receive
and transmit routines. Flags are defined to signify the
status of the reception or transmission of a byte
(e.g. RCV JTARTJIT, TXM-START_BIT).
RCV JUF and TXM_BUF simulate the on-chip se­
rial port SBUF as two separate buffer registers. The
temporary registers, RCV _REG and TXM_REG,
are used to save bits as they are received or transmitted.
Finally, two counter registers keep track of how many
bits have been received or transmitted.

Variables are also needed to define one-half and one-'
full bit times in units of PCA timer ticks. (One bit time
= I / baud rate.) With the PCA timer incremented
every machine cycle, the equation to calculate one bit
time can be written as:

(Osc. Freq.) = 1 billime (in PCA li~er licks)
12) X (baud rale' ,

In this example, the baud rate is 2400 at 16 MHz.

16MHz
(12) X (2400) = 556 counls = 22C Hex

The high and low byte of this value is placed in the varia­
bles FULL_BIT_HIGH and FULL_BIT_LOW,
respectively. 115H is the value loaded into
HALF JIT~IGH and HALF JIT_LOW.

STOP

.1
270531-1

2-222

inter AB-41

Listing 1. Variables used by the software serial port. Channel 0

Receive Routine
,
RCV_START_BIT_O BIT

RCV_DONE_O BIT

RCV BUF ° DATA

RCV REG ° DATA

DATA

Transmit Routine:

TXM_START_BIT_O BIT

TXM IN PROGRESS_O BIT

TXM BUF °
TXM_REG_O

TXM COUNT_O

DATA 0

NEG EDGE
S W-TIMER

HALF BIT HIGH
HALF-BIT-LOW
FULL-BIT-HIGH
FULL-BIT-LOW

DATA

DATA

DATA

DATA

EOU
EOU

EOU
EOU
EOU
EOU

20H.O

20H.1

30H

31H

32H

20H.3

20H.4

34H

35H

36H

37H

llH
49H

01H
I5H
02H
2CH

Indicates start bit
has been received
Indicates data byte
has been received
Software Receive
nSBUF"
Temporary register
for receive bits
Counter for receiving
bits

Indicates start bit
has been transmitted
Indicates transmit is
in progress
Software transmit
"SBUF"
Temporary register
for transmitting bits
Counter for transmit­
ting bits
Register used for the
test program

Two modes of operation
for compare/capture
modules

Half bit time 115H

Full bit time 22CH
2400 Baud at 16 MHz

2-223

270531-4

infef AB-41

I nitiaJization

Listing 2 contains the intialization code for the receive and transmit process. Module 0 of the PCA is used as a
receiver and is first &et up to detect a negative edge from the start bit. Modules 2 and 3 are used for the additional 2
channels (see the Appendix). Module 3 is used as a separate software timer to transmit bits.

Listing 2. Initialization Routine

ORG OOOOH
LJMP INITIALIZE
ORG OOlBH
LJMP RECEIVE_DONE

ORG 0033H
LJMP RECEIVE
,
INITIALIZE: MOV SP, #5FH

INIT_PCA: MOV CMOD, #OOH

MOV CCON, #OOH
MOV CCAPMO, #NEG~EDGE

MOV CCAPM3, #S_W_TlMER

MOV CL, #OOH
MOV CH, #OOH
MOV IE, #OD8H

SETB CR

Timer 1 overflow -
simulates "RI" interrupt

PCA interrupt

Initialize stack pointer
(specific to test program)
Increment PCA timer
@ 1/12 Osc Frequency
Clear all status flags
Module 0 in negative-edge
trigger mode (Pl.3)
Module 3 as software timer
mode

Init all needed interrupts
EA, EC, ES, ET1
Turn on PCA Counter

All flags and registers from Listing 1 should be' cleared in the initialization process.

Receive Routine

270531-5

Two operating modes of the PCA are needed to receive bits. The module must first be able to detect the leading edge
of a start bit so it is initially set up to capture a I-to-O transition (i.e. Negative-Edge Capture mode). The module is
then reconfigured as a software tiiner to cause an interrupt at the center of each bit to deserialize the incoming data.
The flowchart for the receive routine is given in Figure 1.

2-224

Add 1 bit
time to

compare/capture
registers

AB-41

YES

Reconfigure PCA
module to

capture 1 - 0
transitions

NO

Add 1 bit
time to

compare/capture
registers

Figure 1. Flowchart for the Receive Routine

2-225

NO

Reconfigure PC4
module to

capture 1 - 0
transitions

270531-2

intJ AB-41

Listing 3.1 shows the code needed to detect a start bit. Notice that the first software timer interrupt will occur one­
half bit time after the leading edge of the start bit to check its validity. If it is valid. the RCV _START _BIT is set.
The rest of the samples will occur a full bit time later. The RCV _COUNT register is loaded with a value of 9 which
indicates the number of bits to be sampled: 8 data bits and 1 stop bit.

Listing 3.1. Receive Interrupt Routine

RECEIVE: PUSH ACC
PUSH PSW

,
MODULE_O: CLR CCFO Assume reception on

Module 0
MOV A, CCAPMO Check mode of module. If
ANL A, #OlllllllB
CJNE A,#NEG_EDGE,

; set up to receive negative
RCV START ° ; edges, then module

- ; is-waiting for a start bit

CLR C
MOV A, #HALF BIT LOW
ADD A, CCAPOL
MOV CCAPOL, A
MOV A, #HALF BIT HIGH
ADDC A, CCAPOH -
MOV CCAPOH, A
MOV CCAPMO, #S W TIMER
POP PSW - -
POP ACC
RETI

Update compare/capture
registers for half bit time
to sample start bit
Half bit time = l15H

Reconfigure module ° as
a software timer to sample
bits

RCV START_O: CJNE A, 'is' W TIMER, ERROR ° ; Check module is
-T - ; configured as a sO,ftware

; timer, otherwise error.
JB RCV_START_BIT_O, RCV BYTE ° ; Check if start bit

T is received yet.
JB P1.3, ERROR_O Check that start bit = 0,

otherwise error.
SETB RCV_START_BIT_O Signify valid start bit

was received
MOV RCV_COUNT_O, #09H Start counting bits sampled

CLR C
MOV A, #FULL BIT LOW
ADD A, CCAPOL
MOV CCAPOL, A
MOV A, #FULL BIT HIGH
ADDC A, CCAPOH -
MOV CCAPOH, A
POP PSW
POP ACC
RETI

Update compare/capture
registers to sample
incoming bits
Full bit time = 22CH

2-226

270531-6

intJ AB-41

The next 8 timer interrupts will receive the incoming data bits; the RCV _COUNT register keeps track of how many
bits have been sampled. As each bit is sampled, it is shifted through the Carry Flag and saved in RCV _REG. The
ninth sample checks the validity of the stop bit. If it is valid, the data byte is moved into RCV _BUF.

The main routine must have a'way to know that a byte has been received. With the on-chip UART, the RI (Receive
Interrupt) bit is set whenever a byte has been received. For the software serial port, any unimplemented interrupt
vector can be used to generate an interrupt when a byte has been 'received. This routine uses the Timer I Overflow
interrupt (its selection is arbitrary). A routine to test this interrupt is included in the listing in the Appendix.

Listing 3.2. Receive Interrupt Routine (Continued)

RCV BYTE 0: DJNZ RCV COUNT 0, RCV DATA a ; On 9th sample,

RCV STOP 0: JNB Pl.3, ERROR a

RCV DATA

MOV RCV_BUF_O, RCV_REG_O

SETB RCV DONE a
SETB TFl

MOV CCAPMO, #NEG_EDGE

POP PSW
POP ACC
RETI

0: MOV C, Pl.3
MOV A, RCV REG 0
RRC A --
MOV RCV_REG_O, A

CLR C
MOV A, #FULL BIT LOW
ADD A, CCAPOL
MOV CCAPOL, A
MOV A, #FULL BIT HIGH
ADDC A, CCAPOH -
MOV CCAPOH, A
POP PSW
POP ACC
RETI

; check for valid stop bit

; Save received byte in
receive "5BUF"
Flag which module received
a byte
Generate an interrupt so
main program knows a byte
has been received
(Note: selection of TFl is
arbitrary)
Reconfigure module a for
Reception of a start bit

Sampling data bits
Shifts bits thru CY into
ACC
Save each reception in
temporary register
Update c/c register for
next sample time

270531-7

In addition, an error routine (Listing 3.3) is included for invalid start or stop bits to offer some protection against
noise. If an error occurs, the module is re-initialized to look for another start bit.

Listing 3.3 Error Routine for Receive Routine

ERROR 0: MOV CCAPMO, #NEG_EDGE

CLR RCV_START_B~T_O

POP PSW
POP ACC
RETI

Reset module to look for
start bit
Clear flags which might
have been set

2:227

270531-8

inter AB-41

Transmit Routine

Another peA module is configured as a software timer to interrupt the CPU every bit' time. With each timer
interrupt one or more bits can be transmitted through port pins. In the test program three channels were operated
simultaneously, but in the· listings below, one channel is shown for simplicity. The selection of port pins is user
programmable. The flowchart for the transmit routine is given in Figure 2.

Figure 2. Flowchart for the Transmit Routine

When a byte is ready to be transmitted, the main program moves the" data byte into the TXM_BUF register and sets
the corresponding TX~IN_PROGRESS bit. This bit informs the interrupt routine which channel is transmit­
ting. The data byte is then moved in the storage register TX~EG, and the TX~COUNT is loaded. This main
routine is shown in Listing 4.1.

Listing 4.1 Transmit Set Up Routine. Channel O.

TXM_ON_O: CLR TXM_START_BIT_O

MOV TXM BUF 0, DATA 0
MOV TXM-REG-O, TXM BUF 0
MOV TXM-COUNT 0, #09 -
~ETB TXM_IN_PROGRESS_O

Clear status flag from
previous transmission
Load "SBUF" with data byte

8 data bits + 1 stop bit

2-228

270531-9

inter AB-41

Listing 4.2 shows the transmit interrupt routine. The first time through, the start bit is transmitted. As each
successive interrupt outputs a bit, the contents of TXM_REG is shifted right one place into the Carry flag, and the
TXM_COUNT is decremented. When TXM_COUNT equals zero, the stop bit is transmitted.

Listing 4.2. Transmit Interrupt Routine

TRANSMIT: PUSH ACC
PUSH PSW
CLR CCF3

,
TRANSMIT_O: JB TXM_START_BIT_O,

CLR P3.2

SETB TXM START BIT °
JMP TXM EXIT

; Clear s/w timer interrupt
; for transmitting bits
TRANSMIT 1 ; Check which
; channel is transmitting.
; "TRANSMIT 1" is listed in
; the Appendix

TXM BYTE ° ; If start bit
has been sent, continue
transmitting bits.
Otherwise transmit start
bit
Signify start bit sent

TXM BYTE 0: DJNZ TXM COUNT_O, TXM DATA ° ; If bit count
equals 1 thru 9, transmit
data bits (8 total)

TXM STOP_O: SETB P3.2

CLR TXM IN PROGRESS °

,
TXM DATA 0: MOV A, TXM REG °

- RRC A -
MOV P3.2, C
MOV TXM_REG_O, A

TXM_EXIT: CLR C

Conclusion

MOV A, *FULL_BIT_LOW
ADD A, CCAP3L
MOV CCAP3L, A
MOV A, *FULL BIT HIGH
ADDC A, CCAP3H -
MOV CCAP3H, A
POP PSW
POP ACC
RET I

When bit count = 0,
transmit stop bit
Indicate transmission is
finished and ready for
next byte

Transmit one bit at a time
through the carry bit

Save what's not been sent

Update compare value with
Full bit time = 22CH

270531-10

The software routines in the Appendix can be altered to vary the baud rate and number of channels to fit a particular
application. The number of channels which can be implemented is limited by the CPU time required to service the
PCA interrupt. At higher baud rates, fewer channels can be run.

The test program verifies the simultaneous operation of three half-duplex channels at 2400 Baud and the on-chip
full-duplex channel at 9600 Baud. Thirty-three percent of the CPU time is required to operate all four channels. The
test was run for several hours with no apparent malfunctions.

2-229

~
N

~

MCS-51 !!ACRO ASSEMBLER SWPORT 01101/80 PAGE

DOS 3.20 (038-N) IICS-51 MACRO ASSEMBLER, V2.2
OBJECT MODULE PLACED IN SWPORT. OBJ
ASSEMBLER INVOKED BY: C: \AEDIT\ASM51. EXE SliPORT. RCV

LOC OBJ

0000
0000 020036

- 001B
001B 02025C

0023
0023 020282

0033
0033 D200DC

0000
0008
0010

0001
0009
0011

0002
OOOA
0012

LINE

I
2
3

152
153
154
155
156
151
158
159
160
161
162
163
164
165
166
161
168
169
110
111
112
113
114
115
116
171
118
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

SOURCE

$NOMaDSI
SNOSYMBOLS
$NOLIST

~;:e P~~~i~~u~!:;S c~~~n;r;e!~: I~~t!~~t~a tn S~~i~:~~e s~~i~~n p~~t.
~~036g~ugaJ~~HlIihirt~~~h~~;c~~~c~~~i~! m\~~ ~t: f~n~!~i;~~lt~U~~~X
all four ports simultaneously.

To test the receive routines, Wdummy· terminals transmit 00 - FF hex
continually to the PCA. When the hrst byte is received, it is

~~~:~~t:at~nSOihe Iio;~rn~O:~f~!S~g ;:c:f;!dfh;h~ei~';~:. vai~~o~s 
~~Urln:~ i~~~ird v:£~~~sbi~r~r 3 sf~~Sbt~ r~ ~~~:f!:d~omparison Occurs ; 

CRG DOH 
LJIIP INITIALIZE 

CRG OOIBR 
LJIIP RECEIVE_DONE 

bRG 00238 
LJMP SERIAL_PORT 

bRG 0033H 
LJMP RECEIVE 

Timer 1 Overflow - simulates 'RI' interrupt 

Serial port interrupt 

PCA interrupt 

VARIABLES USED BY THE SOFTIIARE SERIAL PORT 

RECEIVE ROUTINE: 
; ---------------
kcv START BIT 0 
RCV-STARTllIrl 
~CV::STARryIor:2 

RCV DONE 0 
RCV-DON~1 
Rev-DONE-2 

kcv-oN- 0-
Rev-Olrl 
RCV::0~2 

BIT 
BIT 
BIT 

BIT 
BIT 
BIT 

-BIT 
BIT 
BIT 

20B.0 
21B.O 
22H.0 

20B.l 
21H.l 
22B.l 

20B.2 
218.2 
229.2 

Indicates start bit has been 
received 

Indicates data byte has been 
received 

Used in IM.in test program to check 
for a received byte 

270531-11 

~ 
"'0 
"'0 m 
Z 
C ->< 

( 

):0 
q:J 
.0. .... 



_. 
MeS-51 HACRO ASSEIIBLER SIiPORT 01/01/80 PAGE I I a 
LOC OBJ LINE SOURCE CR.. 

0030 199 Rev BUF 0 DATA 30R; Software receive 'SBUF' 
0040 200 Rcv-aurl DATA 40B 
0050 201 RCV"l!Or2 DATA SOH 

202 • - -
0031 203 Rev REG 0 DATA 31B; Temporary register for 
0041 204 RCV""REC>1 DATA 41ft; receiving bits 
0051 205 RCIr1!EC>2 DATA 51R 

206 • - -
0032 207 RCV COUNT 0 DATA 32B; Counter for receiving bits 
0042 20B RCV-COUNrl DATA 42H 
0052 209 RCV-COUNr2 DATA 52R 

210 ; - -

gg:~ m ggg~~ g~i~ m g;~~s i~e~~~t r~~~~:~ to check 
0053 213 COUNr2 DATA 53B 

214 • -
0011 215 NEG EDGE EOO liB Two modes of operation for the 
0049 ~l~ ~_QIHER EgO 49B ComparelCapture modules 

0015 218 HALF BIT LOll EOO ISH Balf bit time = 1I5B 
0001 219 BALFI!ITIIIGR EOU 01R-
002C 220 FULLIIIT .. OW EgU 2CB Full bit time = 22CB 
0002 221 FOLL'IITIIIGB EOU 02B 

222 - - 2400 Baud @ 16MBz 
223 
224 
225 

~~~ : INITIALIZATION ROUNTINE I I > 
I\J 228 • ======================a IJI N 229 ~ I

~ 0036 75815F 230 INITIALIZE: HOV SP, 15FB I Initialize stack pointer ~
231 ; (specific to the test program)

0039 75D900 232 INIT PCA: MOV eKOD, 100H ; Increment PCA clock @ 1/12 Osc Freq
003C 75D800 233 - I!OV CCON, 100B ; Clear all status flags
003F 75DAlI 234 HOV CCAPMO, lNEG EDGE ; Module 0 in Neg-edge capture mode (PI. 31
0042 75DBlI 235 HOV CCAPM1, INEC>EDGE ; Module l' IPl.4
0045 75DClI 236 HOV CCAPM2, INEC>EDGE ; Module 2' PI. 5

237 -
0048 75E900 238 MOV CL, ,OOH
004B 75F900 239 HOV CH, 100H
gg~f m:D8 m ~g~BI~R IOD8B ; ~~;i~~i~b.n~~~~~e~nterruPt: EA,EC,ES,ETI

242 I
0053 759850 243 INIT SP: HOV SCON. ,50H Serial port in mode 1 (8-Bit UART)
0056 75CBFF 244 - HOV RWlH, 10FFH Reload values for 9600 Baud @ 16 MHz
0059 75CACC 245 MOV RCAP2L, 10CCR
005C 75CB34 246 HOV T2CON, 134H Timer 2 as a baud-rate generator,

247 turn on timer 2
248 ;

OOSF C200 249 INIT FLAGS: CLR Rev START BIT 0
0061 C208 250 - CLR RCV-STARTIIIT-l
0063 C210 251 eLR RCV-ST'>.RrBIr2

252 - --
0065 C201 253 CLR RCV_DONE_O

270531-12

I):>
I\)
w
I\)

IICS-51 MACRO ASSEllBLER SHPI)RT 01/01/80 PAGE

LOC OBJ

0067 C209
0069 C211

0068 C202
006D C20A
006F C212

0071 D2B2
0073 02B3
0075 D2B4

0077 02B5
0079 0286
007B D2B7

0070 753000
0080 754000
0083 755000

0086 753200
0089 754200
008C 755200

OOaF 753100
0092 754100
0095 755100

0098 753300
0098 154300
009E 755300

00A1 300209
OOM E530
00A6 B5331E
DOA9 C202
OOAB 05H

OOAD 300A09
00110 &540
00B2 B54319
00B5 C20A
0087 0543

00B9 3012E5
OOBC E550
008E B55314

LINE SI)VRCE

254
255
256
257
258
259-
260
261
262
263

_ 264
265
266
267
268
269
270
271
272
2Tl
274
275
216
277
278
279-
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
30S
306
307
308

CLR -RCV DONE 1
CLR RCV::DONE:2

CLR-RCV ON 0
CLR RCv-ON"'l
CLR RCV::O~2

Port 3 pins used in test program for error routines

llain proqram:
SETB P3.2 i Error in comparison on module 0
SETB Pl.3 ; Error in comparison on module 1
SETB P3.4 ; Error in comparison on module 2

Interrupt Iout~~i~: P3. 5
SErB P3.6
SETS P3.7

MOV RCV BUF 0, ,OOH
MOV RC"VBVrl, 'DOH
MOV Rcv:aUr:2, tOOH

1I0V RCV COUNT 0, lOOH
MOV RC1rCOUNrI, 100H
MOV RCV:C0VNr:2, 'DOH

HOV RCV BEG 0, 'DOH
MOV lICV"llEG""l, 'DOH
MOV Rcv:HE~2, 'DOH

IIOV COUNT 0, 'DOH
HOV COVNrl, t008
MOV COUNr:2, tOOH

Error in reception on module 0
Error in reception on module 1
Error in reception on module 2

MAIN nSf ROUTINE - BECEIVE BITS

CHEC!(_O:

~HECK_I:

b!ECK_2:

~ ~CVRg}g6rC~ECK_1
CJNE t COUNr 17, ERRORO
CLR RCV ON 0 -
INC COUNT_V

~ ~~R~ CfEc!(_2
CJNE A, COUNT !, ERROR1
CLR RCV ON 1 -
INC COUIIT_!

JNB RCV ON 2, CHEc!(If
IIOV A, RCV-BVF 2 -
CJNE A, COUNT _'2, ERROR2

Main proqram continually checks
each channel for a recel ved byte.

e~~~ ~h~Y~~r~:n~·;:1~:dtn i~h~s .ggWr;ed
register

270531-13

l

J>
m ;.. ..

IICS-51 IlACRO ASSEIIBLER SHPORT

LOC OBJ LINE SOURCE

OOCI C212 309
00C3 0553 310
DOCS 800A 311

312
~RRORO: 00C7 C2B2' 313

00C9 750AOO 314
OOCC 800f 315

316
ERRORI : OOCE C2B3 317

DODO 750BOO 318
0003 80E4 319

320
~RROR2: 0005 C2B4 321

0007 750COO 322
OODA 80C5 323

324
325
326
327 i
328 ,
329

hCEIVE: OODC COED 330
OODE CODO 331

332
OOEO 200811 333
00E3 200908 334
00E6 200AOB 335
00E9 DODO 336

I\) OOEB ODED 337
~ OOEO 32 33B
(.,) 339

~UHP 1: (.,) OOEE 02016C 340
OOFI 020lE4 341 JUIIP-2:

342 -
343
344
345
346 ;
347

hOOULE_O: 00F4 C208 348
00F6 E50A 349
00F8 547F 350
OOFA B41115 351

352
OOFO C3 353
OOFE 7415 354
0100 25EA 355
0102 FsEA 356
0104 7401 357
0106 35fA 358
0108 F5FA 359
010A 75DA49 360

361
0100 DODO 362
OlaF DOEO 363

CLR" RCV ON 2
INC COUIIT Z
JIIP CHECK:O

CLR P3.2
~~ g~~~~~1 lOOH

CLR P3.3
MOV CCAPMl L 10 OH
JIIP CHECK_l

CLR P3.4
~ g~~~~~6 100H

01/01/80 PAGE

Error in comparison on module
Discontinue receiving bytes

Error in comparison on module 1

Error in comparison on module 2

PCA INTERRUPT ROUNTINE - RECEIVE BITS

PUSH ACC
PUSH PSH

JB CCFO, MODULE a
JB CCFl, JUMP 1-
JB CCF2, JUIIP-2
POP PSII -
POP ACC
RETI

LJIIP MODULE 1
LJIIP MODULE:2

CHANNEL 0

CLR CCFO
MOV A, CCAPMO
ANL A, 101111111B
CJNE A, INEG _EDGE, RCV _START _ 0

CLR C
MOV A, 'HALF BIT LON

~g~ ~bJ~t~O~ -
~Xch., '~~~uaIT_HIGH
MOV CCAPOH, A
MOV CCAPMO, IS_H_TIMER

POP PSI!
POP ACC

Check which module caused
PCA interrupt and jump to
appropriate routine

Reception on module a
Check mode of module. If set up to
receive negative edges, then module
is waiting for a start bit

Update Compare/Capture registers for
half a bit time
to sam~le start bit
Half blt time' 115H

Reconfigure module 0 as
a software timer to sample bits

270531-14

l

»
til
I

0l:Io

--
MCS-51 MACRO ASSEMBLER SWPORT 01101/80 PAGE

I I cf LOC OBJ LINE SOURCE

0111 32 364 RETI
365 kcv START 0, 0112 B44948 366 CJNE A, 'S _Ii _ TIKER, ERROR _0 Check module is configured
367 - - as a software timer, otherwise errOl.

0115 20001A 368 JB RCV_START_BIT_O, RCV_BYTE_O Check if start bit
369 has been Ieee i ved yet

0118 209345 370 JB Pl.3, ERROR_O Check that start blt • 0,
371 otherwise. error.

OllB 0200 372 SETB RCV_START_BIT_O Signify valid start bit
313 was Ieee! ved

0110 153209 374 MOV RCV_COUNT_O, '09B Start counting bits sampled
315

0120 C3 316 CLR C Update C/C registers to sample
0121 742C 377 HOV A, 'FULL BIT LOW i~~~m~~~ ~t~ . 22CH 0123 25EA 378 ~g~ ~~~ijEO~ -0125 F5EA 379
0127 1402 380 ~g~cAA '~gk¥l1~IT_HIGH 0129 35FA 381
0128 F5FA 382 MOV CCAPOH, A
0120 0000 383 POP PSI!
012F OOEO 384 POP ACC
0131 32 385 RETI

386
~CV BUE 0, 0132 053212 387 DJNZ RCV_COUJIT_O, RCV_DATA 0 On 9th sample, check for

388 - - valid stop bit
0135 309328 389 RCV STOP 0, ~~ ~~3BU~R~?RR~ REG ° 0138 853130 390 - - ~r~; ;g~~~ v:.gd~r;e r!ge~~;ai ~e b;~:UF' 013B 0201 391 SETB RCV OOIlE_O - -

I I
;s..

~
0130 D28F 392 SETB TFl- Generate an interrupt so main program

393 ~~g;~, a s~r~~t~g~ ~rMer:i~~gitrary) a:I
(,J 394

HOV CCAPMO, 'NEG EDGE
I

./>. 013F 150All 395 Reconfigure module 0 for next "" 0142 DODO 396 POP PSI! - reception of a start bit ...
0144 OOEO 397 POP ACC
0146 32 398 RETI

399 kcv DATA 0, 0147 A293 400 MOV C, Pl.3 ~~Twg~t~a~~r~~~~ CY into ACC 0149 E531 401 - - ~g~, RCV_REG_O
014B 13 402
014C F531 403 HOV RCV_REG_O, A Save each reception in temporary

404 register
014E C3 405 CLR C
014F 142C 406 HOV A, 'FULL BIT LOll Update C/C register for next
0151 25EA 401 ~~ ~~A~~PO~ -

sample time
0153 F5EA 408
0155 7402 409 MOV A, 'FuLL BIT HIGH
0157 35FA 410 ADDC A, CCAP1JB -
0159 F5FA 411 HOV CCAPOH, A
0158 DODO 412 POP PSW
015D DOEO 413 POP ACe
015r 32 414 RETI

415
hROR 0, 0160 C2B5 416 CLR P3.5 Error routine for invalid start or

417 - stop bit or invalid mode comparison

270531-15

_.
IICS-51 KACRO ASSEMBLER SKPORT 01lf1/80 PAGE I I a
LOC OBJ LI~E SOURCE CR..

418 ; Port pin used for debug only gm tml1 m ~~ ~g¢P~~AA~N~YTEgGE ; m:~ m~!ev~~C~o~g~~'b:;:rge~~\et
0161 DODO. 421 POP PSW- --
0169 00&0 422 POP ACC
016B 32 423 RETI

424
425
426 CHANNEL 1
421
428 ,

016C C2D9 429 KODULE I: CLR CCFl Similar to module 0
016E E50B 430 - IIOV A, CCAPKI 8m ~m15 m ~~~ll, '~iW~, RCV START 1

433 - --
0115 C3 434 CLR C
0116 1415 435 HOV A, 'HALF BIT LOll 8m ~~g m ~~ aJiflf -
Ol1C 1401 438 MOV A, 'HALF BIT HIGH 8m i~?a m ~~c~r~~AH -
0182 150849 441 NOV CCAPMl, IS II TIMER
0185 0000 442 PDP PSI! - -
0181 ODED 443 POP ACC

0189 32 m, RETI I I
I\) 018A 84494B 446 Rev START 1: CJNE A, 'S II TlKER, ERROR 1 :::; ro 0180 20081A 441 - - JB Rev STARTI!IT I, RCV BYTE 1 ... ffl 0190 209445 m JB Pl."" ERROR_l- - - ~

0193 0208 450 SETB Rev START BIT 1
0195 154209 1~~ HOV Rev_COUNT_I, '119H

0198 e3 453 eLR C
0199 142C 454 MOV A, 'FULL BIT LOll
019B 25EB 455 ADD A, CCAPlI; -

m~ m~ m ::g~ ~?1~5LLABIT HIGH 8m m= m ~~cc~Apr~~AH -
01A5 DODO 460 POP PSII
01A1 ODED 461 POP ACC
01A9 32 462 RETI

463 ,
DIM D542l2 lt~ ~CV_BYTE_l: OJNZ Rev_COUNT_l, RCV_OATA_1

01AD 309428 466 Rev STOP 1: JNB Pl.4, ERROR 1
OlBO 854140 461 - - HOV RCV BUF 1, Rev REG 1
01B3 0209 468 SETB Rev DONE 1 - -
01B5 D28F 469 SETB TFl- -
01B1 75DB11 410 HOV CCAPKl, 'NEG EDGE
01BA DODO 471 POP PSW -
01 BC DDEO 472 POP ACC

270531-16

HCS-51 MACRO ASSEMBLER

LOC OBJ LINE

OIBE 32 413
474

O}BF A294 415
01Cl E541 416
01C3 13 . 471
01C4 F54l 478

479
01C6 C3 480
01C1 742C 481
0lC9 25EB 482
OICB F5EB 483
OICD 7402 484
OlCF 35FB 485
0101 F5FB 486
0103 DODO 487
0105 DOEO 488
0101 32 489

490
0108 C2B6 491
OloA 75DBll 492
0100 C20B 493
01DF DODO 494
OIEI OOEO 495
0lE3 32 496

491
498
499

I\J
500
SOl

N 502
Co) 503
m 0lE4 C20A 504

0lE6 ESDC 505
0lE8 541F 506
OlEA B41115 501

508
OlEO C3 509
OIEE 1415 510
OIFO 25EC 511
0lF2 FSEC 512
0lF4 1401 513
0lF6 35FC 514
0lr8 F5rc SIS
01FA 15OC49 516
01FD DODO 517
01FF oOEO 518
0201 32 519

520
0202 84494B 521
0205 2010lA 522
0208 209545 523

524
020B 0210 525
0200 755209 526

521

SIIPORT

SOURCE

Rev DATA I, - -

ERROR I, -

~OOULE 2, -

Rev START 2, - -

RETI

MOV C, Pl.4
~~ ~, RCV_REG_I

HOV RCV_REG_I, A

CLR C
MOV A, 'FULL BIT LON

~g~ ~I:A~It:I~ -
MOV A, 'FULL BIT HIGH
AoOC A, CCAPTH -
MOV CCAPIH, A
POP PSII
POP ACC
RETI

CLR Pl.6
MOV CCAPHI, tNEG EDGE
CLR RCV START BIT 1
POP PSII'" -­
POP ACC
RETI

CHANNEL 2

CLR ccr2
MOV A, CCAPMl
ANL A, ,01111111B
CJNE A, 'NEG_EoGE, RCV_START_2

CLR C
HOV A, 'HALF BIT LOll

~g3 ~CA~~2~ -
MOV A, 'OALF BIT HIGH
ACoC A, CCAPZ8 -
MOV CCAP2H, A . ~g~ ~~QPM2, IS_II_TIllER

POP ACC
RETI

CJNE A, IS II TIllER, ERROR 2
~~ ~r~s~T~~~~~~_2, RCV_BYTE_2

SETB RCV START BIT 2-
HOV RCV _COUNT _ Z, '11'90

01/01/80 PAGE

Similar to module 0

270531-17

(

»
q:J

""

I\J

~
-..J

MCS-51 MACRO ASSEMBLER

LOC OBJ

0210 C3
0211 742C
0213 25EC
0215 F5EC
0217 740t
0219 35FC
021B F5FC
0210 DODO
021F OOEO
0221 32

0222 055212

0225 309528
0228 855150
022B 0211
0220 028F
022F 75DC11
0232 DODO
0234 OOEO
0236 32

0237 A295
0239 E551
023B 13
023C F551
023E C3
023F 742C
0241 25EC
0243 F5EC
0245 7402
0247 35FC
0249 F5FC
024B DODO
0240 ODED
024F 32

0250 C2B7
0252 750C11
0255 C210
0257 DODD
0259 OOEO
025B 32

025C CO EO
025E CO DO
0260 C28F

LINE

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

. 548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
561
568
569
510
51\
512
513
514
575
576
511
518
519
580
581
582

SIiPORT

SOURCE

kcv BYTE 2:

kCV=STOP=2:

RCV_DATA_2:

ERaOR_2:

CLR C
MOV A, 'FULL BIT LOll

~g~ ~1:A~~tt'2~ -
MOV AI. 'FuLL BIT HIGH
~g~c CCJ.p~~~~H -
POP PSH
POP ACC
RETI

OJNZ RCV_COUNT_2, RCV_OATA_2

JNB P1.5, ERROR 2
~~~l~~BgbR~' lCV_REG_2 
SETB TFr -
HOV CCAPM2, 'NEG EDGE 
POP PSH -
POP ACC 
RETI 

HOV C, Pl.5 
HOV A, RCV REG 2 
RRC A --
~~ ~CV_REG_2, A 

HOV A, 'FULL BIT LOil 
ADD A, CCAP 2'[; -

=g~ i;Aj~~tL \IT HIGH 
AODC A, CCAP2H -
MOV CCAP 2H, A 
POP PSH 
POP Ace 
RETI 

CLR P3.1 
MOV CCAPM2, 'NEG EDGE 
CLR RCV START BIT 2 
POP PSlf'" -­
POP ACC 
RETI 

01/01/80 

; This routine simulates the ·RI- interrupt. When a byte is received on one 
~~un~e C~~~~:l:~i~ti~h~~~:i[~~~el:eae~e~~~:~. Bits ate set so the main 

, 
; , 
kECEIVE_DONE: PUSH ACe 

PUSH PSli 
CLR TFI 

PAGE 

270531-18 

l 

» 
m • ~ .... 



N 

~ 
CO 

HCS-51 HACRO ASSEMBLER 

LOC OBJ 

0262 300106 
0265 C201 
0267 C200 
0269 0202. 

026B 300906 
026E C209 
0270 C208 
0272 020A 

0274 301106 
0271 C211 

- 0279 C2l0 
027B 0212 

0270 0000 
027F OOEO 
0281 32 

0282 COED 
0284 COOO 
0286 30980B 
0289 E599 
028B C298 
0280 F599 
028F DODD 
0291 ODED 
0293 32 

0294 C299 
0296 DODO 
0298 ODED 
029A 32 

LINE 

583 
584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
591 
598 
599 
600 
601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 
613 
614 
615 
616 
617 
618 
619 
620 
621 

'622 
623 
624 
625 
626 
627 
628 

REGISTER BANK (5) USED: 0 

SWPORT 

SOURCE 

RCV_l: 

RCV_2: 

hTUHN: 

JNB RCV DONE 0, RCV 1 
CLR RCV-OONE-O -
CLR RCV-STAR! BIT 0 
SETB RCV_ON_O- -

JNB RCV DOllE I, RCV 2 
CLR RCV-DONE-l -
CLR RCV-START BIT 1 
SETB RCV_ON_l- -

JNB RCV DONE 2, RETURN 
CLR Rev-DONE-2 . 
CLR Rev-START BIT 2 
SETB RCV_ON_, -

POP PSi! 
POP Ace 
RET! 

SERIAL PORT IN'rERRUPT 

01/01/80 PAGE 

Check which module Ieceived a byte 
Clear flags needed for next reception 

Tell main routine which channel received 
a byte 

j When a byte is received on the full-duplex serial Jort, it is then 

; £~~~STt t~~~n~~~~t~~ ~o '~~:"'~~A tI~~g:l.a~h~!I~~\ t n~~c~~~~~\~~~~ the 

; 

SERIAL]ORT: 

fXM: 

fND 

POSH ACe 
PUSH PSli 
JNB RI, TXH 
~~X ~I SBUF 
MOV SBUF, A 
POP PSII 
POP ACC 
RETI 

CLR TI 
POP PSW 
POP ACC 
RETI 

Check whetbeI RI OI TI 
caused the interrupt 

ASSEMBLY CO/olPLETE, NO ERRORS FOUND 

270531-19 

( 

~ m . 
"" .... 



f\) 

N w 
<0 

MeS-51 MACRO ASSEMBLER SWPORT 01/01/80 PAGE 

DOS 3.20 (038-N) MeS-51 MACRO ASSEMBLER, V2.2 
OBJECT MODULE PLACED IN SWPORT.OBJ 
ASSEMBLER INVOKED BY: C: IAEDITIASM51.EXE SWPORT. TR 

LOC OBJ 

0000 
0000 020036 

0023 
0023 02014B 

0033 
0033 0200DO 

0003 
OOOB 
0013 

0004 
00 DC 
0014 

0034 
0044 
0054 

0035 
0045 
0055 

0036 
0046 
0056 

0037 
0041 

LINE 

1 
2 
3 

152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
IB4 
185 
186 
187 
IBB 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 

SOURCE 

INOMOD51 
NOSYMBOLS 
NOLIST 

This ll[ogram tests the transmit routines for the software serial port. 
To inItialize the first transmission, the compare values are loaded before 
the peA timer is started. Successive interrupts are generated every bit 
time by the software timer. 

For test purposes, the data transmitted increments from 00 to FF hex. 
-Dummy· termInals receive these bytes and display the bytes as they 
are incremented. 

, 
6RG DOH 
LJHP INIT_TXM 

6RG 0023H 
LJHP SERIAL PORT 

6RG 0033H -
LJHP TRANSMIT 

fxH START BIT 0 
TX~START"Hrl 
TXICSTART:BIT:2 

TXM IN PROGRESS 0 
TX~IN"'ROGRESS-l 
TXICIDROGRESS:2 

hH BUF 0 
TX~BUrl 
TXICBUC 2 

fxH REG 0 
TX~RE<>1 
TXICREG:2 

TxM COUNT 0 
TXH-COUNT-l 
TXM:COUNT::2 

6ATA 0 
DATA:l 

Serial port interrupt 

peA software timer interrupt 

VARIABLES USED BY THE SOFTWARE SERIAL PORT 

BIT 20H.3 Indicates start bit has been 
BIT 21H.3 transmitted 
BIT 22H.3 

BIT 20H.4 Indicates transmit is in progress 
BIT 21H.4 
BIT 22H.4 

DATA 34H Software transmit -SBUF-
DATA 44H 
DATA 54H 

DATA 35H Temporary register for 
DATA 45H transmitting bits 
DATA 55H 

DATA 36H Counter for transmitting bits 
DATA 46H 
DATA 56H 

DATA 37H Register used for the test 
DATA 47H program 

270531-20 

cl 

» 
m . 
~ .... 



HCS-51 MACRO ASSEHBLER SWPORT 

LOC OBJ LINE SOURCE 

0057 199 DATA 2 
200 -

0049 201 ~ W TIMER 
202 - -

002C 203 FULL BIT LOW 
0002 204 FULL-BITI!IGH 

205 - -
206 
207 
208 
209 

{NIT TXH: 0036 75815F 210 
211 -

0039 150900 212 
003C 750800 213 
003F 75F900 214 
0042 15E900 215 
0045 750049 216 

211 
0048 15A8D8 218 

219 
004B 159850 220 IN IT SP: 
004E 15CBFF 221 -
0051 15CACC 222 

I\J 0054 15C834 223 
N 224 

""" 
225 

iNIT FLAGS: 0 0051 C203 226 
0059 C20B 221 -
005B C213 228 

229 
0050 C204 230 
005F C20C 231 
0061 C214 232 

233 
0063 153400 234 
0066 154400 235 
0069 155400 236 

231 
006C 153500 238 
006F 154500 239 
0012 755500 240 

241 
0015 153600 242 
0078 754600 243 
007B 755600 244 

245 
007& 7537FF 246 
0081 7547FF 241 
0084 7557FF 248 

249 
0087 75E02C 250 
008A 75FD02 251 
0080 020E 252 

253 

DATA 

EQU 

EOU 
EOU 

INITIALIZATION 

HOV SP, 15FH 

HOV CHOD, lOOH 

Wo~ g~~N~O~~OH 
HOV CL, lOOH 
HOV CCAPH3, IS_W_TlHER 

HOV IE, lOD8H 

~g~ ~m~H~5~gFFH 
HOV RCAP2L, lOCCH 
HOV T2CON, f34H 

CLR TXM START BIT 0 
CLR TXtrSTARTI!IT-1 
CLR TXICSTART:BlT:2 

CLR TXM IN PROGRESS 0 
CLR TXtrIN-PROGRESS-1 
CLR TXICIN~ROGRESS:2 

MOV TXM BUF 0, lOOH 
MOV TXtrBU,l, lOOH 
HOV TXICBUr:2, lOOH 

MOV TXM REG 0, lOOH 
MOV TXtrREb"l._ lOOH 
HOV TXICRE~2, lOOH 

MOV TXH COUNT 0, lOOH 
MOV TxtrCouNrl, lOOH 
HOV TXH:COUNT:2, lOOH 

HOV DATA 0, JOFFH 
HOV DATA-I, JOFFH 
HOV DATA:2, 10FFH 

HOV CCAP3L, 12CH 
HOV CCAP3H, 102H 
SETB CR 

57H 

49H 

2CH 
02H 

01/01/80 PAGE 

Software timer mode for the 
~~Tla~r{C~l~C~ 22g~le 
2400 Baud at 16 HHz 

(Compatible with receive routines) 

Increment PCA timer @ 1/12 osc. freq. 
Clear all status flags 

Module 3 configured as software timer 

Initialize all needed interrupts 

Serial port in mode 1 (a-bit UART) 
Reload values for 9600 Baud @ 16 MHz 

Timer 2 as a baud-rate generator, 
turn Timer 2 on 

Cause the first software timer to 
interrupt one bit time after 
peA timer is started 

270531-21 

cl 

):00 
m 

I 
~ .... 



MCS-51 HACRO ASSEMBLER SWPORT 

LOC OBJ LINE SOURCE 

254 
255 
256 ; 
251 

fIRST_TXM: 008F 02009D 258 
259 

~IN TXM: 0092 300408 260 
0095 300C16 261 -
0098 301424 262 
009B 80F5 263 

264 ; 
265 

TIM ON 0: 009D C203 266 
009F 0531 261 - -
OOAI 853134 268 
OOM 853435 269 
00A1 153609 210 
OOM D204 211 
OOAC 80E4 212 

273 
fxM_ON_l: OOAE C20B 274 

OOBa 0541 275 
00B2 854744 276 

I\:) 
00B5 854445 277 
00B8 154609 278 

'" OOBB D20C 279 ::: OOBD 80D3 280 
281 

fXM_ON_2: OOBF C213 282 
OOCI 0551 283 
00C3 855754 284 
00C6 855455 285 
00C9 155609 286 
OOCC D214 281 
OOCE 80C2 288 

289 
290 
291 
292 
293 

fRANSMIT: 0000 COED 294 
0002 COOO 295 
0004 C20D 296 
0006 30041E 297 

298 
299 
300 
301 
302 

0009 200301 303 TRANSMIT 0: 
304 -

oooe e2B2 305 
OODE 0203 306 
ODED 0200n 301 

308 

01/01/80 PAGE 

HAIN TEST ROUTINE - TRANSMIT BITS 

JHP T)'M_ON_O 

JNB TXM IN PROGRESS 0, TXM ON 0 Determine if ready to send 
JNB TXtrINt>ROGRESS-l, TXtrO"l next byte. (Le. transmit 
JNB TXtrINt>ROGRESS-2, TXtrON-2 'not' in pro~ress) 
JHP HAIR_TIM - - - Waiting for TI' flag 

eLR TXM START BIT 0 
INC OATlt 0 - -
MOV TXM BUr 0, DATA 0 
MOV TXtrREG""O, TXM Bur 0 
HOV TxtreOURT 0, .U9H -
SETB TXII IN PROGRESS 0 
JHP HAIICTXH -

CLR TXM START BIT 1 
INC DATA 1 - -
MOV TXM Bur I, DATA 1 
MOV TXtrREG""l, TXM BUr 1 

~~B T~fRC~gw~R~GJ~~H 1-
JMP HAIN:TXH -

CLR TXM START BIT 2 
INC OATlt 2 - -
HOV TXM BUr 2, DATA 2 
HOV TXtrREG""2, TXM BUr 2 
~B T~fRc~gwM/;J~~H2-
JMP HAIICTXII -

~~:~~mf!:ro~rom previous 
Load 'SBur' with data byte 

8 data bits + 1 stop bit 

PCA INTERRUPT ROUTINE - TRANSMIT BITS 

PUSH ACC 
PUSH PSII 
CLR CCF3 
JNB TXH_IN]ROGRESS_O,TRANSHIT 1 

CHANNEL 0 

JB TXM_START_BIT_O, TXM_BYTE_O 

CLR P3.2 
SETB TXH START BIT 0 
JHP TRANSMIT_J- -

Clear s/v timer interrupt 
; Check which channel is 
transmitting 

If start bit has been sent, 
continue transmitting data bits, 
otherwise transmit start bit 
Signify start bit sent 
Check next transmit pin 

270531-22 

( 

» 
aJ 
I 

""" ... 



HCS-51 MACRO ASSEMBLER SIIPORT 

LaC OBJ LINE SOURCE 

00E3 053601 309 TXM B~TE 0: 
310 --

00E6 02B2 311 TXM STOP 0: 
00E8 C204 312 --

313 
OOEA 0200F1 314 

315 i 
OOEO E535 316 TXM DATA 0: 
OOEF 13 311 --
OOFO 92B2 318 
00F2 F535 319 
00F4 0200n 320 

321 ; 
322 ; 
323 i 
324 i 

00F1 300CI! 325 TRANSMIT 1: 
OOFA 200B07 326 -
OOFD C2B3 321 
DOFF D20B 328 
0101 020118 329 

330 i 
0104 054601 331 TXM BYTE 1: 

332 ,- -
I\) 0107 D2B3 333 TXM STOP 1: 
, 0109 C20C 334 --
~ 010B 020118 335 
I\) ill i 

010E E545 331 TXM DATA 1: 
0110 13 338 --
0111 92B3 339 
01U F545 340 
Oll5 020118 341 

342 
343 
344 i 

• M5; 
0118 30141E 346 TRANSMIT 2: 
011B 201301 341 -
011E C2B4 348 
0120 D213 349 
0122 020139 350 

351 , 
0125 D55607 352 TXM BYTE 2: 

353 ; - -
0128 D2B4 354 TXM STOP 2: 
012A C2l4 355 --
012C 020139 356 

357 i o 12F E555 358 TXM DATA 2: 
OIlI 13 359 --
0132 92B4 360 
0114 F555 361 
0136 020139 362 

363 

OJNZ TXM_COUNT_O, TXM_DATA_O 

SETB P3.2 
CLR TXM_IN_PROGRESS_O 

JHP TRANSMIT_I 

HOV A, TXM REG 0 
RRCA --
HOV P3.2, C 

~.J mll~¥T~i A 
CHANNEL 1 

01/01/80 PAGE 

If bit count eguals I thru 9, 
Transmit data tiits (8 total) 
When bit count = D( transmit stop bit 
Indicate transmisSlon is finishea and 

~~:~I !~~t n~~~n~~I~ pin 

Transmit one bit at a time 
through the carry !>it 

Save what I s not been sent 
Check next transmit pin 

JNB TXM IN PROGRESS 1, TRANSMIT 2 ; 
~l~-;~TART_BIT_l, -TXM_BYTE_I -

Similar to TRANSMIT_O 

SETB TXM START BIT 1 
JHP TRANSMIT_a- -

OJNZ TXM_COUNT_I, TXM_DATA_I 

SETB Pl.3 
CLR TXM IN PROGRESS 1 
JHP TRAlISMIT _ 2 -

HOV A, TXM REG 1 
RRCA --
MOV P3.3, C 

~ ~~M~¥T~~ A 

CHANNEL 2 

:::BTi~KSiMR~~~~~XHT~MXF i Similar to TRANSMIT_O 
CLR P374 - - --
SETB TXM START BIT 2 
JHP TXM_EXIT - -

DJNZ TXM _COUNT _2, TXM _DATA _2 

SETB P3.4 
CLR TXM IN PROGRESS 2 
JHP TXJCEXIT -

~~ ~, TXM_REG_2 

HOV P3.4, C 
HOV TXM REG 2, A 
JHP TXICEXIT 

270531-23 

l 

l> 
OJ .;.. ... 



* 

MCS-51 MACRO ASSEMBLER 

LOC OBJ 

0139 C3 
013A 742C 
013C 25Eo 
OI3E F5Eo 
0140 7402 
0142 35FD 
0144 F5Fo 
0146 DODO 
0148 ODED 
OHA 32 

014B COED 
0140 COOO 
OHF 30980B 
0152 E599 
0154 C298 
0156 F599 
0158 DODO 
015A ODED 
015C 32 

0150 C299 
015F DODO 
0161 ODED 
0163 32 

LINE 

364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
~OO 

REGISTER BANK(S) USED: 0 

SWPORT 

SOURCE 

TXH_EXIT: 

, 

CLR C 
HOV A, 'FULL BIT LOW 

~ge ~CA~~t; 3i -
HOV A, 'FULL BIT HIGH 
AoDC A, CCAP3H -
HOV CCAP3H, A 
POP PSW 
POP ACC 
RETI 

SERIAL PORT INTERRUPT 

01/01/80 PAGE 

Update coml'are value with 
full bit tUIe = 22CH 

; When a byte is received on the full-duplex serial port, it is then 
; transmitted back to -a -dummy· terminal. This terminal checks that 
~ the byte it transmitted to the PCA is the same value it receives back. 

SERIAL PORT: PUSH ACC 

TXK: 

, 
END 

- PUSH PSW 
JNB RI, TXH 
HOV A, SBUF 
CLR RI 
HOV SBUF, A 
POP PSW 
POP ACC 
RETI 

CLR TI 
POP PSW 
POP ACC 
RETI 

Check whether RI or TI 
caused the interrupt 

ASSEMBLY COMPLETE, NO ERRORS FOUND 
270531-24 

( 

~ 
OJ . 
".. ... 



inter 

@ Intel Corporation, 1988 

APPLICATION 
NOTE 

83C51FA/FB 
PCA Cookbook 

. . BETSY JONES 
ECO APPLICATIONS ENGINEER 

2-244 

AP-415 

July 1988 

Order Number: 270609-001 



inter AP·415 

This application note illustrates the different functions 
of the Programmable Counter Array (PCA) which are 
available on the 83C51FA and 83C51FB. Included are 
cookbook samples of code in typical applications to 
simplify the use of the PCA. Since all the examples are 
written in assembly language, it is assumed the reader is 
familiar with ASM51. For further information on these 
products or ASM5l refer to the Embedded Controller 
Handbook (Vol. I). 

PCA OVERVIEW 

The major new feature on the 83C51FA and 83C51FB 
is the Programmable Counter Array. The PCA pro­
vides more timing capabilities with less CPU interven­
tion than the standard timer/counters. Its advantages 
include reduced software overhead and improVed accu­
racy. 

The PCA consists of a dedicated timer/counter which 
serves as the time base for an array of five compare/ 
capture modules. Figure I shows a block diagram of 
the PCA. Notice that the PCA timer and modules are 
all 16-bits. If an external event is associated with a 
module, that function is shared with the corresponding 
Port 1 pin. If the module is not using the port pin, the 
pin can still be used for standard I/O. 

-16BITS--

PCA TIMER/COUNTER 

Each of the five modules can be programmed in any 
one of the following modes: 

- Rising and/or Falling Edge Capture 

- Software Timer 

- High Speed Output 

- Watchdog Timer (Module 4 only) 

- Pulse Width Modulator. 

All of these modes will be discussed later in detail. 
However, let's first look at how to set up the PCA 
timer and modules. 

PCA TIMER/COUNTER 

The timer/counter for the PCA is a free-running 16-bit 
timer consisting of registers CH and CL (the high and 
low bytes of the count values). It is the only timer 
which can service the PCA. The clock input can be 
selected from the following four modes: 

. oscillator frequency -;- 12 (Mode 0) 

- oscillator frequency -;- 4 (Mode 1) 

'- Timer 0 overflows (Mode 2) 

- external input on P1.2 (Mode 3) 

- 16 BITS EACH ..... 

MODULE 0 P1.3 

MODULE 1 PIA 

MODULE 2 P1.5 

MODULE 3 P1.6 

MODULE 4 Pl.7 

270609-1 

Figure 1. PCA Timer/Counter and Compare/Capture Modules 

2-245 



inter AP-415 

The table below summarizes the various clock inputs for each mode' at two common frequencies. In Mode 0, the 
clock input is simply a machine cycle count, whereas in Mode 1 the input is clqcked three times faster. In Mode 2, 
Timer 0 overflows are counted allowing for a range of slower inp~ts to the timer. And finally, if the input is external 
the PCA timer counts I-to-O transitions with the maximum clock frequency equal to 1/. x oscillator frequency. 

Table 1. PCA Timer/Counter Inputs 

PCA Timer/Counter Mode 
Clock Increments 

12MHz 16 MHz 

Mode 0: fosc 112 1 p.sec 0.75 p.sec 

Mode 1: fosc 14 330 nsec 250 nsec 

Mode 2*: Timer 0 Overflows 
Timer 0 programmed in: 
B-bitmode 256 p.sec 192 p.sec 
16-bit mdoe 65 msec 49 msec 
B-bit auto-reload 1 to 255 p.sec 0.75 to 191 p.sec 

Mode 3: External Input MAX 0.66 p.sec 0.50 p.sec 

"In Mode 2, the overflow interrupt for Timer 0 does not need to be enabled. 

Special Function Register CMOD contains the Count Pulse Select bits (CPS! and CPSO) to specify the PCA timer 
input. This register also contains the ECF bit which enables an interrupt when the counter overflows. In addition, 
the user has the option of turning ofT the PCA timer during Idle Mode by setting the Counter Idle bit (CIDL). This 
can further redl!ce power consumption by an additional 30%. . 

CMOD: Counter Mode Register 

I CIDL I WOTE I 
Address = 009H 
Not Bit Addressable 

NOTE: 

CPS1 CPSO ECF 

Reset Value = OOXX XOOOB 

The user should write Os to unimplemented bits. These bits may be used in future MeS-51 products to invoke new features, 
and in that case the inactive value of the new bit will be O. When read, these bits must be treated as don't-cares. 

Table 2 lists the values for CMOD in the four possible timer modes with and without the overflow interrupt enabled. 
This list assumes that the PCA will be left running during Idle Mode. 

Tabie 2. CMOD Values 

PCA Count Pulse Selected CMODvalue 

without interrupt enabled with interrupt enabled 

Internal clock, Fosc/12 OOH 01 H 

Internal clock, Foscl 4 02H 03H 

Timer 0 overflow 04H 05 H 

External clock at P1.2 06H 07H 

2-246 



AP-415 

The CCON register shown below contains the Counter Run bit (CR) which turns the timer on or off. When the PCA 
timer overflows, the Counter Overflow bit (CF) gets set. CCON also contains the five event flags for the PCA 
modules. The purpose of these flags will be discussed in the next section. 

CCON: Counter Control Register 

I CF I CR I CCF4 CCF3 CCF2 CCF1 CCFO 

Address = 008H 
Bit Addressable 

Reset Value = OOXO OOOOB 

The PCA timer registers (CH and CL) can be read and written to at any time. However, to read the full 16-bit timer 
value simultaneously requires using one of the PCA modules in the capture mode and toggling a port pin in software. 
More information on reading the PCA timer is provided in the section on the Capture Mode. 

COMPARE/CAPTURE MODULES 

Each of the five compare/capture modules has a mode register called CCAPMn (n = 0, 1,2,3,or 4) to select which 
function it will perform. Note the ECCFn bit which enables an interrupt to occur when a module's event flag is set. 

CCAPMn: Compare/Capture Mode Register 

I I ECOMn I CAPPn I CAPNn 

Address = OOAH (n = 0) 
OOBH (n= 1) 
OOCH (n=2) 
OOOH (n=3) 
OOEH (n=4) 

MATn TOGn PWMn ECCFn 

Reset Value = XOOO OOOOB 

Table 3 lists the CCAPMn values for each different mode with and without the PCA interrupt enabled; that is, the 
interrupt is optional for all modes. However, some of the PCA modes require software servicing. For example, the 
Capture modes need an interrupt so that back-to-back events can be recognized. Also, in most applications the 
purpose of the Software Timer mode is to generate interrupts in software so it would be useless not to have the 
interrupt enabled. The PWM mode, on the other hand, does not require CPU intervention so the interrupt is 
normally not enabled. 

Table 3. Compare/Capture Mode Values 

Module Function 
CCAPMn Value 

without interrupt enabled with interrupt enabled 

Capture Positive only 20H 21 H 

Capture Negative only 10H 11 H 

Capture Pos. or Neg. 30H 31 H 

Software Timer 48H 49H 

High Speed Output 4CH 40H 

Watchdog Timer 48 or4C H -
Pulse Width Modulator 42H 43H 

2-247 



AP·415 

It should be mentioned that a particular module can change modes within the program. For example, a module -
might be,used to sample incoming data. Initially it could be set up to capture a falling edge transition. Then the same 
module can be reconfigured as a software timer to interrupt the CPU-at regular intervals and sample the pin. 

Each module also has a pair of 8-bit compare/capture registers (CCAPnH, CCAPnL) associated with it. These 
registers are used to store the time when a capture event occurred or when a compare event should occur. Remem­
ber, event times are based on the free-running PCA timer (CH and CL). For the PWM mode, the high byte register 
CCAPnH controls the duty cycle of the waveform. 

When an event occurs, a flag in CCON is set for the appropriate module. This register is bit addressable so that event 
flags can be checked individually. 

CCON: Counter Control Register 

I CF I CR 1 

Address = 008H 
Bit Addressable 

CCF4 CCF3 CCF2 CCF1 CCFO 

ResetValue = OOXO OOOOB 

These five event flags plus the PCA timer overflow flag share an interrupt vector as shown below. These flags are not 
cleared when the hardware vectors to the PCA interrupt address (OO33H) so that the user can determine which event 
caused the interrupt. This also allows the user to defme the priority of servicing each module. 

cr~ -
ccrn ~ PCA INTERRUPT 

5 
270609-2 

Figure 2. PCA Interrupt 

An additional bit was added to the Interrupt Enable (IE) register for tlie PCA interrupt. Similarly, a high priority bit 
was added to the Interrupt Priority (IP) register. 

IE: Interrupt Enable Register 

I EA 1 EC 1 ET2 ES ET1 EX1 ETa I- EXO 

Address = OA8H 
Bit Addressable 

IP: Interrupt Priority Register 

I 1 PPC 1 PT2 

Address = OB8H 
Sit Addressable 

PS PT1 

Reset Value = 0000 OOOOS 

PX1 PTa PXO 

Reset Value = XOOO OOOOB 

Remember, each of the six possible sources for the PCA interrupt must be individually enabled as well-in the 
CCAPMn register for the modules and in the CCON register for the timer. 

2-248 



inter AP-415 

CAPTURE MODE 

Both positive and negative transitions can trigger a cap­
ture with the PCA. This allows the PCA flexibility to 
measure periods, pulse widths, duty cycles, and phase 
differences on up to five separate inputs. This section 
gives examples of all these different applications. 

Figure 3 shows how the PCA handles a capture event. 
Using Module 0 for this example, the signal is input to 
PJ.3. When a transition is detected on that pin, the 16-
bit value of the PCA timer (CH,CL) is loaded into the 
capture registers (CCAPOH,CCAPOL). Module O's 
event flag is set and an interrupt is flagged. The inter­
rupt will then be generated if it has been properly en­
abled. 

In the interrupt service routine, the l6-bit capture value 
must be saved in RAM before the next event capture 
occurs; a subsequent capture will write over the first 
capture value. Also, since the hardware does not clear 
the event flag, it must be cleared in software. 

The time it takes to service this interrupt routine deter­
mines the resolution of back-to-back events with the 
same PCA module. To store two 8-bit registers and 
clear the event flag takes at least 9 machine cycles. That 
includes the call to the interrupt routine. At 12 MHz, 
this routine would take less than 10 microseconds. 
However, depending on the frequency and interrupt la­
tency, the resolution will vary with each application. 

INTERRUPT 
SERVICE 
ROUTINE 

Measuring Pulse Widths 

To measure the pulse width of a signal, the PCA mod­
ule must capture both rising and falling edges (see Fig­
ure 4). The module can be programmed to capture ei­
ther edge if it is known which edge will occur first. 
However, if this is not known, the user can select w'hich 
edge will trigger the first capture by choosing the prop­
er mode for the module. 

Listing 1 shows an example of measuring pulse widths. 
(It's assumed the incoming signal matches the one in 
Figure 4.) In the interrupt routine the first set of cap­
ture values are stored in RAM. After the second cap­
ture, a subtraction routine calculates the pulse width in 
units of PCA timer ticks. Note that the subtraction 
does not have to be completed in the interrupt service 
routine. Also, this example assumes that the two cap­
ture events will occur within 216 counts of the PCA 
timer, i.e. rollovers of the PCA timer are not counted. 

~ 
t t 

CAPTURE 1 CAPTURE 2 270609-4 

Time (Capture 2) - Time (Capture 1) = Pulse Width 

Figure 4. Measuring Pulse Width 

PCA TIMER 

MODULE 0 

PCA INTERRUPT 

EXIT 
270609-3 

Figure 3. PCA Capture Mode (Module 0) 

2-249 



, 

RAM locations to 
CAPTURE 
PULSE_WIDTH 
FLAG 

AP-415 

Listing 1. Measuring Pulse Widths 

store capture 
DATA 
DATA 
BIT 

values 
30H 
32H 
20H.0 

ORG OOOOH 
JMP PCA_INIT 
ORG 0033H 
JMP PCA~INTERRUPT 
, 
PCA-INIT: Initialize PCA timer 

, 

MOV CMOD, #OOH 
MOV CH, #OOH 
MOV CL, #OOH 

Input to timer = 1/12 X Fosc 

Initialize Module 0 in capture mode ' 
MOV CCAPMO, #21H Capture positive edge first 

for measuring pulse width 

SETB EC 
SETB EA 
SETB CR 
CLR FLAG 

Enable PCA interrupt 

Turn PCA timer on 
clear test flag 

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
Main program goes here ** •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

This example assumes Module 0 is the only PCA module 
being used. If other modules are used, software must 
check which module's event caused the interrupt. 

PCA_INTERRUPT: 
CLR CCFO 
JB FLAG, SECOND_CAPTURE 

FIRST_CAPTURE: 

, 

MOV CAPTURE, CCAPOL 
MOV CAPTURE+l, CCAPOH 
MOV CCAPMO, #llH 

SETB FLAG 
RETI 

SECOND_CAPTURE: 
PUSH ACC 
PUSH PSW 
CLR C 
MOV A, CCAPOL 
SUBB A, CAPTURE 
MOV PULSE_WIDTH, A 
MOV A, CCAPOH 
SUBB A, CAPTURE+l 
MOV PULSE_WIDTH+l, A 
, 

MOV CCAPMO, #21H 
CLR FLAG 
POP PSW 
POP ACC 
RETI 

Clear Module O's event flag 
Check if this is the first 
capture or second 

Save la-bit c'apture value 
in RAM 
Change module to now capture 
falling edges 
Signify 1st capture complete 

la-bit subtract 

la-bit result stored in 
two a-bit RAM locations 

Optional--needed if user wants to 
measure next pulse width 

2-250 



AP-415 

Measuring Periods 

Measuring the period of a signal with the peA is simi­
lar to measuring the pulse width. The only difference 
will be the trigger source for the capture mode. In Fig­
ure 5, rising edges are captured to calculate the period. 
The code is identical to Listing I except that the cap­
ture mode should not be changed in the interrupt rou­
tine. The result of the subtraction will be the period. 

s-L..rL 
j.-------.j 

t t 
CAPTURE 1 CAPTURE 2 

270609-5 
Time (Capture 2) - Time (Capture 1) = Period 

Figure 5. Measuring Period 

2-251 

Measuring Frequencies 

Measuring a frequency with the peA capture mode 
involves calculating a sample time for a known number 
of samples. In Figure 6, the time between the first cap­
ture and the "Nth" capture equals the sample time T. 
Listing 2 shows the code for N = 10 samples. It's as­
sumed that the sample time is less than 216 counts of 
the peA timer. 

~---------- T 

t 
----------~ 

t 
CAPTURE 1 CAPTURE N 

270609-6 
Time (Capture N) - Time (Capture 1) = T 

N # of Samples 
Frequency = T = Sample Time 

Figure 6. Measuring Frequency 



inter 

RAM locations 
CAPTURE 
PERIOD 
SAMPLE_COUNT 
FLAG 

ORG OOOOH 
JMP PCA_INIT 
ORG 0033H 

to store 
DATA 
DATA 
DATA 
BIT 

JMP PCA_INTERRUPT 

PCA_INIT: 

AP-415 

Listing 2. Measuring Frequencies 

capture values 
30H 
32H 
34H 
20H.0 

Initialization of PCA timer, Module 0, and interrupt is the 
same as in Listing 1. Also need to initialize the sample 
count. 

MOV SAMPLE_COUNT, #lOD ; N = 10 for this example 
'. , ............... *_._ ......... _ ................ _-_. __ ._ .... * •••••• _ •••••• _ •• -_ •• , 
; Main program goes here .. _ ...... _ ........... _._ ........ -.............. _ .. -•..•....•..•• -........ _ ... -. 

This code assumes only Module 0 is being used. 
PCA_INTERRUPT: 

CLR CCFO ; Clear module O's event flag 
JB FLAG, NEXT_CAPTURE 

FIRST_CAPTURE: 
MOV CAPTURE, CCAPOL 
MOV CAPTURE+l, CCAPOH 
SETB FLAG 
RETI 

NEXT_CAPTURE: 
DJNZ SAMPLE_COUNT, EXIT 
PUSH ACC 
PUSH PSW 
CLR C ' 
MOV A, CCAPOL 
SUBB A, CAPTURE 
MOV PERIOD, A 
MOV A, CCAPOH 
SUBB A, CAPTURE+l 
MOV PERIOD+l, A 

MOV ~AMPLE_COUNT. #lOD 
CLR FLAG 
POP PSW 
POP ACC 

EXIT: 
RET I 

Signify first capture complete 

IS-bi t subtraction 

Reload for next period 

2-252 



inter AP-415 

The user may instead want to measure frequency by 
counting pulses for a known sample time. In this case, 
one module is programmed in the capture mode to 
count edges (either rising or falling), and a second mod­
ule is programmed as a software timer to mark the 
sample time. An example of a software timer is given 
later. For information on resolution in measuring fre­
quencies, refer to Article Reprint AR-517, "Using the 
8051 Microcontroller with Resonant Transducers," in 
the Embedded Controller Handbook. 

Measuring Duty Cycles 

To measure the duty cycle of an incoming signal, both 
ri~ing and falling edges need to be captured. Then the 
duty cycle must be calculated based on three capture 
values as seen in Figure 7. The same initialization rou­
tine is used from the previous example. Only the peA 
interrupt service routine is given in Listing 3. 

~ 
t t t 

CAPTURE 1 CAPTURE 2 CAPTURE 3 
270609-7 

=Tc:-im;;.e;;.(:,:C,.:;a:::.pt;.:u;..;re;..;2o:.l_--:::T;;.im;;.e-,(,=C.:;aP::..t.:;ur;.:e--:-:-1 l pulse width d I = = utycyce 
Time (Capture 3) - Time (Capture 1) period 

RAM locations to 
CAPTURE 
PULSE_WIDTH 
PERIOD 
FLAG_I 
FLAG_2 

Figure 7. Measuring Duty Cycle 

Listing 3. Measuring Duty Cycle 

store capture 
DATA 
DATA 
DATA 
BIT 
BIT 

values 
30H 
32H 
34H 
20H.0 
20H.I 

ORG OOOOH 
JMP PCA_INIT 
ORG 0033H 
JMP PCA_INTERRUPT 

PCA_INIT: 

, 

Initialization for PCA timer, module, and interrupt the same 
as in Listing 1. Capture positive edge first, then either 
edge. 

..••••...••.•........• -....... _ ... _ ..•....•..•.•............••.....•.•..• , 
; Main program goes here 
•• * •• ****.***.* ••• *.*.*** •••• * •• ** ••• *****.*~.****.*** ••••••••••••••••••• , 
, 
; This code assumes only Module 0 is being used. 

PCA_INTERRUPT: 
CLR CCFO Clear Module O's event flag 
JB FLAG_I, SECOND_CAPTURE 

FIRST_CAPTURE: 
MOV CAPTURE, CCAPOL 
MOV CAPTURE+I, CCAPOH 
SETB FLAG_I 
MOV CCAPMO, #31H 
RETI 

Signify first capture complete 
Capture either edge now 

2-253 



inter AP-415 

Listing 3. Measuring Duty Cycle (Continued) 

SECOND_CAPTURE: 
PUSH ACC 
PUSH PSW . 
JBFLAG_2', THIRD_CAPTURE 
CLR C 
MOV A, CCAPOL 
SUBB A, CAPTURE 
MOV PULSE_WIDTH, A 
MOV A, CCAPOH 
SUBB A, CAPTURE+I 
MOV PULSE_WIDTH+I, A 
SETB FLAG_2 
POP PSW 
POP ACC 
RETI 

THIRD_CAPTURE: 
CLR C 
MOV A, CCAPOL 
SUBB A, CAPTURE 
MOV PERIOD, A 
MOV A, CCAPOH 
SUBB A, CAPTURE+I 
MOV PERIOD+I, A 
MOV CCAPMO, #21H 
CLR FLAG_I 
CLR FLAG_2 
POP PSW 
POP ACC 
RETI 

Calculate pulse width 
rlS-bit subtract 

Signify second capture complete 

Calculate period 
IS-bit subtract 

Optional - reconfigure module to 
capture positive edges 'for next 
cycle 

After the third capture, a 16-bit by 16-bit divide routine 
needs to be executed. This routine is located in Appen­
dix B. Due to its length, it's up te the user whether the 
divide routine should be cdmpleted in the interrupt rou­
tine or be called as a subroutine .from the main pro­
gram. 

between twe or more signals. Fer this example, two 
signals are input to Modules 0 and 1 as seen in Figure 
8. Both modules are programmed to capture rising edg­
es only. Listing 4 shows the code needed to measure the 
difference between these two signals. This code does 
not assume .one signal is leading or lagging the other. 

Measuring Phase Differences 

Because the PCA modules share the same time base, 
the PCA is useful for measuring the phase difference 

t.40DULE 0 --I U L 
CAPTURE 1 r" CAPTURE 2 

MODULE 1 
270609-8 

ASS [Time (Capture 2) - Time (Capture 1)1 = Phase Difference 
-

Figure 8. Measuring Phase Differences 

2-254 



AP-415 

Listing 4. Measuring Phase Differences 

RAM locations to 
CAPTURE_O 
CAPTURE_l 
PHASE 
FLAG_O 
FLAG_l 

ORG OOOOH 
JMP PCA_INIT 
ORG 0033H 
JMP PCA_INTERRUPT 

PCA_INIT: 

store capture 
DATA 
DATA 
DATA 
BIT 
BIT 

values 
30H 
32H 
34H 
20H.0 
20H.l 

Same initialization for PCA timer, and interrupt as 
in Listing 1. Initialize two PCA modules as follows: 

MOV CCAPMO, #2lH 
MOV CCAPMl, #2lH 

Module 0 capture rising edges 
Module 1 same 

, 
.************************************************************************************** , 
; Main program goes here 
.************************************************************************************** , 
; This code assumes only Modules 0 and 1 are being used. 
PCA_INTERRUPT: 

JB CCFO, MODULE_O 
JB CCFl, MODULE_l 

MODULE_O: 
CLR CCFO 
MOV CAPTURE_O, CCAPOL 
MOV CAPTURE_O+l, CCAPOH 
JB FLAG_I, CALCULATE_PHASE 

SETB FLAG_O 
RETI 

Determine which module's 
event caused the interrupt 

Clear Module O's event flag 
Save l6-bit capture value 

If capture complete on 
Module I, go to calculation 
Signify capture on Module 0 

2-255 



inter AP-415 

LIsting 4. Measuring Phase Differences (Continued) 

MODULE_l: 
CLR CCF_l 
MOV CAPTURE_l, CCAP1L 
MOV CAPTURE_l+l, CCAP1H 
JB FLAG_O, CALCULATE_PHASE 

SETB FLAG_l 
RET! 

; 
CALCULATE_PHASE: 

PUSH ACC 
PUSH PSW 
CLR C 

JB FLAG_O, MODO_LEADING 
JB FLAG_l, MOD1_LEADING 

; 
MODO_LEADING: 

MOV'A, CAPTURE_l 
SUBB A, CAPTURE_O 
MOV PHASE, A 
MOV A, CAPTURE_l+l 
SUBB A, CAPTURE_O+l 
MOV PHASE+l, A 
CLR FLAG_O 
JMP EXIT 

; 
MOD;L_LEADING: 

MOV A,CAPTURE_O 
SUBB A, CAPTURE_l 
MOV PHASE, A 
MOV A, CAPTURE_O+l 
SUBB A, CAPTURE_l+l 
MOV PHASE+l, A 
CLR FLAG_l 

EXIT: 
POP PSW 
POP ACC 
RETI 

Clear Module l's event flag 

If oapture oomplete on 
; Module 0, go to oaloulation 
; Signify oapture on Module 1 

; This oaloulation does not 
; have to be oompleted in the 
; interrupt servioe routine 

2-256 



inter AP-415 

Readjng the PCA Timer 

Some applications may require 'that the PCA timer be 
read instantaneously as a real-time event. Since the tim­
er consists of two 8-bit registers (CH,CL), it would nor­
mally take two MOV instructions to read the whole 
timer. An invalid read could occur if the registers rolled 
over in the middle of the two MOVs. 

However, with the capture mode a l6-bit timer value 
can be loaded into the capture registers by toggling a 
port pin. For example, configure Module 0 to capture 
falling edges and initialize P1.3 to be high. Then when 
the user wants to read the PCA timer, clear P1.3 and 
the full l6-bit timer value will be saved in the capture 
registers. It's still optional whether the user wants to 
generate an interrupt with the capture. 

COMPARE MODE 

In this mode, the l6-bit value of the PCA timer is com­
pared with a l6-bit value pre-loaded in the module's 
compare registers. The comparison occurs three times 
per machine cycle in order to recognize the fastest pos­
sible clock input, i.e. 'I. x oscillator frequency. When 
there is a match, one of three events can happen: 

(1) an interrupt - Software Timer mode 

(2) toggle of a port pin - High Speed Output mode 

(3) a reset - Watchdog Timer mode. 

Examples of each compare mode will follow. 

SOFTWARE TIMER 

In most applications a software timer is used to trigger 
interrupt routines which must occur at periodic inter­
vals. Figure 9 shows the sequence of events for the Soft­
ware Timer mode. The user preloads a l6-bit value in a 
module's compare registers. When a match occurs be­
tween this compare value and the PCA timer, an event 
flag is set and an interrupt is flagged. An interrupt is 
then generated if it has been enabled. 

Ifnecessary, a new l6-bit compare value can be loaded 
into (CCAPOH, CCAPOL) during the interrupt rou­
tine. The user should be aware that the hardware tempo­
rarily disables the comparator function while these regis­
ters are being updated so that an invalid match will not 
occur. That is, a write to the low byte (CCAPnO) dis­
ables the comparator while a write to the high byte 
(CCAPOH) re-enables the comparator. For this reason, 
user software must write to CCAPOL first, then 
CCAPOH. The user may also want to hold off any in­
terrupts from occurring while these registers are being 
updated. This can easily be done by clearing the EA bit. 
See the code example in Listing 5. 

CH CL ~ COMPARATOR i<I-1CCAPOHlcCAPOLI 

I 
PCA TIMER MATCH MODULE 0 

INTERRUPT 
SERVICE 
RounNE 

~ 
PCA INTERRUPT (OPTIONAL) 

~ ':'~T~~E_ ~~ ~~~~! 

EXIT 

Figure 9. Software Timer Mode (Module 0) 

2-257 

270609-9 



inter AP-415 

Listing 5. Software Timer 

Generate an interrupt in software every 20 msec 

Frequency = 12 MHz 
PCA clock input = 1/12 x Fosc - 1 ,""sec 

Calculate reload value for compare registers: 
20 msec 

------------- = 20,000 counts 

ORG OOOOH 
JMP PCA_INIT 
ORG 0033H 

l.,""sec/count 

JMP PCA_INTERRUPT 
; 
PCA_INIT: 

Initialize PCA timer same 
MOV CCAPMO, #49H 
MOV CCAPOL, #LOW(20000) 
MOV CCAPOH, #HIGH(20000) 

SETB EC 
SETB EA 
SETB CR 

as in Listing 1 
; Module 0 in Software Timer mode 
; WrIte to low byte first 

Enable PCA interrupt 

Turn. on PCA timer 

••••••••••••• * •••••••••••••••••••••••••••••••••••••••••• * ••••• *.* •••••••••• 
Main program goes here 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

PCA_INTERRUPT: 
CLR CCFO 
PUSH ACC 
PUSH PSW 
CLR EA 
MOV A, #LOW(20000) 
ADD A, CCAPOL 
MOV CCAPOL, A 
MOV A, #HIGH(20000) 
ADDC A, CCAPOH 
MOV CCAPOH, A 
SETB EA 

Continue with routine 

POP PSW 
POP ACC 
RETI 

Clear Module O's event flag 

Hold off interrupts 
IS-Bit Add 
Next match will occur 
20,000 counts later 

2·258 



inter AP-415 

HIGH SPEED OUTPUT 

The High Speed Output (HSO) mode toggles a port pin when a match occurs between the PCA timer and the pre­
loaded value in the compare registers (see Figure 10). The HSO mode is more accurate than toggling pins in software 
because the toggle occurs before branching to an interrupt, i.e. interrupt latency will not effect the accuracy of the 
output. In fact, the interrupt is optional. Only if the user wants to change the time for the next toggle is it necessary 
to update the compare registers. Otherwise, the next toggle will occur when the PCA timer rolls over and matches 
the last compare value. Examples of both are shown . 

..... _C_H ........... _C_L ....... H>t .. _CO_M_P_AI"/ R_AT_O_R ....... 1<l--1 CCAPOH I CCAPOL I 
PCA TIMER 

TOGGLE P1.3 

INTERRUPT 
SERVICE 
ROUTINE 

MATCH MOOULE 0 

PCA INTERRUPT (OPTIONAL) 

EXIT 

Figure 10. High Speed Output Mode (Module 0) 

270609-10 

Without any CPU intervention, the fastest waveform the PCA can generate with the HSO mode is a 30.5 Hz signal 
at 16 MHz. Refer to Listing 6. By changing the PCA clock input, slower waveforms can also be generated. 

Listing 6. High Speed Output (Without Interrupt) 

Maximum output with HSO mode without interrupts = 30.5 Hz Signal 
Frequency = 16 MHz 
PCA clock input = 1/4 x Fosc --. 250 nsec 

MOV CMOD, #02H 
MOV CL, #OOH 
MOV CH, #OOH 
MOV CCAPMO, #4CH 
MOV CCAPOL, #OFFH 
MOV CCAPOH, #OFFH 

SETB CR 

HSO mode without interrupt enabled 
Write to low byte first 
Pl.3 will toggle every 216 counts 
or 16.4 msec 
Period = 30.5 Hz 
Turn on PCA timer 

2-259 



intJ AP-415 

In this next example, the peA interrupt is used to change the compare value for each toggle. This way a variable 
frequency output can be generated. Listing 7 shows an output of 1 KHz at 16 Mhz. . 

Listing 7. High Speed Output (With Interrupt) 

ORG OOOOH 
JMP PCA_INIT 
ORG 0033H 
JMP PCA_INTERRUPT 

PCA_INIT: 
MOV CMOD, #02H 
MOV CL, #OOH 
MOV CH, #OOH 
MOV CCAPMO, #4DH 
MOV CCAPOL, #LOW(lOOO) 
MOV CCAPOH, #HIGH(lOOO) 
CLR Pl.3 

SETB EC 
SETB EA 
SETB CR 

L 
t + 2000 counts 

500 p.sec = 2000 counts 
250 nsec/count 

Clock input = 250 nsec 
at 16 MHz 

Module 0 in HSO mode with 
PCA interrupt enabled 
t = 1000 (arbitrary) 

Enable PCA interrupt 

Turn on PCA timer 

270609-11 

.**********************.******.*******.**********.********** ••• ********** 

Main program goes here 
; ** ••••• * •• *** ••• ********.** ••••• *.**** •••••••• *** •• *** ••• ****.***~.*.* ••• 

; This code assumes only Module 0 is being used. 
PCA_INTERRUPT: 

CLR CCFO 
PUSH ACC 
PUSH PSW 
CLR EA 
MOV A, #LOW(2000) 
ADD A, CCAPOL 
MOV CCAPOL, A 
MOV A, #HIGH(2000) 
ADDC A, CCAPOH 
MOV CCAPOH, A 
SETB EA 
POP PSW 
POP ACC 
RET! 

; Clear Module O's event flag 

Hold off interrupts 
l6-bit add 
2000 counts later, Pl.3 
will toggle 

2-260 



inter AP-415 

Another option with the HSO mode is to generate a single pulse. Listing g shows the code for an output with a pulse 
width of 20 p.sec. As in the previous example, the PCA interrupt will be used to change the time for the toggle. The 
first toggle will occur at time "t". After 80 counts of the PCA timer, 20 p.sec will have expired, and the next toggle 
will occur. Then the HSO mode will be disabled. 

Listing 8. High Speed Output (Single Pulse) 

ORG OOOOH 

JM? PCA.INIT 

ORG 0033H 

JMP PCA. INTERRUPT 

PCA.INIT: 

MOV CMOD, #02H 

MOV CL, #OOH 

MOV CH, #OOH 

MOV CCAPMO, #4DH 

MOV CCAPOL, #LOW (1000) 

MOV CCAPOH, #HIGH(lOOO) 

CLR Pl.3 

SETB EC 

SETB EA 
SUB CR 

r- 20 JoIosec --j 

~ 
t t 

t + 80 counts 

20 JoIo.ec = 80 counts 
250 nsec/count 

Clock input = 250 nsec 

at 16 MHz 

; Module 0 in HSO mode with 

; PCA interrupt enabled 

; t = 1000 (arbitrary) 

Enable PCA interrupt 

Turn on PCA timer 

Main program goes here ................................................................................ 
This code assumes only Module 0 is' being used. 

PCA.INTERRUPT: 

CLR CCFO 

JNB Pl.3, DONE 

PUSH ACC 

PUSH PSW 

CLR EA 
MOV A, #LOW(BO) 

ADD A, CCAPOL 

MOV CCAPOL, A 
MOV A, #HIGH(BO) 

AnDC A, CCAPOH 

MOV CCAPOH, A 

SETB EA 
POP PSW 

POP ACC 

RETI 

DONE: 

MOV CCAPMO, #OOH 

RET! 

; Clear Module O's event flag 

; Hold off interrupts 

; 16·bit add 

; 80 counts later, Pl.3 

; will toggle 

Disable HSO mode 

2-261 

270609·12 



intJ AP-415 

WATCHDOG TIMER 

An on-board watchdog timer is available with the PCA 
to improve the reliability of the system without increas­
ing chip count. Watchdog timers are useful for systems 
which' are susceptible to noise, power glitches, or elec­
trostatic discharge. Module 4 is the only PCA module 
which can be programmed as a watchdog. However, 
this module can still be used for other modes if the 
watchdog is not needed. 

Figure II shows a diagram of how the watchdog works. 
The user pre-loads a 16-bit value in the compare regis­
ters. Just like the other compare modes, this 16-bit val­
ue is compared to the PCA timer value. If a match is 
allowed to occur, an internal reset will be generated. 
This will not cause the RST pin to be driven high. 

In order to hold off the reset, the user has three options: 

(I) periodically change the compare value so it will 
never match the PCA timer, 

(2) periodically change the PCA timer value so it will 
never match the compare value, or 

(3) disable the watchdog by clearing the WDTE bit be­
fore a match occurs and then re-enable it. 

The first two options are more reliable because the 
watchdog timer is never disabled as in option # 3. If the 
program counter ever goes astray, a match will eventu­
ally occur and cause an internal reset. The second op­
tion is also not recommended if other PCA modules are 
being used. Remember, the PCA timer is the time base 
for all modules; changing the time base for other mod­
ules would not be a good idea. Thus, in most applica­
tions the first solution is the best option. 

Listing 9 shows the code for initializing the watchdog 
timer. Module 4 can be configured in either compare 
mode, and the WDTE bit in CMOD must also be set. 
The user's software then must periodically change 
(CCAP4H,CCAP4L) to keep a match from occurring 
with the PCA timer (CH,CL). This code is given in the 
WATCHDOG routine. 

This routine should not be part of an interrupt service 
routine. Why? Because if the program counter goes as­
tray and gets stuck in an infinite loop, interrupts will 
still be serviced and the watchdog will keep getting re­
set. Thus, the purpose of the watchdog woUld be defeat­
ed. Instead call this subroutine from the main program 
within 216 count of the PCA timer. 

,--C_H--L_CL ...... H>I COMPARATOR I<l-1 CCAP<lH I CCAP<lL I 
i 

PCA TIMER MATCH MODULE <I 

V 
RESET 

270609-13 

Figure 11. Watchdog Timer Mode (Module 4) 

2-262 



inter 

INIT_WATCHDOG: 

, 

MOV CCAPM4, #4CH 
MOV CCAP4L, #OFFH 
MOV CCAP4H, #OFFH 

ORL CMOD, #40H 

AP-415 

Listing 9. Watchdog Timer 

Module 4 in compare mode 
Write to low byte first 
Before PCA timer counts up to 
FFFF Hex, these compare values 
must be changed 
Set the WDTE bit to enable the 
watchdog timer without changing 
the other bits in CMOD 

.**********************.****************************.* ••• ************************ , 

; Main program goes here, but CALL WATCHDOG periodically. 
, 
.**********************************************************.********************* , 

WATCHDOG: 
CLR EA Hold off interrupts 
MOV CCAP4L, #00 
MOV CCAP4H, CH 
SETB EA 

Next compare value is within 
255 counts of the current PCA 
timer value 

RET 

PULSE WIDTH MODULATOR 

The PCA can generate 8-bit PWMs by comparing the 
low byte of the PCA timer (CL) with the low byte of 
the compare registers (CCAPnL). When 
CL < CCAPnL the output is low. When 
CL ~ CCAPnL the output is high. 

To control the duty cycle of the output, the user actual­
ly loads a value into the high byte CCAPnH (see Figure 
12). Since a write to this register is asynchronous, a new 
value is not shifted into CCAPnL for comparison until 

the next period of the output: that is, when CL rolls 
over from 255 to 00. This mechanism provides "glitch­
free" writes to CCAPnH when the duty cycle of the 
output is changed. 

CCAPnH can contain any integer from 0 to 255, but 
Figure 13 shows a few common duty cycles and the 
corresponding values for CCAPnH. Note that a 0% 
duty cycle can be obtained by writing to the port pin 
directly with the CLR bit instruction. To calculate the 
CCAPnH value for a given duty cycle, use the follow­
ing equation: 

CCAPnH = 256 (1 - Duty Cycle) 

where CCAPnH is an 8-bit integer and Duty Cycle is 
expressed as a fraction. 

PWM OUTPUT 

/\,.o_---- CL ROLLS OVER 
(255 TO 00) 

CCAPOH 
270609-14 

Figure 12. PWM Mode (Module 0) 

2-263 



inter AP-415 

DUlY CYCLE CCAPnH OUTPUT WAVEFORM 

100% 00 

90% 25 

50% 128 

10% 230 

0.4% 255 

0% CLR P1.X 

270609-15 

Figure 13. CCAPnH Varies Duty Cycle 

Table 4. PWM Frequencies. 

PCA Timer Mode 
PWM Frequency 

12 MHz 16 MHz 

1/12 Osc. Frequency 3.9 KHz 5.2 KHz 

114 Osc. Frequency 11.8 KHz 15.6 KHz 

Timer 0 Overflow: 
8-bit 15.5 Hz 20.3 Hz 
16·bit 0.06 Hz 0.08 Hz 
8·bit Auto~Reload 3.9 KHz to 15.3 Hz ' 5.2 KHz to 20.3 Hz 

External Input (Max) 5.9 KHz 7.8 KHz 

2-264 



Ap·415 

Listing 10. PWM 

INIT-PWM: 
MOV CMOD, #02H 
MOV CL, #OOH 
MOV CH, #OOH 

Clock input = 250 nsec at 16 MHz 
Frequency of output = 15.6 KHz 

MOV CCAPMO, #42H 
MOV CCAPOL, #OOH 
MOV CCAPOH, #128D 

Module 0 in PWM mode 

50 percent duty cycle 

SETB CR Turn on PCA timer 

The frequency of the PWM output will depend on 
which of the four inputs is chosen for the PCA timer. 
The maximum frequency is 15.6 KHz at 16 MHz. Re­
fer to Table 4 for a summary of the different PWM 
frequencies possible with the PCA. 

Listing 10 shows how to initialize Module 0 for a PWM 
signal at 50% duty cycle. Notice that no PCA interrupt 
is needed to generate the PWM (i.e no software over­
headl). To create a PWM output on the 8051 requires a 
hardware timer plus software overhead to toggle the 
port pin. The advantage of the PCA is obvious, not to 
mention it can support up to 5 PWM outputs with just 
one chip. 

CONCLUSION 

This list of examples with the PCA is by no means 
exhaustive. However, the advantages of the PCA can 
easily be seen from the given applications. For example, 
the PCA can provide better resolution than Timers 0, I 
and 2 because the PCA clock rate can be three times 
faster. The PCA can also perform many tasks that 
these hardware timers can not, i.e. measure phase dif­
ferences between signals or generate PWMs. In a sense, 
the PCA provides the user with five more timer/coun­
ters in addition to Timers 0, I and 2 on the 
8XC5I FA/FB. 

Appendix A includes test routines for all the software 
examples in this application note. The divide routine 
for calculating duty cycles is in Appendix B. And final­
ly, Appendix C is a table of the Special Function Regis­
ters for the 8XC51FA/FB with the new or modified 
registers boldfaced. 

2-265 



intJ AP-415 

APPENDIX A 
TEST ROUTINES 

LIsting , •• Measuring PUlse Wldtbs 

$nomod51 
$nosymbols 
$nollst 
$include (reg252.pdf) 
$lIst 

Variables 

CAPTURE 
PULSE_WIDTH 
FLAG 
, 
ORGOOOOH 
JMP PeA_INIT 
, 
ORGOO33H 
JMP PeA_INTERRUPT 

; Initialize PCA timer 

DATA 
DATA 
BIT 

PCA-'NIT: MOV CMOD, tOOH 
MOVCH,I00 
MOVCL,IOO 

, 

Initialize Module 0 In capture mode 
MOV CCAPMO, t21H 

MOV CCAPOH, tOO 
MOV CCAPOL, MlO 

SETBEC 
SETBEA 
SETBCR 
CLRFLAG 

30H 
32H 
2OH.0 

; Input to PeA timer = 1/12 x Fosc 

; capture positive edge IIrst on P1.3 

; Enable PCA Interrupt 

; Turn PeA timer on 
; Clear test flig 

i ••• , ••••••••• ** ...................... ** ........ ***.,.*** ........................................................... . 
Test program only 

, 
WAIT: JMP $ ; Walt for PCA interrupt 

JMPWAIT 
; .......................... ** .................................................................................. . 

Tbls code assumes Module 0 Is tbe only module being used. " 
otber PeA module's are being used, software must cbeck wblcb 
module's event flag caused the Interrupt. 

PCJUNTERRUPT: 
CLRCCFO 
JBFLAG,SECOND_CAPTURE 

FIRST_CAPTURE: 
MOV CAPTURE, CCAPOL 
MOV CAPTURE+1, CCAPOH 

; Clear module 0'8 event flag 

2-266 

270609-16· 



MOV CCAPMO, '11H 

SETBFLAG 
REn 

SECOND_CAPTURE: 

END 

PUSHACC 
PUSHPSW 
CLRC 
MOV A, CCAPOL 
SUBB A, CAPTURE 
MOV PULSE_WIDTH, A 
MOV A, CCAPOH 
SUBB A, CAPTURE+1 
MOV PULSE_WIDTH+1, A 

MOV CCAPMO,121H 
CLRFLAG 
POPPSW 
POPACC 
HEn 

AP-415 

Change module to now capture 
!alUngedges 
Signify !Irst capture complete 

; 16-blt subtract 

; Optional I! user wants to measure 
; next pulse width 

2-267 

270609-17 



intef 
Ustlng 1b • Measuring PeriOds 

j 
$nomodS1 
$noSymbols 
$nollst 
$Include (reg252.pcll) 
$lIst 

Variables 
, 
CAPTURE 
PERIOD 
FLAG 

ORGOOOOH 
JMP PCA_INIT 

ORGOO33H 
JMP PCA_INTERRUPT 

DATA 
DATA 
BIT 

j Initialize PCA timer 
PCA_INIT: MOV CMOD, tIOOH 

MOV CH, tIOOH 
MOVCl,1OO 

30H 
32H 
2OH.0 

Initialize Module 0 In capture mode 
MOV CCAPMO, t21H 

MOV CCAPOH, MlO 
MOV CCAPOl, 100 

SETBEC 
SETBEA 
SETBCR 
ClRFLAG 

j . 

AP-415 

j Input to timer = 1112 x Fosc 

j Capture rising edges on P1.3 

j Enable PCA Interrupt 

j Turn PCA timer on 
j Clear test flag 

; ............................ *** ....................... *** ............................. A ............................. .. 

, 
WAIT: 

Test program only 

JMP$ 
JMPWAIT 

j Walt for PeA Interrupt 

; ........... ** .......................................... ** .. ***** ................................................ . 

This code assumes only Module 0 Is being used. If other modules 
are being used, sOftware must check which module's flag cauSed 
the Interrupt, 

PCA_INTERRUPT: 
ClRCCFO 
JBFLAG,SECOND_CAPTtiRE 

FIRST CAPTURE: 
- MOV CAPTURE, CCAPOl 

MOV CAPTURE+1, CCAPOH 

j Clear module O's event flag 

2·268 ' 

270609-18 



infef 

SETBFLAG 
REn 

SECOND_CAPTURE: 
PUSHACC 
PUSHPSW 
CLRC 
MOV A, CCAPOL 
SUBB A, CAPTURE 
MOV PERIOD, A 
MOV A, CCAPOH 
SUBB A, CAPTURE+ 1 
MOV PERIOD+1, A 

CLRFLAG 
POPPSW 
POPACC 
REn 

AP-415 

i Signify first capture complete 

i 16-B" subtraction 

270609-19 

2-269 



listing 2· _aurlng Frtgyenclea 
, 
$nomod51 
$nosymbols 
$nollet 
$Include (reg252.pdf) 
$lIet 

Variables 

CAPTURE 
PERIOD 
SAMPLE_COUNT 
FLAG 

ORGOOOOH 
JMP PCA_INIT 

OFlGD033H 
JMP PCA_INTERRUPT 

; Initialize PCA timer 

DATA 
DATA 
DATA 
BIT 

PCA_INIT: MOV CMOD, IOOH 
MOVCH,I00 
MOVCL,IOO 

, 

Inltl.llze Module 0 In capture mode 
MOV CCAPMO,121H 

MOV CCAPOH,I00 
MOV CCAPOL,IOO 

MOV SAMPLE_COUNT, '100 

SETBEC 
SETBEA 
SETBCR 
CLRFLAG 

30H 
32H 
34H 
2DH.0 

AP-415 

; Input to PCA timer = 1/12 x Fosc 

; capture positive edges on P1.3 

; N = 10 for thla example 

; Enable PCA Interrupt 

; Turn peA timer on 
; Test flag 

i .............. 6.******* ................................. * ... ** ... *** .......... * .................................... . 

WAIT: 

Teet program only 

JMP$ 
JMPWAIT 

; Wall for PCA Interrupt 

................................................................................................................. , 
This code assumes only Module 0 Is being used. 

PeA_INTERRUPT: 
CLRCCFO 
JBFLAG,NEXT_CAPTURE 

; Clear module O's event flag 

2·270 

270609-20 



FIRST_CAPTURE: 

, 

MOY CAPTURE, CCAPOL 
MOY CAPTURE+1, CCAPOH 
SETBFLAG 
RETI 

NEXT_CAPTURE: 

EXIT: 
, 
END 

DJNZ SAMPLE_COUNT, EXIT 
PUSHACC 
PUSHPSW 
CLRC 
MOY A, CCAPOL 
SUBB A, CAPTURE 
MOY PERIOD, A 
MOY A, CCAPOH 
SUBB A, CAPTURE+1 
MOY PERIOD+ 1, A 

MOY SAMPLE_COUNT, .10D 
CLRFLAG . 
POPPSW 
POP Ace 
RET! 

Ap·415 

; Signify first capture complete 

; 16-BII subtraction 

; Reload lor next capture 

270609-21 

2-271 



intJ 
Lllling 3 • Measuring Duty Cycle 

, 
$nomodSl 
$nosymbols 
$nollst 
$Include (reg252.pdf) 
$lIst 

Variables 

CAPTURE 
PULSE_WIDTH 
PERIOD 

FLAG_' 
FLAG_2 

ORGOOOOH 
JMP PCA_INIT 

ORGOO33H 
JMP PCA_INTERRUPT 

; Initialize PCA timer 

DATA 
DATA 
DATA 

BIT 
BIT 

PCA_INIT: MOV CMOD, IOOH 
MOVCH,IOO 
MOV CL, 100 

, 

Initialize Module 0 In caplure mode 
MOV CCAPMO, ftlH 

MOV CCAPOH,IOO 
MOV CCAPOL,IOO 

CLRFLAG_' 
CLRFLAG_2 

SETBEC 
SETBEA 
SETBCR 

30H 
32H 
34H 

2DH.0 
2DH.l 

AP-415 

; Input to PCA timer = 1/12 x Fosc 

; Capture pOSitive edge IIrst on Pl.3 

; Clear lest flags 

; Enable PCA interrupt 

; Turn PCA timer on 

; .................................. ,.. ................................................................................ . 
, 
WAIT: 

Test program only 

JMP$ 
JMPWAIT 

; Walt lor PCA interrupt 

; •••••••• * ............ * ............... *ttI ........................................................... * ............ . 

This code assumes Module 0 i8 the only PCA module being used. 

PeA_INTERRUPT: 
CLRCCFO ; Clear module D's event lIag 
JB FLAG_I, SECOND_CAPTURE 

2·272 

270609-22 



inter 

FIRST_CAPTURE: 

, 

MOV CAPTURE, CCAPOL 
MOV CAPTURE+l, CCAPOH 
SETB FLAG_1 
MOV CCAPMO, #31 H 
RETI 

SECOND CAPTURE: 

, 

- PUSHACC 
PUSH PSW 
JB FLAG 2, THIRD CAPTURE 
CLRC - -
MOV A, CCAPOL 
SUBB A, CAPTURE 
MOV PULSE_WIDTH, A 
MOV A, CCAPOH 
SUBB A, CAPTURE+1 
MOV PULSE_WIDTH+1, A 

SETBFLAG_2 
POPPSW 
POPACC 
RETI 

THIRD CAPTURE: 

END 

- CLRC 
MOV A, CCAPOL 
SUBB A, CAPTURE 
MOV PERIOD, A 
MOV A, CCAPOH 
SUBB A, CAPTURE+1 
MOV PERIOD+1, A 

MOV CCAPMO, 121 H 
CLRFLAG_1 
CLRFLAG_2 
POPPSW 
POPACC 
RETI 

AP-415 

; Signify lirst capture complete 
; Capture either edge now 

; Calculate pulse width 
; 16-blt subtract 

; Signify second capture complete 

; Calculate period 
; 16-bit subtract 

; Optional- reconfigure module to 
; capture positive edges lor 
; next cycle 

2-273 

270609-23 



AP-415 

Listing 4 • MUlUrlng Pha .. PHfArencel 

$nomod51 
$nosymbol. 
$nollst 
$lnClude (reg252.pdl) 
$lIst 

Variables 
j 

CAPTURE_O 
CAPTURE_1 
PHASE 

FLAG_O 
FLAG_1 

ORGOOOOH 
JMP PCA_INIT 

ORGOO33H 
JMP peA_INTERRUPT 

; Initialize PCA timer 

DATA 
DATA 
DATA 

BIT 
BIT 

PCA_INIT: MOV CMOD, *DOH 
MOVCH,IOO 
MOVCL, IlOO 

SOH 
32H 
34H 

2OH.O 
2OH.1 

Initialize Modules 0 & 1 in caplura mode 
MOV CCAPMO, .21H 

MOV CCAPOH,IOO 
MOV CCAPOL,IIOO 

; Inpullo PCA Ilmar = 1112 x Fosc 

; Caplura pOSltlva edges on P1.3 

'. ; Caplura posiliva edges on P1.4 MOV CCAPM1,'21H 
MOV CCAP1H,IIOO 
MOV CCAP1 L,IIOO 

MOV RO,MlFFH 
MOV R1,MlFFH 

CLRFLAG_O 
CLRFLAG_1 

SETBEC 
SET8EA 
SETBCR 

: Used for lest program only 

: Clear lesl flags 

: Enable PCA interrupt 

: Turn PCA timer on 

2-274 

270609-24 



intJ Ap·415 

i ....................................... _ ••••••••••• ,. .......................................................... . 

, 
MAIN: 

, 
TOG1: 

; . 
TOG2: 

, 
DELAY1: 

DELAY2: 

Test program only 

CALL TOGl 
CALLDELAY2 
CALL TOG2 
JMPMAIN 

CPL Pl.& 
CALLDELAYI 
RET 

CPLP1.5 
CALLDELAYI 
RET 

DJNZRO,$ 
RET 

DJNZ Rl,$ 
RET 

; Generate two wavelonns 
; wHh known phase dillerence 

; These two wavelonns are Input to 
; Pl.3 and Pl.4 

; ••••• * •••••• *.** •••••••••• ** ••••• ** ......... ** ................................................................ .. 

This code assumes only Modules ° and 1 are being usad. 
, 
PCA INTERRUPT: 

- JB CCFO, MODULE_O 
JB CCF1, MODULE_' 

CLRCCFO 
MOV CAPTURE_O, CCAPOL 
MOV CAPTURE_O+l, CCAPOH 
JB FLAG_', CALCULATE_PHASE 

SETBFLAG_O 
RETI 

CLRCCFl 
MOV CAPTURE_" CCAPIL 
MOV CAPTURE_l +1 , CCAPIH 
JBFLAG_D,CALCULATE_PHASE 

SETBFLAG 1 
RETI -

CALCULATE PHASE: 
- PUSHACC 

PUSHPSW 
CLRC 

JB FLAG_D, MODO_LEADING 

; Detennlne which module's event 
; caused the Interrupt 

; Clear Module D's event flag 

; II capture Is complete on Module 1, 
; go to calculation 
; Signify capture complete on 
; Module ° 
; Clear Module l's event flag 

; If capture Is complete on Module 0, 
; go to calculation 
; Signify capture complete 
; Module 1 

; This calculation does not have to 
; be completed In the Interrupt 
; service routine 

2-275 

270609-25 



intJ 

JB FLAG_1, MODCLEADING 
, 
MODO_LEADING: 

, 

MOV A, CAPTURE_1 
SUBB A, CAPTURE_O 
MOVPHASE,A 
MOVA, CAPTURE_1+1 
SUBB A, CAPTURE_0+1 
MOVPHASE+1,A 
CLRFLAG_O 
"MPEXIT 

MOD1 LEADING: 

EXIT: 

, 
END 

- MOV A, CAPTURE ° 
SUBB A, CAPTURE_1 
MOVPHASE,A 
MOV A, CAPTURE_0+1 
SUBB A, CAPTURIU+ 1 
MOV PHASE+ 1, A 
CLRFLAG_1 

POPPSW 
POPACC 
RET! 

AP-415 

; 16·blt subtraction 

; 16-b1t subtraction 

270609-26 

2·276 



AP-415 

, Llsling 5 Spftware TImer 
$nomod51 
$nosymbols 
$nolist 
$include (reg252.pdf) 
Slist 

Software Timer mode which Interrupts every 20 msec with Fosc = 12 MHz. 

ORGOOOOH 
JMP PCA_INIT 
ORGOO33H 
JMP PCA_INTERRUPT 

; Initialize PCA timer 
PCA_INIT: MOV CMOD, /IOOH 

MOVCH,IIOO 
MOVCL,IIOO 

, 

MOV CCAPMO, 1149H 
MOV CCAPOL, IILOW(20000) 
MOV CCAPOH, IIHIGH(20000) 

SETB EC 
SETBEA 
SETBCR 

; Input to PCA timer = 1/12 x Fosc 

; Software Timer mode with Interrupt 
; Write to low byte first 

; Enable PCA interrupt 

; Turn PCA timer on 

; 1I ... 1t .......... * ................ *_.* ..••..• _ .............. _ .. 11 .................... * •••• _ ••••• _* ••••••• _ •••••••• _ ........... "'.l1li. 

WAIT: 

Test program only 

JMP$ 
JMPWAiT 

; Wait for PCA interrupt 

; .* .................. _ ............ _ ............ ** ..... .-....... __ .11 •••••••• * •••• * ••••• _ •••••••••••••••••••••••• * •••••• Ira 

This code assumes Module 0 is the only module being used. If 
other PCA module's are being used, software must check which 
module's event flag caused the Interrupt. 

peA_INTERRUPT: 

END 

CLRCCFO 
PUSHACC 
PUSHPSW 
CLREA 
MOV A, IILOW(20000) 
ADD A, CCAPOL 
MOV CCAPOL, A 
MOV A, IIHIGH(20000) 
ADDC A, CCAPOH 
MOV CCAPOH, A 
SETBEA 
POPPSW 
POPACC 
RETI 

; Clear module O's event flag 

; Hold off Interrupts 
; 16-bit add 
; Next match will occur 20,000 
; counts later 

2-277 

270609-27 



inter AP-415 

Listing 6 High Speed Oyjllyt milboytlnterrul!!) 

$nomod51 
$nosymbols 
$nollst 
$Include (reg252.pdl) 
$IIst 

HSO mode without PeA Interrupt. Maximum frequency output = 30.5 Hz 
at Fosc = 16 MHz. 

, 
ORGOOOOH 
JMP PCA_INIT 

; Initialize PCA timer 
PCA_INIT: MOV CMOD, Ml2H 

MOVCH,MlO 
MOVCL,MIO 

, 
END 

MOV CCAPMO,II4CH 
MOV CCAPOL, MlFFH 
MOV CCAPOH, MlFFH 

SETBCR 

; Input to PCA timer = 1/4 x Fosc 

HSO Mode without Interrupt enabled 
Write to low byte first 
P1.3 wlliloggle every 65,536 counts 
or 16.4 msec at Fosc = 16 MHz 
Period = 30.5 Hz 
Turn PCA timer on 

2-278 

270609-28 



$nomod51 
$nosymbols 
$nollst 
$include (reg252.pdl) 
$list 

Ap·415 

Listing 7 High Speed OutPyt (With Interrypts) 

HSO mode with variable frequency. This example outputs a 1KHz signal 
with Fosc = 16 MHz. 

, 
ORGOOOOH 
JMP PCA_INIT 
, 
ORG0033H 
JMP PCA_INTERRUPT 

; Inillalize PCA timer 
PCA INIT: MOV CMOD, fI02H 

- MOV CH, fIOO 
MOVCL,#OO 

; Input to PCA timer = 1/4 x Fosc 

MOV CCAPMO, #4DH 
MOV CCAPOL, #LOW(I00D) 
MOV CCAPOH, #HIGH(I000) 
CLRP1.3 

; HSO mode with interrupt enabled 
; t = 1000 arbitrary 

SETBEC ; Enable PCA Interrupt 
SETBEA 
SETBCR ; Turn PCA timer on 

, 
; ........... **** ••••• ** •••••• * ••••• * •• * •• " ••• ** •••• *** •••• ** ••••• *** •••••• * •• * •••• ** ••• ****** ••• ** •• * •••• ** ••••• 

, 
WAIT: 

Test program only 

JMP$ 
JMPWAIT 

; Walt for PCA interrupt 

.•••• **."' •••••••••••••••• ** •••• **** •••••••• *** ...................... **** ••••••• t..*.** ••••• * •• ** ••••• ** ••••••••• * , 

, 

This code assumes Module 0 Is the only module being used. If 
other PCA module's are being used, soHware must check which 
module's event flag caused the Interrupt. 

PCA_INTERRUPT: 

, 
END 

CLRCCFD 
PUSHACC 
PUSH PSW 
CLREA 
MOV A, #LOW(2000) 
ADD A, CCAPOL 
MOV CCAPOL, A 
MOV A, #HIGH(20DO) 
ADDC A, CCAPOH 
MOV CCAPOH, A 

SETBEA 
POPPSW 
POPACC 
RET! 

; Clear module 0·5 event flag 

; Hold off interrupts 
; 16-bit add 
; 2000 counts later Pl.3 
; will toggle 

2-279' 

270609-30 

270609-29 



inter AP·415 

LI&!lng 8 High Speed Oytput (Single Pulse) 

$nomod51 
$nosymbols 
$noll&! 
$Include (reg252.pdf) 
$II&! ' 

HSO mode generates a single pulse width of 20 usees with Fosc = 16 MHz. 
, 
ORGOOOOH 
JMP PCA_INIT 

ORGDD33H 
JMP PCA_INTERRUPT 

; Initialize PCA timer 
PCA_INIT: MOV CMOD,I02H 

MOVCH,#OO 
MOVCL,IIOD 

, 

MOV CCAPMO,I4DH 
MOV CCAPOL, #LOW(1000) 
MOV CCAPOH, IHIGH(1000) 
CLRP1.3 

SETBEC 
SETBEA 
SETBCR 

; Input to PCA timer = 1/4 x Fosc 

; HSO mode with interrupt enabled 
; t = 1000 arbitrary 

; Enable PCA interrupt 

; Turn PCA timer on 

................. * •• ** •••• ** ..... **** ••••• * ••• _** ....... ** •••• ** ................................................ . 

WAIT: 

Test program only 

JMP$ 
JMPWAIT 

; Wait for PCA interrupt 

; .*******.***.** ...... ** .... ** ••• * .......... ** .. ****.*** ........... **** ..... **** ......... *** ..... -a***** .......... **** •• 

This code assumes Module 0 is the only module being used. If 
other PCA module's are being used, software mu&! check which 
module's event flag caused the Interrupt. 

PCA INTERRUPT: 
- CLRCCFO 

, 
DONE: 

END 

JNB P1.3, DONE 

PUSHACC 
PUSHPSW 
CLREA 
MOV A, IILOW(80) 
ADD A, CCAPOL 
MOV CCAPOL, A 
MOV A, IHIGH(BO) 

ADDC A, CCAPOH 
MOV CCAPOH, A 
SETBEA 
POPPSW 
POPACC 
RETI 

MOV CCAPMO, #OOH 
RETI 

; Clear module O's event flag 

; Hold off interrupts 
; l6·bit add 
; 80 counts later P1.3 

';wllltoggle 

; Disable HSO mode 

2-280 

270609-31 

270609-32' 



intJ AP-415 

Listing 9 Watchdog Timer 

$nomodS1 
$nosymbols 
$nollst 
$Include (reg2S2.pdf) 
$lIst 

ORGOOOOH 
JMP PCA_INIT 

Initialize PCA timer 
PCA_INIT: MOV CMOD, IIOOH 

MOVCH,IIOO 
MOV CL,IIOO 

, 

MOV CCAPM4,II4CH 
MOV CCAP4L, IIOFFH 
MOV CCAP4H, IIOFFH 

ORL CMOD, 1140H 

SETBCR 

; Input to PCA timer = 1/12 x Fosc 

; Module 4 In compare mode 
; Write to low byte first 
; Before PCA timer counts up to FFFF Hex, 
; these compare values must be changed 
; Set the WDTE bit to enable watchdog timer 

; Turn PCA timer on 

.** •••••• **** •••••• *** •••••••••• **.* ......... ****** •••• ** ........ ** ..... *, •• *** •••••• *** •• ****** ••••• ** ••••••••••••• , 
Test program only 

, 
START: 

MAIN: 

, 

MOV Rt,II120D 
MOV RO, IIOFFH 

DJNZ RO, $ 
DJNZ Rt, MAIN 
CALL WATCHDOG 
JMPSTART 

; Delay for approx. 60 msec 

; Check that watchdog never causes a reset 

i**·***·····*******· .. ·········**·***·***····****·· .. ·· ..... _* ..... _.-......... ,. .... _-*-_.-..... -...... _---* .. _ ... *. 
WATCHDOG: 

, 
END 

CLREA 
MOV CCAP4L,IIOOH 
MOV CCAP4H, CH 
SETBEA 
RET 

; Hold off Interrupts 
; Next compare value Is within 
; 2SS counts of the current PCA 
; timer value 

2-281 

270609-33 



Ap·415 

LIsting 1Q Pulae Width Modulator 

$nomod51 
$nosymboll 
$nollst 
$include (reg252.pdl) 
$lIst 

PWM mode - Maximum frequency outpul = 15.6 KHz with Fosc = 16 Mhz. 
, 
ORGOOOOH 
JMP PCA_INIT 

; Initialize PCA timer 
PCA_INIT: MOV CMOD, /I02H 

MOVCH,#OO 
MOV CL, IlOO 

, 
END 

MOV CCAPMO,142H 
MOV CCAPOL, /IOOH 
MOV CCAPOH,I128D 
SETBCR 

; InpUllO PCA timer = 114 x Fosc 
; At 16 MHz, frequency = 15.6 KHz 

PWMMode 
Write to low byte first 
50 percent duty cycle 
Turn PCA timer on 

2-282 

270609-34 



intJ AP-415 

APPENDIX B 
Duty Cycle Calculation 

$DEBUG 

SHORT_DIVISION SEGMENT CODE 

EXTRN DATA(PUlSE_WIDTH, PERIOD, DUTY_CYCLE) 
PUBLIC DUTY_CYCLE_CALCULATION 

RSEG SHORT_DIVISION 

, 

DUTY_CYCLE_CALCULATION 

CALCULATES DUTY_CYCLE = PULSE_WIDTH I PERIOD 

Inputs to this routine are 16·blt pulse width and period measurements of 
a rectangular waveform. The output Is a 9·bit BCD number representing 
the duty cycte of the waveform. The low B bits of the result are 
returned in DUTY_CYCLE. The 9th bit Is the carry bit in the PSW. "the 
duty cycle Is between 0 and 99 percent, the carry bit is 0 and DUTY_CYCLE 
contaIns the two BCD digIts representing the duty cycle as a percent. 
"the duty cycle Is 100 percent, the carry bit is 1 and DUTY_CYCLE 
contalnsO. 

INPUTS: PULSE_WIDTH 2 bytes in externally defined DATA 
(low byte at PULSE_WIDTH. high byte at PUlSE_ WIDTH+ 1) 

PERIOD 2 bytes In externally defined DATA 
(low byte at PERIOD, high byte at PERIOD+1) 

OUTPUT: DUTY_CYCLE 1 byte in externally defined DATA 

VARIABLES AND REGISTERS MODIFIED: 

PULSE_WIDTH, DUTY_CYCLE 
ACC, B, PSW, R2, R3 

ERROR EXIT: Exit with OV = 1 Indicates PULSE_WIDTH> PERIOD. 

;'*** •••••••• ** ••• ****,.*** ...................... ,* ............................................ ,**, •••• 

DUTY_CYCLE_CALCULATION: 
MOV A,PERIOD+1 
CJNE A,PUlSE_WIDTH+1,NOT_EQUAl 
MOV A,PERIOD 
CJNE A,PUlSE_WIDTH,NOT_EQUAl 

2-283 

270609-35 



inter AP-415 

EQUAL: 
SETB C 
MOV DUTY_CYCLE~ 
CLR OV 
RET 

NOT EQUAL: 
- JNC CONTINUE 

SETB OV 
RET 

CONTINUE: 
MOV R2,#8 
MOV DUTY_CYCLE~O 
MOV R3,1IO 

TIMES_lWO: 
MOV A,PULSE_WIDTH 
RLC A 
MOV PULSE_WIDTI'I,A 
MOV A,PULSE_WIDTH+1 
RLCA 
MOV PULSE_WIDTH+1,A 
MOV A,R3 
RLC A 
,",OV R3,A 

COMPARE: 

DONE: 

CJNE RS,IIO,DONE 
MOV A,PULSE_WIDTH+1 
CJNE A,PERIOD+1,DONE 
MOV A,PULSE_WIDTH 
CJNE A,PERIOD,DONE 

CPL C 

BUILD_DUTY_CYCLE: 
MOV A,DUTY_CYCLE 
RLC A 
MOV DUTY_CYCLE,A 
JNB ACC.O,LOOP CONTROL 

SUBTRACT: -
MOV A,PULSE_WIDTH 
SUBB A,PERIOD 
MOV PULSE_WIDTH,A 
MOV A,PULSE_WIDTH+1 
SUBB A,PERIOD+1 
MOV PULSE_WIDTH+1,A 
MOV A,R3 
SUBB A,IIO 
MOV R3,A 

LOOP_CONTROL: 
DJNZ R2,TIMES_lWO 

2-284 

270609-36 



inter 
FINAL TIMES TWO: 

-MOV -A,PULSE_WIDTH 
RLC A 
MOV PULSE_WIDTH,A 
MOV A,PULSE_WIDTH+l 
RLC A 
MOV PULSE_WIDTH+l,A 
MOV A,R3 
RLC A 
MOV R3,A 

FINAL_COMPARE: 
CJNE R3,11O,FINAL_DONE 
MOV A,PULSE_WIDTH+l 
CJNE A,PERIOD+l,FINAL_DONE 
MOV A,PULSE_WIDTH 
CJNE A,PERIOD,FINAL_DONE 

FINAL_DONE: 
JC CONVERT_TO_BCD 
MOV A,DUTY_CYCLE 
ADD A,1II1 
MOV DUTY CYCLE,A 
JNC CONVERT_TO_BCD 
CLR OV 
RET 

CONVERT_TO_BCD: 
MOV A,DUTY_CYCLE 
MOV B,1II10 
MUL AB 
XCH A,B 
SWAP A 
MOV DUTY_CYCLE,A 
MOV A,1II10 
MUL AB 
XCH A,B 
ORL DUTY_CYCLE,A 
MOV A,1II10 
MUL AB 
MOV A,B 
CJNE A,III$,TEST 

TEST: JBC CY,OUT 
MOV A,DUTY_CYCLE 
ADD A,1II1 
DA A 
MOV DUTY_CYCLE,A 

OUT: RET 

END 

AP·415 

270609-37 

2-285 



inter Ap·415 

APPENDIX C 

A map of the Special Function Register (SFR) space is 
shown in Table AI. Those registers which are new or 
have new bits added for the 83C51FA and 83C51FB 
have been boldfaced. 

Note that not all of the addresses are occupied. Unoc­
cupied addresses are not implemented on the chip. 

Read accesses to these addresses will in general return 
random data, and write accesses will have no effect. 

User software should not write Is to these unimple­
mented locations, since they may be used in future 8051 
family products to invoke'new features. IJl that case the 
reset or inactive values of the new bits will, always be 0, 
and their active values will be 1. 

Table A 1. Special Function Register Memory Map and Values After Reset 
F8 CH CCAPOH CCAP1H CCAP2H CCAP3H CCAP4H FF 

00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 
FO *B F7 

00000000 

E8 CL CCAPOL CCAP1L CCAP2L CCAP3L CCAP4L EF 
00000000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 

EO • AGC E7 
00000000 

08 CCON CMOD CCAPMO CCAPM1 CCAPM2 CCAPM3 , CCAPM4 OF 
OOXOOOOO OOXXXOOO XOOOOOOO XOOOOOOO XOOOOOOO XOOOOOOO XOOOOOOO 

DO • PSW 07 
00000000 

C8 T2CON T2MOD RCAP2L RCAP2H TL2 TH2 CF 
00000000 XXXXXXXO 00000000 00000000 00000000 00000000 

CO C7 

B8 'IP SADEN BF 
XOOOOOOO 00000000 

BO • P3 B7 
11111111 

A8 'IE SADDR AF 
00000000 00000000 

AO • P2 A7 
11111111 

98 * SCON ' • SBUF 9F 
00000000 xxxxxxxx 

90 • P1 97 
11111111 

88 'TCON 'TMOD • TLO 'TL1 • THO • TH1 8F 
00000000 00000000 00000000 00000000 00000000 00000000 

80 • PO ' SP • DPL • DPH 'PCON ,. 87 
11111111 00000111 00000000 00000000 OOXXOOOO 

• = Found In the 8051 core (See 8051 Hardware Description In the Embedded Controller Handbook for explanajions of 
these SFRs). 
•• = See description of PCON SFR. Bit PCON.4 is not affected by reset. 
X = Undefined. 

2-286 



intJ APPLICATION 
NOTE· 

AP-425 

September 1988 

Small DC Motor Control 

JAFAR MODARES 
, ECO APPLICATIONS 

@ Intel Corporation, 1988 Order Number: 270622-001 
2-287 



inter AP·425 

INTRODUCTION 

This application note shows how an 83C51FA can be 
used to efficiently control DC motors with minimum 
hardware requirements. It also discusses software im­
plementation and presents helpful techniques as well as 
sample code needed to realize precision control of a 
motor. 

There is also a brief overview of the new features of the 
83C51FA. This new feature is called the Programmable 
Counter Array (PCA) and is capable of delivering 
Pulse Width Modulated signals (PWM) through desig­
nated I/O pins. 

It is assumed that the reader is familiar with the MCS-
51 architecture and its assembly language. For more 
information about the 8051 architecture and the PCA . 
refer to the Embedded Controller Handbook Volume 1 
(order no. 210918-006). 

This document will not discuss stepper motors or mo­
tor control algorithms. 

DC MOTORS 

DC motors are widely used in industrial and consumer 
applications. In many cases, absolute precision in 
movement is not an issue, but precise speed control is. 
For example, a DC motor in a cassette player is expect­
ed to run at a constant speed. It does not have to run 
for precise increments which are fractions of a tum and 
stop exactly at a certain point. 

However, some motor applications do require precise 
positioning. Examples are high resolution plotters, 
printers, disk drives, robotics, etc. Stepper motors are 
frequently used in those applications. There are also 
applications which require precise speed control along 
with some position accuracy. Video recorders, compact 
disk drives, high quality cassette recorders are examples 
of this category. 

By controlling DC motors accurately, they can overlap 
many applications of stepper motors. The cost of the 
control system depends on the accuracy of the encoder 
and the speed of the processor. 

The 83C51FA can control a DC motor accurately with 
minimum hardware at a very low cost. The microcon­
troller as the brain of a system, can digitally control 
the a~gular velocity of the motor, by monitoring the 
feedback lines and driving the output lines. In addition 
it can perform other tasks which may be needed in the 
application. 

Almost every application that uses· a DC motor re­
quires it to reverse its direction of rotation or vary its 
speed. Reversing the direction is simply done by chang-

ing the polarity of the voltage applied to the ~otor. 
Figure 1 shows a simplified symbolic rep.resentatlon ~f 
a driver circuit which is capable of reversmg the polan­
ty of the input to the motor. 

270622-1 

Figure 1. Reversible Motor Driver Circuit 

Varying the speed requires changing the voltage ~evel of 
the input to the motor, and that means changmg the 
input level to the motor driver. In a digitally-controlled 
system, t4e analog signal to the driver must come from 
some form of D/ A converter. But adding a D/ A con­
verter to the circuit adds to the chip count, which 
means more cost, higher power consumption, and re­
duced reliability of the system. 

The other alternative is to vary the pulse width of a 
digital signal input to the motor. By varying the pulse 
width the average voltage delivered to the motor chang~ 
es and so does the speed of the motor. A digital circuit 
that does this is called a Pulse Width Modulator 
(PWM). The 83C51FA can be configured to have up to 
5 on-board pulse width modulators .. 

THE 83C51FA 

The 83C51FA is an 8-bit microcontroller based on the 
8051 architecture. It is an enhanced version of the 
87C51 and incorporates many new features including 
the Programmable Counter Array (PCA). 

Included in the Programmable Counter Array is a 16-
bit free running timer and 5 separate modules. 

The PCA timer has two 8-bit registers called CL (low 
byte) and CH (high.byte), and is shared by all modules. 
It can be programmed to take input from four different 
sources. The inputs provide flexibility in choosing the 
count rate of the timer. The maximum count rate is 4 
MHz ('14 of the oscillator frequency). 

Some of the port 1 pins are used to interface each mod­
ule and the timer to the outside world. When the port 
pins are not used by the PCA modules,- they may be 
used as regular I/O pins. 

The modules of the PCA can be programmed to per­
form in one of the following modes: capture mode, 

2-288 



intJ AP-425 

compare mode, high speed output mode, pulse width 
modulator (PWM) mode, or watchdog timer mode 
(only module 4). 

Every module has an 8-bit mode register called 
CCAPMn (Figure 2), and a l6-bit compare/capture 
register called CCAPnL & CCAPnH, where n can be 
any value from 0 to 4 inclusive. By setting the appropri­
ate bits in the mode register you can program each 
module to operate in one of the aforementioned modes. 

CCAPMn 

ECOMn- Enables the comparator function. Must 
be set for functions which require com­
paring of the compare/capture registers 
with the 16-bit timer, i.e., software tim­
er, high-speed output, watchdog timer, 
and PWM. 

CAPPn - Capture on positive edge of signal. 

CAPNn - Capture on negative edge of signal. 

MATn - Find a match between the capture/ 
compare and 16-bit timer. 

TOGn - Toggle I/O pin upon a match between 
capture/compare registers and 16-bit 
timer. 

PWMn - Generate PWM on I/O pin upon a 
match between the low byte of capture/ 
compare and the low byte of PCA tim­
er. 

ECCFn - Enables compare/capture flag CCFn in 
the CCON register to generate an inter­
rupt. 

Figure 2. CCAPMn Register 

When a module is programmed in capture mode, an 
external signal on the corresponding port pin will cause 
a capture of the current value of the 16-bit timer. By 
setting bits CAPPn or CAPNn or both, the module can 
be programmed to capture on the rising edge, falling, 
edge, or either edge of the signal. If enabled, an inter­
rupt is generated at the time of capture. 

When module is to perform in one of the compare 
modes (software timer, high speed output, watch dog 
timer, PWM), the user loads the capture/compare reg­
isters with a calculated value, which is compared to the 
contents of the 16-bit timer, and causes an event as 
soon as the values match. It can also generate an inter­
rupt. 

PWM is one of the compare modes and is the only one 
which uses only 8 bits of the capture/compare register. 
The user writes a value (0 to FFH) into the high byte 
(CCAPnH) of the selected module. This value is trans­
ferred into the lower byte of the same module and is 
compared to the low byte of the PCA timer. While CL 
< CCAPnL the output on the corresponding pin is a 
logic O. When CL > CCAPnL, the output is a logic !. 

In this application note we will see how a module can 
be programmed to perform as a PWM to control the 
speed and direction of a DC motor. 

SETTING UP THE peA 

The 83CSIFA has several Special Function Registers 
(SFRs) that are unknown to ASMSI versions before 
2.4. The names of these SFRs must be defined by 
DATA directive or be defined in a separate file and be 
included at the time of compilation. Such a file has 
already been created and is inclUded in the ASMS 1 
package version 2.4. 

Two special function registers are dedicated to the PCA 
timer to allow mode selection and control of the timer. 
These registers are CCON and CMOD and are shown 
in figure 3. CCON'contains the PCA timer ON/OFF 
bit (CR), timer rollover flag (CF) and module flags 
(CCFn). Module flags are used to determine which 
module causes the PCA interrupt. 

CF CR 

Address GD8H 

Bit Addressable 

CIDL I WDTE I 
Address OD9H 

Not Bit Addressable 

o . 

CCF4 CCF3 CCF2 I CCFl I CCFO I 
Reset Value = ooxa 0000 B 

CCON 

CPSl CPSO ECF 

Reset Value = OOXX XOOO B 

CMOD 

Figure 3. CCON and CMOD Registers 

First the clock source for the PCA timer must be de­
fined. The 16 bit timer may have one of four sources for 
its input. These sources are: osc freq/4, osc freq/12, 
timer 0 overflow, and external clock. 

Two bits in the CMOD register are dedicated to select­
ing one of the sources for the PCA timer input. They 
are bits 1 and 2 of CMOD which are called CPSO and 
CPS!. CMOD is not bit addressable, thus the value 

2-289 



AP-425 

must be loaded as a byte. Figure 4 shows all the sources 
and the corresponding values of CPSO and CPSl. 

CPS1 CPSO TIMER INPUT SOURCE 

0 0 Internal clock, Fosc/12 
0 1 Internal clock, Fosc/4 
1 0 Timer 0 overflow 
1 1 External clock (input on P1.2) 

Figure 4. Timer Input Source 

Next the appropriate module must be programmed as a 
PWM. As it was noted earlier, the 8-bit mode register 
for each module is called CCAPMn (see figure 2). Bit 1 
of each register is calIed PWMn. This bit along with 
ECOMn (bit 6 of the same register) must be set to pro­
gram the module in the PWM mode. PWM is one of 
the compare functions of the. PCA, and ECOMn en­
ables the compare function. Thus, the hex value that 
must be loaded into the appropriate CCAPMn register 
is 42H. 

Now that the module is programmed as a PWM, a 
value must be loaded in the high byte of the compare 
register to select the duty cycle. The value can be any 
number from 0 to 255. In the 83C51FA loading 0 in the 
CCAPnH will yield 100% duty cycle, and 255 (OFFh) 
.will generate a 0.4% duty cycle. See figure' 5. 

The next step is to start the PCA timer. The bit that 
turns the timer on and off is called CR and is bit 6 of 

DUTY CYCLE CCAPnH OUTPUT WAVEfORM 

100% 00 

90% 25 ~ 
50% 128 ---u-LSl-
10% 230 ~ 

0.4% 255 

270622-2 

Figure 5. Selected Duty Cycles and Waveforms 

CCON register (Figure 3). Since this register is bit ad­
dressable, you can use bit instructions to turn the timer 
on and off. 

In the folIowing example module 2 has been selected to 
provide a PWM signal to .a motor driver. An external 
clock will be provided for the timer input, so the value 
that needs to be loaded into CMOD is 06H. 

HARDWARE REQUIREMENT 

When using an 83C51FA, very little hardware is re­
quired to control a motor. The controlIer can interface 
to the motor through a driver as shown in figure 6. 

MOV 
MOV 
MOV 
SETB 

CMOD,#06 
CCAPM2,#42H 
CCAP2H,#O 
CR 

timer input external 

END 

put the module in PWM mode. 
o provides 100% duty cycle (5V) 
turn timer on 

. 2-290 



AP-425 

PloD DIRECTION 

;3> P!.4 SPEED MOTOR 
ASSEMBLY 

83C51FA ON/OFF 

P!.6 FEEDBACK 

270622-3 

Figure 6. Simplified Circuit Diagram of a Closed Loop System 

This configuration, a closed loop circuit, takes up only 
three 1/0 pins. The line controlling direction can be a 
regular port pin but the speed control line must be one 
of the port I pins which corresponds to a PCA module 
selected for PWM. Depending on how the feedback is 
generated and processed, it could be connected to a 
regular 1/0, an external interrupt, or a PCA module. 
Feedback is discussed in more detail in the feedback 
section of this application note. 

The diagram in Appendix A is an example of a DC 
motor circuit which has been built and bench-tested. 

DRIVER CIRCUIT 

Although some DC motors operate at 5 volts or less, 
the 83C51FA can not supply the necessary current to 
drive a motor directly. The minimum current require­
ments of any practical motor is higher than any micro­
controller can supply. Depending on the size and rat­
ings of the motor, a suitable driver must be selected to 
take the control signal from the 83C51FA and deliver 
the necessary voltage and current to the motor. 

A motor draws its maximum current when it is fully 
loaded and starts from a stand still condition. This fac­
tor must be taken into account when choosing a driver. 
However, if the application requires reversing the mo­
tor, the current demand will even be higher. As the 
motor's speed increases, it's power consumption de­
creases. Once the speed of a motor reaches a steady 
state, the current depends on the load and the voltage 
across the motor. 

Standard motor drivers are available in many current 
and voltage ratings. One example is the L293 series 
which can output up to I ampere per channel with a 
supply voltage of 36 V. It has separate logic supply and 
takes logical input "(0 or I) to enable or disable each 
channel. There are four channels per device. The 
L293D also includes clamping diodes needed for pro­
tecting the driver against the back EMF generated dur­
ing the reversing of motor. 

NOISE CONSIDERATIONS 

Motors generate enough electrical noise to upset the 
performance of the con,troller. The source of the noise 
could be from the switching of the driver circuits or the 
motor itself. Whatever the cause of the noise may be, it 
must be isolated or bypassed. 

Isolating the microcontroller from the driver circuit is 
helpful in keeping the noise limited. 

Bypass capacitors help a great deal in suppressing the 
noise. They must be added to the power and ground 
(Figure 7 diagram a), on the driver circuit (diagram b), 
on the motor terminals (diagram c), and on the 
83C51FA (diagram d). The capacitors must be as close 
to the component as possible. In fact the best location is 
under the chip or on top of it if packaging allows. The 
diagrams in figure 7 show the location and some typical 
values for the bypass capacitors. 

2-291 



AP-425 

Tvee 

.lcl IC2 1 C3 

ISOp.F 16.8p.F I O.lp.F 

1. (0) . 

DRIVER VOLTAGE 

0.1 p.F =~ 83CS1FA 

-: (d) 

LOGIC 
Vee 

270622-4 

Figure 7. Typical Locations and Values for Bypass Capacitors 

OPEN LOOP & CLOSED LOOP 
SYSTEMS 

There are two types Qf motor control systems: open 
loop and closed loop. '. 

In the open loop system the controller outputs a signal 
to turn the motor on/off or to change the direction of 
the rotation based on an input that does not come from 
the motor. For example, the position of a manual or 
timer switch becomes the input to the controller, which 
varies the input to the motor. In another case, the con­
troller may take input from data tables in the program 
to run, vary the speed, reverse direction, or stop the 
motor. 

Closed loop systems can use one or more of the above 
mentioned examples for the open loop system, plus at 
least one feedback signal from the motor. The feedback 
signal provides such information as speed, position, 
and/or direction of motion. 

Many applications require that a motor run -at a con­
stant speed. The controller has to continuously make 
adjustments to keep the speed within the limits. In 
some cases the speed of the motor is synchronized to 
another motor or moving part of the system. 

Depending on the type of feedback signal, the 
83C5lFA may have to use other modules of the PCA 
along with other on-chip peripherals such as Timer/ 
Counters, Serial Port, and the interrupt system to pre­
cisely control a DC motor. 

The example in die following section uses one PCA 
module to generate PWM, and another module (in cap­
ture mode) to receive feedback from a DC motor. 

FEEDBACK 

The feedback comes from a sensing device which can 
detect motion. The sensing device may be an optical 
encoder, infrared detector, Hall effect sensor, etc. De­
pending on the application, one or more of the above 
mentioned sensing devices may be suitable. 

The optical sensors should be encapsulated for better 
reliability. If they are not enclosed, factors such as am­
bient light, dust, and dirt can lessen their sensitivity. 

Hall effect sensors are insensitive to any type of light. 
They change logic levels going into and coming out of a 
magnetic field. The sensing device is normally mounted 

2-292 



intJ Ap·425 

on some stationary part of the system and the magnet is 
installed on the rotating part. The potential problem 
with the Hall effect sensors are that if the gap between 
the magnet and the sensing device is too big, the sens­
ing device may not be affected by the magnetic field. 
Also the number of magnets is limited which means 
fewer feedback pulses will be provided. 

Whatever the means of sensing, the result is a signal 
which is fed to the controller. The 83C5lFA can use 
the feedback signal to determine the speed and position 
of the motor. Then it can make adjustments to increase 
or decrease the speed, reverse the direction, or stop the 
motor. 

In the following example module 3 of PCA is set up to 
perform in the capture mode. In this mode module 3 
will receive feedback signals from a Hall effect transis­
tor fixed behind a wheel which is mounted on the shaft 
of a DC motor. Two magnets are embedded on this 
wheel in equal distances from each other (180 degrees 
apart). Every time that the Hall effect transistor passes 
through the magnetic field, it generates a pulse. 

The signal is input to Pl.6 which is the external inter­
face for module 3 of the PCA. In this example, module 
3 is programmed to capture on the rising edge of the 

input signal. The time between the two captures corre­
sponds to '/. of a revolution. Thus, two consecutive 
captures can provide enough information to calculate 
the speed of the motor as explained in the next para­
graph. By storing the value of the capture registers each 
time, and comparing it to its previous value, the con­
troller can constantly measure and adjust the speed of 
the motor. Using this method one can run a motor at a 
precise speed, or synchronize it to another event. 

In the PCA interrupt service routine, each capture val­
ue is stored in temporary locations to be used in a sub­
tract operation. Subtracting the first capture from the 
second one will yield a 16-bit result. The resultant val­
ue, which will be referred to as "Result" in the rest of 
this document, is in PCA timer counts. An actual RPM 
can be calculated from Result. Although the 83C5lFA 
can do the calculation, it would be much faster to pro­
vide a lookup table within the code. The table will con­
tain values which have been calculated for a possible 
range of Results. 

The following code is an example of how to measure 
the period of a signal input to module 3 of the 
83C5l FA. The diagram in figure 8 shows how the peri­
od corresponds to the rotation of the wheel. In the dia­
gram "T" is the period and "t" is the time that the 
magnet is passing in front of the Hall effect transistor. 

~ ---- ~ 

HAll EFFECT 
TRANSISTOR 

000 
I I I I 

~ ~ ~ 
2 3 4 

itr 

U U 
I' 

T 

'I 
270622-5 

Figure 8. The Output Waveform of the Half Effect Transistor as it goes Through the Magnetic Field 

2-293 



inter AP-425 

FLAG BIT 0 
HLBYTE_TMP DATA 45H 

test flag 

LO_BYTE_TMP DATA 46H 
HI_BYTE_RESULT DATA 47H 
LO_BYTE_RESULT DATA 48H 

ORG 
JMP 

ORG 
JMP 

BEGIN: 
MOV 
MOV 
MOV 
·SETB 

PCLISR: 

MOV 
CLR 
SETB 

JB 
SETB 
MOV 
MOV 
CLR 
RETI 

CLR 
MOV 
SUBB 
MOV 
MOV 
SUBB 
MOV 
CLR 

~OH 
BEGIN 

33H 
PCA_ISR 

CMOD,#O 
CCAPM3,#2lH 
CCAP3H,#9AH 
IP.6 
IE,#OCOH 
FLAG 
CR 

SET PCA TIMER InPUT fOSC/12. 
MODULE 3 IN POSITIVE CAPTURE MODE. 
PWM AT 60 PERCENT DUTY CYCLE. 
SET PCA INT. AT HIGH PRIORITY. 
ENABLE PCA INTERRUPT. 

TURN PCA TIMER ON. 

FLAG,CAP_2 ; FLAG BIT IS SET TO SIGNIFY 1st 
FLAG ; CAPTURE COMPLETE. 
HI_BYTE_TMP,CCAP3H; SAVE FOR NEXT CALCULATION. 
LO_BYTE_TMP,CCAP3L 
CCF3 ; RESET PCA INT. FLAG MODULE 3 

C 
A,CCAP3L 
A,LO_BYTE_TMP 
LO_BYTE_RESULT,A 
A,CCAP3H 
A,HLBYTE_TMP 
HI_BYTE_RESULT,A 
IE.6 

FOR SUBTRACT OPERATION. 
SUBTRACT OLD CAPTURE FROM NEW CAPTURE. 

SUBTRACTION RESULT OF LOW BYTE. 

HIGH BYTE SUBTRACTION. 
SUBTRACTION RESULT OF HIGH BYTE. 
DISABLE PCA INTERRUPT. 

In this example only one measurement is taken. That is why 
the PCA interrupt is disabled in the above line of instruction. 

RET_PCA: 
CLR 
RETI 
END 

CCF3 ; RESET PCA INT. FLAG MODULE 3 

SOFTWARE/CPU OVERHEAD 

It takes the 83C51FA no more than 250 bytes of code 
to control a DC motor. That is to run the motor at 
various speeds, monitor the feedback, use electrical 
braking, and even run it in steps. However, the CPU 
time spent on the above tasks can add up to 70 to 75% 
of the total time available (clock frequency 12 MHz). 

The section of software which turns the motor on and 
off, or sets the speed is very short. In fact, all of that 

can be done in less than 30 instructions. Thus, in all­

open loop system, the controller spends an insignificant 
amount of time on controlling the motor, However, in a 
closed loop system the controller has to continuously 
monitor the speed and adjust it according to the pro­
gram and the feedback. 

The re&t of this section talks about electrical braking, 
stepping a DC motor, and offers examples of code to 
implement these techniques. 

2-294 



AP-425 

ELECTRICAL BRAKING 

Once a DC motor is running, it picks up momentum. 
Turning ofT the voltage to the motor does not make it 
stop immediately because the momentum will keep it 
turning. After the voltage is shut ofT, the momentum 
will gradually wear ofT due to friction. If the application 
does not require an abrupt stop, then by removing the 
driving voltage, the motor can be brought to a gradual 
stop. 

An abrupt stop may be essential to an application 
where the motor must run a few turns and stop very 
quickly at a predetermined point. This could be 
achieved by electrical braking. 

Electrical braking is done by reversing the direction of 
the motor. In order to run in reverse direction, the mo­
tor has to stop first, at which time the driving voltage is 
eliminated so that the motor does not start in the new 
direction. Therefore the length of time that the revers­
ing voltage is applied must be precisely calculated to 
ensure a quick stop while not starting it in the reverse 
direction. 

BEGIN: 

There is no simple formula to calculate when to start, 
and how long to maintain braking. It varies from motor 
to motor and application to application. But it can be 
perfected through trial and error. 

In a closed loop system, the feedback can be used to 
determine where or when to start braking and when to 
discontinue. 

During the electrical braking, or any time that the mo­
tor is being reversed, it draws its maximum current. To 
a motor which is turning at any speed, reversing is a 
heavy load. The current demand of a motor, when it 
has been reversed,is much higher than when it has just 
been powered on. 

The following shows a ,code sample for electrical brak­
ing on a DC motor. The code is designed for the hard­
ware shown in Appendix A. The subroutine DELAY 
provides the period that the reverse voltage is applied to 
the motor. The code for this subroutine is available in 
the TIME DELAYS section of this document. 

MOV 
MOV 
SETB 

CMOD,#O 
CCAPM1,#42H 
CR 

SET PCA TIMER INPUT fOSC/12. 
SETTING THE MODULE TO PWM'MODE. 
PCA TIMER RUN. 

DRIVE MOTOR CLOCKWISE 
CLR Pl.O 
MOV CCAP1H,#00 

Pl.O AND THE PWM OF MODULE 1-
CONTROL THE SPEED AND DIRECTION. 

00 IN THIS REGISTER PUTS OUT MAX PWM (LOGICAL 1) 
CALL STOP_MOTOR 

STOP_MOTOR: 
SETB' 
MOV 
CALL 
CLR 
RET 

Pl.O 
CCAP1H,#OFFH 
DELAY 
Pl.O 

REVERSING THE MOTOR. 

WAITING FOR 0.5 SECOND. 
REDUCING VOLTAGE TO O. 
RETURN FROM SUBROUTINE. 

2-295 



inter AP-425 

STEPPING A DC MOTOR 

Using the 83C51FA, it is possible to run a simple DC 
. motor in small steps. The resolution of the steps will be 
as high as the resolution of the encoder. If this resolu­
tion is sufficient, here is a technique to run a DC motor 
in steps. 

Using a gear box to gear down the motor wiII increase 
the resolution of steps. However, putting too much load 
through the gears wiII cause sluggish starts and stops. 

Electrical braking is used in order to stop the motor at 
each step. Therefore, the routine that runs the motor in 
steps will consist or turning it on with full force, waiting 
for certain period, and stopping it as fast as possible. 
The wait period depends on the number of steps per 
revolution. 

As the steps and the intervals between them become 
smaller, the average current demand of the motor in­
creases. This is· because the motor is operated at its 
maximum torque condition every time it starts to rotate 
and every time it is reversed for electrical braking. 

The following code sample shows a continuous loop 
which runs the motor in steps. The number of steps per, 
revolution depends on the duration of the delay gener­
ated by DELAY subroutine. Subroutine WAIT pro- ' 
vides the time between the steps. 

LOOP: 

Subroutine DELAY is the period of time that the mo­
tor is kept in reverse. This period must be determined 
through trial and error for each type of motor and sys­
tem. 

TIME DELAYS 

While the 83C51FA is controlling a motor it must fre­
quently wait for the motor to move to certain position 
before it can proceed with the next task. For example, 
in the case of electrical braking when the controller 
reverses the polarity of voltage across the motor, de­
pending on the type, size, and the speed ofthe motor, it 
may have up to a second of CPU time before it will 
tum the motor off. 

The wait may be implemented in different ways. Any of 
the Timer/Counters or unused PCA modules could be 
utilized to provide accurate timing. The advantage in 
using the timers is that while the timer is counting, the 
processor can be taking care of some other tasks. When 
the timer times out and generates an interrupt the proc­
essor will go back and continue servicing the motor. 

If there are no timers or PCA modules available for this 
purpose, a ,software timer maybe set up by decrement­
ing some of the internal registers. In this method the 
processor will be tied up counting up or down and will 
not be able to do anything else. An example of such a 
timer is: 

CLR 
MOV 

PLO 
CCAP1H,#0 

SET DIRECTION CLOCKWISE 
MAX PWM 

The above instruction sets the motor running clookwise. The controller can 
be dOing other tasks if need be. or just stay in a wait loop, then stop the 
motor as shown below. 

SETB 
MOV 
CALL 
CLR 
CALL 
JMP 

PLO 
CCAP1H,#OFFH 
DELAY 
Pl.O 
WAIT 
LOOP 

; REVERSING THE MOTOR. 

" WAIT FOR IT TO STOP. 
REDUCE VOLTAGE TO O. 
TIME BEFORE NEXT STEP. 

2·296 



intJ 

DELAY: 
MOV 
MOV 

DELALLOOP: 
DJNZ 
DJNZ 
RET 

R4,#25 
R5,#255 

R5,DELALLOOP 
R4,DELALLOOP 

AP-425 

(decimal) 
(decimal) 

Subroutine DELAY provides approximately 6.4 ms 
with a 12 MHz clock or 4.8 milliseconds with a 16 
MHz clock. The length of this delay can be controlled 
by loading smaller or larger values to R4 to vary from 
260 microseconds up to 65 milliseconds at 12 MHz or 
48 milliseconds at 16 MHz oscillator frequency. Larger 
delays may be obtained by cascading another register 
and creating an outer loop to this one. 

Let us assume that it will take a motor 500 milliseconds 
to stop from its CW rotation and we are going to use 
Timer/Counter 0 to provide the wait period. Subrou­
tine DELAY 1 will keep track of this timing. Module 1 
of PCA is selected to provide the PWM. 

ORG OBH 
JMP TIMER_INTERRUPT_ROUTINE 

CLR 
MOV 

PLO 
CCAPlH,#O 

SET DIRECTION CW 
MAX PWM 

Now the motor is running and the controller can do other tasks. 
Some typical tasks are called in the following segment. 

BUSLLOOP: 
CALL 
CALL 
CALL 
JNB 

MONITOR_DISPLAY 
SCAN_KELBOARD 
SCAN_INPUT_LINES 
STOP_FLAG, BUSY_LOOP 

STOP_FLAG gets set by a feedback signal and denotes that the motor must 
stop. 

DELAY!: 

SETB 
MOV 
CALL 
CLR 

SETB 
SETB 
MOV 
MOV 

PLO 
CCAPlH,#OFFH 
DELAY 
PLO 

EA 
ETO 
TLO,#OD8H 
THO,#5EH 

REVERSING THE MOTOR 

WAIT TILL MOTOR STOPS 
REDUCE VOLTAGE TO 0 

enable timer 0 interrupt 

2-297 



intJ Ap·425 

SETB TRO timer 0 on 
MOV R7,#8 keep track of how many times 

; timer 0 must rollover 

continue' performing other tasks 

MONITOR_LOOP: 
CALL 
CALL 
CALL 
JB 
RET 

MONITOR_DISPLAY 
SCAN_KEY-BOARD 
SCAN_INPUT_LINES 
TRO,MONITOR_LOOP 

TIMER_INTERRUPT_ROUTINE: 
DJNZ R7,FULL_COUNT 
CLR TRO 

RETI 

To implement a SOO milliseconds delay, timer 0 is used 
here. In mode 1 timer 0 is a 16-bit timer which takes 
6S.S35 milliseconds at 12 MHz to roll over. Dividing 
SOO milliseconds to 6S.S3S shows that timer has to 
overflow more than 7 times but less than 8 times. How 
much more than 7 times? The following calculation 
yields the initial load value of the timer. 

500 + 65.535 = 7.2695 taking it backward 

65.535 x 7 = 458.745 milliseconds 

500 - 458.745 = 41.255 milliseconds or 41255 
microseconds. 

In hexadecimal it is A127H. The initial load value is 
the complement of this value which is SED8H. 

CONCLUSION 

The 83C51FA with all its on-chip peripherals is a sys­
tem on one chip. It can simplify the design of a control 
board imd reduce the chip count. Up to 5 DC motors 
can be controlled while doing other tasks such as moni­
toring feedback lines, human interfacing (scanning a 
keyboard, displaying information), and communicating 
with other processors. The MCS-51 powerful instruc­
tion set provides maximum flexibility with minimum 
hardware. 

With its onboard program memory capability, the need 
for the external EPROM and address latch is eliminat­
ed. The 83C51FA can have up to 8K bytes of code and 
the 83C51FB can have up to 16K bytes of code on­
board. 

This microcontroller can be used in industrial, com­
mercial, and automotive applications. 

2-298 



infef Ap-425 

APPENDIX A 

Figure A-I shows a symbolic view of the L293B ddver. 
This driver has 4 channels but only two are shown here. 
Note the inputs A and B and how they are related to 
each other. You can input the PWM to either one of 
the inputs and by toggling the other input start or stop 
the motor. While running, the PWM input controls the 

speed. Pin PIA corresponds to module I of the peA, 
and pin Pl.O is used as a regular I/O pin. 

Figure A-2 shows the schematic of the motor driver, 
motor, feedback path, and the supporting components. 

...n.n... 
PWM (P1.4) 

. L293B 

Port Pln(P1.0)---F-4 ~H--.....:=r-

AB j ~+--i~ When A = B, motor stops 

-1. ~ When A .. B, motor runs 

(' off off 

Clockwise Counter Clockwise 

Figure A-1. The L293B Motor Driver 

2-299 

270622-6 



AP-425 

J: vee vee vee 

10 "F 

9 1 

8 
2 

7 
L293 

4 

5 
9 

10 S 

Vee 
11 14 

Ne NC 

10K DRIVER 
I S.S"F 

30137 

~ __ ~ ________________________________________ ~3 2 

All diodes are the same and could be any of the 1 N4000 series. 

Figure A-2. Full Schematic of a Motor-Control System 

2-300 

HALL EFFECT 
DIGITAL SWITCH -= 

270622-7 



APPLICATION 
NOTE 

AP-429 

March 1989 

Application Techniques for the 
83C152 Global Serial Channel 

in CSMA/CD Mode 

BOB JOHNSON 
Embedded Control Applications Engineering 

© Intel Corporation, 1989 Order Number: 270720-001 

2-301 



inter AP-429 

INTRODUCTION 

.The 83Cl52 is an 80C5IBH based microcontroller with 
DMA- capabilities and a high speed, multi-protocol, 

'synchronous serial communication interface called the 
Global Serial Channel (GSC). The GSC uses packe­
tized data frames that consist of a beginning of frame 
(BOF) flag, address byte(s), data byte(s), a Cyclic Re­
dundancy Check (CRe), and an End Of Frame (EOP) 
flag. An example of this type of packet is shown in 
Figure 1. Most 80Cl52 users will be familiar with 
UARTs, another type of serial interface. Figures I and 
2 compare the two types of frames. The UART uses 
start and stop bits with a data byte between as shown in 
Figure 2 . .The 83Cl52 retains the standard MCS®-51 
UART. 

The 83Cl52 will be referred to as the "CI52" through­
out this application note to refer to the device. This 

application note deals with initializing and running the 
GSC in CSMA/CD mode only. Carrier Sense Multiple 
Access with Collision Detection (CSMA/CD) is a com­
munication protocol that allows two or more stations to 
share a common transmission medium by sensing when 
the link is idle or busy (Carrier Sense). While in the 
process ,of transmission, each station monitors its own 
transmission to identify if and when 'a collision occurs. 
When a collision occurs, each station involved in the 
transmission executes a backoff algorithm and reat­
tempts transmission (Collision Detection). This access 
method allows all stations an equal chance to transmit 
its own packet and thus is referred to as a "peer-to­
peer" type protocol (Multiple Access). Even in 
CSMA/CD mode, the user has several variations that 
can be implemented. Table I summarizes the various 
CSMA/CD options available. Most of these variations 
will be discussed in this application note. 

:,J,~ ? ",I", X'-------r-, ~-r;rr 
I 

BOF I DATA , EOF 

'--_-v-_1~8, 16 BITS I 16,32 BITS I 
8, 32, 64 BITS ANY NUMBER OF OCTETS 

Figure 1. Packetized Frame 

Figure 2. UART Byte 

2-302 

2 BITS 

STOP 
BIT 

270720-1 

270720-2 



infef Ap·429 

Table 1. CSMA/CD Variations Supported by C152 

CSMAlCD Parameter Options Supported by Hardware 

Preamble a·Bits 32-Bits 64-Bits 

Acknowledgement Hardware Software 

Backoff Algorithm Normal Alternate Deterministic 

CRC 16-Bit 32-Bit 

Address Recognition a-Bit 16-Bit S/W Extendable 

Address Masking a-Bit 16-Bit 

Jam Type D.C. CRC 

GSC Servicing CPU DMA 

Data Source (Transmitter) External RAM Internal RAM SFR 

Data Destination (Receiver) External RAM Internal RAM SFR 

GSC Interface Direct Buffers 

Baud Rate 1.709 KPBS (minimum) 2.062 MPBS (maximum) 

# Collisions Permitted o to a 

# of Slots (Deterministic Only) 1 to 63 

Time Slot 1 to 256 BITs 

IFS 2 to 256 BITs 

In this application note initializing the GSC is covered 
first. Starting, maintaining, and ending transmissions 
and receptions will then be discussed. Included in these 
sections will be how interrupts are generated, the soft­
ware needed to respond to interrupts, and restarting the 
process. There are four interrupts used in conjunction 
with the GSC. They are: Transmit Valid, Transmit Er­
ror, Receive Valid, and Receive Error. A complete soft­
ware example is shown in Appendix A. Included in the 
software are comments describing what and why cer­
tain sections of code are needed. 

Figures 3 and 4 are flow charts that show the entire 
process of using the C152 GSC under CPU or DMA 
control. Both flow charts begin with initialization 
which is described in the next section. Each step in the 
flow charts will be described. In general, the text com­
bines CPU and DMA control of the GSC and discusses 
pros and cons of each. 

These flow charts were created from lab experiments 
performed with the C152. The purpose of the lab exper­
iments was to implement a CSMA/CD link, over 
which data could be passed from one station to another. 
As a source for data to transmit and a method to dis­
play the data received, two terminals were used. Con­
necting two terminals together would not normally be 
encountered in an actual application. However, con­
necting two terminals together provided a convenient 
configuration on which to develop the necessary soft­
ware. Connecting two terminals also created a base 

from which the user could implement many different 
designs utilizing the s~ftware provided in Appendix A. 

The final experiment consisted of two parts: 1) data 
received by the UART to be transmitted by the GSC 
and 2) data received by the GSC to be transmitted by 
the UART. In both cases a terminal was connected to 
the UART on each C152 and the GSC was under 
DMA control. There were eight external 120 byte buff­
ers available. Four buffers were used to store the data 
received by the UART and four buffers used to store 
the data received by the GSC. 

As data is received from the UART each byte is exam­
ined, placed in an external buffer and a counter incre­
mented. Each byte is examined to see if it equals an 
ASCII "carriage return" (ODH). If a match occurs, the 
program assumes it is the end of a line and the end of 
the current huffer. Once a carriage return is detected, a 
line feed is added and the byte count incremented. The 
counter is then used to load the byte count register for 
the appropriate DMA channel. Once a buffer is closed 
it's flagged as having data available for the GSC to 
transmit. If the next buffer was not filled with data 
waiting to be transmitted by the GSC, it is made avail­
able for receiving the next line. Once the GSC transmits 
the entire packet the buffer is flagged as empty and 
available for storing new data from the UART. 

When a packet is received by the GSC, the data is 
placed in an external buffer. When the packet ends, the 

2-303 



inter AP-429 

number of bytes received is calculated. The current 
buffer is marked to indicate that the data is ready for 
output by the UART. The calculated byte count is used 
to identify how many bytes the UART should send to 
the terminal. When the UART sends the proper num­
ber of bytes, the buffer is made available so that the 
GSC may store data in it. 

This has all been subjected to limited testing in the lab 
and verified to work with two terminals. The software 
has only been developed to the point that the terminals 

CPU Only 

may display each other's outgoing messages and no far­
ther. This means that some error conditions are not 
resolved with the current version of the software. For 
instance, if two terminals transmit data at approximate­
ly the same time, both messages may be displayed, even 
if the received data occurs within the middle of a sen­
tence being typed. For reasons such as this, the soft­
ware and hardware presented should not be used for a 
production product without thorough testing in 1;l!e ac­
tual application. 

270720-3 

Figure 3. GSC CPU Flow Chart 

2-304 



AP-429 

N 

RET! 

270720-4 

Figure 3. GSC CPU Flow Chart (Continued) 

2·305 



AP-429 

270720-5 

270720-6 

Figure 3. GSC CPU Flow Chart (Continued) 

2-306 



AP-429 

MAIN 
PROGRAM 

Figure 4. GSC DMA Flow Chart 

2-307 

270720-7 



intJ AP-429 

REC VALID INT REC ERROR INT 

270720-8 

Figure 4. GSC DMA Flow Chart (Continued) 

2-308 



inter AP-429 

XMIT VALID INT G 

RETI 

270720-9 

270720-10 

Figure 4. GSC DMA Flow Chart (Continued) 

2-309 



inter AP-429 

GSC INITIALIZATION 

During initialization, user software sets up the hard­
ware in the GSC so that communication may begin and 
institute the parameters specified by the protocol.' This 
can further be sub-divided into two more sections. The 
first deals with those items which will vary according to 
the protocol being implemented, referred to as protocol 
dependent. The second section deals with those items 
that need to be accomplished in the same manner re­
gardless of the protocol and are referred to as protocol 
independent. Table 2 shows those items of initialization 
which are protocol dependent. Once set up, the items in 
Table 2 do not have to be repeated when starting a new 
reception or transmission. 

Table 2. Protocol Dependent Initialization 

baud rate 
preamble length 
backoff mode (random or deterministic) 
CRC 
interframe space (IFS) 
type of jamming signal used 
slot time 
addressing 
enabling Hardware Based Acknowledge (HBA) 

Table 2 introduces two new terms that previous 
CSMA/CD users may not be familiar with; Hardware 
Based Acknowledge (HBA) and Deterministic Colli­
sion Resolution (DCR). HBA is a method in which the 
GSC receiver hardware will acknowledge the reception 
of a valid frame and DCR is a collision resolution algo­
rithm in which the user assigns a specific slot number 
to each station on the link. HBA will be covered in its 
own section, located later in this document. For a de­
scription on DCR or more information on HBA, please 
refer to the 83CI52 Hardware Description in the 8-bit 
Embedded Controller Handbook (order # 270645). 

Table 3 shows items which are protocol independent. 
All of the items in Table 3, except for determining how 
the GSC is controlled, will need to be repeated after 
each GSC operation, before a reception or transmission 
starts again, 

Table 3. Protocol Independent Initialization 

clearing the collision counter register 
control of the GSC 
initializing DMA (only if used) 
initializing counters and pointers 
enabling the receiver and receive interrupts 
enabling the transmitter and transmit interrupts 

INITIALIZATION 
(PROTOCOL DEPENDENT) 

This section deals with those items which are part of 
initialization which vary according to the protocol be­
ing implemented. These parameters will typically be 
dictated by rules of the protocol or hardware environ­
ment. In addition, some parameters will vary according 
to the software implemented by the programmer. For 
instance, interframe space (IFS) is one of the parame­
ters dependent on other software developed to implec 

ment a protocol with the C152. 

BADD RATE-When initializing the GSC baud rate 
there are two major considerations. The first is that the 
GSC baud rate can only be programmed in multiples of 
118 the osciJIator frequency when using the internal 
baud rate generator as shown in the formula given be­
low. If a 1 MBPS rate is desired, the oscillator frequen­
cy must be 16 MHz or 8 MHz. This becomes less crit­
ical when the GSC baud rate is much lower than the 
desired oscillator frequency. 

Fosc 
GSC baud rate = (BAUD + 1) x 8 

UART baud rate _ (2smod) {Fosd 
(Mode 3) (256 - TH1) x 384 

The second major consideration only matters if the 
DART· is used. In this case, when deciding on GSC 
baud rate and oscillator frequency the effect on the 
DART baud rate must be understood. As shown in the 
formula above, when using a timer in mode 3, baud 
rates generated for the DART are in multiples of 11384 
the oscillator frequency. This means that standard 
DART baud rates such as 9600, 2400, 1200, etc. and 
common GSC baud rates such as 2 MBPS, 1 MBPS, 
and 640 KBPS, cannot be reached with any single oscil­
lator frequency. This can be worked around with meth­
ods such as externally clocking the timers. Externally 
clocking the GSC cannot be done when CSMA/CD is 
selected. For instance, the maximum oscillator frequen­
cy that can be used to ~chieve a standard DART baud 
rate of 9600 is 14.7456 MHz, which works out to a 
maximum GSC baud rate of 1.8432 MBPS which can 
be further divided down by multiples of 8. The program 
example in Appendix A uses these values. 

2-310 



AP-429 

To select a desired baud rate, the Special Function Reg­
ister BAUD is loaded with an appropriate number ac­
cording to the previously given formula. For instance: 

MOV BAUD,#O ;selects a baud rate 
;of 1/8 the oscillator 
;frequency 

or: 

MOV BAUD,#l ;selects a baud rate 
;of 1/16 the oscillator 
;frequency 

at the other extreme: 

MOV BAUD,#OFFH ;selects a baud rate 
;of 1/2048 the 
;oscillator frequency 
;(7.2K @ 14.7456 MHz) 

PREAMBLE LENGTH-A preamble serves four 
functions in CSMA/CD mode: to provide synchroniza­
tion for the following frame, to contain the Beginning 
Of Frame flag (BOF), to let other stations on the link 
know that the link is being used, and to provide a win­
dow where collisions may occur and automatically re­
attempt transmission (backofl). Figure S shows what an 
eight-bit preamble would look like. 

The ClS2 receiver will synchronize to the first tran­
sition and resynchronize on every following transition. 
For this reason a minimum preamble length can be 
used. On the ClS2 the minimum preamble length is 8-
bits. However, due to network topography, other devic­
es used, or the protQcol being implemented, a larger 
number of transitions may be required. In these cases 
the ClS2 can be programmed for either a 32- or 64-bit 
preamble. 

To select an 8-bit preamble: 
GMOD = XXXXXOlX 

To select a 32-bit preamble: 
GMOD = XXXXXIOX 

To select a 64-bit preamble: 
GMOD = XXXXXIIX 

tii~ 
~ 

~tii ' 
"" h 

WAVEFORM 

BACKOFF MODE-The CI52 has three types of 
backoff modes: Normal Backoff, Alternate Backoff, 
and Deterministic Backoff. Normal backoff and alter­
nate backoff are very similar and the only difference 
between them is when the slot timer begins counting 
time slots. 

In normal backoff each station randomly chooses a slot 
based on the number of collisions that have previously 
occurred. After the idle (EOF) is detected, the inter­
frame space timer and slot time timer begin at the same 
time. Since all devices are prevented from beginning a 
transmission during the interframe space, that amount 
of time is taken away from a device which has chosen 
slot O. When a slot time is significantly larger than the 
interframe space, this should pose no problem as slot 0 
will still provide a window for the device to begin trans­
mission. There is a problem when the interframe space 
is larger than the slot time. In this case, if a device 
chooses slot 0, it will not be allowed to transmit because 
the interframe space has not yet expired. This decreases 
efficiency of the backoff algorithm and reduces band­
width. Normal backoff should be used when the slot 
time is greater than the interframe space period. 

In alternate backoff, after the idle is detected, only the 
interframe space timer begins. When the interframe 
space timer expires, the slot time timer begins. This 
results in extending the total !jmount of time spent in 
the backoff algorithm but preserves the entire amount 
of time for each slot that may be selected. Alternate 
backoff is recommended when the slot time is less than 
or equal to the interframe space period. 

The deterministic backoff mode is a new resolution 
mode introduced by the CIS2. Deterministic backoff 
utilizes peer-to-peer communication while in normal 
transmission mode, and a prioritized or a deterministic 
algorithm while performing the resolution. Determi­
nistic backoff operates by following standard CSMA 
rules when attempting to transmit a packet for the first 
time. However, if a collision is detected each station is 

'. 

LOGIC 
LEVEL 10101011 

Figure 5. 8-Bit Preamble (also HBA Waveform) 

2-311 

270720-11 



infef AP-429 

restricted to only transmit during its assigned slot. The 
slot number is assigned by the user and up to 63 slots 
are available. A more detailed description on determi­
nistic backoff is in the 80CI52 Hardware Description 
chapter in the 8-bitEmbedded Controller Handbook. 
Deterministic backoff is recommended if there are 64 
stations or less in a network and the user wishes to 
remove the uncertainty that arises when using one of 
the other two r~ndom resolution methods already de­
scribed. Another reason for using deterministic resolu­
tion is if a user wishes to assign a priority to one sta­
tion's messages over that of another station's during the 
collision resolution period. The user should be aware 
that most CSMA/CD protocols that already have stan­
dards associated with them preclude the use of determi­
nistic backoff. 

To select normal backoff: 
OMOD = XOOXXXXX 
MYSLOT = XOXXXXXX 

To select alternate backoff: 
OMOD = XIIXXXXX 
MYSLOT = XOXXXXXX 

To select deterministic backoff: 
OMOD = XIIXXXXX 
MYSLOT = XIXXXXXX 

CRC-The C 152 offers a choice of two types of CRC. 
One type of CRC is CRC-CClTT (16-bit) used in 
HDLC (Reference I). The second CRC available is 
named AUTODIN-II (32-bit) which is used in 802.3 
(Reference 2). The following formulas give the CRC 
generating polynomial of each. 

CRC-CCITT = Xl6 + 'X12 + XS + 

AUTODIN-II = X32 + X26 + X23 + 
X22 + Xl6 + Xl2 + 
Xll + X10 + X8 + 
X7 + XS + X4 + 
X2+X+I 

The selection of which CRC to use is normally dictated 
by the protocol being implemented. When selecting a 
CRC, the user should remember that the CRC length 
also determines the jam time, which in tum will affect 
the slot time. 

To select the 16-bit CRC: 
OMOD = XXXXOXXX 

To select the 32-bit CRC: 
OMOD = XXXXIXXX 

INTERFRAME SPACE-The interframe space pro­
vides a period of time for the receiver and physical me­
dium to fully recover from a previous reception and be 
prepared to accept a new message. To fulfill these re­
quirements the value programmed into IFS should be 
greater than or equal to the "turn around" time pluS 
round trip propagation time. "Turn around" time is the 
amount of time it takes for a receiver to be re-enabled 
after having just received a previous packet. Calculat­
ing worst case turn around time is very complicated 
when the OSC is under CPU control. This is because 
the Receive Done bit (RDN), which signifies the end of 
a received packet, does not generate an interrupt. The 
user is required to periodically poll Receive Done to 
ascertain when incoming packets are complete. Since 
the polling sequence is sometimes altered by interrupts, 
these delays must also be taken into account when de­
ciding what interframe space will be used. As an alter­
native, the user could choose to set-up a timer that will 
periodically poll the receive done bit and give a more 
reliable idea of what the turn around time will be. This 
will require that the timer interrupt be assigned a high­
er priority than any of the other interrupts. Since the 
RDN bit will be set approximately two bit times after 
the last CRC bit is received, in some situations it is 
possible to add a delay to a receive valid interrupt and 
check Receive Done just prior to leaving the routine. 
As a last resort a user could ignore the maximum re­
sponse time and instead pick a number that works most 
of the time. The only negative result of doing this is 
that some frames may be missed. If acknowledgements 
are used, that frame would be retransmitted. However, 
if acknowledgements are not used, the data would be 
lost forever. 

The programming quantum for interframe space is in 
bit times where a bit time is equal to Ilbaud rate. The 
only hardware restrictions the CI52 places on inter­
frame space is that the number programmed must be 
even and the maximum value is 256 bit times. Other 
than that, the user can decide what interframe space 
value will be used. The interframe space should be the 
same for all stations on any given network. 

To program the interframe space: 
IFS = nnnnnnnO 

where nnnnnnnO = number of bit times programmed 
by the user. 

The following two examples show the actual code the 
C152 will execute in response to a receive interrupt. 
Only those portions of the code associated with servic­
ing the interrupt are shown. Added to this software, on 
the left edge, is the number of machine cycles it takes to 
execute each instruction. With this extra information 
the required interframe space can be calculated by to­
taling the number of machine cycles. 

2-312 



inter AP-429 

The first example gives the flow used for a valid GSC 
reception and the other example shows the steps taken 
to service an invalid reception. These examples were 
created by first implementing a· working prototype. 
Once completed, the software used to service the appro­
priate interrupt was pulled out, selecting the worst case 
(longest) flow. Finally, each step was sequentially 
pieced together to demonstrate how the application 
services an interrupt. These software fragments are tak­
en from the program in Appendix A. 

The total number of machine cycles it takes to service a 
valid reception (59 cycles) or an invalid reception (115 
cycles) is also given. As shown, an invalid reception 
takes the longest amount of time to service. To 115 
cycles we add maximum interrupt latency, which is 9 
machine cycles. The total comes out to be 124 machine 
cycles. It should be mentioned that the typical interrupt 
latency in the Cl52 would be about 5 machine cycles. 

A 9 machine cycle latency can only occur if the inter­
rupt happens during an access to an interrupt register 
followed by a multiply or divide instruction and as­
sumes that the receive error interrupt is the only high 
priority interrupt. 

A bit time works out to be 8 oscillator periods 
(BAUD = 0) in this example. To calculate the number 
to load into IFS the following formula is used. "12" 
comes about from the 12 oscillator periods that make 
up a machine cycle. 

IFS = 12 X (# of machine cycles to service the interrupt) 

(# of oscillator periods per bit time) 

This works out to be: 

(12 x 124)/8 = 186 

This number should have a guardband added in case 
minor changes must be made in the routines. Since the 
only other enabled interrupt is the UART, a small 
guardband of 10 was used. The interframe space chosen 
is 196. 

2-313 



AP·429 

(# of 
machine LOC OBJ LINE SOURCE 
cycles 002B 358 ORG 2BH 

359 GSC_REC_VALID: 
(2) 002B 020568 360 JMP GSC_VALID_REC 

361 
1680 GSC_VALID_REC: 

(2) 0568 C082 1682 PUSH DPL 
(2) 056A C083 1683 PUSH DPH 
(2) 056C COEO 1684 PUSH ACC 
(2) 056E CODO 1685 PUSH PSW 
(2) 0570 7lBO 1688 CALL NEW_BUFFER2_IN 

1689 
1031 NEW_BUFFER2_IN: 

(2) 03BO 207343 1064 JB GSC_IN_MSB,GSC_IN_2 
1067 
1168 GSC_IN_2D_2A: 

(2) 03F6 20721E 1170 JB GSC_IN_LSB,GSC_IN_2 
1172 
1173 GSC_IN_2D: 

(2) 03F9 2074F6 1175 JB BUF2D_ACTIVE,BUFFER 
(2) 03FC 758200 1179 MOV DPL,#LOW (BUF2C_ST 
(2) 03FF 758303 1180' MOV DPH,#HIGH (BUF2C_S 
(1) 0402 C3 1184 CLR C 
(1) 0403 7476 1186 MOV A,#(MAX_LENGTH) -
(1) 0405 95F2 1192 SUBB A,BCRLl 
(2) 0407 FO 1194 MOVX @DPTR,A 
(1) 0408 D275 1197 SETB BUF2C_ACTIVE 
(1) 040A D272 1202 SETB GSC_IN_LSB 
(1) 040C D273 1203 SETB GSC_IN_MSB 
(2) 040E 757981 1206 MOV GSC_INPUT_LOW,#LOW 
(2) 0411 757803 1207 MOV GSC_INPUT_HIGH,#HI 
(2) 0414 020432 1211 JMP NEW_BUF2_IN_END 

1212 
1251 NEW_BUF2_IN_END: 

(2) 0432 8579D2 1253 MOV DARL1,GSC_INPUT_LO 
(2) 0435 8578D3 1254 MOV DARH1,GSC_INPUT_HI 
(2) 0438 75F300 1258 MOV BCRH1,#0 
(2) 043B 75F278 1259 MOV BCRL1,#MAX_LENGTH 
(2) 043E 22 1261 RET 

1263 
(1) '0572 439301 1693 ORL DCON1,#01 
(2) 0575 D2E9 1695 SETB GREN 
(2) 0577 DODO 1697 POP PSW 
(2) 0579 DOEO 1698 POP ACC 
(2) 057B D083 1699 POP DPH 
(2) 057D D082 1700 POP DPL 
(2) 057F 32 1702 RETI 

59 TOTAL CYCLES 

Example 1. GSC Receive Valid Service Routine 

2-314 



AP-429 

(# of 
machine LOC OBJ LINE SOURCE 
cycles 0033 362 ORG 33H 

363 GSC_REC_ERROR: 
(2) 0033 020580 364 JMP GSC_ERROR_REC 

365 
1703 GSC_ERROR_REC: 

(2) 0580 C082 1705 PUSH DPL 
(2) 0582 C083 1706 PUSH DPH 
(2) 0584 COEO 1707 PUSH ACC 
(2) 0586 CODO 1708 PUSH PSW 

1735 RCABT_CHECK: 
(2) 0588 30EE07 1736 JNB RCABT,OVR_CHECK 

1737 
1744 OVR_CHECK: 

(2) 0592 30EF07 1745 JNB OVR,CRC_CHECK 
1746 
1753 CRC_CHECK: 

(2) 059C 30EC07 1754 JNB CRCE,AE_CHECK 
(2) 059F 78E7 1756 MOV ERROR_POINTER,#CRC 
(2) 05A1 5175 1758 CALL INCREMENT_COUNTER 

1759 
560 INCREMENT_COUNTER: 

(I) 0275 D3 562 SETB C 
(1) 0276 7F06 564 MOV R7,#6 

565 
566 INC_COUNT_LOOP: 

(1*6) 0278 E6 568 MOV A,@ERROR_POINTER 
(1*6) 0279 3400 570 ADDC A,#O 
(1*6) 027B F6 572 MOV @ERROR_POINTER,A· 
(1*6) 027C 18 574 DEC ERROR_POINTER 
(2*6) 027D DFF9 576 DJNZ R7,INC_COUNT_LOOP 
(2) 027F 4001 578 JC COUNTER_OVERFLOW 

588 
589 COUNTER_OVERFLOW: 

(2) 0282 22 591 RET 
592· 

(2) 0281 22 587 RET 
588 

(2) 05A3 0205AA 1760 JMP REC_ERROR_COUNT_END 
1761 
1767 REC_ERROR_COUNT_END: 

(2) 05AA 71BO 1772 CALL NEW_BUFFER2_IN 
1773 
1031 NEW_BUFFER2_IN: 
1063 

(2) 03BO 207343 1064 JB GSC_IN_MSB,GSC_IN_2 

1168 GSC_IN_2D_2A: 
(2) 03F6 20721E 1170 JB GSC_IN_LSB,GSC_IN_2 

1171 

Example 2. GSC Receive Error Service Routine 

2-315 



AP-429 

(# of 
machine LOC OBJ LINE SOURCE 
cycles 1172 ORG 33H 

1173 GSC_IN_2D: 
(2) 03F9 2074F6 1175 JB BUF2D_ACTIVE,BUFFER 
(2) 03FC 758200 1179 'MOV DPL,#LOW (BUF2C_ST 
(2) 03FF 758303 1180 MOV DPH,#HIGH (BUF2C_S 
(1) 0402 C3 1184 CLR C 
(1) 0403 7476 1186 MOV A,#(MAX_LENGTH) -
(1) 0405 .95F2 1192 SUBB A,BCRLI 
(2) 0407 FO 1194 MOVX @DPTR,A 
(1) 0408 D275 1197 SETB BUF2C_ACTIVE 
(1) 040A D272 1202 SETB GSC_IN_LSB 
(1) 040C D273 1203 SETB GSC_IN_MSB 
(2) 040E 757981 1206 MOV GSC_INPUT_LOW,#LOW 
(2) 0411 757803 1207 MOV GSC_INPUT_HIGH,#HI 
(2) 0414 020432 1211 JMP NEW_BUF2_IN_ENP 

1212 
1251 NEW_BUF2_IN_END: 

(2) 0432 8579D2 1253 MOV DARLl,GSC_INPUT_LO 
(2) 0435 8578D3 1254 MOV DARHl,GSC_INPUT_HI 
(2) 0438 75F300 1258 MOV BCRHl,#O , 
(2) 043B 75F278 1259 MOV BCRLl,#MAX_LENGTH 
(2) 043E 22 1261 RET 

1262 
(2) 05AC 439301 1774 ORL DCONl,#Ol 
(1) 05AF D2E9 1776 SETB GREN 
(2) 05Bl DODO 1778 POP PSW 
(2) 05B3 DOEO 1779 POP ACC 
(2) 05B5 D083 1780 POP DPH 
(2) 05B7 D082 1781 POP DPL 
(2) 05B9 32 1783 RET I 

115 TOTAL Cycles 

Example 2. GSC Receive Error Service Routine (Continued) 

JAMMING SIGNAL-The purpose of a jam is to in­
sure all stations on a link detect that a collision has 
occurred and reject that frame. To meet this need, the 
C152 offers two types of jamming signals. One type of 
jam is the D.C. jam (Figure 6) and another type is 
called the CRC (Figure 7) jam. A jam is forced by the 
TxD pin after a collision is detected but after the pre­
amble ends if the preamble is not yet complete. The 
D.C. jam forces a constant logic "0" for a period of 
time equal to the CRC length. The CRC jam takes the 
CRC calculated up to the point when a collision occurs, 
complements the CRC, and transmits that pattern. The 
CRe jam should be used when A.C. coupling is used in 

a network. AC. coupling normally implies that pulse 
transformers or capacitors are used to connect to the 
serial link. In these types of circuit interfaces, the D.C. 
jam may not be passed through reliably. One drawback 
of the CRC jam is that it does not always guarantee 
that all stations on a link will detect the jamming signal 
as there are no Manchester code violations inherent in 
the waveform. The D.C. jam is recommended whenever 
it can be used since this type of jam will always be 
detected by forcing Manchester code violations. Some 
protocols specify a specific type of jam signal that 
should be used and the user will have to decide if the 
Cl52 can fulfill- those requirements. 

'" ~ 
!: .. 
~ , , , 

D.C. JAM J+-+++-+-I-+-+-+-+-I,-+-++-+': -+-I 

Figure 6. D.C. Jam 

2-316 

270720-12 



intJ AP-429 

... 
:::l 
;:: 

I:: 

'" 
CRC JAM 

CALCULATED CRC :0: 1 :0:0: 1 :0: 1: 1 : 1 :0:0: 1 :0:0:0:0: I I I I I I I I I I I I I I I I I 
I I I I I I I I I I I r I I I I 

I 

INVERTED CRC : 1 :0: 1 : 1 :0: 1 :0:0:0: 1 ': 1 0: 1 : 1 : 1: 1 
I I I I I I I I L I I I I I I 

I I I 

JAM WAVEFORM 

270720-13 

Figure 7. CRC Jam 

To select D.C. jam: 
MYSLOT = lXXXXXXX 

To select CRC jam: 
MYSLOT = OXXXXXXX 

SLOT TIME-In CSMA/CD networks a slot time 
should be equal to or larger than the sum of round trip 
propagation time plus maximum jam time. The slot 
time is used in the backoff algorithm as a rescheduling 
quantum. The slot time is programmed in bit times and 
in the C152 can vary from 1 to 256. 

To program the slot time: 
SLOTTM = nnnnnnnn 

ADDRESSING-When discussing the subject of ad­
dressing with respect to the C 152, the subject should be 
broken down into three major topics. These topics are: 
address length, assignment of addresses, and address 
masking. 

Address Length-The C152 gives a user a choice of 
either 8 or 16 bits of address recognition. To select 8-bit 
addressing the user must set the AL bit in GMOD to O. 
Setting AL to 1 selects l6-bit addressing. Address rec­
ognition can be extended with software by examining 
subsequent bytes for a match. The only part of the GSC 
hardware that utilizes address length is the receiver. 
The receiver uses address length to determine when an 
incoming packet matches a user assigned address. Since 
transmission of addresses is done under software con­
trol, the transmitter does not use the address length bit. 
All bits following BOF are loaded into RFIFO, includ­
ing address. The transmit circuitry is involved with ad­
dressing only if HBA is used. In this case, when HBA is 
selected, the transmitter must know whether or not the 
sending address was even or odd. Even addresses re­
quire an acknowledgement back and odd addresses do 
not. 

When transmitting, the user must insert a destination 
address in the frame to be transmitted. This is done by 
loading the appropriate address as the first byte or two 
bytes of data. If a source (sending) address is also to be 
sent, the user must place that address into the proper 
position within a packet according to the protocol being 
implemented. 

To select 8-bit addresses: 
GMOD = XXXOXXXX 

To select 16-bit addresses: 
GMOD = XXXlXXXX 

Address Assignment-When assigning an address to a 
station, there are several factors to consider. To begin 
with, there are four 8-bit address registers in the C 152: 
ADRO, ADRl, ADR2, and ADR3. These registers are 
initialized to 00 after a valid reset. For this reason it is 
recommended that no assigned addresses should equal 
O. Also, since there are four address registers, a user has 
a minimum of two addresses which can be assigned to 
each station when using 16-bit addressing or four ad­
dresses when using 8-bit addressing. Those registers not 
used do not need to be initialized. When using 16-bit 
addresses ADRl:ADRO form one 16-bit address and 
ADR3:ADR2 form a second address. The C152 will 
always recognize an address consisting of all Is, which 
is considered a "broadcast" address. An address con­
sisting of all Is should not be assigned to any individual 
station. 

There are many methods used to assign addresses. 
Some suggestions are: reading of a switch, addresses 
contained in actual program code, assignment by an­
other node, or negotiated with the system. As men­
tioned earlier, if HBA is being used then the LSB of the 
address must be 0 when acknowledgements are expect-

2-317 



AP-429 

ed. Since more than one address can be assigned per 
station it is possible to use or not use HBA within the 
same station. This would work by assigning one address 
that would be even for when acknowledgements are re­
quired and another assigned address would be odd for 
those occasions when acknowledgements are not need­
ed. 

To assign an 8-bit address: 
ADRO = nnnnnnnn 

and optionally: 
ADRl xxxxxxxx 
ADR2 yyyyyyyy 
ADR3 .zzzzzzzz 

To assign a 16-bit address: 
ADRO nnnnnnnn (lower byte) 

.ADRl = xxxxxxxx (upper byte) 

and optionally: 
ADR2 yyyyyyyy (lower byte) 
ADR3 = zzzzzzzz (upper byte) 

where xxxxxxxx, yyyyyyyy, zzzzzzzz are addresses to 
be assigned. 

In this example there are 5 nodes (A, B, C, D, and E) signed to each peripheral: bit I to terminals, bit 2 to 
with up to' 4 common peripherals. The peripherals keyboards, bit 3 to printers, and bit 4 to modems. 
are: terminals, keyboards, printers, and modems. As- Figure 8 shows how this addressing is mapped. 
suming 8-bit addressing, a specific address bit. is as- . 

ADDRESS 

I BIT7 I BIT6 I BIT5 I BIT4 I BIT3 I BIT2 I BIT1 I BITO I 
I I I I I .1 I I 

N.U. N.U. N.U. MODEM KEYBOARD GROUP 
PRINTER TERMINAL ADDR 

N.U. = NOT USED 

Figure 8. Group Addressing Map 

Bit 0 is used to differentiate between group addresses. The next step is to assign each station's address and 
and individual addresses. If bit 0 = I, then the ad- address mask, These are determined by the attached 
dress is a group address, if bit 0 = 0, then the address peripherals. A I is 'placed in the address register bit 
is an individual address. This also complies with the and address mask register bit if that station has an 
HBA requirements if HBA is enabled. Table 4 defines appropriate device. A I in the address register is not 
which stations have which peripherals .. used since it is masked out, but will make it easier for 

a person not familiar with this specific software to 
Tab!e 4. Peripheral Assignment for Example 3 follow the program. 

Station A: Terminal, Keyboard 
Station B: Printer, Modem 
Station C: Terminal 
Station D: Printer 
Station E: Terminal, Keyboard, Printer, Modem 

Address Address Mask 

BIT I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I 
A: 0 0 0 0 0 1 1 1 0 O. 0 0 0 1 1 0 
B: 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 
C: 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 
D:· 0 0 0 0 1 0 0 1 0 0 ·0 0 1 0 0 0 
E: 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 

EXAMPLE 3 

2-318 



AP-429 

Address Masking-The CI52 has two 8-bit address 
mask registers named AMSKO and AMSKI. Bits in 
AMSKO correspond to bits in ADRO and bits in 
AMSKI correspond to bits in ADRI. Placing a I into 
any bit position in AMSKn causes the corresponding 
bit in ADRn to be disregarded when searching for an 
address match. 

To implement address masking: 
AMSKO = nnnnnnnn 

and optionally: 
AMSKI = nnnnnnnn 

where n = I for a "don't care address bit" 
or n = 0 for a "do care address bit" 

There are two main uses for the address masking capa­
bilities of the C152. The first and simplest use is to 
mask off all address bits. In this mode the CI52 will 
receive all messages. This type of reception is called 
"promiscuous" mode. The promiscuous mode could be 
used where all traffic would be monitored by a supervi­
sory node to determine traffic patterns or to classify 
what information is being transferred between which 
nodes. 

A second use of. masking registers is to group various 
nodes together. Typically, stations are grouped together 
which have something in common, such as functions or 
location. Another term used when discussing group ad­
dresses is "multi-cast" addressing. Example # 3 demon­
strates how multi-cast addressing might be used. 

Finally, to communicate with any station that has a 
printer, the address 00001001 would be sent and sta­
tions B, D, and E would receive the data. There are 
some limitations to using this type of scheme. Some of 
the more obvious are: the number of groupings is limit­
ed to the number of address bits minus I, and it is not 
possible to address those stations that have a combina­
tion of attached peripherals, e.g., those stations with 
keyboards AND terminals. These problems can be 
solved using more elaborate addressing schemes. 

HBA-Hardware Based Acknowledge (HBA) is a 
hardware implemented acknowledgment mechanism. 
The acknowledgement consists of a standalone pream­
ble. An example of a preamble is shown in Figure 5. An 
acknowledgment will be returned by the receiver if: 

• no hardware detectable errors are found in the 
frame 

• the address is an individual address (LSB = 0) 

• the transmitter is enabled (TEN = I) 

• HBA is set 

An originating transmitter will expect and accept the 
acknowledgment if: 

• HBA is set 

• the receiver is enabled (GREN = 1) 

• the address sent out was an individual address 
(LSB = 0) 

If a partial or corrupted preamble is received or the 
preamble is not completed within the interframe space, 
the NOACK bit is set by the station that originally 
initiated transmission. HBA is a user selectable option 
which must be enabled after a reset. 

The HBA method informs the original transmitter that 
a packet was received with no detected errors which 
saves the overhead and time that would normally be 
required to send a software generated acknowledgment 
for a valid reception. Some functions that other ac­
knowledgment schemes implement yet are not encom­
passed when using HBA with a CI52 is to identify 
packets which are out of sequ·ence or frames which are 
of a wrong type. 

To enable HBA: 
RSTAT = XXXXXXXI 

INITIALIZATION-PROTOCOL INDEPENDENT 

Discussion so far has centered on those elements of ini­
tialization which will vary according to the protocol 
being implemented. As such, the protocol in many cas­
es will dictate what values to use for initialization. In 
addition, there are some parameters set during initiali­
zation that will remain the same regardless of which 
protocol is being implemented. There are also some pa­
rameters which may vary for reasons other than which 
protocol is being used. These parameters are grouped 
together to form the protocol independent initialization 
functions. The following sections cover these elements 
of initialization. The discussion of initialization param­
eters is complete when the text covering "Starting, 
Maintaining, and Ending Transmissions" begins. 

CLEARING COLLISION COUNTER-A transmis­
sion collision detect counter (TCDCNT) keeps track of 
the number of collisions that have occurred. It does this 
by shifting a I into the LSB for each collision that oc­
curs during transmission of the preamble. When 
TCDCNT overflows, the CI52 stops transmitting and 
sets TCDT. Setting TCDT signals that too many colli­
sions have occurred and can cause an interrupt. TCDT 
also is set if a collision occurs after the GSC has ac­
cessed TFIFO. During normal transmission, TCDCNT 
can be read by user software to determine the number 
of collisions, if any, that have occurred. Before starting 
the second and subsequent transmissions, it is possible 
that TCDCNT already has bits shifted in from a previ­
ous transmission. This would cause TCDCNT to over-

2-319 



AP-429 

flow prematurely. In order to preserve the full band­
width of 8 retransmissions, TCDCNT must be cleared 
prior to beginning any new transmission. 

To clear the collision counter: 
TCDCNT = 0 

CONTROL OF THE GSC-"Control of the GSC" 
specifies how bytes are loaded into the transmitter 
(TFIFO) and unloaded from the receiver (RFIFO). A 
user has the choice of moving data to or from the GSC 
under control of either user software or the DMA 
channels. 

CPU Control-CPU control is the simplest method of 
servicing the GSC and allows the most control. The 
major drawback to CPU control is that a significant 
amount of time is spent moving data from the source to 
the destination, incrementing pointers and counters, 
checking flags, and determining when the end of data 
occurs. In addition, how the GSC interrupts function 
differs from when the GSC is under CPU control than 
when the GSC is under DMA control. Under CPU 
control, valid GSC interrupts occur when either RFNE 
(Receive Fifo Not Empty) or TFNF (Transmit Fifo 
Not Full) are set. The transmit error and most of the 
receive error interrupts still function the same regard­
less of which type of control is used on the GSC. The 
only difference in how receive error interrupts operate 
is that the UR (UnderRun) bit for the receiver is opera­
tional when the GSC is under DMA control. UR is 
disabled when under CPU control. 

DMA Control-DMA control relieves the CPU of 
much of the overhead associated with serving the GSC 
and allows faster baud rates. However, the reader must 
realize that more details about a "yet to be transmitted 
packet" must be known to properly initialize the DMA 
channels prior to starting a transmission. In some situa­
tions, especially at high baud rates, the user must take 
into account DMA cycles that occur asynchronously 
and without any user control or knowledge. This could 
possibly disrupt other time critical tasks the CI52 is 
performing. There may be no indication to a user that 
other ongoing tasks are being interrupted by DMA cy­
cles taking over the bus and momentarily stopping 
CPU action. 

When the DMA is used to service the GSC, the DMA 
channels will also need to be initialized and the GSC 
interrupts configured to operate in DMA mode. The 
main advantages of using DMA control is time saved 
and interrupts occur only when there is an error or 
when the GSC operation (receive or transmit) is done. 
This removes the necessity of continuously polling 
RDN and TDN bits to determine when a GSC opera­
tion is complete. 

One of the most important facts to remember when 
deciding how to service the GSC is that unless the GSC 
baud rate is relatively low compared to the CPU oscil­
lator frequency, the only method that can keep up with 
the receiver or transmitter is DMA control As a rule of 
thumb, if a user is willing to use 100% of available 
bandwidth of the CI52 and no other interrupts are en­
abled besides the GSC, the maximum baud rate works 
out to be approximately 4.5% of the oscillator frequen­
cy. This is based on a 9 instruction cycle interrupt la- , 
tency, moving a byte of data, return from interrupt and 
executing one more instruction before the next GSC 
byte is transmitted or received. At an oscillator fre­
quency of 16 MHz, this works out to 120K bits per 
,second. There are many steps a user could take to in­
crease the baud rate when the GSC is under CPU con­
trol as this scenario is only a simple situation using 
worst case assumptions. Taking into account the 
amount of time available for the CPU to service the 
GSC as more tasks are required by the service routines 
or the CPU would further lower the maximum baud 
rate. For instance, if a user intended that GSC support 
only took 10% of available CPU time, this would re­
duce the effective baud rate by a factor of ten, making 
the maximum bit rate 12K. This 10% figure is an aver­
age over the period it takes to complete a frame. Situa­
tions might arise such that spurious GSC demand cy­
cles would require much more than 10% of available 
time for short intervals. 

INITIALIZING DMA-Since CSMA/CD is selected, 
it is by definition half-duplex. In half-duplex mode, 
only one DMA channel is needed to service both trans­
mitter and receiver. However, it is simpler and easier to 
explain if both DMA channels are used. The following 
text is written under an assumption that both DMA 
channels will be used to service the GSC. Regardless of 
whether the DMA channel is servicing the receiver or 
transmitter, the DMA DONE interrupt generally 
should not be enabled. Also, the DMA bit in TSTAT 
must always be set. The GSC valid transmit and valid 
receive interrupts occur when RDN or TDN is set. 
This also eliminates a need to poll RDN or TDN to 
determine when a reception or transmission has ended, 
as is necessary when the GSC is under CPU control. 

The DMA channel servicing the transmitter must have: 
Destination Address ,: TFIFO (085H) 
Increment Destination Address (IDA) = 0 
Destination Address Space (DAS) = I 
Demand Mode (DM) = I 
Transfer Mode (TM) = 0 

The source of data can be SFR space, internal RAM or 
external RAM. The byte count must be equal to the 
number of bytes, to be transmitted, as this determines 
when a packet ends. TEN should be set befQre the 
DMA GO bit. It takes one bit time after TEN is set 
before the transmitter is enabled. The transmit valid 

2-320 



intJ AP-429 

interrupt should be enabled after TEN is set. Since 
CSMA/CD is half duplex, it doesn't matter which 
nMA channel services the receiver or transmitter, as 
only one DMA channel will be active at any time. 

The DMA channel servicing the receiver must have: 
Source Address = RFIFO (OF4H) 
ISA = 0 
SAS = I 
DM = I 
TM = 0 

The destination for data can be SFR space, internal 
RAM or external RAM. The byte count must be equal 
to or greater than the number of bytes to be received. 
Setting the byte count to OFFFFH (64K) is one way of 
covering all packet lengths. GREN should be set after 
the DMA GO bit. The receive valid interrupt should be 
enabled after G REN is set. It takes one bit time after 
GREN is set before the receiver is enabled and for the 
error bits and RDN to be cleared. Before GREN is set, 
the user software should ensure that the RFIFO is 
cleared. Setting GREN does not clear the receive FIFO 
as stated in the hardware description. 

INITIALIZING COUNTERS AND POINTERS: 
Whether using DMA or CPU control, pointers will be 
required to load the correct bytes for the transmitter 
and to store received bytes in their proper location. 
Counters are required when the GSC is under DMA 
control in order to keep the DMA channel active dur­
ing the reception of an entire frame and to identify 
when a transmitted frame is to be ended. Counters are 
optional if the CPU is used to service the GSC, al­
though its usefulness might be questioned. 

When the GSC is under DMA control, the data point­
ers used are destination address registers (DARLn and 
DARHn) for the DMA channel responsible for the re­
ceiver and source address registers (SARLn and 
SARHn) for the DMA channel servicing the transmit­
ter. The counters used are byte count registers (BCRLn 
and BCRHn) for the appropriate DMA channel. 

The byte count for the transmitting DMA channel 
must be known and loaded prior to beginning actual 
transmission. Transmission begins when TEN and GO 
are set. The reason the byte count must be known prior 
to transmission is that when the counter reac/les 0, the 
DMA stops loading data into TFIFO, and once TFIFO 
is emptied the GSC assumes a transmitted packet is 
complete. For the receiver the byte count can be set to 
the frame length if known prior to starting reception or 
the byte count can be set to a maximum frame packet 
length that will ever be received. Another alternative is 
to set the byte count equal to OFFFFH. This option 
may be chosen if the length of received packets are 
totally unknown. If OFFFFH is used, the user must 
make sure that there is some method to accommodate 
this many bytes. If maximum buffer size is a limiting 
factor, then that would be used. 

When the GSC is under CPU control, internal RAM is 
typically used for pointers and counters. These pointers 
and counters would be updated by software for each 
byte that is received or transmitted. An interrupt is 
generated as long as there is at least one byte in the 
receive FIFO. An interrupt is also generated as long as 
there is room for one byte in the transmit FIFO. It is in 
the interrupt service routine that counters and pointers 
are updated and data is transferred to or from the GSC 
FIFOs. One advantage of CPU control is that the 
length of received or transmitted packets need not be 
known prior to the start of GSC activities. When the 
GSC is under CPU control, user software determines 
when a transmission has ended. For moving targets, 
CPU control allows the user software to determine 
where to store received data at the time it is transferred 
to RFIFO. 

So far only initialization of the GSC and DMA has 
been explained. In order to use the GSC, the receiver, 
transmitter, and associated interrupts need to be en­
abled. These are covered in the following section. 

ENABLING RECEIVER AND RECEIVER INTER­
RUPTS-There are two receiver interrupt enable bits, 
EGSRV (Receive Valid) and EGSRE (Receive Error) 
and one bit to enable the receiver (GREN). The inter­
rupts should always be enabled whenever the receiver is 
enabled. Once this is done, a user can wait for inter­
rupts to occur and then service the GSC receiver. The 
conditions which will cause the CPU to vector to GSC 
receiver interrupt service routines are described in the 
8-Bit Embedded Controller Handbook. 

In most CSMA/CD applications, GSC receivers will be 
enabled all the time once the CI52 has been initialized. 
The only time the receiver will not be enabled is when a 
reception is completed or a receive error occurs. When 
this happens, the GSC receiver hardware clears GREN, 
which disables' the receiver. The receiver must then be 
re-enabled by software before it is ready to accept a new 
frame. One way to do.this when under DMA control is 
to set the receiver enable bit (GREN) in the receiver 
interrupt service routine. Similarly; the GSC receive in­
terrupts should always be enabled and remain so except 
for the period of time that it takes to service an inter­
rupt. 

Once set, the GSC receiver interrupt enable bits always 
remain set unless cleared by user software. About the 
only valid reason for clearing the receiver interrupt en­
able bits is so that certain sections of code will not be 
disrupted by GSC activities. If the interrupts are dis­
abled while the receiver is enabled, the amount of time 
the interrupts are disabled should not exceed 24 bit 
times. If the interrupts are disabled for a longer period 
of time, the receive FIFO may be over written. 



inter AP-429 

It is a good practice to enable the GSC receiver inter­
rupts prior to enabling the receiver when under CPU 
control. Another alternative is to clear the EA bit while 
enabling the GSC receiver and receiver interrupts. 
However, this could increase interrupt latency. Ifsome­
thing like this is not done, a higher priority interrupt 
may alter the program flow immediately after the re­
ceiver is enabled and prior to enabling the interrupts. 
This in turn could cause the receiver to overflow. When 
the receiver is under DMA control the situation is dif­
ferent. First, the interrupts cannot be enabled before 
the receiver because if RDN is set from a previous re­
ception, the receive valid service routine will be invoked 
but no reception. has yet taken place. The correct se­
quence when under DMA control would be to set the 
DMA GO bit, enable the receiver, then enable the re­
ceiver interrupts. In this case the worst that could hap­
pen is a slow response to RDN getting set. Even this 
can be worked around by making receive valid the only 
high priority interrupt. 

, To enable the receiver interrupt enable bits and the re­
ceiver this sequence should be followed: 

IENl ;= XXXXXXll 
RSTAT = XXXXXXIX 

or if under DMA control: 
DCONn = XXXXXXXI 
RSTAT = XXXXXXIX 
IENl = XXXXXXll 

ENABLING TRANSMITTER AND TRANSMIT 
INTERRUPTS-There are two transmit interrupt en­
able bits-EGSTV (Transmit Valid) and EGSTE 
(Transmit Error) and one transmitter enable bit-TEN 
(Transmitter ENable). The interrupts should always be 
enabled whenever the transmitter is enabled. Once this 
is done, a user can wait for interrupts to occur and then 
service the GSC transmitter. Conditions which will 
cause the CPU to vector to GSC transmit interrupt 
service routines are described in the 8-Bit Embedded 
Controller Handbook. 

Compared with the receiver, opposite conditions exist 
concerning when the transmitter is operational and the 
sequence of enabling transmitter versus transmit inter­
rupts. First, the transmitter and its interrupts are dis­
abled all of the time except on those occasions when a 

transmission is desired. The user's application deter~ 
mines when a transmission is needed. Status of the mes­
sage, how full a buffer is, or how long since the last 
message was sent are typical criteria used to judge when 
a transmission will be started. 

When a transmission is complete, the interrupts and the 
transmitter should be disabled. This is particularly true 
for the transmit valid interrupt as TFIFO will most 
likely be empty and TFNF (Transmit FIFO Not Full) 
will be set. TFNF = 1 is the source of transmit valid 
interrupts when the GSC is serviced under CPU con­
trol. 

The transmitter should be enabled before enabling the 
transmitter interrupts. If the GSC is under CPU con­
trol and the interrupts are enabled first, TFIFO may be 
loaded with data in response to TFNF being set. When 
TEN is set, data already loaded into TFIFO would be 
cleared. Consequently, data meant to be transmitted 
would be lost. If the GSC is under DMA control, it is 
possible that an interrupt would be generated in re­
sponse to TDN being set from the previous transmis­
sion, yet no transmission has even started since the in­
terrupts were enabled. If using the DMA channels to 
service the transmitter, TEN must be set before the GO 
bit for the DMA channel is set. If not, the DMA chan­
nels could load TFIFO with data, and when TEN is set 
that data would be lost. ' 

The correct sequence to enable the transmitter and its 
interrupt enable bits is: 

SETB TEN 
SETB EGSTE 
SETB EGSTV 

odf under DMA control: 

SETBTEN 
SETB EGSTE 
SETB EGSTV 
ORL DCONn, #01 

Once all initialization tasks shown so far are completed, 
reception and transmission may commence. The pro­
cess of starting, maintaining, and ending transmissions 
or receptions is covered next. 

2-322 



inter AP-429 

STARTING, MAINTAINING, AND 
ENDING TRANSMISSIONS 

Prior to starting a transmission, the user will need to set 
TEN. This enables the transmitter, resets TDN, clears 
all transmit error bits and sets up TFIFO as if it were 
empty (all bytes in TFIFO are lost) after a GSC bit 
clock occurs. Once TEN is set, actual transmission be­
gins when a byte is loaded into TFIFO. Figure 9 is a 
block diagram of the GSC transmitter and shows how 
it functions. Once a byte has entered TFIFO, transmis­
sion begins. The first step is for the GSC to determine if 
the link is idle and interframe space has expired. Actu­
ally, this occurs continuously, even when not transmit­
ting, but transmit circuitry checks to make sure these 
conditions exist before transmitting. If these two condi-

tions are not met, the C152 will wait until they are. 
Once interframe space has expired, DEN is forced low 
for one bit time prior to the GSC emitting a preamble 
and BOF. About the time the BOF is output, a byte 
from TFIFO is transferred to the shift register. As bits 
are shifted out this register, they pass by the CRC gen­
erator, which updates the current CRC value. Bits then 
enter the data encoder which forms them into Man­
chester coded waveforms and out TxD. If TFIFO is 
empty when the shift register goes to grab another byte, 
the GSC assumes it is the end of data. To complete a 
frame, bits in the CRC generator are passed through 
the data encoder and the EOF is appended. One part of 
the block diagram in Figure 9 is the transmit control 
sequencer. The transmit control sequencer's purpose is 
to determine which state the transmitter is in such as 
Idle, Preamble, Data, or CRC. To perform this func­
tion it has connections to all circuits in the transmitter. 
These connections are not shown in order to make the 
diagram easier to read. 

If the transmitter is under CPU control the first byte is 
loaded with user software. TFIFO should be filled and 
counters and pointers updated before proceeding with 
any other tasks required by the CPU. There is room for 
up to three bytes in TFIFO. Before loading the first 
byte, users should examine TDN to ensure that any 
previous transmissions have completed. If TEN is set 
before the end of a transmission, that transmission is 
aborted without appending a CRC and EOF but the 
interframe space will still be enforced before st;lrting 
again. A user can identify when TFIFO is full by exam­
ining TFNF (Transmit Fifo Not Full). TFNF will al­
ways remain at a logic 1 as long as there is room for at 
least one more byte in TFIFO. There is a one machine 
cycle latency from when a byte is loaded into TFIFO 
until TFNF is updated. Because of this latency, the 
status of TFNF should not be checked immediately fol­
lowing the instruction that loaded TFIFO but should 
be examined two or more instructions later. Whenever 
TFNF is set; an interrupt will be generated if EGSTV is 
set. In response to the interrupt, bytes should be loaded 
into TFIFO until TFNF is cleared and update any 
pointers or counters. 

Once the user is through with transmitting bytes for the 
current frame, the GSC transmit valid interrupt 
(EGSTV) should be disabled. This is to prevent the 
program flow from being interrupted by unnecessary 
GSC demands as TFNF will remain set all the time. 
The GSC transmit error interrupt (EGSTE) must re­
main enabled as transmit errors can still occur. While 
under CPU control there is no interrupt associated with 
transmit done (TDN) so a user must periodically poll 
this bit to determine when actual transmission is com­
plete. After the last byte in TFIFO is transmitted there 
is a delay until TDN is set. This delay will be equal to 
the CRC length plus approximately 1.5 bit times for the 
EOF. The CRC is appended after the end of data by 
GSC hardware. 

270720-14 

Figure 9. Transmitter Block Diagram 

2-323 



inter AP-429 

To start a transmission when the GSC is under DMA 
control, users should first enable the transmitter by set­
ting TEN, then set the GO bit for the appropriate 
DMA channel. Before the GO bit is set users must 
initialize the GSC and DMA. Thereafter, the DMA 
loads the first byte that begins actual transmission and 
keeps the transmit FIFO full until the end of transmis­
sion. In this ,case, transmission ends when the byte 
count reaches 0, which means the length of the message 
to be transmitted must be known before transmission 
begins. 

The DMA channel examines TFNF to determine when 
the transmitter needs servicing. When a byte is'trans­
ferred into TFIFO, the DMA channel takes control of 
the internal bus and the CPU is held ofT for one ma­
chine cycle. This is the only overhead associated with 
the actual transmission when under DMA control. This 
is significantly less than the overhead associated with 
each byte that must be loaded by software when the 
GSC is under CPU control. When the DMA is servic­
ing the transmitter, at least one machine cycle occurs 
between each.DMA load. This prevents the DMA from 
hogging the internal bus when servicing the transmit­
ter. It takes five machine cycles to load three bytes to 
initially fill TFIFO. When transmission ends, TDN will 
be set and when the GSC is under DMA control it is 
the setting of TDN that begins the GSC interrupt serv­
ice, routine. 

The discussion so far assumes there are no errors dur­
ing transmission of a frame. However, in CSMA/CD 
there is always a possibility of an error occurring and 
part of maintaining transmission is servicing those er­
rors. In the C152 when an error is detected an error bit 
is set. At the same time the error bit is set, TEN is 
cleared which disables the transmitter. Types of errors 

that can occur are: collision detection errors, (TCDT), 
no acknowledgement errors (NOACK) (if HBA is en­
abled), and underrun errors (UR) (if the DMA chan­
nels are used to service the transmitter). After setting 
the error bit, the C 152 jumps to the transmit error vec­
tor if EGSTE (Transmit Error enable) is set. Depend­
ing on the protocol implemented, a user may wish to 
take some specific response to an error but in almost all 
cases the transmitter will be re-enabled and the same 
data retransmitted. This requires that counters and 
pointers be initialized, the transmitter enabled, and 
TFIFO filled. Another frequent action taken' is to log 
the type of error for later analysis or to keep track of 
specific trends. Once transmission is restarted, the same 
flow is followed as before, as if no error occurred. 

STARTING, MAINTAINING, AND 
ENDING RECEPTIONS 

In most applications, the receiver is always enabled and 
reception begins when the first byte is loaded into 
RFIFO. Figure 10 shows a block diagram of the, receiv­
er. 

As indicated in Figure 10, before the first byte is loaded 
into RFIFO, the address is checked for a matching ad­
dress assigned by ADRn. A user can disable address 
recognition by writing all Is to the address mask regis~ 
teres), AMSKn. In this mode all frames with a valid 
BOF will be received. When the first byte is loaded into 
RFIFO, RFNE is set. If the address does match, there 
is a delay of about 24 or 40 bit times from reception of 
the first bit until a byte is loaded into RFIFO depend­
ing on which CRC is chosen. This is due to CRC strip 
circuitry and the bits required to fill up the shift regis­
ter. 

RFiFO 

270720-15 

Figure 10. Receiver Block Diagram 

2-324 



inter AP-429 

When tlie GSC is being serviced by the CPU, an inter­
rupt is generated when RFNE is set and if EGSRV is 
enabled. The user typically responds'to-an interrupt by 
removing one byte from RFIFO and storing it some­
where else. The user should check RFNE before leav­
ing the interrupt service routine to see if more than one 
byte was loaded in to RFIFO. While under CPU con­
trol, .there is no interrupt generated when reception is 
complete although receive done (RDN) is set. When 
RDN is set, the receiver.is disabled and user software 
has to re-enable it. To determine when a frame has 
ended, the user must periodically poll RDN. After a 
frame has ended, the user will normally reinitialize 
pointers, reset counters, and enable the receiver. RDN 
will not be set when the last byte is transferred to 
RFIFO because the EOF will not be recognized yet. It 
takes approximately 1. 7 bit times of link inactivity for 
the EOF to be recognized. 

When the GSC is controlled by the DMA channels an 
interrupt is generated when RDN is set for a valid re­
ception. At this point all a user needs to do is to set the 
source address registers, set the byte count, set the GO 
bit, and enable the receiver. Whenever the GSC receiv­
er is being serviced by the DMA channels, the GO bit 
should be set before the receiver enable bit, GREN. 
This is to ensure that the DMA channel is active when­
ever the receiver is enabled. If the receiver is enabled 
before the DMA channel, it is possible that an interrupt 
would alter the program flow. An interrupt could delay 
setting the GO bit so that data is received while the 
DMA channel is prevented from servicing the GSC. 
Consequently, an overrun error occurs. 

For the GSC receiver, as in the transmitter, an error is 
always possible. Conditions that set the error bits are 
the same regardless of how the receiver is being serv­
iced. Possible errors are: receiver collision (RCABT), 
CRC error (CRCE), overrun (OVR), and alignment er­
ror (AE). 

The only type of error that user software can take ac­
tions to prevent is an overrun error. In this case, when 
an overrun error occurs it is because the receiver could 
not be serviced fast enough. Under DMA control, the 
only way this could happen is if the other DMA chan­
nel prevented servicing the GSC by the DMA or the 
user cleared the GO bit. Solutions to these problems are 
to turn off the second DMA channel when receiving 
and not mess around with the GO bit during reception. 
To determine if the GSC is receiving a packet, the byte 
count of the appropriate DMA channel can be exam­
ined. If the GSC is under CPU control and an overrun 
occurs it is because there are too many other tasks the 
CPU is doing or the baud rate is just too high for the 
CPU to keep up. A solution to this problem is to either 
cut back on the number of tasks the CPU must perform 

while a packet is being received or to switch to DMA 
control of the GSC. 

In all other cases, about all the CI52 can do when a 
receive error occurs is to log the type of error, discard 
the data already received, and to re-enable the receiver 
for the next packet. These actions would also be taken 
for an overrun error. 

SUMMARY 

Hopefully, this application note has given the reader 
some insight on how to set ·up the GSC parameters, 
how to transmit or receive a packet, and how to re­
spond to error conditions that may arise. The process of 
obtaining data for transmission or what to do with data 
received has been left open as much as possible as these 
vary widely from application to application. In some 
cases, all the data will be managed by another, more 
powerful processor. In this situation, the user will have 
to implement another interface between the main proc­
essor and the C I 52. 

Although the whole process of using the CI52 may at 
first, seem confusing and complicated, breaking down 
this process into steps may make utilizing the CI52 
much simpler. One suggestion of the steps to follow is: 

I) INITIALIZATION 
A) Baud rate 
B) Preamble 
C) Backoff 
D) CRC 
E) Interframe space 
F) Jamming signal 
G) Slot time 
H) Addressing 
I) Acknowledgment 
1) Clearing the collision counter 
K) Controlling the GSC 
L). DMA initialization (if used) 
M) Counter and pointer setup 
N) Enabling the GSC 
0) Enabling the interrupts 

2) TRANSMITfING/RECEIVING PACKETS 
A) Starting transmission/reception 
B) Maintaining GSC operations 
C) Ending transmission/reception 
D) Responding to errors 

These steps can be used as a checklist to ensure that the 
minimum set of functions have been implemented that 
will allow the GSC to be used in almost any applica­
tion. The list also demonstrates- that the bulk of the 
tasks the user must implement is in initializing the 
GSC. Once initialization is accomplished, there is com­
paratively little work left to implement an application. 

2-325 



intJ AP-429 

APPENDIX A 
SOFTWARE EXAMPLE 

The following example demonstrates how the DMA 
can be used to service the GSC in a specific environ­
ment. Figure II shows a diagram of the hardware used. 
As shown, the DART is used as a source and destina­
tion for data transferred by .the GSC. Also shown in 
Figure II are some DIP switches. These DIP switches 
determine source and destination addresses. The 
switches are read only once after a reset. The hardware 
environme~t is shown for informational purposes only 
and is not necessarily a real application that would be 
implemented by a user. Even so, with some minor 
changes, similar circuits might be used, requiring corre­
sponding changes to be made in the software. 

This program has been written with the assumption 
that a terminal will be connected to the DART. As 
such, only ASCII data" can be transferred and each 
block of data is delineated by a carriage return (ODH) 
and line feed (OAH). As data is received by the DART 
it is stored in one of four rotating buffers. This data will 
later be transmitted by the GSC to other C152s. Data 
received by the GSC is stored in one of four different 
rotating buffers. This data will be transmitted by the 

DART to a terminal. IK of external data RAM is con­
nected to the C152 to serve as storage buffers. Conse­
quently, each buffer is one-eighth of available external 
RAM, or 128 bytes. This provides up to one line of 120 
characters for each buffer. Also, each buffer will store 
additional information such as destination address, 
source address, and message length. When a line of 
characters is complete, a flag will be set to signify to the 
GSC that'that buffer is to be transmitted. Conversely, 
when a packet received by the GSC is complete, a flag 
is set to identify that buffer'is to be output through the; 
DART to a terminal. Whenever access to one buffer is 
complete, the software manipulates pointers so the next 
buffer is used. If all 4 buffers are full, data for that type" 
of buffer is no longer accepted until another buffer is 
available. 

Note that this program uses both DMA channels, one 
for the receiver and one for the transmitter on the GSC. 
A program could have been written using only one 
DMA channel. Dsing both channels has made the pro­
gram· much simpler and shortened the time it takes to 
change from transmitting to receiving. 

2-326 



inter 

• •••••••••••• ••••••••••• •••••••••• ••••••••• 

1KkB 

RAM 

•••••••••••• ••••••••••• •••••••••• ••••••••• 

lKkB 

RAM 

TxD 

RxD 

ALE 

PO 

P2 

RD 
WR 

TxD 

RxD· 

ALE 

PO 

P2 

RD 
WR 

AP-429 

P4 

8XC152JA 

GTxD 

GRxD 

BXC152JA 

GTxD 

GRxD 

P4 

Figure 11. Hardware Environment for Software Example 

2-327 

Vee 

X8 

Vee 

XB 

Vee 

XB 

Vee 

XB 

270720-16 



I\) 

~ 
00 

MeS-51 MACRO ASSEMBLER APPNOTI 

DOS 3.30 (038-Nl MCS-5l MACRO ASSEMBLER, Y2.2 
OBJECT MODULE PLACED IN APPNOTl.0BJ 
ASSEMBLER INYOKED BY: C:\ASM5l\ASM5l EXE APPNOTl.PGM 

LOC OB.! 

0000 

OOFC 

0014 

0003 

0083 

0103 

0183 

0201 

02Bl 

0301 

0381 

0080 

OOOD 

OOOA 

REG 

LINE 

I 
2 

165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
17B 
179 
180 
181 
IB2 
183 
184 
185 
IBb 
IB7 
IBB 
189 
190 
191 
192 
193 
194 
195 
1910 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
20B 
209 
210 
211 
212 

SOURCE 

$XREF 
$NOLlST 

GSC_BAUD .. RATE EQU 

LSC_BAUD.RATE EQU 

IFS_PERIOD EQU 

BUFIA_51RT_ADDR EQU 

BUFIB .. STRT_ADDR EQU 

BUFIC_STRT_ADDR EQU 

BUFID_STRT _ADDR EQU 

BUF2A_STRT_ADDR EOU 

BUF2B_S1RT_ADDR EOU 

BUF2C_STRT_ADDR EQU 

BUF2D_S1RT_ADDR EQU 

STACK_OFFSET EQU 

CR EQU 

LINE~EED EQU 

ERROR_POINTER EQU 

o 

OFCH 

20 

003H 

OB3H 

103H 

IB3H 

20lH 

2BIH 

30lH 

3BIH 

80H 

ODH 

OAI< 

RO 

i GSC baud rate 

i LSC baud rate 
i 14. 7456 MHz 

10/19/88 PAGE 

1. 5MBPs 

9 61'. baud at 

.number of bit times separatlng 
; frames 

.buffer lA!s starting address for 
• storing data (0 =. of b~tes. 
i 1 = dest addr. 2 = ST'C addr) 

.buffer IBis starting address for 
• storing data eSOH =. of b9tes. 
.81 = dest addr. 82 = 51"e addr) 

;buffer ie's starting address fqr 
i storing data (100H_= .' of b\ltes. 
; 101 = dest itddT', 102 = S1"C addr) 

.buffer 10's starting address for 

.storing data (ISOH = • of bgtes. 
; IBI = dest addr. 182 = src addr) 

.buffer 2A's starting address for 
istoring data (200H = • of b~tes) 

;buffe~ 28'5 st.~ting address for 
isto!ing data (280H ~ • of bVtes) 

;buffer 2C's sta~ting add~ess for 
;sto~ing data (300H = • of b~tes) 

;buffe~ 2D's starting address fo~ 
JstoTing data (3BOH = • of b~tes) 

;start stack at uppe~ 128 b~tes 

iASCll equivalent for carriage 
il"eturn 

iASCII equivalent for line-feed_ 

iRO holds the address that points 
ito t~e next errol" location to 
; incremeont 

270720-17 

l 

l> 
"U . .... 
~ 



I\) 

W 
I\) 
\D 

MCS-51 MACRO ASSEMBLER 

LOC OD ... 

0078 

OOFF 

00F9 

00F3 

OOED 

OOE7 

OOEI 

OODB 

00D5 

OOCF 

007F 

007E -

007D 

007C 

007D 
007A 

LINE 

213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 

APPNOTI 

SOURCE 

MAX_LENGTH Eau 120 

10/19/88 

imaximum length a <received) packet 
iean be - must alwavs be less than 
;2551 mv H/W limitation is 128 

; **********************************************************.******************* 
UR_COUNTER DATA OFFH ;RAM locations OFAH to OFFH a~e 

.used to keep a log of the. of 
oUR errors (onl~ tran5m~t error) 

OVR_COUNTER DATA CUR_COUNTER) - b iRAM locations OF4H to OF9H keep 
iB log of the. of overrun errOTS 

RCABT_COUNTER DATA (OVR_COUNTER) - 6 .RAM locations OEEH to OF3H keep 
ia log of the. of abort errOTS 

AE_COUNTER DATA (RCABT_CDUNTER) - 6 iRA" locations OEBH to OEDH keep 
Ja log of the. of alignment errors 

CRCE_COUNTER DATA- (AE_COUNTER) - 6 iRAM location. OE2H to OE7H keep 
ia log of the. of eRe errors 

LONG_COUNTER DATA (CRCE_COUNTER) - 6 iRA" locations OEIH to ODCH keep 
ia log of the. D' received 
• packets that a-r' too long 

TCDT_COUNTER DATA (LONG_COUNTER) - 6 .RAM locations ODSH to OD6H keep 
JB log of the. of TeDT errors 

NOACK_COUNTER DATA (TCDT_COUNTER) - b • RAM locations OD5H to,ODOH keep 
i a lDg of the. of NOACK errors 

NEXT_LOCATION DATA (NOACK_COUNTER) - 6 ir.serve b bytes for NOACK counter 

i------------------------------------------------------------------------------
IN_BYTE_COUNT DATA 

OUT_BYTE_COUNT DATA 

GSC_DEST_ADDR DATA 

GSC_SRC_ADDR DATA 

LSC_INPUT_LOW DATA 
LSC_INPUT_HI9H DATA 

7FH inumber of bytes LSC received which 
,determines. of bvtes for Gse to 
itransmit 

(IN_BYTE_COUNT) -1 inumber of bytes GSe received which 
Idetermines • of bytes for LSC to 
; transmit 

(OUT_BVTE_COUNT) -1 • destination address read from 
;DIP switches (loaded on RESET) 

(QSC nEST ADDR) -1 • source addresa read from DIP 
- - iswitches (loaded on RESET) 

(OSC_SRC_ADDR) -I 
eLSe INPUT LOW) - 1 icontains the address where the 

- - inext LSC received bvte will be 
istored at. 

PAgE 2 l 

» 
"tJ . 
"" N 
CD 

270720-18 



~ 
~ 

MCS-51 MACRO ASSEMBLER 

L.OC OBJ 

0079 
0078 

0077 
0076 

0075 

002F 

002E 

007F 

007E 

0070 

007C 

0079 

007A 

0079 

0078 

0077 

0076 

0075 

LINE 

268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
2B6 
2B7 
28B 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 

APPNOTI 10/19/88 

SOURCE 

(L.SC_INPUT_HIGH) - I GSC_INPUT_LOW DATA 
GSC_INPUT_HIGH DATA (GSC_INPUT_LOW) - 1 ; contains t~. address ~here tn. 

;ne~t QSC received bqte will be 
Istored at 

(GSC_INPUT_HIGH) -I LSC_OUTPUT_LOW DATA 
LSC_OUTPUT_HIGH DATA (LSC_OUTPUT_LOW) -1 ;contains the address where the 

.next bvte for the LSC to xmlt 

L.SC_OUT _COUNTER DATA (LSC_OUTPUT_HIQH)-l ;contains the number of bVte for 
i the LSC to Imi t 

BUFFER I_CONTROL. DATA 2FH 

BUFFER2_CONTROL. DATA 2EH 

;bqte that buffer 1 control bIts 
; are in 

.bVte that buf'er 2 control bits 

. are in 

i************************************************************.***************** 

BUFID_ACTIVE BIT 7FH 

BUFIC_ACTIVE BIT (BUFID_ACTIVE) - 1 

9UF1B_ACTIVE BIT (BUF1C_ACTIVE) - 1 

BUFIA_ACTIVE BIT (BUFIB_ACTIVE) - 1 

esc OUT_MSB BIT (BUF1A_ACTIVE) - 1 

eSC_OUT _LSB BIT (GSC_OUT_MSBI - 1 

L.SC_IN_MBD DIT (eSC_OUT_LSD) - 1 

LSC_IN_L.SB BIT (L.SC_IN_MBB) - I 

BUF2A_ACTIVE BIT (LSC_IN_LSB) -

BUF2B_ACTIVE BIT (BUF2A __ ACTIVE) - I 

BUF2C_ACTIVE BIT (BUF2B_ACTIVE) - I 

; indicator 'or when buffer 10 has 
.data for GSe 

; indIcator for when buffer It has 
.data for QSe 

jindicator for when buffer IB has 
idata 'or GSC 

,indicator for when buffer lA has 
idata for esc 

;second of two bits that identif~ 
iwhich buffer is the current GSC 
; output buffer 

ifirst of two bits that identlfv 
.which buffer is the current GSC 
; output buffer 

isecond of two bits that identifv 
..... hlch buffer is the current LSC 
;input buffer 

ifirst of two bits that identlf~ 
,which buffer is the current LSC 
iinput buffer 

,indicator for when buffer 2A has 
;data for LSC 

iindicator for when buffer 29 has 
;data For LSC 

.indicator for when buffer 2C has 

PAGE 3 

270720-19 

l 

» 
"D . 
". 
1'1) 
CD 



MCS-51 MACRO ASSEMBLER 

LOC OBJ LINE 

323 
324 

0074 325 
326 
327 

0073 328 
329 
330 
331 

0072 332 
333 
334 
335_ 

0071 336 
337 
338 
339 

0070 340 
341 
342 
343 

006F -344 
345 

006E 346 
I\J 347 

W 348 

~ 349 
350 
351 

0000 352 
0000 020100 353 

354 
0023 355 
0023 0205BA 356 

357 
0028 358 

359 
002B 020568 360 

361 
0033 362 

363 
0033 020580 364 

365 
0043 366 

367 
0043 0204AA 368 

369 
0048 370 

371 
004B 0204E3 372 

373 
0053 374 

375 
0053 02061C 376 

377 

APPNOTI 

SOURCE 

BUF2D_ACTIVE' 

GSC_IN_MSB 

GSC_IN_LSB 

LSC_OUT_MSB 

LSC_OUT_LSB 

FIRST3SC_OUT 

LSC_ACTIVE 

BIT (BUF2C_ACTIVE) - I 

BIT (BUF2D_ACTIVE) - I 

BIT (GSC_IN_MSB) - I 

BIT (GSC_IN_LSB) - I 

BIT (LSC_OUT-"SB) - I 

BIT (LSC_OUT_LSBI -

BIT (FIRST_GSC_OUTI -I 

10/19/88 PAGE 

.data fDr LSC 

i indicato-r fo1" Idhen buffer 20 has 
.data for LSC 

;s~cond of two bits that identIfy 
iwhich buffer is the current GSC 
; input buffer 

ifirst of two bits that Identlfy 
;which buffer is the current GSC 
i input buffet' 

;second of two bits that IdentIfy 
;which buffer IS the current LSC 
; output buffer 

;first of two bits that Identify 
;which ~uffeT' is the current LSC 
; output buff.,. 

; indicator for-fIrst GSC _mit' 

; indicator that LSC IS outputting 
ia received packet 

i****************************************************************************** 

START: 
ORG 0 
..IMP INITIALIZATION 

ORG 23H 
JMP LSC_SERVICE 

ORG 2BH 
GSC_REC_VALID: 

..IMP GSC_VALID_REC 

ORG 33H 
GSC_REC_ERROR: 

..IMP GSC_ERROR_REC 

ORG 43H 
GSC _XIII T _VAL ID: 

..IMP GSC_VALID_XMIT 

ORG 4BH 
GSC_XMIT _ERROR: 

..IMP GSC_ERROR_XMIT 

ORG 53H 
DMAl_DONE: 

..IMP DMAl_SERVICE 

4 

270720-20 

cl 

)0 
'U 
~ 
N 
CD 



--
MCS-51 MACRO ASSEMBLER APPNOTI 10/19/88 PAGE 5 t LOC OB-i LINE SOURCE I I 
0100 378 ORG 100H 

379 INITIAL! ZATlON· 
3BO 

0100 75BIBO 3BI MeV SP •• STACK_OFFSET .~tart stact at user defined addr 
3B2 

0103 120243 3B3 CALL ADDRESS_DETERMINATION .setup addressIng (onl~ done on 
3B4 ; RESET) 
3B5 

0106 120200 3B6 CALL GSC_INIT , initialization for OSC 
3B7 

0109 120234 3BB CALL LSC_INIT ; initialization for LSC 
3B9 

010C 120258 390 CALL GENERIC INIT igeneral inltiaillation not dealIng 
391 i -..ith lnterrup-ts._ Gse. 01" LSC 
392 

010F 120250 393 CALL INTERRUPT_ENABLE .enable interrupts 
394 
395 MAIN 
396 

0112 207CI7 397 -iB BUFIA_ACTIVE.BUFFERI_START isee if buf'er lA has something 
39B ito transmit out GSC 
399 

0115 207014 400 -iB BUFIB_ACTIVE.BUFFERI_START isee if buffer 18 has something 
401 ito transmit out GSC 

I I 
]> 402 

N 011B 207El1 403 -iB BUFIC_ACTIVE.BUFFERI_START isee if buffer lC has something ." 
c:., • 404 ito transmit out GSC "" W 405 N 
N CD OIlB 207FOE 406 -iB BUFID_ACTIVE.BUFFERI_START isee if bu"er 1D has samething 

·407 ;to transmit out Gst 
40B 

OIlE 207710 409 -iB BUF2A_ACTIVE.DUFFER2_START isee if buffer 2A has something 
410 ito transmit out LSC 
411 

0121 20760D 412 -is BUF2B~CTIVE.BUFFER2_START isee if buf'er 28 has something 
413 ito transmit out LSC 
414 

0124 20750A 415 -iB BUF2C_ACTIVE.BUFFER2_START isee if bu"er 2C has something 
416 ito transmit out LSC 
417 

0127 207407 418 -is BUF2D_ACTIVE.BUFFER2_START isee if buf'er 2D has something 
419 ito transmit out LSC 
420 

012A BOE6 421 -iMP MAIN 
422 
423 B\lFFERl_START: 
424 

012C 1:;!032F 425 CALL NEW_BUFFER I_OUT ithis routine should start a 
426 itransmission i' a bu"er is Full 
427 

012F BOEI 42B -iMP MAIN 
429 
430 ~BUFFER2_START: 

431 
0131 12043F 432 CALL NEW BUFFER2_0UT ,this routIne starts a tTansmission 

270720-21 



~ 

MCS-51 MACRO ASSEMBLER APPNOTI 10/19/BB 

LOC OBJ 

0134 BODC 

0200 

0200 75'1400 

0203 75B402 

020b 75A414 

020'1 75D400 

020C D2DB 

020E 75C2B5 

0211 7:1'12'1B 

0214 75B2F4 

0217 75F300 
021A 75F27B 

021D 7593b9 

0220 B57C'15 

0223 757901 
022b 757B02 

0229 B579D2 
022C 8578D3 

022F DOlEI' 

0231 D2bF 

0233 22 

0234 75BDFC 

=1 
=1 
=1 
=1 
=1 
=\ 
=\ 
=\ 
=1 
=1 
=\ 
=1 
=1 
=\ 
=\ 
=1 
=\ 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

=1 
=1 

LINE 

433 
434 
435 
43b 
437 
438 
43q +1 
440 
441 
442 
443 
444 
445 
44b 
447 
448 
44'1 
450 
45\ 
452 
453 
454 
455 
45b 
457 
45B 
459 
4bO 
4bl 
4b2 
4103 
4b4 
4b5 
4bb 
4107 
4108 
410'1 
470 
471 
472 
473 
474 
475 
4710 
477 
47B 
47'1 
480 
481 
4B2 
4B3 
484 
485 +1 
4810 
487 

SOURCE 

JMP MAIN 

ORG 200H 
$INCLUDE (GSCINIT SRC) 
GSC_INIT 

MOV BAUD .• SSC_BAUD_RATE 

MOV GI'tOD .• 02H 

MOV IFS •• IFS_PERIOD 

MOV TCDCNT •• O 

SETB DMA 

MOV DARLO .• TFIFO 

MOV DCONO •• 10011000B 

MOV SARLI •• RFIFO 

MOY BCRHI •• O 
MOY BCRLI •• MAX_LENGTH 

MOY DCONI •• 0110100IB 

MOY ADRO.GSC_SRC_ADDR 

lout ~h. LSC if one of the buffers 
i1s full 

.lnlt For CSMA/CD, a-bit preamble. 

. 16-b i t eRe. 8-b 1 t addresses 

,lnlt IFS 'or period between frames 

.clrar coll1610n counter 

. lnlt CSC Interrupts for DMA 

.DMAO WIll servIce TFIFO 

; lnlt DMAO Ill1th SFR as dest. ext RAM 
.as source. serial port demand mode 

.DMAl Will servIce RFIFO 

ilaad DHA bVte count with maximum 
; mes.sage length 

iinit DMAI ~ith .It RAM as dest. 
; SF~ as source. serial port demand 
; mode, and set GO bi t. 

MOV GSC_INPUT_LOW •• LOW (BUF2A_S1RT~DDR) 
MOV GSC_INPUT_HIGH •• HIGH (BUF2A_STRT_ADDR) 

MOV DARL1.GSC_INPUT_LOW 
MOV DARHI.GSC_INPUT_HIGH 

SETB GREN 

SETB FIRST_CSC_OUT 

RET 
$INCLUDE (LSCINIT.SRC) 
LSC INIT: 

-MOY TH1 •• LSC_BAUD_RATE 

iinit GSC input address storage 

; init DHA destination address to 
;match GSC input address storage 

ienable receiver 

;set indicator that first esc xmit 
ihas not vet occurred 

isetup timer! to gene~ate LSC baud 

PACE 10 

270720-22 

( 

» 
l' .,.. 
I\) 
CD 



'" ~ 
Col 
.j::o 

MCS-51 MACRO ASSEMBLER APPNOTl 10119/BB PAGE 

LOC DB.! LINE 

=1 4BB 
0237 438920 =1 4B9 
023A 53892F =1 490 

=1 491· 
023D 759850 =1 492 

=1 493 
=1 494 

0240 D2BE. =1 495 
=1 496 

0242 22 =1 497 
498 +1 

=1 499 
=1 500 

024G 53901F =1 501 
=1 502 

0246 B5C07C =1 503 
=1 504 
=1 505 

0249 439020 =1 506 
=1 507 

024C BSC07D =1 SOB 
=1 509 
=1 510 

024F 22 =1 511 
512 +1 

=1 513 
=1 514 

0250 D2CB =1 515 
=1 516 

0252 D2C9 =1 517 
=1 51B 

0254 D2AC =1 519 
=1 520 

0256 D2CC =1 521 
-1 522 

0258 D2AF =1 523 
=1 524 

025A 22 =1 525 
-1 526 

527 +1 
=1 52B 
=1 529 

025B 752FOO =1 530 
=1 531 
=1 532 
=1 533 
=1 534 

025E 752EOO =1 535 
=1 536 
=1 537 
=1 538 

0261 C26E =1 539 
=1 540 
=1 .541 

0263 757803 =1 542 

SOURCE 

DRL TMDD.IOOIOOOOOB 
ANL TMDD.IOOIOIIIIB 

MOV SCDN.IOIOIOOOOB 

SETB TRI 

RET 
$INCLUDE (INITADDR SRCl 
ADDRESS_DETERMIIIATIDN 

ANL Pt •• JFH 

MOV GSC_SRC_ADDR.P4 

ORL PI.120H 

MOV GSC_DEST_ADDR.P4 

RET 
$INCLUDE (ENAINT.SRC) 
INTERRUPT_ENABLE: 

SETB EGSRV 

SETB EGSRE 

SETB ES 

SETB EDl'lAI 

SETB Ell 

RET 

$INCLUDE (GENINIT.SRC) 
GENERIC_INIT: 

MOV BUFFERl_CONTRDL •• O 

MOV BUFFER2_CONTRDL.IO 

CLR LSC_ACTIVE 

Jinit ti •• ~l as a-bit auto-reload 

isetup LSC as 8-bit UART and enable 
I ~ec.iver 

Jsta~t ti •• r to generate baud rate 

iselect output 0 of '138 

.read GSe receiv.- address from 
; DIP ... i tch II 

iselect output 1 of '138 

.read QSC x.it address from DIP 
i switch .2 

;.nable GSC receive valid interrupt 

ienabl. GSC receive error interrupt 

I enable LSC interrupt 

ienable DKA! done interrupt 

senabl. interrupts 

Jinsure all buffer 1 active bits 
i- 0, current input and output 
Ibuffer = lA 

;in5U1'. all buffer 2 active bits 
;= O. current input and output 
; buff.n" =: 18 

iinsure LSC_ACTIVE = 0 before 
istarting a reception 

MOV LSC_INPUT_LOW.ILOW I BUF1 A_STRT_ADDRI 

7 

270720-23 

l 

» 
"0 
J,. 
I\) 
CO 



ro c., 
Co) 
(]I 

I1CS-51 HACRO ASSEI1BLER 

LOC DB .... LINE 

021010 757Aoo -1 543 
=1 544 
=1 545 
=1 546 

02109 757F02 =1 547 
=1 548 
=1 549 
-I 550 
=1 551 

02bC 7BCF -I 552 
=1 553 
-I 554 

02bE OB =1 555 
=1 5510 

026F 7600 =1 557 
=1 55B 

0271 BBFFFA =1 559 
=1 5100 

0274 22 =1 :Sbl 
=1 5102 
=1 563 

APPNOTI 10119/B9 PAgE 

SOURCE 

110V LSC_INPUT_HIgH. *HI9H CBUFIA_STRT.J\ODRI 

I10Y IN_BYTE_COUNT •• 02 

110V RO. *NEXT _LOCATION 

COUNTER_CLEAR: 
INC RO 

MOV eRO •• O 

C..JNE RO. *OFFH. COUNTER_CLEAR 

RET 

i load address pointe,"6 lIIith 
; starting addT.s5 of bu"er lA 

; but. count initialized to 2 
; because destination and source 
J address 1If111 take fiT'st two bVtes 
J and counter is not tnc,.e.ented. 

i C lear out .TrOT' counter 

; loop unti 1 all count.rs A 0 

564 ... 1 .INCLUDE CCNTRINC. SRCI 
I NCREI1ENT _COUNTER: =1 

=1 
0275 D3 =1 

=1 
02710 7FOb =1 

=1 
=1 
=1 

027B Eb =1 
=1 

0279 3400 =1 
=1 

027B Flo =1 
=1 

027C lB =1 
=1 

0270 DFF9 =1 
=1 

027F 4001 =1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

02Bl~ 22 =1 
=1 
=1 
=1 

02B2 OB =1 
=1 

565 
566 
5107 
56B 
5109 
570 
571 
572 

,573 
574 
575 
5710 
577 
57B 
579 
580 
5BI 
5B2 
583 
584 
5B5 
5Bb 
587 
5BB 
5B9 
5'10 
591 
5'12 
5'13 
594 
595 
5910 
597 

SETB C 

110V R7. *10 

INC_COUNT_LOOP: 

I10V A. tlERRORJ'OINTER 

ACDC A •• O 

I10Y eERRORJ'0INTER. A 

DEC ERRDRJ'OINTER 

O .... NZ R7.INC_COUNT_LOOP 

..JC COUNTER_OVERFLOW 

RET 

COUNTER_OVERFLOW: 

INC ERRDR_POINTER 

i add 1 on first loop 

;. of b"tes in each counter field 

; get bvte of counter 

loverflow if ~.r ... u lenerated. This 
; ..,.s initiall" put in to stop the 
I f10111 of the pragr •• if' anu of the 
J .".,.0," count .... 5 Qve",'loilled \lftth the 
i .xpact.tiDn that the usa'" IIIDuld 
i .odiflJ the code to" dump the erTOT 
Icount contents and ",a-initializ. the 
J caunter locations. 

J point to ,ub of counteT field 

B 

270720-24 

l 

» 
'U . 
~ 

'" CQ 



I\J 
W 
(.oJ 
en 

MCS-51 MACRO ASSEMBLER APPNOTl 10/19/98 PAgE 

LOC OBJ LINE 

02B3 7bFF =1 59B 
=1 599 

02B5 OS =1 bOO 
=1 1>01 

02Bb 7bFF =1 1,02 
=1 1>03 

02BB OB =1 -1,04 
=1 1,05 

02B9 7bFF =1 bOb 
=1 1,07 

02BB OB "I bOB 
=1 1,09 

02BC 7bFF =1 1,10 
=1 1,11 

02BE OB =1 1,12 
=1 1,13 

02BF 7bFF =1 1,14 
=1 1,15 

0291 OB =1 bib 
=1 /,17 

0292 7bFF =1 biB 
=1 1,19 

0294 BOFE =1 1,20 
=1 1,21 
=1 1,22 

1,23 +1 
=1 1.24 
=1 1.25 
=1 1,21, 
=1 1,27 
=1 b2B 
-I 1.29 
=1 1,30 
=1 1,31 
=1 1,32 
=1 1,33 
=1 1,34 
=1 1,35 
=1 1,31, 
=1 1,37 
=L b3B 
=1 1,39 
=1 1,40 
=1 1,41 
=1 1,42 
=1 1,43 
=1 1,44 
=1 1,45 
=1 1,41, 
=1 1,47 
=1 -b4B 
=1 1,49 
=1 1,50 
=1 1,51 
=1 1,52 

SOURCE 

MOV @ERROR_POINTER •• OFFH 

-INC ERROR_POINTER 

MDV @ERROR_POINTER •• OFFH 

INC ERROR-pOINTER 

MOV @ERROR_POINTER •• OFFH 

INC ERROR-POINTER 

MDV @ERROR_POINTER •• OFFH 

INC.ERROR-POINTER 

MDV @ERROR-P0INTER •• OFFH 

INC ERROR_POINTER 

MOV @ERROR_POINTER •• OFFH 

~P-

i and 5. to ... ., OFFH 

Ipoint to next byte of coutn .... field 

;and sto,.. OFFH 

;pain~ to nRI~ byte 0' counte ... field 

; and .to,.. OFFH 

"'point to next bV~. 0' caunter Field 

land stat'. OFFH 

ipoint to next bvte of counter Field 

land stoY'. OFFH 

.point to next bVt. of counter field 

• and stat'. OFFH 

iif the e1'1"OT counters overflo. the 
iprogl"am continue. to loop at this 
; location until H/W resets the device. 

_INCLUDE (BUFIMGT_SRCI 
NEW_BUFFERI_IN: 

;****************************************************************************** 
,This section us.s • bit addTessable cont ... ol byte to determine _hieh buffers 
Jare activ. (contains data 'or QSC to output), the last buffer used bV the LSC 
; input, and the last buffer,used bg the QSC Dutput. 
I 

.The control b~te is defined .5 '0110.5: 

00 Q BUFFER IA 
01 = BUFFER 18 
10 BUFFER iC 
11 = BUFFER ID 
___ 1 __ -

1 
LAST BUFFER USED LAST BUFFER USED 
BY QSC FOR OUTPUT BY LSC FOR INPUT _1_, ,_'_ 

7'~B~IT~7~~I~B~I~T~b~'~B~I:T~5~I~B~IT~4~I~B~I~-3--'--B-I~-2--'--B-I~-I--'-B-I~-0---' 
, ______ ' _____ 1 ____ ' ______ , _____ , ______ ' _____ 1 ____ ' 

I ~ I I ! : : : 
BUFFER lC BUFFER lA 

'. ACTIVE ACTIVE 
BUFFER ID BUFFER IB gSC_OUT _MBB LSC_IN_MSB 

ACTIVE ACTIVE 
BUFIC_ACT BUFIA_ACT QSC_OUT _LSB 

, 
LSC_IN_MSB 

9 

270720-25 

( 

:a­
"P 
"" N 
CD 



MCS-51 MACRO ASSEM8LER 

LOC OBJ LINE 

=1 653 
=1 654 
=1 655 
=1 656 

0296 20794E =1 6~7 
=1 658 
=1 659 
=1 660 

0299 207823 =1 661 
=1 662 
=1 663 
=1 664 
=1 665 
=1 blob 
=1 61.7 

029C 207D43 =1 bbB 
=1 101.9 
=1 1.70 
=1 1.71 

029F 758200 =1 1.72 
02A2 758300 =1 1.73 

=1 1.74 
=1 675 
=1 1.71. 

~ 02M E57F 
Ul 

=1 677 
=1 678 

Ul 02A7 FO 
-...I 

=1 679 
=1 680 
=1 681 

02AB A3 =1 bB2 
=1 683 
=1 bB4 

02A9 E57D =1 _ 1.85 
=1 686 

02AB FO =1 6B7 
=1 6BB 

02AC A3 =1 6B9 
=1 690 
=1 1.91 

02AD E57C =1 692 
=1 693 

02AF FO =1 694 
=1 695 

0280 027C =1 696 
=1 1.97 
=1 69B 
=1 699 
=1 700 

0282 C279 =1 701 
0284 0278 =1 702 

=1 703 
=1 704 

0286 757883 =1 705 
0289 757AOO =1 70b 

=1 707 

APPNOTl 10/19/B8 PAgE 

SOURCE 

8UFID_ACT BUFID_ACT 

I **********************+*************** ... ********************************.****** 
JD LSC_IN_"SD. LSC_IN_ID_IA 

~B LSC_IN_L59.LSC_IN_IC 

LSC IN_ID 

J8 DUFIB_ACTIVE.BUFFERS_I_FULL 

MOV DPL •• LOW I BUFIA_STRT_ADDRI - 3 
r10V DPHi.HIGH (BUFIA_STRT __ ADDR) 

MOV A. IN_BYTE_COUNT 

110VX t!DPTR.A 

INC DPTR 

110Y A.GSC_DEST_ADDR 

I10YX t!DPTR. A 

INC DPTR 

I10Y A.GSC_SRC_ADDR 

MOYX t!DPTR.A 

SETD-DUFIA_ACTIYE 

CLR LSC IN MSB 
SET8 LSC_IN_LSS 

· if LSC_IN_MSB = 1 (Ie OT' ID). 
.then the next buffer to be used 
.must be 10 or lA 

· 1f LSC_IN = 018 then next buffer 
.for LSC to use 15 Ie 

• If LSC_IN = OOB (onlq combination 
.left) then next buffer to use 15 
.18 

· l' bu'fer 10 IS actlve then the 
.CSC has not ~et emptled It and 
.all the buffers must be full 

.setup DPTR to pOlnt at the 

.beglnning of buffer lA (first b~te 

.should contain number of b~tes 

.load ace ~ith b~te count for HOVX 

Jstore b~~e count at first b~te of 
,buffer 1A 

iDPTR now points to where the 
; destination address should be 

;get stor.d destination address 

;store destination addr in XRA" 

iDPTR now points to where source 
;addTess should be stoTed 

,get stored source address 

istore destination addr in XRAH 

; indicate that DUF1A has data to 
.be output b~ the GSC and that the 
.LSC has moved on to the nelt 
; buffer 

iset flags to indicate that the 
;current input buffer (for LSC) 
iis 18 

110Y LSC INPUT LOW •• LOW (SUFIS STRT ADDRI 
MOY LSC=INPUT=HIGH •• HIGH (BUFIB_STRT_ADDRI 

iload starting address of buffer 

10 

270720-26 

l 

:J> 
'P 
0Iloo 
N 
CD 



MeS-51 MACRO ASSEMBLER 

LOC OBJ LINE 

~1 708 
=1 709 

02BC 02032D =1 710 
=1 711 
=1 712 
=1 713 
=1 714 

02BF 207E20 =1 715 
=1 716 
=1 717 
=1 718 

02C2 758280 =1 719 
02C5 758300 =1 720 

=1 721 
=1 722 
=1 723 

02CS E57F =1 724 
=1 725 

02CA FO =1 726 
=1 727 
=1 728 

02CB A3 =1 729 
=1 730 
=1 731 

~ 
02CC E57D =1 732 

=1 733 
IN 02CE FO =1 734 
00 =1 735 

02CF A3 =1 736 
=1 737 
=1 738 

02DO E57C =1 739 
=1 740 

02D2 FO =1 741 
=1 742 

02D3 D27D =1 743 
=1 744 
=1 745 
=1 746 
=1 747 

02D5' C27S =1 748 
02D7 D279 =1 749 

=1 750 
=1 751 

02D9 757B03 =1 752 
02DC 757AOI =1 753 

=1 754 
=1 755 
=1 756 

02DF 02032D =1 757 
=1 75S 
=1 759 
=1 760 

D2E2 12032E =1 761 
=1 762 

APPNOTl 

SOURCE 

JMP NEW_BUFI_IN_END 

LSC_IN_IC' 

JB'BUFIC_ACTIVE.BUFFERS_I_FULL 

MOV DPl •• LOW·(BUFIB_STRT_ADDRI - 3 
MOV DPH •• HIGH (BUFIU_STRT_ADDR) 

MeV A.IN_BYTE_COUNT 

MOVX .DPTR.A 

INC DPTR 

MOV A.GSC_DEST_ADDR 

MOVX eDPTR,A 

INC DPTR 

KOV A,gSC_SRC-ADDR 

MDVX eDPTR. A 

SETB BUFIB-ACTlVE 

CLR LSC_IN_LSB 
SETB LSC_IN_MSB 

10/19/88 PAgE 

,IB 

;i' buffer 1e is active then the 
iGSC has not vet emptied it and 
ial1 the bu'fer~ must be full 

isetup DPTR to paint at the 
.beginning of bu,'er is (first b~t. 
• should contain nu_ber of bvtes 

. load .cc ~ith bVte count for MOVX 

• store b~t. count at first bvte of 
.buffer IB 

• DPTR "O~ points to where the 
• destination .ddre65 should be 

.get stored destination.addres5 

i store d.,tinatlon addr _in XRAM 

iDPTR now paints to where aouree 
;.ddress should be stored 

.get sto~.d sou~ce .dd~ess 

Jstore destination addr in XRAM 

indicate that BUF1C has data to 
b. output bV the QSC and that the 
LSC has moved on to the next 
buffer 

iset flags to indicate that the 
;current input buffe~ (for LSC) 
.is Ie 

MeV LSC_INPUT_LDW •• LDW <BUFIC_STRT_ADDRI 
MeV LSC_INPUT_HIGH,.HlgH (BUF1C_STRT_ADDRI 

JMP NEW_BUFI_IN_END 

BUFFERS_I_FULL: 

CALL IRET 

Jlaad starting .dd~es5 of buffer 
IIC 

ii' the buffers are full. the pgm 
s~il1 be locked in the LSC service 

11 

270720-27 

l 

:J> 
l' 
t 
CD 



f}I 
t.) 
t.) 
(0 

MCS-51 MACRO ASSEMBLER 

LOC OB..I 

02E~ 80AF 

02E7 207823 

02EA 207FF5 

02ED 75B200 
02FO 7:18301 

02F3 E57F 

00!F5 FO 

02Fb A3 

02F7 E57D 

02F9 FO 

02FA A3 

02FB E57C 

02FD FO 

02FE D27E 

0300 D278 
0302 D279 

0304 7578B3 

LINE 

=1 7103 
=1 7104 
=1 7105 
=1 71010 
=1 767 
=1 7bB 
=1 76'1 
=1 770 
=1 771 
=1 772 
=1 773 
=1 774 
=1 775 
=1 7710 
=1 777 
=1 778 
=1 779 
=1 7BO 
=1 7B1 
=1 7B2 
=1 783 
=1 7B4 
=1 785 
=1 7Bb 
=1 7B7 
=1 7BB 
=1 7B9 
=1 790 
=1 791 
=1 792 
=1 793 
-1 794 
=1 795 
=1 7910 
=1 797 
=1 798 
=1 799 
=1 BOO 
=1 BOI 
=1 802 
=1 803 
=1 B04 
=1 805 
=1 BOlo 
=1 B07 
=1 BOB 
=1 809 
=1 810 
=1 811 
=1 812 
=1 813 
=1 B14 
=1 815 
=1 8110 
=1 B17 

APPNOTl 

SOURCE 

JI1P NEW_BUFFER I_IN 

LSC_IN_ID_IA: 

..IB LSC_IN_LSB,LSC IN lA 

LSC_IN_ID: 

..18 BUFID_ACTIVE.BUFFERS 1 FULL 

MDV DPL •• LOW (BUFIC_STRT_ADDRI - 3 
MOV DPH •• HI~H (BUFIC_STRT_ADDRI 

MOV A.IN_DYTE_COUNT 

MDVX eDPTR.A 

INC DPTR 

MOV A.QSC_DEST_ADDR 

MaVX eDPTR. A 

INC DPTR 

MaV A.QSC_SRC_ADDR 

MDYX 4!DPTR.A 

SETD DUFIC_ACTIYE 

SETB LSC_IN_LSB 
SETD LSC_IN_MSB 

MOY LSC_INPUT_LDW •• LDW (BUFID_STRT_ADDRI 

10/19/88 PAgE 

routine in an "interl"upt in 
p .... og'ress .. made. If the DMA then 
'T'ees up a buffeT' the int.,,.,..up t 
routine cannot clear the buffer 
active bit until the interrupt 
(EQSTV/EOSTE·) iii serviced 

;continue scanning active buffers 
iuntil one is freed up 

iif LSC_IN = 11 then next buffe,. 
.next bufFer is lA 

; if buffer lD is active then the 
iCSC has not vet emptied it and 
ial1 the bu"ers must be full 

is.tup DPTR to pDint at the 
ibeginning D' buf'e,. 1e (first b~te 
ishould contain number of bvtes 

; load ace ..,i th bljte count for t10VX 

;store b~te count at fi~5t bvte of 
ibuffer It 

jDPTR no~ points to ~here the 
idestinatiDn address should be 

iget stored destination address 

istore destination .ddr in XRAM 

lDPTR no~ points to where source 
iaddress should be stored 

iget stored SaUTee address 

istore destination add~ in XRA" 

indicate that BUFIC has data to 
be output by the esc and that the 
LSC has moved on to the next 
buffeT 

iset flags to indicate that the 
icurrent input buffer (for LSC) 
;is ID 

12 

270720-28 

t 

~ 
"P 
"" N 
CD 



~CS-51 MACRO ASSE"BLER 

LOC. OBJ LINE 

0307 757AOI =1 818 
=1 819 
=1 820 
=1 821 

030A 020320 =1 822 
=1 823 
= 1 824 
=1 825 

0300 207CD2 =1 826 
=1 827 
-1 828 
=1 8;>q 

0310' 758280 '1 830 
0313 758301 '1 831 

-1 832 
'1 833 
=1 834 

0316 ES7F ~- 1 835 
=1 .836 

0318 FO =1 ·837 
=1 838 
=1 839 

0319 A3 =1 840 
= I 841 

I\J =1 842 
W 031A E57D =1 843 

~ =1 844 
031C FO =1 845 

=1 846 
031D A3 =1 847 

=1 848 
=1 849 

031E E57C =1 850 
=1 851 

0320 FO =1 B52 
=1 853 

0321 D27F =1 854 
=1 855 
=1 856 
=1 857 
=1 858 

0323 C278 =1 859 
0325 C279 =1 860 

=1 861 
=1 862 

0327 757B03 =1 B63 
032A 757AOO =1 8b4 

=1 865 
=1 866 
=1 Bb7 
=1 868 

032D 22 =1 B69 
=1 870 
=1 871 
=1 872 

APP"'IOTt 101 l1:i' f S8 PAGE 

SOURCE 

MOV LSC.INPUT_HIGH .• HIGH C8UFIO.STRT_AOORl· 
,load ~tarting addre~s of bu"er 
, 10 

JMP NEW BUF 1 IN FNO 

1 Sf IN IA 

JB aUF IA ACTIVE". BUI='F"ERS 1 FUll · " bu"er lA IS actlvP then thp 
.GSC ha~ not vet emptIed It and 
.a11 the bu"er~ mu~t be full 

MOV OPt .• IOW IBUFtU STRT ADDR) 3 
MOV OPI( .•• -tlGH CDUF to STRT ADOR) .~etup OPTR to pOInt at the 

· beglnnln-g of bu'F~r- 10 "lrst b'4te 
.should cont~ln number of b~te~ 

MOV A, IN~DVT~_COUNT · load ace With b~te count for HOVX 

'MOVX ·@DPTR.A .store b~t. count at fIrst b~te of 
I bufff!'r lA 

INC DP1R .DPTR now pOInts to ~here the 
.destination address should be 

MOV A.GSC_DE5T_ADDR .get stored destlnatlon address 

MOVX @DPTR.A -; store destination addl' in XRAH 

INC OPTR ,DPTR now points to where 50urce 
iaddress should be stored 

MOV A.GSC_SRC_ADDR ;get stored 50urce add~eS5 

MOVX I!DPTR.A istOl'e destination addT in XRAM 

SETB BUFID_ACTIVE ;indicate that BUFID has data to 
Ibe output b, the esc and that the 
iLSC has moved on to the next 
ibuffer 

CLR LSC_IN_LSB iset flags to indicate that the 
CLR LSC_IN_MSB ,current inp~t buffeT (fOT LSC) 

;is lA 

MOV LSC_'NPUT_LOW •• LOW (BUFIA STRT_ADDRl 
MOV LSC_'NPUT_H'GH •• H'GH (BUFIA_STRT~DDRI 

,load starting address of buffer 
ilA 

NEW_BUFI_IN_END: 
RET 

IRET 

13 

270720-29 

l 

~ 
"g. 
o 

.110 
N 
CD 



I\) 

~ 

MCS-51 MACRO ASSEMBLER 

LOC 08J 

032E 32 

032F 30D903 

0332 0203AF 

0335 20D9FA 

0338 207837 

0338 207AIA 

033E 307C6E 

0341 900000 

0344 EO 

0345 F5E2 

0347 75E300 

034A A3 

0348 B5B2A2 
034E 8583A3 

0351 C27S 
0353 D27A 

0355 0203A6 

LINE 

=1 873 
=1 874 
=1 875 
=1 876 
=1 877 
=1 878 
=1 879 
=1 BBO 
=1 8BI 
=1 B82 
=1 883 
=1 884 
=1 885 
=1 886 
=1 887 
=1 BBB 
=1 8B9 
=1 890 
=1 891 
=1 B92 
=1 B93 
=1 894 
=1 895 
=1 896 
=1 897 
=1 898 
=1 899 
=1 900 
=1 901 
=1 902 
=1 903 
=1 904 
=1 90S 
=1 906 
=1 907 
=1 908 
=1 909 
=1 910 
=1 911 
=1 912 
=1 913 
=1 914 
=1 915 
=1 916 
=1 917~ 

=1 'lIB 
=1 919 
=1 920 
=1 'lOll 
=1 922 
=1 923 
=1 924 
=1 925 
=1 926 
=1 927 

APPNOTI 

SOURCE 

RElI 

NEW_BUFFER1_0UT" 

JNS TEN.SECOND_TEN_CHECK 

TRANSMISSION_IN_PROGRESS 
JMP NOTHINGfOR~_GSC 

SECOND_ TEN_~CHECK 
JB TEN.TRANSMrSSION IN_PROGRESS 

JB GSC_OUT_MSB. GSC_OUT_ IC~ID 

J8 GSC_OUT_LSB.GSC_OUT_IB 

GSC_OUT_IA 

JNB BUFIA_ACTIVE.NOTHING_FOR_GSC 

MOV DPTR.8<SUFIA_STRT_ADDR) -3 

MOVX A.4!DPTR 

MOV BCRLO.A 

110V BCRHO •• O 

INC DPTR 

110\1 SARLO.DPL 
MOV SARHO.DPH 

CLR GSC_OUT_MSD 
SETB GSC_OUT_LSD 

JMP START_GSC_OUT 

GSC_OUT_IB: 

t0/19/88 

ire-enable interrupts 

do not start another transmIssion 
1f one 15 in progress (signified 
b~ TEN = I) but this should 
happen 

.do not start a new esc Emit If one 
currently In progress 

.second one In case lnterrupt 

.occurs dUTlng preVlOUS test 

.If csc our MSD = 1 then current 

.buffer-Is Ie or ID 

· If CSC_OUT = OlD then current 
· buffer IS IB 

• If CSC_OUT ODD then the buffer 
.15 lA 

i)f buffer lA 15 not active then 
ithe LSC has not uet filled it 
;sinc~ th~ QSC emptied it last 

i load DPTR ~ith addTess 0' bqt~ 
ithat holdS bvte count for·1A 

iget byte count fOT buffeT lA 

iload DMA byte count ~ith length 
iof message to transmit 

• insure high byte count 0 
i (should already be 0) 

iDPTR now points at dest addr 

i50urce address for start of 
idata to send 

i indicate next output buffer ~il1 
;b~ buffer 18 

.routine that starts transmis5~on 

iif GSC_OUT 01B then the buffer 
i is 10 

PAGE 14 

270720-30 

l 

» 
'tI . 
~ 
N 
CD 



MCS-51 MACRO ASSEMBLER 

LOC OBJ LINE 

03~58 307054 =1 928 
=1 929 
=1 930 
=1 931 

03'8 900080 =1 932 
=1 933 
=1 934 

035E EO =1 935 
=1 936 

035F F5E2 ~I 937 
=1 938 
=1 939 

0361 75E300 =1 940 
=1 941 
=1 942 

0364 A3 =1 943 
=1 944 

0365 8582A2 =1 945 
0368 8583A3 =1 946 

=1 947 
=1 948 

036B D27B =1 949 
036D C27A =1 950 

=1 951 ~ 

~ 03bF 0203A6 
.j>. 
I\) 

=1 952 
=i 953 
=1 954 
=1 955 
=1 956 

0372 207MA =1 957 
=1 958 
=1 959 
=1 960 
=1 961 
=1 962 
=1 963 

0375 307E37 =1 964 
=1 965 
=1 966 
=1 967 

0378 900100 =1 968 
=1 969 
=1 970 

037B EO =1 971 
=1 972 

037C F5E2 =1 973 
=1 974 
=1 975 

037E 75E300 =1 976 
=1 977 
=1 978 

0381 A3 =1 979 
=1 980 

0382 8582A2 =1 981 
0385 8583A3 =1 982 

APPNDTt 

SOURCE 

JNB BUFIB_ACTIYE.NOTHING_FOR_GSC 

MOY DPTR.a'BUFIB_STRT_ADDRl -3 

MaYX A.@DPTR 

MaV BCRLO.A 

MOY BCRHO._O 

INC DPTR 

MaV SARLO. OPL 
MOV SARHO.DPH 

SETB Gse OUT MSB 
CLR QscjiJT _LSD 

JMP START_GSe_OUT 

GSC_OUT IC ID 

JB GSC_OUT _LSB., GSe_OUT _10 

gSC_OUT_IC: 

JNB BUF le_ACTIYE. NOTHINGjOR_gSC 

MaV OPTR.a(BUFIC_5TRT_ADDRl -3 

HOVX A.@OPTR 

HOV BCRLO.A 

HOV BCRHO •• O 

INC DPTR 

HOV SARLO.DPL 
HOY 5ARHO.OPH 

10/19/88 PAgE 

· if buf~e~ 18 IS not active then 
ithe LSC has not vet filled it 
isince the QSC emptied it last 

; load DPTR with address of byte 
;th~t holds bqte count for 18 

; get- b"te count fo1' buff.T' 18 

I load D"A b"te count ~lth length 
,oF message to tran5mlt~ 

· Insure high byte count 0 
· (should already be 0) 

. DPTR no~ pOints at dest add,. 

.source address for. start of 

.data to send 

.indicate nelt output buffer ~ill 

.he buffer Ie -

· rQutlne that starts tran'smis510n 

ioutput buffer ~ill ba ID if 
iGSC_OUT = lIB 

;if QSC_OUT lOB then the buffer 
; is 1e 

iif buffer 1e is not active then 
; the LSC has not 'Jet filled it 
isioc. the GSC emptied it last 

iload DPTR ~ith address of b~te 
ithat holds b~te count For lC 

iget bvte count fOT buffer 1C 

.load DMA b~te count ~ith length 
JoF message to transmit 

; insure high byte count = 0 
; (should already be 0) 

iDPTR now pOints at dest addr 

.source address for start of 

15 

270720-31 

l 

)0 

l' 
.j:oo 
~ 
CO 



MCS-51 MACRO ASSEMBLER APPNOTI 

LOC OBJ LINE SOURCE 

=1 983 
=1 984 

03B8 D27B =1 985 SETD IISC_OUT _MSB 
038A D27A =1 986 SETD IISC _OUT _LSB 

=1 987 
=1 988 

038C 0203A6 =1 989 JIIP START_GSC_OUT 
=1 990 
=1 991 IISC_OUT 10: 
=1 992 
=1· 993 

038F 307FID =1 994 JNB BUF1D_ACTIVE.NOTHINII_FOR_IISC 
=1 995 
=1 996 
=1 997 

0392 900180 =1 998 1I0V DPTR •• IBUFID_STRT_ADDR) -3 
=1 999 
=1 1000 

0395 EO =1 1001 1I0VX A.I!DPTR 
=1 1002 

0396 F5E2 =1 1003 MOV BCRLO.A 
=1 1004 
=1 1005 

0398 75E300 =1 1006 MOV BCRHO •• O 
I\) =1 1007 
W =1 1008 
-l>- 039B A3 =1 1009 INC DPTR c.> 

=1 lDIO 
D39C 115S2A2 =1 1011 MDV SARLo.DPL 
039F 8S83A3 =1 1012 IIOV SARHO.DPH 

=1 1013 
=1 1014 

03A2 C27B =1 1015 CLR IISC_OUT_"SB 
03A4 C27A =1 1016 CLR IISC_OUT_LSD 

=1 1017 
=1 1018 
=1 1019 START _GSC_OUT: 
=1 1020 

03A6 D2D9 =1 1021 SETB TEN 
=1 1022 

03A8 D2CD =1 1023 SETH EGSTV 
=1 1024 
=1 1025 

03AA D2CD =1 1026 SETB EGSTE 
=1 1027 

03AC 439201 =1 1028 ORL DCONO •• OI 
=1 1029 
=1 1030 NIlTHINIIYOR_QSC: 
=1 1031 

03AF 22 =1 1032 RET 
=1 1033 
=1 1034 

1035 +I .INCLUDE IBUF2MGT.SRC) 
=1 1036 NEW_BUFFER2_IN: 
=1 1037 

10/19/88 PAGE 

; data to send 

,indicate next output buf'.~ Will 
j be buffe ... lD 

,routine that starts transmission 

iif QSC_OUT = I1B then the buffer 
i is 1D 

.if buffe ... lD is not active then 
ithe LSC has not ~et filled It 
;since the GSC emptied it last 

j load DPTR with address of byte 
.that holds byte count for ID 

Jget bute count for buffer 10 

j load DHA blJte count with length 
.of message to transmit 

; insure high byte count 0 
; (should alreadv be 0) 

iDPTR now points at dest add ... 

isource address for start of 
idata to send 

i indicate next output buffer will 
; be buffer lA 

;routine that starts transmission 

; enable QSC transmitt.,. 

ivnable GSC transmit valid (TON) 
; interrupt 

;enable QSC transmit error int 

istart DMA which starts data output 

16 

270720-32 

( 

:J> 
l' 
.1\00 
I\) 
CO 



I}l 
w 
t 

MCS-51 MACRO ASSEMBLER 

LOC OBJ 

03BO 207343 

03B3 20721E 

03B6 20763'1 

03B9 759200 
03DC 759302 

03BF C3 

03CO 7476 

=1 
~I 

-I 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

. =1 
=1 
=1 

LINE 

103B 
103'1 
1040 
1041 
1042 
1043 
1044 
1045 
1046 
1047 
104B 
104'1 
1050 
1051 
1052 
1053 
1054 
1055 
1056 
1057 
105B 
105'1 
1060 
1061 
1062 
1063 
1064 
1065 
1066 
1067 
1069 
106'1 
1070 
1071 
1072 
1073 
1074 
1075 
1076 
1077 
1079 
107'1 
lOBO 
1091 
IOB2 
1093 
1094 
109:1 
1096 
1097 
1099 
1099 
1090 
10'11 
1092 

APPNOTl 10/19/9B PACIE 

SOURCE 

; •••••••••••• *****.*******.****** •••• ** •••• **** ••• *** ••• **.**.***** •••••••• ***. 
.This section uses a bit add~.5sabl. control byte-to determine ~hlCh buffe~s 
fare active (cont.ins data fDr LSC to Dutput). the last buffer used b~ the LSC 
i for output. and -the last buffer used b, the esc for input 

.The control b~t. is defined as fol1ow5: 

00 = BUFFER 2A 
01 BUFFER 2B 
10 BUFFER 2C 
II = DUFFER 20 

LAST BUFFER USED LAST BUFFER USED 
BY QSC FOR INPUT BY LSC FOR OUTPUT 

. ___ - . ___ .. n __ •. n._ •. n'T3iBI~2TiiI~llBl~O: 
______ , ______ ' ______ 1 ______ 1 ______ 1 ______ 1 ______ 1 ____ __ 

: : : : : : : : 
BUFFER 2A 

BUFFER 20 

BUFFER 2C 
ACTIVE 

BUFFER 2B 
ACTIIIE 

BUF2C_ACT 

ACTIVE 
QSC_IN_MSB LSC_OUT_MSB 

ACTIVE 
BUF2A_ACT QSC_IN_LSB LSC_OUT_MSB 

BUF2D_ACT BUF2D_ACT 

i********************************************·************ ••• ******.*******.*** 

JB QSC_IN_MSD.QSC_IN_2D_2A 

JB 9SC_IN_LSB.QSC_IN_2C 

sse_IN_2B: 

JB BUF2B_ACTIIIE.BUFFERS_2-FULL 

MOV DPL •• LOW (BUF2A_STRT _ADDR I -
MOV DPH •• HIGH IBUF2A_STRT_ADDRI 

CLR C 

MOil A •• (MAX_LENQTHI - 2 

; if' QSC_IN_PfSB = 1 (2C or 2D), 
;then the next buffeT to be used 
i must be 2D DT 2A. 

iif GSC_IN = OlB then next buffeT 
;'or csc to use is 2C 

; if eSC_IN = 008 (onllA combination 
ileft) then next buffer to use is 
,2B 

iif buffer 28 is active then the 
iLSC has not vet emptied it and 
Jail the buffers must be full 

; setup DPTR to point at the 
;beginning of buffer 2A (first bgte 
;shDuld contain number of bgtes 

,f01" SUDD 

imaximum packet length and the 
i initial value for BCRLI (-2 

17 

270720-33 

l 

» 
"0 , .... 
N 
CI) 



MCS-SI MACRO ASSEMBLER 

LOC OBJ LINE 

~I 1093 
=1 1094 
=1 1095 
=1 1096 

03C2 95F2 =1 1097 
=1 109B 

03C4 FO =1 10QQ 
~I 1100 
=1 1101 

03CS 0277 =1 1102 
=1 1103 
=1 1104 
=1 1105 
=1 1106 

03C7 C273 =1 1107 
03C9 0272 =1 1I0B 

=1 1109 
=1 1110 

03CB 757981 =1 1111 
03CE 757802 =1 1112 

=1 1113 
=1 1114 
=1 1115 

0301 020432 =1 1116 
I\) =1 1117 
W =1 IIIB 
.;.. 
c.n =1 1119 

=1 1120 
0304 20751B =1 1121 

=1 1122 
=1 1123 
=1 1124 

03D7 75B280 =1 1125 
03DA 75B302 =1 1126 

=1 1127 
=1 112B 
=1 1129 

03DD C3 =1 1130 
=1 1131 

03DE 7476 ~I 1132 
=1 1133 
=1 1134 
=1 1135 
=1 11310 
=1 1137 

03EO 95F2 =1 1138 
=1 1139 

03E2 FO =1 1140 
=1 1141 
=1 1142 

03E3 D276 =1 1143 
=1 1144 
=1 1145 
=1 11410 
=1 1147 

APPNOTI 

SOURCE 

SUBB A.BCRLI 

MOVX @DPTR.A 

SETS BUF2A_ACTIVE 

CLR GSC IN MS8 
SETS GSe_IN_LSD 

10/19/8B PAGE 

isubtracted because 'ITst 2 b~tes 
iare the destination ~nd source 
jadd'resse5 

iload ace with byte count for MOVX 

istore bVte count at first b~te of 
ibuffer 2A_ 

; indicate that BUF2A has data to 
ibe output b~ the LSC and that the 
,ose has moved on to the next 
; buffer 

iset flags to lndlcate that the 
icurrent Input buffer (for GSC) 
. is 28 

MOV GSC_INPUT_LOW •• LOW (BUF2B_STRT_ADDRI 
MOV GSC_INPUT_HIGH •• HIGH (SUF2B_STRT_ADDRI 

; load starting address of buffer 
.~ 

,IMP NEW_BUF2_IN_END 

GSC_IN_2C: 

JB BUF2C_ACTIVE.BUFFERS_2_FULL 

MOV DPL •• LOW CBUF2B_STRT_ADDRI -
MOV DPH •• H[GH (BUF2B_STRT_ADDRI 

CLR C 

MOV A •• (MAX_LENGTHI - 2 

SUSD A.DCRLI 

MOVX @DPTR. A 

SETS BUF2B_ACTIVE 

; if buffe~ 2C is active then the 
iLSC has not ~et emptied it and 
ia11 the buffers must be full 

isetup DPTR to point at the 
ibeginning of buffer 20 (first bVte 
ishould contain number of b~tes 

; fa,. SUBB 

m.ximum packet length and the 
initial value for BCRLI ( 2 
subtracted because first 2 b~tes 
are the destination and source 
addres$es 

i load ace ~ith b~te count for MOVX 

istore b~te count at fir~t b~te of 
; buffet' 2B 

;indicate that BUF2B has data to 
ibe output bV the LSC and that the 
iQSC has moved on to the next 
ibuffer 

IB 

270720-34 

( 

l> 
l' 
~ 
~ 
CD 



'I\) 

* 

MCS-51 MACRO ASSEMBLER 

LOC OBJ 

03E5 C272 
03E7 D273 

03E9 757901 
03EC 151B03 

03EF 020432 

03F2 712E 

03F4 BOBA 

03Fb 20121E 

03F9 2074Fb 

03FC 158200 
03FF 15B303 

0402 C3 

0403 147b 

0405 95F2 

0407 FO 

0408 D275 

=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
~1 

=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=,1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

,=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

LINE 

1148 
1149 
1150 
1151 
1152 
1153 
1154 
1155 
it5b 
1157 
115B 
1159 
1160 
1161 
11b2 
I1b3 
1164 
lIb5 
11b6 
IIb7 
11b8 
11b9 
1170 
1111 
1172 
1173 
1174 
1175 
111b 
1177 
1178 
1179 
1180 
1181 
11B2 
1183 
1184 

,11B5 
1186 
1181 
1188 
1189 
1190 
1191 
1192 
1193 
1194 
1195 
119b 
1197 
119B 
1199 
1200 
1201 
1202 

APPNOTl 

SOURCE 

CLR GSC_IN_LSB 
SETa GSC_III_MBB 

101l9/B8 PAGE 

iset flags to Indicate that the 
;CU~Tent input buffer (for GSC) 
I is 2C 

MOV GSC_INPUT_LOW •• LOW IBUF2C_STRT_ADDRI 
MOV GSC_INPUT_HIGH •• HIGH IBUF2C_STRT_ADDR) 

; load starting address of bufFer 
l2C 

JMP NEW_BUF2_IN_END 

BUFFERS_2YULL: 

CALL IRET 

JMP NEW_BUFFER2_IN 

GSC_IN_2D_2A: 

JB GSC_IN_LSI.GSC IN 2A 

GSC_IN_2D: 

JB BUF2D_ACT,IVE. BUFFERS_2_FULL 

MOV DPL •• LOW IBUF2C_STRT_ADDR) -
MOV DPH •• HIQH IBUF2C_STRT_ADDR) 

CLR C 

MOV A •• lMAX_LENGTH) - 2 

SUBB A.BCRLI 

MOVX @DPTR.A 

SETB BUF2CJ\CTlVE 

i of the buffers are full. the pgm 
~ill be locked 1" the GSC service 
rQutine in an "interl"upt In 
progress" iIIode. If th. DI'1A then 
f~ •• 5 up • buFf.~. the interrupt 
routine cannDt clear the buffer 
activ. bit until the interrupt 
(EGSRV/EGSRE) is serviced 

; continue scanning active buffl~rs 
sunti! one is freed up 

; if GSC_IN = 11 then next buffer 
inext buffer is 2A 

.i' buFfe,. 2D is active then the 
.LSC has not ,et emptied it and 
iall the buffers must ~e full 

isetup OPTR to point at the 
ibeg1nn1ng of buffeT 2C (first b~te 
i should con,tain number of bvtes 

j for SUBS 

maximum packet length and th. 
ini tial value fot" ICRL:l ( 2 
subtract .. d because first 2 It"tes 
are the d.stin~tio" and source 
addresses 

;loa. acc ~ith b~te count '01' MOVX 

istore b~t. count at fiTst b~te of 
.buffeT 2C 

.indicate that BUF2C has data to 

19 

270720-35 ' 

l 

~ 
l' 
".. 
~ 
CQ 



~ 
W 
.j>. 
-.,j 

MeS-51 MACRO ASSEMBLER 

LOC OB.! 

040A 0272 
040C 0273 

040E 757981 
0411 7~7803 

0414 020432 

0417 207708 

041A 758280 
0410 758303 

0420 C3 

0421 7476 

0423 95F2 

0425 FO 

0426 0274 

0428 C272 
042A C273 

042C 757901 
042F 757802 

=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

LINE 

1203 
1204 
1205 
1206 
1207 
1208 
1209 
1210 
1211 
1212 
1213 
1214 
1215 
1216 
1217 
1218 
1219 
1220 
1221 
1222 
1223 
1224 
1225 
1226 
1227 
1228 
1229 
1230 
1231 
1232 
1233 
1234 
1235 
1236 
1237 
1238 
1239 
1240 
1241 
1242 
1243 
1244 
1245 
1246 
1247 
1248 
1249 
1250 
1251 
1252 
1253 
1254 
1255 
1256 
1257 

APPNOTI 

SOURCE 

SETB IISC_IN_LSB 
SETB GSC_IN_MSB 

10/19/88 

;be output bV the LSC and that the 
iGSC has moved on to the next 
;buffer 

iset flags to Indicate that the 
.current input buffer (for GSC) 
; is 2D 

MOV CSC INPUT LOW .• LOW IBUF2D STRT AODRI 
MOV GSC-INPUT-HIGH .• HIGH (BUF2D STRT ADDR) 

- - -- - ;load starting address of bufFer 
.20 

.!MP NEW_BUF2_IN_ENO 

CSC IN_2A 

.!B BUF2A_ACTIVE.BUFFERS 2 FULL 

MOV OPL .• LOW IBUF2D STRT AOORI -
MOV DPH •• HIGH I BUF2D_STRT_AODRI 

CLR C 

MOV A.aIMAX_LENGTHI - 2 

SUBS A. BCRLI 

HOVX ItOPTR. A 

SETB SUF2D_ACTIVE 

CLR CSC_IN_LSB 
CLR CSC_IN_MSB 

. if buffer 2A is actIve then the 
iLSC has not vet emptied it and 
ial1 the buffers must be full 

; setup DPTR to point at the 
;beginning of buffer 20 (first byte 
,should contain number of b~te5 

; fo~ SUBB 

maximum packet length and the 
initial value for BeRLI ( 2 
subtracted because first 2 bVtes 
are the destination and source 
add1"esses 

;load ace with byte count for MOVX 

istore byte count at first byte of 
ibuffer 2A 

indicate that BUF2D has data to 
be output bV the LSC and that the 
GSC has moved on to the next 
buffer 

iset flags to indicate that the 
icurrent input buffer (for GSC) 
iis 2A 

MOV CSC_INPUT_LOW.ILOW I BUF2A_STRT_AODRI 
MOV GSC_INPUT_HIGH •• HIGH (BUF2A_STRT_ADORI 

;load starting address of buffer. 
;~ 

NEW_BUF2_IN_END: 

PAGE 20 

270720-36 

i 

~ 
"D 
I 
~ 
N 
CO 



MCS-51 MACRO ASSEMBLER 

LOC OBJ LINE 

0432 8579D2 =1 1258 
0435 8578D3 =1 125'1 

=1 1260 
=1 1261 
=1 1262 

0439 75F300 =1 1263 
043B 75F278 =1 1264 

=1 1265 
043E 22 =1 1266 

=1 1267 
=1 1268 
=1 1269 
=1 1270 

043F 306EO;] =1 1271 
'I 1272 
=1 1273 
=1 1274 
,.1 1275 
=1 1276 

0442 0204A9 =1 1277 
=1 1278 
=1 1279 
=1 1280 

0445 206EFA =1 1281 
I\) =1 1282 
W =1 1283 

"'" 0448 20712B =1 1284 
(J) 

=1 1285 
=1 1286 

044B 207014 =1 1287 
=1 1288 
=1 1289 
=1 1290 
=1 1291 
=1 1292 

044E 307758 -I 1293 
=1 1294 
-I 1295 
=1 1296 

0451 D26E =1 1297 
=1 12'18 
=1 1299 

0453 900200 =1 1300 
=1 1301 
=1 1;]02 

0456 EO =1 1303 
=1 1304 

0457 F575 =1 1305 
=1 1306 
=1 1307 

045'1 0575 =1 1;]08 
=1 130'1 
=1 1310 
=1 1311 
=1 1312 

APPNOTI 

SOURCE 

MOV DARLI.GSC_INPUT_LOW 
MOV DARHI.GSC_INPUT_HIGH 

MaV BCRH 10 .0 
MDV BCRL1, .'1AX_LENGTH 

RET 

NEW_BUFFER2_0UT: 

JNB LSCJCTIVE. SECOND_lSC_.CHECK 

LSC_XMIT _IN_PROGRESS: 
,IMP NOTHING_FOR_LSC 

SECOND_LSC_CHECK: 
JB LSC_ACTIVE.LSC_XMIT_INjPROGRESS 

JB LSC_OUT_tlSB.LSC_OUT_2C_2D 

JB LSC_OUT_LSB.LSC~OUT_2B 

LSC_OUT 2A: 

JNB BUF2A_ACTIVE.NOTHING_FOR_LSC 

SETB LSCJCTlVE 

MOV DPTR •• (BUF2A_STRT_ADDRI -1 

MOYX A •• oPTR 

MOY LSC_OUT_COUNTER.A 

INC LSC_OUT_COUNTER 

10/19/88 PAGE 21 

i load DMA destination addres5 
,regi.ters with starting address 
,of current buffer area 

,lo~d DMA b~te count with packet 
. length . 

.do not start anDth~r transmission 
,If one ·15 In progress (Signified 
.b~ LSC_ACTIVE = 1) but thiS 
.should nRver happen 

ida not start a new LSC Imlt if one 
; 15 current IV in progress 

isecond anI' in case interrupt 
ioccurs during prevIous test 

.if LSC_OUT_MSB = 1 then current 
ibuffer is 2C Dr 2D 

;i' LSC_OUT = 018 then current 
; bu,fe ... i 5 2B 

;i' LSC_OUT ~ OOB then the buffer 
,is 2A 

,if buffer 2A i5 not active then 
ithe gSC has not ,et filled it 
;since'the LSC emptied it last 

ishow'that LSC 15 in the process of 
;doing a transmission 

jload DPTR with addres~ of b,te 
;that holds bute count far 2A 

;get bvte caunt for buffer 2A 

i load LSC blJ,te counter ~i th I.ength 
;oF message to transmit 

incremented because the counter 
is first decremented before being 
tested (D~NZ) when LSC begins to 
output data 

270720-37 

t 

J> 
l' ,.. 
N 
CQ 



I\l 

~ 
(C 

MCS-51 MACRO ASSEMBLER 

LOC OB..I 

0458 C271 
045D 0270 

04!!F 02049E 

0462 307644 

0465 026E 

0467 900280 

046A EO 

046B F575 

041.0 0575 

046F D271 
0471 C270 

0473 02049E 

0476 207014 

0479 307520 

047C 026E 

047E 900300 

0481 EO 

=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
~1 

=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

LINE 

1313 
1314 
1315 
1316 
1317 
1318 
1319 
1320 
1321 
1322 
1323 
1324 
1325 
1326 
1327 
1328 
1329 
1330 
1331 
1332 
1333 
1334 
1335 
1336 
1337 
1338 
1339 
1340 
1341 
1342 
1343 
1344 
1345 
1346 
1347 
1348 
1349 
1350 
1351 
1352 
1353 
1354 
1355 
1356 
1357 
13:18 
1359 
1360 
1361 
1362 
1363 
1364 
1365 
1366 
1367 

APPNOTI 

SOURCE 

CLR LSC_OUT_MSB 
SETB LSC_OUT_LSB 

..IMP START_LSC_OUT 

LSC_OUT_2B 

..INS SUF2S_ACTIVE.NOTHING_FOR_LSC 

SETS LSC_ACTIVE 

MOV DPTR .• CBUF2B_STRT_ADDR) -1 

MOVX A.I!OPTR 

MOV LSC_OUT_COUNTER.A 

INC LSC_OUT_COUNTER 

SETB LSC_OUT_MSB 
CLR LSC_OUT_LSS 

..IMP START_LSC_OUT 

LSC_OUT_2C_20: 

..IB LSC_OUT_LSS.LSC OUT_20 

LSC_0UT_2C: 

..INB SUF2C_ACTIVE.NOTHING_FOR_LSC 

SETB LSC_ACTIVE 

MOV OPTR •• (BUF2C_STRT_AOOR) -I 

flOYX A.I!OPTR 

10/19/88 PAGE 22 

• indicate next output buffe~ ~il1 
i be buff • .,. 2B 

;Toutine that starts transmission 

iif LSC_OUT 018 thrn the buffer 
.is 2B 

iif buffer 28 is not active then 
;the QSC has not qet filled it 
isincr the LSe emptied it last 

ishow that LSC 15 in the process of 
.doing a transmission 

. load DPTR with address of bvte 
.that holds b~te count for 28 

.get b~t. count for buffer 28 

.load LSC bVte counter ~ith length 

.of message to transmit 

• incremented because the counter 
. 15 first decremented before being 
it.sted (D~NZ) when LSe begins to 
ioutput data 

iindicate next output buffe~ ~ill 
; be buffeT 2C 

iroutine that starts transmission 

;il LSC_OUT = lIB then current 
;buffer is 2D 

Jif LSC OUT - lOB then the buffer 
iis 2C -

iif buffer 2C is not active then 
;the esc has not 'Jet '_illed it 
j sinc.e the LSC empt:ied it last 

ishow that LSC is in the process of 
;doing a transmission 

iload DPTR with address of b~te 
.that holds byte CQunt for 2C 

iget bvte count for bufFer 2C~ 
270720-38 

l 

l> 
"a . 
~ 
N 
CD 



I}l 
Co) 
U'I 
o 

MCS-51.MACRO ASSEMBLER 

LOC OB.! 

0482 F~75 

0484 0575 

0486 D271 
0488 D270 

048A 02049E 

048D 30741'1 

0490 D26E 

0492900380 

0495 EO 

0496 F575 

04'1B 0575 

04'1A C271 
04'1C C270 

04'1E A3 

049F A3 

04AO A3 

04Al 8~8277 
04A4 858376 

LINE 

=1 1368 
=1 1369 
=1 1370 
=1 1371 
=1 1372 
=1 1373 
=1 1374 
=1 1375 
=1 1376 
=1 1377 
=1 1378 
=1 1379 
=1 1390 
=1 1381 
=1 1382 
=1 1393 
=1 1384 
=1 1395 
=1 13BO 
=1 1387 
=1 1388 
al 1389 
=1 1390 
=1 1391 
-1 1392 
~1 13'13 
al 13'14 
=1 1395 
=1 1396 
=1 1397 
=1 1398 
=1 139'1 
al 1400 
=-1 1401 
=1 1402 
al 1403 
-1 1404 
=1 1405 
=1 1406 
=1 1407 
-1 '1408 
=1 140'1 
=1 1410 

'=1 1411 
~1 1412 
=1 1413 
~1 1414 
=1 141~ 

=1 1416 
=1 1417 
=1 1418 
=1 141'1 
=1 1420 
=1 1421 
=1 1422 

APPNOTI 

SOURCE 

MOV LSC_OUT_COUNTER.A 

INC LSC_OUT_COUNTER 

SETB LSC_OUT_MSB 
SETB LSC_CUT_LSB 

.iMP START_LSC_OUT 

LSC_OUT_2D: 

.JN8 BUF2D_ACTIVE.NOTHING_FOR_LSC 

SETB LSC_ACTIVE 

MeV DPTR •• IBUF2D_STRT_ADDRI -1 

MOVX A.eDPTR 

MeV LSC_OUT_COUNTER.A 

INC LSC_OUT _COUNTER 

CLR LSC_OUTJlSB 
CLR LSC_OUT _LSB 

START _LSC_OUT: 

. INC DPTR 

INC DPTR 

INC DPTR 

lIOII LSC_OUTPUT _LOW. DPL 
MOV LSC_OUTPUT_HIGH.DPH 

10/19/88 

;laad LSC bvte counter ~ith length ; 0' tRess.g.· to transflli t 

iincremented bec.use the-counter 
,is first decremented before 'being 
;tested (D~NZ) when-LSC begins to 
;output data 

,indicate neat output buffer will 
;be buffer 2D 

.routine th~t 5t.1't5 transmission 

;if LSC_OUT liB then the buffe~ 
; is 2D 

iif buffer 2D is not active then 
.the GSC has not yet filled it 
isince the LSC emptied it last 

isha. that LSC is 1n the-process of 
idoing _ trans.issian 

; load DPTR ~ith .dd~ ••• of bvte 
.that holds bVt. count fD~ 2D 

I get bvt. count, fo,. buff:e,. 2A 

'load LSC bvte counter ~ith length 
iof .e.sage to trans.it 

Jincr ••• nted because the counter 
iis first 4ecre •• nted b~fore being 
.tested (DJNZ) when LSC begins to 
ioutput data 

iindicate nelt output buffer _ill 
ji be buffer 28 . 

,routine that staTts transmission 

,DPTR now points at the destination 
iaddress that was received 

;DPTR no~ points at the source 
,.ddTess that .as received 

iOPTR nD~ points at the 'irst data 
;bvte received 

•• ddTe5S far start af data far LSC 

PAQE 23 

270720-39 

i 

l> 
'P 
~ 
CD 



I\) 
c:., 
~ 

MCS-51 MACRO ASSEMBLER 

LOC OB.1 LINE 

=1 1423 
=1 1424 

04A7 D299 =1 1425 
=1 1426 
=1 1427 
=1 1428 
=1 1429 
=1 1430 

04A9 22 =1 1431 
=1 1432 
=1 1433 

APPNDTI 

SOURCE 

SETB TI 

NOTHINI:_FDR_LSC: 

RET 

10/19/88 PAQE 24 

; to send 

;set interrupt flag to start 
itransmltting ~hen main program Is 
Jreturned to 

1434 +1 .INCLUDE (XMITVAL.SRCI 
I:SC_VALID_X"IT: 

04AA C082 
04AC C083 
04AE COEO 
04BO CODO 

04B2 C2CB 

0484 C2CD 

04B6 207Bi2 

04B9 207A08 

04BC 206F16 

04BF C27F 

04Cl 0204D5 

=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
='1 
=1 
=1 

1435 
1436 
1437 
1438 
1439 
1440 
1441 
1442 
1443 
1444 
1445 
1446 
1447 
1448 
1449 
1450 
1451 
1452 
1453 
1454 
1455 
1456 
1457 
1458 
1459 
1460 
1461 
1462 
1463 
1464 
1465 
1466 
1467 
1468 
1469 
1470 
1471 
1472 
1473 
1474 
1475 
1476 
1477 

PUSH DPL 
PUSH DPH 
PUSH ACC 
PUSH PSW ;SFRs to save before servicing 

J interTupt 

,***************************.***************************************** 
i DISABLE TRANS"IT INTERRUPTS 
J**********************************************************.********** 

CLR EI:STV 

CLR EGSTE 

CLEAR_ACTIVE_BUFFER: 

.1B QSC_OUT_"SB.CLEAR_ACTIVE IB lC 

.1B QSC_OUT_LSB.CLEAR_ACTIVE_IA 

CLEAR_ACTlVE_ID: 

.18 FIRST_GSC_OUT.END_CLEAR_ACTIVE~DUT 

CLR BUFID_ACTIVE 

.1"P END_CLEAR_ACTIVE_DUT 

CLEAR-ftCTIVE_1A: 

lclear valid interrupt enable 

Jclear error interrupt enable 

iif QSC_OUT_MSB = 1 then 
iprevious used buffer for GSC 
;Dutput must have been 18 or Ie 

; if QSC OUT = 018 then active 
;buffer-lA bit must be cleared 

if this is first t1'ansmission. 
do not clear buffer ID active 
bit (this ma~ happen if all 
four buffers are filled before 
'iTst osc t~ansmis&ion) 

iif GSC OUT = 00, then last 
;buffer-used is ID unles. first 
i tTansmissiDn 

( 

I I 
~ 
~ . 
~ 
~ 
~ 

270720-40 



I)J 

~ 
I\) 

MeS-51 MACRO ASSEItBLER 

LOC OB.J 

04C4 C27C 

04C6 C26F 

04C8 0204D5 

04CB 207A05 

04CE C27D 

04DO 0204D5 

04D3 C27E 

04D5 712F 

04D7 75D400 

04DA DODO 
04DC DOEO 
040E D083 
04EO 0082 

04E2 32 

=1 
sl 
=1 
=1 
=1 
=1 
=1 
=1 
-1 
=1 
sl 
sl 
sl 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
-1 
=1 
-1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

LINE 

1478 
1479 
1480 
1481 
1482 
1483 
1484 
1485 
1486 
1487 
1488 
1489 
1490 
1491 
1492 
1493 
1494 
1495 
1496 
1497 
1498 
1499 
1500 
1501 
1502 
1503 
1504 
1505 
1506 
1507 
1508 
1509 
1510 
1511 
1512 
1513 
1514 
1515 
1516 
1517 
1518 
1519 
1520 
1521 
1522 
1523 
1524 
1525 
1526 
1527 
1528 

APPNOTI 

SOURCE 

CLR BUFIA_ACTlVE 

CLR FIRST_QSC_OUT 

.J1tP END_CLEAR~CTIYE_DUT 

CLEAR_ACTIVE_1S_1C: 

.JB QSC_DUT_LSB.CLEAR~TIVE_IC 

CLEAR_ACTIVE_IS: 

CLR BUFIB_ACTIVE 

.JMP END_CLEAR~TIVE_DUT 

CLEAR~CTIVE_IC: 

CLR BUFIC_ACTIVE 

END_CLEAR~TIVE_OUT: 

10/19/88 PAgE 25 

Jif QSe_OUT ~ 01, then last 
.buffer us.d is lA 

Jcl •• r indicator tb.t shows 
Ithe first QSC trans_iss ian 
.has not vet occurred . 

i if GSC_OUT = 118, then last; 
ibuffer used is Ie 

iif GaC_OUT = 10, then last 
i buffer used is- 18 

J 1f QSC_OUT = 11, then last 
ibuff.r us.d is 1C unle55 
;'irst transmission 

'********************************************************************* 
I SEE IF NEXT BUFFER IS FULL DR INIT ADDRE8S FOR NEXT AYAIL BUFFER 
I WHEN IT IS FILLED 
i*******************************************************************_. 

CALL NEW_BUFFER1_DUT 

'********************************************************************* 
; RETURN TO ItAIN PROgRAM LOOP 
'********************************************************************* 

ItDY TCDCNT .410 

PDP P5W 
PDP ACC 
PDP DPH 
POP OPL 

RETI 

;clear collision counter 

iSFRs that ~ere saved 

1529 +l SINCLUDE IXftITERR.SRCI 
QSC_ERRDR_XMIT: =1 1530 

=1 1531 
-1 1532 J********************************************************************* 

270720-41 

i 

» 
'P 
"" N 
CD 



MCS-51 MACRO ASSEMBLER 

LOC OB.J LINE 

=1 1533 
~1 1534 
=1 1535 

04E3 5392FE =1 1536 
=1 1537 

04E6 C082 =1 1538 
04E8 C083 =1 1539 
04EA COEO =1 1540 
04EC COOO =1 1541 

=1 1542 
=1 1543 
=1 1544 
=1 1545 

04EE 300005 =1 1546 
=1 1547 
=1 1548 

04Fl 78FF =1 1549 
=1 1550 
=1 1551 

04F3 020500 =1 1552 
=1 1553 
=1 1554 
=1 1555 

04F6 300E05 =1 1556 

~ =1 1557 
=1 1558 

(11 04F9 7805 
U) 

=1 1559 
=1 1560 
=1 1561 

04FB 020500 =1 1562 
=1 1563 
=1 1564 
=1 1565 

04FE 780B =1 1566 
=1 1567 
=1 1568 
~1 1569 
=1 1570 
=1 1571 
=1 1572 
=1 1573 

0500 5175 =1 1574 
=1 1575 
=1 1576 
=1 1577 
=1 1578 
=1 1579 

0502 E52F =1 1580 
=1 1581 

0504 540E =1 1582 
=1 1583 
=1 1584 

0506 040012 =1 1585 
=1 1586 
=1 1587 

APPNO'T1 10119/88 PAGE 

SOURCE 

i STOP DMA CHANNEL 
i********************************************************************* 

ANL OCONO •• OFEH 

PUSH DPL 
PUSH DPH 
PUSH ACC 
PUSH PSW 

UR_ERROR: 

.JNB UR.NOAC~_ERROR 

MOV ERROR_POIN~ER •• UR_COUNTER 

..IMP GSC_ERROR_XMIT_END 

NOAC~_ERROR : 

.JNB NOAC~.TCDT_ERROR 

MOV ERROR_POINTER •• NOAC~_COUNTER 

.IMP GSC_ERROR_XMIT_END 

TCOT _ERROR: 

MOV ERROR_POINTER • .rCDT _COUNTER 

GSC_ERROR_XMIT_END: 

iclear GO bIt 

;SFRs to save before servIcing 
i interrupt 

isee If error caused by 
; ul'ldel'run 

;load pointer with begInnIng 
• address, of UR counter 

isee if error caused by 
i NOAC~ 

; load pointer with beginning 
;sddress of NOACK counter 

iTCDT is onlV error left 

i ********************************************************************* 
i LDQ FAILURE 
i********************************************************************* 

CALL INCREMENT_COUNTER 

i*************************************************************.**.**** 
iRE-INITIALIZE DMA 

; **********************************************************.********** 
MOV A.BUFFERI_CONTROL 

ANL A •• OEH 

C..INE A •• 00.OUFFER1B_RELOAO 

imask off all b1tS except 
; current buffer indicator 

; 1f current buffer 15 not lA 
.check for nelt buffer 

26 

270720-42 

l 

:to 
"U 

I 
~ 
1'1) 
CD 



MeS-51 MACRO ASSEMBLER 

LOC 08..1 LINE 

0509 75A203 =1 1588 
050C 75A300 =1 1589 

Dl 1590 
=1 1591 
=1 1592 

050F 900000 =1 1593 
=1 1594 
=1 1595 

0512 EO =1 1596 
=1 1597 

0513 F5E2 =1 1598 
0515 75E300 =1 1599 

=1 1600 
=1 1601 

0518 020554 =1 1602 
=1 1603 
=i 1604 
=1 1605 

0518 840412 =1 1606 
=1 1607 
=1 1608 

051E 75A283 =1 160~ 
0521' 75A300 =1 1610 

=1 1611 
I\J =1 1612-
~ =1 1613 
C11 0524 900080 =1 1614 
-1>0 =1 1615 

=1 1616 
0527 EO =1 1617 

=1 1618 
0528 F5E2 =1 1619 
052A 7SE300 =1 1620 

=1 1621 
=1 1622 

052D 020554 =1 1623 
=1 1624 
=1 1625 
=1 1626 

0530 B40912 =1 1627 
=1 1628 
=1 1629 

0533 75A203 =1 1630 
0536 75A301 =1 1631 

=1 1632 
=1 1633 
=1 1634 

0539 9001.00 =1 1635 
=1 1636 
=1 1637 

053C EO =1 1638 
=1 1639 

053D F5E2 =1 1640 
053F 75E300 =1 1.!.41 

=1 1642 

APPNOTI 

SOURCE 

MOV SARLO •• LOW (BUFIA_STRT_ADDR) 
MeV SARHO •• HIGH (BUFIA_STRT_ADDR) 

MOV DPTR •• (BUF1A_STRT_ADDR) -3 

MOVX A.eDPTR 

MOV BCRLO.A 
MOV BCRHO.IIO 

..IMP START_RETRANSMIT 

BUFFER 1 B_RELOAD , 

C.JNE A •• 04H.BUFFERIC_RELDAD 

MOV SARLO •• LOW (BUFIB_STRT_ADDR) 
MDV SARHO •• HIGH (BUFIB_STRT_ADDR) 

MOV DPTR.II(BUFIB_STRT_ADDR) -3 

MDVX A.t!DPTR 

MeV BCRLO.A 
MOV BCRHO. 110 

..IMP START_RETRANSMIT 

BUFFERIC_RELOAD: 

C.JNE A •• 08H.BUFFERID_RELDAD 

MOV SARLO.IILOW (BUFIC_STRT_ADDR) 
MOV SARHO •• HIGH (BUFIC_STRT_ADDR) 

MOV DPTR •• (BUFIC_STRT_ADDR) -3 

MeVX A. t!DPTR 

MOV BeRLO.A 
MOV BCRHO •• O 

10/19/88 PAGE 27 

,~e-lnitial1Z& 50U~C. pointer 
ito BUFIA 

; location that holds BUFIA 
J bljte count 

.get b\lte count 

ire-lnitlaille bVte counter 
.wlth number of bVtes in BUFIA 

• If cu~rent buffe~ is not IB 
icheck fo~ next bu"er 

ire7initialize sou~ce pointer 
; to BUFIS 

; location that holds BUF1S 
i b,,ite count 

iget bvte count 

Jre-initialize bvte counter 
;~ith number of bVtes in BUFIA 

iif current buffer is not Ie 
;check for next buffer, 

ire-initialize source pointer 
; to BUFIC 

i location that h-olds BUFIC 
i blJte count 

.get bute count 

ire-initialize byte counter 
;with nUMber of bytes in BUFIA 270720-43 

l 

):0 
'V 

t 
fD 



I\) 

to> 
U1 
U1 

MCS-51 MACRO ASSEMBLER APPNOTI 10/19/8e PAGE 

LOC OBJ 

0542 020554 

0545 75A283 
0548 75A301 

0549 900190 

054E EO 

054F F5E2 
0:;51 75E300 

0554 750400 

0557 0209 

0559 30D9FO 

055C 439201 

055F DODO 
0561 DOEO 
0563 D083 
0565 D082 

0567 32 

0568 C082 
056A C083 
056C COEO 
056E CODO 

0570 7100 

=1 
=1 
=1 
=1 
~1 

=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
~I 

LINE 

1643 
1644 
1645 
1646 
1647 
1648 
1649 
1650 
1651 
1652 
1653 
1654 
1655 
1656 
1657 
1658 
1659 
1660 
1661 
1662 
1663 
1664 
1665 
1666 
1667 
1668 
1669 
1670 
1671 
1672 
1673 
1674 
1675 
1676 
1677 
1678 
1679 
1680 
1681 
1682 
1683 
1684 
1685 
1686 
1687 +1 
1688 
1689 
1690 
1691 
1692 
1693 
1694 
1695 
1696 
1697 

SOURCE 

JMP START_RETRANSMIT 

BUFFERIO_RELOAD 

MOV SARLO.ILOW IBUFID STRT ADOR) 
MOV SARHO •• HIGH IBUFID __ STRT_ADDR) 

MOV DPTR .• CBUFID STRT_ADDRl -3 

MOVX A.@DPTR 

MOV BCRLO,A 
MOV BCRHQ .• O 

START_RETRANSMIT 

.re-lnltlallze 5DU~C~ pDlnt~r 
; to BUFIO 

· location that holds BUF1D 
,b'lt@ count 

· get bgteo count 

.reo-lnltlallze b~te counter 

.~1th number of byt~5 in BUFIA 

; ***.***************************************************************** 
• ENABLE TRANSMITTER AND OMA CHANNEL 

, .*********************4********************************************** 
MOV TCOCNT •• O 

SETB TEN 

JNB TEN.S 

ORL OCONO •• OI 

POP PSW 
POP ACC 
POP DPH 
POP DPL 

RET! 

SINCLUDE IRECVAL_SRC) 
GSC _VAL 1 D _REC : 

PUSH OPL 
PUSH OPH 
PUSH ACC 
PUSH PSW 

CALL NEW_BUFFER2_IN 

ieteaT colliSIon counter 

wait until TEN is set (TEN 
will not be set if a 
transmissions eRe has not ~et 
completed but TEN might be 
cl.a~ed befo~e CRC completes) 

.set GO bit 

;SFRs that ~e~e saved 

;SFRs to save before servlclng 
• interrupt 

· save bvte count. select next 
• GSC input buffer. setup n("xt 

28 

270720-44 

l 

l> 
"P 
~ 
I\) 
CD 



ro 
W 
(11 
0) 

MCS-51 MACRO ASSEMBLER APPNOTI 10/19/88 

LOC OB'" 

0572 439301 

0575 D2E9 

0577 DODO 
0579 DOEO 
0570 0083 
0570 0082 

057F 32 

0580 C082 
0582 C083 
0584 COEO 
0586 CODO 

0588 30EE07 

058B 78F3 

0580 5175 

058F 0205AA 

LINE 

=1 1698 
=1 1699 
=1 1700 
=1 1701 
=1 1702 
=1 1703 
=1 1704 
=1 1705 
=1 1706 
=1 1707 
=1 1708 
=1 1709 
=1 1710 

1711 +1 
=1 1712 
=1 1713 
=1 1714 
=1 1715 
=1 1716 
=1 1717 
=1 171B 
=1 1719 
=1 1720 
=1 1721 
=1 1722 
=1 1723 
-I 1724 
=1 1725 
=1 1726 
=1 1727 
=1 1728 
=1 1729 
=1 1730 
-=1 1731 
=1 1732 
=1 1733 
-I 1734 
=1 1735 
=1 1736 
=1 1737 
=1 1738 
=1 1739 
=1 1740 
=1 1741 
=1 1742 
=1 1743 
=1 1744 
=1 1745 
=1 '1746 
=1 1747 
=1 174B 
=1 1749 
=1 1750 
=1 1751 
=1 1752 

SOURCE 

ORL DCONt. .01 

SETB GREN 

POP PSW 
POP ACC 
POP DPH 
POP DPL 

RfTl 
_INCLUDE (R~CERR SRC) 
GSC_ERROR_REC 

PUSH DPL 
PUSH DPH 
PUSH ACC 
PUSH PSW 

• destination address. and 
isetup new b~te count 

;set GO bit for DMA 

; enab 1 e rec eo i ver 

.SFRs that we~e saved 

.SFRs to savw before ~erviclng 

. interrupt 

.******* •• **** ••• *.****** •• ******.*****.* •••••••••••••• * ••• ******.*.*. 
lOC ERROR TYPE 

.** ••• ** ••••••••••••••••••••••• *** •••••••••• ***.******** •••••• ** •••••• 

INC_ERROR_COUNT: 
;*.*****.*********** •• *************** ••• ***.**** ••• ******* •• ********** 
I THIS ROUTINE INCREMENTS THE ERROR COUNT (UPTO 6 BYTES) FOR EACH TYPE 

OF ERROR DETECTED BY HARDWARE 

BECAUSE OTHER ERROR BITS MAY BE SET WHEN OVR IS SET. OVR MUST BE TESTED 
BEFORE AE OR CRCE, ALSO. IN MOST APPLICATIONS AN ABORT MAY ALSO CAUSE 

I AN ALIGNMENT ERROR OR CRC ERROR. AND AN ALIGNMENT ERROR MAY CAUSE A CRC 
ERROR. THE FOLLOWING SEOUENCE OF CHECKING ERROR BITS SHOULD BE FOLLOWED 
TO GET AN ACCURATE TALLY OF THE TYPES OF ERRORS THAT ARE OCCURRING 

COMBINATION OF ERROR BITS I HAVE SEEN: 
CRCE SET FOR BAD CRC 
RCABT AND AE SET FOR RCABT (ALIGNMENT ERROR MAY ALSO EXIST) 
AE AND CRCE SET FOR ALIGNMENT ERROR (CRC WAS BAD ALSO) 
OVR. AE. CRCE AND RFNE SET FOR OVR (THOUGH CRC IS GOOD AND NO AE) 

;****.*******.** •• ****** •••••• ** •••• ***** •• *************************** 

RCABT _CHECK: 
"'NB RCABT.OVR_CHECK 

MOV ERROR-POINTER •• RCABT_COUNTER 

CALL INCREMENT _COUNTER' 

JMP REC_ERROR_COUNT_END 

is •• if .rror caused bU RCA8T 

PAGE 29 

270720-45 

l 

)10 

l' 
~ 
~ 
CD 



--
MCS-51 MACRO ASSEMBLER APPNOTl 10/19/BB PAGE 30 t LOC OB.J LINE SOURCE I I 

=1 1753 OVR_CHEC ... : 
0592 30EF07 =1 1754 .JNB OVR.CRC_CHEC ... isee if error caused b~ OVR 

=1 1755 
0595 7BF9 =1 1756 MOV ERROR_POINTER •• OVR_COUNTER 

=1 1757 
0597 5175 =1 175B CALL INCREMENT_COUNTER 

=1 17S9 
OS99 0205AA =1 1760 .JMP REC_ERROR_COUNT_END 

=1 1761 
=1 1762 CRC CHEC ... · 

OS9C 30EC07 =1 1763 -.JNB CRCE.AE_CHECK .see If error caused b~ CReE 
=1 1764 

059F 7BE7 =1 1765 MOV ERROR_POINTER .• CRCE_COUNTER 
=1 1766 

05AI 5175 =1 1767 CALL INCREMENT_COUNTER 
=1 1768 

05A3 0205AA =1 1769 .JMP REC_ERROR_COUNT_END 
=1 1770 
=1 1771 AE CHECK 

05A6 78ED =1 1772 MOV ERROR_POINTER •• AE_COUNTER ,only error type left 
=1 1773 

05A8 5175 =1 1774 CALL INCREMENT_COUNTER 
=1 1775 
=1 1776 REC ERROR_COUNT_END » 

2; =1 1777 "U 
=1 1778 .thls is not what I want to do prQbabl~. I ma~ need to fool With current I 

(11 =1 1779 ;active bit, addressing. b~te count Dr who knows what???? .". 
--.I N 

=1 1780 CD 
05AA 71BO =1 1781 CALL NEW_BUFFER2_IN isav what this routine does 

=1 1782 
05AC 4:39:301 =1 178:3 ORL DCON1 •• 01 ,set GO bit for OMA1 

=1 1784 
05AF D2E9 =1 1785 SETB GREN ienable receiver 

=1 1786 
05Bl DODO =1 1787 POP PSW 
05B3 ODED =1 1788 POP ACC 
0585 0083 =1 1789 POP DPH 
0507 0082 =1 1790 POP DPL iSFRs that were saved 

=1 1791 
05B9 32 =1 1792 RET! 

=1 1793 
1794 +1 .INCLUDE (LSCSERV.SRC) 

=1 1795 LSC_SERVICE: 
=1 1796 

OSBA C082 =1 1797 PUSH DPL 
05BC C083 =1 1798 PUSH DPH 
05BE COEO =1 1799 PUSH ACC 
05CO CODO =1 1800 PUSH PSW iSFRs to save before servicing 

=1 1801 i interrupt 
=1 1802 

05C2 30geOC =1 1803 .JNB R I. XMIT _LSC ; Jump to LSC transmit service 
=1 1804 ;routine if RI IS not set 
=1 1805 

OSC5 120:;DD =1 1806 CALL LSC_RECEIVE , invoke LSC receiver server 
=1 1807 270720-46 



I\) 

W 
01 
(Xl 

MCS-51 MACRO ASSEMBLER 

LOC OBJ 

05C8 0000 
05eA OOEO 
osce 0083 
OSCE 0082 

05DO 32 

0501 1205FF 

05D4 DODO 
05D6 DOEO 
05D8 D083 
05DA 0082 

050e 32 

05DD C298 

05DF 057F 

05EI 857B82 
05E4 85711083 

05E7 E599 

05E9 FO 

05EA 1103 

05EB 85827B 
05EE 85837110 

05FI B4000A 

05F4 057F 

05F6 740A 

05F8 FO 

05F9 5196 

LINE 

=1 1808 
=1 1809 
=1 1810 
=1 1811 
=1 1812 
=1 1813 
=1 1814 
=1 1815 
=1 1816 
=1 1817 
=1 1818 
=1 1819 
=1 1820 
=1 1821 
=1. 1822 
=1 1823 
=1 1824 
=1 1825 
=1 1826 
=1 1827 
=1 1828 
=1 1829 
=1 1830 
=1 1831 
=1 1832 
=1 1833 
=1 1834 
=1 1835 
=1 1836 
=1 1837 
=1 1838 
=1 1839 
=1 1840 
=1 1841 
=1 1842 
=1 1843 
=1 1844 
=1 1845 
=1 1846 
=1 1847 
=1 1848 
=1 1849 
=1 1850 
=1 1851 
.... 1 18~2 

=1 1853 
=1 1854 
=1 1855 
=1 1856 
=1 1857 
=1 1858 
=1 1859 
=1 1860 
=1 1861 
=1 1862 

APPNOTI 

SOURCE 

POP PSW 
POP ACC 
POP DPH 
POP DPL 

RETI 

XMIT_LSC 

CALL LSC_XMIT 

POP PSW 
POP Ace 
POP DPH 
POP DPl 

RETI 

LSC_RECEIUE: 

CLR RI 

INC IN_BVTE_COUNT 

MOV OPL.LSC_INPUT_LOW 
MOV OPH.LSC_INPUT_HIGH 

MOil A.SBUF 

MOVX II!OPTR.A 

INC OPTR 

MOV LSC_INPUT_LOW.OPL 
MOV LSC_INPUT_HIGH.DPH 

CJNE A •• CR.ENO_LSC_RECEIVE 

INC IN_BVTE_COUNT 

MOV A.ILINE-FEEO 

MOVX @OPTR. A 

eALL NEW_BUFFER1_IN 

10/19/88 

jSFRs that were saved 

ireturn from interrupt 

; invoke LSC transmit server 

i SFRs' that lIIere savlIPd 

ireturn from interrupt 

JeleaT' receiver interrupt bit 

• increment RAM location that 
;counts the number of b~te5 
I input 't'om LSC 

iget address where next bvte 
ireceived bV LSC will be stored 

Iget oldest bvte LSC has 
Ireceived 

; store bvte in buffer 

iincrement buffer address 

,store incremented address 

,initialize for next buffer 
iif last character t'eceived 
iwas an ASCII carriage return 

; increment RAft location that 
;counts the number of bvtes 
; input from LSC 

;inse~t a line feed after the 
ica1"raige return fo1" QSC to 
i transmit 

istore bvte in buffer 

isetup for next buffer if 

PAGE 31 

270720-47 

( 

~ 
"D 
I 

.1:10 
I\) 
U) 



MCS-51 MACRO ASSEMBLER APPNOTI 

LOC OBJ LINE SOURCE 

=1 1863 
=1 1864 

05FB 757F02 =1 1865 MOV IN_BYTE_COUNT •• 02 
=1 18610 
=1 1867 
=1 IB6B 
=1 I 86'i 
=1 1870 END_LSC_RECEIVE: 
=1 IB71 

05FE 22 =1 IB72 RET 
=1 1873 
=1 IB74 LSC_XMIT. 
=1 IB75 

OSFF D5750B =1 IB76 DJNZ LSC_OUT_COUNTER.LSC_OUT_NEXT 
=1 IB77 
=1 187B 

Ob02 120b2A =1 IB79 CALL CLR_ACTIVE_OUT 
=1 IBBO 
=1 IB81 

Ob05 C2bE =1 IBB2 CLR LSC_ACTIVE 
=1 IBB3 
=1 IBB4 
=1 IB85 LSC_XMIT _END: 
=1 IBB6 

~ 
Ob07 C299 =1 IBB7 CLR TI 

=1 IBBB 
tTl 0609 22 =1 18B9 RET 
(0 

=1 1890 
=1 IB91 LSC_OUT_NEXT: 
=1 IB92 

ObOA BS77B2 =1 IB93 MOV DPL.LSC_OUTPUT_LOW 
ObOD B57bB3 =1 IB94 MOV DPH.LSC_OUTPUT_HIGH 

=1 IB95 
=1 IB9b 

Obl0 EO =1 1897 MOVX A.4!DPTR 
=1 189B 

Obi I F599 =1 IB99 MOV SBUF.A 
=1 1900 

0613 A3 =1 1901 INC DPTR 
=1 1902 

0614 858277 =1 1903 MOV LSC_OUTPUT_LOW.DPL 
0617 858376 ~I 1904 MOV LSC_OUTPUT_HIGH.DPH 

=1 1905 
061A BOED =1 1906 JMP LSC_XMIT_END 

=1 1907 
1908 +1 .INCLUDE (DMASERV SRC) 

=1 1909 DMAI_SERVICE: 
=1 1910 
=1 1911 
=1 1912 

Oble COB2 ~I 1913 PUSH DPL 
061E C083 =1 1914 PUSH DPH 
0620 COEO =1 1915 PUSH ACC 
Ob22 CODO =1 191b PUSH PSW 

=1 1917 

10/19/BB PACE 

,linefeed received 

.2 needed for destination and 
isource address ~hich da not 
· Increment BYTE_COUNT when 
· loaded 

,contlnue outputtIng b~te5 
.untll counter reaches 0 

.clear active buffer bit for 
· last buffer used 

• IndIcate that LSC 15 no longer 
.trYlng to xmit a packet 

;clear LSC xmit interrupt b1t 

i load DPTR with address of 
.inext bVte to xmit 

iget next byte 

; load byte into LSC xmitter 

; increment LSC input address 

; store incremented address 

,return to main program 

ito get to this point means that a 
;message has been receIved which is 
• longer than the maximum specified 
; length - MAX_LENGTH (·120) 

.SFRs to save before serVICIng 
• Interrupt 

32 

270720-48 

i 

~ 
'P 
.j:o, 
I\) 
CO 



~CS-51 ~ACRO ASSEMBLER APPNOTl 

LOC OB,J LINE SOURCE 

=1 '191B 
0624 7BEI =1 191" MOV ERROR_POINTER .• LONG_COUNTER 

=1 ' 1920 
0626 5175 =1 1921 CALt INCRFMENT ,COUNTER 

=1 1922 
062B 8080 =1 1923 ..IMP REC "ERROl' _COUNT END 

=1 1924 
=1 1925 

1926 +1 .INCLUDE (LSCMGT SRC' 
=1 1927 ' Cl R. ACTIVE ,OUT 
=1 19;;>8 

062A 207109 =1 192" ,JB LSC,OUT .MSD.CLR ACT .2D,2C 
~I 1930 
=1 1931 
·'1 1932 CLR ACT_2A_2D 
=1 1933 

062D 307003 =1 1934 JND LSC_OUT_LSD.CLR_ACT_2D 
=1 1935 
=1 1936 
=1 1937 Cl R..:ACT_2A 
=1 193B 

0630 C277 ='l 1939 CLR DUF2A_ACTIVE 
=1 1940 
=1 1941 

I}J 0632 22 =1 1942 RET 
CAl =1 1943 
0> 
0 =1 1944 CLR_ACT _OlD: 

=1 1945 
0633 C274 =1 1946 CLR BUF2D_ACTIVE 

=1 1947 
0635 22 =1 1948 RET 

=1 i949 
=1 1950 CLR_ACT _28 _OlC: 
=1 1951 

0636 207003 =1 1952 ,JD LSC_OUT_LSB.CLR_ACT_2C 
=1 1953 
=1 1954 
=1 1955 CLR_ACT 2D: 
=1 1956 

0639 C276 =1 1957 CLR BUF2B~CTIVE 
=1 1958 
=1 1959 

0638 22 =1 1960 RET 
=1 1961 
=1 1962 CLR_ACT_2C: 
=1 1963 

063C C275 =1 1964 CLR BUF2C_ACTIVE 
=1 1965 

063E 22 =1 1966 RET 
=1 1967 

1968 
1969 END 

10/19/88 PAGE' 

· 1 f LSC OUT Msa = lB. buffer 
JII .. t emptl;cf must be 28 or 2C 

· I' LSC_OUT = 009. bufFer Just 
• emptted )s 2D 

· if LSC_OUT = 01B. bufFer Just 
• e,.pti.d is 2A 

; LSC _OUT = OOB 

iif LSC_QUT = liB then buffe~ 
iJust e.ptedlmust be 2C 

iif LSC_OUT = lOB, buffe~ Just 
• emptied must be 29 

; LSC_OUT liD 

33 

270720-49 

l 

l> 
l' .... 
I\) 
CD 



--
MCS-51 MACRO ASSEMBLER APPNOTl 10/1'1/BB PAGE 34 I cf XREF SYMBOL TABLE LISTING 

I 
N A M E T V P E V A L U E ATTRIBUTES AND REFERENCES 

AC NUMB ODD6H A 7611 
ACC NUMB OOEOH A 1511 143'1 1523 1540 1681 16'12 1706 1716 17BB 17'1'1 IBO'1 1920 1'115 
ADDRESS_DETERMINATION C ADDR 0243H A 383 4'1'111 
ADRO NUMB: OO'1~H A 3'111 46'1 
ADRI NUMB 00A5H A 4311 
ADR2 NUMB 00B5H A 4711 
ADR3 NUMB 00C5H A 5211 
AE_CHECK C ADDR 05A6H A 1763 177111 
AE_COUNTER D ADDR OOI'DH A 22'1. 232 1772 
AE NUMB OOEDH A 15811 
AMSKO_ NUMB 00D5H A 5711 
AMSKI NUMB 00E5H A 62. 
B_ NUMB OOFOH A 1611 
BAUD NUI'IB 00'14H A 38. 442 
BCRHO_ NUMB 00E3H A 60. '110 '140 '176 1006 15'1'1 1620 1641 165'1 
BCRHI, NUMB 00F3H A 65. 460 1263 

_ BCRLO_ NUMB 00E2H A 5'1. '107 '137 '173 1003 15'18 161'1 1640 1658 
BCRLl_ NUMB 00F2H A 6411 461 10'17 1139 11'17 1237 1264 
BKCFF NUMB 00C4H A ~III 

BUFIA_ACTIVE B ADDR 002FH_4 A 2'1711'3003'176'169269'19 147'1 

I I 
» 

J\) BUFIA_STRT_ADDR_ NUMB 0003H A 174. 542 543 672 673 863 964 '102 1599 159'1 15'13 "D 
W BUFIB_ACTIVE . B ADDR 002FH.5 A 2'14. 2'17 400 668 743 '12B 14'15 I 

~ nUFIB STRT ADDR. NUMB 00B3H A 178. 705 706 71'1 720 '132 160'1 1610 1614 ~ 

BUFlC:::ACTIVE . B ADDR 002FH.6 A 2'11. 2'14 403 715 BOB '164 1502 N 

BUFIC_STRT_ADDR. NUMB 0103H A IB2. 752 753' 784 7B5 '16B 1630 1631 1635 
CO 

BUFID_ACTIVE . B ADDR 002FH_ 7 A 2B8. 2'11 406 780 854 '1'14 1471 
BUFID_STRT_ADDR. NUMB 0lB3H A IB6. BI7 818 830 831 '1'18 1648 164'1 1653 
BUF2A_ACTIVE B ADDR 002EH.7 A 316.31'1-40'1 1102 1220 12'13 1'13'1 
BUF2A_STRT _ADDR. NUMB 020lH A 1'10. 471 472 1084 108~ 1251 1252 1300 
BUF2B_ACTIVE . B ADDR 002EH.6 A 31'1.322,412 lOBO 1143 1322 1'157 
BUF2B_STRT _ADDR. NUMB 0281H A 1'13. IIII 1112 1125 1126 1329 
BUF2C_ACTIVE B ADDR 002EH.5 A 32211 325 415 1121 1202 1357 1'164 
BUF2C_STRT_ADDR. NUMB 030lH A 1'16. 1152 1153 1184 1185 1364 
BUF2D_ACTIVE . B ADDR 002EH.4 A 325. 328 418 1180 1242 1386 1946 
BUF2D_STRT _ADDR. NUMB 0381H A 1'19_ 1211 1212 1224 1225 13'13 
BUFFER I_CONTROL. D ADDR 002FH A 2BO_ 530 1580 
BUFFER I_START. C ADDR 012CH A 3'17 400 403 406 423. 
BUFFER I B _RELOAD. C ADDR 051BH A 1585 1604. 
BUFFER 1 CJlELOAD. C ADDR 0530H A 1606 1625_ 
BUFFERID_RELOAD. C ADDR 0545H A 1627 1646_ 
BUFFER2_CONTRCL. D ADDR 002EH A 283_ 535 
BUFFER2_START. C ADDR 0131H A 40'1 412 415 41B 430. 
BUFFERS I FULL C ADDR 02E2H A 66B 715 75'1. 780 826 
BUFFERS:::2:::FULL C ADDR 03F2H A 1080-1121 115'1. IIBO 1220 
CLEAR ACTIVE lA_ C ADDR 04C4H A 1459 1477. 
CLEAR:::ACTIVE:::IB_IC C ADDR 04CBH A 1454 1488_ 
CLEAR_ACTlVE_IO C ADDR 04CEH A 14'13. 
CLEAR_ACTlVE_IC C ADDR 04D3H A 14'10 150011 
CLEAR ACTI VE I D_ C ADDR 04BCH A 1462. 
CLEAR-ACTIVE-BUFFER C ADDR 04B6H A 1452. 
CLR_ACT _2A_2D C ADDR 062DH A 1'132. 

270720-50 



N 
~ 
~ 

I'ICS-~I I1ACRO ASSEI'IBLER 

N A 1'1 E 

CLR_ACT_2A 
CLR_ACT _2B.;2C. 
CLR_ACT,:,2B 
CLR_ACT_2C 
CLR_ACT_2D 
CLR_ACTIVE_OUT 
COUNTER CLEAR. 
COUNTER=OVERFLOW 
CR 
CRC CHECK 
cRCE COUNTER 
CRCE-
CV 
DARHO 
DARHI. 
DARLO. 
DARLI. 
OCONO. 
DCONI 
OI'lA 
DI'IAI_DONE. 
DI'IAI SERVICE 
DPH. -

DPL. 

EA . 
EDI'IAO. 
EDI'IAI. 
ECSRE. 
EGSRV. 
EGSTE. 
ECSTV. 
END_CLEAR_ACTIVE OUT 
END LSC RECEIVE. 
ERROR_PO INTER. 

ES 
ETO. 
ETI. 
EXO. 
EXI. 
FO· 
FIRST GSC OUT. 
CENERIC INIT . 
CI'IOD -
QREN 
QSC_BAUD_RATE. 
GSC _DEST _ADDR. 
CSC_ERROR_REC. 
CSC_ERROR_XI'IIT_END 
CS~_ERROR_Xl'IlT 
CSC_IN_2A ... 

APPNOTI 

T V P E V A L U E 

C ADDR 
C ADDR 
C ADDR 
C ADDR 
C ADDR 
C ADDR. 
C ADDR 
C ADDR 

NUI'IB 
C ADDR 
D ADDR 

NUMB 
NUI'IB 
NUMB 
NUI'IB 
NUI'IB 
NUI1B 
NUI1B 
NUI1B 
NUI'IB 

C ADDR 
C ADDR 

NUI'IB 

NUI1B 

NUI'ID 
NUI'IB 
NUMB 
NUI'IB 
NUMB 
NUI'IB 
NUI'ID 

C ADDR 
C ADDR 

REQ 

NUI'ID 
NUI'IB 
NUI'IB 
NUMB 
NUMB 
NUI'ID 

B ADDR 
C ADDR 

NUMB 
NUI'IB 
NUI'IB 

D ADDR 
C ADDR 
C ADDR 
C ADDR 
C ADDR 

0630H A 
0636H A 
0639H A 
Ob3CH A 
Ob33H A 
062AH A 
026EH A 
02B2H A 
OOODH A 
05'1CH A 
00E7H A 
OOECH A 
0007H A 
OOC3H A 
00D3H A 
OOC2H A 
00D2H A 
00'l2H A 
00'l3H A 
OODBH A 
0053H A 
OblCH A 
00B3H A 

00B2H A 

OOAFH A 
OOCAH A 
OOCCH A 
OOC'lH A 
OOCBH A 
OOCDH A 
OOCBH A 
04D5H A 
OSFEH A 
RO 

OOACH A 
OOA'IH A 
OOABH A 
OOABH A 
OOAAH A 
OODSH A 
002DH. 7 A 
025BH A 
0084H A 
OOE'IH A 
OOOOH A 
007DH A 
0580H A 
0500H A 
04E3H A 
0417H A 

-ATTRIBUTES AND REFERENCES 

1'137' 
1'12'1 1'150. 
1'155' . 
1'152 1'162. 
1'134 1'144' 
IB79 1'I2n 
55U 55'1 
5B3 5'141 
204. IB4B 
1754 171>2. 
232' 235 171.5 
15'1' 1763 
751 
50. 
55. 476 1259 
4'11 453 
541 475 125B 
361 455 102B 1531. 167B 
37. 464 1701 17B3 
153. 451 
375' 
376 1'10'1' 

10/1'1/BB PAGE 3~ 

I'll 673 720 7B5 B31 '116 '146 '1B2 1012 IOB5 1126 I1B5 1225 1422 
143B 1524 153'1 IbB2 16'11 1707 1715 17B'I 17'1B IBID IB21 IB35 IB46 

. IB'I4 1'104 1'114 
IBI b72 71'1 7B4 B30 'lIS '145 '1Bl lOll 10B4 1125 I1B4 1224 1421 
i437 1:12:1 1:l3B 16B3 16'10 170B 1714 17'10 17'17 IBll IB22 IB34 IB45 
IB'I3 1'103 1'113 
'141 523 
1331 
131' 521 
134' 517 
135. 515 
1301 1021. 144'1 
1321 1023 1447 
1464 1475 14B6 14'1B 1507' 
1848 1870. 
209' 573 577 :17'1 5'16 5'1B bOO 602 604 1.06 bOB 610 1012 614 bib biB 
154'1 155'1 1566 1747 1751. 171.5 1772 1'11'1 
'15. ~1'1 

98' 
'16' 
'1'1' 
'17' 
77' 
344. 341. 4BI 141.4 14B2 
3'10 528. 
34. 444 
162' 47'1 1703 1785 
166' 442 
257. 21.0 508 1.85 732 7'17 B43 
364 17121 
1552 1562 15681 
372 1530. 
1175 121BI 

270720-51 

l 

» 
13 
"'" ~ CD 



_. 
I1CS-51 HACRO ASSEII8LER APPNOTl 10/19/BB P...c:E 36 t N A II E T Y P E V A L U E ATTRI8UTES AND REFERENCES I I 
GSC_IN_2B. C ADDR 0386H A 107/" 
GSC _I N.j!C. C ADDR 03D4H A 1073 1119. 
GSC_IN_2D_2A C AODR 03F6H A 1069 1173' 
GSC_IN_20. C ADDR 03F9H A 117B' 
GSC_IN_LS8 . B ADDR 002EH.2 A 332. 336 1073 1108 1148 117~ 1207 1247 
GSC_IN_IISD D ADOR 002EH.3 A 32B' 332 1069 1107 1149 120B 1248 
GSC_INIT . C ADDR 0200H A 386 4401 
GSC_INPUT _HIt~H o ADOR 007SH A 269. 273 472 476 1112 1153 1212 1252 1259 
GSC_INPUT _LOW. o ADDR 0079H A 26B. 269 471 475 1111 1152 1211 1251 1258 
GSC_OUT _IA . C ADDR 033EH A 8951 
QSC_OUT _18 . C ADDR 03:18H A 892 925. 
GSC_OUT _IC_1D. C ADDR 0372H A 889 9551 
GSC_OUT_IC C ADDR 037SH A 9611 
GSC _OUT _10 . C ADDR 038FH A 957 9911 
GSC_OUT ....LSD. D ADDR 002FH.2 A 3041 30B B92 920 950 957 986 1016 1459 1490 
GSC.:..OUT _I1SD. D ADOR 002FH.3 A 300. 304 BS9 919 949 985 1015 1454 
GSC_REC_ERROR. C ADDR 0033H A 3631 
GSC_REC_VALID. C ADOR 002BH A 3591 
GSC _SRC _ADOR . o ADOR 007CH A 260' 263 469 503 &92 739 B04 850 
GSC _VAL I 0 _REC. C ADDR 056SH A 360 16881 
GSC_VALIO_XIIIT C ADDR 04AAH A 368 1435. 
GSC _XII IT_ERROR C ADDR 004BH A 3711 
GSC_XIIIT _VALID C ADOR 0043H A 3&7' 
HABEN. NUIIB 00E8H A 163. 
IE • NUIIB OOASH A 27. 

I I 

l> lEO. NutlD 0089H A 90' I\J lEI. NUtlD OOBOH A ea. "U t.> . 
IENI . NUIID OOCBH A 531 01:0 en IFS_PERIOO NutlD 0014H A 1718 447 ...., 

U> 
IFS. NUIID 00A4H A 42. 447 CD 
INJlYTE_COUNT. o AODR 007FH A 249. 253 547 6n 724 789 835 1830 IB52 1865 
INC_COUNT _LOOP C ADOR 027BH A 5718 5BI 
INC_ERROR_COUNT. C ADOR 05_ A 1725. 
INCREIlENT _COUNTER. C ADDR 0275H A ~5' 1574 1749 175B 1767 In4 1921 
INITIALIZATION . C ADDR 0100H A 353 379. 
INTO. NUIIB OOB2H A 114' 
INTI . NUIID 0083H A 1131 
INTERRUPT_ENABLE C ADDR 02SOH A 393.513' 
IP NUIIB OODBH A 28. 
IPNI NUIIB OOFBH A 681 
IRET . C ADOR 032EH A 761 872. 1161 
ITO. NUIIB OOBBH A 91. 
IT!. NUIIB 008AH A 89. 
LINE_FEED. Nutl8 OOOAH A 207. 185& 
LNI. NUII8 OODFH A 146' 
LONG _COUNTER o ADDR OOEIH A 235. 239 1919 
LSCjoCTIVE 8 ADOR 002DH.6 A 3468 539 1271 1:!81 1297 1326 1361 1390 IBB2 
LSC_DAUO_RATE. NutlB OOFCH A 16B' 487 
LSC_IN_IA. C ADOR 030DH A 775 824. 
LSC_IN_1D. C ADDR 029CH A 664_ 
LSC_IN_IC .. C ADDR 02BFH A 661 7131 
LSC_IN_IO_IA C ADOR 02E7H A 657 7731 
LSC_IN_ID. C AODR 02EAH A 7781 
LSC_IN_LSD 8 ADOR 002FH.0 A 3121 316 661 702 748 775 813 B59 
LSC_IN_I1SD B ADOR 002FH.l A 30BI 312 657 701 749 B14 B60 

270720-52 



_. 
MCS-SI MACRO ASSEMBLER APPNOTI 10/19/88 PAGE 37 

cf N A M E T Y P E V A L U E ATTRIBUTES AND REFERENCES I I 
LSC_INIT C ADDR 0234H A 388486. 
LS!;_INPUT _HIGH D ADDR 007AH A 264. 268 543 706 753 81B B64 IB35 1846 
LSC_INPUT _LOW D ADDR 007BH A 263. 264 542 705 752 817 863 1834 1845 
LSC_OUT_2A C ADDR 044EH A 1290. 
LSC_OUT_2B C ADDR 0462H A 1287 1319. 
LSC_OUT _2C_2D. C ADDR 0476H A 128+ 1348. 
LSC_OUT_2C C ADDR 0479H A 1354. 
LSC_OUT_2D C ADDR 048DH A 1350 1383. 
LSC _OUT _COUNTER D ADDR 0075H A 277. 1305 130B 1334 1337 1369 1372 1398 1401 1876 
LSC_OUT _LSB B ADDR 002EH 0 A 340. 344 1287 1314 1343,1350 1378 1407 1934 1952 
LSC_OUT _MSB B ADDR 002EH. I A 336' 340 1284 1313 1342 1377 1406 1929 
LSC_OUT _NEXT C ADDR '060AH A 1876 1891_ 
LSC_OUTPUT _HIGH D ADDR 0076H A 274' 277 1422 1894 1904 
LSC_OUTPUT _LOW D ADDR 0077H A 273' 274 1421 1893 1903 
LSC_RECEIVE. C ADDR 05DDH A 1806 1826_ 
LSC SERVICE C ADDR 05BAH A 356 17951 
LSC:::XMIT _END C ADDR 0607H A 1885. 1906 
LSC_XMIT_IN_PROGRESS C ADDR 0442H A 1276_ 1281 
LSC_XMIT C ADDR OSFFH A 18\7 1874_ 
MAIN C ADDR 0112H A 395_ 421 428 436 
MAX_LENGTH NUMB 0078H A 213. 461 1091 1132 1191 1231 1264 
MYSLOT NUMB 00F5H A 67_ 
NEW_BUF1_IN_END C ADDR 032DH A 710 757 822 868_ 
NEW_BUF2_IN_END. C ADDR 0432H A 1116 1157 1216 1256' l> 

I\) NEW_BUFFER I_IN C ADDR 0296H A 624_ 770 1862 

W NEW_BUFFER I_OUT. C ADDR 032FH A 425 875. 1514 -a . 
0) NEW_BUFFER2_IN C ADDR 03BOH A 1036. 1170 1696 1781 ~ 
.I:> NEW_BUFFER2_0UT. C ADDR 043FH A 432 1269_ I\) 

NEXT _LOCATION. D ADDR OOCFH A' 2451 552 
U) 

NOACK_COUNTER. D ADDR 00D5H .A 242. 245 1559 
NOACK_ERROR. C ADDR 04F6H A 1546 1554_ 
NOACK. NUMB OODEH A 147' 1556 
NOTHING_FOR3SC . C ADDR 03AFH A 882 898 928 964 994 1030. 
NOTHING.fOR_LSC. C ADDR 04A9H A ·1277 1293 1322 1357 1386 1429. 
OUT_BYTE_COUNT D ADDR 007EH A 253. 257 
OV. NUMB OOD2H A 80. 
OVR_CHECK. C ADDR 0592H A 1745 1753. 
OVR COUNTER. D ADDR OOF9H A 223. 226 1756 
OVR:- NUMB OOEFH A 156' 1754 
P. NUMB OODOH A 81. 
PO NUMB 0080H A 10. 
PI NUMB 0090H A 11' 501 :106 
POl NUMB OOAOH A 12. 
P3 NUMB OOBOH A 131 
P4 NUMB OOCOH A 48. 503 508 
PCON NUMB 0087H A 20_ 
PDMAO. NUMB OOFAH A 141. 
PDMAI. NUMB OOFCH A 139. 
PGSRE. NUMB 00F9H A 142_ 
PGSRV NUMB OOFBH A 143_ 
PGSTE. NUMB OOFDH A 138_ 
PGSTV. NUMB OOFBH A 140. 
PRBS NUMB 00E4H A 61_ 
PS NUMB OOBCH A 102. 
psw NUMB OODOH A 14. 1440 1522 1541 1680 1693 1705 1717 17B7 IBOO IBOB 1B19 1916 270720-53 



_. 
MCS-51 MACRO ASSEMBLER APPNOTI 10/19/BB PAOE 3B t N A 1'1 E T V P E V A L U E ATTRIBUTES AND REFERENCES I I 
PTO. NUMB 00B9H A 10511 
PTI NUMB OOBBH A 10311 
PXO. NUMB OOBBH A 10611 
PXI NUMB OOBAH A 10411 
RB8 NUMB 009AH A 12411 
RCABT _CHECK C ADDR 0588H A 174411 
RCABT_COUNTER D ADDR 00F3H A 22611 229 1747 
RCABT NUMB OOEEH A 15711 1745 
RD NUMB 00B7H A 10911 
RDN NUMB OOEBH A 16011 
REC_ERROR_COUNT_END C ADDR 05AAH A 1751 1760 1769 177611 1923 
REN NUMB 009CH A 12211 
RFIFO. NUMB 00F4H A 6611 458 
RFNE NUMB OOEAH A 16111 
RI NUMB 0098H A 12611 1803 1828 
RSO NUMB OOD3H A 7911 
RSI. NUMB 00D4H A 7811 
RSTAT NUMB OOEBH A 6311 
RXD. NUMB OOBOH A 11611 
SARHO. NUMB 00A3H A 4111 916 946 982 1012 1589 1610 1631 1649 
SARHI. NUMB 00B3H A 4511 
SARLO. NUMB OOA2H A 4011 915 945 981 1011 1588 1609 1630 1648 
SARLI. NUMB 00B2H A 44. 4~8 
SBUF NUMB 0099H A 3011 1838 1899 

I I 
» 

~ 
SCDN NUMB 0098H A 29. 492 "C SECOND_LSC_CHECK C ADDR 04451'1 A 1271 128011 . 

CJ) SECOND_TEN_CHECK C ADDR 0335H A 877 SSSII "'" 0"1 SLOTTM NUMB 00B4H A 4611 
I\) 
U) 

S110. NUI1B 009FH A 11911 
51'11. NUMB 009EH A 12011 
5112. NUI1B 009DH A 12111 
SP NUI1B OOSIH A 1711 3S1 
STACK OFFSET NUI1B 0080H A 20211 381 
START :::GSC_OUT. C ADDR 03A6H A 923 953 999 101911 
START _LSC_OUT. C ADDR 049EH A 1317 1346 1381 141011 
START_RETRANSI1IT C ADDR 0554H A 1602 1623 1644 166211 
START. C ADDR OOOOH A 35111 
TO NUMB ooB4H A 11211 
TI NUI1B 00B5H A 11111 
TOS. NUMB 009BH A 12311 
TCDCNT NUMB 00D4H A 5611 449 1520 1668 
TCDT COUNTER D ADDR OODBH A 23911 242 1566 
TCDT:::ERROR C ADDR 04FEH A 1556 156411 
TCDT NUMB OODCH A 14911 
TCON NUMB ooBBH A 21_ 
TDN. NUMB OODBH A 15011 
TEN. NUMB 00D9H A 1~2. 877 BBb 1021 1670 1672 
TFO. NUMB 008DH A 86_ 
TF1. NUMB 008FH A 8411 
TFIFO. NUMB 0085H A 3511 453 
TFNF NUMO OODAH A 151. 
THO NUMB ooeCH A 2511 
THI NUMB ooeDH A 2611 487 
TI NUI1B 0099H A 12511 1425 1887 
TLO NUI1B 008AH A 23. 270720-54 



I\) 

W en 
en 

I1CS-51 ItACRO "'SSEl'lBLER APPNOTl 

N ... ME T Y P E 

TL1. NUItB 
THaD. NUIIB 
TRO. NUItB 
TRl. NImII 
TRANSltISSION_IN PROORESS C ADDR 
TSTAT. NUItB 
TXD. NUIIB 
UR_COUNTER o ADDR 
UR_ERROR C ADOR 
UR . NUIIB 
WR • NUMB 
XMlT_LSC C ADOR 

RECISTER BANKIS) USED: 0 

A5SEltBLY COMPLETE. NO ERRORS FOUND 

V ... L U E 

ODeBH ... 
00fWH ... 
008CH ... 
OOBEH A 
033aH ... 
OOD8H ... 
OOBIH ... 
OOFFH ... 
04EEH ... 
OODDH ... 
OOB6H ... 
05DIH ... 

.... TTRIBUTES AND REFERENCES 

24. 
22. 489 490 
87. 
85. 495 
BBl. B86 
58. 
115. 
219. 223 1549 
1544. 
14811 1546 
110 • 
1803 1815. 

10/19/88 PAQE 39 

270720-55 

( 

l> 
"0 
I 
~ 
N 
CO 



inter AP-429 

APPENDIX B 
TAKING CONTROL OF THE BACKOFF ALGORITHM 

There is a method that allows the user to take control 
of the backoff process. This method will only work 
when normal or alternate backotT modes are selected. It 
will not work in DCR mode. This method works by 
loading TCDCNT with 80H. Then on the first colli­
sion, TCDCNT will overflow, aborting the transmis­
sion and causing a transmission error to occur. It is in 
the error routine where the user takes control. Some of 
the modifications that have been tested are: 

1) Extending the number of retransmissions-this was 
accomplished by counting the number of attempted 
transmissions in a user implemented counter. When 
the number of collisions grew too big, the transmis­
sions were aborted and an error flag set. 

2) Extending the number of time slots available-to 
implement this, it was required that the time slots be 
s\mulated using one of the timers. Then by reading 
the PRBS mUltiple times and ANDing each read of 
the PRBS with a masking register, the number of 
time slots could be extended to randomly fall within 
any range selected by the user. Once the slot time 
was determined, the resulting value was multiplied 
by the selected time slot with the appropriate value 
loaded into the timer registers and the timer started. 
When the timer expired, the transmission was re-at­
tempted. For very large delays, multiple timer over­
flows were required and a loop counter used. This 
also allowed time slots larger than 255 bit times to 
be used. 

Other modifications the user may wish to implement 
would be to use some kind of token passing scheme 
when collisions occur or instead of randomly assigning 
slot times, assign pre-determined time slots to each sta­
tion. 

If the user decides to implement some kind of scheme 
such as these there are several factors the user must be 
aware of. These are: 

1) When TCDCNT overflows, it will still contain ei­
ther 0 or 1 and these many time slots must expire 
before the GSC will begin transmissions·again. Even 
if the transmitter is disabled and re-enabled the 
GSC still goes through the standard backotT algo­
rithm. This means the user should program the slot 
time to 01 to minimize the amount of time until the 
GSC hardware will allow another transmission to 
begin. 

2) Due to the amount of software required to imple­
ment any of these suggestions, most will not work at 
the same speed the internal hardware is capable of. 
For this reason, running at maximum baud rates 
with minimum IFS will probably not work. 

3) There is no real time indication to the user that the 
GSC thinks it is in a backotT algorithm, if the GSC 
is currently receiving data, or when a collision is 
detected. These, and possibly other factors not ap­
parent at the time this application note was written, 
must be considered whenever the user tries to modi­
fy the hardware based backotT algorithm with soft­
ware. 

2-367 



inter. Ap·429 

APPENDIX C 
REFERENCES 

1. ISO (1979) Data Communication-High-Level Data Link Control Procedures-Frame Structure, ISO 3309. 

2. ANSI/IEEE (1985) Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and 
Physical Layer Specifications, ANSI/IEEE Std 802.3. 

2-368 



AR-S17 

It-! I IR,\N'i'\( IlfH" m.I,'1H \rRI,\I.II.H'IH:01\IC\. \1)1 If I~ '0 ~. NOVI \tRI'R )11M" 

U sing the 8051 Microcontroller with Resonant 
Transducers 

TOM WILLIAMSON 

AbslraCI-HavinK to interface an anl.Dalf.nsduerr to. digUal conlrol 
system thruuah an analolt-lo-diRiial connr1er repreSt'Dts an npensh'e 
boltll'Dt4.'k in Ihe denlopment of many systems. Some Ifln!idurer 
companies Irt addressinR Ihis problem b)' de~rlopina proprie'ar)' families 
of resonant transducers. 

Resonant transducers Iff oscin.ton whose frequency depends in some 
known WI)' on the physical properl)' beina measured. The ,'eelrin' 
output from Ihese devices is • train of fR •• nlula, pulses whosr repethion 
ralt entodes lht \lalue of the measur.nd. Changes in the melsur.ad ClUse 
Ihr frequ"ncy to shirl. The miC'rocontrolier deteels the frequency shill, 
runs a uhdity chH'k on it, and connrts iI in soflwart 10 the mtasul'lnd 
value. 

This paper discusses software interfacina lechniques betwHn rHonan' 
transducers Ind the 8051. Techniques for measuring frequency and 
period are discussed and complred for rt'iOIUllon and interrogalion lime. 
The 8051 Is caplble of performing these tasks in extremely shorl CPU 
time. Requirements for obl.inina n-bU resolution in Ihe measurement are 
discussed. It is determined that II is always raster 10 naluate the 
me.surand 10 a Kinn level of resolution by measurina the period rather 
than the frequency, even ir the measul1lnd is propol1lon.l to the 
frequency other than 10 the period. Numerica'and software examples.rr 
presenled to illustrate the concepts. 

I. RF_SONANT TRANSDUCERS 

M OST sensing transducers are not directly compatible 
with digital controllers. because they generate analog 

signals. A few transducer companies are developing proprie­
tary families of sensors which generate signals that are more 
directly compatible with digital systems. These are not analog 
sensors with built-in A-D conversion. but oscillators whose 
frequency depends in some known way on the physical 
propeny being measured. 

The technology is applicable to vinually any type of 
measurand: pressure. gas density. position. temperature. 
force. etc. The sensor and microcontroller can operate from 
the same supply voltage. so the sensor can in most cases 
connect directly to a pan pin on the microcontroller. 

The nominal reference frequency of the output signal from 
these devices is in the range of 20 Hz-500 kHz. depending on 
the design. A change in the measurand away from the 
reference condition causes the frequency to shili by an amount 
that is related to the change in the measurand value. 
Transducers are available that have a full-scale frequency shift 
of 2-1. The micrucontroller delccls the changc in frequency or 
period and convens il in sotiware to Ihe measurand value. 

II. CONNH'IIN(i IH~ Dl<ilrAI. TRANSIll'nR 10 IH~. 8051 

Nornjally the transducer output ,,'an be connecled directly to 
one of Ihe 8051 pon pins. An exceplion would o .. ·cur when Ihe 

M.muM:ripl reL'civcd O:lnhcr 2.!i. 1984. 
The author is wilh Intel Corpuraliun. Chandlc:r. AZ 8~224. 

transducer signal docs nO( reslrict il.cIf 10 Ihe voltage range of 
-O.S to +5.5 V. 

The 8051 is not sensilive to the rise and fall times of its input 
signals. It detects Iransilions by sampling its pon pins at fixed 
intervals (once per machine cycle). and responds to a change 
in Ihe sequence of samples. If Ihe slew rale of the transducer 
signal is extremely slow. noise superimposed on the signal 
could cause the sequence of samples to show false transitions. 
There could on that account be situalions in which the 
transducer signal should be buffered through a Schmill Trigger 
10 square it up. 

III. TIMF.R/COUNTF.R STRUCTURF. IN THF. 805 I 

The 8051 has Iwo 16-bitlimer/counters: Timer 0 and Timer 
I. Both can be configured in soliware 10 operate either as 
timers or as event couRIers. 

In the "timer" funclion. the register is automatically 
incremented every machine cycle. Since a machine cycle in 
Ihe 805 I cons isIS of 12 clock periods. the timer is being 
incremenled at a constant rale of II I 2 the clock frequency. 

In Ihe "counter" funclion. the regisler is incremented in 
response 10 a I-to-O transition at its corresponding external 
input pin (ro or TI). The way this function works is the 
external input pin is sampled once each machine cycle (once 
every 12 clock periods) •. and when the samples show a high in 
one cycle and a low in Ihe next. the count is incremented. 

NOle 100 Ihal since il takes two machine cycles (24 clock 
periods) to recognize a 1-10-0 transition. the maximum count 
rate is 1/24 the clock frequency. If the clock frequency is 12 
MHz. [he maximum count rate is 500 kHz. There are no 
requiremenls on the (Iuty cycle of the signal being counted. 

The 8052. an enhanced version of Ihe 805 I. has three 16-bit 
timer/counters. two of which are idenlicallo those in the 805 I. 
The third rimer/counter can operate either as a 16-bil limer/ 
counter with aUlomatic reload to a preset 16-bit value on 
rollover. or as a 16-bittimer/counter with a "capture" mode: 
In the capture mode a I -to-O transition althe T2EX pin causes 
Ihe curreRI value in the counting register 10 Ihe "captured" 
into RAM. The third timer makes the 8052 panicularly easy [0 
interface with resonanl transducers. 

IV. WHF.THER TO MF.ASURF. FRF.QUfNcy OR PF.RIOD 

Measuring Ihe frequency requires counting Iransducer 
pulses tilr a tixed sample lime. Measuring the period requires 
measuring elapsed time for a fixed number of Iransducer 
pulses. For a given level of accuracy in the determination of 
the value of the n:1easurand. il is usually faster to measure the 
period. rather Ihan Ihe frequency. even if the measurand is 

© 1985 IEEE 
270434-1 

2-369 



inter AR-S17 

WILLIAMSON' USING THF. 8051 MICROCONTROLLF.R 

proportional to frequency rather than period. However. both 
types .of measurements will be discussed here. 

Two timer/counters can be used. one to mark time and the 
other to count transducer pulses. If the frequency being 
counted does not exceed 50 kHz or so. one may equally well 
connect the transducer signal to' an external interrupt pin. and 
count transducer pulses in software. That frees one timer. with 
very little cost in CPU time. 

V.' How TO MEASURE TRANSDUCER FREQUENCY 

Measuring the frequency means counting transducer pulses 
for some desired sample time. The count that is directly 
'obtained is T.x F. where T is the sample time' and F is the 
frequency. The full scale range is T x (Fmax - Fmin). For 
n-bit resolution 

I LSB 
Tx (Fmax - Fmin) 

2" 

Therefore. the sample time required for n-bit resolution is 

2" 
T= Fmax-Fmin 

For example. 8-bit resolution in the measurement of a 
frequency that varies between.5 and 10' kHz would require. 
according to this formula. a sample time of 51.2 ms. The 
maximum acceptable frequency count would be 51.2 ms x 10 
kHz = 512 counts. :The minimum would be 256 counts. 
Subtracting 256 from Cilch frequency count would allow the 
frequency to be reported on a scale of 0 to FF in hex digits. 

If Fmin and Fmax are closer together It takes more time to 
resolve them. 8-bit resolution in the measurement of a 
frequency that varies between 7 and 9 kHz would require a 
sample time of .128 ms. The maximum and minimum 
acceptable counts would be 1152 and 896. Subtracting 896 
from each frequency count would allow the frequency ·to be 
reported on a scale of 0 to FF in hex digits. 

To implement the measurement. one timer is used to 
establish the sample time. In this function it autoincrements 
every machine cycle. A machine cycle consists of 12 periods 
of the. clock oscillator. The sample time can be converted to 
machine cycles by multiplying it by (Fltal)112. where Fxtal is 
the 805 I clock frequency. The timer needs to be preset so that 
it rolls over at the end of each sample time. Then it generates 
an interrupt. and the interrupt routine reads and clears the 
transducer pulse counter. and then reloads the timer with the 
correct preset value. 

The preset or reload value is the two' s complement negative 
of the sample time in machine cycles. For example. with a 12-
MHz clock frequency. the reload value required to establish a 
51.2 ms sample time is 

(51.2 ms)x(l2000 kHz) -51200=3800 H. 
12 

In many cases the required sample time exceeds the capacity of 
a 16-bit timer. For example. establishing a 128 ms sample 
time with a 12-MHz clock frequency requires a 3-byte timer 
with a reload of FEOCOOH. The 8051 timer. being only 2-

bytes wide. can be augmented in software in the timer 
interrupt routine to three bYles. The 8051 has a DJNZ 
instruction (decrement and jump if not zero) which makes it 
easier to code the third timer byte to count down instead of up. 
If the third timer byte counts down. its reload value is the 
two's complement of what il would be for an up-counler. For 
example. if the two's complement of the sample time is 
FEOCOOH. then Ihe reload value for the third limer byte would 
be 02. instead of FE. The timer inierrupi rouline mighllhen be 

DJNZ 
MOV 
MOV 
MOV 

THIRn..J'IMER.BYTE.OUT 
nO.NO 
THO.#OCH 
THIRn..J'IMER.BYTE.N02 

(Now read and clear Ihe 
transducer pulse coumer.) 

OUT: RETI 

Interrupt lalency will have no effeci on the measuremenl if Ihe 
latency is the same for every sample lime. 

The trouble with measuring Ihe frequency is il is not only 
slow, but a wasle of Ihe resolving power of Ihe 8051·s.timers. 
A timer with microsecond resolution is being used 10 mark off 
IOO-ms time periods. The lechnique is nevertheless useful if 
the limer is already serving other purposes (servicing a 
display, perhaps), so that Ihe sample time is coming relalively 
free of charge. But in' most cases it is faster and equally 
accurate 10 measure the frequency by deriving il from a 
measuremenl of the period. 

VI. How TO MEASURE THE PERIOD 

Measuring the period of the transducer signal means 
measuring the tOlal elapsed lime over N-transducer pulses. 
The quantilY that is directly measured is N x T. where T is 
the period of the transducer signal in machine cycles. The 
relationship between T in machine cycles and the transducer 
frequency F in arbitrary frequency units is 

Fxlal 
T=-y-X(1/12) 

where Fxtal is the 8051 clock frequency. in the same unil as F. 
The full scale range Ihen is N x (Tmax - Tmin). For n-bit 

resolution 

Nx (Tmax - Tmin) 
I LSB=· 

2" 

Therefore. the number of periods over which the elapsed time 
should be measured is 

2" 
N=-----

Tmax-Tmin 

However. N must also be an integer. It is logical to evaluate 
the above formula (do not forgelthal Tmax and Tmin have to 
be in machine cycles) and select for N the next higher integer. 
This selection gives a period measurement thai has somewhat 
more than n-bit resolution. which mayor may nol be 
acceptable, depending on Ihe overall requirements of the 

270434-2 

2-370 



inter AR-S17 

IEEF. TRANSACTIONS O~ INDUSTRIAL ELECTRONICS. VOL. IE·J2, NO.4. NOVEMBER 1985 

system. It can be scaled back to n-bit resolution. if necessary. 
by the following computation: 

NT-NTmin 
reported value = NTmax _ NT min 

where NT is the elapsed time measured over N periods: 
The computation can be done in math if a suitable divide 

routine is available in the software. For g-bit resolution it is 
entirely reasonable to find the reported value in a look;up 
table. which would take up somewhat more than one page in 
ROM. In fact. the look-up table would contain NTmax -
NTmin entries; 

For example. suppose we want g-bit resolution in the 
measurement of the period of a signal whose frequency varies 
from 5 to 10 kHz. If the clock frequency' is 12 MHz. then 
Tmax is (12 000 kHz)/(12 x 5 kHz) = 200 machine cycles. 
and Tmin is 100 machine cycles. The timer needs to be on then 
for N = 2.56 periods. according to the fonnula. Using N = 3 
periods will give maximum and minimum NT values of 600 
and 300 machine cycles. This is somewhat more than 8-bit 
resolution. It can be scaled to 8 bits with a 300-byte look-up 
table. if desired. 

To implement the measurement. one timer is used to 
measure the elapsed time NT. Enabling its interrupt is 
optional. The timer interrupt could be used to indicate a short 
or open in the transducer circuit. 

Then the transducer is connected to one of the external 
interrupt pins (INTO or INTI). and this interrupt is configured 
to the transition-activated mode. In the transition-activated 
mode every I-to-O transition in the transducer output will 
generate an interrupt. The interrupt routine counts transducer 
pulses. and when it gets to the predetermined N, it reads and 
clears the timer. For example 

DJNZ PULSES ,OUT 
MOV PULSES.N..PERIODS 
(Read and clear timer.) 

OUT: RETI 

If other interrupts are also to be enabled, the one connected to 
the transducer should be set to Priority I. and the others to 
Priority O. This is to control the interrupt response time. The 
response time will not affect the measurement if it is the same 
for every measurement. Variations in the response time will. 
however, affect the measurement. Selling the pulse-counter 
interrupt to Priority I and all others to Priority 0 will minimize 
variations in the response time. The response time will then be 
limited to range from 3 to 8 machine cycles. ' 

VII. PULSEWIDTH MEASUREMENTS 

The 8051 timers have an operating mode which is particu­
larly suited to pulsewidth measurements. and may be useful 
here if the transducer has a fixed duty cycle. or if the 
transducer output is pulsewidth modulated instead of fre­
quency modulated by the measurand. 

'In this mode the timer is turned on by the on-chip circuitry 
in response to an input high at the external interrupt pin. and 
off by an input low. The external interrupt itself is enabled. so 
the same I-to-O transition from the transducer that turns off the 

timer also generates an interrupt. The interrupt routine would 
then read and reset the timer. 

The advantage of this method is that the transducer signal 
has direct access to the timer gate. with the result that 
variations in the interrupt response time cease to be a factN 
The timer can be read and cleared any time before the next 
high in the transducer output. 

VIII. DERIVING FREQUENCY FROM A PERIOD MEASUREMENT 

We now consider the problem of measuring the transducer 
frequency to n-bit resolution by deriving it from a direct 
measurement of the period. The advantage of this technique is 
speed. It is always faster to measure period than frequency. 
But it is important to end up with a frequency value that has the 
same resolution and accuracy a~ a directly measured fre­
quency. Two questions need to be addressed. 

1) To achieve n-bit resolution in the calculated frequency. 
how much resolution is required in the period? 

2) Having measured the period to the required resolution, 
what is the most efficient way to calculate the frequency? 

These questions will be addressed one at a time. 

IX. RESOLUTION REQUIREMENTS 

In general. n-bit resolution in the frequency derivation 
requires somewhat more than n-bit resolution in the period 
measurement. How much more? It will be demonstrated 
presently that if the transducer frequency varies over a 2-to-l 
range. the frequency can be calculated with n-bit resolution 
from period measurements that have (n + I )-bit resolution. 

The more practical form of the question is over how many 
periods (N) must the transducer signal be sampled to obtain 
the required resolution in F? And so. we commence a 
calculation of N. 

The basic calculation of frequency from N x T (which we 
shall call NT) is straightforward: 

F=N/(NT). 

The relationship between an increment dF in the calculated 
frequency due to an increment d(NT) in the measured period 
is. therefore. 

N 
dF= --- d(NT) 

(NT)~ 

F2 
= -"N d(NT). 

This equation says the value of an LSB in the calculated 
frequency is (F2)1 N x the value of an LSB in NT. Then the 
maximum value that an LSB in the calculated frequency can 
have is (Fmax)2IN x the value of an LSB in NT. For the 
calculated frequency to have n-bit reSOlution over the entire 
range of frequencies. the value of its LSB must never exccC'.d 
(Fmax - Fmin)/2". Therefore. the measur~ment requires 

(Fmax)! Fmax-Fmin 
--N-X(l LSB in NT)s 2" 

270434-3 

2-371 



AR-S17 

WILUAMSON USING THE !!OS I MICROCONTROLLER ' 

The required resolution in NT is. therefore. 

Nx (Fmax - Fmin) 
I LSD in NTs 2 • 

2" x (Fmax) 

Now. to say that ,NT is measured with m-bit resolution means 

T Nx(I/Fmin-I/Fmax) 
I LSD in N = . 
- 2~ 

Substituting this value for I LSD into the required resolution 
and solving for 2m yields 

Fmax 
2m~--x2". 

Fmin 

Then the requirement on m is 

In (Fmax/Fmin) 
m:?!n+ In (2) 

It can be stated with some certainty. then, that if the transducer 
frequency varies over a range of 2-to-I, the frequency can be 
calculated with 8-bit resolution from a period measurement 
thar has 9-bit resolution. If the frequency variation is less than 
2-to-I, another full bit of resolution in the period measurement 
is not needed. 

To obtain m-bit resolution in NT, N must satisfy 

2 m 

N:?! Tmax _ Tmin 

Substituting for 2"', and using Tmax = I/Fmiriaod Tmin = 
1/ F max, gives the result that 

(Fmax) 2 2 
N:?! x ". 

Fmax-Fmin 

It should be noted that the units of frequency here are 
periods/machine cycle, since the 80S I measures time by 
counting machine cycles. The conversion factor between Hz 
and periods/machine cycle is 12/(clock frequency). So the 
requirement on N can also be written ' 

Fmax Fmax 
N:?! x--x 12x2" 

Fmax - Fmin Fxtal 

where Fxtal is the 80S I clock frequency in the same units as 
Fmax and Fmin. This is the number of transducer pulses over 
which the transducer signal must be sampled to achieve the 
required solution in F. 

For example, suppose that 8-bit resolution is required in F, 
where Fmax =' 10 kHz and Fmin = 5 kHz, and that Fxtal 
= 12 MHz. Then the above calculation shows thai N = 6 
periods gives sufficient resolution in the period measurement 
to satisfy the resolution requirement in F. Six periods will take 
0.6-1.2 ms of sampling time, on that frequency range. Recall 
that the sample time for a direct frequency measurement of the 
same signal and to the same resolution was earlier calculated 
to be 51.2 MS. ' 

X. COMPUTING THE FREQUENCY fROM THE PERIOO 

The period measurement leaves one with a 16-bit integer. 
which is N x T(or NT) in machine cycles. The conversion to 
frequency is straightforward: 

F=N/(NT) periods/machine cycle. 

The quantity of interest is probably not F, but a normalized 
measure of the amount by which F exceeds its minimum 
acceptable value. This quantity represents, through the trans­
ducer's transfer function, the "reported value" of the 
measurand, and this quantity is an n-bit integer whose value 
ranges from 0 (all bils = 0) to full scale (all bits = I), This 
normalized frequency is 

F-Fmin 
f = Fmax - Fmin 

Fmin 
= x(FIFmin-1I 

Fmax-Fmin . 

Using F = N/(NT) and F min = NI(NT max) a1lo\l'~ the 
normalized frequency to be written 

f ,Fmin xNTmax-NT 
Fmax - Fmin NT 

To get a handle on what kinds of numbers are involved here, 
consider the situation where 8-bit resolution is required in f, 
and in which Fxtal = 12 MHz, Fmax = 10 kHz, and Fmin 
= S kHz: We have previously determined that for this set of 
conditions, N = 6 periods gives sufficient resolution in the 
period measurement to satisfy the resolution requirement in F 
(and inf)o With a 12 MHz clock frequency, Tmax in machine 
cycles is (12 000 kHz)/(12 x S kHz) = 200 machine cycles, 
so NTmax is 6 x 200 = 1200 machine cycles. The 
calculation for f then becomes 

l200-NT 
f= NT . 

The minimum acceptable value that NT can have is (N x 
Tmin + I), where Tmin = (12000 kHz)/(12 x 10 kHz) = 
100 machine cycles. Then N x Tmin = 6 x 100 = 600 
machine cycles. The allowable values for NT are then 601-
1200 machine cycles, a total of 599 different values. 

The fastest way to "calculate" f would be with a 599-byte 
look-up table. This method has the added advantage that 
nonlinearities in the transfer function between frequency and 
measurand can be built into the table. Look-up tables are 
facilitated in the 805 I by the MOVC A,@A+ PC, and MOVC 
A,@A+DPTR instructions. DPTR is a l6-bit "data pointer" 
register in the 805 I. Its two bytes can be individually 
addressed as DPL (low byte) and DPH (high byle). 

In the example under discussion, il will be necessary io load 
DPTR with the address of the firsl byle of the look-up table, 
less 601, plus the 2-byte value of NT. The software that 
accesses the t8ble might then take the following form: 

TABLE EQU (address of first table entry) 
270434-4 

2-372 



AR-S17 

II·H· IRASSACIIOt.;S OS INnt· ... IRJAI. H.I:CIRONICS. VOL II: 1~. NO 4. SO\'I-.MHER II,IK5 

DIVlllF fJCUT INfo 

t~.;. "I •• "'" Toulln" '11~uldtf'~ 

.".mPI-it,,· 
.~ '.0 t I ",n t 

.1.~nUl!lln .. t ,,)r 

I' .... hl~n numf'r,.tQI ""., .... nomlnator .. IL' Intt'~t>r:. dnd 
"vm(lr.J~~"· dtl'nomln.,t.oJf' (Juntlll"nt l'i Clf the fotm 

;; •• 11I .• ml!ratof' 

.11'1 = 10>" N" I du 
I I nump.rat(ll dpnomlnator '.ht'I' q" = CJ ~I·H· qT. -" I 

numto .... tor 
pI ~o? numpr.ltor "';;: I numeoroiltor - df'nOllllnalor 

Inrrpm .. nt n 

"""-.'011 •• 11.' 

Fig I. A divide algorithm. 

MOV 
ADD 
MOV 
MOV 
ADDC 
MOV 
CLR 
MOVC 

A,#LOW(TABLE-601) 
A,N'[J..O 
DPL,A 
A,#HIGH(TABLE - 601) 
A,NLHI 
DPH,A 
A 
A,@A+DPTR. 

At this point the accumulator contains the 8-bit value of J. 
It is perfectly reasonable to decide that a 599-byte look-up 

table is unwieldy. lis advantages are speed and built-in error 
correction. But a reasonably fast divide algorithm can be 
written to this specific purpose, making use of a priori 
knowledge about the sizes of the numbers that are involved in 
the computation. It helps to know that in this example the 
numerator is never going to be larger than 599 and the 
denominator is always greater than the numerator. 

A complete discussion of divide routines is beyond the 
scope of this paper, but a suitable divide algorithm for this 
specific application is shown in Fig. I. Reference [ II calls this 
the Restoring- division algorithm. It is particularly well suite~ 
to the 8051, because" < " comparisons are greatly facilitated 
by the 8051's CJNE (compare and jump if not equal) 
instruction. CJNE A,B.rel. executes a relative jump if A does 
not equal B. More importantly to this application, the 
instruction sets the carry flag if A < B. 

XI. ACCURACY AND Rf.soLUTlON 

The accuracy with which the 8051 will measure the 
frequency or period of the tmnsducer signal depends on two 
things: the accuracy of the clock oscillator and variations in 
the interrupt response time. 

Since the clock signal is normally generated by a crystal 
oscillator, the oscillator accuracy normally far exceeds the 
quantizing error inherent in the finite (n-bit) resolution. 

As was previously mentioned, interrupt response time does 
not introduce an error into the measurement itself, but 
variations in the interrupt response time can_ Interrupt 
response time in the 8051 can vary from 3 to 8 machine cycles. 
depending on what instruction is in progress at the time the 
interrupt is generated. This would represent an error of ± 5 
counts in the measured value of NT during a period 
measurement. An error of ± 5 counts in NT does not 
necessarily translate to ± 5 LSB's in the final result. but it 
might still represent an error that exceeds the resolution. 

In a direct frequency measurement variations in the inter­
rupt response time would represent an error of ± 5 1'5 in the 
sample time. 

If these kh.ds of errors are unacceptable there are ways to 
deal with them. In period measurements,' if the duty cycle of 
the transducer is constant, the pulsewidth measurement 
technique, previously described. can be used. Its advantage is 
that it gates the timer off when the interrupt is generated. 
rather than when the interrupt is responded to. 

In other cases one can simply increase the sample time 
above the minimum required to obtain the desired resolution. 
For example, if the measurement requires 8-bit resolution. one 
can design the software for an II-bit resolution and truncate 
the result to 8 bits. 

REfERhNCES 

III llaviu rl al .• J)'Rirul Sy.'utms Wllh Algurilhm impiemrnlg/ion. 
New Yurko Wiley. I~H.l. 

270434-5 

2-373 



inter ARTICLE 
REPRINT 

AR-526 

ANALOO/DIGITAL PROCESSING WITH MICROCONTROLLERS 

John Itatausky, Ira Horden, Lionel Smith 
Application Engineers 

Intel COfp. 
5000 W. Williams Field Road 

Chandler, AZ 85224 

l-licrocontrollers are rapidly 
becOMing the backbone of silicon 
computing syste... FfO. a technical 
standpoint, the most significant 
attribute, aside from the inclusion of 
RAM and ROM, that segregates a 
microcontroller from a micfoprocessor 
is I/O manipulation. In general, I/O 
manipulation is an intimate part,of a 
microcontroller's architecture. The 
instruction set and architecture ofa 
microcontroller allows the CPU to 
directly control the I/O facilities on 
the device. This is in difect contrast 
to a microprocessor where the I/O is 
essentiftlly a "sea~ of addresses anu it 
is up to the hardwar'e des.igner to place 
some type of I/O hardware in this I/O 
·sea". It should be obvious that simply 
adding ROM and RAM to a microprocessor 
WILL NOT creale a microcontroller. 

This intimate contact with I/O 
gives the microcontroller a distinct 
advantage over the microprocessor in 
applications that are I/O intensive. 
~icrocontrollers can test, set, 
complement, or clear I/O port pins much 
faster than a microprocessor and they 
can also make decisions, based on the 
state of other hardware features, such 
as timer/counters with equal speed. 
This integration of I/O, in both 
hardware and software makes the 
microcontroller "ideal" for many types 
of intelligent instrumentation. 

4K ROM/EPROM - 8K ROM ON 8052 
128 BYTES OF RAM - 256 ON THE 8052 
2-16 BIT TIMER/COUNTERS - 3 ON THE 8052 
FULL DUPLEX UART 
5 VECTORED INTERRUPTS - 6 ON THE 8052 
4 REGISTER BANKS 
BIT MANIPULATION (BOOLEAN PROCESSOR) 
32 DIRECTLY ADDRESSABLE I/O PINS 
MULTIPLY AND PIVIDE INSTRUCTIONS 
SUPpORTS 64K OR RAM AND ROM-128K TOTAL 

'TABLE 1. A BREIF LISTING OF THE MCS-5l'S 
FEATURE SET. 

Intel's MCS-5l series of 
microcontrollers contain many features 
that can be integrated directly into 
many types of instruments. TABLE 1 is a 
brief listing of these features. To 
illustrate the power of the 8051 this 
paper will elaborate on two techniques 
for performing analog to digital (A to 
D) conversion. Both of these examples 
assume that some additional hardware is 
attached to the I/O pins of the 8051. 

S/A CONVERSION TECHNIQUES 

Successive approximation analog ~o 
digital conversion involves a "binary 
search" of an unknowli voltage relative 
to R "fixed" known ieference. The 
reference is selectively divided by 
multiples of two until the desired 
accuracy is reached, Figure 1 is' a 
flowchart of a successive approximation 
converter. This technique usually 
requires a digital to analog converter 
to divide the reference voltage and a 
voltage comparator to compare the 
unknown voltage to ·the "divided" 
reference. Digital to analog 
converters and voltage comparators are 
readily available and relatively 
inexpensive. A block diagram of an 8051 
based A to D converter 'is shown in 
Figure 2,. 

Many industrial A to 0 converters 
require 12 bits of accuracy. A 12 bit 
converter provides good "dynamic range" 
and is ~apable of resolving 1 part in 
4096. If the applied input voltage 
ranges from 0 to 10 Volts, a 12 bit 
converter can resolve 2.4 millivolts 
within this range. The theoretical 
accuracy of a 12 bit converter is .024' 
+/- 1/2 least significant bit. 

The power of the 8051 in this type 
of application is best revealed by 
examining the software required to 
implement the successive approximation 
algorithm. The routine for the 8051 is 
shown in Table 2. 

The execution times given assume ,a 
12 Mhz crystal. Compare this to the 
following routine which is a 4 Mhz Z-80 

2-374 



AR-526 

TABLE 2. SUCCESSIVE APPROXIMATION 
ROUTINE FOR THE 8051. 

INSTRUCTION BYTES TIME 

. 
; CLEAR PORT PINS 
; 

YES MOV P1,10 3 2 OOKE 
ANL P2,IOFOH 3 2 
; 
;START CONVERSION 

SETB P2.3 2 1 
JNB P2.4,Ll 3 2 
CLR P2.3 2 1 

Ll. "SETB P2.2 2 1 
JNB P2.4,L2 3 2 
CLR P2.2 2 1 

110 L2: SETB P2.1 2 1 
JNB P2.4,L3 3 2 
CLR P2.1 2 1 

L3: SETB P2.0 2 1 
JNB P2.4,L4 3 2 
CLR P2.0 2 1 

L4: SETB P1.7 2 1 
JNB P2.4,L5 3 2 
CLR P1.7 2 1 

L5: SETB P1.6 2 1 
JNB P2.4,L6 3 2 

FIGURE I. sucaSSlfl APPIlOIIMTION CLR P1.6 2 1 callY£RSIOII AlGOIUTtOI L6: SETB Pl.S 2 1 
JNB P2.4,L7 3 2 
CLR Pl.S 2 1 

L7: SETB P1.4 2 1 
JNB P2.4,LB 3 2 

'1. CLR P1.4 2 1 
'1.1 LB. SETB P1.3 2 1 • '1.2 JNB P2.4,L9 3 2 0 • '1. CLR Pl.3 , 2 1 . T '1 • liT 4 L9: SETB P1.2 2 1 
'1. liT 5 JNB P2.4,LlO 3 ·2 '1. In I CLR P1.2 2 1 
'1. In 7 LID: SETB P1.1 2 1 

8 0 JNB P2.4,Lll 3 2 
a T CLR , Pl.1 2 1 
5 

0 Lll: SETB P1.0 2 1 A 
1 It. liT. JNB P2.4,Ll2 3 2 
I PI. liT' 

CLR P1.0 2 1 
8 , PI. liT 10 

, 
7 0 L12: CONVERSION CCMPLETE 
5 I 

T 
1 

MAUll 
IIIr TOTAL 90 46 US 

HOTE: '1'lMIHG IS 'l'YPICAL MALOlII -- WORST CASE • 52 US -- OST CUS • 40 US 

PI_I. ILOCIt 0_ 01 _1ft _"IIIATIOI • TO D _ 

2-375 



intJ AR-526 

executing the same algorithm with the D 
to A hardware attached to an I/O port 
is shown in Table 3 (assume that all 
bits on PORT3 are grounded, except the 
comparator ihput). 

TABLE 3. SUCCESSIVE APPROXIMATION 
ROUTINE FOR THE Z-80. 

INSTRUCTION BYTES TIME 

, 
,CLEAR PORT PINS 

LD A,O 2 1.75 
OUT (PORT1) ,A 2 2.75 
OUT (PORT2) ,A 2 2.75 

: START CONVERSION , 
LD A,08H 2 1.75 

OUT (PORT2) ,A 2 2.75 
IN A, (PORT3) 2 2.75 
OR A 1 1.00 
IN A, (PORT2) 2 2.75 
JP Z,Ll 3 2.50 

AND OF7H 2 1.75 
Ll: OR 04H 2 1.75 

OUT (PORT2) ,A 2 2.75 
IN A, (PORT3) 2. 2.75 
OR A 1 1.00 
IN A, (PORT2) 2 2.75 
JP Z,L2 3 2.50 

AND OFBH 2 1.75 
L2: OR 028 2 1.75 

REPEAT BETWEEN Ll AND L2 10 
MORE TIMES AND SB'!'/RESET THE 
APPROPRIATE I/O BITS 

TOTAL 179 180 US 

AGAIN TIMING IS TYPICAL 
WORST CAST • 190.25 US 

BEST CASE • 169.25 US 

One .. y argue that by -aemory 
.. pping- tbe I-80's I/O ports . tbe 
execution tt.e could be enhanced 
because the u.er could take advantage 
of the I-80's SB'!' and RESB'!' ae.ory BIT 
instruction.. In reality, a few bYtes 
of ae.ory are saved, but very little 

timel. This is because the Z-80's 
memory oriented BIT instructions are 
VERY slow, requiring between 3 and 5 
microseconds with a 4 Mhz clockl 

This is not to say that the Z-80 
isn't a credible 8-bit processor. The 
weakness is that decisions (i.e. JUMPS) 
cannot be made directly on the state of 
a given I/O pin. JUMP instructions, on 
most processors, are made on the state 
of the flags after some type of 
logical or arithmetic cperationl This 
means that information must be moved to 
an internal CPU register before a 
decision can be made. This -moving- of 
information back and forth between 
internal registers and I/O makes the 
microprocessor quite inefficient, 
relative to the microcontroller when 
I/O manipulation is involved. Note 
that with the 8051 algorithm never 
-moves- data from one location to 
another - it directly sets,.. tests, and 
clears bits. This characteristic gives 
the 8051 its distinct execution 
advantage. 

Another strength of the 8051 in 
this type of· application, relates to 
the fact that I/O port pins can be set, 
cleared, complemented, and tested with 
the same speed that a microprocessor 
can act on it's internal registers. 
Note that the. 8051 takes only 1 
microsecond to fetch an opcode and set 
or· clear a port pin. A microprocessor 
must first fetch and decode the opcode, 
then place the appropriate I/O or 
memory address on the bus, then perfor~ 
the necessary operation. All of this 
-communication- over the microprocessor 
bus significantly slows down the 
microprocessor. 

DUAL SLOPE INTEGRATING CONVERTER 

Integrating A to D converters 
operate by an indirect method of 
converting a voltage to a time period, 
then measuring the time period with a 
counter. Integrating techniques are 
quite slow, relative to successive 
approximation, but they are capable of 
providing very accurate measurements -
5 1/2 or .ore decimal 4igits - if 
proper analog tecbniques are employed. 
Tbey also bave the added advantage of 
allowing the integration period to be a 
aultiple of 60 Ba (16.67 as) which can 
eliainate inaccuracies caused by the 
aver pre .. nt -power line-. Virtually 
all digital volt_ters use so .. type of 
integrating .tecbnique. rigure 3 is a 
block diegr .. of a typical integrating 

2-376 



AR-526 

A to D converter. 

INPUT 

-'--_'V'-
I 

-.--.J 
REFERENCE 

VOLTAGE 

UITEGlATOI 

! C AuTO ZERO 

FIGURE 3. INTEGRATING A TO D CONvERTEA 

l£RO-Cil05S 
OUTPUT 

Figures 4A, 4B, and 4C show the 
three typical phases involved in the 
dual slope tech~ique. Figure 4A 
illustrates the - auto-zero phase. In 
this phase the integrating "loop" is 
closed and the offset of the analog 
integrator is accumlated in C auto 
zero. In Figure 4B, the input switch is 
closed and the integrator integrates 
the input voltage for a fixed time 
period Tl. In figure 4C, thp reference 
switch is closed and the intEgrator 
integrates the reference voltage until 
the comparator senses a zero crossing 
condition. The time it takes for this 
phase to occur is directly proportional 
to the amplitute of the input voltage. 
Additional circuitry can be added to 
determine the polarity of the input 
voltage, then switch in a refarence of 
oppsite polarity, but the basic 
technique remains the same. 

The 8051 is an ideal controller 
for -an intelligent integrating A to D 
system. The 16 bit timer/counters can 
provide better than 4 1/2 decimal 
digits of accuracy, the serial port can 
be used to transmit the analog reading 
to a printer or another processor, the 
CPU can be interrupted by the 60 Hz 
line 80 conversions can start at 
percise intervals, and software can be 
used to calculate and save average, 
peak, or RMS readings. 

Another "nice" benefit of this 
type of converter is that very few I/O 
port pins are required to control the A 
to D bardware, 80 opto-isolators can be 
used to completely isolate the 8051 

2·377 

INPuT 
........... _v, ____ J 
AEF£R[~C[ 

VOLTAGE 

INT£WTOA 

C Auro ZERO 

FICURE tAo AUTO ZERO PHASE 

INPUT 

• • , "'oJ ___ J 
REfERENCE 

vOLTAGE 

'"TEGRATOR 

I C AUTO ZEIO 

FlGUR! .1. INPUT INTEGRATION 'HASE 

IIIPUT -:-:r ~ 
IEFtUNCE 

.OLTAGE 

I.TEGIITOI 

I C AUTO ZERO 

flCUlE OC. IEFtIEIICE IITEGIITION ""SE 

~ERO-CjllOSS 
:JUTPUT 

!EitO-Ci'OSS 
OUTPIjT 

ZERO .. C20SS 
OUTPUT 



inter AR .. 526 

"digital system" from the ·analog 
hardware. Opto-isolatorc ptovide an 
additional "bonus" in that they may 
provide logical level shifting if 
needed by the analog circuitry. Figure 
5 shows how an 8051 might be connected 
to the analog sub-system. In practice, 
the analog switches can be almost 
anything ranging from CMOS to VFETs. 
The code needed to generate the "basic· 
integrating A to D.function is shown in 
Table 4. 

Timer interrupts could be used so 
that the CPU could be doing other 
things while the conversion was in 
process. Note that very little CPU time 
is needed to perform the actual A to 0 
function. ' 

CONCLUSION 

This paper illustrated possible· 
methods of using the 8051 in A to 0 
"instrumentation" types of 
applications. The power of the 8051's 
microcontroller architecture relates to 
the fact that logical "decisions" can 
be made directly on the state of the 
resident I/O hardware. This fact alone 
gives the 8051 a distinct advantage in 
"bit intensive" applications. Software 

Pl.1 '1.2 

8051 

'1.3 

ISOLATORS OR 
LEVEL SHI FTERS 

FlIiIIRE 5. "PICAI. 8051 COIITROI.LED AfW.OG SUI.SYSTEII, 

and hardware su~port tools include in­
circuit emulators, an assembler, and a 
high level language, PLM-5l. 
Presently, the 8051 is available in 3 
technology "flavors"- HMOS II, HMOS­
EPROM, ,and CHMOS, so depending on your 
individual application, you can have it 
your way. 

TABLE 4. SOFTI'lARE FOR INTEGRATING 
A TO 0 CONVERTER 

, 
,START PROGRAM , 
CLR TRO ,TURN TIMER OFF , 
MOV THO,fHIGH TAZ ,LOAD AUTO ZERO 
MOV TLO,ILOW TAZ ,TIME , 
ANL Pl,lOFOH ,MAKE A/D INACTIVE 
SETB Pl.2 ,AUTO ZERO PHASE 
SETB TRO ,TURN TIMER ON 
JNB TFO,$ ,LOOP TIL OVERFLOW , 
CLR TRO ,TURN TIMER OFF ' 
CLR TFO ,RESET TOV FLAG 
, 
MOV THO,'HIGH INTT ,LOAD INTEGRATION 
MOV TLO,'LOW INTT ,TIME , 
CLR Pl.2 ,END AUTO ZERO 
SETB Pl.l ,START INTEGRATION 
SETB TRO ,START TIMER 
JNB TFO,$ ,WAIT FOR OVERFLOW 

CLR Pl.l ,END INTEGRATION 

r NOW, INTEGRATE THE REFERENCE 
r 
SETB Pl.O 
I 
,AT THIS POINT TIMER 0 HAS A VALUE OF 
,TI'lO, THE TIMER IS EQUAL TO ZERO, WHEN 
I IT OVERFLOWS AND IT WAS INCREMENTED 
,TI'lICE DURING THE LAST TI'lO INSTRUCTIONS 
I 
INOW, WAIT FOR ZERO CROSS 
I 
JNB Pl.3,$ 
I. 
,TURN THE TIMER OFF , 
CLR TRO 
" 

,NOW, TIMER 0 - Vin + 3 COUNTS 

2-378 



ASIC Family Application Note 3 
&. Article Reprint 





inter APPLICATION 
NOTE 

AP-413 

. July 1988 

Using Intel's ASIC Core Cell to 
Expand the Capabilities of an· 

80C51-Based System. 

MATT TOWNSEND 
CPO TECHNICAL MARKETING MANAGER 

@ Intel Corporation, 1988 Order Number: 240230-001 
3-1 



intJ AP-413 

INTRODUCTION 

Intel's new ASIC family of microcontroller core cells 
extends the capability of the MCS®-51 product, and 
allows the ASIC designer more flexibility than the pop­
ular microcontroller product. This note will discuss 
many of the new design possibilities inherent to the 
80C51 cell-based controller. This family of cells is 
available with a variety of RAM and ROM configura­
tions. 

Cell Name ROM RAM 

UC5100 No ROM 128 Bytes RAM 
UC51 04 4KROM 128 Bytes RAM 
UC51 08 8KROM 128 Bytes RAM 
UC5116 16K ROM 128 Bytes RAM 
UC5200 No ROM 256 Bytes RAM 
UC5204 4KROM 256 Bytes RAM 
UC5208 8KROM 256 Bytes RAM 
UC5216 16K ROM 256 Bytes RAM 

Other documentation will address Intel's ASIC design 
environment (see reference section). 

The 80C51-based ASIC cell is part of a family of cell­
based functions based on popular Intel standard prod­
ucts. Members of the 82Cxx microprocessor support 
peripheral family (SP8254, SP8237, SP8259, SP8284, 
SP82284, SP8288 and 'SP82288) are also available as 
library elements. The standard product ASIC cores are 
supported by a library of over 150 logic cells, represent­
ing a broad range of SSI, MSI, and I/O functions. An­
other class of cell library elements is designated Special 
Functions. These cells are predefined complex func­
tions such as RAM, Serial I/O, AID Converter, and a 
Voltage Comparator. The Special Function and general 
logic element cells can also be used without a standard 
product core in the ASIC design. Any of the available 
80CSI-based cores can be integrated with logic com­
plexities up to 5000 gates. 

80C51-BASED ASIC CORE 

Although the 80C51-based core is functionally identical 
to the standard 80C5IBH microcontroller, its use as a 
cell in the ASIC library allows more flexibility in sys­
tem design and partitioning. 

Fignre 1 depicts the difference between the standard 
pinout of the MCS-51 family and the ASIC core.' In 
order to understand the enhancements (in an applica­
tions sense) made to the core it is useful to compare its 
connections to the pinout of the standard product. 

The MCS-51 family embodies a very powerful architec­
ture. While it was intended'as a "single chip solution" 

its addressing modes, clean bus interface, on-chip pe­
ripherals, and code efficient instruction set operations 
make it well suited to processor-like applications as 
well. For processor applications, a designer forgoes 
many of the "single chip" features in favor of the high 
performance CPU functions of this architecture. 

In order to fit the MCS-51 family microcontrollers into 
an economical forty lead DIP or forty-four lead PLCC 
package, Intel designed the standard product with 
many of the device's functions sharing pins. The micro­
controller designer must compare necessary functions 
against the economics and performance required for a 
given design. If external memory or memory mapped 
I/O is required, then the use of the port 0 function is 
not available. If the memory address is beyond the 256 ' 
byte boundary defined by the ADO-7 Bus then all or 
part of the port 2 function is not available. Likewise, 
using peripheral functions like the counter input pins, 
serial I/O, and interrupts eliminates port 3 functions. 
While the MCS-51 family is one of the most popular 
microcontrollers ever introduced, this shared function­
ality hinders its use in many applications. For example, 
a "fully loaded" MCS-51-based design would generally 
leave only one 8-bit port (Port 1) for the application's 
I/O requirements. 

The standard cell version of the 80C51 provides the 
designer with 116 signals for connection to application 
specific logic. These signals represent the full function 
set 'of the MCS-51 ,architecture and virtually eliminate 
any design trade-offs required to implement an applica­
tion. Notice from Figure 1 that all of the I/O ports are 
separated from the other functions. In the design exam­
ple, the I/O are separated into their respective inputs 
and outputs, leaving 32 inputs and 32 outputs for port 
counections into the application's logic. The most im­
mediate impact of demultiplexing the I/O of the device 
is that much of the logic required to complete an appli­
cation is eliminated. For example, when separating the 
address from the data on the AD-bus, an octal latch is 
required. For an 80C51-based core application, the de­
signer uses the AO- 7 bus directly, thus saving approxi­
mately 100 gates. The fact that the 80C51-based core 
has so many connections available does not mean an 
application will be forced into higher pin count pack­
ages. A 8OC51-based ASIC can implement many sys­
tem functions more economically than a discrete imple­
mentation. The design example illustrates a system 
with over 280 interconnects that can be integrated into 
one ASIC device. This application note will illustrate 
the less obvious ways in which the core can be used. 

, The illustrations shown iri this note are independent of 
the workstation platform used to implement the design. 

3-2 

Intel provides the complete test vectors necessary to 
test the 80C51-based ASIC core, which have been de­
rived from the standard product 80C51 test vector set. 



AP-413 

Vcc 

PI. 1 PiI.ilADiI 

PiI.l ADI RXD IP30-37 
P1.3 PiI.2AD2 SCLK 

PiI.3AD3 TXD OP3i1-37, 

PiI.4AD4 MODE0 

Pl.6 
INTIlL IP21l-27 

PIl.5 AD5 
INT1L 

Pl.7 PIl.6AD6 Til 
OP21l-27 

RST PIl.7 AD7 Tl IP10-17 
RXD P3.0 EA WRL BOC51 
TXD 1"3.1 ALE RDL 8ASED OP10-17 

ASIC 
INTO P3.2 CORE IP00-07 
INT! P3.3 EAL 

T0 P3.4 PSENL OP00-07 

T! P3.5 ALE 
P2EXT 

WR P3.6 P2 

RD P3.7 A0-A15 

XTAL2 

XTALI 
RESET 

ERST EAD81l-7 

VSS CLK TADBOE 
nCLK 

AD80-7 240230-1 

240230-2 

Figure 1. Comparing 80C51 Pin Assignments to Core Connections 

RECONSTRUCTION OF STANDARD 
PRODUCT 1/0 

When designing the 80C51-based ASIC core, Intel re­
moved the pin multiplexers and I/O functions of the _ 
80C51, and restructured them as companion cells. 
Companion cells allow the ASIC designer to reconfig-

3-3 

ure the ASIC cell to function exactly like the standard 
product. Alternatively, the designer can choose to re­
construct a subset of the standard product I/O or select 
no reconstruction at all. Consult the references for 
more information about the use and function of Intel's 
companion cells. 



AP-413 

MULTIPLE SOURCES OF RESET 

Key to the 80C51's core-isolation test method is the 
ability to put the core into a condition that can verify 
the processor without the user's logic affecting the test. 
ERST is vital to controlling the ability to put the core 
based ASIC into test mode. It must be brought directly 
from the core to a package pin. Interface is via the 
PRESET companion cell. Because a dedicated reset pin 
may be restrictive in many applications, a second reset 
connection, RESET, has been included. 

Including this second reset connection allows the de­
signer to simplify the overall ASIC design. Many appli­
cations require two sources of reset, usually a power­
on-clear with a watchdog timer. Previously, the design­
er was faced with "ORing" an RC time constant circuit 
with the timer logic, resulting in an implementation 
which was not straightforward or cost effective. Figure 
2 shows an 80C51-based ASIC implementation. 

A system reset, in many designs, employs an active low 
logic level. Since the 8OC51's reset requires an active 
high level, there is usually an inverter in the path to the 
microcontroller. It was mentioned earlier in this section 
that ERST must be brought directly from .the core to a 
package pin. This is not entirely true; the inclusion of 
the inverter is allowed. 

1/0 EXPANSION WITH THE 
80C51·BASED CORE 

For the standard MCS-51 product, the need for I/O 
expansion is often due to the need for external memory 
and/or port expansion. The designer's. use of the on­
chip peripherals (eg. Serial I/O or Interrupts) often 
leaves only Port 1 intact. 

WOT WATCHDOG TIMER WOT 
ClK OUT 

BaCS1 
BASED 
ASIC 
CORE 

WOT PRESET 

L....---:IJ'te--+----10PfIIfII-fII7 

~-------------------------+-------~P2 

RESET. 

UJ~---r!_-~---__ 'i------~~ 
PRESET 

INVN (OPTIONAL) 
240230-3 

Figure 2. Multiple Sources of Reset for 80CS1-Based ASIC Core 

3-4 



inter AP·413 

....!2. XTAL1 PI7 ~ 

...!.!!. 
PI6 ~ 

XTAL2 PIS ~ 
PI4 ~ 
PI3 ~ 
PI2 ~ 
PII ~ 
PI0 ~ 

P27 ~ 
P26 ~ 

..2 
P25 ~ 

RST P24 g.. 
P23 ~ 
P22 E;-

8051 P21 g.. 
P20 ~ 

.1..! EA/VOO P07 
32 27 07 PA7 ¥a-

P06 
33 28 06 PA6 ~ 34 29 05 PA5 ~ P05 
35 

~ 
P04 

30 04 PA4 .!!. 
36 31 03 PA3 -k-RXO P03 

...!.!. TXO 
37 32 02 PA2 ~ P02 
38 33 01 .;... P01 PAl 

P00 
39 34 00 PA0 .L 

-# INTI PSEN ? PC7 ~ 
-# iNT~ ALE 

30 
PC6 ~ 

~ TI ViR 16 
PC5 & 

...1i T0 Rii 17 
PC4 ~ 

8255 
4 PC3 ~ 

PC2 ~ 
-t---2 o PR Q F-- PCI ~ 

74LS74 PC0 r1i-
~ C CL Q ~ ~ PB7 

I PB6 ~ 5 ,g. Rii PB5 
4 

36 ViR PB4 r#-8 
AI PB3 ~ 

2 0 PR Q 5 9 PB2 
20 

AS 'if ~ 74LS74 RST PBI rt8 ~ 
C CL Q ~ ...! CS PB0 l=-

I 

240230-4 

Figure 3. Simple MCS®·51 1/0 Expansion with 8255 

Figure 3 depicts one case where the 80C51 can gain an 
expanded set of 1/0 ports. In addition to requiring ad­
ditional package pins, this implementation would re­
quire more power supply capacity and passive compo­
nents (bypass capacitors) than would be necessary if the 
1/0 expansion were to be included on-chip with the 
microcontroller. Not only is PC board size decreased, 
but the overall system reliability increases with the 
ASIC solution. In addition, the 8255 port expander, 
being a highly flexible device, requires software to con­
figure the device to the application. 

The simplest way to add 1/0 ports with the core is by 
way of a direct connection from the core's IP or OP 
signals through 1/0 functions selected from the cell li­
brary and connected to package pins. See.Figure 4. In 

3-5 

this example, decoding is very simple and the compo­
nent count is minimal. 

aocsi 
BASED 
ASIC 
CORE 

PTNO 

OPn.nl--------~ 

PTI 

IPn.nl---------< 

240230-5 

Figure 4. Direct Port Connections 
to ASIC Package Pins 



infef AP·413 

This technique represents the most silicon and program 
code efficient way to implement I/O with the core. Pro­
gram code is composed of MOV operations rather than 
the MOVX needed for any Memory mapped I/O im­
plementations. Logical operations to the port (ANL, 
ORL, XRL) can still be used. It is not necessary to 
update or maintain indirect pointers. Since quasi-bidi­
rectional cells are not used, it is not necessary to set a 
"1" to the port in order to set these cells. Eliminating 
MOVX and port setup operations could result in signif­
icant codespace savings. 

The drawback to the direct approach is that program 
code written for the 80C51 using memory mapped I/O 
is not directly transportable to the core design. In most 
cases, however, implementing I/O expansion that al­
lows code transportability is a simple task with a 
80C51-based ASIC. 

Most support peripherals are designed to be configura­
ble for many different operating conditions. This is cer­
tainly true for a device like. the 8255 as well; the port 
signals can be programmed as inputs, outputs, or bidi­
rectional. In most applications the peripheral's setup is 
never changed after initialization. Port pins are set to 
either input, output or I/O. The peripheral's configura­
tion is most often "set up" with data fields sent to a 
configuration or command register. This register is lo­
cated at one of the peripheral's selectable addresses. 
For a cell-based implementation where code transpor­
tability is required, recreating an 8255-like function is 
straightforward. Since all setup information is written 
to one register and setup is not required because the 
port signal directions are fixed, that one register can 

become a "bit bucket". Figure 5 shows an example with 
one 8-bit input port, and one 8-bit output port, both 
memory-mapped. Note that while the 8255 contains 
three 8-bit ports, an ASIC can be implemented with the 
exact amount of functionality desired. 

Implementing the full function set of the 8255 would 
result in an increased gate count (550 gates) included 
on the 80C51-based ASIC. While 550 gates can easily 
be included on the same silicon chip, implementing the 
"exact functionality" version using elements from the 
cell library would consume only 100 gates. 

ON-CHIP CLOCK GENERATION 

In many designs, the built-in crystal oscillator of the 
80C51 is not utilized because the clock signal must be 
used for other system functions. However, the clock to 
the 80C51 still must be generated and driven into the 
Xl/X2 pins. A clock generator is required somewhere 
in the system and is also used to clock many of the 
system functions surrounding the microcontroller. 

For 80C51-based ASIC designs, all clocking functions, 
including the clock generator, can be brought on-chip. 
The advantages to doing so include enhanced reliability 
and a less costly, more noise free design. Clock genera­
tion is accomplished by the companion cell POSC (or 
POSC2 for frequencies between 16 MHz and 38 MHz) 
which can be used to drive the TICLK input connec­
tion to the core. The POSC output can be sent to user 
defined logic configured to generate other necessary 

INVTD PTlx8 

ADB0-7~---------------~----------------'----C 

80CS1 
BASED 
ASIC 
CORE 

RDLI--...... 

A0~----t 

WRLI-----...., 

Figure 5. I/O Mapped Like Figure 3's 8255 

3-6 

8-BIT' 
INPUT PORT 

8-BIT 
OU.TPUT PORT 

240230-6 



inter AP-413 

clocks in a system. Where the POSC cell fan out is high 
and might cause concerns about clock edge skew, a cell 
like BUF2 can be used. For systems where it is required 
that the signal be brought off-chip (formerly off-board), 
the on-chip generated clocks can be sent to output cells 
and on to package pins. Figure 6 depicts generation 
flexibility and clock source for a 80C51-based ASIC 
design. 

Figure 6 illustrates a design which requires a high fre­
quency clock to operate on a section of user-defined 
logic. For this, cell POSC2 is selected for the ASIC 
design and is set to 24 MHz. In order to meet clock 
specifications for the core, this 24 MHz master clock is 
divided down in order to provide the required 12 MHz. 
As discussed in the 80C51-based ASIC data sheet, the 
ATE must be able to drive the core's clock directly. For 
test modes, the ATE-generated clock is driven to the 
core's TICLK connection. 

Note that signal P2 is shown being used for the applica­
tion's clocks. It is sent to other logic in the ASIC and to 
a package pin as well. 

SHARING THE TEST BUS 

In order for Automatic Test Equipment (ATE) to exer­
cise the 80C5J-based ASIC, the bus EADB must be 
brought directly to package pins. A specially designed 
I/O cell, PADB, must be directly connected to the 
EADB bus to ensure testability of the core as well as 
the user's logic. 

Requiring the EADB bus to appear as package pins 
does not impose any design restrictions on 80C51-based 
ASICs designed to access external memory or peripher­
als. If your design does not call for the EADB to access 
external memory peripherals, the EADB may be multi­
plexed with user I/O. Contact your Intel Technology 
Center for the best implementation for your applica­
tion. 

Intel supplies all test programs required to completely 
test the ASIC core cell. Designers are required to sup­
ply test vectors that exercise their unique logic only. 

6 MHz TO 

6MHz 
SYSTEM CLOCK 

RESET 

PRESET 

APPS LOGIC BUF2 

24MHz 
TO APPS 

LOGIC 

FFT 
CLK 

TICLK 

~----------------------------~ERST 

2:1 MUX 

BCCSI 
BASED 
ASIC 
CORE 

TEST 

Figure 6. Integrating System Timing onto 80C51-Based ASIC 

3-7 

240230-7 



inter AP·413 

OBSERVING THE CONTENTS 
OF THE PROGRAM COUNTER 

The 80C51-based ASIC core connections AO-AI5 al­
ways display the contents of the program counter (ex­
cept in the case of MOVX instructions.) This feature 
allows another level of real time control by monitoring 
instruction events within the core. By attaching com­
parator circuitry to the program counter contents, sig­
nals can be generated to depict events within the pro­
gram. Figure 7 shows such a circuit. 

The discussions in this note are not intended to be an 
exhaustive s~mmary of the range of design possibilities 
available to the ASIC designer. Rather, it is hoped that 
it encourages the thought process toward even ·more 
innovative uses. 

The following is an e~ample of an actual system prob­
lem and how it was resolved using a 80C51-based 
ASIC. The example utilizes many of the techniques dis­
cussed above. 

DESIGN EXAMPLE 

Figure 8 shows a typical MCS-51-based design, which 
includes a port expander, timer/counter chip, a high 
speed event counter and a low-cost EPROM containing 
stable code. In this application, the 8031 controls a sys­
tem based on numerous timed events. Many high speed 
clocks are involved, making for a potentially noisy envi­
ronment, and a watchdog timer has. been included to 
provide for soft recoveries if the microprocessor pro­
gram flow is upset. The watchdog circuitry is shown as 
a high level block. 

The design must take an accurate sample of events des­
ignated at the EVENT input. The 16-bit count is read 
and processed under a timed interrupt designated by 
and generated from one of the 8254 Timers. The coun­
ter chain must be clocked at 24 MHz in order for 
unique and accurate event samples to occur. 

Another 8254 counter is programmed for single-shot 
mode to provide for a strobe window for some circuitry 
external to the PCB assembly. An 8-bit parallel data 

3-8 

BOC51 
BASED 
ASIC 
CORE 

PTNO 
UC5116IN 
UPPER BK 
OF ROt.! 

240230-9 

Figure 7. Signal which Designates when 
Program Execution is in Upper 8K ROM 

input is required. The system must control peripherals 
external to this main assembly, resulting in a require­
ment for address decoder selection. 

Note that adequate bypass capacitors are required due 
to the clock speeds and the high number of pin connec­
tions. (There are 272 pins, not including the WDT and 
Oscillator Blocks.) A multilayer PCB is also required to 
compensate for the amount of wires needed to connect 
all the components. 

Figure 9.depicts the 80C51-based ASIC solution for the 
design in Figure 8. Note that all of the circuitry in 
Figure 8 is included on a single ASIC chip. Rather than 
use memory-mapped I/O, the design has been convert­
ed to use the core's direct ports. Note that the 8255 
function has been removed and instead the UC5116 
port connections are used. Some minor software chan~­
es are required, and signals required to access otT-chip 
program memory have been provided. This figure do~s 
not show all test pin requirements; however, no addi­
tional package pins will be required. For this example, 
the designer could begin production runs with an 
EPROM. Once the application code stabilized, it could 
be developed and submitted to Intel for incorporation 
into the core. In this example, most of the high speed 
signals are contained within the ASIC, making the 
watchdog timer unnecessary. Ifneeded, the overall cost 
of including it on the ASIC (=500 gates) makes the 
functions relatively inexpensive to keep. 

Overall system pin requirements have decreased as 
well. This 80C51-based ASIC can be produced using a 
68-pin' PLCC which may reduce the bypass capacitor 
requirements as well as the need for a multilayer PCB. 



~ c: 
iil 
!II 
~ 

0'0 
~ _. 
-·n 'OlD 

iDi 
g.~ 
~' ,en 
en .... 
'00 
CD CD 
CD 1/1 Co _. 
mcc 
<;J 
CD=: 
a~ 
on' 

c.u 0 ~ , c:-
<0 :::I :::I _n 

CD­... c: 
• Co 
ID CD 
:::I 1/1 
ColD 
ID-a 
I)~ 
::e -,m 
0>< 
0'0 
1/1 ID 
-:::I 
m Co 
-a CD 
:JJ.:" 
o::! 
s:::3 

CD :::. g 
c: 
:::I ;-... 

.I. 

-= 

III1 I: ~::~~:~! 

240230-10 

• 

l 

~ 
"'0 
I 

.j:Io. .... 
Co) 



AP-413 

Comparing the two solutions: REFERENCE DOCUMENTATION 
Discrete 80C51-ASIC Order Description 

Component Count -25 

Minimum PCB Layers 3 

System Reliability Medium 

Power Supply Current -3A 

1 

1 

High 

-30 rnA 

Number 

231816 - Introduction to Cell-Based Design 

83002 - Cell-Based Design-Daisy Environment 

830000 - Cell-Based Design-Mentor Environment 

210918 - Embedded Controller Handbook 

270535 -Embedded Control Applications 

l=-<J:==:;;:..:..===-=-===.::=::;--rr-- - - - - - - --, 

r-----t'+-IOP3/X 

INTI 

WDT OUT ClK 
WATCHDOG 

BLOCK 
~ PRESET CONTROL UNIT 

_il.. ________ _ I 

--' ------~ 

Figure 9. 80C51-Based ASIC Solutions 

3-10 

PERIPHERAL PARAL 
DATA INPUT 

EXTERNAL SEll 

EXTERNAL SEL2 

240230-11 



AR-537 

A Fast-Turnaround, Easily Testable ASIC 
Chip for Serial Bus' Control 

ABSTRACT 

This paper describes the standard cell ASIC 
des i gn methodo logy for a seri a 1 bus cont ro 11 er 
chip, This is a prototype CMOS chip which was 
designed in 19 weeks for an automotive 
application. The chip includes testability 
circuits which help attain 98% fault coverage. 

INTRODUCTION 

Fast-turnaround chip design has become 
important in the application-specific integrated 
circuit (ASIC) marketplace, where low production 
volumes preclude long design cycles. To address 
this market, the ASIC design methodology relies 
upon automatic layout software to generate fast 
chip layouts, at the expense of larger die sizes 
and somewhat lower performance. Pre-designed 
standard circuit cells eliminate the need for 
extensive circuit simulation, further shortening 
the design cycle. These design techniques can 
produce fast prototype chips for system 
demonstration and debug, or production parts for 
low-volume applications. 

Inte 1 's Automot i ve Ope rat i on in Chandl er, 
Arizona, recently employed standard cell ASIC 
techno logy to produce a prototype seri a 1 bus 
controller chip for an automotive customer. In 
this paper we will describe the design methodology 
used to meet the 19-week design schedule for this 
chip, along with the testability strate9Y which 
was implemented in order to achieve a 98% fault 
grade. 

CHIP OVERVIEW AND CONSTRUCTION 

The serial bus controller is a standard cell 
CMOS chip that interfaces a microprocessor to a 
seri a 1 commun i cat i on bus in an automobil e. The 
chip performs both transmit and receive functions. 
The transmit function consists of a first-in, 
first-out (FIFO) data buffer feeding a 
parallel-in, serial-out (PISO) shift register, and 

Don Ellis and Shailesh Trivedi 
Inlel Corp 

Chandler, AZ 

the receive function consists of a serial-in, 
parallel-out (SIPO) shift register drivin~ one 
port of a dual-port random access memory (DPRAM). 
The block diagram is shown in Figure 1. 

The transmit function requires a decidedly 
non-standard 64 x 18 bit FIFO buffer. This is 
constructed with a 64 x 18 bit RAM and two address 
counters, as shown in Figure 2. The standard cell 
library did not contain a 64 x 18 bit RAM cell, so 
we had to construct it using an existing 64 x 8 
RAM, ce 11. We mod if i ed th i s ce 11, add i ng two more 
bits to create a 64 x 10 RAM cell, then connected 
it in parallel with the original 64 x 8 RAM, thus 
extending the word length to 18 bits. Before the 
64 x 10 RAM cell could be added to the standard 
cell library, we had to fully characterize it 
using circuit simulation, like every other cell in 
the library. Two additional RC delay cells were 
also created to generate RAM read and write 
timings in the absence of microprocessor control 
signals. 

The receive function requires a IK x 8 bit 
dual-port RAM, but the standard cell library 
contained only single-port RAM cells. 
Fortunately, no cell modifications were necessary 
in this case. We used the existing IK x 8 RAM 
cell, multiplexing its data and address buses to 
simulate dual-port operation, as shown in Figure 
3. RAM read and write timings are once again 
generated using the RC delay cells mentioned 
above. 

The final chip was manufactured in both 
single-layer metal (SlM) and double-layer metal 
(DlM) versions on a 1.5 micron CMOS process, 
resulting in a 355 x 294 mil chip with 68 I/O 
pins. It consists of 3 RAM arrays (9.3K bits 
total) and about 3,000 logic gates of control 
logic, for a total of 76,735 transistors. Of the 
8,715 transistors contributed by the control 
logic, 11% belong to testability circuits which 
were added to increase the testability of the chip 
(i .e., shorten test program development time and 
tester run time). The testability strategy will 
be discussed later. 

Copyright 1987 Society of Automotive Engineers, Inc, 

3-11 



inter 

DATA 
IN 

DATA 
OUT 

AR-537 

OATA BUS 

ADDRESS BUS 

DUAL 
-U (.f) PORT H H 
(.f) -u RAM 
0 0 

(.f) (.f) 
I I 
H H 
""T] T] 
~ ~ 

;;0 ;;0 
fTl fTl 
[J) [J) 
H H 
(.f) (.f) 
~ ~ 
fTl fTl 
;;0 ;;0 

SYNCH BITS 

SERIAL COMMUNICATION BUS 

FIGURE 1. SERtAL BUS CONTROLLER BLOCK DIAGRAM 

RAM 

TEST 
BUS OUT 

IN:R.~T 

FIFO 
CONTROL 

INCR. IIOC 

CCNTRO.. SICNl..S 

~T~~--------~--------~~----------------------------~ 

FIGURE 2. FIFO (FIRST-IN, FIRST-OUT) BUFFER 

3-12 

FIFO 
FUJ.. 



AR-537 

STRNDRRD 
RRM 

PORTl 
RDDRESS - ~ ~ ~l/ 

PORT2 
RDDRESS 

ADDRESS 

BUS 

PORTl 
DRTR 

PORT2 
DRTR 

READ WRITE 

TEST MODE I)----------jl~ 

DPRRM 
CONTROL 

FIGURE 3. DURL PORT RRM 
STANDARD CELL DESIGN METHODOLOGY 

The 19 week design schedule for this chip 
dictated the use of design automation tools. 
Since the chip included 3 large RAM arrays, gate 
arrays were impractical, so standard cells were 
used with automatic placement and routing 
software. The automatically generated layout was 
transferred into Intel's full custom design system 
for some final edits, and the usual design rule 
checking and verification procedures were followed 
prior to mask making and processing. 

A standard cell design usually proceeds 
through the following steps: 

1. Translation of the logic into standard cells. 
2. Schematic capture into a computer database. 
3. ExtraCtion of a cell interconnection "netlist". 
4. Logic and timing simulation. 
5. Automatic layout generation. 
6. Parasitic extraction and re-simulation. 

The entire design procedure is outlined in Figure 
4, and each step is descri bed bri efly below. 

TRANSLATION INTO STANDARD CELLS 

Our first task was to translate our 
customer's board-level schematics into a logic 
design consisting of subcircuits from the standard 
cell library. Since the customer's schematics 
referenced IC packages only, this involved the 
detailed design of the FIFO and DPRAM blocks 
(described above). A major part of the task was 

3-13 

the design of the extra standard cells mentioned 
above, with their characterization and inclusion 
in the cell library. 

SCHEMATIC CAPTURE, NETLIST EXTRACTION, SIMULATION 

We performed schematic capture on a Daisy 
Personal Logician (PC-AT based) workstation, where 
each of the standard cells was available as a 
basic circuit element. We "compiled" each 
schematic separately to verify its integrity, then 
linked them together into a complete design 
database. Finally, we generated a "net1ist", or 
device interconnection list, from this database. 
This netlist served as input to Intel's logic 
simulator on our VAX, which we used to verify 
design correctness. The logic simulator flagged 
several timing and glitch problems which were 
corrected before proceeding to layout. 

AUTOMATIC LAYOUT GENERATION 

We performed layout generation using the 
CAL-MP program from Si1var-Lisco. Working from 
the netlist, the program placed the three RAM 
arrays according to our instructions, then 
arranged the remaining standard cells in rows 
according to its own optimization algorithm. At 
this point prior to signal routing, we instructed 
the program to further iterate its optimization 
steps, as we manually modified several cell 
placements from the graphics terminal. Once all 
ce 11 placements were determi ned, the program 
performed signal and power routing automatically. 



AR-537 

F"lGLR: 4. STANDARD CELL DESIGN FLOW 

The CAl-MP program accepted layout 
constraints in a variety of forms. In addition to 
the'netlist information, we defined pad' placements 
and the number of standard cell rows, and 
constrained a few critical signals (such as 
clocks) to two vertical metal buses traversing the 
right and left sides of the chip. Furthermore, 
several unconstrained signals were assigned 
numerical "strengths" greater than the default of 
1.0, which weighted their consideration in the 
optimization algorithm, tending to shorten them. 
We ultimately generated more than 20 layouts with 
widely varying signal strengths, until we were 
satisfied that'very little further improvement was 
possible. 

PARASITIC EXTRACTION 

After a layout is generated, it must be 
proven to work in the presence of parasitic' 
resist'lnces and capacitances contributed by the 
signai interconnects. These, parasitics are 
extracted from the layout and added to the netlist 
for 'a post-layout 'simulation cycle. In principle, 
each' iterated layout should be re-simulated, but 
after about 10 layout generations we could easily 

3-14 

,predict simulation performance from the raw 
parasitic values. 

Because the first version of this chip was 
fabricat'ed in single-layer metal with a great deal 
of polysilicon interconnection, parasitic series 
resistances were just as important in limiting 
performance as are parasitic capacitances. 
Unfortunately, series resistors are difficult to 
systematically insert into a netlist, so we had to 
simulate the resulting RC delays using Intel's 
circuit'simulator. For the double-layer metal 
version, we could safely ignore series resistances 
since the nietal sheet resistance is three orders 
of magnitude smaller than that of polysilicon. 

DESIGN FOR TESTABILITY 

Our test goal for this part was a 98% fault 
grade, and since this was a fast-turnaround 
project with little time for test program 
development, we included a variety of testability 
circuits on the chip. An added benefit to this 
approach was that the testability circuits 
simplified our debugging procedures. This 
strategy ultimately paid off, because we were able 
to quickly isolate and correct a RAM timing 
problem on the .first silicon. 

Since this chip has a relatively small node 
count, we adopted an "ad hoc" rather than 
"structured" testability strategy. This means 
that we added test circuits on a case by case 
basis to improve the controllability and 
observability of the overall chip, rather than 
implementing a scan path, a built-in self test, or 
some other more elaborate scheme. Ad hoc 
testabllity design is appropriate for small chips 
having relatively low tranSistor/pin ratios. This 
chip has 8,715 transistors (excluding those in the 
RAMs) versus 68 pins, for a transistor/pin ratio 
of 128. In contrast, Intel's 80386 microprocessor 
has 275,000 transistors versus 132 pins for a 
ratio of 2,083, clearly requiring structured 
testabil i ty techniques. 

Two pins are allocated for test purposes, 
which are used to select among four modes: a 
normal operating mode, and three test modes. This 
test mode strategy is shown in Figure 5. The test 
modes are used to partition the chip into three 
isolated subcircuits to be tested independently. 
In each mode, signals with poor visibility 
internal to the active subcircuit are brought out 
to the pads, and the non-active subcircuits are 
turned off by disabling their clock inputs. The 
test program can then exercise the active circuit, 
with the goal of toggling each internal node for 
maximum fault coverage. 

Eleven of the 28 chip inputs provide test 
inputs in the three test modes, and 16 of the 23 
chip outputs serve double duty as test outputs. 
Although input pins can be connected to several 
internal test points in parallel (usually 
multiplexer inputs), only one signal at a time can 
drive an output pin. These outputs are 
multiplexed u'sing three stages ,of 2:1 multiplexers 
(one for each mode), and the outputs are collected 
into a 16 bit "test bus" which circumnavigates the 
chip. 



AR-537 

TEST BLOCK 1 

INTERN'\. 
NOOC. 

CLOCK MODE 
DECODER BLOCK 2 

RESET 
INrtJ>fl. PINS NlOCS 

TESTl 

TEST0 

ItOOC 

TEST BLOCK 3 
CLOO<. 

RESET3 
IN""""-

NlOCS-
SELECf3 

FIGURE 5. TEST MODE STRATEGY 

RAM TESTABILITY 

RAM testability is a special case, because a 
RAM is inherently fully testable provided its data 
and address buses are access i b 1 e, a long with the 

'necessary control signals. The difficulty here is 
that the RAMs are embedded in functional blocks 
which, especially in the FIFO, tends to disguise 
the inherent RAM accessibility. 

Inside the OPRAM, the lK x 8 RAM is read 
directly by the microprocessor using the external" 
data and address buses, so observability is no 

. problem. Writes, however, occur from the SIPO 
during serial reception. It would be particularly 
painful to test a lK RAM using serial writes, so a 
modification was necessary to improve RAM 
controllability. In test mode, the address 
multiplexer is held to the address bus by 
overriding the select line, and a set of eight 
extra multiplexers were added to the data 
demultiplexer to allow bidirectional data flow 
into and out of the RAM. Thus, the SIPO circuit 
is completely bypassed in test mode. 

The FIFO RAM is addressed by one of two 
counters in the operating mode, which presents a 
problem unless we are willing to accept sequential 
test addressing, or at least a very complex 
address setup procedure. The solution was to 
override the address bus with a multiplexer fed by 
input pin signals. The data bus presented the 
same problem as the OPRAM, but in reverse: data 

3-15 

is written by the microprocessor using the 
external buses, but reads are serialized in the 
PISO. We decided that serial output was 
acceptable in fIfO test mode, however, because the 
fiFO has only 64 locations to test (versus 1024 in 
the OPRAM), and the words a:e 18 bits long, which 
would require 18 extra multIplexers. Thus, for 
the fIfO data, we left well enough alone. 

CONClUS,ION 

This serial bus controller chip was designed 
using ASIC techniques in a very s~ort ~ime, 
resulting in a quick prototype chIp whIch o~r 
automotive customer could use to evaluate hIs 
system design in a timely manner. The inclusion 
of testability circuits further shortened the 
engineering debug ti~e as we~l as ~he 
manufacturing test tIme. ThIS project 
demonstrates that standard cell design is an 
attractive fast-turnaround methodology, and that a 
good testability strategy provides ad~itional 
benefits which outweigh the extra desIgn effort. 

ACKNOWLEDGEMENT 

The authors would like to thank Graham Tubbs, for 
guiding us through the maze of ASIC design tools, 
Oinesh Maheshwari and Keith Steele, ~ho helped 
prepare our final layout for processIng, and 
Mukund Patel and Magdiel Galan who helped us test 
and debug the final chip. 





RUPITM Application Notes 4 





APPLICATION 
NOTE 

AP-281 

July 1986 

UPI-4S2 Accelerates iAPX 286 
Bus Performance 

© Intel Corporation, 1988 

CHRISTOPHER SCOTT 
TECHNICAL MARKETING ENGINEER 

INTEL CORPORATION 

4-1 
Order Number: 292018-001 



intJ AP-281 

INTRODUCTION 
The UPI-452 targets the leading problem in peripheral 
to host interfacing, the interface of a slow peripheral 
with a fast Host or "bus utilization". The solution is 
data buffering to reduce the delay and overhead of 
transferring data between the Host microprocessor and 
I/O subsystem. The Intel CMOS UPI-452 solves this 
problem by combining a sophisticated programmable 
FIFO buffer and a slave interface with an MSC-51 
based microcontroller. 

The UPI-452 is Intel's newest Universal Peripheral In­
terface family member. The UPI-452 FIFO buffer en­
ables Host-peripheral communications to be through 
streams or bursts of data rather than by individual 
bYtes. In addition the FIFO provides a means of em­
bedding commands within a stream or block of data. 
This enables the system designer to manage data and 
commands to further off-load the Host. 

The UPI-452 interfaces to the iAPX 286 microproces­
sor as a standard Intel slave peripheral device. READ, 
WRITE, CS and address lines from the Host are used 
to access all of the Host addressable UPI-452 Special 
Function Registers (SFR). 

The UPI-452 combines an MSC-51 microcontroller, 
with 256 bytes of on~chip RAM and 8K bytes of 
EPROM/ROM, twice that of the 80C51, a two channel 
DMA controller and a sophisticated 128 byte, two 

. channel, bidirectional FIFO in a single device. The 
UPI-452 retains all of the 8OC51 architecture, and is 
fully compatible with.the MSC-51 instruction set. 

. This application note is a description of an iAPX 286 to 
UPI-452 slave interface. Included is a discussion of the 
respective timings and design considerations. This ap- . 
plication note is meant as a supplement to the UPI-452 
Advance Data Sheet. The user should consult the data 
sheet for additional details on the various UPI-452 
functions and features. 

UPI-452 iAPX 286 SYSTEM 
CONFIGURATION 
The interface described in this application note is 
shown in Figure I, iAPX 286 UPI-452 System Block 
Diagram. The iAPX 286 system is configured in a local 
bus architecture design. DMA between the Host and 
the UPI-452 is supported by the 82258 Advanced 
DMA Controller. The Host microprocessor accesses all 
UPI-452 externally addressable registers through ad­
dress decoding (see Table 3, UPI-452 External Address 
Decoding). The timings and interface descriptions be­
low are given in equation form with examples of specif­
ic calculations. The goal of this application note is a set 
of interface analysis equations. These equations are the 
tools a system designer can use to fully utilize the fea­
tures of the UPI-452 to achieve maximum system per­
formance. 

4-2 

HOST-UPI-452 FIFO SLAVE 
INTERFACE 

The UPI-452 FIFO acts as ·a buffer between the exter­
nal Host 80286 and the internal CPU. The FIFO allows 
the Host - peripheral interface to achieve maximum de­
coupling of the interface. Each of the two FIFO chan­
nels is fully user programmable. The FIFO buffer en­
sures that the respective CPU, Host or internal CPU, 
receives data in the same order as transmitted. Three 
slave bus interface handshake methods are supported 
by the UPI-452; DMA, Interrupt and Polled. 

The interface between the Host 80286 and the UPI-452 
is accomplished with a minimum of signals. The 8 bit 
data bus plus READ, WRITE, CS, and AO-2 provide 
access to all of the externally addressable UPI-452 reg­
isters including the two FIFO channels. Interrupt and 
DMA handshaking pins are tied directly to the inter­
rupt controller and DMA controller respectively. 

DMA transfers between the Host and UPI-452 are con­
trolled by the Host processors DMA controller. In the 
example shown in Figure 1, the Host DMA controller 
is the 82258 Advanced DMA Controller. An internal 
DMA transfer to or from the FIFO, as well as between 
other internal elements, is controlled by the UPI-452 
internal DMA processor. The internal DMA processor 
can also transfer data between Input and Output FIFO 
channels directly. The description that follows details 
the UPI-452 interface from both the Host processor's 
and the UPI-452's internal CPU perspective. . 

One of the unique features of the UPI-452 FIFO is its 
ability to distinguish between commands and data em­
bedded in the same data block. Both interrupts and 
status flags are provided to support this operation in 
either direction of data transfer. These flags and inter­
rupts are triggered by the FIFO logic independent of, 
and transparent to either the Host or internal CPUs. 
Commands embedded in the data block, or stream, are 
called Data Stream Commands. 

Programmable FIFO channel Thresholds are another 
unique feature of the UPI-452. The Thresholds provide 
for interrupting the Host only when the Threshold 
number of bytes can be read or written to the FIFO 
buffer. This further decouples the Host UPI-452 inter­
face by relieving the Host of polling the buffer to deter­
mine the number of bytes that can be read or written. It 
also reduces the chances of overrun and underrun er­
rors which must be processed. 

The UPI~452 also provides a means of bypassing the 
FIFO, in both directions, for an immediate interrupt of 
either the Host or internal CPU. These commands are 
called Immediate Commands. A complete description 
of the internal FIFO logic operation is given in the 
FIFO Data Structure section. 



"1'1 
tEi 
c: ... 
II 

:-" 

rO~ 
MRDC h 
MWRC 

;ET¥1 

10RC h X2 Xl ;-- M/iO 10WC 
50,51 50,51 DEN 

f 
RES REAllY READY DT/R 

ClK CLK ALE 
RESET f-

INTA 
PCLK f- 82288 - r 

RES 

~ 82284 
." 
)( 

N 
CO 
CJ) 

c: 

l RESET 

~ 50,51 
READY - M/iO 

." 

.j:>. I 
w CI'I 

N 

80286 -

AI5-AO t--
en BHE t--
'< en .. 
II 
3 
ID 
0" 
0 
~ 

c 
iii' 
e 
AI 
3 

HLD/ IN~ 
HLDA 00-015 

.~"L,,[I ""! 50,51 HLDA 00 
~ READY 

'--~ CL~ AI5-AO IY'--
4 M/IO 

82258 
DMA 

DROO I~ 
DROI 

DACK 0,1 

PCLK 
READY 
CLK 

RST 

I+-WAIT I STATE 
GENERATOR 

1 

ADDRESS 
TI 1 DECODE 

LOGIC 1- ..... 

~ STB 
DE 

'--

LATCH 

r 
JI-

TRANSCEIVER \r 

~ DE 

EN 

I 

r-! MRDC 
MWRC 

I " 
-V 

RAM/EPROM I-

cs 
~ r°'l 

PORTO 
~ 

t§ RST .. 
READ PORT1 
WRITE 
CS PORT2 

;-- f---+ AO-A2 
PORT3 

PORT4 
UPI-452 

DACK 

DROIN/ 
INTROIN 

OROOUT/ 
INTROOUT 

00-07 INTRO 

""I bk:<-H RO cs 
WR IRD 

AD-AI IRI I+J 
INTA IR2 
INT 

8259A 

~ 
8" :) 

" ~ 

-I/O PORTS 
OR 

-lOCAL 
EXPANSION 
BUS 

-ALTERNATE 
FUNCTIONS 

292018-1 

( 

» 
"tI 
N 
I» .... 



AP-281 

UPI-4S2 INITIALIZATION 
The UPI-4S2 at power-on reset automatically performs 
a minimum initialization of itself. The UPI-4S2 notifies 
the Host that it is in the process of initialization by 
setting a Host Status SFR bit. The user UPI-4S2 pro­
gram must release the UPI-4S2 from initialization for 
the FIFO to be accessible by the Host. This is the mini­
mum Host to UPI-4S2 initialization sequence. All fur­
ther initialization and configuration of the UPI-4S2, in­
cluding the FIFO, is done by the internal CPU under 
user program control. No interaction or programming 
is required by the Host 80286 for UPI-4S2 initializa­
tion. 

At power-on reset the UPI-4S2 automatically enters 
FIFO DMA Freeze Mode by resetting the Slave Con­
trol (SLCON) SFR FIFO DMA Freeze/Normal Mode 
bit to FIFO DMA Freeze Mode (FRZ = "0"). This 
forces the Slave Status (SST AT) and Host Status 
(HSTAT) SFR FIFO DMA Freeze/Normal Mode bits 
to FIFO DMA Freeze Mode In Progress. FIFO DMA 
Freeze Mode allows the FIFO interface to be config­
ured, by the internal CPU, while inhibiting Host access 
to the FIFO. 

The MODE SFR is forced to zero at reset. This dis­
ables, (tri-states) the DRQIN/INTRQIN, DRQOUT/ 
INTRQOUT and INTRQ output pins. INTRQ is in­
hibited from going active to reflect the fact that a Host 
Status SFR bit, FIFO DMA Freeze Mode, is active. If 
the MODE SFR INTRQ configure bit is enabled 
( = 'I '), before the Slave Control and Host Status SFR 
FIFO DMA Freeze/Normal Mode bit is set to Normal· 
Mode, INTRQ will go active immediately. 

The first action by the Host following reset is to read 
the UPI-4S2 Host Status SFR Freeze/Normal Mode 
bit to determine the status of the interface. This may be, 
done in response to a UPI-4S2 INTRQ interrupt, or by 
polling the Host Status SFR. Reading the Host Status 
SFR resets the !NTRQ line low. 

Any of the five FIFO interface SFRs, as well as a vari­
ety of additional features, may be programmed by the 
internal CPU following reset. At power-on reset, the 
five FIFO Special Function Registers are set to their 
default values as listed in Table 1. All reserved location 
bits are set to one, all other bits are set to zero in these 
three SFRs. The FIFO SFRs listed in Table 1 can be 
programmed only while the UPI-4S2 is in FIFO DMA 
Freeze Mode. The balance of the UPI-4S2 SFRs default 
values and descriptions are listed in the UPI-4S2 Ad­
vance Data Sheet in the Intel Microsystems Compo­
nent Handbook Volume II and Microcontroller Hand­
book. 

The above sequence is the minimum UPI-4S2 internal 
initialization required. The last initialization instruction 
must always set the UPI-4S2 to Normal Mode. This 
causes the UPI-4S2 to exit Freeze Mode and enables 

4-4 

Host read/write access of the FIFO. The internal CPU 
sets the Slave Control (SLCON) SFR FIFO DMA 
Freeze/Normal Mode (FRZ) bit high (= 1) to activate 
Normal Mode. Ths causes the Slave Status (SST A T) 
and Host Status (HSTAT) SFR FIFO DMA Freeze 
Mode bits to be set to Normal Mode. Table 2, UPI-4S2 
Initialization Event Sequence Example, shows a sum­
mary of the initialization events described above. 

Table 1_ FIFO Special Function 
Register Default Values 

SFR Name Label Reset 
Value 

Channel Boundary Pointer CBP 40H/64D 
Output Channel Read Pointer ORPR 40H/64D 
Output Channel Write Pointer OWPR 40H/64D 
Input Channel Read Pointer IRPR OOH/OD 
Input Channel Write Pointer IWPR OOH/OD 
Input Threshold ITH OOH/OD 
Output Threshold OTH 01H/1D 

Table 2. UPI·452 Initialization 
Event Sequence Example 

Event Description SFR/bit 
Power-on Reset 

UPI-4S2 forces FIFO DMA SLCON FRZ = 0 
Freeze Mode (Host access to 
FIFO inhibited) 

UPI-4S2 forces Slave Status and SSTAT SSTS = 0 
Host Status SFR to FIFO DMA HSTAT HST1 = 1 
Freeze Mode In Progress 

UPI-4S2 forces all SFRs, 
including FIFO SFRs, to default 
values. 

• UPI-4S2 user program enables MODEMD4 = 1 
INTRa, INTRa goes active, high 

• Host READ's UPI-4S2 Host 
Status (HST A T) SFR to 
determine interrupt source, 
INTRa goes low 

• UPI-4S2 user program initializes 
any other SFRs; FIFO, Interrupts, 
Timers/Counters, etc. 

User program sets Slave Control SLCON FRZ = 1 
SFR to Normal Mode (Host 
access to FIFO enabled) 

UPI-4S2 forces Slave and Host SSTAT SST5 = 1 
Status SFRs bits to Normal HSTAT HST1 = 0 
Operation 

• Host polls Host Status SFR to 
determine when it can access the 
FIFO 

- or-
• Host waits for UPI-452 Request 

for Service interrupt to access 
FIFO 

• user option 



AP-281 

FIFO DATA STRUCTURES 

Overview 

The UPI-452 provides three means of communication 
between the Host microprocessor and the UPI-452 in 
either direction; 

Data 
Data Stream Commands 
Immediate Commands 

Data and Data Stream Commands (DSC) are trans­
ferred between the Host and UPI-452 through the UPI-
452 FIFO buffer. The third, Immediate Commands, 
provides a means of bypassing the FIFO entirely. These 
three data types are in addition to direct access by ei­
ther Host or Internal CPU of dedicated Status and 
Control Special Function Registers (SFR). 

The FIFO appears to both the Host 80286 and the in­
ternal CPU as 8 bits wide. Internally the FIFO is logi­
cally nine bits wide. The ninth bit indicates whether the 
byte is a data or a Data Stream Command (DSC) byte; 
o = data, 1 = DSC. The ninth bit is set by the FIFO 
logic in response to the address specified when writing 
to the FIFO by either Host or internal CPU. The FIFO 
uses the ninth bit to condition the UPI-452 interrupts 
and status flags as a byte is made available for a Host or 
internal CPU read from the FIFO. Figures 2 and 3 
show the structure of each FIFO channel and the logi­
cal ninth bit. 

It is important to note that both data and DSCs are 
actually entered into the FIFO buffer (see Figures 2 
and 3). External addressing of the FIFO determines the 
state of the internal FIFO logic ninth bit. Table 3 shows 
the UPI-452 External Address Decoding used by the 
Host and the corresponding action. The internal CPU 
interface to the FIFO is essentially identical to the ex­
ternal Host interface. Dedicated internal Special Func­
tion Registers provide the interface between the FIFO, 
internal CPU and the internal two channel DMA proc­
essor. FIFO read and write operations by the Host and 
internal CPU are interleaved by the UPI-452 so they 
appear to be occurring simultaneously. 

The ninth bit provides a means of supporting two data 
types within the FIFO buffer. This feature enables the 
Host and .uPI-452 to transfer both commands and data 

,while maintaining the decoupled interface a FIFO buff­
er provides. The logical ninth bit provides both a means 
of embedding commands within a block of data and a 
means for the internal CPU, or external Host, to dis­
criminate between data and commands. Data or DSCs 
may be written in any order desired. Data Stream 

4-5 

Commands can be used to structure or dispatch the 
data by defining the start and end of data blocks or 
packets, or how the data following a DSC is to be pro­
cessed. 

A Data Stream Command (DSC) acts as an internal 
service routine vector. The DSC generates an interrupt 
to a service routine which reads the DSC. The DSC 
byte acts as art address vector to a user defined service 
routine. The address can be any program or data mem­
ory location with no restriction on the number of DSCs 
or address boundaries. 

A Data Stream Command (DSC) can also be used to 
clear data from the FIFO or "FLUSH" the FIFO. This 
is done by appending a DSC to the end of a block of 
data entered in the FIFO which is less than the pro­
grammed threshold number of bytes. The DSC will 
cause an interrupt, if enabled, to the respective receiv­
ing CPU. This ensures that a less than Threshold num­
ber of bytes in the FIFO will be read. Two conditions 
force a Request for Service interrupt, if enabled, to the 
Host. The first is due to a Threshold number of bytes 
having been written to the FIFO OUtput channel; the 
second is if a DSC is written to the Output FIFO chan­
nel. If less than the Threshold number of bytes are writ­
ten to the Output FIFO channel, the Host Status SFR 
flag will not be set, and a Request for Service interrupt 
will not be generated, if enabled. By appending a DSC 
to end of the data block, the FIFO Request for Service 
flag and/or interrupt will be generated. 

An example of a FIFO Flush application is a mass stor­
age subsystem. The UPI-452 provides the system inter­
face to a subsystem which supports tape and disk stor­
age. The FIFO size is dynamically changed to provide 
the maximum buffer size for the direction of transfer. 
Large data blocks are the norm in this application. The 
FIFO Flush provides a means of purging the FIFO of 
the last bytes of a transfer. This guarantees that the 
block, no matter what its size, will be transmitted out of 
the FIFO. 

Immediate Commands allow more direct communica­
tion between the Host processor and the UPI-452 by 
bypassing the FIFO in either direction. The Immediate 
Command IN and OUT SFRs are two more unique 
address locations externally and internally addressable. 
Both 'DSCs and Immediate Commands have internal 
interrupts and interrupt priorities associated with their 
operation. The interrupts are enabled or disabled by 
setting corresponding bits in the Slave Control 
(SLCON), Interrupt Enable (IEC), Interrupt Priority 
(IPC) and Interrupt Enable and Priority (IEP) SFRs. A 
detailed description of each of these may be found in 
the UPI-452 Advance Information Data Sheet. 



inter 

9TH 

B 
I 
T 

INPUT 
FIFO 

CHANNEL 

INTERNAL CPU 
(DATA PROCESSOR) 

o 
§ 
..J 
o 

~ 
8 
...... 
'" 

AP·281 

01----------..... § 
o 
el¢:==:>1 
c:: 

Figure 2. Input FIFO Channel Functional Diagram 

4-6 

292018-2 



inter 

9TH 

B 
I 
T 

OUTPUT 
FIFO 

CHANNEL 

INTERNAL CPU 
(DATA PROCESSOR) 

(J 

<:5 g 
...J 
o 
I:!: 
z 
o 
(J 

'-

AP-281 

Figure 3. Output FIFO Channel Functional Diagram 

4-7 

292018-3 



Ap·281 

Table 3. UPI·452 External Address Decoding 

DACK CS A2 A1 AO READ WRITE 

1 1 X X X No Operation No Operation 

1 0 0 0 0 Data or DMA from Data or DMA to 
Output FIFO Channel Input FIFO Channel 

1 0 0 0 1 Data Stream Command Data Stream Command 
from Output FIFO to Input FIFO 
Channel Channel 

1 0 0 1 0 Host Status SFR Reserved 
Read 

1 0 0 1 1 Host Control SFR Host Control SFR 
Read Write 

1 0 1 0 0 Immediate Command Immediate Command 
SFR Read SFRWrite 

1 0 1 1 X Reserved Reserved 

0 X X X X DMA Data from DMA Data to Input 
Output FIFO Channel FIFO Channel 

Below is a detailed description of each FIFO channel's 
operation, including the FIFO logic response to the 
ninth bit, as a byte moves through the channel. The 
description covers each of the three data types for each 
channel. The details below provide a picture of the vari­
ous FIFO features and operation. By understanding the 
FIFO structure and operation the user can optimize the 
interface to meet the requirements of an individual de­
sign. 

OUTPUT CHANNEL 

This section covers the data path from the internal 
CPU to the HOST. Data Stream Command or Immedi­
ate Command processing during Host DMA Opera­
tions is covered in the DMA section. 

4-8 

UPI·452 Internal Write to the FIFO 

The internal CPU writes data and Data Stream Com­
mands into the FIFO through the FIFO OUT (FOUT) 
and Command OUT (COUT) SFRs. When a Thresh­
old number of bytes has been written, the Host Status 
SFR Output FIFO Request for Service bit is set and an 
interrupt, if enabled, is generated to the Host. Either 
the INTRQ or DRQOUT/INTRQOUT output pins 
can be used for this interrupt as determined by the 
MODE and Host Control (HCON) SFR setting. The 
Host responds to the Request for Service interrupt by 
reading the Host Status (HST AT) SFR to determine 
the source of the interrupt. The Host then reads the 
Threshold number of bytes from the FIFO. The inter­
nal CPU may continue to write to the FIFO during the 
Host read of the FIFO Output channel. 



AP-281 

Data Stream Commands may be written to the Output 
FIFO channel at any time during a write of data bytes. 
The write instruction need only specify the Command 
Out (COUT) SFR in the direct register instruction 
used. Immediate Commands may also be written at any 
time to the Immediate Command OUT (IMOUT) SFR. 
The Host reads Immediate Commands from the Imme­
diate Command OUT (IMOUT). 

The internal CPU can determine the number of bytes to 
write to the FIFO Output channel in one of three ways. 
The first, and most efficient, is by utilizing the internal 
DMA processor which will automatically manage the 
writing of data to 'avoid Underrun or Overrun Errors. 
The second is for the internal CPU to read the Output 
FIFO channels Read and Write Pointers and compare 
their values to determine the available space. The third 
method for determining the available FIFO space is to 
always write the programmed channel size number of 
bytes to the Output FIFO. This method would use the 
Overrun Error flag and interrupt to halt FIFO writing 
whenever the available space was less than the channel 
size. The interrupt service routine could read the chan­
nel pointers to determine or monitor the available chan­
nel space. The time required for the internal CPU to 
write data to the Output FIFO channel is a function of 
the individual instruction cycle time and the number of 
bytes to be written. 

Host Read from the FIFO 

The Host reads data or Data Stream Commands (DSC) 
from the FIFO in response to the Host Status 
(HST AT) SFR flags and interrupts, if enabled. All 
Host read operations access the same UPI-452 internal 
I/O Buffer Latch. At the end of the previous Host 
FIFO read cycle a byte is loaded from the FIFO into 
the I/O Buffer Latch and Host Status (HSTAT) SFR 
bit 5 is set or cleared (I = DSC, 0 = data) to reflect 
the state ofthe byte's FIFO ninth bit. If the FIFO ninth 
bit is set (= I) indicating a DSC, an interrupt is gener­
ated to the external Host via INTRQ pin or 
INTRQIN/INTRQOUT pins as determined by Host 
Control (HCON) SFR bit 1. The Host then reads the 
Host Status (HST AT) SFR to determine the source of 
the interrupt. ' 

4-9 

The most efficient Host read operation of the FIFO 
Output channel is through the use of Host DMA. The 
UPI-452 fully s1,lpports external DMA handshaking. 
The MODE and Host Control SFRs control the config­
uration of UPI-452 Host DMA handshake outputs. If 
Host DMA is used the Threshold Request for Service 
interrupt asserts the UPI-452 DMA Request 
(DRQOUT) output. The Host DMA processor ac­
knowledges with DACK which acts as a chip select of 
the FIFO channels. The DMA transfer would stop 
when either the threshold byte count had been read, as 
programmed in the Host DMA processor, or when the 
DRQOUT output is brought inactive by the UPI-4S2. 

INPUT CHANNEL 

This section covers the data path from the HOST to the 
internal CPU or internal DMA processor. The details 
of Data Stream Command or Immediate Command 
processing during internal DMA operations are cov­
ered in the DMA section below. 

Host Write to the FIFO 

The Host writes data and Data Stream Commands into 
the FIFO through the FIFO IN (FIN) and Command 
IN (CIN) SFRs. When a Threshold number of bytes 
has been read out of the Input FIFO channel by the 
internal CPU, the Host Status SFR Input FIFO Re­
quest for Service bit is set and an interrupt, if enabled, 
is generated to the Host. The Input FIFO Threshold 
interrupt tells the Host that it may write the next block 
of data into the FIFO. Either the INTRQ or DRQIN/ 
INTRQIN output pins can be used for this interrupt as 
determined by the MODE and Host Control (HCON) . 
SFR settings. The Host may continue to write to the 
FIFO Input channel during the internal CPU read of 
the FIFO. Data Stream Commands may be written to 
the FIFO Input channel at any time during a write of 
data bytes. Immediate Commands may also be written 
at any time to the Immediate Command IN (IMIN) 
SFR. 



inter Ap·281 

The Host also has three methods for determining the 
available FIFO space. Two are essentially identical to 
that of the internal CPU. They involve reading the 
FIFO Input channel pointers and using the Host Status 
SFR Underrun and Overrun Error flags and Request 
for Service interrupts these would generate, if enabled 
in combination. The third involves using the UPI-452 
Host DMA controller handshake signals and the pro­
grammed Input FIFO Threshold. The Host would re­
ceive a Request for Service interrupt when an Input 
FIFO channel has a Theshold number of bytes able to 
be written by the Host. The Host service routine would 
then write the Threshold number of bytes to the FIFO. 

If a Host DMA is used to write to the FIFO Input 
channel, the Threshold Request for Service interrupt 
could assert the UPI-452 DRQIN output. The Host 
DMA processor would assert DACK and the FIFO 
write would be completed by Host the DMA processor. 
The DMA transfer would stop when either the Thresh­
old byte count had been written or the DRQIN output 
was removed by the UPI-452. Additional details on 
Host and internal DMA operation is given below. 

Internal Read of the FIFO 

At the end of an internal CPU read cycle a byte is 
loaded from the FIFO butTer into the FIFO IN/Com­
mand IN SFR and Slave Status (SSTAT) SFR bit 1 is 
set or cleared (1 = data, 0 = DSC) to reflect the state 
of the FIFO ninth bit. If the byte is a DSC, the FIFO 
ninth bit is . set (= 1) and an interrupt is generated, if 
enabled, to the Internal CPU. The internal CPU then 
reads the Slave Status (SSTAT) SFR to determine the 
source ofthe interrupt. , 
Immediate Commands· are written by the Host and 
read by the internal CPU through the Immediate Com~ 
mand IN (IMIN) SFR. Once· written, an Immediate 
Command sets the Slave Status (SSTAT) SFR flag bit 
and generates an interrupt, if enabled, to the internal 
CPU. In response to the interrupt the internal CPU 

HOST CPU 

FIFO 
INPUT 

CHANNEL CHANNEL 
BOUNDRY ~I-----t 

POINTER FIFO 
(CBP) OUTPUT 

CHANNEL 

HOST CPU 

reads the Slave Status (SST A T) SFR to determine the 
source of the interrupt and service the Immediate Com­
mand. 

FIFO INPUT IOUTPUT CHANNEL SIZE 

Host 

The Host does not have direct control of the FIFO 
Input or Output channel sizes or configuration. The 
Host can, however, issue Data Stream Commands or 
Immediate Commands. to the UPI-452 instructing the 
UPI-452 to reconfigure the FIFO interface by invoking 
FIFO DMA Freeze Mode. The Data Stream Com­
mand or Immediate Command would be a vector to a 
service routine which performs the specific reconfigura­
tion. 

UPI-452 Internal 

The default power-on reset FIFO channel sizes are list­
ed in the "Initialization" section and can be set only by 
the internal CPU during FIFO DMA Freeze Mode. 
The FIFO channel size is selected to achieve the opti­
mum application performance. The entire 128 byte 
FIFO can be allocated to either the. Input or Output 
channel. In this case the other channel consists of a 
single SFRj FIFO IN/Command IN or FIFO OUT/ 
Command OUT SFR. Figure 4 shows a FIFO division 
with a portion devoted to each channel. Figure 5 shows 
a FIFO configuration with all 128 bytes assigned to the 
Output channel. 

The FIFO channel Threshold feature allows the user to 
match the FIFO channel size and the performance of 
the interual and Host data transfer rates. The pro­
grammed Threshold provides an elasticity to the data 
transfer operation. An· example is if the Host FIFO 

FIFO IN SFR 

FIFO OUT SFR 

INTERNAL 
CPU 

292018-4 

Figure 4. Full Duplex FIFO Operation 

4-10 



infef AP-281 

HOST CPU -+1 FIFO IN SFR 1-+ 
CHANNEL INTERNAL 
BOUNDRY ~ CPU 

POINTER FIFO 
(CBP) INPUT I+-L FIFO OUT SFR I+-

CHANNEL 

! 
HOST CPU 

292018-5 

Figure 5. Entire FIFO Assigned to Output Channel 

data transfer rate is twice as fast as the inte~al FIFO 
DMA data transfer rate. In this example the FIFO In­
put channel size is programmed to be 64 bytes and the 
Input channel Threshold is programmed to be 20 bytes. 
The Host writes the first 64 bytes to the Input FIFO. 
When the internal DMA processor has read 20 bytes 
the Threshold interrupt, or DMA request (DRQIN), is 
generated to signal the Host to begin writing more data 
to the Input FIFO channel. The internal DMA proces­
sor continues to read data from the Input channel as 
the Host, or Host DMA processor, writes to the FIFO. 
The Host can write 40 bytes to the FIFO Input chan~ 
nels in the time it takes for the internal DMA processor 
to read 20 more bytes from it. This will keep both the 
Host and internal DMA operating at their maximum 
rates without forcing one to wait for the other. 

Two methods of managing the FIFO size are possible; 
fixed and variable channel size. A fixed channel size is 
one where the channel is configured at initialization 
and remains unchanged throughout program execution. 
In a variable FIFO channel size, the configuration is 
changed dynamically to meet the data transmission re­
quirements as needed. An example of a variable chan­
nel size application is the mass storage subsystem de­
scribed earlier. To meet the demands of a large data 
block transfer the FIFO size could be fully allocated to 
the Input or Output channel as needed. The Thresholds 
are also reprogrammed to match the respective data 
transfer rates. 

An example of a fixed channel size application might be 
one which uses the UPI-452 to directly control a series 
of stepper motors. The UPI-452 manages the motor 
operation and status as required. This would include 
pulse train, acceleration, deceleration and feedback. 
The Host transmits motor commands to the UPI-452 in 
blocks of 6-10 bytes. Each block of motor command 
data is preceded by a command to the UPI-452 which 
selects a specific motor. The UPI-452 transmits blocks 
of data to the Host which provides motor and overall 
system status. The data and embedded commands 
structure, indiCating the specific motor, is the same. In 

4-11 

this example the default 64 bytes per channel might be 
adequate for both channels. 

INTERRUPT RESPONSE TIMING 

Interrupts enable the Host UPI-452 FIFO buffer inter­
face and the internal CPU FIFO buffer interface to 
operate with a minimum of overhead on the respective 
CPU. Each CPU is "interrupted" to. service the FIFO 
on an as needed basis only. In configuring the FIFO 
buffer Thresholds and choosing the appropriate inter­
nal DMA Mode the user must take into account the 
interrupt response time for both CPUs. These response 
times will affect the DMA transfer rates for each chan­
nel. By choosing FIFO channel Thresholds which re­
flect both the respective DMA transfer rate and the 
interrupt response time the user will achieve the maxi­
mum data throughput and system bus decoupling. This 
in turn will mean the overall available system bus band­
width will increase. 

The following section describes the FIFO interrupt in­
terface to the Host and internal CPU. It also describes 
an analysis of sample interrupt response times for the 
Host and UPI-452 internal cpu. These equations and 
the example times shown are then used in the DMA 
section to further analyze an optimum Host UPI-452 
interface. 

HOST 

Interrupts to the Host processor are supported by the 
three . UPI-452 output pins; INTRQ,· DRQIN/ 
INTRQIN and DRQOUT/INTRQOUT. INTRQ is a 
general purpose Request For Service interrupt output. 
DRQINIINTRQIN and DRQOUT/INRQOUT pins 
are multiplexed to provide two special "Request for 
Service" FIFO interrupt request lines when DMA is 
disabled. A FIFO Input or Output channel Request for 
Service interrupt is generated based upon the value pro­
grammed in the respective channel's Threshold SFRs; 
Input Threshold (ITHR), and Output Threshold 



AP-281 

(OTHR) SFRs. Additional interrupts are provided for 
FIFO Underrun and Overrun Errors, Data Stream 
Commands, and Immediate Commands. Table 4 lis~s 
the eight UPI-452 interrupt sources as they appear In 

the HSTAT SFR to the Host ·processor. 

Table 4 UPI-452 to Host Interrupt Sources 

HSTAT 
Interrupt Source SFR Bit 

HST7 Output FIFO Underrun Error 

HST6 Immediate Command Out SFR Status 

HST5 Data Stream Command/Data at Output 
FIFO Status 

HST4 Output FIFO Request for Service Status 

HST3 Input FIFO Overrun Error Condition 

HST2 Immediate Comamnd In SFR Status 

HST1 FIFO DMA Freeze/Normal Mode 
Status 

HSTO Input FIFO Request for Service 

The interrupt response time required by the Host" proc­
essor is application and system specific. In general, a 
typical sequence of Host interrupt response events and 
the approximate times associated with each are listed in 
Equation 1. 

The example assumes the hardware configuration 
shown in Figure I, iAPX 286/UPI-452 Block Diagram, 
with an 8259A Programmable Interrupt Controller. 
The timing analysis in Equation 1 also assumes the fol­
lowing; no other interrupt is either in process or pend­
ing, nor is the 286 in a LOCK condition. The current 
instruction completion time is 8 clock cycles (800 ns @ 

10 MHz), or 4 bus cycles. The interrupt service routine 
first executes a PUSHA instruction, PUSH All General 
Registers, to save all iAPX 286 internal registers. This 
requires 19 clocks (or 2.0,""s @ 10 MHz), or 10 bus 
cycles (rounded to complete bus cycle). The next serv­
ice routine instruction reads the UPI-452 Host Status 
SFR to determine the interrupt source~ 

It is important to note that any UPI-452 INTRQ inter­
rupt service routine should AL WAYS mask for the 
Freeze Mode bit first. This will insure that Freeze 
Mode always has the highest priority. This will also 
save the time required to mask for bits which are forced 
inactive during Freeze Mode, before .checking the 
Freeze Mode bit. Access to the FIFO channels by the 
Host is inhibited during Freeze Mode. Freeze Mode is 
covered in more detail below. 

To initiate the interrupt the UPI-452 activates the 
INTRQ output. The interrupt acknowledge sequence 
requires two bus cycles, 400 ns (10 MHz iAPX 286), 
for the two INT A pulse sequence. 

Equation 1. Host Interrupt Response Time 

Action Time 
Bus 

Cycles· 
Current instruction execution 

completion 800ns 4 
INTA sequence 400 ns 2 
Interrupt service routine (time 

to host first READ of UPI-452) 2000 ns 10 

Total Interrupt Response Time 2.3,""s 16 

NOTE: 
10 MHz iAPX 286 bus cycle, 200 ns each 

UPI-4S2 Internal 

The internal CPU FIFO interrupt interface is essential­
ly identical to that of the Host to the FIFO. T~ree 
internal interrupt sources support the FIFO operatIOn; 
FIFO-Slave bus Interface Buffer, DMA Channel 0 and 
DMA Channel 1 Requests. These interrupts provide a 
maximum decoupling of the FIFO buffer and the inter­
nal CPU. The four different internal DMA Modes 
available add flexibility to -the interface. . 

The FiFO-Slave Bus Interface interrupt response is 
also similar to the Host response to an INTRQ Request 
for Service interrupt. The internal CPU responds to the 
interrupt by reading the Slave Status (SSTAT) SFR to 
determine the source of the interrupt. 'This allows the 
user to prioritize the Slav~ Status flag response to meet 
the users application needs. 

The internal interrupt response time is dependent on 
the current instruction execution, whether the interrupt 
is enabled, and the interrupt priority. In general, to fin­
ish execution of the current instruction, respond to the 
interrupt request, push the Program Counter (PC) a~d 
vector to the first instruction of the interrupt serVIce, 
routine requires from 38 to 86 oscillator periods (2.38 
to 5.38 ,""S @ 16 MHz). If the interrupt is due to an 
Immediate Command or DSC, additional time is re­
quired to read the Immediate Command or DSC SFR 
and vector to the appropriate service routine. This 
means two service routines back to back. One service 
routine to read the Slave Status (SSTAT) SFR to deter­
mine the source of the Request for Service interrupt, 
and second the service routine pointed to by the Imme7 
diate Command or DSC byte read from the respective 
SFR. 

4-12 



intJ AP-281 

DMA 

DMA is the fastest and most efficient way for the Host 
or internal CPU to communicate with the FIFO buffer. 
The UPI-452 provides support for both of these DMA 
paths. The two DMA paths and operations are fully 
independent of each other and can function simulta­
neously. While the Host DMA processor is performing 
a DMA transfer to or from the FIFO, the UPI-452 
internal DMA processor can be doing the same. 

Below are descriptions of both the Host and internal 
DMA operations. Both DMA paths can operate asyn­
chronously and at different transfer rates. In order to 
make the most of this simultaneous asynchronous oper­
ation it is necessary to calculate the two transfer rates 
and accurately match their operations. Matching the 
different transfer rates is done by a combination of ac­
curately programmed FIFO channel size and channel 
Thresholds. This provides the maximum Host and in­
ternal CPU to FIFO buffer interface decoupling. Below 
is a description of each of the two DMA operations and 
sample calculations for determining transfer rates. The 
next section of this application note, "Interface Laten­
cy", details the considerations involved in analyzing ef­
fective transfer rates when the overhead associated with 
each transfer is considered. 

HOST FIFO DMA 

DMA transfers between the Host and UPI-452 FIFO 
buffer are controlled by the Host CPU's DMA control­
ler, and is independent of the UPI-452's internal two 
channel DMA processor. The UPI-452's internal DMA 
processor supports data transfers between the UPI-452 
internal RAM, external RAM (via the Local Expansion 
Bus) and the various Special Function Registers includ­
ing the FIFO Input and Output channel SFRs. 

The maximum DMA transfer rate is achieved by the 
minimum DMA transfer cycle time to accomplish a 
source to destination move. The minimum Host UPI-
452 FIFO DMA cycle time possible is determined by 
the READ and WRITE pulse widths, UPI-452 com­
mand recovery times in relation to the DMA transfer 
timing and DMA controller transfer mode used. Table 
5 shows the relationship between the iAPX-286, iAPX-
186 and UPI-452 for various DMA as well as non­
DMA byte by byte transfer modes versus processor fre­
quencies. 

Host processor speed vs wait states required with UPI-
452 running at 16 MHz: 

Table 5. Host UPI·452 
Data Transfer Performance 

Wait States: 
DMA: 

Processor & Back to Back 
Speed READI 

Single 

WRITE's 
Cycle 

iAPX-186* 8MHz 0 N/A* 
10 MHz 0 N/A* 

12.5 MHz 1 N/A* 
iAPX-286** 6 MHi 0 0 

8MHz 1 1 
10 MHz 2 2 

NOTES: 

Two 
Cycle 

0 
0 
0 

0 
0 
0 

• iAPX 186 On-chip DMA processor is tWo cycle operation 
only. *. iAPX 286 assumes 82258 ADMA (or other DMA) run­
ning 286 bus cycles at 286 clock rate. 

In this application note system example, shown in Fig­
ure 1, DMA operation is assumed to be two bus cycle 
I/O to memory or memory to I/O. Two cycle DMA 
consists of a fetch bus cycle from the source and a store 
bus cycle to the destination. The data is stored in the 
DMA controller's registers before being sent to the des­
tination. Single cycle DMA transfers involve a simulta­
neous fetch from the source and store to the destina­
tion. As the most common· method of I/O-memory 
DMA operation, two cycle DMA transfers are the fo­
cus of this application note analysis. Equation 2 illus­
trates a calculation of the overall transfer rate between 
the FIFO biIffer and external Host for a maximum 
FIFO size transfer. The equation does not account for 
the latency of initiating the DMA transfer. 

Equation 2. Host FIFO DMA Transfer 
Rate-Input or Output Channel 

2 Cycle DMA Transfer-I/O (UPI-452) to System 
Memory 

FIFO channel size* (DMA READ/WRITE 
FIFO time + DMA WRITE/READ Memory 
Time) 

128 bytes* (200 ns + 200 ns) 
51.2 JLs 
256 bus cycles' 

NOTES: 
*10 MHz iAPX 286, 200 ns bus cycles. 

The UPI-452 design is optimized for high speed DMA 
transfers between the Host and the FIFO buffer. The 

4-13 



inter AP-281 

UPI-452 internal FIFO buffer control logic provides 
the necessary synchronization of the external Host 
event and the internal CPU machine cycle during 
UPI-452 RD/WR accesses. This internal synchroniza­
tion is addressed by the TCC AC specification of the 
UPI-452 shown in Figure 6. TCC is the time from the 
leading or trailing edge of Ii UPI-452 RD/WR to the 
same edge of the next UPI-452 RD/WR. The TCC 
time is effectively another way of measuring the system 
bus cycle time with reference to UPI-452 accesses. 

In the iAPX-286 10 MHz system depicted in this appli­
cation note the bus cycle time is 200 ns. Alternate cycle 
accesses of the UPI-452 during two cycle DMA opera­
tion yields a TCC time of 400 ns which is more than the 
TCC minimum time of 375 ns. Back to back Host 
UPI-452 READ/wRITE accesses may require wait 
states as shown in Table 5. The difference between 10 
MHz iAPX-186 and 10 MHz iAPX 286 required wait, 
states is due to the number of clock cycles in the respec­
tive bus cycle timings. The four clocks in a 10 MHz 
iAPX 186 bus cycle means a minimum TCC time of 
400 ns versus 200 ns for a 10 MHz iAPX 286 with two 
clock cycle zero wait state bus cycle. 

DMA handshaking between the Host DMA controller 
and the UPI-452,is supported by three pins on the UPI-
452;~IN/INTRQIN, ' DRQOUT/INTRQOUT 
.and DACK. The DRQIN/INTRQIN and DRQOUT/ 
INTRQOUT outputs are two multiplexed DMA or in­
terrupt request pins. The function of these pins is con­
trolled by MODESFR bit 6 (MD6). DRQIN and 

, DRQOUT provide a direct interface to the Host system 
DMA controller (see Figure 1). In response to a 
DRQIN or DRQOUT request, the Host DMA control­
ler initiates control of the system. bus using HLD/ 
HLDA. The FIFO Input or Output channel transfer is 
accomplished with a minimum of Host overhead and 
system bus bandwidth. 

The third handshake signal pin is DACK which is used 
as a chip select during DMA data transfers. The UPI-
452 Host READ and WRITE input signals select the 
respective Input and Output FIFO channel during 
DMA transfers. The CS and address lines provide 
DMA acknowledge for processors with onboard DMA 
controllers which do not generate a DACK signal. 

The iAPX 286 Block VO Instructions provide an alter­
native to two cycle DMA data transfers with approxi­
mately the same data rate. The String Input and Out­
put instructions (INS & OUTS) when combined with 
the Repeat (REP) prefix, modifies INS and OUTS to 
provide a means of transferring blocks of data between 
I/O and Memory. The data transfer rate using REP 
INS/OUTS instructions is calc\llated in the same way 
as two cycle DMA transfer times. Each. READ 'or 
WRITE would be 200 ns in a 10 MHz iAPX 286 sys­

. tern. The maximum transfer rate possible is 2.5 
MBytes/second. The Block I/O FIFO data transfer 
calculation is the same as that shown in Equation 2 for 
two cycle DMA data transfers including TCC timing 
effects: 

FIFO Data Structure and Host DMA 

During a Host DMA write to the FIFO, if a DSC is to 
be written, the DMA transfer is stopped, the DSC is 
written and the DMA restarted. During a Host DMA 
read from the FIFO, if a DSC is loaded into the I/O 
Buffer Latch the DMA request, DRQOUT, will be de­
activated (see Figure 2 above). The Host Status 
(HSTAT) SFR Data Stream Command bit is set and 
the INTRQ interrupt output goes active, if enabled. 
The Host responds to the interrupt as described above. 

CS# \ ..... __ -11 \ I 
RD#/WR# ____ -\{f4.r--, -/~::_TC_C::::::::~l /r----

j TRRjTWw ': TRV ---d TRR/TW: I, 
"'C>-------TCC . r 

292018-6 

Symbol Description Var.Osc. @16MHz 

TCC Command Cycle 6· Tclcl 375 nsmin 
Time 

TRV Command Recovery 75 75 nsmin 
Time 

Figure 6. UPI-4S2 Command Cycle Timing 

4-14 



intJ Ap·281 

Once INTRQ is deactivated and the DSC has been read 
by the Host, the DMA request, DRQOUT, is reassert­
ed by the UPI-452. The DMA request then remains 
active until the transfer is complete or another DSC is 
loaded into the I/O Buffer Latch. 

An Immediate Command written by the internal CPU 
during a Host DMA FIFO transfer also causes the 
Host Status flag and INTRQ to go active if enabled. In 
this case the Immediate Command would not terminate 
the DMA transfer unless terminated by the Host. The 
INTRQ line remains active until the Host reads the 
Host Status (HST AT) SFR to determine the source of 
the interrupt. 

The net effect of a Data Stream Command (DSC) on 
DMA data transfer rates is to add an additional factor 
to the data transfer rate equation. This added factor is 
shown in Equation 3. An Immediate Command has the 
same effect on the data transfer rate if the Immediate 
Command interrupt is recognized by the Host during a 
DMA transfer. If the DMA transfer is completed be­
fore the Immediate Command interrupt is recognized, 
the effect on the DMA transfer rate depends on wheth­
er the block being transmitted is larger than the FIFO 
channel size. If the block is larger than the pro­
grammed FIFO channel size the transfer rate depends 
on whether the Immediate Command flag or interrupt 
is recognized between partial block transfers. 

The FIFO configuration shown in Equation 3 is arbi­
trary since there is no way of predicting the size relative 
to when a DSC would be loaded into the I/O Buffer 
Latch. The Host DMA rate shown is for a UPI-452 

(Memory Mapped or I/O) to 286 System Memory 
transfer as described earlier. The equations do not ac- , 
count for the latency of intiating the DMA transfer. 

Equation 3. Minimum host FIFO DMA Transfer 
Rate Including Data Stream Command(s) 

Minimum Host/FIFO DMA Transfer Rate wi DSC 
FIFO size' Host DMA 2 cycle time transfer rate 
+ iAPX 286 interrupt response time (Eq. # 1) 
(32 bytes' (200 ns + 200 n8» + 2.3 JLs 
15.1 JLs 
75.5 bus cycles (@10 MHz iAPX286, 200 ns 
bus cycle) 

UPI-452 INTERNAL DMA PROCESSOR 

The two identical internal DMA channels allow high 
speed data transfers from one UPI-452 writable memo­
ry space to another. The following UPI-452 memory 
spaces can be used with internal DMA channels: 

Internal Data Memory (RAM) 
External Data Memory (RAM) 
Special Function Registers (SFR) 

The FIFO can be accessed during internal DMA opera­
tions by specifying the FIFO IN (FIN) SFR as the 
DMA Source Address (SAR) or the FIFO OUT 
(FOUT) SFR as the Destination Address (DAR). Ta­
ble 6 lists the four types of internal DMA transfers and 
their respective timings. 

Table 6. UPI·452 Internal DMA Controller Cycle Timings 

Source Destination 
Machine @12MHz @16MHz 
Cycles" 

Internal Data Internal Data 
Mem.orSFR Mem.orSFR 1 1 JLs 750 ns 
Internal Data External Data 
Mem.orSFR Mem. 1 1 JL8 750 ns 
External Data Internal Data 
Mem. Mem.orSFR 1 1 JLs 750 ns 
'External Data External Data 
Memory Memory 2 2 JLs 1.5 JLs 

NOTES: 
'External Data Memory DMA transfer applies to UPI-452 Local Bus only. 

"MSC-51 Machine cycle = 12 clock cycles (TCLCL). 

4-15 



infef AP-281 

FIFO Data Structure and Internal DMA INTERFACE LATENCY 

The effect of Data Stream Commands and Immediate 
Commands on the internal DMA transfers is essentially 
the same as the effect on Host FIFO DMA transfers. 
Recognition also depends upon the programmed DMA 
Mode, the interrupts enabled, and their priorities. The 
net internal effect is the same for each possible internal 
case. The time required to respond to the Immediate or 
Data Stream Command is a function of the instruction 
time required. This must be calculated by the user 
based on the instruction cycle time given in the MSC-
51 Instruction Set description in the Intel Microcon­
troller Handbook. 

It is important to note that the internal DMA processor 
modes and the internal FIFO logic work together to 
automatically manage internal DMA transfers as data 
moves into and out of the FIFO. The two most appro­
priate internal DMA processor modes for the FIFO are 
FIFO Demand Mode and'FIFO Alternate Cycle Mode. 
In FIFO Demand Mode, once the correct Slave Con­
trol and DMA Mode bits are set, the internal Input 
FIFO channel DMA transfer occurs whenever the 
Slave Control Input FIFO Request for Service flag is 
set. The DMA transfer continues until' the flag is 
cleared or when the Input FIFO Read Pointer SFR 
(IRPR) equals zero. If data continues to be entered by 
the Host, the internal DMA continues until an internal 
interrupt of higher priority, if enabled, interrupts the 
DMA transfer, the internal DMA byte count reaches 
zero or until the Input FIFO Read Pointer equals zero. 
A complete description of interrupts and DMA Modes 
can be found in the UPI-452 Data Sheet. 

DMAModes 

The internal DMA processor has four modes of opera­
tion. Each DMA channel is software programmable to, 
operate in either Block Mode or Demand Mode. De­
mand Mode may be further programmed to operate in 
Burst or Alternate Cycle Mode. BUIst Mode causes the 
internal processor to halt its execution and dedicate its 
resources exclusively to the DMA transfer. Alternate 
Cycle Mode causes DMA cycles and instruction cycles 
to occur alternately. A detailed description of each 
DMA Mode can be found in the UPI-452 Data Sheet. 

The interface latency is the time required to accommo­
date all of the overhead associated with an individual 
data transfer. Data transfer rates between the Host sys­
tem and UPI-452 FIFO, with a block size less than or 
equal to the programmed FIFO channel size, are calcu­
lated using the Host system DMA rate. (see Host 
DMA description above). In this case, the entire block 
could be transferred in one operation. The total latency 
is the time required to accomplish the block DMA 
transfer, the interrupt response or poll of the Host 
Status SFR response time, and the time required to ini­
tate the Host DMA processor. 

A DMA transfer between the Host and UPI-452 FIFO 
with a block size greater than the programmed FIFO 
channel size introduces additional overhead. This addi­
tional overhead is from three sources; first, is the time 
to actually perform the DMA transfer. Second, the 
overhead of initializing the DMA processor, third, the 
handshaking between each FIFO block required to 
transfer the entire data block. This could be time to 
wait for the FIFO to be emptied and/or the interrupt 
response time to restart the DMA transfer of the next 
portion of the block. A fourth component may also be 
the time required to respond to Underrun and Overrun 
FIFO Errors. 

Table 7 shows six typical FIFO Input/Output channel 
sizes and the Host DMA transfers times for each. The' 
timings shown reflect a 10 MHz system bus two cycle 
I/O to Memory DMA transfer rate of 2.5 MBytes/sec­
ond as shown in Equation 1. The times given would be 
the same for iAPX 286 I/O block move instructions 
REP INS and REP OUTS as described earlier. 

Table 7. Host DMA FIFO Data Transfer Times 

FIFO Size: 32 43 64 85 96 128 1 bytes 

Full or Empty % % % % % Fuller Empty 

Time 12.8 17.2 25.6 34.0 38.4 51.21 }Ls 

Table 8 shows six typical FIFO Input/Output channel 
sizes and the internal DMA processor data transfers 
times for each. The timings shown are for a UPI-452 
single cycle Burst Mode transfer at 16 Maz or 750 ns 
per machine cycle in or out of the FIFO channels. The 

4-16 



infef AP-281 

machine cycle time is that of the MSC-51 CPU; 6 
states, 2 XT AL2 clock cycles each or 12 clock cycles 
per machine cycle. Details on the MSC-51 machine cy­
cle timings and operation may be found in the Intel 
Microcontroller Handbook. 

Table 8. UPI-452 Internal DMA FIFO 
Data Transfer Times 

FIFO Size: 32 43 64 85 96 128 I bytes 

Full or Empty % % % % % Full or Empty 

~ime 24.0 32.3 48.0 64.6 72.0 96.0 I JLs 

A larger than programmed FIFO channel size data 
block'internal DMA transfer requires internal arbitra­
tion. The UPI-452 provides a variety of features which 
support arbitration between the two, internal DMA 
channels and the FIFO. An example is the internal 
DMA processor FIFO Demand Mode described above. 
FIFO Demand Mode DMA transfers occur continu­
ously until the Slave Status Request for Service Flag is 
deactivated. Demand Mode is especially useful for con­
tinuous data transfers requiring immediate attention. 
FIFO Alternate Cycle Mode provides for interleaving 
DMA transfers and instruction cycles to achieve a 
maximum of software flexibility. Both internal DMA 
channels can be used simultaneously to provide contin­
uous transfer for both Input and Output FIFO chan­
nels. 

Byte by byte transfers between the FIFO and internal 
CPU timing is a function of t.he specific instruction cy­
cle time. Of the 111 MCS-51 instructions, 64 require 12 
clock cycles, 45 require 24 clock cycles and 2 require 48 
clock cycles. Most instructions involving SFRs are 24 
clock cycles except accumulator (for example, MOV 
direct, A) or logical operations (ANL direct, A). Typi­
cal instruction and their timings are shown in Table 9. 

Oscillator Period: @ 12 MHz = 83.3 ns 

@ 16 MHz = 62.5 ns 

Table 9. Typical Instruction Cycle Timings 

Instruction 
Oscillator 

@12MHz @16MHz 
Periods 

MOV directt, A 12 1 JLs 750 ns 
MOV direct, direct 24 2 JLs 1.5 JLs 

NOTE: 
t Direct = 6-bit internal data locations address. This could 
be an Internal Data RAM location (0-255) or a SFR [i.e., II 
o port, control register. etc.] 

Byte by byte FIFO data transfers introduce an addi­
tional overhead factor not found in internal DMA op­
erations. This factor is the FIFO block size to be trans­
ferred; the number of empty locations in the Output 
channel, or the number of bytes in the Input FIFO 

channel. As described above in the FIFO Data Struc­
ture section, the block size would have to be deter­
mined by reading the channel read and write pointer 
and calculating the space available. Another alternative 
uses the FIFO Overrun and Underrun Error flags to 
manage the transfers by accepting error flags. In either 
case the instructions needed have a significant impact 
on the internal FIFO data transfer rate latency equa­
tion. 

A typical effective internal FIFO channel transfer rate 
using internal DMA is shown in Equation 4. Equation 
5 shows the latency using byte by byte transfers with an 
arbitrary factor added for internal CPU block size cal­
culation. These two equations contrast the effective 
transfer rates when using internal DMA versus individ­
ual instructions to transfer 128 bytes. The effective 
transfer rate is approximately four times as fast using 
DMA versus using individual instructions (96 JLs with 
DMA versus 492 JLs non-DMA). 

Equation 4. Effective Internal FIFO 
Transfer Time Using Internal DMA 

Effective Internal FIFO Transfer Rate with DMA 
FIFO channel size • Internal DMA Burst Mode 
Single Cycle DMA Time 
128 Bytes • 750 ns 
96 JLs 

Equation 5. Effective FIFO Transfer 
Time Using Individual Instructions 

Effective Internal FIFO Transfer Rate without DMA 
FIFO channel size • Instruction Cycle Time + 
Block size calculation Time 
128 Bytes' (24 oscillator periods @ 16 MHz) + 
20 instructions (24 oscillator period each 
@ 16 MHz) 
128 • 1.5 JLs + 300 JLs 
492 JLs 

FIFO DMA FREEZE MODE 
INTERFACE 

FIFO DMA Freeze Mode provides a means of locking 
the Host out of the FIFO Input and Output channels. 
FIFO DMA Freeze Mode can be invoked for a variety 
of reasons, for example, to reconfigure the UPI-452 Lo­
cal Expansion Bus, or change the baud rate on the seri­
al channel. The primary reason the FIFO DMA Freeze 
Mode is provided is to ensure that the Host does not 
read from or write to the FIFO while the FIFO inter­
face is being altered. ONLY the internal CPU has the 
capability of altering the FIFO Special Function Regis­
ters, and these SFRs can ONLY be altered during 
FIFO DMA Freeze Mode. FIFO DMA Freeze Mode 
inhibits Host access of the FIFO while the internal 
CPU reconfigures the FIFO. 

4-17 



inter AP-281 

FIFO DMA Freeze Mode should not be arbitrarily in­
voked while the UPI-452 is in normal operation. Be­
cause the external CPU runs asynchronously to the in­
ternal CPU, invoking freeze mode without first proper­
ly resolving the FIFO Host interface may have serious 
consequences. Freeze Mode may be invoked only by 
the internal CPU. 

The internal CPU invokes Freeze Mode by setting bit 3 
of the Slave Control SFR (SC3). This automatically 
forces the Slave and Host Status SFR FIFO DMA 
Freeze Mode to In Progress (SSTAT SST5 "7 0, 
HSTAT SFR HSTI = 1). INTRQ goes active, if en­
abled by MODE SFR bit 4, whenever FIFO DMA 
Freeze Mode is invoked to notify the Host. The Host 
reads the Host Status SFR to determine the source of 
the interrupt. INTRQ and the Slave and Host Status 
FIFO DMA Freeze Mode bits are reset by the Host 
READ of the Host Status SFR. 

During FIFO DMA Freeze Mode the Host has access 
to the Host Status and Control SFRs. All other Host 
FIFO interface access is inhibited. Table 10 lists the 
FIFO DMA Freeze Mode status of all slave bus inter­
face Special Function Registers. The internal DMA 
processor is disabled during FIFO DMA Freeze Mode 
and the internal CPU has write access to all of the 
FIFO control SFRs (Table 11). 

If FIFO DMA Freeze Mode is invoked without stop­
ping the host, only the last two bytes of data written 
into or read from the FIFO will be valid. The timing 
diagram for disabling the FIFO module to the external 
Host interface is illustrated in Figure 7. Due to this 
synchronization sequence, the UPI-452 might not go 
into FIFO D,MA Freeze Mode immediately after the 
Slave Control SFR FIFO 7 DMA Freeze Mode bit 
(SC3) is set = O. A special bit in the Slave Status SFR 
(SST5) is provided to indicate the status of the FIFO 
DMA Freeze Mode. The FIFO DMA Freeze Mode 

INTRQ OR .J 
DROIN/DROOUT 

RD#/WR# 

operations described in this section are only valid after 
SST5 is cleared. 

Either the Host or internal CPU can request FIFO 
DMA Freeze Mode. The first step is to issue an Imme­
diate Command indicating that FIFO DMA Freeze 
Mode will be invoked. Upon receiving the Immediate 
Command, the external CPU should compl~te servicing 
all pending interrupts and DMA requests, then send an 
Immediate Command back to the internal CPU ac­
knowledging the FIFO DMA Freeze Mode request. 
After issuing the first Immediate Command, the inter­
nal CPU should not perform any action on the FIFO 
until FIFO DMA Freeze Mode is invoked. The hand­
shaking is the same in reverse if the HOST CPU initi­
ates FIFO DMA Freeze Mode. 

After the slave bus interface is frozen, the internal CPU 
can perform the operations listed below on the FIFO 
Special Function Registers. These operations are al­
lowed only during FIFO DMA Freeze Mode. Table 11 
summarizes the characteristics of all the FIFO Special 
Function Registers during Normal and FIFO DMA 
Freeze Modes. 

For FIFO I. Changing the Channel Boundary 
Reconfiguration Pointer SFR. 

2. Changing the Input and Output 
Threshold SFR. 

To Enhance the 3. Writing to the, read and write 
testability pointers of the Input and Output 

FIFO's. 

4. Writing to and reading the Host 
Control SFRs. 

5. Controlling some bits of Host and 
Slave Status SFRs. 

6. Reading the Immediate Command 
Out SFR and Writing to the 1m­
m'ediate Command in SFR. 

:: : A FIFO RD/WR AnER 
, • - • INTERFACE FREEZE IS 
, INVOKED WILL CAUSE' 

INTRO J ______ : __________________ _ 
HST3 OR HST7 TO BE SET 

SC3 

Hsn _____________ ...... SET 

NOTE: 
Timing Diagram of disabling of FIFO Module-External Host Interface. 

Figure 7. 'Disabling FIFO to Host Slave Interface Timing Diagram 

4-18 

292018-7 



inter AP-281 

The sequence of events for invoking FIFO DMA 
Freeze Mode are listed in Figure 8. 

1. Immediate Command to request FIFO DMA 
Freeze Mode (interrupt) 

2. Host/internal CPU interrupt response/service 

3. Host/internal CPU clear/service all pending 
interrupts and FIFO data 

4. Internal CPU sets Slave Control (SLCON) 
FIFO DMA 

Freeze Mode bit = 0, FIFO DMA Freeze 
Mode, Host Status SF.R FIFO DMA Freeze 
Mode Status bit = 1, INTRQ active (high) 

5. Host READ Host Status SFR 

6. Internal CPU reconfigures FIFO SFRs 

7. Internal CPU resets Slave Control (SLCON) 
FIFO DMA 

"Freeze Mode bit = 1, Normal Mode, Host 
Status FIFO DMA Freeze Mode Status bit = 
o. 

8. Internal CPU issues Immediate Command to 
Host indicating that FIFO DMA Freeze Mode is 
complete 

or 

Host polls Host Status SFR FIFO DMA Freeze 
Mode bit to determine end of reconfiguration 

Figure 8. Sequence of Events to Invoke 
FIFO DMA Freeze Mode 

EXAMPLE CONFIGURATION 

An example of the time required to reconfigure the 
FIFO 180 degrees, for example from 128 bytes Input to 
128 bytes Output, is shown in Figure 9. The example 
approximates the time based on several assumptions; 

1. The FIFO Input channel is full-128 bytes of data 

2. Output FIFO channel is empty-l byte 

3. No Data Stream Commands in the FIFO. 

4. The Immediate Command interrupt is responded to 
immediately-highest priority-by Host and inter­
nal CPU. 

5. Respective interrupt response times 

4-19 

a. Host (Equation 3 above) = approximately 1.6 jJ.s 
b. Internal CPU is 86 oscillator periods or approxi­

mately 5.38 jJ.s worst case. 

Event 
Immediate Command from Host 
to UPI-452 to request FIFO DMA 

, Freeze Mode (iAPX286 WRITE) 

Internal CPU interrupt response/ 
service 

Internal CPU clears FIFO-128 
bytes DMA 

Internal CPU sets Slave Control 
Freeze Mode bit 

Immediate Command to Host­
Freeze Mode in progress Host 
Immediate Command interrupt 
response 

Internal CPU reconfigures FIFO 
SFRs 

Channel Boundary Pointer SFR 
Input Threshold SFR 
Output Threshold SFR 

Internal CPU resets Slave 
Control (SLCON) Freeze Mode 
bit = 1, Normal Mode, and 
automatically resets Host Status 
FIFO DMA Freeze Mode bit 

Internal CPU writes Immediate 
Command Out 

Host Immediate Command 
interrupt service 

Total Minimum Time to 
Reconfigure FIFO 

Time 
0.30 jJ.s 

5.38 jJ.s 

96.00 jJ.s 

0.75 jJ.s 

2.3 jJ.s 

0.75 jJ.s 
0.75 jJ.s 
0.75 jJ.s 

2.3 jJ.s 

0.75 jJ.s 

2.3 jJ.s 

112.33 jJ.s 

Figure 9. Sequence of Events to Invoke FIFO 
DMA Freeze Mode and Timings 



intJ AP-281 

Table 10. Slave Bus Interface Status During FIFO DMA Freezer Mode 

Interface Pins; Operation In Status In 
DACK CS A2 A1 AO READ WRITE Normal Mode Freeze Mode 

1 0 0 1 0 0 1 Read Host Status SFR Operational 

1 0 0 1 1 0 1 Read Host Control SFR Operational 

1 0 0 1 1 1 0 Write Host Control SFR Disabled 

1 0 0 0 0 0 1 Data or DMA data from Disabled 
Output Channel 

1 0 0 0 0 1 0 Data or DMA data to Disabled 
Input Channel 

1 0 0 0 1 0 1 Data Stream Command from Disabled 
Output Channel 

I 

1 0 0 0 1 1 0 Data Stream Command to Disabled 
Input Channel 

1 0 1 0 0 0 1 Read Immediate Command Disabled 
Out from Output Channel 

1 0 1 0 0 1 0 Write Immediate Command Disabled 
In to Input Channel 

0 X X X X 0 1 DMA Data from Output Disabled 
Channel 

0 X X X X 1 0 DMA Data to Input Channel Disabled 

NOTE: 
X = don't care 

Table 11. FIFO SFR's Characteristics During FIFO DMA Freeze Mode 

Normal Freeze Mode 
Label Name Operation Operation 

(SST5 = 1) (SST5 = 0) 

HCON . Host Control Not Accessible Read & Write 
HSTAT Host Status Read Only Read & Write 
SLCON Slave Control Read & Write Read & Write 
SSTAT Slave Status Read Only Read & Write 
IEP Interrupt Enable 

& Priority Read & Write Read & Write 
MODE Mode Register Read & Write Read & Write 
IWPR Input FIFO Write Pointer Read Only' Read & Write 
IRPR Input FIFO Read Pointer Read Only Read & Write 
OWPR Output FIFO Write Pointer Read Only Read & Write 
ORPR Output FIFO Read Pointer Read Only Read & Write 
CBP Channel Boundary Pointer Read Only Read & Write 
IMIN Immediate Command In Read Only Read & Write 
IMONT Immediate Command Out Read & Write Read & Write 
FIN FIFO IN Read Only Read Only 
CIN COMMAND IN Read Only Read Only 
FOUT FIFO OUT Read & Write Read & Write 
COUT COMMAND OUT Read & Write Read & Write 
ITHR Input FIFO Threshold Read Only Read & Write 
OTHR Other FIFO Threshold Read Only Read & Write 

4-20 



intJ APPLICATION 
NOTE 

AP-283 

September 1986 

Flexibility in Frame Size with the 
8044 

© Intel Corporation, 1988 

PARVIZ KHODADADI 
APPLICATIONS ENGINEER 

4-21 
Order Number: 292019-001 



inter FLEXIBILITY IN FRAME SIZE WITH THE 8044 

1.0 INTRODUCTION 

The 8044 is a serial communication microcontroller 
known as the RUPI (Remote Universal Peripheral In­
terface). It merges the popular 8051 8-bit microcontrol­
ler with an intelligent, high performance HDLC/SDLC 
serial communication controller called the Serial Inter­
face Unit (SIU). The chip provides all features of the 
microcontroller and supports the Synchronous Data 
Link Control (SDLC) communications protocol. 

There are two methods of operation relating to frame 
size: 

1) Normal operation (limited frame size) 
2) Expanded operation (unlimited frame size) 

In Normal operation the internal 192 byte RAM is 
used as the receive and transmit buffer. In this opera­
tion, the chip supports data rates up to 2.4 Mbps exter­
nally clocked and 375 Kbps self-clocked. For frame 
sizes greater than 192 bytes, Expanded operation is re­
quired. In Expanded operation the ext~rnal RAM, in 
conjunction with the internal RAM, IS used as ·the 
transmit and receive buffer. In this operation, the chip 
supports data rates up to 500 Kbps externally clocked 
and 375 Kbps self-clocked. In both cases, the SIU han­
dles many of the data link functions in hardware, and 
the chip can be configured in either Auto or Flexible 
mode. . 

The discussion that follows describes the operation of 
the chip and the behavior of the serial interface unit. 
Both Normal and Expanded operations will be further 
explained with extra emphasis on Expanded operation 
and its supporting software. Two examples of SDLC 
communication systems will also be covered, where the 
chip is used in Expanded operation. The discussion as-

TRANSMIT I 
FRAME: ._ r I A I C I 

RECEIVE 
FRAME: I r I A I C I 

----
----

/ 

-'"'- -
----

sumes that the reader is familiar with the 8044 data 
sheet and the SDLC communications protocol. 

1.1 Normal Operation 

In Normal operation the on-chip CPU and the SIU 
operate in parallel. The SIU handles the serial commu­
nication task while the CPU processes the contents of 
the on-chip transmit and receiver buffer, services inter­
rupt routines, or performs the local real time processing 
tasks. 

The 192 bytes of on-chip RAM serves as the interface 
buffer between the CPU and the SIU, used by both as a 
receive and transmit buffer. Some of the internal RAM 
space is used as general purpose registers (e.g. RO-R7). 
The remaining bytes may be divided into at least two 
sections: one section for the transmit buffer and the 
other section for the receive buffer. In some applica­
tions, the 192 byte internal RAM size imposes a limita­
tion on the size of the information field of each frame 
and, consequently, achieves less than optimal informa­
tion throughput. 

Figure 1 illustrates the flow of data when internal 
RAM is used as the receive and transmit buffer. The 
on-chip CPU allocates a receive buffer in the internal 
RAM and enables the SIU. A receiving SDLC frame is 
processed by tlie SIU and the information bytes of the 
frame, if any, are stored in the internal RAM. Th~n, 
the SIU informs the CPU of the received bytes (Senal 
Channel interrupt). For transmission, the CPU loads 
the transmitting bytes into the internal RAM and en­
ables the SIU. The SIU transmits the information bytes 
in SDLC format. 

I rCS1 I FCS2 I r I 
SPECIAL ~UNCTION 

REGTERS 

OBFH 

t 
t TRANSMIT 

BurFER 

~ 
-" t 

RECEIVE .. BUFFER 

~ 

GENERAL fpURPOSE 

I rCS1 I FCS2 I F I REGISTERS 

~ OOH 
NTERNAL RAM 

292019-1 

Figure 1. Transmission/Reception Data Flow Using Internal RAM 

4-22 



FLEXIBILITY IN FRAME SIZE WITH THE 8044 

TR~~;~~~ I r I A I c I I rcsi I rCS2 I r I 

RECEIVE I 

I rcsi I rCS2 I F I .... _____ ..... OOH L~t." INTERNAL RAM EXTERNAL RAM 

292019-2 

Figure 2. Transmission/Reception Data Flow Using External RAM 

1.2 Expanded Operation 

In Expanded operation the on-chip CPU monitors the 
state of the SIU, and moves data from/to external buff­
er to/from the internal RAM and registers while recep­
tion/transmission is taking place. If the CPU must 
service an interrupt during transmission or reception of 
a frame or transmit from internal RAM, the chip can 
shift to Normal operation. 

There is a special function register called SIUST, the 
contents of which dictate the operation of the SIU. 
Also, at data rates lower than 2.4 Mbps, one section of 
the SIU, in fixed intervals during transmission and re­
ception, is in the "standby" mode and performs no 
function. The above two characteristics make it possi­
ble to program the CPU to move data to/from external 
RAM and to force the SIU to repeat or skip some de­
sired hardware tasks while transmission or reception is 
taking place. With these modifications, external RAM 
can be utilized as a transmit and receive buffer instead 
of the internal RAM. 

Figure 2 graphically shows the flow of data when exter­
nal RAM is used. For reception, the receiving bytes are 
loaded into the Receive Control Byte (RCB) register. 
Then, the data in RCB is moved to external RAM and 
the SIU is forced to load the next byte into the RCB 
register - The chip believes it is .receiving a control byte 
continuously. For transmission, Information bytes (1-
bytes) are loaded into a location in the internal RAM 
and the chip is forced to transmit the contents of this 
location repeatedly. 

Discussion of expanded operation is continued in sec­
tions 4 and 5. First, however, sections 2 and 3 describe 

fea~ures of the 8044 which are necessary to further ex­
plain expanded operation. 

2.0 THE SERIAL INTERFACE UNIT 

2.1 Hardware Description 

The Serial Interface Unit (SIU) of the RUPI, shown in 
Figure 3, is divided functionally into a Bit Processor 
(BIP) and a Byte Processor (BYP), each sharing some 
common timing and control logic. The bit processor is 
the interface between the SIU bus and the serial port 
pins. It performs all functions necessary to transmit/re­
ceive a byte of data to/from the serial data line (shift­
ing, NRZI coding, zero insertion/deletion, etc.). The 
byte processor manipulates bytes of data to perform 
message formatting, transmitting, and receiving func­
tions. For example, moving bytes from/to the special 
function registers to/from the bit processor. 

The byte processor is controlled by a Finite-State Ma­
chine (FSM). For every receiving/transmitting byte, 
the byte processor executes one state. It then jumps to 
the next state or repeats the same state. These states 

. will be explained in section 3. The status of the FSM is 
kept in an 8-bit register called SIUST (SIU State Coun­
ter). This register is used to manipulate the behavior of 
the byte processor. 

As the name implies, the bit processor processes data 
one bit at a time. The speed of the bit processor is a 
function of the serial channel data rate. When one byte 
of data is 'processed by the bit processor, a byte bounda-

4-23 



inter FLEXIBILITY IN FRAME SIZE WITH THE 8044 

ry is reached. Each time a byte bc'undary is detected in 
"the serial data stream, a burst of clock cycles (16 CPU 
states) is generated for the byte processor to execute 
one state of the state machine. When all the procedures 
in the state are executed, a wait signal is asserted to 
terminate the burst, and the byte processor waits for 
the next byte boundary (standby mode). The lower the 
data rate, the longer the byte processor will stay in the 
standby mode. 

2.2 Reception of Frames 

Incoming data is NRZI decoded by the on-chip decod­
er. It is then passed through the zero insertion/deletion 
(ZID) circuitry. The ZID not only performs zero inser­
tion/deletion, but also detects flags and Go Aheads 
(GA) in the data stream. The data bits are then loaded 
"into the shift register (SR) which performs serial to par­
allel conversion. When 8 bits of data are collected in the 
shift register, the bit processor triggers the byte proces­
sor to process the byte, and it proceeds to load the next 

SPECIAL 
FUNCTION 
REGISTERS: 
STAD TBl 
RCB TCB 
RBl BCNT 
RBS FIFOO 
RFl FIF01 
TBS FIF02 

DUAL 
PORT 
RAM 

IB 

block of data into the shift register. The serial data is 
also shifted, through SR, to a 16-bit register" called 
"FCS GEN/CHK" for CRC checking. The byte proc­
essor takes the received address and control bytes from 
the SR shift register and moves them to the appropriate 
registers. If the contents of the shift register is expected 
to be an information byte, the byte processor" moves 
them through a 3-byte FIFO to the internal RAM at a 
starting location addressFd by the contents of the Re­
ceive Buffer Start (RBS) register. 

2.3 Transmission of Frames 

In the transmit mode, the byte processor relinquishes a 
byte to the bit processor by moving it to a register 
called RB (RAM buffer). The bit processor converts 
the data to serial form through the shift register, per­
forms zero bit insertion, NRZI encoding, and sends the 
data to the serial port for transmission. Finally, the 
contents of the FCS GEN/CHK and the closing flag 
are routed to the serial port for transmission. 

BYP 

CONTROL <' 
SIGNALS, 

292019-3 

Figure 3. SIU Block Diagram 

4-24 



inter FLEXIBILITY IN FRAME SIZE WITH THE 8044 

3.0 TRANSMIT AND RECEIVE 
STATES 

The simplified receive and transmit state diagrams are 
shown in Figures 4 arid 5, respectively. The numbers on 
the left of each state represent the contents of the 
SIUST register when the byte processor is in the stand­
by mode, and the instructions on the right of each state 
represent the "state procedures" of that state. When the 
byte processor executes these procedures the least three 
significant bits of the SIUST register are being incre­
mented while the other bits remain unchanged. The 
byte processor will jump from one state to another 
without going into the standby mode when a condition­
al jump procedure executed by the byte processor is 
true. 

3.1 Receive State Sequence 

When an opening flag (7EH) is detected by the bit 
processor, the byte processor is triggered to execute the 
procedures of the FLAG state. In the FLAG state, the 
byte processor loads the contents of the RBS register 
into the Special RAM (SRAR) register. SRAR is the 
pointer to the internal RAM. The byte processor decre­
ments the contents of the Receive Buffer Length (RBL) 
register and loads them into the DMA Count (DCNT) 
register. The FCS GEN/CHK circuit is turned on to 
monitor the serial data stream for Frame Check Se­
quence functions as per SDLC specifications. 

Assuming there is an address field in the frame, con­
. tents of the SIUST register will then be changed to 
08H, causing the byte processor to jump to the AD­
DRESS state and wait (standby) for the next byte 
boundary. As ~oon as the bit processor moves the ad­
dress byte into the SR shift register, a byte boundary is 
achieved and the byte processor is triggered to execute 
the procedures in the ADDRESS state. 

In the ADDRESS state the received station address is 
compared to the contents of the ST AD register. If there 
is no match, or the address is not the broadcast address 
(FFH), reception will be aborted (SIUST = O!H). Oth­
erwise, the byte processor jumps to the CONTROL 
state (SIUST = 1OH) and goes into standby mode. 

The byte processor jumps to the CONTROL state if 
there exists a control field in the receiving frame. In 
this state the control byte is moved to the RCB register 
by the byte processor. Note that the only action taken 
in this state is that a received byte, processed by the bit 
processor, is moved to RCB. There is no other hard­
ware task performed, and DCNT and SRAR are not 
affected in this state. 

The next two states, PUSH-! and PUSH-2, will be'exe­
cuted if Frame check sequence (NFCS = 0) option is 
selected. In these two states the first and second bytes 

of the information field are pushed into the 3-byte 
FIFO (FIFOO, FIFO!, FIF02) and the Receive Field 
Length register (RFL) is set to zero. The 3-byte FIFO 
is used as a pipeline to move received bytes into the 
internal RAM. The FIFO prevents transfer of CRC 
bytes and the closing flag to the receive buffer (Le., 
when the ending flag is received, the contents of FIFO 
are FLAG, FCS!, and FCSO.) The three byte FIFO is 
collapsed to one byte in No FCS mode. 

In the DMA-LOOP state the byte processor pushes a 
byte from SR to FIFOO, moves the contents of FIF02 
to· the internal RAM addressed by the contents of 
SRAR, increments the SRAR and RFL registers, and 
decrements the DCNT register. If more information 
bytes are expected, the byte processor repeats this state 
on the next byte boundaries until DMA Buffer End 
occurs. The DMA Buffer End occurs if SRAR reaches 
OBFH (!92 decimal), DCNT reaches zero, or the RBP 
bit of the STS register is set. 

The BOY-LOOP state, the last state, is executed if 
there is a buffer overrun. Buffer overrun occurs when 
the number of information bytes received is larger than 
the length of the receive buffer (RFL > RBL). This 
state is executed until the closing flag is received. 

At the end of reception, ithe FCS option is used, the 
closing flag and the FCS bytes will remain in the 3-byte 
FIFO. The contents of the RCB register are used to 
update the NSNR (Receive/Send Count) register. The 
SIU updates the STS register and sets the serial inter­
rupt. 

3.2 Tr~nsmit State Sequence 

Setting the RTS bit puts the SIU in the transmit mode. 
When the CTS pin goes active, the byte processor goes 
into START-XMIT state. In this state the opening flag 
is moved into the RAM Buffer (RB) register. The byte 
processor jumps to the next state and goes into the 
standby mode. . 

If the Pre-Frame Sync (PFS) option is selected, the 
PFSI and PFS2 states will be executed to transmit the 
two Pre-Frame Sync bytes (OOH or 55H). In these two 
states the contents of the Pre-Frame Sync generator are 
sent to the serial port while the Zero Insertion Circuit 
(ZID) is turned off. ZID is turned back on automatical­
lyon the next byte boundary. 

If the PFS option is not chosen, the byte processor 
jumps to the FLAG state. In this state, the byte proces­
sor moves the contents of TBS into the SRAR register, 
decrements TBL and moves the contents into the 
DCNT register. The byte processor turns off the ZID 
and turns on FCS GEN/CHK. The contents of FCS 
GEN/CHK are not transmitted unless the NFCS bit is 

4-25 



inter FLEXIBILITY IN FRAME SIZE WITH THE 8044 

SIUST' STATE STATE PROCEDURE 

01H ( rLAG 1 01-1) (RBS)-SRAR 
01-2) (RBL)-1 -(DeNT) 
01-3) TURN ON rcs GEN/CHK 
0104) IF POINT TO POINT MODE, 

GOTO 10-2 

. 08H ( ADDRESS ) 08-1) SR-TMP 
08-2) (STAO)-RB 
08-3) IF RB.NE.TMP AND 

FFH.NE.TMP THEN IDLE 
08-4) IF NB=1 GOTO 10-2 

10H ( CONTROL J 10-1) SR-(RCB) 

! 
10-2) IF NrCS=1 GOTO 20-3 

18H ( PUSH-1 J 18-1) SR-(FIFOO) 

! 
18-2) PUSH 

20H ( PUSH-2 ) 20-1) SR - (FIFOO) 
20-2) PUSH 
20-2) (RFL)--OOH 
20-4) IF DMA BUFFER END, 

GOTO 28-7 
20-5) (RCB)-RB 

28H ( DMA-LOOP J 28-1) IF END OF I-FIELD, 
THEN IDLE 

28-2) (FIF02)-@SRAR 
28-3) SR- (FIFOO) 
28-4) INC. SRAR 
28-5) PUSH 
28-6) DEC. (DCNT) . 
28-7) INC. (RFL) 
28-8) IF NOT DMA BUFFER END, 

" 
GOTO 28-1 

28-9) RCB)- RB 

30H ( BOY-LOOP ) 30-1) SET BOY ,BIT (SRS.3) 
30-2) (RCB)-RB 
30-3) IF NOT END OF I-FIELD, 
, GOTO 30-1 
30-4) IDLE 

292019-4 

Figure 4. Receive State Diagram 

set. If a frame with the address field is chosen, it moves 
the contents of the ST AD register into the RB register 
for transmission. At the same time, the opening flag is 
being transmitted by the 'bit processor. 

In the ADDRESS (SIUST = AOH) and CONTROL 
(SIUST = A8H) states, TCB and the first information 
byte are loaded into, the RB register for transmission, 
respectively. Note that in the CONTROL state, none of 
the registers (e.g. DCNT, SRAR) are incremented, and 
ZID and FCS GEN/CHK are not turned on or off. 

The procedures in the DMA-LOOP state are similar to 
the procedures of the DMA-LOOP in the receive state 
diagram. The SRAR register pointer to the internal 
RAM is incremented, and the DCNT register is decre­
mented. The contents of DCNTreach zero when all the 
information bytes from the transmit buffer are trans­
mitted. A byte from RAM is moved to the RB register 
for transmission. This state is executed on the following 

b~te boundaries until all the information bytes are 
transmitted. 

The FCSI and the FCS2 states are executed to transmit 
the Frame Check Sequence bytes generated by the FCS 
generator, and the END-FLAG state is executed to 
transmit the closing flag. 

The XMIT-ACTION and the ABORT-ACTION 
states are executed by the byte processor to synchronize 
the SIU with the CPU clock. The XMIT-ACTION or 
the ABORT-ACTION state is repeated until the byte 
processor status is updated. At the end, the STS and the 
TMOD registers are updated. 

The two ABORT-SEQUENCE states (SIUST = EOH 
and'SIUST = E8H) are executed only if transmission 
is aborted by the CPU (RTS or TBF bit of the STS 
register'is cleared) or by the serial data link (CTS signal 
goes inactive or shut-off occurs in loop mode.) 

4-26 



intJ FLEXIBILITY IN FRAME SIZE WITH THE 8044 

SIUST STATE STATE PROCEDURE 

87H 87-1) FLAG-R8 

88H T 88-1) IF NO PFS (SMD.2=0), 
GOTO 98-1 

88-2) XMIT A PFS 8YTE 
88-3) ZID OFF 

90H ( PFS2 ) 90-1) XMIT A PFS 8YTE 

1 90-2) ZID OFF 

98H FLAG 98-1) (T8S)-SRAR 
98-2) ZID OFF 
98-3) (TBL)-1- (DCNT) 
98-4) TURN ON FCS GEN/CHK 
98-5) IF POINT TO POINT MODE, 

GOTO A8-1 
98-6) (STAD)- R8 

AOH ADDRESS AO-1) IF N8=1 GOTO A8-1 
AO-2) IF AUTO MODE 

CTRL-R8 
AO-3) IF FLEXI8LE MODE 

(TC8)-R8 

A8H A8-1) IF DMA 8UFFER END, 
GOTO 80-3 

A8-2) @SRAR-R8 

80H 80-1) INC. SRAR 
80-2) DEC. DCNT 
80-3) IF DMA BUFFER END 

AND NFCS=l, 
GOTO CO-1 

80-4) @SRAR-R8 
BO-5) GOTO 80-1 

88H 88-1) NO ACTION 

COH CO-1) FLAG-R8 

C8H END-FLAG C8-1) ZID OFF 

DOH 00-1) REPEAT THIS STATE TILL SIU 
IS IN SYNC. WITH CPU, THEN 
IDLE. ZID OFF 

EOH EO-1) NO ACTION 

E8H' E8-1) ZID OFF 

FOH A80RT -ACTION FO-1) REPEAT THIS STATE TILL SIU 
IS IN SYNC. WITH CPU, THEN 
IDLE. ZID OFF 

292019-6 

Figure 5, Transmit State Diagram 

4-27 



inter FLEXIBILITY IN FRAME SIZE WITH THE 8044 

4.0 TRANSMISSION/RECEPTION OF 
LONG FRAMES (EXPANDED 
OPERATION) 

In this application note, a frame whose information 
field is more than 192 bytes (size of on-chip RAM) is 
referred to as a long frame. The 8044 can access up to 
64000 bytes of external RAM. Therefore, a long frame 
can have up to 64000 information bytes. 

4.1 Description 

During transmission or reception of a frame, while the 
bit processor is processing a byte, the byte processor, 
after 16 CPU states, is in the standby mode, and the 
internal registers and the internal bus are not used. The 
period between each byte boundary, when the byte 
processor is in the standby mode, can be used to move 
data from external RAM to one of the byte processor 
registers for transmission and vice versa for reception. 
The contents of the SIUST register, which dictate the 
state of the byte processor, can be monitored to recog­
nize the beginning of each SDLC field and the consecu­
tive byte boundaries. 

By writing into the SIUST register, the byte processor 
can be forced to repeat or skip a specific state. As an 
example, the SIU can be forced to repeatedly put the 
received bytes into the RCB register. This is accom­
plished by writing E7H into the SIUST register when 
the byte processor goes into the standby mode. The 
byte processor, therefore, executes the CONTROL 
state at the next byte boundary. 

For transmission, the byte processor is put in the trans­
mit mode. When transmission of a frame is initiated, 
the user program calls a subroutine in which the state 
of the byte processor is monitored by checking the con­
tents of the SIUST register. When the byte processor 
reaches a desired state and goes into standby, the CPU 
loads the first byte of the internal RAM buffer with 
data and moves the byte processor to the CONTROL 
state. The routine is repeated for every byte. At the end, 
the program returns from the subroutine, and the SIU 
finishes its task (see application examples). 

For reception, a software routine is executed to move 
data to external RAM and to force the SIU to repeat 
the CONTROL state. The CONTROL state is repeated 
because, as shown in the receive state diagram, the only 
action taken by the byte processor, in the CONTROL 
state, is to move the contents of SR to the RCB register. 
None of the registers (e.g. SRAR and DCNT) are in­
cremented. A similar comment justifies the use of the 
CONTROL· state for transmission. In the transmit 
CONTROL state, contents of a location in the on-chip 
RAM addressed by TBS is moved to RB for transmis­
sion. 

4.2 SIU Registers 

To write into the SIUST register, the data must be com­
plemented. For example, if you intend to write 18H 
into the SIUST register, you should write E7H to the 
register. The data read from SIUST is, however, true 
data (i.e. 18H). 

Read and write accesses to the SIUST, STAD, DCNT, 
RCB, RBL, RFL, TCB, TBL, TBS, and the 3-byte 
FIFO registers are done on even and odd phases, re­
spectively. Therefore, there is no bus contention when 
the CPU is monitoring the registers (e.g. SIUST), and 
SIU is simultaneously writing into them. 

There is no need to change or reset the contents of any 
SIU register while transmitting or receiving long 
frames, unless the byte processor is forced to repeat a 
state in which the contents of these registers are modi­
fied. Note that the SRAR register can not be accessed 
. by the CPU; therefore, avoid repeating the DMA­
LOOP states. If SRAR increments to 192, the SIU will 
be interrupted and communication will be aborted. 

4.3 Other Possibilities . 

The internal RAM, in conjunction with an external 
buffer (RAM or FIFOs), can be used as a transmit and 
receive buffer. In other words, Expanded and Normal 
operation can be used together. For example, if a frame 
with 300 Information bytes is received and only 255 of 
them are moved to an external buffer, the remaining 
bytes (45 bytes) will be loaded into the internal RAM 
by the SIU (assuming RBL is set to 45 or more). The 
contents of RFL indicate the number of bytes stored in 
the internal RAM. For transmission, the contents of 
the external buffer can be transmitted followed by the 
contents of the internal buffer. 

If the internal RAM is not used, contents of the RBL 
register can be 0 and contents of the TBL register must 
be set to 1. The contents of the TBS register can be any 
location in the internal RAM. 

The transmission and reception procedures for long 
frames with no FCS are similar to those with FCS. The 
exception is the contents of the SIUST register should 
be compared with different values since the two FCS 
states of the transmit and receive flow charts are 
skipped by the byte processor. 

If a frame format with no control byte is chosen, a 
location in the RAM addressed by TBS should be used 
for transmission as with control byte format. The FIFO 
can be used for reception. The ST AD register can be 
used for t~ansmission if no zero insertion is required. 

4-28 



FLEXIBILITY IN FRAME SIZE WITH THE 8044 

If the RUPI is used in Auto mode (see Section 5), it 
will still respond to RR, RNR, REJ, and Unnumbered 
Poll (UP) SDLC commands with RR or RNR auto­
matically, without using any transmit routine. For ex­
ample, if the on-chip CPU is busy performing some real 
time operations, the SIU can transmit an information 
frame from the internal buffer or transmit a supervisory 
frame without the help of CPU (Normal operation). 

Maximum data rate using this feature is limited primar­
ily by the number of instructions needed to be executed 
during the standby mode. 

Transmission or reception of a frame can be timed out 
so that the CPU will not hang up in the transmit or 
receive procedures if a frame is aborted. Or, if the da~a 
rate allows enough time (standby time is long enough), 
the CPU can monitor the SIUST register for idle mode 
(SIUST = OlH). 

It is also possible to transmit multiple opening or clos­
ing flags by forcing the byte processor to repeat the 
END-FLAG state. 

4.4 Maximum Data Rate in Expanded 
Operation 

Assuming there is no zero-insertion/deletion, the bit 
processor requires eight serial clock periods to process 
one block of data. The byte processor, running on the 
CPU clock, processes one byte of data in 16 CPU states 
(one state of the state diagrams). Each CPU state is two 
oscillator periods. At an oscillator frequency of 
12 MHz, the CPU clock is.6 MHz, and 16 CPU states 
is 2.7 /ks. At a 3 Mbit rate with no zero-insertion/dele­
tion, there is exactly enough time to execute one state 
per byie (i6 states at 6 MHz = 8 bits at 3M baud). In 
other words, the standby time is zero. 

Figure 6 demonstrates portions of the timing relation­
ship between the byte processor and the bit processor. 
In each state, the actions taken by the processors, plus 
the contents of the SIUST register, are shown. When 
the byte processor is running, the contents of SIUST 
are unknown. However, when it is in the standby mode, 
its contents are determinable. 

The maximum data rate for transmitting and receiving 
long frames depends on the number of instructions 
needed to be executed during standby, and is propor-

STATE: ADDRESS X\. ___ ~GO_N_T_RO_L ___ --JXI.. ____ P_U_SH_-_l ____ oJX PUSH-2 

BIP: ::x CRTL BYTE - SR X,, ___ 1 s_t_I-_B_YT_E_-__ S_R __ ......JX'' __ 2_"_d_I_-_BYT_E_-__ S_R __ >C 

BYP: ::XSR-TMPX STANDBY X SR - RCB:::X STANDBY X SR - FIFOO ~ 

SIUST: ? 10H ? 

Sa. Reception 

ISH ? 20H 
292019-7 

STATE: ___ FLA_G_oJX,, ___ .;.;A;;;,;DD;;.;.R;,;;ES.;.,.S;.... __ ~X,, ___ .....;C;.;;O;;.;N.;.;TR;.;;O.;;.L _______ X"-___ _ 

BIP: ::X __ X_M_ITT_I_NG_FL_A_G_--JX\. __ X_M_ITT_IN_G_A_D_RS_BYT_E __ ..JX,, __ XM_I_TT_IN_G_C_R_T_L _BYT_E_ .... >C 

BYP: ::XSTAD-RBX STANDBY X TCB - RB X STANDBY X @SRAR - RB ~ 

SIUST: ? AOH ? ASH 

Sb. Transmission 

Figure S. Portions of the BIP/BYP Timing Relationship 

4-29 

? BOH 
292019-8 



inter FLEXIBILITY IN FRAME SIZE WITH THE 8044 

tional to the oscillator frequency. The time the byte 
processor is in the standby mode, waiting for the bit 
processor to deliver a processed byte, is at least equal to 
eight serial clock periods minus 16 CPU states. If an 
inserted zero is in the block of data, the bit processor 
will process the byte in nine serial clock periods. 

The equation for theoretical maximum data rate is giv­
en as: 

(2TCLCL) x (16 states) + (# of instruction cycles) x 
(12TCLCL) = (STOCY) Equation (1) 

Where: TCLCL is the oscillator period. 
TOCY is the serial clock period. 

At an oscillator frequency of 12 MHz and baud rate of 
375 Kbps, about 18 instruction cycles can be executed 
when the byte processor is in the standby mode. At a 
9600 baud rate, there is time to execute about 830 in­
struction cycles-plenty of time to service a long inter­
rupt routine or perform bit-manipulation or arithmetic 
operations on the data while transmission or reception 
is taking place. 

5.0 MODES OF OPERATION 

The 8044 has two modes: Flexible mode and Auto 
mode. In Auto mode, the chip responds to many SOLC 
commands and keeps track of frame sequence number­
ing automatically without on-chip CPU intervention. 
In Flexible mode, communication tasks are under con­
trol of the on-chip CPU. 

5.1 Flexible Mode 

For transmission, the CPU allocates space for transmit 
buffer by storing values for the starting location and 
size of the transmit buffer in the TBS and the TBL 
registers. It loads the buffer with data, sets the TBF and 
the RTS bits in the STS register, and proceeds to per­
form other tasks. The SIU activates the RTS line. 
When the CTS signal goes active, the SIU transmits the 
frame. At the end of transmission, the SIU clears the 
RTS bit and interrupts the CPU (SI set). 

For reception, the CPU allocates space for receive buff­
er by loading the beginning address and length of the 
receive buffer into the RBS and RBL registers, sets the 
RBE bit, and proceeds to perform other tasks. The 
SIU, upon detection of an opening flag, checks the next 
received byte. If it matches the station address, it will 
load the received control byte into RCB, and received 
information bytes into the receive buffer. At the end of 
reception, if the Frame Check Sequence (PCS) is cor­
rect, the SIU clears RBE and interrupts the CPU. 

5.2 Auto Mode 

In the Auto mode, the 8044 can only be a secondary 
station operating in the SOLC "Normal Response 
Mode". The 8044 in Auto mode does not transmit mes­
sages unless it is polled by the primary. 

For transmission of an information frame, the CPU al­
locates space for the transmit buffer, loads the buffer 
with data, and sets the TBF bit. The SIU will transmit 
the frame when it receives a valid poll-frame. A frame 
whose poll bit of the control byte is set, is a poll-frame. 
The poll bit causes the RTS bit to be set. If TBF were 
not set the SIU would respond with Receive Not 
Ready (RNR) SOLC command- if RBP = 1, or with 
Receive Ready (RR) SOLC command if RBP = O. 
After transmission RTS is cleared, and the CPU is not 
interrupted. 

For reception, the procedure is the same as that of 
Flexible mode. In addition, the SIU sets the RTS bit if 
the received frame is a poll-frame (causing an automat­
ic response) and increments the NS and NR counts 
accordingly. 

6.0 APPLICATION EXAMPLES 

. Two application examples are given to provide addi­
tional details about the procedures used to transmit and 
receive long frames. In the first application example, 
procedures to construct receive and transmit software 
routines for the point-to-point frame format are de­
scribed. :rhe point-to-point frame has the information 
field and the FCS field enclosed between two flags (see 
Figure 7). In the second example software code'is gen­
erated for reception and transinission of the standard 
SDLC frame. The SOLC frame has the pattern: flag, 
address, control, information, FCS, flag. 

The first example focuses on the construction of trans­
mit and receive code which allow the chip to transmit 
and receive long frames. The second example shows 
how to make more use ofthe 8044 features, such as the 
on-chip phase locked loop for clock recovery and auto­
matic responses in the Auto mode to demonstrate the 
capability of the 8044 to achieve high throughput when 
Expanded operation is·used. 

6.1 Point-to-Point Application 
Example 

A point-to-point communication system was developed 
to receive and transmit long frames. The system. con­
sists of. one primary and one secondary station. Al­
though multiple secondary stations can be used in this 

4-30 



intJ FLEXIBILITY IN FRAME SIZE WITH THE 8044 

~ 
1 INFORMATION 1 

BYTES I' 

FRAME CHECK 
SEQUENCE 

FLAG 

Point·te-Point 

FLAG 

ADDRESS BYTE 

CONTROL BYTE 

... INFORMATION'''' 
'I' BYTES 'I' 

FRAME CHECK 
SEQUENCE 

FLAG 

Standard SDLC 
2920t9-9 

Figure 7. Point-to-Point and Standard SDLC 
Frame Formats 

system, one secondary is chosen to simplify the primary 
station's software and focus on the long frame software 
code. Both the primary and the secondary stations are 
in Flexible mode and the external clock option is used 
for the serial channel. The maximum data rate is 
500 Kbps. The FCS bytes are generated and checked 
automatically by both stations. 

6.1.1 POLLING SEQUENCE 

The polling sequence, shown in Figure 8, takes place 
continuously between the primary and the' secondary 
stations. The primary transmits a frame with one infor­
mation byte to the secondary. The information byte is 
used by the secondary as an address byte. The second­
ary checks the received byte, and if the address 
matches, the secondary responds with a long frame. In 
this example, the information field of the frame is cho­
sen to be 255 bytes long. Since there is only one second­
ary station, the address always matches. Upon success­
ful reception of the long frame, the primary transmits 
another frame to the secondary station. 

6.1.2 HARDWARE 

The schematic of the secondary station is given in Fig­
ure 9. The circuit of the primary station is identical to 
the secondary station with the exception of pin 11 

F-I BYTE-FCS-F 

PRIMARY SECONDARY 

F-255 I BYTES-FCS-F 

292019-10 

Figure 8. Secondary Responses to Primary 
Station Commands 

(DATA) being connected to pin 14 (TO). In the pri­
mary station, the 8044 is interrupted when activity is 
detected on the communication line by the on-chip tim­
er (in counter mode). This is explained more later. The 
serial clock to both stations is supplied by a pulse gen­
erator. The output of the pulse generator (not shown in 
the diagram) is connected to pin 15 of the 8044s. Since 
the two stations are located near each other (less than 4 
feet), line drivers are not used. 

The central processor of each station is the 8044. The 
data link program is stored in a 2Kx8 EPROM 
(2732A), and a 2Kx8 static RAM (AM9128) is used as 
the external transmit and receive buffer. The RTS pin is 
connected to the CTS pin. For simplicity, the stations 
are assumed to be in the SDLC Normal Respond Mode 
after Hardware reset. 

6.1.3 PRIMARY STATION SOFTWARE 

The assembly code for the primary station software is 
listed in Appendix A. The primary software consists of 
the main routine, the SIU interrupt routine, and the 
receive interrupt routine. The receive interrupt routine 
is executed when a long frame is being received. 

In the flow charts that follow, all actions taken by the 
SIU appear in squares, and actions taken by the on-chip 
CPU appear in spheres. 

4-31 



" iFi c 
iii 
!D 
I/) 
CD 

8 
:::I a. 

.$>. II) , .. 
w'< 
I\) I/) 

S' g: 
:::I 

I 

SWI 

~ 

~Rl P,~~~HZ 

h::~ 18 
'";g 

9 

....../ 

[ 

N/C -!!. 
15 

dJ 
11 

[] 31 

~-SCLK DATA 

1~~ 
8044 

39 DO DO 1 
X2 ADO 

38 01 01 2 
XI AOI 

37 02 02 3 
A02 

36 03 03 4 
RST A03 

35 04 04 5 
A04 

CTS 34 05 05 6 
ADS 

33 06 06 7 
RTS A06 

32 07 07 8 
A07 

9 

V 11 
30 r-

ALE 
16 

WR 

Rii 
17 

TO 
29 

SCLK PSEN 

DATA 21 A8 
A8 

A9 22 
A9 

Al0 EA 23 
Al0 

24 All 
All 

ADD-7. 

AO-7 
8282 

19 AO 
010 000 

18 AI 
011 001 

17 A2 
012 002 

16 A3 
013 003 

15 A4 
014 004 

14 AS 
015 DOS 

13 A6 
016 006 

12 A7 
017 007 A8 

liE A9 

STS Al0 

A08-11 

A8 

A9 

Al0 

All 

AM9128 

AO 8 9 DO 
AO 00 

AI 7 10 01 
AI 01 

A2 6 
·02 

11 02 
A2 

A3 5 13 03 
A3 03 

A4 4 14 04 
A4 04 

AS 3 15 05 
AS 05 

A6 2 16 06 
A6 06 

A7 1 17 07 
A7 07 

22 
A8 

23 
A9 

19 
Al0 

21 WE 
20 liE r CE 

2732A 

AO 8 9 DO 
AO 00 

AI 7 10 01 
AI 01 

A2 6 11 02 
A2 02 

A3 5 13 03 
A3 03 

A4 4 14 04 
A4 04 

15 ·05 AS 3 . AS 05 
A6 2 16 06 

A6 06 
A7 1 17 07 

A7 07 
22 

A8 
23 

A9 
19 

Al0 
21 

All 
20 liE 
18 

CE 

~ 
292019-11 

l 

." 
r 
m 
~ 
!! 
r 
:::::j 
-< 
Z 
." 
::D 
)0 
i: 
m 
rn 
N 
m 
:E 
:::::j 
:t: 
-I 
:t: 
m 
! .... .... 



FLEXIBILITY IN FRAME SIZE WITH THE 8044 

Main Routine 

First, the chip is initialized (see Figure 10). It is put in 
Flexible mode, externally clocked, and "Flag-Informa­
tion Field-FCS-Flag" frame format. Pre-Frame Sync 
option (PFS = I) and automatic Frame Check Se­
quence generation/detection (NFCS = 0) are selected. 
The on-chip transmit buffer starts at location 20H and 
the transmit buffer length is set to I. This one byte 
buffer contains the address of the secondary station. 
There is no on-chip receive buffer since the long frame 
being received is moved to the external buffer. The 
RTS, TBF, and RBE bits are set simultaneously. Set­
ting the R TS and TBF bits causes the SIU to transmit 
the contents of the transmit buffer. . 

292019-12 

Main Program 

Figure 10. Primary Station Flow Charts 

SIU Interrupt Routine 

After transmission of the frame, the SIU interrupts the 
on-chip CPU (SI is set). In the SIU interrupt service 
routine, counter 0 is initialized and turned on (see Fig­
ure 11). The .user program returns to perform other 

tasks. After reception of the long frame, the SIU inter­
rupt routine is executed again. This time, RTS, TBF, 
and RBE are set for another round of information ex­
change between the two stations. 

SIU never interrupts while reception or transmission is 
taking place. The SIU registers are updated and the SI 
is set (serial interrupt) after the closing flag has been 
received or transmitted. An SIU interrupt never occurs 
if the receive interrupt routine or the transmit subrou­
tine is being executed. 

Setting the RBE bit of the STS register puts the RUPI 
in the receive mode. However, the jump to the receive 
interrupt routine occurs only when a frame appears on 
the serial port. Incoming frames can be detected using 
the Pre-Frame Sync. option and one of the CPU timers 
in counter mode. The counter external pin (TO) is con­
nected to the data line (pin II is tied to pin 14). Setting 
the PFS (Pre-Frame Sync.) bit will guarantee 16 tran­
sitions before the opening flag of a flame. 

= O. FRAME REeVED 

292019-13 

SIU Interrupt Routine 

Figure 11. Primary Station Flow Charts 

4-33 



inter FLEXIBILITY IN FRAME SIZE WITH THE 8044 

The counter registers are initialized such that the coun­
ter interrupt occurs before-the opening flag of a frame. 
When the PFS transitions appear on the data line, the 
counter overflows and interrupts the cpu. The cpu 
program jumps to the timer interrupt service routine 
and executes the receive routine. In the receive routine, 
the received frame is processed, and the information 
bytes are moved to the external RAM. Note that the 
maximum count rate of the 8051 counter is '12. of the 
oscillator frequency. At 12 MHz, the data rate is limit­
ed to 500 Kbps. 

Another method to detect a frame on the data line and 
cause an interrupt is to use an external "Flag-Detect" 
circuit to interrupt the CPU. The "Flag Detect" circuit 
can be an 8-bit shift register plus some TTL chips. If 
this option is used, the RUPI must operate in externally 
'clocked mode because the clock is needed to shift the 
incoming data into the shift register. With this option, 
the maximum data rate is not limited by the maximum 
count rate of the 8051 counter. 

Receive Interrupt Routine 

In Normal operation, the byte processor executes the 
procedures of the FLAG state, jumps to the CON­
TROL state without going into the standby mode, and 
executes 10-2 procedure of the state (see Figure 4). It 
then jumps to the PUSH-I state and goes into the 
standby mode. At the following byte boundaries, the 
byte processor executes the PUSH-I, PUSH-2, ana 
DMA-LOOP states, respectively. The receive interrupt 
routine as shown in the flow chart of Figure 12 and 
described below forces the byte processor to repeatedly 
execute the CONTROL state before the PUSH-I state 
is executed. The following is the step by step procedure 
to receive long frames: 

I) Turn off the CPU counter and save all the impor­
tant registers. Jump to the receive interrupt routine, 
execution of the instructions to save registers, and 
initialization of the receive buffer pointer take place 
while the Pre-Frame Sync bytes and the opening 
flag are being received. This is about three data byte 
periods (48 CPU cycles at 500 Kbps). ' 

2) Monitor the SIUST register for standby in the 
PUSH-I state (SIUST = 18H). When the SIUST 
contents are 18H, the byte processor is waiting for 
the first information byte. The bit processor has al­
ready recognized the flag and is processing the first 
information byte. 

3) In the'standby mode, move the byte processor into 
the CONTROL state by writing "EFH" (comple­
ment of lOH) into the SIUST register. When the 
next byte boundary occurs, the bit processor has 
processed and moved a byte of data into the SR 
register. The byte processor moves the contents of 
SR into the RCB register, jumps to the PUSH-I 
state (SIUST = 18H), and waits. 

4) Monitor the SIUST register for standby in the 
PUSH-I state. When the contents of SIUST be­
comes 18H, the contents of RCB are the first infor­
mation byte of the information field. 

5) While the byte processor is in the standby mode, 
move the contents of RCB to an external RAM or 
an 1/0 port. 

6) Check for the end of the information field. The end 
can be detected by knowing the number of bytes 
transmitted, or by having a unique character at the 
end of information field. The length of the informa­
tion field can be loaded into' the first byte(s) re­
ceived. The receive routine can load this byte into 
the loop counter. 

7) If the byte received is not the last information byte, 
move the byte processor back' to standby in the 
CONTROL state and repeat steps 4 through 6., Oth­
erwise, return from the interrupt routine. 

Upon returning from the receive interrupt routine, the 
byte processor automatically executes the PUSH-I, 
PUSH-2, and DMA-LOOP before it stops. This causes 
the remaining information bytes (if any) to be stored in 
the internal RAM at the starting location specified by 
the contents of RBS register. At the end of the cycle, 
the closing flag and the CRC bytes are left in the FIFO. 
The RFL register will be incremented by the number of 
bytes stored in the internal RAM. Then, the STS and 
NSNR registers are updated, and an appropriate re­
sponse is generated by the SIU. 

The software to perform the above task is given in Ta­
ble I. In this example, the number of instruction cycles 
executed during standby is 12 cycles. 

4-34 



intJ FLEXIBILITY IN FRAME SIZE WITH THE 8044 

Receive Codes Cycles 

REC: 

WAIT1: 
NEXTI: 

WAIT2: 

END 

• 
• 
• 

CLR 
MOV 
CJNE 
MOV 
MOV 
CJNE 
MOV 
MOVX 
INC 
DJNZ 
RETI 

• 
• 
• 

TRO 
A,#18H 
A, SIUST , WAITl 
SIUST,#OEFH ••••••••••••••••••••••• 2 
A, #18H •••••••••••••••••••••••••••• 1 
A,SIUST,WAIT2 •••••••••••••••••••••• 2 
A ,RCB •••••••••••••••••••••••••••••• 1 
@DPTR,A •••••••••••••••••••• , •••••• 2 
DPTR ••••••••••••••••••••••••••••••• 2 
R5,NEXTI ••••••••••••••••••••••••••• 2 

12 Cycles 

6.1.4 SECONDARY STATION SOFTWARE 

The assembly code for the secondary station software is 
given in Appendix A. The secondary station contains 
the transmit subroutine which is called for transmission 
of long frames. 

Main Routine 

As shown in the secondary station flow chart (Figure 
13), the external transmit buffer (external RAM) is 
loaded with the information data (FFR, FER, FOR, 
... ) at starting location 200R. The; internal transmit 
buffer (on chip RAM) starts at location 20R (TBS = 

20R), and the transmit buffer length (TBL) is set to 1. 
The on-chip CPU, in the transmit subroutine, moves 
the information bytes from the external RAM to this 
one byte buffer for transmission. The receive buffer 
starts at location lOR and the receiver buffer length is 
1. This buffer is used to buffer the frame transmitted by 
the primary. The received byte is used as an address 
byte. 

The Secondary is configured like the Primary station. It 
is put in Flexible mode, externally clocked, Point-to­
point frame format. The PFS bit is set to transmit two 
bytes before the first flag of a frame. The RBE bit is set 
to put the chip in receive mode. Upon reception of a 
valid frame, the SIU loads the received information 
byte into the on-chip receive buffer and interrupts the 
CPU. 

SIU Interrupt Routine 

292019-14 

Receive Interrupt Routine 

In the serial interrupt routine, the RBE bit is checked 
(see Figure 14). Since RBE is clear, a frame has been 
received. The received Information byte is compared 
with the contents of the Station Address (ST AD) regis­
ter. 

Figure 12. Primary Station Flow Charts 

4-35 



FLEXIBILITY IN FRAME SIZE WITH THE 8044 

292019-15 

Main Program 

Figure 13. Secondary Station Flow Charts 

If they match, the secondary will call the transmit sub. 
routine to transmit the long frame. Upon returning 
from the transmit subroutine, the RBE bit is set, and 
program returns from the SIU interrupt. After trans­
mission of the closing flag, SIU interrupt occurs again. 
In the interrupt routine, th~ RBE is checked. Since the 
RBE is set, the program returns from the SIU interrupt 
routine and waits until another long frame is received. 

If the secondary were in Auto mode, the chip must be 
ready to execute the transmit routinc upon reception of 
a poll-frame; otherwise, the chip automatically trans­
mits the contents of the internal transmit buffer if the 
TBF bit is set, or transmits a ,supervisory command 
(RR or RNR) if TBF is clear. 

Transmit Subroutine 

In Normal operation the byte processor executes the 
START-TRANSMIT state and jumps to the PFSI 
state. While the bit processor is transmitting some un­
wanted bits, the byte processor executes the PFSI state 
and jumps to the standby mode in the PFS2 state. 

= I. rRAME XMITTED 

ADDRESS NOT MATCHED 

292019-16 

SIU Interrupt 

Figure 14. Secondary Station Flow Charts 

While the bit processor is transmitting the first Pre­
Frame Sync byte, the byte processor executes the PFS2 
state and jumps to the standby mode in the FLAG 
state. The FLAG state is executed when the bit proces­
sor begins to transmit the second Pre-Frame Sync byte. 
When the flag is being transmitted, the byte processor 
executes the 98-1, 98-2, 98-3, and 98-4 procedures of 
the FLAG state, and jumps to execute the AS-I proce­
dure of tJte CONTROL state. When the opening flag is 
transmitted, the contents of RB are the first informa­
tion byte. (See transmit State diagram.) 

In the transmit subroutine (see Figure 15), the byte 
prOcessor is forced to repeat the CONTROL state be­
fore the DMA-LOOP state. In the CONTROL state, 
the contents of a RAM location addressed by the tBS 
register are moved to the RB register. The following is 
the step by step procedure to transmit long frames: 

I) Put the chip in transmit mode by setting the RTS 
and TBF bits. ' 

2) Move an information byte from external RAM to a 
location in the internal RA~ addressed by the con­
tents of TBS. 

4-36 



FLEXIBILITY IN FRAME SIZE WITH THE 8044 

292019-17 

Transmit Subroutine 

Figure 15. Secondary Station Flow Charts 

3) Monitor the SIUST register for the standby mode in 
the DMA-LOOP state (SIUST = BOH). When 
SIUST is BOH, the opening flag has been transmit­
ted, and the first information byte is being transmit­
ted by the bit processor. 

4) If there are more information bytes, move the byte 
processor back to the CONTROL state, and repeat 
steps 2 through 4. Otherwise, continue. 

5) Move byte processor to the Standby mode in the 
CONTROL state (SIUST = ASH) and return from 
the subroutine. 

The byte processor automatically executes the remain­
ing states to send the FCS bytes and the closing flag. 
After the completion of transmission, SIU updates the 
STS and NSNR registers and interrupts the CPU. 

If the contents of the TBL register were more than I, 
the SIU transmits (TBL)-1 additional bytes from the 
internal RAM at starting address (TBS) + 1 because it 
executes the DMA-LOOP state (TBL)-I additional 
times. The byte processor should not be programmed to 
skip the DMA-LOOP state, because the transmission of 
FCS bytes is enabled in this state. 

The maximum baud rate that can be used with these 
codes is calculated by adding the number of instruction 
cycles executed, during the standby mode, between 
each byte boundaries (see Table 2). 

Using Equation I, the maximum data rate, based on the 
transmit software, is 509 Kbps; However, the maxi­
mum count rate of the counter limits the data rate to 
500 Kbps. 

Table 2. Codes for Lon Frame Transmission 

Transmit Codes 

TRAN: 

LOOP: 

WAITl: 

NEXTI: 

END 

• 
• 
• 

MOV 
MOV 
SETB 
SETB 
MOVX 
MOV 
MOV 
CJNE 
INC 
MOVX 
MOV 
DJNZ 
MOV 
RET 
MOV 
MOV 
JMP 

• 
• 
• 

DPTR, #200H 
R5, #OFFH 
TBF 
RTS 
A,@DPTR 
@Rl,A 

. A, #OBOH 
A,SIUST,WAIT1 •••••••••••••••••••• 2 
DPTR ••••••••••••••••••••••••••••• 2 
A,@DPTR ••••••••••••••••••••••••• 2 
@Rl,A ••••••••••••••••••••••••••• 1 
R5,NEXTI ••••••••••••••••••••••••• 2 
SIUST,#57H 

SIUST, #57H •••••••••••••••••••••• 2 
A,#OBOH ••••••••••••••••••••••••• 1 
WAITl •••••••••••••••••••••••••••• 1 

Cycles 

13 Cycles 

4-37 



FLEXIBILITY IN FRAME SIZE WITH THE 8044 

6.2 Multidrop Application 

Performance of long frame in addition to the features of 
the S044 are described using a simple multidrop com­
munication system in which three RUPIs, one as a 
master and the other two as secondary stations, trans­
mit and receive long frames alternately (see Figure 16). 
All stations perform automatic zero bit insertion/dele­
tion, NRZI decoding/encoding, Frame Check Se­
quence (FCS) generation/detection, and on-chip clock 
recovery at a data rate of 375 Kbps. 

The primary and the secondary station's software code 
is given in Appendix B. These programs, for simplicity, 
assume only reception of information and supervisory 
frames. It is also assumed that the frames are received 
and transmitted in order. All stations use very simil!lf 
transmit and receive routines. This code is written for 
standard SDLC frames (see Figure 7). 

6.2.1 POLLING SEQUENCE 

The primary station, in Flexible mode, transmits a long 
frame (for this example, 255 I-bytes), polls one of the 

PRIMARY. 
STATION 

secondary stations, and acknowledges a previously re­
ceived frame simultaneously (see Figure 17). Both sec­
ondary stations, in Auto mode, detect the transmitted 
frame and check its address byte. One of the secondary 
stations receives the frame, stores the Information bytes 
in an external RAM buffer, and transmits the same 
data back to the primary; After reception of the frame, 
the primary" polls and transmits a long frame to the 
other secondary station which :will respond with the 
same long frame. 

6.2.2 HARDWARE 

The schematic of the secondary. station hardware is 
shown in Figure IS. The primary station's hardware is 
similar to the secondary station's hardware. The excep" 
tlon is in secondary stations only, where the RTS signal 
is inverted and tied to the interrupt 0" input pin (INTO). 
In the primary station, RTS is tied to CTS. At each 
station, software codes are stored in external EPROM 
(2732A). Static RAM (2KxS) is used as external trans­
mit/receive buffer. There is no hardware handshaking 
done between the stations. The serial clock is extracted 
from the data line using the on-chip phase locked loop. 

SECONDARY SECONDARY 
STATION STATION 

-

292019-18 

Figure 16. SOLC Multidrop Application Example 

PRIMARY 

SECONDARY SECONDARY 

292019-19 

FI!lure 17. Polling Sequence Between the Primary and Secon!fary Stations 

4-38 



? 

.It. ~t-r-IU 10~ ~~1 10pF 12MHz 

1 "'~ 8044 

DO 18 39 DO 1 

."i9 X2 ADO 
38 01 01 2 

Xl AOI 

r f~2 Ln 37 02 02 3 
A02 

Rl K I- 9 36 03 03 4 
RST A03 .r 35 04 04 5 --- A04 

N/C - CTS 34 05 05 6 
A05 

33 06 06 7 
RTS A06 

32 07 07 8 

!! 
ID 
r::: .. 
(I) .... 
!D 
til 

A07 
9 

V~ ~ 30 
12 ALE 

INTO 16 
J WR - 14 17 

(I) 
() 
0 
::I a. 

~ DI 
I .. 
W-< 
(0 til 

Dr ::-
0 

liS TO RO 
29 

SCLK PSEN 

~D 
-1 11 

DATA 21 A8 
A8 

22 A9 

~ 
A9 

AID EA 23 
AID 

SCLK DATA 24 All 
All 

::::I \ 

:::t 
DI .. a. :e ,. 
DI .. 
(I) 

AOO-7 

AO-7 
8282 

19 AD 
AD 8 

010 000 Al 7 
18 Al 

011 001 A2 6 
17 A2 

012 002 A3 5 
16 A3 

013 003 A4 4 
15 A4 

014 004 A5 3 
14 A5 

015 005 A6 2 13 A6 
016 006 A7 1 

12 A7 
017 007 A8 22 

DE A9 23 
STB AID 19 

21 

20 

r 
ADS-II AD 8 

Al 7 

A2 6 

A3 5 

A4 4 

A5 3 

A6 2 

A7 1 

AS 22 

A9 23 

AID 19 

All 21 

20 

18 

~ 

AM9128 

AD 00 

Al 01 

A2 02 

A3 03 

A4 04 

A5 05 

A6 06 

A7 07 

A8 

A9 

AID 

WE 
DE 
CE 

2732A 

AD 00 

Al 01 

A2 02 

A3 03 

..,4 04 

AS 05 

A6 06 

A7 07 

A8 

A9 

AID 

All 

DE 
CE 

9 DO 

10 01 

11 02 

13 03 

14 04 

15 05 

16 06 

17 07 

9 DO 

10 01 

11 02 

13 03 

14 04 

15 05 

16 06 

17 07 

292019-20 

( 

." r­m 
)( 

§! 
r-

~ 
Z 
." 
::g 
» 
3: 
m 
en 
N 
m 
::E 
::::j 
:::t 
-f 
:::t 
m 
0) 
c 
.&:00 
.&:00 



intJ FLEXIBILITY IN FRAME SIZE WITH THE 8044 

6.2.3 PRIMARY SOFTWARE 

Main Routine 

During initialization (see Figure 19), the 8044 is set to 
Flexible mode, internally clocked at 375 Kbps, and 
configured to handle standard SDLC frames. The on­
chip receive and transmit buffer starting addresses and 
lengths are selected. The external transmit buffer is 
chosen from physical location 2DOH to location 2FFH 
(255 bytes). The external transmit buffer (external 
RAM) is loaded with data (FFH, FEH, FDH, FCH, 
... DOH). Timer 0 is put in counter mode and set to 
priority 1. The counter register (TLO) is loaded such 
that interrupt occurs after 8 transitions on the data line. 
The Pre-Frame Sync option (setting bit 2 of the SMD 
register) is selected to guarantee at least 16 transitions 
before the opening flag of a frame. 

,'--------r----------'/ 1 

292019-21 

Main Program 

Figure 19. Primary Station Flow Charts 

The station address register (STAD) is loaded'with ad­
dress of one of the secondary stations. The RTS, TBF, 
and RBE bits of the STS register are simultaneously set 
and a call to the transmit routine follows. The transmit 
routine transmits the contents of the external transmit 
buffer. At the end of transmission, RTS and TBF are 
cleared by the SIU, and SIU interrupt occurs. In Flex­
ible mode, SIU interrupt occurs after every transmis­
sion or reception of a frame. 

SIU Interrupt Routine 

In the SIU interrupt service routine (see Figure 20), SI 
is cleared and the RBE bit is checked. If RBE is set, a 
long frame has been transmitted. The first time through 
the SIU interrupt service routine, the RBE test indi­
cates a long frame has been transmitted to one of the 
secondary stations. Therefore, the Counter is initialized 

= 1. FRAME XMITTED 

292019-22 

SIU Interrupt 

Figure 20. Primary Station Flow Charts 

4-40 



FLEXIBILITY IN FRAME SIZE WITH THE 8044 

and turned on. The program returns from the interrupt 
routine before a frame appears on the communication 
channel. 

When a frame appears on the communication line, 
counter interrupt occurs and the receive routine is exe­
cuted to move the incoming bytes into the external 
RAM. After reception of the frame and return from the 
receive routine, SIU interrupt occurs again. 

In the SIU interrupt routine, RBE is checked. Since the 
RBE bit is clear, a frame has been received. Therefore, 
the appropriate NS and NR counters are incremented 
and loaded into the TCB register (two pairs of internal 
RAM bytes keep track of NS and NR counts for the 
two secondary stations). Transmission of a frame to the 
next secondary station is enabled by setting the RTS 
and the TBF bits. The chip is also put in receive mode 
(RBE set), and a call to transmit routine is made. After 
transmission, SIU interrupt occurs again, and the pro­
cess continues. 

6.2.4 SECONDARY SOFTWARE 

Main Routine 

Both secondary stations have identical software (Ap­
pendix B). The only differences are the station address­
es. Contents of the STAD register are 55H for one sta­
tion and 44H for the other. 

SET UP EXTERNAL AND INTERNAL 
TRANSMIT AND RECEIVE BUffERS 

Main Program 
292019-23 

Figure 21. Secondary Station Flow Charts 

\ 

During initialization, the chip is set to Auto mode, 
standard SDLC frame, and internally clocked at 
375 Kbps (see Figure 21). Internal buffer registers; 
RBS, RBL, TBS, and TBL are initialized. The RBE bit 
is set and the counter 0 is turned on. 

4-41 

The secondary is configured to transmit an Information 
frame every time it is polled. The RTS pin is inverted 
and tied to INTI pin. External interrupt I is enabled 
and set to interrupt on low to high transition of the 
RTS signal. This will cause an interrupt (EXI set) after 
a frame is transmitted. In the interrupt routine the CTS 
pin is cleared to prevent any automatic response from 
the secondary. If the CTS pin were not disabled, the 
secondary station would respond with a supervisory 
frame (RNR) since the TBF is set to zero by the SIU 
due to the acknowledge. In the SIU interrupt routine, 
the CTS pin is cleared after the TBF bit is set. If this 
option is not used, the primary should acknowledge the 
previously received frame and poll for the next frame in 
two separate transmissions. 

SIU Interrupt Routine 

When a frame is received, counter 0 interrupt occurs 
and the receive routine is executed (see Figure 22). If 
the incoming frame is addressed to the station, the in­
formation bytes are stored in extemal RAM; Other­
wise, the program returns from the receive routine to 
perform other tasks. At the end ofthe frame, SIU inter­
rupt occurs. In Auto mode, SIU interrupt occurs when­
ever an Information frame or a supervisory frame is 
received. Transmission will not cause an interrupt. In 
the SIU interrupt service routine, the AM bit of the 
STS is checked. 

If AM bit is set, the interrupt is due to a frame whose 
address did not match with the address of the station. 
In this case, NFCS, AM, and the BOV bits are cleared, 
the RBE bit is set, the counter 0 is initialized and 
turned on, and program returns from the interrupt rou­
tine. 

If AM bit is not set, a valid frame has been received and 
stored in the external RAM. TBF bit is set, CTS pin is 
activated, counter 0 is disabled and a call to transmit 
routine is made which transmits the contents of exter­
nal transmit buffer. This frame also acknowledges the 
reception of the previously received frame (NS and NR 
are automatically incremented). Upon return from the 
transmit routine RBE is set and counter 0 is turned on, 
thereby putting the chip in the receive mode for anoth­
er round of data exchange with the primary. 

Note that, if the second station is in receive mode, and 
the counter is enabled and turned on, the CPU will be 
interrupted each time a frame is on the communication 
channel. If the frame is not addressed to the secondary 
station, the chip enters the receive routine, executes 
only a few lines of code (address comparison) and re­
turns to perform other tasks. This interrupt will not 
occupy the CPU for more than two data byte periods 
(43 microseconds· at 375 Kbps). At the end of the 
frame, the BOV bit is set by the SIU, and the SIU 
interrupt occurs. In the SIU interrupt service routine, 



inter FLEXIBILITY IN FRAME SIZE WITH THE 8044 

= 1. ADDRESS MATCH ED 

292019-24 

SIU Interrupt 

Figure 22. Secondary Station Flow Charts 

the RBE bit is set and the counter is turned on which 
put the chip back in the receive mode. 

6.2.5 RECEIVE INTERRUPT ROUTINE 

Assembly code for the receive interrupt routine can be 
found in both primary and secondary software (Appen­
dix B). The receive interrupt routine of the primary 
station is very similar to that of the primary station in 
example 1. In the following two sections the receive and 
transmit routine of the secondary stations are dis­
cussed. 

In the receive interrupt service routine (see Figure 23), 
counter 0 is turned off, important registers are saved, 
receive buffer starting address and receive buffer length 
of the external RAM are set (do not confuse the exter­
nal RAM settings with that of the internal RAM buff­
er.) 

After reception of an opening flag, the byte processor 
jumps to the ADDRESS state and waits until the bit 
processor processes and moves the receiving address 
byte to SR. Then, the byte processor is triggered to 
execute the state. In the secondary stations, the CPU 
monitors the SIUST register for the ADDRESS state 
(SIUST = OSH). When the ADDRESS state is 
reached, the byte processor is moved to the next state 
(CONTROL state), and the ADDRESS state is 
skipped. Therefore, when the address byte is moved to 
SR, the byte processor executes the CONTROL state 
rather than the ADDRESS state and then jumps to the 
PUSH-! state. The execution of the CONTROL state 
causes the contents of SR (the received address byte) to 
be loaded into the RCB register. 

The CPU checks the contents of RCB with the contents 
of the STAD (Station Address) register. Ifthey match, 
the receive routine continues to store the received In­
formation bytes in the .external RAM buffer; Other­
wise, the byte processor is moved to the very last state 
(BOV-LOOP), and the program returns from the rou­
tine to perform other tasks. The byte processor executes 
the BOV-LOOP state in each byte boundary until the 
closing flag of the frame is reached. It then sets the 
BOV bit and interrupts the CPU (serial interrupt SI 
set). In the serial' interrupt routine the counter 0 is 
turned back on,' and the station is reset back to the 
~eceive mode (RBE set). 

In Normal operation, in the ADDRESS state, the re­
ceived address byte is automatically compared with the 
station address. If they match, the byte processor exe­
cutes the remaining states; otherwise, the byte proces­
sor goes into the idle mode (SIUST = O!H) and waits 
for the opening flag of the next frame. In the expanded 
operation, this state is skipped to avoid idle mode. If 
the byte processor went into the idle mode, clocks 
which run the byte processor would be turned off, and 
the byte processor can not be moved to any other states 
by the CPU. When the byte processor is .in idle mode, 
counter 0 can not be turned on immediately because 
counter interrupt occurs on the same frame, and pro­
gram returns to the receive routine and stays there. 

If the address byte matches the station address, the byte 
processor is moved to the CONTROL state again. This 
time, after execution of the CONTROL state the con­
tents of RCB are the received control byte. 

CPU investigates the type of received frame by check­
ing the received control byte. If the receiving frame is 
not an information frame (i.e. Supervisory frame), exe­
cution of receive routine will be terminated to free the 

4-42 



cf 

SET BOV 
"II 

cO' ,~, "'"'-0'" -".~ ZJ ." 

c 
SET SI r-.. m 

(I) SUP- REeVED >< 
I\) ~ ~ r-
:D 
(I) =i 
" -< 
(I) 

:C' Z 
(I) 

"II 
." 

6' lJ 

.j>.. ::e l> 

.J:,. 0 == ::r c..J II) 

m 
en .. .. 

'iii' 
N 
m 

(I) 

" == 0 
~ =i 
11 
II) 

:z: 
-< -I 
!II 

:z: .. m 
II) 
c: Q) 

0 
~ 

0 

..... .j>.. 
.j>.. 

292019-25 



FLEXIBILITY IN FRAME SIZE WITH THE 8044 

CPU. In Auto mode, the SIU checks the control byte 
and responds automatically in response to the supervi­
sory frame. 

After the control byte is received, it is saved in the 
stack. The byte processor is moved to the CONTROL 
state so that the next incoming byte will also be loaded 
into the RCB register. The byte processor remains in 
CONTROL state until a byte is processed by the bit 
processor and moved to SR. The byte processor is then 
triggered to move the contents of SR to the RCB regis­
ter. The CPU monitors SIUST and waits until the first 
Information byte is loaded into the RCB register. 

When byte processor reaches the PUSH-l state (SIUST. 
= ISH), RCB contains the first Information byte. The 
byte is moved to external RAM (receive buffer), and 
the byte processor is moved back to the CONTROL 
state. The process continues until all of the Information 
bytes are received. When all the Information bytes are 
received, the program returns from the routine. The 
byte processor automatically goes through the remain­
ing states, updates the STS register, and interrupts the 
CPU as it would in Normal operation. 

6.2.6 TRANSMIT SUBROUTINE 

The transmit subroutine codes can be found' in the pri­
mary and the secondary software (Appendix B). The 
transmit subroutines of the Primary and secondary sta­
tions are identical. A call to transmit routine is made 
when the RTS and TBF bits of the STS register are set. 
In Auto mode, RTS is set automatically upon reception 
of a poll-frame (poll bit of the control byte is set). 

In the transmit routine (see Figure 15), the starting ad­
dress and the transmit buffer length of the external 
buffer are set. Then the CPU monitors the SIUST regis­
ter for CONTROL state (SIUST = ASH). In the 
CONTROL state the bit processor transmits the con­
trol byte, while the byte processor goes into the standby 
mode after it has moved the contents of a location in 
the internal RAM addressed by the contents of Trans­
II!-it Buffer Start (TBS) register to the RB register. 

While the control byte is being transmitted and the byte 
processor is in standby, the CPU moves an Information 

byte from external RAM to the internal RAM location 
addressed by TBS. The byte processor is then moved to 
CONTROL state. This will cause the byte processor, in 
the next byte boundary, to move the contents of the 
same location in the internal RAM to the RB register 
(see transmit state diagram.) 

, 
When this byte is being transmitted, the byte processor 
jumps to the DMA-LOOP state (SIUST = BOH) and 
waits. When the DMA-LOOP state is reached (CPU 
monitors SIUST for BOH), the CPU loads the next In­
formation byte into the same location in the internal 
RAM and moves the byte processor to the CONTROL 
state before it gets to execute the DMA-LOOP state. 
Note that the same location in the internal RAM is 
used to transmit the subsequent Information bytes. 

When all the Information bytes from the external 
RAM are transmitted, the byte processor is free to go 
through the remaining states so that it will transmit the 
FCS bytes and the closing flag. 

7.0 CONCLUSIONS 

The RUPI, with addition of only a few bytes of code, 
can accept and transmit large frames with S01l1e com­
promise in the maximum data rate. It can be used in 
Auto or Flexible mode, with external or internal clock­
ing, automatic CRC checking, and zero bit insertion/ 
deletion. In addition, almost all of the internal RAM is 
available to be used as general purpose registers, or in 
conjunction with the external RAM as transmit and 
receive buffers. 

All in all, this feature opens up new areas of applica­
tions for this device. Besides transmitting/receiving 
long frames, it may now be possible to perform arith­
metic operations or bit manipulation (e.g. data scram­
bling) while transmission or reception is taking place, 
resulting in high throughput. Transmission of continu­
ous flags and transmission with no zero insertion are 
also possible. 

In addition to unlimited frame size, an on-chip control­
ler, automatic SDLC responses, full support of SDLC 
protocol, 192 bytes of internal RAM, and the highest 
data rate in self clocked mode compared to other chips 
make this product very attractive. 

4-44 



inter FLEXIBILITY IN FRAME SIZE WITH THE 8044 

APPENDIX A 
LISTING OF SOFTWARE MODULES 

FOR APPLICATION EXAMPLE 1 

$DEBUG NOMOD5l 
$INCLUDE (REG44.PDF) 

ASSEMBLY CODE FOR PRIMARY STATION (POINT TO POINT) 
FLEXIBLE MODEl FCS OPTION 

ORG 
SJHP 
ORG 
JMP 
ORG 
SJHP 

OOH 
INIT 
OBH 
REC 
23H 
SIINT 

LOCATIONS 00 THRU 26H ARE USED 
BY INTERRUPT SERVICE ROUTINES. 
VECTOR ADDRESS FOR TlMERO INT. 

VECTOR ADDRESS FOR SIU INT. 

i*************.****.*. INITIALIZATION ********************* ••• ** 

INIT: 

DOT: 

ORG 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
SJHP 

26H 
SMD, '00000110B 
TBS, '20H 
TBL,'OlH 
20H,#55H 
THOD,#OOOOOll1B 
IE,#lOOlOOlOB 
STS,#11100000B 
DOT 

EXT CLOCK 1 PFS=NB~l 
INT TRANSMIT BUFFER START 
INT TRANSMIT BUFFER LENGTH 
STATION ADDRESS 
COUNTER FUNCTION 1 MODE 
EA=ll SI=ll ETO~l 
TRANSMIT A FRAME 
WAIT FOR AN INTERRUPT 

SIU TRANSMITS THE PFS BYTES, THE OPENNING FLAG, THE CONTENTS 
OF LOCATION 20H, THE CALCULATED FCS-BYTES, AND THE CLOSING 
FLAG. AT THE END OF TRANSMISSION, SIU INTERRUPT OCCURS. 

; *******.* •• *. SERIAL CHANNEL INTERRUPT ROUTINE **************** 
SIINT: CLR SI 

JNB RBE,RECVED TRANSMITTED A FRAME ? 
MOV TLO,tOF8H YES, INITIALIZE COUNTER REGISTER 
MOV DPTR,,200H EXT RAM RECEIVE BUFFER START 
MOV R5,'OFFH EXT RAM RECEIVE BUFFER LENGTH 
SETB TRO TURN ON COUNTER 0 
RETI RETURN 

I WHEN A FRAME APPEARS ON THE SERIAL CHANNEL, COUNTER (RECEIVE) 
INTERRUPT OCCURS. AFTER SERVICING THE INTERRUPT ROUTINE, SIU 
INTERRUPT OCCURS. 

RECVED: MOV STS,#11100000B 
RETI 

TRANSMIT A FRAME 
RETURN 

;** •• ************ RECEIVE INTERRUPT ROUTINE *************.****** 

REC: CLR TRO DISABLE THE COUNTER 0 INTERRUPT 
MOV A,U8H PUSH-l STATE 

WAITl: CJNE A,SIUST,WAITI 
NEXTI: MOV SIUST,IOEFH MOVE BYP TO CONTROL STATE 

MOV A,U8H PUSH-l STATE 
WAIT2: CJNE A, SIUST, WAIT2 

MOV A,Res MOVE RECEIVED BYTE INTO Ace. 
MOVX @DPTR,A MOVE DATA TO EXT. RAM 
INC DPTR INCREMENT POINTER TO EXT RAM 
DJNZ R5,NEXTI LAST BYTE RECEIVED? 
RETI YES, RETURN 

END 

4-45 

292019-28 

292019-29 



FLEXIBILITY IN FRAME SIZE WITH THE 8044 

$DEBUG NOMOD51 
$INCLUDE (REG44.PDF) 

ASSEMBLY CODE FOR SECONDARY STATION (POINT TO POINT) 
FLEXIBLE MODEl FCS OPTION . 

ORG OOH 
SJMP INIT 
ORG 23H ; VECTOR ADDRESS FOR SIU INT. 
SJMP SIINT 

,_A_A __ ••••••••• _ LOAD TRANSMIT BUFFER WITH DATA •••••••••••• _ 

ORG 
INIT: MOV 

MOV 
LORAM: MOV 

MOVX 
INC 
DJNZ 

26H 
DPTR,1200H 
R3,'OFFH 
A,Rl 
@DPTR,A 
DPTR 
Rl,LORAM 

EXT RAM XMIT BUFFER START 
EXT RAM XMIT BUFFER LENGHT 

LOAD EXT BUFFER WITH FFH, FEH, ••• 
INCREIIEIIT POINTER 

;············**·····rNITIALIZATION ••••••••••••• - ••••••••••••• 

DOT: 

MOV 
MOV 
MOV 
MOV 
NOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
SJMP 

SHO, 'OOOOOllOB 
Rl,tlOH 
TBS,Rl 
TBL,'OlH 
RBS,120H 
RBL,'OlH 
STAD,'55H 
TeaN"OOH 
1E,I10010QOOB 
IP,'OFFH 
STS, 'OlOOOOOOB 
DOT 

EXT CLOClC I PFS~NBQl 

INT RAM XMIT BUFFER START 
INT RAM XMIT BUFFER LENGTH 
INT RAM RECEIVE BUFFER START 
INT RAM RECEIVE BUFFER LENGTH 
STAD ADDRESS=55H 
RESET TCON REGISTER 
ENABLE SI INT. ;EA=l 
ALL INTERRUPTS: PRIORITY 1 
RBE=l, RECEIVE A FRAME. 
HAlT FOR AN INTERRUPT 

; sro INTERRUPT OCCURS AT THE END OF A RECEIVED FRAME OR 
; A TRANSMITTED FRAME. ,.-._._-_ .... *.- SERIAL CHANNEL INTERRUPT ROUTINE A._._._. ___ _ 

SIINT: CLR SI 
JB RBE, RETRN 
MOV A,STAD 
CJNE A,20H,HMACH 
ACALL TRAN 

RECEIVED A FRAME? 
YES 
STATION ADDRESS MATCHED? 
YES, CALL TRANSMIT SUBROUTINE 

TRANSMIT SUBROUTINE IS CALLED TO TRANSMIT A LONG FRAME. 
AFTER TRANSMISSION, SI IS SET. SIU INTERRRUPT IS SERVICED 
AFTER THE CtIRRENT ROUTINE (SIINT) IS COMPLETED. 

HMACH: SETB RBE 
RETRN: RETI 

; _1, RECEIVE A FRAME 
; RETURN 

;-_ •••• - •••• _.- TRANSMIT SUBROUTINE -_ •••• _--•• _ •••• _.-. ______ 

TRAN: NOV DPTR,'200H EXT RAM RECEIVE BUFFER START 
MOV. RS,'OFFH EXT RAM RECEIVE BUFFER LENGTH 
SETB TBF SET TRANSMIT BUFFER FULL 
SETB RTS ENABLE XMISSION OF AN I-FRAME 

LOOP: MOV:: A,@DPTR HOVE THE 1ST I-BYTE I~~O ACC. 
MOV @Rl,A THEN, MOVE TO INT. RAM @ (TBS) 
MOV A,tOBOH DNA-LOOP STATE 

HAIT1: CJNE A,SroST,HAITl HAIT FOR XMISSION OF AN I-FRAME 
INC DPTR INCREMENT POINTER TO EXT. RAM 
DJNZ R5,NEXTI ALL BYTES XMITTED? 
MOVX A,@DPTR YES, EXCEPT THE LAST BYTE. 
MOV @Rl,A MOVE DATA INTO INT. RAM @ (TBS) 
MOV SIUST,'57H MOVE BYP TO CONTROL STATE 

THE SIU TRANSMITS THE FCS-BYTES 
AND THE CLOSING FLAG. 

RET RETURN 
NEXTI: MOV SIUST,'57H MOVE BYP TO CONTROL STATE (ABH) • 

JMP LOOP TRANSMIT THE NEXT BYTE 
END 

4-46 

292019-30 

292019-31 



FLEXIBILITY IN FRAME SIZE WITH THE 8044 

APPENDIX B 
LISTING OF SOFTWARE MODULES 

FOR APPLICATION EXAMPLE 2 

$DEBUG NOMOD51 
$INCLUDE (REG44.PDF) 

ASSEMBLY CODE FOR PRIMARY STATION (MULTIPOINT) 
FLEXIBLE MODE; FCS OPTION 

ORG 
SJMP 
ORG 
JMP 
ORG 
SJMP 

OOH 
INIT 
OBH 
REC 
23H 
SIINT 

LOCATIONS 00 THRU 26H ARE USED 
BY INTERRUPT SERVICE ROUTINES. 
VECTOR ADDRESS FOR TlMERO INT. 

VECTOR ADDRESS FOR SIU INT. 

;** ••• *********** LOAD TRANSMIT BUFFER WITH DATA *** ••••••••• 
ORG 

INIT: MOV 
MOV 

LDRAM: MOV 
MOVX 
INC 

26H 
DPTR,#200H 
R3,fOFFH 
A,R3 
@DPTR,A 
DPTR 

EXT RAM XMIT BUFFER START 
EXT RAM XMIT BUFFER LENGHT 

LOAD BUFFER WITH FFH,FEH, ••• OO 
INCREMENT POINTER 

DJNZ R3 , LDRAM 
; ••••••••••••••••••••• INITIALIZATION **t •••••••••••••••••••• 

LOOP: 
MOV 
MOV 
MOV 
DEC 
CJNE 

RO,loBFH 
A,jOOH 
@RO,A 
RO 
RO,14oH,LOOP 

MOV 30H,#00H 
MOV 31H, 'OOH 
MOV 32H, 'OFFH 
MOV 33H, 'OFFH 
MOV 34H, 'OlH 
MOV SMD"11010100B 
MOV RBS,flOH 
MOV RBL, tOOH 
MOV R1,12oH 
MOV TBS,Rl 
MOV TBL, f01H 
MOV NSNR, tOOH 
MOV TMOD,'OOOOOlllB 
MOV TCON"OOH 
MOV IE,'10010010B 
MOV IP,'00000010B 
MOV TCB,#00010000B 
MOV STAD, #55H 
MOV STS"11100000B 

PUT ZEROS INTO INT. RAM 
FROM BFH TO 40H. 
MOVE 0 INTO RAM,ADDRESSD BY RO 

NS COUNTER FOR STAD=55 
NR COUNTER FOR STAI)oo55 
NS COUNTER FOR STAD=44 
NR COUNTER FOR STAD=44 
PONITER TO SECONDARY STATIONS 
INT. CLKED @ 375K; NRZI-1; PFS-1 
INT. RAM RECEIVE BUFFER START-10H 
INT. RAM RECEIVE BUFFER LENGTH-O 
INT. RAM XMIT BUFFER START=20H 

INT. RAM XMIT BUFFER LENGTH=l 
NS=NR=O 
COUNTER FUNCTION, MODE 3 

EA=l; SI=l; ETO=l 
TIMER 0 INT. PRIORITY 1 
I-FRAME W/POLL 
ADDRESS BYTE=55H 
RBE=TBF=RTS=l 

TRANSMIT A LONG FRAME WITH POLL BIT SET, WAIT FOR A 
RESPONSE. 

DOT: 
ACALL TRAN 
SJMP DOT 

CALL TRANSMIT ROUTINE 
WAIT FOR AN INTERRUPT 

4-47 

, 292019-32 

292019-33 



intJ FLEXIBILITY IN FRAME SIZE WITH THE 8044 

; ••••••••••••• SERIAL INTERRUPT ROUTINE •• tt ••••••••••••••••• 

SIINT: CLR 81 CLEAR 81 
JB RBE, RETI1RII RECEIVED A FRAME ? 
MOV A,lteB YES, LOAD Ace WITH REC CNTRL BYTE 
JB ACC.O,GETI I IS IT AN I-FRAME ? 
MOV A,'OlH YES 
CJNE A,34H,SKIP 
MOV A,30H MOVE NS INTO ACC. 
INC A INCREIIEN'l' NS 
ANL A, 'OOOOO111B !!ASK 01lT THE LEAST 3 SIG. BITS 
MOV 30H,A SAVE NS 
MOV A,3lH KOVE NR INTO ACC. 
INC A INCREIIEN'l' NR 
ANL A, ,OOOOOl11B !!ASK OIlT THE LEAST 3 8XG. BXTS 
MOV 31H,A SAVE NR 
RL .A SHIFT 4 BITS TO LEFT 
RL A 
RL A 
RL A 
ORL A,30H HOVE NS COUll'l' TO ACC. 
RL A SHIFT 1 BIT TO LEFT 
ORL A,'OOOlOOOOB I SET THE POLL BXT 
MOV TeB,A MOVE CONTROL BYTE XNTO TCB REG. 

MOV STAD"SSH 
TCB: NR2,NR1,NRO,1,NS2,NS1,NSO,0 

MOV 34H,fOOH 
JHP GE'l'l: 

SKIP: MOV A,32H MOVE NS INTO Ace. 
INC A INCREIIEN'l' NS. 
ANL A, 'OOOOOl11B MASK 01lT THE LEAST 3 SIG. BITS 
MOV 32H,A SAVE NS 
MOV A,33H I lIOVE NR INTO Ace. 
INC A INCREM£N'l' NR 
ANL A, ,OOOOOl11B !!ASK 01lT THE LEAST 3 SIG. BITS 
MOV 33H,A SAVE NR 
RL A SHIFT 4 BITS TO LEFT 
RL A 
RL A 
RL A 
ORL A,33H HOVE NS COUll'l' TO ACC. 
RL A SHIFT 1 BIT TO LEFT 
ORL A, 'OOO10000B SET THE POLL BIT 
MOV TCB,A MOVE CONTROL BYTE INTO TeB 

TeB: NR2,NR1,NRO,1,NS2,HS1,NSO,O 
MOV STAD,#44H 
MOV 34H,'OlH 

GETI: MOV STS,I11100000B ENABLE TRANSMISSION 
ACALL TRAN CALL TRANSMIT ROIlTINE 
RETI 

RETI1RII: CLR EA DISABLE ALL INTERRUPTS 
MOV TLO,'OFBH INTERRUPT AFTER 8 COUll'l'S 
SETB mo I TI1RII ON COUNTER 0 
SETB EA 
RETI 

, •••••••••••••• RECEIVE INTERRUPT ROUTINE At.t ••••••••••••••• 

REC: 

WAIT1: 

NEXTI: 

WAIT2: 

CLR 
MOV 
MOV 
MOV 
CJNE 
PUSH 
MOV 
HOV 
CJNE 
MOV 
MOVX 
XNC 
DJNZ 
POP 
RETI 

TRO 
DP'l'R,f400H 
RS"OFFH 
A,fl8H 
A, SIUST. WAITl 
RCB 
SIUST, 'OEFH 
A,U8H 
A,SIUST,WAIT2 
A,RCB 
@DP'l'R,A 
DP'l'R 
RS,NEXTI 
RCB 

'; TURN OFF COUll'l'ER 0 
EXT. RAM RECEIVE BUFFER START. 
EXT. RAM RECEIVE BUFFER LENGTH 
PUSH-l STATE 
WAIT FOR THE CONTROL BYTE 
SAVE RECEIVE CONTROL BYTE 
PUSH "BYP" INTO CONTROL STATE (lOH) • 
PUSH-l STATE 
WAIT FOR AN I-BYTE 
MOVE RECEIVED I-BYTE INTO ACC. 
MOVE DATA '1'0 EXT. RAM 
INCREHENT P'l'R TO EXTERNAL RAM 
IS IT THE LAST I-BYTE? 
YES, RESTORE THE CONTENTS OF RCB 
RETURN 

;*t ••••••••••••••• TRANSMIT SUBROUTINE *****.*.**.*~*******.* 

TRAN: 

WAIT: 

NXTII 

END 

MOV 
MOV 
MOV 
CJNE 
MOVX 
MOV 
INC 
DJNZ 
MOV 
RET 
MOV 
MOV 
JMP 

DPTR,1200H 
RS,'OFFH 
A,'OA8H 
A,SIUST,WAIT 
A,@DP'l'R 
@Rl,A 
DP'l'R 
RS,NXTI 
SlUST,157H 

SlUST, 'S7H 
A,tOBOH 
WAIT 

EXT. RAM TRANSMIT BUFPER START 
EXT. RAM TRANSMIT BUFFER LENGTH 
CONTROL STATE 
WAIT FOR CTRL BYTE XMISSION 
MOVE DATA FROM EXT. RAM TO Ace. 
MOVE DATA INTO INT. RAM @ (TBS) 
INCREMBN'l' POINTER 
IS IT THE LAST I-BYTE ? 
NO. XMIT THE LAST I-BYTE 
RETURN • 
KEEP "BYP" IN CONTROL STATE (A8H) • 
DMA-LOOP STATE 
TRANSMIT THE NEXT BYTE 

4-48 

292019-34 

292019-35 

292019-36 



FLEXIBILITY IN FRAME SIZE WITH THE 8044 

$DEBUG NOMOD51 
$INCLUDE (REG44.PDF) 

; ASSEMBLY CODE FOR SECONDARY STATIONS (MULTIPOINT) 
; AUTO MODE; FCS OPTION 

ORG DOH 
SJHP INIT 
ORG OBH '. VECTOR ADDRESS FOR TlMERO INT. 
JHP REC 
ORG 13H VECTOR ADDRESS FOR EXT. INT. 1 
JHP XINT1 
ORG 23H VECTOR ADDRESS FOR SIU INTERRUPT 
JHP SIINT 

; * * *. '* '* .. '*. * ••• ** * ** ·INITIALIZATION '* * * *. '* '* ** '* *. '* '* * •• '* '* ** .. '* *** * 

INIT: 
ORG 
MOV 
MOV 

MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 

26H 
SMD,#llOlOlOOB 
STAD,#55H 

RBS,flOH 
RBL, HOOH 
Ri,#20H 
TBS,R1 
TBL,f01H 
NSNR,#OOH 
TCON,#OOOOOlOOB 
IE, #00010110B 
IP,#OOOOOOlOB 
THOD, #OOOOOllB 
STS,#OlOOOOlOB 
TLO,#OF8H 

INT. CLKED @ 375K;NRZI=1;PFS=1 
STATION ADDRESS; STAD=44H FOR THE 
OTHER STATION 
INT. RAM RECEIVE BUFFER START 
INT. RAM RECEIVE BUFFER LENGTH 

INT. RAM XHIT BUFFER START 
INT. RAM XHIT BUFFER LENGTH 
NS=NR=O 
EXT. INT.: EDGE TRIGGERED 
SI=l; ETO=l; EXO=l 
TIMER 0: PRIORITY 1 
COUNTER FUNCTION: MODE 
RECEIVE I-FRAME. 
SET COUNTER TO OVERFLOW 
AFTER 8 COUNTS 

SETB TRO TURN ON COUNTER 
SETB EA ENABLE ALL INTERRUPTS 

DOT: SJHP DOT ; WAIT FOR AN INTERRUPT. 
; CPU IS INTERRUPTED AT THE END OF RECEPTION (SI SET), AND AT. 
; THE END OF LONG-FRAME TRANSMISSION (EXO SET). 

;********* •••• **EXTERNAL INTERRUPT *.*.* •••• *.****'It*Iir*Ii'.l*****:r.* 
XINT1: SETB Pl. 7 

RETI 
; DISABLE CTS PIN 
; RETURN. 

; *.*.*.********to SERIAL INTERRUPT ROUTINE ••• ,;,.*.w************ 

SIINT: 

; 

CLR 
JB 
CLR 
MOV 
MOV 
SETB 
SETB 
RETI 

51 
AN,HOP 
EA 
STS,f01000010B 
TLO,#OFSH 
TRO 
EA 

HOP: JB TBF,GETI 
SETB TBF 
CLR Pl.7 
ACALL TRAN 

GETI: JB RBE,RETURN 
CLR EA 
SETB RBE 
MOV TLO,jOFSH 
SETB TRO 
SETB EA 

RETURN: RETI 

ADDRESS HATCHED? 
DISABLE ALL INTERRUPTS 
RBE=l; NB=l 

I TURN ON COUNTER 0 
ENABLE ALL INTERRUPTS 
RETURN. 

A FRAME TRANSMITTED? 
ENABLE TRANSMISSION OF I-FRAME 
ENABLE CTS PIN 
CALL TRANSMIT ROUTINE 
A FRAME RECEIVED? 
DISABLE ALL INTERRUPTS 
PUT RUPI IN RECEIVE MODE 

TURN ON COUNTER 0 
ENABLE ALL INTERRUPTS 
RETURN. 

i*******·***··.*** TRANSMIT SUBROUTINE ******.*.********.* •••• 

TRAN: 

WAIT: 

NXTI: 

MOV 
MOV 
MOV 
CJNE 
MOVX 
MOV 
INC 
IlJNZ 
MOV 
RET 
MOV 
MOV 
JHP 

DPTR,j200H 
RS,JOFFH 
A,IOASH 
A,SIUST,WAIT 
A,@DPTR 
@Rl,A 
DPTR 
R5,NXTI 
SIUST,'57H 

SlUST,'57H 
A, #OBOH 
WAIT 

EXT. RAM TRANSMIT BUFFER START 
EXT. RAM TRANSMIT BUFFER LENGTH 
CONTROL STATE 
WAIT FOR CONTROL BYTE TRANSMISSION 
MOVE DATA FROM EXT. RAN TO ACC. 
MOVE DATA INTO INT. RAN AT @TBS 
INCREMENT POINTER 
IS IT THE,LAST I-BYTE? 
XHIT THE LAST I-BYTE 
RETURN. 
KEEP "BYP" IN CONTROL STATE 
DHA-LOOP STATE 
TRANSMIT THE NEXT BYTE 

4-49 

292019-37 

292019-38 

292019-39 



inter FLEXIBILITY IN FRAME SIZE WITH THE 8044 

:*******··*RECErvE INTERRUPT ROUTINE •••••••••••••••••••••••••• 

REC: 

HOLD: 

WAITl: 

WAIT2: 

WAIT3: 

WAIT4: 

NEXTI: 

WAITS: 

RTRN: 
END 

CLR 
MOV 
MOV 
MOV 
CJIIE 
MOV 

MOV 
CJIIE 
MOV 
CJIIE 
SJMP 
MOV 
MOV 
RETI 

MOV 
MOV 
CJNE 
MOV 
JB 
PUSH 
MOV 
MOV 
CJIIE 
MOV 
MOVX 
INC 
DJNZ 
POP 
RETI 

TRO 
DPTR,t200H 
RS"OFFK 
A,t08H 
A,SIUST,HOLD 
SIUST, tOEFH 

A,fl8H 
A,SIUST,WAITl 
A,RCB 
A,STAD,WAIT2 
WAIT3 
RCB,fOOOlOOOOB 
SIUST, tOCFH 

B-IUST, 'OEFH 
A,U8K 
A,SIUST,WAIT4 
A,RCB 
ACC.O,RTRN 
RCB 
SIUST,'OEFH 
A,U8H 
A,SIUST,WAITS 
A,RCB 
@DPTR,A 
DPTR 
RS,NEXTI 
RCB 

TORI! OFF COUNTER 0 
EXT. RAM RECEIVE BUFFER START 

I EXT. RAM RECEIVE BUFFER LENGTH 
ADDRESS STATE 
WAIT FOR ADDRESS BYTE 
.MOVE "BYP" INTO CONTROL STATE 
SKIP THE ADDRESS STATE 
PUSH-l STATE 
WAIT FOR TRE ADDRESS BYTE 
MOVE THE RECEIVED ADDRESS BYTE TO ACC. 
ADDRESS MATCHED? 
YES. 
MOVE INFO. CONTROL BYTE TO RCB 
MOVE "BYP" INTO BOV-LOOP STATE 
RETORII 

MOVE "BYP" INTO CONTROL STATE 
PUSH-l STATE 
WAIT FOR THE CONTROL BYTE 

I MOVE RECEIVE CONTROL BYTE INTO ACC. 
IF NOT AN I -FRAME RETORI! 
SAVE RECEIVE CONTROL BYTE 
PUSH "BYP" INTO CONTROL STATE(lOH). 
PUSH-l STATE 
WAIT FOR AN I-BYTE 
MOVE RECEIVED I-BYTE INTO ACC. 
MOVE DATA TO EXT. RAM 
INCREMENT PTR TO EXTERNAL RAM 
IS IT THE LAST I-BYTE? 
YES. RESTORE THE CONTENTS OF RCB 
RETORI! 

4-50 

292019-40 



80186/188 Application Notes 5 





inter APPLICATION 
NOTE 

AP-186 

November 1988 

Using the 
80186/188/C186/C188 

@ Intel Corporation, 1988 Order Number: 210973-006 

5-1 



'. AP-186 
'",' 

.. :.; 

1.0 INTRODUCTION 

The 80186 microprocessor family holds the position of 
industry standard among high integration microproces­
sors. VLSI technology incorporates the most common­
ly used peripheral functions with a 16-bit CPU on the 
same silicon die to assure compatibility and high reli­
ability (see Figure I). The 80186 reputation for flexibili­
ty and uncomplicated programming make it the first 
choice microprocessor for such data control applica­
tions as local area network equipment, PC add-on 
cards, terminals, disk storage subsystems, avionics, and 
medical instrumentation. 

There are two purposes to this Application Note. The 
first is to explairithe operation of the integrated 80186 
peripheral . set with a degree of detail not possible 

INT2nNTAO 

in the data sheet. The second is to describe, through 
examples, the use of the 80186 with other digital logic 
such as memory. 

The 80186 family actually consists of 4 devices: the 
original 80186 and 80188, and the new 80C186 and 
80CI88 microprocessors manufactured on Intel's 
CHMOS III process. The 80188 and 8OC188 are 16-bit 
microprocessors but have 8-bit external data buses. The 
80C186 and 80C188 offer the advantage of increased 
speed (up to 16 MHz) and important new features in­
cluding a Refresh Control Unit, Power-Save Logic, and 
ONCETM Mode (see Figure 2). For simplicity, this Ap 
Note uses the name 80186 to refer collectively to all the 
members of the 80186 family. Differences between indi­
vidual processors are pointed out as necessary. 

ClKOUT TIIR OUT a TMR IN 1 

~D~T INT3/1NTf flY' TIiRtOJ JTM1UTI 
DiQO DRt' 

NIII IN;"' 

Vee -
GND ,-

Y-SRD 
ARD Y-

!lO· 
i2 I~ DTIII 
DEN 

LOCK 
+ 

~ 
~ 

f-

HOLD 

• X1 X2 PROGRAMMABlE 

PROGRAIiMABlE 
TIMERS 

ClOCK INTERRUPT a 1 2 
GENERATOR CONTROLLER Ma::::::NT I 

M":::TEc::"T 
c:aNTROI. 

1 ... " COUNT RlGtlTERI .. - ~ItIGIITE" 

1t ~t ',. '··~r . . 

J~ J~ 

~ ~ EXECUTION UNIT LOGIC RE_ 
1&-BIT 

BUS INTERFACE UNIT 
GENERAL 

REGISTERS 
'EGIIENT 01_ 

1e·BIT ALU 
~~...d 

fRY/BUSY 
HLDA ~ .~ 7 ALE AD 

MCSO·3 
ADO· 
AD15 A~,6;/~:· RES WR 

RESET -BHE/S7 

Figure 1.80186 Block Diagram 

5-2 

DIIA CONTROL 
UNIT 

a 1 
.. lIT IOURCE 

POINTERS 

n .• '!n~~~::TION 
1 .. ,rrCOUIl1" REOfSTERI 

CGlfTROL RECIIS1I:RS 

1~ 

JI7 

~I CS 

~ 
CHIP 

PCSiI 

SELECT 
CONTROL PCS -II 

UNIT ....!l 

PCSO·4 
iics LCS 

210973-1 



inter AP-186 

CLKOUT INT2/INTAO TMR OUT 0 TMR IN 1 

rD~l INT3/INTf f lr1 
NMI IN,TO TMR1INOf -, T~RtOUT 1 DRtO DRtl 

~ 

Xl X2 
PROGRAMMABLE DMACONTROL 

CLOCK 
PROGRAMMABLE 

TIMERS UNIT - GENERATOR 
INTERRUPT 0 1 2 0 1 

Vee 

POWER-
CONTROLLER IIA:~~~s~~::NT I :l1I·Bll SOURCE 

POINTERS 

1- SAVE MAXIMUM COUNT 2 •. 81!~I~~1'::TIOH REGISTER A GND 

CONTROL .1 CONTROL 
1 .. 111 COUNT REGISTERS 11·811 COUNT REGISTERS 

REGISTERS AEOISTEAS CONTROL REGISTERS CONTROL REGISTERS 

-t !It. 4 ~ 

J~ ~------_&_------- Jp 
READY I CONTROL I Y-SRD 

AAD Y- : LOGIC 
CONTROL 

REGISTERS REFRESH 
CONTROL 

UNIT 

EXECUTION UNIT 
REGISTERS 

PCS 

16-BIT ~ GENERAL 

--5/ 

SO-
52 i~ BUS INTERFACE UNIT CHIP 

REGISTERS SELECT· 
f- CONTROL --6/ PCS DT/A 

DEN 

LOCK 
+ 

:E~~::a I 16-BIT ALU UNIT ~ ; ... "R~~'i.uEUd 
I ~., I I 

NUMERICS INTERFACE I 
I I • • 

HOLD l~ TEST/BUSY MCSO/PEREO t J _ PCSO-4 
HLDA ~ r~ r ALE 

ADO- ~16~S3- RES 
RD MCS1/ERROR LCS 

WR - MCS3INPS UCS 
AD15 A19/S6 RESET - MCS2 BHE 

210973-A2 

Figure 2. 80C186 Block Diagram 

2.0 OVERVIEW OF THE 80186 
FAMILY 

2.1 TheCPU 

The 80186 CPU shares a common base architecture 
with the 8086, 8088, 80286, and 80386 processors. It is 
completely object code compatible with the 8086/88. 
This architecture features four 16-bit general purpose 
registers (AX, BX, CX, DX) which may be used as 
operands in most arithmetic operations in either 8- or 
16-bit units. It also features four 16-bit pointer registers 
(SI, DI, BP, SP) which may be used both in arithmetic 
operations and in accessing memory based variables. 
Four 16-bit segment registers (CS, DS, SS, ES) allow 
simple memory partitioning to aid construction of mod­
ular programs. Finally, it has a 16-bit instruction point­
er and a 16-bit status register. 

Physical memory addresses are generated by the 80186 
identically to the 8086. The 16-bit segment value is 
shifted left 4 bits and then added to an offset value 
which is derived from combinations of the pointer 

5-3 

registers, the instruction pointer, and immediate values 
(see Figure 3). Any carry of this addition is ignored. 
The result is a 20-bit physical address. 

The 80186 has a 16-bit ALU which performs 8 or 16-
bit arithmetic and logical operations. It provides for 
data movement among registers, memory and I/O 
space. In addition, the CPU allows for high speed data 
transfer from one area of memory to another using 
string move instructions, and to or from an I/O port 
and memory using block I/O instructions. Finally, the 
CPU provides many conditional branch and control in­
structions. 

In the 80186, as in the 8086, instruction fetching and 
instruction execution are performed by separate units: 
the bus interface unit and the execution unit, respec­
tively. The 80186 also has a 6-byte prefetch queue as 
does the 8086. The 80188 has a 4-byte prefetch queue 
as does the 8088. As a program is excecuting, opcodes 
are fetched from memory by the bus interface unit and 
placed in this queue. Whenever the execution unit re­
quires another opcode byte, it takes the byte out of the 
queue. Effective processor throughput is increased by 



inter AP·186 

I' 18 BITS 

I' 16 BITS 

SEGMENT ,VALUE I 
1 1 1 

+ 
OFFSET I 1 1 

= 
PHYSICAL ADDRESS I 

1 I 1 

I, 
20 BITS 

Figure 3. Physical Address 
Generation in the 80186 

'I 
'1 
I 

1 I 

I I 
.1 

210973-2 

adding this queue, since the bus interface unit may con­
tinue to fetch instructions while the execution unit exe· 
c\ltes a long instruction. Then, when the CPU com­
pletes this instruction, it does not have to wait for an­
other instruction to be fetched from memory. 

2.2 80186 CPU Enhancements 

Although the 80186 is completely object code compati­
ble with the 8086, most of the 8086 instructions require 
fewer clock cycles to execute on the 80186 than on the 
8086 because of hardware enhancements in the bus in­
terface unit and the execution unit. In addition, the 
80186 has many new instructions which simplify as­
sembly language programming, enhance the perform­
ance of high level language implementations, and re­
duce code size. The added instructions are described in 
Appendix H of this Ap Note. 

2.3 DMA Unit 

The 80186 includes a DMA unit which provides two 
flexible DMA channels. This DMA unit will perform 
transfers to or from any combination of I/O space and 
memory space in either byte or word units. Every 
DMA cycle requires two to four bus cycles, one or two 
to fetch the data and one or two to deposit the data. 
This allows word data to be located on odd boundaries, 
or byte data to be moved from odd locations to even 

, locations. 

Each DMA channel maintains independent 20-bit 
source and destination pointers. Each of these pointers 
may independently address either I/O or memory' 
space. After each DMA cycle, the pointers may be op-, 
t1onally'mcremented, decremented, or maintained con­
stant. Each DMA channel also maintains a transfer 

count which can terminate a series of DMA transfers 
after a pre-programmed number of transfers. 

2.4 Timers 

The timer unit contains 3 independent 16-bit timer/ 
,counters. Two of them can count external events, pro­
vide waveforms based on either the CPU clock or an 
extemal clock, or interrupt the CPU after a specified 
count. The third timer/counter counts only CPU 
clocks. After a programmable interval, it can interrupt 
the CPU, provide a clock pulse to either or both of the 
other timer/counters, or send a DMA request pulse to 
the integrated DMA controller. 

2.5 Interrupt Controller 

The integrated interrnpt controller arbitrates interrupt 
requests between all internal and external sources. It 
can be'directly cascaded as the master to an external 
8259A or 82C59A interrupt controller. In addition, it 
can be configured as a slave controller. ' 

2.6 Clock Generator 

5-4 

The on-board crystal oscillator can be used with a par­
allel resonant, fundamental mode crystal at 2X the de­
sired CPU clock speed (i.e., 16 MHz for an 8 MHz 
80186), or with an external oscillator also at 2X the 
CPU -clock. The output of the oscillator is internally 
divided by two to provide the 50% duty cycle CPU 
clock from which all 80186 system timing is derived. 
The CPU clock is externally available, and all timing 
parameters are referenced to it. 

2.7 Chip Select and Ready 
Generation Unit 

The 80186 includes integrated chip select logic which 
can be used to enable memory or peripheral devices. Six 
output lines are used for memory addressing and seven 
output lines are used for peripheral addressing. 

The memory chip select lines are split into 3 groups for 
separately addressing the major memory areas in a,typi­
cal 80186 system: upper memory for reset ROM, lower 
memory for interrupt vectors, and mid-range memory 
for program memory. The size of each of these regions 
is user programmable. The starting location and ending 
location of lower memory and upper memory are fixed 
at OOOOOH and FFFFFH respectively; the starting loca­
tion of the mid.range memory is user programmable. 

Each of the seven peripheral select lines address one of 
seven contiguous 128 byte blocks above a programma­
ble base address., This base address can be located in 



inter AP-186 

either memory or I/O space so that peripheral devices 
may be I/O or memory mapped. 

Each of the programmed chip select areas has associat­
ed with it a set of programmable ready bits. These bits 
allow a programmable number of wait states (0 to 3) to 
be automatically inserted whenever an access is made 
to the area of memory associated with the chip select 
area. In addition, a bit determines whether the external 
ready signals (ARDY and SRDy) will be used, or 
whether they will be ignored (i.e., the bus cycle will 
terminate even though a ready has not been returned on 
the external pins). There are 5 total sets of ready bits 
which allow independent ready generation for each of 
upper memory, lower memory, mid-range memory, pe­
ripheral devices 0-3 and peripheral devices 4-6. 

2.8 Integrated Peripheral Accessing 

The integrated peripheral and chip select circuitry is 
controlled by sets of 16-bit registers accessed using 
standard input, output, or memory access instructions. 
These peripheral control registers are all located within 
a 256 byte block which can be placed in either memory 
or I/O space. Because they are accessed exactly as if 
they were external devices, no new instruction types are 
required to access and control the integrated peripher­
als. 

3.0 USING THE 80186 FAMILY 

3.1 Bus InterfaCing to the 80186 

3.1.1 OVERVIEW 

The 80186 bus structure is very similar to that of the 
8086. It includes a multiplexed address/data bus, aJong 
with various control and status lines (see Table I). Each 
bus cycle requires a minimum of 4 CPU clock cycles 
along with any number of wait states required to ac­
commodate access limitations of external memory or 
peripheral devices. The bus cycles initiated by the 
80186 CPU are identical to the bus cycles intitiated by 
the 80186 integrated DMA unit. 

Each clock cycle of the 80186 bus cycle is called a "Tn 
state, and are numbered sequentially Tl> T2, T3, Tw 
and T 4. Additional idle T states (Tj) can occur between 
T4 and T\ when the processor requires no bus activity 
(instruction fetches, memory writes, I/O reads, etc.) . 
.The ready signals control the number of wait states 
(tw) inserted in each bus cycle. The maximum number 
of wait states is unbounded. 

5-5 

The beginning of a T state is signaled by a high to low 
transition of the CPU clock. Each T state is divided 
into two phases, phase I (or the low phase) and phase 2 
(or the high phase) (see Figure 4). 

~~l~10 j~ L 
I 01 I 02 I 
I (LOW I (HIGH I 
I PHASE) I PHASE) I 
I I I 

210973-3 

NOTES: 
1. Falling edge of Tn. 
2. Rising edge of Tn. 

Figure 4. T-state In the 80186 

Different types of bus activity occur for all of the 
T-states (see Figure 5). Address generation information 
occurs during Tl> data generation during T2, T3, Tw 
and T 4. The beginning of a bus cycle is signaled by the 
status lines of the processor going from a passive state 
(all high) to an active state in the middle of the T -state 
immediately before T\ (either a T4 or a Tj). Informa­
tion concerning an impending bus cycle appears during 
the T-state immediately before the fIrst T-state of the 
cycle itself. Two different types of T4 and Tj can be 
generated: one where the T state is immediately fol­
lowed by a bus cycle, and one where the T state is 
immediately followed by an idle T state. 

During the fIrst type of T4 or Tj, status information 
concerning the impending bus cycle is generated for the 
bus cycle immediately to follow. This information will 
be available no later than tCHSV after the low-to-high 
transition of the 80186 clock in the middle of the T 
state. During the second type of T4 or Tj, the status 
outputs remain inactive because no bus cycle will fol­
low. The decision on which type T4 or Tj state to pres­
ent is made at the beginning of the T-state preceding 
the T4 or Tj state (see Figure 6). This determination has 
an effect on bus latency (see Section 3.3.2). 



AP-186 

T, T. 

LINES 

DATA 

LINES 

ADDRESSI ;----~~~~~ '-+---;----+T--..1 
CONTROL ..,..----T----....,.,) 
SIGNALS 

(RD,WR) 

Figure 5. Example Bus Cycle of the 80186 

Table 1.80186 Bus Signals 

Function Signal Name 

address/ data ADO-AD15 
address/ status A16/53-A19-56, SHE/57 
co-processor control TEST 
local bus arbitration HOLD, HLDA 
local bus control ALE, RD, WR, DT /A, DEN 
multi-master bus LOCK 
ready (wait) interface 5RDY,ARDY 
status information SO-52 

I Tw I T. I 

I idle bus cycles will be inserted 
. I I. I ~

I Decision: No'bus activity required: 

CLOCK r-1L.-.-..ArI~ 
OUT I I I 

I I 

STATUS :;I~i I : INACTIVE : 
INFO -'::':':==-+..1 T3 0r I STATUS I 

T. : T. : T, 
Decision: Another bus cycle immediately 
required-no idle bus cycles 

CLOCK 

OUT 

ACTIVE 
STATUS STATUS 

LINES -==;... ..... ...1 

I I 

ACTIVE 
STATUS 

Figure 6. Active-Inactive Status Transitions in the 80186 

5-6 

210973-5 

210973-4 



intJ AP-186 

3.1.2 PHYSICAL ADDRESS GENERATION 

Physical addresses are generated by the 80186 during 
T 1 of a bus cycle. Since the address and data lines are 
multiplexed on the same set of pins, addresses must be 
latched during T 1 if they are required to remain stable 
for the duration of the bus cycle. To facilitate latching 
of the physical address, the 80186 generates an active 
high ALE (Address Latch Enable) signal which can be 
directly connected to a transparent latch's strobe input. 

Figure 7 illustrates the physical address generation pa­
rameters of the 80186. Addresses are guaranteed valid 
no greater than tCLA V after the beginning of T \> and 
remain valid at least tCLAX after the end of T I. The 
ALE signal is driven high in the middle of the T state 
(either T4 or Tj) immediately preceding TI and is driv­
en low in the middle ofT\> no sooner than tAVLL after 
addresses become valid. This parameter (tAVLd is re­
quired to satisfy the address latch set-up times of ad­
dress valid until strobe inactive. Addresses remain sta­
ble on the address/data bus at least tLLAX after ALE 
goes inactive to satisfy address latch hold times. 

CLOCK 
OUT 

T,OR 

T. 

ALE --~ 

T, 

AO·AI9 ----~.l:7j~~!:~~--
210973-6 

NOTES: 
1. tCHLH: Clock high to ALE high 
2. tCLAV: Clock low to address valid 
3. tCHLL: Clock high to ALE low 
4. tCLAx: Clock low to address invalid (address hold 
from clock low) 
5. tLLAX: ALE low to address invalid (address hold from 
ALE) 
6. tAVLL: Address valid to ALE low (address setup to 
ALE) 

Figure 7. Address Generation 
Timing of the 80186 

Because ALE goes high before addresses become valid, 
the delay through the address latches will be the propa­
gation delay through the latch rather than the delay 
from the latch strobe, which is typically longer than the 

5-7 

propagation delay. Note that the 80186 drives ALE 
high one full clock phase earlier than the 8086 or the 
82C88 bus controller, and keeps it high throughout the 
8086 or 82C88 ALE high time (i.e., the 80186 ALE 
pulse is wider). 

A typical circuit for latching physical addresses is 
shown in Figure 8. This circuit uses 3 transparent octal 
non-inverting latches to demultiplex all 20 address bits 
provided by the 80186/80188. Typically, the upper 4 
address bits only select among various memory compo­
nents or subsystems, so when the integrated chip selects 
(see Section 8) are used, these upper bits need not be 
latched. The worst case address generation time from 
the beginning of TI (including address latch propaga­
tion time for the circuit is: 

tCLAV + tpD 

Many memory or peripheral devices may not require 
addresses to remain stable throughout a data transfer. 
If a system is constructed wholly with these types of 
devices, addresses need not be latched. In addition, two 
of the peripheral chip select outputs of the 80186 may 
be configured to provide latched A 1 and A2 outputs for 
peripheral register selects in a system which does not 
demultiplex the address/data bus. 

186 SIGNALS 

A16· 

AlB 

AD8· 

A015 

ADO· 
AD7 

ALE 

4 

8 

6 

r---
-

r--
..--

f--

-::-

I 

STB 0 / 

Of 

I 

STB 0 

OE 

I 

STB 0 / 

OE 

LATCHED ADDRESS 
SIGNALS 

/4 
A16·A19 

/8 
A6·A15 

/8 
AO·A7 

210973-7 

Figure B. Demultiplexing the Address Bus 
of the 80186 Using Transparent Latches 



AP-186 

One more~al is generated by the 80186 to address 
memory: BHE (Bus High Enable). This signal, along 
with AO, is used to enable byte devices connected to 
either or both halves (bytes) of the 16-bit data bus. Be­
cause AO is used only to enable deyices,onto the lower 
half of the data bus, memory chip address inputs are 
usually driven by address bits AI-AI9, not AO-AI9. 
This provides 512K unique word addresses, or 1M 
unique byte addresses. BHE is not present on the 8-bit 
80188. All data transfers occur on the 8-bits of the data 
bus. 

3.1.3 80186/80C186 DATA BUS OPERATION 

Throughout T2, T3, Tw and T4 of a bus cycle the mul­
tiplexed address/data bus becomes a 16·bit data bus. 
Data transfers on this bus may be either bytes or words. 
All memory is byte addressable (see Figure 9). 

All bytes with even addresses (AO = 0) reside on the 
lower 8 bits of the data bus, while all bytes with odd 
addresses (AO = 1) reside on the upper 8 bits of the 
data bus. Whenever an access is made to ,only the even 
byte, AO is driven low, BHE is driven high, and the 
data transfer occurs on DO-D7 of the data bus. When­
ever an access is made to' only the odd byte, BHE is 
driven low, AO is driven high, and the data transfer 
Occurs on 08-015 of the data bus. Finally, if a word 
access is performed to an even address, both AO and 
BHE are driven low and the data transfer occurs on 
00-015 of the data bus. 

Word accesses are made'to the addressed byte and to 
the next higher numbered byte. If a word access is per­
formed to an odd address, two byte accesses must be 
performed, the first to access the odd byte at the first 
word address on 08-015, the second to access the 
even byte at the next sequential word address on 00-
07. For example, in Figure 9, byte 0 and byte, I can be 
individually accessed in two separate bus cycles to byte 
addresses 0 and I at word address O. They may also be 
accessed together in a single bus cycle to word address 
O. However, if a word access is made to address I, two 
bus cycles will be required, the first to aCcess byte 1 at 
word address 0 (note byte 0 will not be accessed), and 
the second to access byte 2 at word address 2 (note byte 
3 will not be accessed). This is why all word data 
should ·be located at even addresses to maximize proc­
essor performance. 

5-8 

When byte reads are made, the data returned on the 
unused half of the data bus is ignored. When byte 
writes are made, the data driven on the unused half of 
the data bus is indeterminate. 

3.1.4 80188/80C188 DATA BUS OPERATION 

Because the 80188 and 80CI88 externally have only 8-
bit data buses, the above discussion about upper and 
lower bytes ofthe data bus does not apply. No perform­
ance improvement will occur if word data is placed on 
even boundaries in memory space. ~JI word accesses 
require two bus cycles, the first to access to lower byte 
of the word; the second to access the upper byte of the 
word. 

Any 80188/80C188 access to the integrated peripherals 
is performed 16 bits at a time, whether byte or word 
addressing is used. If a byte operation is used, the exter­
nal bus only indicates a single byte transfer even though 
the word access takes place. 

3.1.5 GENERAL DATA BUS OPERATION 

Because of the bus drive capabilities of the 80186, addi­
tional buffering may not be required in many small sys­
tems. If data buffers are not used in the system, care 
should be taken not to allow bus contention between 
the 80186 and the devices directly connected to the 
80186 data bus. Since the 80186 floats the address/data 
bus before activating any command lines, the only re­
quirement on a directly connected device is that it float 
its output drivers after a read before the 80186 begins 
to drive address information for the next bus cycle. The 
,E!..rameter of interest here is the minimum time. from 
RD inactive until addresses active for the next bus cy­
cle (tRHAV)' If the memory or peripheral device cannot 
disable its output drivers in this time, data buffers will 
be required to prevent both the 80186 and the device 
from driving these lines concurrently. This parameter is 
unaffected by the addition of wait states. Data buffers 
solve this problem because their output float times are 
typically much faster than the 80186 required mini­
mum. 



AP-186 

D8· 
D1S 

DO­
D7 

80188 SIGNAL 
CONNECTIONS 

210973-8 

Figure 9. Physical Memory Byte/Word 
Addressing In the 80186 

If data buffers are required, the 80186 provides DEN 
(Data ENable) and DT;R (Data TransmitIReceive) 
signals to simplify buffer interfacing. The DEN and 
DT;R signals are activated during all bus cycles. 
The DEN signal is driven low whenever the processor 
is either ready to receive data (during a read) or when 
the processor is ready to send data (during a write). In 
other words, DEN is low during any active bus cycle 
when address information is not being generated on the 
address/data pins. In most systems, the DEN signal 
should not be directly connected to the OE input of 
buffers, since unbuffered devices (or other buffers) may 
be directly connected to the processor's address/data 
pins. If DEN were directly connected to several buffers, 
contention would occur during read cycles, as many 
devices attempt to drive the processor bus. Rather, it 
should be a factor (along with the chip selects for buff­
ered devices) in generating the output enable. 

The DT;R signal' determines the direction of data 
through the bi·directional buffers. It is high whenever 

80181 SIGNALS 

ADa·D1S 
DEN 
m: 

ADO·AD7 

DT/R 

8 

~ 
J 

/8 

,--.. 

data is being written from the processor, and is low 
whenever data is being read into the processor. Unlike 
the DEN signal, it may be directly connected to bus 
buffers, since this signal does not usually enable the 
output drivers of the buffer. An example data bus sub· 
system supporting both buffered and unbuffered devic­
es is shown in Figure 10. Note that the A side of the 
buffer is connected to the 80186, the B side to the exter­
nal device. The DT;R signal can directly drive the T 
(transmit) signal of a typical buffer since it has the cor­
rect polarity. 

3.1.6 CONTROL SIGNALS 

The 80186 directl~vides the control signals RD, 
WR, LOCK and TEST. In addition, the 80186 pro­
vides the status signals SO-S2 and S6 from which all 
other required bus control signals can be generated. 

3.1.6.1 RD and WR 

The RD and WR signals strobe data to or from memo­
ry or I/O space. The RD signal is driven low at the 
beginning of T 2, and is driven high at the beginning of 
Ii.. during all memory and I/O reads (see Figure 11). 
RD will not'become active until the 80186 has ceased 
driving address information on the address/data bus. 
Data is sampled into the processor at the beginning of 
T4. RD will not go inactive until the processor's data 
hold time has been satisfied. 

A 

OE B 

T 
BUFFER 

A 

Oi! B 

T 
BUFFER 

L 8 , 

/1 , 

/8 

"/1 , 

Dl-D15 

0.07 

BUFFERED 
DATA 
BUS 

UNBUFFERED 

} DATA 
BUS 

210973-9 

Figure 10. Example 80186 Buffered/Unbuffered Data Bus 

5-9 



inter AP-186 

Note that the 80186 does not provide separate I/O and 
memory RD signals. If separate I/O read and memory 
read signals are required, they can be synthesized using 
the 82 signal'(which is low for all I/O ~ations and 
high for all memory operations) and the RD signal (see 
Figure 12). It should be noted that if this approach is 
used, the 82 signal will require latching, since the 82 
signal (like 80 and 81) goes to an inactive state well 
before the beginning ofT4 (where RD goes inactive). If 
82 was directly used for this purpose, the type of read 
command (I/O or meinory) could change just before 
T 4 as 82 goes to the inactive state (high). The status 
. signals may be latched using ALE the same as the ad­
dress signals (often using 'the sPare bits in the address 
latches). 

Often the lack of a separate I/O and memory RD sig­
nal is not important in ~ 80186 system. Each 80186 
chip select signal will respond to accesses exclusively in 
memory or I/O space. Thus, when a chip select is used, 
the external device is enabled only during accesses to 
the proper address in the proper space. 

NOTES: 
1. teLAZ: Clock low until address float 
2. telRl: Clock low until RD active 

The WR signal is also driven low at the beginning ofT2 
and driven high at the be~ing ofT4 (see Figure 13). 
In similar fashion to the RD signal, the WR signal is 
active for all memory and I/O writes. Again, separate 
memory and I/O control lineS may be generated using 
the latched 82 signal along with WR. More im~ant, 
however, is the role of the active-going edge of WR. At 
the time WR makes its high-to-Iow transition, valid 
write data is not present on the data bus. This has con­
sequences when using WR to enable such devices as 
DRAMs since those devices require the data to be sta­
ble on the falling edge. In DRAM applications, the 
problem is solved by the DRAM controller (an Intel 
8207, for example).' For other applications which re­
quire valid data before the WR transition, place cross­
coupled NAND gates between the CPU and the device 
on the WR line (see Figure 14). The added gates delay 
the active-going edge of WR to the device by one clock 
phase, at which time valid data is driven on the bus by 
the 80186. 

210973-10 

3. tAZRL: Address float until RD active 
4. tOVCl: Data vaiid until clock low (data input set-up time) 
5. teLDX: Clock low unitl data invalid (data input hold time from clock) 
6. tCLRH: Clock low until RD high . 
7. tRHAV: RD high until addresses valid 

Figure 11. Read Cycle TimiQg of the 80186 

LATCH 

!&..-
ALE READ 

~-------------------~<l __ J 
210973-11 

Figure 12. Generating 1/0 and Memory Read Signals from the 80186 

5-10 



infef AP-186 

3.1.6.2 Queue Status Signals 

If the RD line is externally grounded during reset and 
remains grounded during processor operation, the 
80186 will enter Queue Status Mode. When in this 
mode, the WR and ALE signals become queue status 
outputs, reflecting the status of the internal prefetch 
queue during each clock cycle. These signals are pro­
vided to allow a processor extension (such as the Intel 
8087 floating point processor) to track execution of in­
structions within the 80186. The interpretation of QSO 
(ALE) and QSl (WR) is given in Table 2. These signals 
change on the high-to-low clock transition, one clock 
phase earlier than on the 8086. Note that since execu­
tion unit operation is independent of bus interface unit 
operation, queue status lines may change in any T state. 

NOTES: 
1. tCLOV: Clock low until data valid 
2. tCVCTV: Clock low until WR active 
3. tCVCTX: Clock low until WR inactive 
4. tCLDOX: Clock high until data invalid 
5. tWHDX: WFi inactive until data invalid 

Table 2 80186 Queue Status 

QS1 QSO Interpretation 

0 0 no operation 
0 1 first byte of instruction taken 

from queue 
1 0 queue was reinitialized 
1 1 subsequent byte of instruction 

taken from queue 

Since the ALE, RD, and WR signals are not directly 
available from the 80186 when it is configured in queue 
status mode, these signals must be derived from the 
status lines SO-S2 using an external 82C88 bus control­
ler (see Figure 15). To prevent the 80186 from acciden­
tally entering queue status mode during reset, the RD . 
line is internally provided with a weak pullup device. 

210973-12 

Figure 13. Write Cycle Timing of the 80186 

c~o~ --------+_~ 

DELAYED 

WRITE 

(DATAVAUD 

ON LEADING EDGE) 

Figure 14. Synthesizing Delayed Write from the 80186 

5-1-1 

210973-13 



intJ Ap·186 

3.1.6.3 Status Lines 

The 80186 provides 3 status outputs which indicate the 
type of bus cycle currently being executed. These sig­
nals go from an inactive state (all high) to one of seven 
possible active. states during the T state immediately 
preceding T 1 of a bus cycle (see Figure 6). The possible 
status line encodings are given in Table 3. The status 
lines are driven to their inactive state in the T3 or Tw 
state immediately preceding T 4 of the current bus cy­
cle. 

Table 3 80186 Status Line Interpretation 
S2 S1 SO Operation 
0 0 0 interrupt acknowledge 
0 0 1 read 1/0 
0 1 0 write 1/0 
0 1 1 halt 
1 0 0 instruction fetch 
1 0 1 read memory 
1 1 0 write memory 
1 1 1 passive 

The status lines may be directly connected to an 82C88 
bus controller, which provides local bus control signals 
or multi-bus control signals (see Figure 15). Use of the 
82C88 bus controller does not preclude the use of the 
80186 generated RD, WR and ALE signals, however. 
The 80186 directly generated signals can provide local 
bus control signals, while an 82C88.can provide multi­
bus control signals. 

80188 

CLOCK 
OUT 

82cae 

aUSCONTROL 
SIGNALS 

210973-14 

Figure 15. 80186/82C88 Bus 
Controller Interconnection 

Two additional status signals are provided by 80186 
family members. S6 provides information. concerning 
the unit generating the bus cycle. It is time multiplexed 
with A19, and is available during T2, T3, T4 and TW. 
In the 8086 family, all central processors (e.g., the 8086 
and 8087) drive this line low, while all I/O processors 
(e.g., 8089) drive this line high during their respective 
bus cycles. Following this scheme, the 80186 drives this 
line low whenever the bus cycle is generated by the 
80186 CPU, but drives it high when the bus cycle is 
generated by the integrated 80186 DMA unit. This al­
lows external ,devices to distinguish between bus cycles 
fetching data for the CPU from those transfering data 
for the DMA unit. 

S7 and BHE are logically equivalent signals provided 
by the 80186 and the 80C186 (see Section 3.1.2). S7 is 
always high on the 80188 and 80C188 (except during 
80C188 DRAM refresh cycles) which signifies the pres­
ence of an 8-bit data bus. 

Three other status signals are available on the 8086 but 
not on the 80186. They are S3, S4, and ·S5 . .Taken to­
gether, S3 and S4 indicate the segment register from 
which the current physical address has been derived. S5 
indicates the state of the interrupt flip-flop. On the 
80186, these signals will always be low. 

3.1.6.4 TEST and LOCK 

Finally, the 80186 provides a TEST input and a LOCK 
output. The TEST input is used in conjunction with the 
processor WAIT instmction. It is typically driven by a 
coprocessor to indicate whether it is busy. 

The LOCK output is driven low whenever the data 
cycles of a LOCKED instmction are executed. A 
LOCKED instmction is generated whenever the 
LOCK prefix occurs immediately before an instmction. 
The LOCK prefix is active for the single instruction 
immediately following the LOCK prefix. The LOCK 
signal indicates to a bus arbiter (e.g., the 8289) that a I 

series of locked data transfers is occurring. The bus 
arbiter should under no circumstances release the bus 
while locked transfers are occurring. The 80186 will 
not'recognize a bus HOLD, nor will it allow DMA 
cycles to be run by the integrated DMA controller dur­
ing locked data transfers. LOCKED transfers are typi­
cally used in multiprocessor systems to access memory 
based semaphore variables which control access to 
shared system resources. 

On the 80186, the LOCK signal will go active during 
T 1 of the first DATA cycle of the locked transfer. It is 
driven inactive during T4 ofthe last DATA cycle of the 
locked transfers (assuming no wait states). On the 8086, 
the LOCK signal is activated immediately after the 
LOCK prefix is executed. The LOCK prefix may be 
executed well before the processor is prepared to per­
form the locked data transfer. This has the unfortunate 
consequence of activating the LOCK signal before the 
first LOCKED data cycle is performed. Since LOCK is 
active before the 8086 requires the bus for the data 
transfer, opcode pre-fetching can be LOCKED. 
LOCKED prefetching will not occur with the 80186. 

The LOCK output is also driven low during interrupt 
acknowledge cycles when the integrated interrupt con­
troller operates in Cascade or Slave Modes (see Sections 
6.5.2 and 6.5.3). In these modes, the operation of the 
LOCK pin may be altered when an interrupt occurs 

5·12 



AP-186 

during execution of a software-LOCKED instruction. 
See Section 6.5.4 for a description of additional hard­
war~ necessary to block DMA and HOLD requests un­
der such circumstances. 

3.1.7 HALT TIMING 

A HALT bus cycle signifies that the 80186 CPU has 
executed a HLT instruction. It differs from a normal 
bus cycle in two ways. 

The first way a HALT bus cycle differs from a normal 
bus cycle is that neither RD nor WR will be driven 
active. Address and data information will not be driven 
by the processor, and no data will be returned. The 
second way a HALT bus cycle differs from a normal 
bus cycle is that the SO-S2 status lines go to their inac­
tive state (all high) during T2 of the bus cycle, well 
before they go to their inactive state during a normal 
bus cycle. 

Like a normal bus cycle, however, ALE is driven ac­
tive. Since no valid address information is present, the 
information strobed into the address latches should be 
ignored. This ALE pulse can be used, however, to latch 
the HALT status from the SO-S2 status lines. 

The processor being halted does not interfere with the 
operation of any of the 80186 integrated peripheral 
units. This means that if a DMA transfer is pending 
while the processor is halted, the bus cycles associated 
with the transfer will run. In fact, DMA latency time 
will improve while the processor is halted because the 
DMA unit will not be contending with the processor 
for access to the 80186 (see section 4.4.1). 

3.1.8 82C88 AND 8289 INTERFACING 

The 82C88 and 8289 are the bus controller and multi­
master bus arbitration devices used with the 8086. Be­
cause the 80186 bus is similar to the 8086 bus, they can 
be used with the 80186. Figure 16 shows an 801~6 in­
terconnection to these two devices. 

The 82C88 bus cont~ller generates control signals 
(RD, WR, ALE, DT/R, DEN, etc.) for an 8086 maxi­
,mum mode system. It derives its information by decod­
ing status lines SO-S2 of the processor. Because the 
80186 and the 8086 drive the same status information 
on these lines, the 80186 can be directly connected to 
the 82C88 just as in an 8086 system. Using the 82C88 
with the 80186 does not prevent using the 80186 con­
trol signals. Many systems require both local bus con­
trol signals and system bus control signals. In this type 
of system, the 80186 lines could be used as the local 
signals, with the 82C88 lines used as the system signals. 
Note that in an 80186 system, the 82C88 generated 
ALE pulse occurs later than that of the 80186 itself. In 
many multimaster bus systems, the 82C88 ALE pulse 

8018a 

TO MULTI·MASTER BUS 

ADDRESS LATCHES I 

DATA BUFFERS 

8ZCR 

f"'2-t-~I'"-<~~' ALE 
52 DEN 

DT/R 

CLOCKOUTh-t-~ CLK 

l-:1--..JsySB/RESBit----

210973-16 

Figure 16. 80186/8288/8289 Interconnection 

should be used to strobe the addresses into the system 
bus address latches to insure that the address hold 
times are met. 

The 8289 bus arbiter arbitrates the use of a multi-mas­
ter system bus among various devices, each of which 
can become the ,bus master. This component also de­
codes status lines SO-S2 directly to determine when the 
system bus is required. When the system bus is re­
quired, the 8289 forces the processor to wait until it has 
acquired control of the bus, then it allows the processor 
to drive address, data and control information onto the 
system bus. The system determines when it requires 
system bus resources by an address decode. Whenever 
the address being driven coincides with the address of 
an on-board resource, the system bus is not required 
and thus will not be requested. The circuit shown in 
Figure 17 factors the 80186 chip select lines to deter­
mine when the systetp. bus should be requested, or 
when the 80186 request can be satisfied using a local 
resource. 

3.1.9 READY INTERFACING 

The 80186 provides two ready lines, a synchronous 
ready (SRDY) line and an asynchronous ready 
(ARDY) line. These lines signal the bus controller to ' 
insert wait states (Tw) into a CPU bus cycle, allowing 
slower devices to respond to bus activity. Wait states 
will only be inserted when both ARDY and SRDY are 
low, i.e., only one of the lines need be active to termi­
nate a bus cycle. Figure 17 depicts the logical ORing of 
the ARDY and SRDY functions. Any number of wait 
states may be inserted into a bus cycle. The 80186 will 
ignore the RDY inputs during any accesses to the inte­
grated peripheral registers and to any area where the 
chip select ready bits indicate that the external ready 
should be ignored. 

5-13 



intJ AP-186 

r------------------------------------------------------------'. 
ARDY 0-;.,,------, 

CLKOUT 

SRDYO-----------' 

D TO BUS 
INTERFACE 

UNIT 

.---------------------------------------------~------- -------210973-A3 

NOTES: 
1. Asynchronous Resolution Flip Flop 
2. Ready Latch Flip Flop 
3. R2 Bit in Chip Select Registers (Selects Internal Only (1) or External (0» 
4. Internally Generated Unit States Controlled by RO and R1 Bits In Chip Select Registers 

Figure 17.80186 Ready Circuitry 

The timing required by the two RDY lines is different. 
Inputs to the ARDY pin will be internally synchroniz· 
ed to the CPU clock before being presented to the rest 
of the bus control logic as shown in Figure 17. The first 
flip-flop is used to "resolve" the asynchronous tran­
sition of the ARDY line. It will achieve a definite high 
or low level before its output is latched into the second 
flip-flop. When latched high. it passes along the level 
present on the ARDY line; when latched low. it forces 
not ready to be passed along to the rest of the circuit. 
(See Appendix B for synchronizer information.) 

Figure 18 depicts activity for .Normally-Ready and 
Normally-Not-Ready configurations of external logic. 
Remember that for ARDY to force wait states. SRDY 
must be low as well. 

In a Normally-Not-Ready unplementation the setup 
and hold times of both the resolution flip·flop and the 
ready latch must be satisfied. The ARDY pin must go 
active at least TARYHCH (also denoted TARYCW be­
fore the rising edge of T2. T3 or Tw. and stay active 
until T CLARX after the falling edge of T 3 or Tw to stop 
generation of wait states and terminate the bus cycle. If 
ARDY goes active before the rising edge of T2 and 
stays active after the falling edge of T 3 there will be no 
wait state inserted. 

In a Normally-Ready implementation the setup and 
hold times of either the resolution flip-flop or the ready 
latch must be met. Wait states will be generated if 
ARDY goes inactive TARYHCH (also denoted 

5-14 



AP-186 

I 
I 

CLOCK 
OUT 

ARDY ~ 
In a Normally-Not-Ready system, wait states will be inserted unless: 
1. tARYHCH (also denoted IARYCH): ARDY active 10 clock high (ARDY resolution selup lime) 
2. tcLARX: Clock low 10 ARDY inactive (ARDY active hold time) 

I 
I 

CLOCK 
OUT 

ARDY ~ 
In a Normally-Ready sysiem, wail stales will be inserted If: 
1. IARYHCH (also denoled IARYCH): ARDY low 10 clock high (ARDY resolution selup lime) 
2. IARYCHL: Clock high 10 ARDY high (ARDY inactive hold lime) . 

I 
I 

CLOCK 
OUT 

ARDY ~ 
Alternatively, in a Normally-Ready system, wail stales will be inserted If: 
1. IARYLCL: ARDY low 10 clock low (ARDY setup time) 
2. ItCLARX: Clock low 10 ARDY high (ARDY aclive hold time) 
ARDY musl meel T ARYLCL and T CLARX or undesired CPU operalion will result. 

Figure 18. ARDY Transitions 

5-15 

210973-18 

210973-19 

210973-20 



AP-186 

TARYCW before the rising edge of T2 and stays inac­
tive a minimum of TARYCHL after the edge, or if 
ARDY goes inactive at least TARYLCL before the fall-. 
ing edge of T3 and stays inactive a minimum of 
TCLARX after the edge. The 80186 ready circuitry per­
forms this way to allow a slow device the maximum 
amount of time to respond with a not ready after it has 
been selected. 

The synchronous ready (SRDY) line requires that all 
transitions on this line during T2, T3, or Tw satisfy 
setup and hold times (tSRYCL and tCLSRY respective­
ly). If these requirements are not met, the CPU will not 
function properly. Valid transitions on this line and 
subsequent wait state insertion is shown in Figure 19. 
The bus controller looks at SRDY at the beginning of 
each T3 and Tw. If the line is sampled active at the 
beginning of either of these two cycles, that cycle will 
be immediately followed by T4. If the line is sampled 
inactive at the beginning of either T state, that cycle 
will be followed by a Tw. Any asynchronous transition 
on the SRDY line not occurring at the beginning of T 3 
or Tw, i.e., when the processor is not sampling the 
input, will not cause CPU malfunction. 

3.1.10 BUS PERFORMANCE ISSUES 

Bus cycles occur sequentially, but do not necessarily 
,come immediately one after another, that is the bus 
may remain idle for several T states (TV between each 
bus access initiated by the 80186. The reader should 
recall that a separate unit, the bus interface unit, fetches 
opcodes from memory, while the execution unit actual­
ly executes the pre-fetched instructions. The number of 
clock cycles required to execute an 80186 instruction 
vary from 2 clock cycles for a register to register move 
to 67 clock cycles for an integer divide. 

If a program contains many long instructions, program 
execution will be CPU limited, that is, the instruction 
queue will be constantly filled. Thus, the execution unit 
does not need to wait for an instruction to be fetched. If 
a program contains mainly short instructions (for ex­
ample, data move instructions), the execution will be 

. bus limited. Here, the execution unit will have to wait 
often for an instruction to be fetched before it contin­
ues. Programs illustrating this effect and performance 
degradation of each with the addition of wait states are 
given in appendix G. 

> • .' 

Although the amount of bus utilization will vary con­
siderably from one program to another, a typical in­
struction mix on the 80186 will require greater bus uti­
lization than the 8086. The 80186 executes most in­
structions in fewer clock cycles, thus requiring instruc­
tions from the queue at a faster rate. This also means 
that the effect of wait states is more pronounced in an 
80186 system than in an 8086 system. In all but a few 
cases, however, the performance degradation incurred 
by adding a wait state is less than might be expected 
because instruction fetching and execution are per­
formed by separate units. 

3.2 ~xample Memory Systems 

3.2.1 2764 INTERFACE 

With the above knowledge of the 80186 bus, various 
memory interfaces may be generated. One of the sim­
plest is the example EPROM interface shown in Figure 
20. 

~ : ~ : .~ : ~ 

CLOCK~CD ~ ." 

OUT_ <D~ 
BHOY CD 

210973-23 

NOTES: 
1. Decision: Not Ready, T-State will be followed by a wait state 
2. Decision: Ready. T-State will not be followed by a wait state 
3. tsRYCL: Synchronous ready stable until clock low (SRDY set-up time) 
4. tcLSRY: Clock low until synchronous ready transition (SRDY hold time) 

Figure 19. Valid SRDY Transitions 

5-16 



inter AP-186 

UCS 

A13 
A1 

RD 

ADO·AD7 

AD8·AD15 

)3 
, )3 

/8 

/8 , 

2784 

CE 
A12 

AD 

OE 
00·07 

f 
I 

2784 - CE 

.~ 
A12 

AD 

r-
OE 

00·07 

210973-24 

Figure 20. Example 2764/80186 Interface 

The addresses are latched using the circuit shown earli­
er. Note that the AO line of each EPROM is connected 
to the Al address line from the 80186, not the AO line. 
Remember, AO only signals a data transfer on the lower 
8 bits of the l6·bit data bus. The EPROM outputs are 
connected directly to the address/data inputs of the 
80186, and the 80186 RD signal is used as the OE for 
the EPROMs. 

The chip enable of the EPROM is driven directly by 
the chip select output of the 80186 (see section 8). In 
this configuration, the access time calculation for the 
EPROMs are: 

time from address: (3 + N) • tCLcL - !cLAV -
tpo (latch) - tOVCL 

time from chip select: (3 + N) • tcLCL - tcLCSV - tOVCL 

time from RD (OE): (2 + N) tCLCL - tCLRL - tOVCL 

where: 

tCLA V = time from clock low in T 1 until addresses 
are valid 

tCLCL = clock period of processor 

tpD = time from input valid of latch until output 
valid of latch 

tDVCL = 186 data valid input setup time until clock 
low time in T 4 

tCLCSV = time from clock low in T 1 until chip· se· 
lects are valid 

tCLRL = time from clock low in T2 until RD goes 
low 

N = number of wait states inserted 

The only significant parameter not included above is 
tRHAV, the time from RD inactive (high) until the 
80186 begins driving address information. The output 
float time of the EPROM must be within this spec. If 
slower EPROMs are used, a discrete buffer must be 
inserted between the EPROM data lines and the ad­
dress/data bus, since these devices may continue to 
drive data information on the multiplexed address/data 
bus when the 80186 begins to drive address information 
for the next bus cycle. 

3.2.2 8203 DRAM INTERFACE 

An example 8203/DRAM interface is shown in Fignre 
21. The 8203 provides all required DRAM control sig­
nals, address multiplexing, and refresh generation. In 
this circuit, the 8203 is configured to interface to 64K 
DRAMs. 

All 8203 cycles are generated off control signals (RD 
and WR) provided by the 80186. These signals will not 
go active until T 2 of the bus cycle. In addition, since the 
8203 clock (generated by the internal crystal oscillator 
of the 8203) is asynchronous to the 80186 clock, all 
memory requests by the 80186 must be synchronized to 
the 8203 before the cycle will be run. To minimize this 
synchronization time, the 8203 should be used with the 
highest speed crystal that will maintain DRAM com­
patability. If a 25 MHz crystal is used (the maximum 
allowed by the 8203) two wait states will be required by 
the example circuit when using 150 ns DRAMs with an 
8 MHz 80186, and three wait states if 200 ns DRAMs 
are used (see Figure 22). 

The entire DRAM array controlled by the 8203 can be 
selected by one or a group of the 80186 provided chip 
selects. These chip selects can also insert the wait states 
required by the interface. 

5-17 



intJ 

MCSl 
MeSO 

A17-Al 

AROY 

ADO·A015 

] "-
.J 

17 

r---

-
:/ --

-

-

8203 J 
SEL WR 
AD·' 
Al', WE r--

'SO 
SACKJiU 

XACK~ 
iftj 

f 

LATCH 
DOD-7 

O! 010-7 -
STS 

LATCH 
DOD-7 

DE 010-7 -
STB 

rL> 
r=u-

220 220 

UPPER LOWER 
BYTE\¥! BYTE\¥! 

I 

, 1)10.15 

000-15 

ORAlia 

...... 

210973-26 

,Figure 21. Example 8203/DRAM/80186 Interface 

Since the 8203 is operating asynchronously to the 
80186, the RDY output of the 8203 must be synchro· 
nized to the 80186. The 80186 ARDY line provides the 
necessary ready synchronization. The 8203 ready out­
puts operate in a normally not ready mode, that is, they 
are only driven active when an 8203 cycle is being exe­
cuted, and a refresh cycle is not being run. The 8203 
SACK is presented to the 80186 only when the DRAM 
is being accessed. Notice that the SACK output of the 
8203 is used, rather than XACK. Shtce the 80186 will 
insert at least one full CPU clock cycle between the 
time RDY is sampled active and the time data mu~t be 
present on the data bus, the XACK signal wonld insert 
unnecessary additional wait states, since it does not in­
dicate ready until valid data is available from the, ~em­
ory. 

3.2.3 8207 DRAM INTERFACE 

The 8207 advanced dual-port DRAM controller pro­
vides a high performance DRAM memory interface 
specifically for 80186 microcomputer systems. This 
controller provides all address multiplexing and 

DRAM refresh circuitry. In addition, it synchronizes 
and arbitrates memory requests from two different 
ports (e.g., an 80186 and a Multibus), allowing the two 
ports to share memory. Finally, the 8207 provides a 
simple interface to the 8206 error detection and corree­
tion chip. 

The simplest 8207 (and also the highest performance) 
interface is shown in Figure 23. This shows the 80186 
connected to an 8207 using the 8207 slow cycle, syn­
chronous status interface. In this mode, the 8207 de­
codes the cycle to be run directly from the status lines 
of the 80186. In ~dition, since the 8207 CLOCKIN is 
driven by the CLKOUT ofthe 80186, any performance 
degradation caused by required memory request syn­
chronization between the 80186 and the 8207 is hot 
present. Finally, the entire memory array driven by the 
8207 may be selected using one or a group of the 801~6 
memory chip selects, as in the 8203 interface above. 

The 8207 AACK signal generates a synchronous ready 
signal to the 80186 in the above interface. Since dynam­
ic memory periodicll;lly requires refreshing, 80186 ac-

5-18 



intJ Ap·186 

T, 

186 ---i-~~ 
RD 

8203 _______ ~:__-, 

RAS 

8203 ---i-----'i----' ...... -;-, 
CAS 

RAM "",mm~mm~mm~mm~~~~~~~~~---t--~----__ 
DAn ~~~~~~~~~~~~~~~~~r--+~-------

LATCH ~mm~mm~mm~mm~~~~~~mm*"~~rr-~------­
DAn ~~~~uw~~~uw~~~uw~~~~~ .... +-........ ___ 

NOTES: 
1. tCLEL: Clock low until read low max 
2. tCR: Command active until RAS max 
3. tCC: Command active until CAS max 
4. tCAC: Access time from CAS max 
5. tISOU: Input to output delay max 
6. tOVCL: Data valid to clock low (data in set up) min 

CD & ® are 80186 specs 
® & @ are 8203 specs 
@ is a DRAM spec 
® is address latch spec 

210973-27 

Total Access Time = teLEL + tec + teAC + tlSOU + tOVCL 

Figure 22. Example 8203 Access Time Calculation 

801 7 

CLKOUT 1-----.1 CLK 

so WR 
+5 

511-----.' iW PCTC 

S2 PCTL 

LMCS 1------.1 

SRDY 

210973-28 

Figure 23. 80186/8207/DRAM Interface 

cess cycles may occur simultaneously with an 8207 gen­
erated refresh cycle. When this occurs, the 8207 will 
hold the AACK line high until the processor initiated 
access is run (note, the sense ofthis line is reversed with 
respect to the 80186 SRDY input). This signal should 
be factored with the DRAM (8207) select input and 
used to drive the SRDY line of the 80186. Remember 
that either SRDY and ARDY needs to be active for a· 
bus cycle to be terminated. If asynchronous devices 
(e.g., a Multibus interface) are connected to the ARDY 
line with the 8207 connected to the SRDY line, 

care must be taken in design of the ready circuit such 
that only one of the RDY lines is driven active. at a time 
to prevent premature termination of the bus cycle. 

3.3 HOLD/HLDA Interface 

The 80186 employs a HOLD/HLDA bus exchange 
protocol. This protocol allows other asynchronous bus 
masters (i.e., ones which drive address, data, and con­
trol information on the bus) to gain control of the bus. 

3.3.1 HOLD RESPONSE 

In the HOLD/HLDA protocol, a device requiring bus 
control (e.g., an external DMA device) raises the 

. HOLD line. In response to this HOLD request, the 
80186 will raise its HLDA line after it has finished its 
current bus activity. Wh~n the external device is fm­
ished with the bus, it drops its bus HOLD request. The 
80186 responds by dropping its HLDA line and resum­
ing bus operation. 

5-19 

When the 80186 recognizes a bus hold by driving 
HLDA high, it will float many of its signals (see Figure 
24). ADO-AD1S and DEN are floated within 



AP-186 

tCLAZ after the same clock edge that HJd)A is driven 
active. AI6-AI9, RD, WR, BHE, DT/R, and SO-S2 
are floated within tCHCZ after the clock edge immedi­
ately before the clock edge on which HLDA comes 
active. 

ClOCK 

OUT 

T, T, 

~ ----~----~~~----~-----

HLDA ----.;-.---++-i-' 

AD15-ADO ----i--;f-'-~ ... "\.-..;FL=O~AT:...._;_---
~ ____ ~-+----J 

11.18-11.19, ___ +--+ .... 
Im,WR,1HE, ~~--:'f-....:;:FL~O:::Ii.~:r __ 'f-__ _ 
DTlJf,Sii-ti, ____ .;-. __ J I I 

Il6 .:: 
210973-29 

Figure 24. Signal Float/HLDA 
Timing of the 80186 

Only the above mentioned signals are floated during 
bus HOLD. Of the signals not floated by the 80186, 
some have to do with peripheral functionality (e.g., 
TMR OUT). Many others either directly or indirectly 
control bus devices. These signals are ALE and all the 
chip select lines (UCS, LCS, MCSO-3, and PCSO-6). 

3.3.2 HOLD/HLDA TIMING AND BUS LATENCY 

The time required between HOLD going active and the 
80186 driving HLDA active is known as bus latency. 
Many factors affect bus latency, including synchroniza­
tion delays, bus cycle times, locked transfer times and 
interrupt acknowledge cycles. 

The HOLD request line is internally synchronized by 
the 80186, and may therefore be an asynchronous inc 
put. To guarantee recognition on a particular clock 
edge, it must satisfy setup and hold times to the falling 
edge of the CPU clock. A full CPU clock cycle is re­
quired for synchronization (see Appendix B). If the bus 
is idle, HLDA will follow HOLD by two CPU clock 
cycles plus a small amount of setup and propagation 
delay time. The first clock cyCle synchronizes the input; 

T, T, 

HOLD 

HLDA ----......;,,-------------1 
I 
I 

210973-30 

NOTES: 
1. tHVCL: Hold valid until clock low 
2. tCLHAV: Clock low until HLDA active 

Figure 25. 80186 Idle Bus Hold/HLDA Timing 

the second signals the internal circuitry to initiate a bus 
hold (see Figure 25). 

Many factors influence the number of clock cycles be­
tween a HOLD request and a HLDA. These make bus 
latency longer than the best case shown above. Perhaps 
the most important factor is that the 80186 will not 
relinquish the local bus until the bus is idle. The bus 
can become idle only at the end of a bus cycle. The 
80186 will normally insert no Tj states between T4 and 
T 1 of the next bus cycle if it requires any bus activity 
(e.g., instruction fetches or I/O reads). However, the 
80186 may not have an immediate need for the bus 
after a bus cycle, and will insert Tj states independent 
of the HOLD input (see Section 3.1.1). 

When the HOLD request is active, the 80186 will be 
forced to proceed from T4 to Tj in order that the bus 
may be relinquished. HOLD must go active 3 T-states 
before the end of a bus cycle to force the 80186 to insert 
idle T -states after T 4 (one to synchronize the request, 
and one to signal the 80186 that T4 of the bus cycle will 
be followed by idle T-states, see section 3.1.1). After the 
bus cycle has ended, the bus hold will be immediately 
acknowledged. If, however, the 80186 has already de­
termined that an idle T-state will follow T4 of the cur­
rent bus cycle, HOLD need go active only 2 T-states 
before the end of a bus cycle to force the 80186 to 
relinquish the bus. This is' because the external HOLD 
request is not required to force the generation of idle 
T-states. Figure 26 graphically portrays the scenarios 
depicted above. 

5-20 



AP-186 

NOTES: 

CLOCK 

OUT 

HOLD 

HLDA 

T,OR 

Tw :' T, T, 

210973-31 

1. Decision: No additional internal bus cycles required, idle T-states will be inserted after T 4 
2. Greater than tHVCL . 
3. LessthantCLHAV 
4. HOLD request internally synchronized 

T.OR 

: Tw : T. : T1 

CLOCK~l 
OUT I I I , , 

HLDA 210973-32 

NOTES: 
1. Decision: Additional internal bus cycles required, no idle T-states will be inserted, HOLD not active soon enough to 
force idle T-states 
2. Greater than tl-\VCL: not required since it will not get recognized anyway 
3. HOLD request Internally synchronized 

CLOCK 
OUT 

HOLD 

T,O' 

Tw T. T, 

HLDA ______________________________________________________ -J 

210973-33 

NOTES: 
1. HOLD request internally synchronized 
2. Decision: HOLD request active, idle t-states will be inserted at end of current bus cycle 
3. Greater than tHVCL 
4. Less than tCLHAV 

Figure 26_ HOLD/HLDA Timing In the 80186 

An external HOLD has higher priority than both the 
80186 CPU or integrated DMA unit. However, an ex­
ternal HOLD will not separate the two cycles needed to 
perform a word access when the word accessed is locat­
ed at an odd location (see Section 3.1.3). In addition, an 
external HOLD will not separate the two-to-four bus 
cycles required for the integrated DMA unit to perform 
a transfer. Each of these factors will add to the bus 
latency of the 80186. 

Another factor influencing bus latency time is locked 
transfers. Whenever a locked transfer is occurring, the 

5-21 

80186 will not recognize external HOLDs (nor will it 
recognize internal DMA bus requests). Locked trans­
fers are programmed by preceding an instruction with 
the LOCK prefix. String instructions may be locked. 
Since string transfers may require thousands of bus cy­
cles, bus latency time will suffer if they are locked. 

The final factor affecting bus latency time is interrupt 
acknowledge cycles. When an external interrupt con­
troller is used, or if the integrated interrupt controller is 
used in Slave mode (see Section 4.4.1) the 80186 will 
run two interrupt acknowledge cycles back to back. 



inter AP-186 

These cycles are automatically "locked" and will never 
be separated by bus HOLD. See Section 6.5 on inter­
rupt acknowledge timing for more information con­
cerning interrupt acknowledge timing. 

°3•3•3 COMING OUT OF HOLD 

When the HOLD input goes inactive, the processor 
lowers its HLDA line in a single clock as shown in 
Figure 27. If there is pending bus activity, only two ri 
states will be inserted after HLDA goes inactive and 
status information will go active during the last idle 
state concerning the bus cycle about to be run (see Sec-

- T, 

HOLD --~ 

tion 3.1.1). If'there are no bus cycles to be run by the 
CPU, it will continue to float all lines until the last Ti 
before it begins its first bus cycle after the HOLD. 

A special mechanism exists on the 8OC186/80C188 to 
provide for DRAM refreshing while the bus is in 
HOLD. If the refresh control unit issues a request to 
the integrated bus controller while HOLD is in effect, 
the processor lowers HLDA. It is the responsibility of 
the external bus master to release the bus by deasserting 
HOLD so that the refresh cycle can take place (see 
Figure 28). The external master can then reassume con­
trol of the bus subject to the usual requirements placed 
on the HOLD input. 

T. T, 

HLDA ----.l----~"\ 

ADO-AD15 

DEN --~~--~--;---t~;-l--

A18/53-A19/S8 -----+----!----+-~~r!----iiD.WIi.BHE 
DT/ii.ilii·li2 

NOTES: 
1. HOLD internally synchronized 
2. Greater than T HVCL 
3. Less than TCLHAV 
4. Lines come out of float only if a bus cycle is pending 

Figure 27. 80186 Coming out of Hold 

TlI"ITI 11 I n T4 T1 

CL::: =t31 CD : ~~ @ 

I ~~--~+LLL~~~~+W~ 

HLDA I 

NOTES: 

ADD-AD15, 
UER 

A16IS3-A19JS6, 

DT/R,SO-s2 

I II--+------I---~>--+---+f'---
I I 
I I Il---r----+---~_1--~ 
I I 
I I Il __ --+-__ ~-_+-'"<r-t----
I I 
I I 

1. HLDA deasserted, signaling need to run DRAM refresh cycle; less than tcLHAV. 
2. External bus master terminates lise of the bus. 
3. HOLD deasserted; greater than tHVCL. 

° 4. HOLD may be reasserted after one clock. 
5. Lines come out of float in order to run DRAM refresh cycle. 

Figure 28. Release of 80C186/80C188 HOLD to RunoRefresh Cycle 

5-22 

210973-34 

210973-A4 



inter AP-186 

3.4 Differences between the 8086 Bus 
and the 80186 Bus 

The 80186 bus was defined to be upward compatible 
with the 8086 bus. As a result, the 8086 bus interface 
components (the 82C88 bus controller and the 8289 bus 
arbiter) may be used with the 80186. There are a few 
significant differences between the two processors 
which should be considered. 

CPU Duty Cycle and Clock Generator 

The 80186 employs an integrated clock generator 
which provides a 50% duty cycle CPU clock. This is 
different from the 8086, which utilizes an external clock 
generator to provide 33% ('I. high, % low) CPU clock. 
The following points relate to 80186 clock generation: 

1) The 80186 uses a crystal or external frequency in­
put twice the desired processor clock frequency. 

2) No oscillator output is available from the 80186 
internal oscillator. 

3) The 80186 does not provide a clock output at re­
,duced frequency from the 80186. However, a tim­
er output may be easily programmed for this pur­
pose. 

4) Interfacing the 80186 to devices needing a 33% 
duty cycle clock (for example, the 8087) is possi­
ble, but requires careful timing analysis. 

5) Care should be exercised not to exceed the drive 
capability of the 80186 CLKOUT pin. 

Local Bus Controller and Control Signals 

The 80186 simultaneously provides both local bus con­
troller outputs' and status outputs for use with' the 
82C88 bus controller. This is different from the 8086 
where the local bus controller outputs are sacrificed if 

CLOCK 
OUT 

status outputs are desired. These differences will mani­
fest themselves in 8086 systems and 80186 systems as 
follows: 

1) Because the 80186 can simultaneously provide lo­
cal bus control signals and status outputs, many 
systems supporting both a system bus (e.g., a 
MULTIBUS®) and a local bus will not require 
two separate external bus controllers, that is, the 
80186 bus control signals may be used to control 
the local bus while the 80186 status signals are 
concurrently connected to the 82C88 bus control­
ler to drive the control signals of the system bus. 

2) The ALE signal of the 80186 goes active a clock 
phase earlier on the 80186 then on the 8086 or 
82C88. This minimizes address propagation time 
through the address latches, since typically the de­
lay time through these latches from inputs valid is 
less than the propagation delay from the strobe 
input active. 

3) The 80186 RD input must be tied low to provide 
queue status outputs from the 80186 (see Figure 
29). When so s~ped into "queue status mode," 
the ALE and WR outputs provide queue status 
information. Notice that queue status information 
is available one clock phase earlier from the 80186 
than from the 8086 (see Figure 30). 

80188 
QSO ALE 

QS1 WR 

r iii) 

210973-35 

Figure 29_ Generating Queue Status 
Information from the 80186 

1M --------~--------~--~~~~--hj~~-----­
QS---------r------~r_--~I~~----~~--------

, 8086 ---------r------~r_------~~----~~------
QS ___________ ~ _________ ~ _________ ~~ ______ ~~ ___ __ 

210973-36 

NOTES: 
1. 80186 changes queue status off falling edge of ClK 
2. 8086 changes queue status off rising edge of CLK 

Figure 30. 80186 and 8086 Queue Status Generation 

5-23 



inter AP-186 

HOLD/HLDA vs. RQ/GT 

As discussed earlier, the 80186 uses a HOLD/HLDA 
protocol for exchanging bus mastership (like the 8086 
in min mode) rather than the RQ/GT protocol used by 
the 8086 in max mode. This allows compatibility with 
Intel's bus master peripheral devices (for example the 
82586 Ethernet controller or 82730 high performance 
CRT controller/text coprocessor). 

Status Information 

The 80186 does not provide S3-S5 status information. 
On the 8086, S3 and S4 provide information regarding 
the segment register generating the physical address of 
the current bus cycle. S5 provides information concern­
ing the state of the interrupt enable flip·flop. These· 
status lines are always low on the 80186. 

Status signal S6 indicates whether the current bus cycle 
is initiated by either the CPU or a DMA device. Subse· 
quently, it is always low on the 8086. On the 80186, it is 
low whenever the current bus cycle is initiated by the 
80186 CPU, and is high when the current bus cycle is 
initiated by the integrated DMA unit. 

Miscellaneous 

The 80186 does not provide early and late write signals, 
as does the 82C88 bus controller. The WR signal gener­
ated by the 80186 corresponds to the early write signal 
of the 82C88. This means that data is not stable on the 
address/data bus when this signal is driven active. 

The 80186 also does not provide both I/O and memory 
read and write command signals. If these signals are 
desired, an external 82C88 bus controller may be used, 
or the S2 signal may be used to synthesize both com­
mands (see Section 3.1.6.1). 

4.0 DMA UNIT INTERFACING 

The 80186 includes a DMA unit consisting of two inde­
pendent DMA channels. These channels operate inde­
pendently of the CPU, and drive all integrated bv.8 in­
terface components (bus controller, chip selects, etc.) 
exactly as the CPU (see Figure 31). This means that 
bus cycles initiated by the DMA unit are the same as 
bus cycles initiated by the CPU (except that S6 = 1 
during all DMA initiated cycles). Interfacing the DMA 
unit itself is very simple, since except for the addition of 
the DMA request connection, it is exactly the same as 
interfacing to the CPU. 

5-24 

I 

EXTERNAL ADDRESS/DATA, 
CONTROL, CHIP SELECTS, 
ETC. 

DMA 
REQUESTS 

210973-37 

Figure 31. 80186 CPU/DMA 
Channel Internal Model 



AP-186 

4.1 DMA Features 

Each of the two DMA channels provides the following 
features: 

• Independent 20-bit source and destination pointers 
which access the I/O or memory location from 
which data will be fetched or to which data will be 
deposited 

• Programmable auto-increment, auto-decrement or 
neither of the source and destination pointers after 
each DMA transfer 

• Programmable termination of DMA activity after a 
certain number of DMA transfers 

• Programmable CPU interruption at DMA termina­
tion 

II Byte or word DMA transfers to or from even or odd 
memory or I/O addresses 

• Programmable generation of DMA requests by: 
1) the source of the data 

2) the destination of the data 

3) timer 2 (see Section 5) 

4) the DMA unit itself (continuous DMA requests) 

4.2 DMA Unit Programming 

Each of the two DMA channels contains a number of 
. registers to control channel operation. These registers 

are included in the 80186 integrated peripheral control 
block (see Appendix A). These registers include the 
source and destination pointer registers, the transfer 
count register and the control register. The layout of 
the bits in tlIese registers is given in Figures 32 and 33. 

The 20-bit source and destination pointers access the 
complete 1 Mbyte address space of the 80186 and all 20 

bits are affected by the auto-increment or auto-decre­
ment unit of the DMA. The address space is seen as a 
flat, linear array without segments. Even though the 
usual I/O addressability of the 80186 is 64 Kbytes, it is 
possible to perform I/O accesses over a 1 Mbyte ad­
dress range. Therefore, it is important to program the 
upper four bits of the pointer registers to 0 if routine 
I/O addresses are desired. 

After every DMA transfer the 16-bit DMA transfer" 
count register it is decremented by 1, whether a byte 
transfer or a word transfer has occurred. If the TC bit 
in the DMA control register is set, the DMA ST/STOP 
bit (see below) will be cleared when this register goes to 
0, causing all DMA activity to cease. A transfer count 
of zero allows 65536 (216) qansfers. 

Upon reset, the contents of the DMA pointer registers 
and transfer count registers are indeterminate; initiali­
zation of all the bits should be practiced. 

The DMA control register (see Figure 33) contains bits 
which control various channel characteristics, includ­
ing for each of the data source and destination whether 
the pointer points to memory or I/O space, or whether 
the pointer will be incremented, decremented or left 
alone after each DMA transfer. It also contains a bit 
which selects byte or word transfers. Two synchroniza­
tion bits determine the source of the DMA requests (see 
Section 4.7). The TC bit determines whether DMA ac­
tivity will cease after a programmed number of DMA 
transfers, and the INT bit enables interrupts to the 
processor when this has occurred (note that an inter­
rupt will not be generated to the CPU when the transfer 
count register reaches zero unless both the INT bit and 
the TC bit are set). 

5-25 



inter AP-186 

x X X 

OFFSET 
DEH 
DCH 
DAH 
D8H 
D8H 
D4H 
D2H 
DOH 
CEH 

CCH 
CAH 
CBH 

C8H 
C4H 
C2H 
COH 

I I I I I I I Xl I I CONTROL WORD 

TRANSFER COUNT 15 0 
119 18 

15 0 
DESTINATION POINTER 

119 18 
15 0 

SOURCE, POINTER CHANNEL 1 t 
X X X 

[ I I I I I I "I I I 
CHANNEL OJ 

CONTROL WORD 
15 0 TRANSFER COUNT 

X X X [1. 1. 
, 15 0 

DESTINATION POINTER 

X X X J19 18 SOURCE POINTER 
15 0 

210973-38 

Figure 32. 80186 DMA Register Layout 

.210973-39 

Figure 33. DMA Control Register 

The control register also contains a start/stop (ST/ 
STOP) bit which enables DMA transfers. Whenever 
this bit is set, the channel is armed, that is, a DMA 
transfer will occur whenever a DMA request is made to 
the channel. A companion bit, the CHG/NOCHG bit, 
allows the DMA control register to be changed without 
modifying the state ofthe start/stop bit. The ST/STOP 
bit will only be modified if the CHG/NOCHG bit is 
also set during the write to the DMA control register. 
The CHG/NOCHG bit is write only. It will always be 
read back as a O. Because DMA transfers could occur 
immediately after the ST/STOP bit is set, it should 
only be set after all other DMA controller registers 
have been programmed. This bit is automatically 
cleared when the transfer count register reaches zero 
and the TC bit in the DMA control register is set, or 
when the transfer count register reaches zero and un­
synchronized DMA transfers are programmed. 

All DMA unit programming registers are directly ac­
cessible by the CPU. This means the CPU can, for ex­
ample, modify the DMA source pointer register after 
137 DMA transfers have occurred, anq have 'the' new 
pointer value used for the 138th DMA transfer. Ifmore 
than,one register in the DMA channel is being modified 
at any time that'a DMA request may be generated and 
the DMA channel is enabled (the ST/STOP bit in the 
control register is set), the register programming values 
should be placed in memory locations and moved into 
the DMA registers using a locked string move instruc­
tion. This will prevent a DMA transfer from occurring 
after only some of the register values have changed. 
The above also holds true if a read/modify/write type 
of operation is being performed (e.g., ANDing off bits 
in a pointer register in a single AND instruction to a 
pointer register mapped into memory space). 

5-26 



inter AP-186 

4.3 DMA Transfers 

Every 80186 DMA transfer consists of two independent 
bus cycles, a fetch cycle and a deposit cycle (see Figure 
34). During the fetch cycle, the byte or word data is 
accessed according to the source pointer register. The 
data is read into an internal temporary register which is 
not accessible by the CPU. During the deposit cycle, 
the data is written to memory or I/O space at the ad­
dress in the destination pointer register. These two bus 
cycles cannot be separated by a bus HOLD, a refresh 
cycle, or any other condition except RESET. DMA bus 
cycles are identical to bus cycles initiated by the CPU 
except that the S6 status line is driven to a logic one 
state. 

4.4 DMA Requests 

Each DMA channel has a single DMA request line by 
which an external device may request a DMA transfer. 
The synchronization bits in the DMA control register 
determine whether this line is interpreted to be connect­
ed to the source or destination of the DMA data. All 
transfer requests on this line are synchronized internal­
ly to the CPU clock before being presented to internal 
DMA logic. In addition to external requests, DMA re­
quests may be generated whenever the internal Timer 2 
times out, or continuously by programming the syn­
chronization bits in the DMA control register for un­
synchronized DMA transfers. 

CLOCK Tn 

OUT~ 
, , , , 
: r--:-n 

DRO~ : 
, , 

ADO- S~ ® 
AD15 S , , 

Rii IS !\ 
Wii s S 

--.l!CS, LCS, S~® 
, 

MCS, or PCS 

NOTES: 
1. Source address 
2. Source data 
3. Destination address 
4. Destination data 

4.4.1 DMA REQUEST TIMING AND LATENCY 

Before any DMA request can be generated, the 80186 
internal bus must be granted to the DMA unit. A cer­
tain amount of time is required for the CPU to grant 
this internal bus to the'DMA unit. The time between a 
DMA request being issued and t,he DMA,transfer being 
run is known as DMA latency. Many of the issues con­
cerning DMA latency are the same as those concerning 
bus latency (see Section 3.3.2). The only important dif­
ference is that external HOLD and refresh always have 
bus priority over an internal DMA transfer. Thus, the 
latency time of an internal DMA cycle will suffer dur­
ing an external bus HOLD. 

Each DMA channel has a programmed priority relative 
to the other DMA channel. Both channels may be pro­
grammed to be the same priority, or one may be pro­
grammed to be of higher priority than the other chan­
nel. If both channels are active, DMA latency will suf­
fer on the lower priority channel. If both channels are 
active and both channels are of the same programmed 
priority, DMA transfer cycles will alternate between 
the two channels (i.e., the first channel will perform a 
fetch and deposit, followed by a fetch and deposit by 
the second channel, etc.). 

210973-40 

5. If a source or destination address overlaps an active chip select region, the chip select will go active. 
6. Wait states are inserted by programming the chip select/ready logic for an active address region, or by the external 
ready pins. 

Figure 34. Example DMA Transfer Cycle on the 80186 

5-27 



inter Ap·186 

The minimum timing required to generate a DMA cy­
cle is shown in Figure 35. Note that the minimum time 
from DRQ becoming active until the beginning of the 
first DMA cycle is 4 CPU clock cycles. This time is 
independent of the number of wait states inserted in the 
bus cycle. The maximum DMA latency is a function of 
other processor activity. 

cycle for the request to be recognized by the processor. 
If DRQ goes inactive before that window, 'then no 
DMA cycles will be run 

4.5 DMA Acknowledge 

Also notice that ifDRQ is sampled active at 1 in Figure 
35, the DMA cycle will be executed, even if the DMA 
request goes inactive before the beginning of the first 
DMA cycle. This does not mean that the DMA request 
is latched into the processor. Quite the contrary, DRQ 
must be active at a certain time before the end of a bus 

The 80186 generates no explicit DMA acknowledge 
(DACK) signal. Instead, the 80186 performs a read or 
write directly to the DMA requesting device. If re­
quired, a DMA acknowledge signal can be generated by 
a decode of an address, or by merely using one of the 
PCS lines (see Figure 36). Note ALE must. be used to 
factor DACK because addresses are not guaranteed 
stable when chip selects go active. 

To or 
T,or To or 

T,or T,or To or : 

T,or T,or T,or: T, 

I Tw or I Twor I Tw or I T,or I olDMA 

~
: T, : T, :0T' : T,.: CYCLE 

CD I I I I I 
1~,~"""" 

210973-41 

NOTES: 
1. tlNVCL = DMA request to clock low 
2. Synchronizer resolution time 
3. DMA unit priority arbitration. etc. time 
4. Bus Interface Unit latches DMA request and decides to run DMA cycle 

Figure 35. DMA Request Timing on the 80186 (showing minimum response time to request) 

NOTE: 

80188 
DMADEVICE 

ALEI-.... -----------<:j 
ACKNOWLEDGE 

PCSOI-----------...... ----... CHIP sa 
DRQO DMA REQUEST 

1. AS is arbitrary and is only used to differentiate DMA and non-DMA bus cycles 

Figure 36. DMA Acknowledge Synthesis from the 80186 

5-28 

210973-42 



AP-186 

4.6 Internally Generated DMA 
Requests 

DMA transfer requests may originate from two of the 
integrated peripherals in the 80186. The source may be 
either the DMA control unit or Timer 2. 

The DMA channel can be programmed so that when­
ever Timer 2 reaches its maximum count, a DMA re­
quest will be generated. This feature is selected by set­
ting the TDRQ bit in the DMA channel control regis­
ter. A DMA request generated in this manner will be 
latched in the DMA controller, so that once the timer 
request has been generated, it cannot be cleared except 
by running the DMA cycle or by clearing the TDRQ 
bits in both DMA control registers. Before any DMA 
requests are generated in this mode, Timer 2 must be 
initialized and enabled. 

A timer requested DMA cycle being run by either 
DMA channel will reset the timer request. Thus, if 
both channels are using it to request a DMA cycle, only 
one DMA channel will execute a transfer for every 
timeout of Timer 2. Another implication of having a 
single bit timer DMA request latch in the DMA con­
troller is that if another Timer 2 timeout occurs before 
a DMA·channel has a chance to run a DMA transfer; 
the first request will be lost. 

The DMA channel can also be programmed to provide 
its own DMA requests. In this mode, DMA transfer 
cycles will be run continuously at the maximum bus 
bandwidth until the preprogrammed number of DMA 
transfers have occurred. This mode is selected by pro­
gramming the synchronization bits in the DMA control 
register for unsynchronized transfers. Note that in this 
mode, the DMA controller will monopolize the CPU 
bus, i.e., the CPU will not be able to perform opcode 
fetching, memory operations, etc., while the DMA 
transfers are occurring. Also notice that the DMA will 
only perform the number of transfers indicated in the 
maximum count register regardless of the state of the 
TC bit in the DMA control register. 

4.7 Externally Synchronized DMA 
Transfers 

There are two types of externally synchronized DMA 
transfers. These are source and destination synchroniz­
ed transfers. These modes are selected by programming 
the synchronization (SYN) bits in the DMA channel 
control register. The only difference between the two is 
the time at which the DMA request pin is sampled to 
determine if another DMA transfer is immediately re­
quired after the currently executing DMA transfer. On 
source synchronized transfers, this is done such that 
two transfers may occur one immediately after the oth­
er, while on destination synchronized transfers a 

certain amount of idle time is automatically inserted 
between two DMA transfers to allow time for the 
DMA requesting device to drive its DMA request inac­
tive. 

4.7.1 SOURCE SYNCHRONIZED 
DMA TRANSFERS 

In a source synchronized DMA transfer, the data 
source requests the DMA cycle. An example is a floppy 
disk read from the disk to main memory. In this type of 
transfer, the device requesting the transfer is read dur­
ing the fetch cycle of the DMA transfer. Since it takes 4 
CPU clock cycles from the time DMA request is sam­
pled to the time the DMA transfer is actually begun, 
and a bus cycle takes a minimum of 4 clock cycles, the 
earliest time the DMA request pin will be sampled for 
another DMA transfer will be at TJ of the deposit cycle 
of the DMA transfer (assuming no wait states.) This 
allows 3 or more CPU clock cycles between the time 
the DMA requesting device receives an acknowledge to 
its DMA request (around'the beginning of T2 of the 
DMA fetch cycle), and the time it must drive this re­
quest inactive (assuming no wru.t states) to insure that 
another DMA transfer is not performed if it is not de­
sired (see Figure 37). 

4.7.2 DESTINATION SYNCHRONIZED 
DMA TRANSFERS 

In destination synchronized DMA transfers, the data 
destination requests the DMA transfer. An example of 
this would be a floppy disk write from main memory to 
the disk. In this type of transfer, the device requesting 
the transfer is written during the deposit cycle of the 
DMA transfer. This causes a problem, since the DMA 
requesting device will not receive notification of the 
DMA cycle being run until 3 clock cycles before the 
end of the DMA transfer (if no wait states are being 
inserted into the deposit cycle of the DMA transfer) 
and it takes 4 clock cycles to determine if another 
DMA cycle should run immediately following the cur­
rent transfer. To get around this problem, the DMA 
unit relinquishes the bus after each destination synchro­
nized DMA transfer for at least 2 CPU clock cycles to 
allow the requesting device time to drop its DMA re­
quest if it does not immediately desire another DMA 
transfer. When the bus is relinquished by the DMA 
unit, the CPU may resume bus operation. Typically, a 
CPU initiated bus cycle is inserted between each desti­
nation synchronized DMA transfer. If no CPU bus ac­
tivity is required, however, the DMA unit inserts only 2 
CPU clock cycles between the deposit cycle of one 
DMA transfer and the fetch cycle of the next DMA 
transfer. This means that the requesting device must 
drop its request line at least two clock cycles before the 

, end of the deposit cycle regardless of the number of 
wait states inserted. Figure 37 shows the DMA request 
going away too late'to prevent the immediate genera­
tion of another DMA transfer. Any wait states inserted 

5-29 



AP-186 

FETCH CYCLE DEPOSIT CYCLE 

T, T, T, 

DRQ -..,...----If---+--+--\ 

210973-43 
80186 DECISION 

NOTE: 
1. Current DMA source synchronized transfer will not be immediately followed by another DMA transfer 

DEPOSIT ,CYCLE 

T, 

DRQ --!---+--~~~.., 

80186' Decision 

NOTE: 

T, 

NEXT 

DMA 
TRANSFER 

210973-44 

1. Current DMA destination synchronized transfer will be followed immediately by another DMA transfer 

Figure 37. Source & Destination Synchronized DMA Request Timing 

in the deposit cycle of the transfer lengthen the amount 
of time from the beginning of the deposit cycle to the 
time DRQ is sampled for another DMA transfer. Thus, 
if the amount of time a, device requires to drop its re­
quest after receiving an acknowledge from the 80186 is 
longer than the 0 wait state 80186 maximum (about 1 
clock), wait states can be inserted into the DMA cycle· 
to lengthen the amount of time the device has to dr~p 
its request after receiving the DMA acknowledge. 

4.8 DMA Halt and NMI 

Whenever a Non-Maskable Interrupt is received by the 
80186, all DMA activity will be suspended at the end of 
the current DMA transfer. This is perlormed by the 
NMI automatically setting the DMA Halt (DHLT) bit 
in the interrupt controller status register (see Section 
6.3.7). The .timing of NMI required to prevent a DMA 
cycle from occurring is shown in Figure 38. After the 
NMI has been serviced, the DHLT bit can be cleared 
by the programmer to resume DMA activity (Le., it is 
not automatically cleared when entering the NMI serv­
ice routine). The DHLT bit is automatically cleared 
when the IRET instruction is executed. In either case, 
DMA activity resumes exactly as it left otT, i.e., none of 
the DMA control registers are modified. This DHLT 
bit may also be set by the programmer to prevent 

DMA activity during critica1 sections of code. The 
DHL T bit does not function when the integrated inter­
rupt controller is configured for Slave Mode. 

4.9 Example DMA Interfaces 

4.9.1 8272 FLOPPY DISK INTERFACE 

An example DMA interface to the 8272 Floppy Disk 
Controller is shown in Figure 39. This shows how a 
typical DMA device can be interfaced to the 80186. An 
example floppy disk software driver for this interface is 
given in Appendix C. 

The data lines of the 8272 are connected, through butT­
ers, to the 80186 ADO-AD7 lines. The butTers are re­
quired because the 8272 will not float its output drivers 
quickly enough to prevent contention with the 80186 
upon the next bus cycle (see Section 3.1.5). 

DMA acknowledge for the 8272 is driven by an address 
decode within the region assigned to PCS2. If PCS2 is 
assigned to be active between I/O locations 0500H and 
057FH, then an access to I/O location 0500H will en­
able only the chip select, while an, acc,ess to I/O loca­
tion 0501H will enable both the chip select and the 
DMA acknowledge. Remember, ALE must be factored 

5-30 



inter 

DMA FETCH CYCLE 

T, T, 

DRQ 
(ALWAYS 

HIGH) I 
I 
I 
I 

NMJ-1J I' II-I <D I 
I I 
I I 

DHLT I 

(INTERNAL 
REGISTER 

BIT) 

NOTES: 
1. DMA request synchronization 
2. Decision: Will DMA cycle be run? 

Answer: No DMA request is active but DHL T is set 
(from NMI request) 

3. NMI synchronization time 

AP-186 

DMA DEPOSIT CYCLE 

T. T, T, T, T. 

I I I 
I. .I rI 
I CD I CD I , 

@ 
II 

I 

210973-45 

4. Logic delay time from synchronized NMI until DHL T set (note: DHLT is in the interrupt control status register) 

DRO 

CLKOUT 

PCS2 

ALE 

80188 

AD7·ADO 

jjjj 

WR 

RESET 

Figure 38. NMI and DMA Interaction 

I ,.D or- D oJ 
74LS74 74LS74 

C. C; c. C; 

I r DRO 

~ CLK 

cs 

b- DACK 

ADDR 
LATCH 8272 U =p- TC 

AD ~ 
FLOPPy 

DISK 

NTERFACE 

DATA 
/ Dao· 

8/ 
auF· 

8/ DB7 
FER 

jjjj 

Wii 

RESET 
CK = 74LS74 CLOCK INPUT 
CL = 74LS74 CLEAR INPUT 

Figure 39. Example 8272/80186 DMA Interface 

5-31 

210973-46 



AP-186 

into the DACK generation logic because addresses are 
not guaranteed stable when the chip selects become ac­
tive. 

Notice that the TC line of the 8272 is driven by a very 
similar circuit as the one generating DACK (except for 
the reversed sense of the output!). This line is used to 
terminate an 8272 command before the command has 
completed execution. Thus, the TC input to the 8272 is 
software driven in this case. Another method of driving 
the TC input would be to connect the DACK signal to 
one of the 80186 timers, and program the timer to out­
put a pulse to the 8272 after a certain number of DMA 
cycles have been run (see next section for 80186 timer 
information). 

The above discussion assumed that a single 80186 PCS 
line is free to generate all 8272 select signals. If more 
than one cl!!£. select is free, however, different 80186 
generated PCS lines could be used for each function. 
For example, PCS2 could be used to select the 8272 and 
PCS3 could be used to drive the DACK line of the 
8272. 

DMA requests are delayed by two clock periods in go­
ing from the 8272 to the 80186. This is required~ the 
8272 tRQR (time from DMA request to DMA RD go­
ing active) spec. This requires many 80186 CPU clock 
cycles, well beyond the 5 minimum provided by the 
80186 (4 clock cycles to the beginning of the DMA bus 
cyqle, 5 to the beginning of T2 of the DMA bus cycle 
where RD will go active). The two flip-flops add two 
complete CPU clock cycles to this response time. 

DMA request will go away after DACK is presented to 
the 8272. During a DMA write cycle (i.e., a destination 
synchronized transfer), this does not occur soon 
enough to prevent the immediate generation of another 
'DMA transfer if no wait states are inserted in the de­
posit cycle to the 8272. Therefore, at least 1 wait state is 
required by this interface, regardless of the data access 
parameters of the 8272. 

4.9.2 8274 SERIAL COMMUNICATION 
INTERFACE 

An example 8274 synchronous/asynchronous serial 
chip/80186 DMA interface is shown in Figure 40. The 
8274 interface is simpler than the 8272 interface, since 
it does not require a DMA acknowledge signal, and the 
8274 does not require the length of time between a 
DMA request and the DMA read or write cycle that 
the 8272 does. An example serial driver using the 8274 
in DMA mode with the 80186 is given in Appendix C. 

8274 
DROO T.DROa 

DROl R.DRO. 

ADDR 

~ r- LATCH 
AD,Al 

A" 
2)' 

ADO-AD7 
A./ DATA rr DBD-DB7 
8' BUFFER 

liD Rij 

WR WR 

RESET RESET 

210973-47 

Figure 40. Example 8274/80186 DMA Interface 

The data lines of the 8274 are connected through buff­
ers to the 80186 ADO-AD7 lines. Again, these are re­
quired not because of bus drive problems, but because 
the 8274 does not float its drivers before the 80186 be­
gins driving address information on its address/data 
bus. If both the 8274 and the 8272 are included in the 
same 80186 system, they could share the same data bus 
buffer (as could any other peripheral devices in the sys­
tem). 

The 8274 does not require a DMA acknowledge signal. 
The first read or write ofthe 8274 data register after the 
8274 generates the DMA request signal clears the 
DMA r~st. The time between the control signal 
(RD or WR) going active and the 8274 dropping its 
DMA request during a DMA write requires at least one 
wait state be inserted into the DMA write cycle. 

5.0 TIMER UNIT INTERFACING 

The 80186 includes a timer unit which consists of three 
independent 16-bit timers. These timers operate inde­
pendently of the cpu. Two have input and output pins 
allowing counting of external events and generation of 
arbitrary waveforms. The third can be used as a timer, 
as a prescaler for the other two timers, or as a DMA 
request source. . 

5-32 



AP-186 

5.1 Timer Operation 

The internal timer unit on the 80186 can be modeled by 
a single counter element, time multiplexed to three reg­
ister banks, each of which contains different control 
and count values. These register banks are, in tum, 
dual ported between the counter element and the 80186 
CPU (see Figure 41). Figure 42 shows the timer ele­
ment sequencing, and the subsequent constraints on in­
put and output signals. There is no connection between 
the sequencing of the counter element through the tim­
er register banks and the Bus Interface Unit's sequenc­
ing through T-states. Timer operation and bus interface 
operation are completely asynchronous. 

5.2 Timer Unit Programming 

Each timer is controlled by a block of registers (see 
Figure 43). Each of these registers can be read or writ­
ten whether or not the timer is operating. All processor 
accesses to these registers are synchronized to all coun­
ter element accesses to these registers, meaning that one 
will never read a count register in which only half of 
the bits have been modified. Because of this synchroni­
zation, one wait state is automatically inserted into any 
access to the timer registers. Unlike the DMA unit, 
locking accesses to timer registers will not prevent the 
timer's counter elements from accessing the timer regis­
ters. 

Each timer has a 16-bit count register which is incre­
mented for each timer event. A timer event can be 

CPU 

T. 
IN 

CPU 
CLOCK 

DMA 
REQUEST 

a low-to-high transition on a TIMERIN pin (for Tim­
ers 0 and I), a pulse generated every fourth CPU clock, 
or a time out of Timer 2 (for Timers 0 and 1). Because 
the count register is 16 bits wide, up to 65536 (216) 
timer events can be counted. Upon RESET, the con­
tents of the count registers are indeterminate and they 
should be initialized to zero before any timer operation. 

Each timer includes a maximum count register. When­
ever the timer count register is equal to the maximum 
count register, the count register resets to zero, so the 
maximum count value can never be stored in the count 
register. This maximum count value may be written 
while the timer is operating. A maximum count value 
of 0 implies a maximum count of 65536, a maximum 
count value of 1 implies a maximum count of 1, etc. 
Only equivalence between the count value and the max­
imum count register value is checked. This means that 
the count value will not be cleared if the value in the 
count register is greater than the value in the maximum 
count register. This situation only occurs by program­
mer intervention, either by setting the value in the 
count register greater than the value in the maximum 
count register, or by setting the value in the maximum 
count register to be less than the value in the count 
register. If the timer is programmed in this way, it will 
count to the maximum possible count (FFFFH), incre­
ment to 0, then count up to the value in the maximum 
count register. The TC bit in the timer control register 
will not be set when the counter overflows to 0, nor will 
an interrupt be generated from the timer unit. 

T, 
IN 

T.OUT 

T,OUT 

210973-48 

Figure 41. 80186 Timer Model 

5-33 



TIMER IN 
o 

TIMER IN 
1 . 

TIMER 0 

SERVICED 

AP-186 

TIMER 1 

SERVICED 

TIMER 2 

SERVICED DEAD 

TIMER 0 

SERVICED 

TlMEROUT -----------------------------------br-------~---------------------
o 

TIMER OUT 
1 

NOTES: 
1. Timer in 0 resolution time 
2. Timer in 1 resolution time 
3. Modified count value written into 80186 Timer 0 count register 
4. Modified count value written into 80186 Timer 1 count register 

210973-49 

Figure 42. 80186 Counter Element Multiplexing and Timer Input Synchronization 

OFFSET 

SOH _ .£2UNT REGIST!!! ______ 

52H MAX COUNT REGISTER A 
TIMER 0 ------------54H MAX COUNT REGISTER 8 

56H - cONTROL REGiSTER(ij - - - -

56H _ £2UNT .!!!GIST!!! ______ 

SAH _ MAX CO~!..!!E.E!Sl!R~ ____ 
TIMER 1 

SCH MAX COUNT REGISTER B . 

SEH - CONTROL REGISTER(if - - - -

60H COUNT REGISTER ------------
62H MAX COUNT REGISTER 

TIMER 2 ------------64H X X X 

&6H -;- CONTROL REGISTER -@ - - - -

(DCONTROL REGISTER LAYOUT (TIMERS 0 _1) 

15 . 0 

GlCONTROL REGISTER LAYOUT (TIMER 2) 

15 o 
210973-50 

Figure 43. 80186 Timer Register Layout 

5-34 



AP-186 

Timers 0 and 1 each contain an additional maximum 
count register. When both maximum count registers 
are used, the timer will first count up to the value in 
maximum count register A, reset to zero, count up to 
the value in maximum count register B, and reset to 
zero again. The ALTernate bit in the timer control reg­
ister determines whether one or both maximum count 
registers are used. If this bit is low, only maximum 
'count register A is used; maximum count register B is 
ignored. If it is high, both registers are used. The RIU 
(register in use) bit in the timer control register indi­
cates which maximum count register is currently being 
used. This bit is 0 when maximum count register A is 
being used, 1 when maximum count register B is being 
used. The RIU bit is read only. It will always be read 0 
in single maximum count register mode (since only 
maximum count register A will be used). 

Each timer can generate an interrupt whenever the tim­
er count value reaches a maximum count value. Inter­
rupts result whenever the timer count matches maxi­
mum count A (for Timer 2 or Timers 0 and 1 in single 
max count mode) and whenever the timer count 
matches maximum count B (for Timers 0 and 1 in dual 
max count mode). In addition, the MC (maximum 
count) bit in the timer control register is set whenever' 
the timer count reaches a maximum count value. This 
bit is never automatically cleared, i.e., programmer in­
tervention is required. If a timer generates a second 
interrupt request before the first interrupt request has 
been serviced, the first interrupt request to the CPU 
will be lost. 

Each timer has an ENable bit in the timer control regis­
ter. The timer will count timer events only when this 
bit is set. Any write to the timer control register will 
modify the ENable bit only if the INHibit bit is also set. 
The INHibit bit in the timer control register allows 
selective updating of the timer ENable bit. The value of 
the INHibit bit is not stored in a write to the timer 
control register; it will always be read as a logic zero. 

Each timer has a CONTinuous bit in the timer control 
register. If this bit is cleared, the timer ENable bit will 
be automatically cleared at the end of each timing cy­
cle. If a single maximum count register is used, the end 
of a timing cycle occurs when the count value resets to 
zero after reaching the value in maximum count regis­
ter A. If dual maximum count registers are used, the 
end of a timing cycle occurs when the count value re­
sets to zero after reaching the value in maximum count 
register B. If the CONTinuous bit is set, the ENable bit 
will never be automatically reset. Thus, after each tim­
ing cycle, another timing cycle will automatically begin. 
For example, in single maximum count register mode, 
the timer will count up to the value in maximum count 
register A, reset to zero, ad infmitum. In dual maxi­
mum count register mode, the timer will count up the 
value in maximum count register A, reset to zero, 

count up the value in maximum count register B, reset 
to zero, count up to the value in maximum count regis­
ter A, reset to zero, et cetera. 

5.3 Timer Events 

Each timer counts events. All timers can use a tran­
sition of the CPU clock as an event. Because of the 
counter element multiplexing, the timer count value 
will be incremented every fourth CPU clock. For Timer 
2, this is the only timer event which can be used. For 
Timers 0 and I, this event is selected by clearing the 
EXTernal and Prescaler bits in the timer control regis­
ter. 

Timers 0 and 1 can use Timer 2 reaching its maximum 
count as a timer event. This is selected by clearing the 
EXTernal bit and setting the Prescaler bit in the timer 
control register. When this is done, the timer will incre­
ment whenever Timer 2 resets to zero having reached 
its own maximum count. Note that Timer 2 must be 
initialized and running in order to increment the value 
in the other timer/counter. 

Timers 0 and 1 can also be programmed to count low­
to-high transitions on the external input pin. Each tran­
sition on the external pin is synchronized to the 80186 
clock before it is presented to the timer circuitry, (see 
Appendix B for information on 80186 synchronizers). 
The timer counts transitions on the input pin: the input 
value must go low, then go high to cause the timer 
increment. Transitions on this line are latched. Because 
of the counter element multiplexing, the maximum rate 
at which the timer can count is 1/4 of the CPU clock 
rate. 

5.4 Timer Input Pin Operation 

Timers 0 and 1 each have individual timer input pins. 
Alliow-to-high transitions on these input pins are syn­
chronized, latched, and presented to the counter ele­
ment when the particular timer is being serviced by the 
counter element. 

Signals on this input can affect timer operation in thr~e 
different ways. The manner in which the pin signals are 
used is determined by the EXTernal and RTG (retrig­
ger) bits in the timer control register. If the EXTernal 
bit is set, transitions on the input pin will cause the 
timer count value to increment if the timer is enabled 
(the ENable bit in the timer control register is set). 
Thus, the timer counts external events. If the EXTernal 
bit is cleared, all timer increments are caused by either 
the CPU clock or by Timer 2 timing out. In this mode, 
the RTG bit determines whether the input pin will en­
able timer operation, or whether it will retrigger timer 
operation. 

5-35 



AP-186 

When the EXTernal bit is low and the RTG bit is also 
low, the timer will count internal timer events only 
when the timer input pin is high and the ENable bit in 
the timer control register is set. Note that in this mode, 
the pin is level sensitive, not edge sensitive. A low-to­
high transition on the timer input pin is not required to 
enable timer operation. If the input is tied high, the 
timer will be conthlUally enabled. Th~ timer enable in­
put signal is completely independent of the ENable bit 
in the timer control register: both must be high for the 
timer to count. Example uses for the timer in this mode 
would be a real time clock or a baud rate generator. 

When the EXTernal bit is low and the RTG bit is high, 
every low-to-high transition on the timer input pin 
causes the timer count register to reset to zero. This 
mode of operation can be used to generate a retriggera­
ble digital one-shot. Mter the timer is enabled (Le., the 
ENable bit in the timer control register is set), timer 
operation (counting) will begin only after the first low­
to-high transition of the timer input pin has been de­
tected. If another low-to-high transition occurs on the 
input pin before the end of the timer cycle, the timer 
will reset to zero and begin the timer cycle again. A 
timer cycle is defined as the time the timer is counting 
from 0 to the maximum count (either max count A or 
max count B). This means that in the dual max count 
mode, the RIU bit is not set if the timer is reset by the 
low-to-high transition on the input pin. Should ,a timer 
reset occur when RIU is set (indicating max count B), 
the timer will again begin to count up to max count B 
before resetting the RIU bit. Thus, when the ALTer­
nate bit is set, a timer reset will retrigger (or extend) the 
duration of the current max count,in use (which means 
that either the low or high level of the timer output will 
be extended). If the CONTinuous bit in the timer con­
trol register is cleared, the timer ENable bit will auto­
matically be cleared whenever a timer cycle has been 
completed (max count is 'reached). If the CONTinuous 

bit in the timer control register is set, the timer will 
reset to zero and begin another timer cycle whenever 
the current cycle has completed. 

5.5 Timer Output Pin Operation 

Timers 0 and I each have a timer output pin which can 
perform two functions at programmer option. The first 
is a single pulse indicating the end of a timing cycle. 
The second is a level indicating the maximum count 
register currently being used. The timer outputs operate 
as outlined below whether internal or external clocking 
of the timer is used. If external clocking is used, howev­
er, the user should remember that the time between an 
external transition on the timer input pin and the time 
this transition is reflected in the timer out pin will vary 
depending on when the input transition occurs relative 
to the timer being serviced by the counter element. 

When the timer is in single maximum count register 
mode, the timer output pin will go low for a single CPU 
clock one clock after the timer is serviced by the coun­
ter element where maximum count is reached (see Fig­
ure 44). This mode is useful when using the timer as a 
baud rate generator. 

When the timer is programmed in dual maximum 
count register mode, the timer output pin indicates 
which maximum count register is being used. It is low 
if maximum count register B is being used and high if 
maximum count register A is being used. If the timer is 
programmed in continuous mode (the CONTinuous bit 
in the timer control register is set), this pin could gener­
ate a waveform of almost any duty cycle. For example, 
if maximum count register A contained 10 and maxi­
mum count register B contained 20, a 33% duty cycle 
waveform would be generated. 

nMER 0 SERVICED 

INTERNAL ----------.r---,----+---------
COUNT 
VALUE 

TMR OUT -----------~ 
PIN 

210973-51 

Figure 44. 80186 Timer Out Signal 

5-36 



intJ AP-186 

5.6 Sample 80186 Timer Applications 

The 80186 timers can be substituted in almost any ap­
plication tor a discrete timer circuit. Such applications 
include baud rate generation, digital one-shots, pulse 
width modulation, event counters and pulse width mea­
surement. 

5.6.180186 TIMER REAL TIME CLOCK 

The sample program in appendix D shows the 80186 
timer being used with the 80186 CPU to form a real 
time clock. In this implementation, Timer 2 is pro­
grammed to provide an interrupt to the CPU every mil­
lisecond. The CPU then increments memory based 
clock variables. 

5.6.280186 TIMER BAUD RATE GENERATOR 

The 80186 timers can also be used as baud rate genera­
tors for serial communication controllers (e.g., the 
8274). Figure 46 shows this simple connection, and the 
code to program the timer as a baud rate generator is 
included in Appendix D. 

5.6.380186 TIMER EVENT COUNTER 

The 80186 timer can be used to count events. Figure 47 
shows a hypothetical set up in which the 80186 timer 
will count the interruptions in a light source. The num­
ber of interruptions can be read directly from the count 
register of the timer, since the timer counts up, i.e., 
each interruption in the light source will cause the tim­
er count value to increase. The code to set up the 80186 
timer in this mode is included in Appendix D. 

80186 

TMR INO 

+5V 

210973-52 

Figure 45. 80186 Real Time Clock 

80186 
+5V 

TIMER I--+_...:™,::::.:R..::IN:..:O", 

TMR OUT 0 T xC } SERIAL 
1-+--'='''-'''''''-'''-- RxC CONTROLLER 

210973-53 

Figure 46. 80186 Baud Rate Generator 

o 
o 
o 3'o-LIGHT 

l' 

210973-54 

Figure 47. 80186 Event Counter 

5-37 



AP-186 

6.0 80186 INTERRUPT CONTROLLER 
INTERFACING 

The tasks perfonned by the 80186 integrated interrupt 
controller include synchronization of interrupt re­
quests, prioritization of interrupt requests, and request 
type vectoring in response to a CPU interrupt acknowl­
edge. It can be a master to two external 8259A inter­
rupt controllers or can be a slave to an external master 
interrupt controller. 

6.1 Interrupt Controller Model 

The integrated interrupt controller block diagram is 
shown in Figure 48. It contains registers and a control 
element. Four inputs are provided for external interfac­
ing to the interrupt controller. Their functions change 
according to the mode of the interrupt controller. Like 
the other 80186 integrated peripheral registers, the in­
terrupt controller registers are available for CPU read­
ing or writing at any time. 

6.2 Interrupt Controller Operation 

The interrupt controller operates in two major modes, 
Master Mode and Slave Mode. In Master Mode the 
integrated controller acts as the master interrupt con­
troller for the system, while in Slave Mode the control­
ler operates as a slave to an external master inter-

rupt controller. Some of the interrupt controller regis­
ters and interrupt controller pins change definition be­
tween these two modes. The difference is when in Mas­
ter Mode, the interrupt controller presents its interrupt 
input directly to t~e 80186 CPU, while in Slave Mode 
the interrupt controller presents an interrupt output to 
an external controller (which then presents its interrupt 
input to the 80186 CPU). Placing the interrupt control­
ler in' Slave Mode is done by setting the SLA VEl 
MASTER bit in the peripheral control block pointer 
(see Appendix A). 

6.3 Interrupt Controller Unit 
Programming 

The interrupt controller has a number of registers 
which control its operation (see Figure 49). Some of 
these change their function between the two major 
modes of the interrupt controller. The differences are 
indicated in the following section. If not indicated, the 
function and implementation of the registers is the 
same in the two modes of operation. The interaction 
among the various interrupt controller registers is 
shown in the flowcharts in Figures 57 and 58. 

, 6.3.1 CONTROL REGISTERS 

Each source of interrupt to the 80186 has a control 
register in the internal controller. These registers 

INTO INT1 INT2 INT3 NMI 

I TIMER 
CONTROL,REG. 

DMAO 
CONTROL REG. 

DMA1 
CONTROL REG. 

EXT. INPUT 0 
CONTROL REG. 

EXT. INPUT 1 
CONTROL REG. 

EXT. INPUT 2 
CONTROL REG. 

INTERRUPT 
PRIORITY 
RESOLVER 

INTERRUPT 
REQUEST TO 
PROCESSOR 

INTERNAL ADDRESS/DATA BUS 

INTERRUPT 
REQUEST REG. 

INTERRUPT 
MASK REG. 
IN-SERVICE 

REG. 
PRIOR. LEIL 
MASK REG. 
INTERRUPT 

STATUS REG. 

Figure 48. 80186 Interrupt Controller Block Diagram 
. , 

5-38 

210973-55 



inter AP-186 

MAS1ERMODE OFFSET ADDRESS SLAVE MODE 

INT3 CONTROL REGISTER 

INT2 CONTROL REGISTER 

INTI CONTROL REGISTER 

INTO CONTROL REGISTER 

DMA I CONTROL REGISTER 

DMAO CONTROL REGISTER 

TIMER CONTROL REGISTER 

INTERRUPT CONTROLLER STATUS REGISTER 
-~---------------------INTERRUPT REQUEST REGISTER 

IN-SERVICE REGISTER 

PRIORITY MASK REGISTER 

MASK REGISTER 

POLL STATUS REGISTER 

POLL REGISTER 

EOI REGISTER ----------CB-----------

NOTE: 

34H DMAO CONTROL REGISTER 

32H _____ T!M~~ ~ ~~~5l.~R~~~~R ____ _ 
30H INTERRUPT CONTROLLER STATUS REGISTER 

2EH INTERRUPT REQUEST REGISTER 

2CH 

2AH 

28H 

26H 

24H 

22H 

20H 

IN SERVICE REGISTER 

PRIORITY MASK REGISTER 

MASK REGISTER 

===========0=========== ___________ 0 __________ _ 
SPECIFIC EOI REGISTER -----------------------INTERRUPT VECTOR REGISTER 

210973-56 

1. Unsupported in this mode: values written mayor may not be stored 

Figure 49_ 80186 Interrupt Controller Registers 

contain three bits which select one of eight interrupt 
priority levels for the device (0 is highest priority, 7 is 
lowest priority), and a mask bit to enable the interrupt 
(see Figure 50). When the mask bit is zero, the inter­
rupt is enabled, when it is one, the interrupt is masked. 

There arc seven controln·gistcl's in the 1101116 integrat­
ed inlerrupt cuntrollel'. In Mastcl' Mudc, tillll' uf these 
serve the external interrupt inputs, one each for the two 
DMA channels, and one for the collective timer inter­
rupts. In Slave Mode, the external interrupt inputs are 
not used, so each timer has its own individual control 
register. 

6.3.2 REQUEST REGISTER 

The interrupt controller includes an interrupt request 
register (see Figure 51). This register contains seven 
active bits, one for every interrupt source with an inter­
rupt control register. Whenever an interrupt request is 
made, the bit in the interrupt request register is set re­
gardless of whether the interrupt is enabled. These in­
terrupt request bits are automatically cleared when the 

5-39 

interrupt is acknowledged. The Dl and DO bits of the 
request register can also be set (requesting a DMA in­
terrupt), or cleared (removing a DMA interrupt re­
quest) by programming. 

6.3.3 MASK REGISTER AND PRIORITY 
MASK REGISTER 

The interrupt controller mask register (see. Figure 51) 
contains a mask bit for each interrupt source associated 
with an interrupt control register. The bit for an inter­
rupt source in the mask register is the same bit as pro­
vided in the interrupt control register; modifying a 
mask bit in the control register will also modify it in the 
mask register, and vice versa. 

The interrupt priority mask register (see Figure 52) 
contains three bits which indicate the lowest priority an 
interrupt may have that will cause an interrupt request 
to actually be serviced. Interrupts received which have 
a lower priority will be masked. Upon reset this register 
is set to the lowest priority of 7 to enable interrupts of 
any priority. This register may be read or written. 



inter AP-186 

u ° 

m+I--.......L...�----L0 I_SFNM CD..&....--I C CD--l....--LTM--I.-(!) MSK--'------L-+~---'-~8+___'1 
210973-57 

NOTE: 
1. This bit present only in INTO-INT3 control registers 
2. These bits present only in INTO-INT1 control register 

Figure 50. Interrupt Controller Control Register 

15 MABlER MODE 0 15 SLAVE MODE 0 

X X x I 131121., 110 I D,I 00 I x ITMRI ....--x--x--x---r.ITM=z=m=, ::r--00""'1 D-,T", -x =rt=1 
210973-58 

Figure 51. 80186 Interrupt Controller In-Service,lnterrupt Request and Mask Register Format 

'5 o 
x x x x 

210973-59 

Figure 52. 80186 Interrupt Controller 
Priority Mask Register Format 

6.3.4 IN-SERVICE REGISTER 

The interrupt controller contains an in-service register 
(see Figure 51). A bit in the in-service register is associ­
ated with each interrupt control register so that when 
an interrupt request by the device associated with the 
control register is acknowledged by the processor (ei­
ther by the processor running the interrupt acknowl­
edge or by the processor reading the interrupt poll reg­
ister) the bit is set. The bit is reset when the CPU issues 
an End Of Interrupt to the interrupt controller. This 
register may be both read and written, i.e., the CPU 
may set in-service bits without an interrupt ever occur­
ring, or may reset them without using the EOI function 
of the interrupt controller. 

6.3.5 POLL AND POLL STATUS REGISTERS 

The interrupt controller contains both a poll register 
and a poll status register (see Figure 53). These re-

gisters contain the same information. They have a sin­
gle bit to indicate an interrupt is pending. This bit is set 
if an interrupt of sufficient priority has been received. It 
is automatically cleared when the interrupt is acknowl­
edged. If an interrupt is pending, the remaining bits 
contain information about the highest priority pending 
interrupt. These registers are read~nIy. 

15 o 

I~ X x X 

BO-S4 - Interrupt type 

210973-60 

Figure 53. 80186 Poll & 
Poll Status Register Format 

Reading the poll register will acknowledge the pending 
interrupt to the interrupt controller just as.if the proc­
essor had acknowledged the interrupt through interrupt 
acknowledge cycles. The processor will not actually run 
any interrupt acknowledge cycles, and will not vector 
through a location in the. interrupt vector table. The 
contents of the interrupt request, in -service, poll, and 
poll status registers will change appropriately. Reading 
the poll status register will merely transmit the status of 
the polling bits without modifying any of the other in­
terrupt controller registers. 

5-40 



AP-186 

The poll and poll status registers are not supported in 
Slave Mode. The state of the bits in these registers in 
Slave Mode is not defined. 

6.3.6 END OF INTERRUPT REGISTER 

The interrupt controller contains an End Of Interrupt 
register (see Figure 54). The programmer issues an End 
Of Interrupt (EOI) to the controller by writing to this 
register. After receiving the EOI, the interrupt control­
ler automatically resets the in-service bit for the inter­
rupt. _The value of the word written to this register de­
termines whether the EOI is specific or non-specific. A 
non-specific EOI is specified by setting the non-specific 
bit in the word written to the EOI register. In a non­
specific EOI, the in-service bit of the highest priority 
interrupt set is automatically cleared, while a specific 
EOI allows the in-service bit cleared to be explicitly 
specified. If the highest priority interrupt is reset, the 
poll and poll status registers change to reflect the next 
lowest priority interrupt to be serviced. If a less than 
highest priority interrupt in-service bit is reset, the pri­
ority poll and poll status registers will not be modified 
(because the highest priority interrupt to be serviced 
has not changed). Only the specific EOI is supported in 
Slave Mode. This register is write only. 

6.3.7 INTERRUPT STATUS REGISTER 

The interrupt controller also contains an interrupt 
status register (see Figure 55). This register contains 

15 MASTER MODE o 

four programmable bits. Three bits show which timer is 
causing an interrupt. This is required because in master 
mode, the timers share a single interrupt control regis­
ter. A bit in this register is set to indicate which timer 
has genefllted an interrupt. The bit associated with a 
timer is automatically cleared after the interrupt re­
quest for the timer is acknowledged. More than one of 
these bits may be set at a time. The fourth bit is the 
DMA halt bit (not implemented in Slave Mode). When 
set, this bit prevents any DMA activity. It is automati­
cally set whenever a NMI is received by the interrupt 
controller. It can also be set by the programmer. This 
bit is automatically cleared whenever the IRET instruc­
tion is executed. All implemented bits in the interrupt 
status register are read/write. Do not perform the write 
operation when interrupts from the timer/counters are 
possible; a conflict with internal use of the register may 
lead to incorrect timer interrupt processing. 

6.3.8 INTERRUPT VECTOR REGISTER 

In Slave Mode only, the interrupt controller contains 
an interrupt vector register (see Figure 56). This regis­
ter specifies the 5 most significant bits of the interrupt 
type vector placed on the CPU bus in response to an 
interrupt acknowledgement (the lower 3 significant bits 
of the interrupt type are determined by the priority lev­
el of the device causing the interrupt in Slave Mode). 

15 SLAVE MODE 

x x x x x 
LO-L2 = Intenupt priority level 

210973-61 

Figure 54. 80186 End of Interrupt Register Format 

o 

I I x x x x x x 
210973-62 

Figure 55. 80186 Interrupt Status Register Format 

15 o 
x x x 

210973-63 

Figure 56. 80186 Interrupt Vector Register Format (Slave Mode only) 

5-41 



inter AP-186 

6.4 Interrupt Sources 

The 80186 interrupt controller receives and arbitrates 
among many different interrupt request sources, both 
internal and external. Internal interrupts are processed 
by the interrupt controller in either Master Mode or 
Slave Mode. External interrupts are processed by the 
integrated interrupt controller only in Master Mode. 
Each interrupt source may be programmed to be a dif­
ferent priority level. An interrupt request generation 
flow chart is shown in Figure 57. This flowchart is fol­
lowed independently by each interrupt source. 

6.4.1 INTERNAL INTERRUPT SOURCES , 

The internal interrupt sources are the three timers and 
the two DMA channels. An interrupt from each of 
these interrupt sources is latched in the interrupt con­
troller. The state of the pending interrupt can be ob­
tained by reading the interrupt request register. Also, 

latched DMA interrupts c~n be reset by the processor 
by writing to ,the interrupt request register. Note that 
all timers share a common bit in the interrupt request 
register in master mode. The interrupt controller status 
register maybe read to determine whic~ timer is actual­
ly causing the interrupt request. Each timer' has a 
unique interrupt vector (see Section 6.5.1). Thus polling 
is not required to determine, which timer has caused the 
interrupt in the interrupt service routine. Also; because 
the timers share a common interrupt control register, 
they are placed at a common priority level relative to 
other interrupt sources. Among themselves they ,have a 
fixed priority, with timer 0 as the highest priority timer 
and timer 2 as the lower priority timer. 

6.4.2 EXTERNAL INTERRUPT SOURCES 

The 80186 interrupt controller will accept external in­
terlJlpt requests only when it is programmed in Master 
Mode. In this mode, the external pins associated 

210973-64 

Figure 57. 80186 Interrupt Request Sequencing 

5-42 



inter AP-186 

GENERATEINTA 

C~~:::"~R YES 
INTERRUPT CD 

CONTROLLER 

NOTES: 

PROVIDE HIGHEST 
PRIORITY INTERRUPT 

VECTOR ON 
INTERNAL BUS 

1. Before actual interrupt acknowledge is run by CPU 

WAIT FOR NEXT 
INTERRUPT 

ACKNOWLEDGE 

210973-65 

2. Two interrupt acknowledge cycles will be run, the interrupt type is read by the CPU on the second cycle 
3. Interrupt acknowledge cycles will not be run, the interrupt vector address is placed on an internal bus and is not 
available outside the processor 
4. Interrupt type is not driven on external bus in Slave Mode 

Figure 58. 80186 Interrupt Acknowledge Sequencing 

with the interrupt controller may serve' either as direct 
interrupt inputs, or as cascaded interrupt inputs from 
other interrupt controllers as a programmed option. 
These options are selected by programming the C and 
SFNM bits in the INTO and INTI control registers (see 
Figure 50). 

When programmed as direct interrupt inputs, the four 
interrupt inputs are each controlled by an individual 
interrupt control register. As stated earlier, these regis­
ters contain 3 bits which select the priority level for the 
interrupt and a single bit which enables the interrupt 
source to the processor. In addition, each of these con· 
trol registers contains a bit which selects edge or level 
triggered mode for the interrupt input. When edge trig· 
gered mode is selected, a low-to-high transition must 
occur on the interrupt input before an interrupt is gen­
erated, while in level triggered mode, only a high level 
needs to be maintained to generate an interrupt. In edge 
triggered mode, the input must remain low at least 1 

5-43 

clock cycle before the input is rearmed. In both modes, 
the interrupt level must remain high until the interrupt 
is acknowledged, i.e., the interrupt request is not 
latched in the interrupt controller. The status of the 
interrupt input can be shown by reading the interrupt 
request register. Each of the external pins has a bit in 
this register which indicates an interrupt request on the 
particular pin. Note that since interrupt requests on 
these inputs are not latched by the interrupt controller, 
if the external input goes inactive, the interrupt requests 
(and also the bit in the interrupt request register) will 
also go inactive (low). 

If the C (Cascade) bit of the INTO or INTI control 
registers is set, the interrupt input is cascaded to an 
external interrupt controller. In this mode, whenever 
the interrupt presented to the INTO or INTI line is 
acknowledged, the integrated interrupt controller will 
not provide the interrupt type for the interrupt. In­
stead, two INT A bus cycles will be run, with the INT2 



intJ Ap·186 

and INT3 lines providing the interrupt acknowledge 
pulses for the INTO and the INTI interrupt requests 
respectively. INTO/lNT2 and INTl/INT3 may be in­
dividually programmed into Cascade Mode. This al­
lows 128 individually vectored interrupt sources if two 
banks of 8 external interrupt controllers each are used. 

6.4.3 SLAVE MODE INTERRUPT SOURCES 

When the interrupt controller is configured in Slave 
Mode, it accepts interrupt requests only from the inte­
grated peripherals. A~y external interrupt requests go 
through an external interrupt controller. This external 
interrupt controller requests interrupt service directly 
from the 80186 CPU through the INTO line. In this 
mode, the function of this line is not affected by the 
integrated interrupt controller. In addition, in Slave 
Mode the integrated interrupt controller must request 
interrupt service through this external interrupt con­
troller. This interrupt request is made on the INT3 line 
(see Section 6.6.4 on external interrupt connections). 

6.5 Interrupt Response 

The 80186 can respond to an interrupt in two different 
ways. The first will occur if the internal controller is 
providing the interrupt vector information with the 
controller in Master Mode. The second will occur if the 
CPU reads interrupt type information from an external 
interrupt controller or if the interrupt· controller is in 
Slave Mode. In both of these instances the interrupt 
vector information driven by the 80186 integrated in­
terrupt controller is not available outside the 80186 mi­
croprocessor. 

In each interrupt mode, when the integrated interrupt 
controller receives an interrupt response, the interrupt 
controller will automatically set the in-service bit and 
reset the interrupt request bit. In addition, unless the 
interrupt control register for the interrupt is set in Spe­
cial Fnlly Nested Mode, the interrupt controller will 
prevent any interrupts from occurring from the same 
interrupt line until the in-service bit for that line has 
been clliared. 

6.5.1 INTERNAL VECTORING, MASTER MODE 

In Master Mode, the interrupt types associated with all 
the interrupt sources are fixed and unalterable. These 
interrupt types are given in Table 5. In response to an 
internal CPU interrupt acknowledge the interrupt con­
troller .will generate the vector address rather than the 
interrupt type. On the 80186 (like the 8086) the inter­
rupt vector address is the interrupt type multiplied by 
4. 

In Master Mode, no external interrupt controller need 
know when the integrated controller is providing an 
intei:rupt vector, nor when the interrupt acknowledge is 
taking place. As a result, no interrupt acknowledge bus 
cycles will be generated. The first external indication 
that an interrupt has been acknowledged will be the 
processor reading the interrupt vector from the inter­
rupt vector table in memory. 

Table 4. 80186 Interrupt Vector Types 

Interrupt Vector Relative 
Name Type Priority 

Timer 0 8 O(a) 
Timer 1 18 O(b) 
Timer 2 19 O(c) 
DMAO 10 1 
DMA 1 11 2 
INTO 12 3 
INT 1 13 4 
INT2 14 5 
INT3 15 6 

Because two interrupt acknowledge cycles are not run, 
interrupt response to an internally vectored interrupt is 
42 clock cycles. This is faster than the interrupt re­
sponse when external vectoring is required, or if the 
interrupt controller is run in Slave Mode. 

If two interrupts of the same programmed priority oc­
cur, the default priority scheme (as shown in Table 4) is 
used. . 

6.5.2 INTERNAL VECTORING, SLAVE MODE 

In Slave Mode, the iriterrupt types associated with the 
various interrupt sources are alterable. The upper 5 
most significant bits are taken from the interrupt vector 
register, and the lower 3 significant bits are taken from 
the priority level of the device causing the interrupt. 
Because the interrupt type, rather than the interrupt 
vector address, is given by the interrupt controller in 
this mode the interrupt vector address must be ca1eulat­
ed by the CPU before servicing the interrupt. 

In Slave Mode, the integrated interrupt controller will 
present the interrupt type to the CPU in response to the 
two interrupt acknowledge bus cycles run by the proc­
essor. During the first interrupt acknowledge cycle, the 
external master interrupt controller determines which 
slave interrupt controller will place its interrupt vector 
on the microprocessor bus. During the second interrupt 
acknowledge cycle, the processor reads the interrupt 
vector from its bus. Thus, these two interrupt acknowl-

5-44 



inter AP-186 

edge cycles must be run, since the integrated controller 
will present the interrupt type information only when 
the external interrupt controller signals the integrated 
controller that it has the highest pending interrupt re­
quest (see Figure 59). The 80186 samples the SLAVE 
SELECT line (INTI) during the faIling edge of the 
clock at the beginning of T 3 of the second interrupt 
acknowledge cycle. This input must be stable before 
and after this edge. 

These two interrupt acknowledge cycles will be run 
back to back, and will be LOCKED with the LOCK 
output active. The two interrupt acknowledge cycles 
will always be separated by two idle T states, and wait 
states will be inserted into the interrupt acknowledge 
cycle if a ready is not returned by the processor bus 
interface. The two idle T states are inserted to allow 
compatibility with an external 8259A interrupt control­
ler. 

Because the interrupt acknowledge cycles must be run 
in Slave Mode and the integrated controller presents an 

T, T, T. 

CLKOUT 
I 

so.S2 I 
I I 

I I I 

INTO INTERRUPT Ac:'<NOWLEDGE 

(HIGH) 
INT3 

(HIGH) 

interrupt type rather than a vector address, the inter­
rupt response time is the same as for an externally vec­
tored interrupt, namely 55 CPU clocks. 

6.5.3 EXTERNAL VECTORING 

External interrupt vectoring occurs whenever the 
80186 interrupt controller is placed in Cascade Mode, 
Special Fully Nested Mode, or Slave Mode (and the 
integrated controller is not enabled by the external mas­
ter interrupt controller). In this mode, the 80186 gener­
ates two interrupt acknowledge cycles, reading the in­
terrupt type off the lower 8 bits of the address/ dat~ bus 
on the second interrupt acknowledge cycle (see Figure 
59). This interrupt response is exactly the same as the 
8086 so that the 8259A interrupt controller can be 
used'exactly as it would in an 8086 system. Notice that 
the two interrupt acknowledge cycles are LOCKED, 
and that two idle T-states are always inserted between 
the two interrupt acknowledge bus cycles, and that wait 
states will be inserted in the interrupt acknowledge cy­
cle if a ready is not returned to the processor. Also 

T, T, T, T, T, T. 

I I I 
I I I 

INTERRUPT ACKNOWLEDGE , , , 

CAS <D 8018 SLAVE 

SLAVE ----l------+---, 
SELECT CD 

INTA ~'-_--'-__ ':""_.....:..JI 
I 

L-OC-K4 V 
1L---~----+----7----~----~---+----~, 
I I 

NOTES: 
1. SLAVE SELECT = INT1 
2. INTA = INT 2 
3. Driven by external interrupt controller 
4. SLAVE SELECT must be driven before Phase 2 of T 2' of the second INTA cycle 
5. SLAVE SELECT read by 80186 

Figure 59. 80186 Slave Mode Interrupt Acknowledge Timing 

5-45 

210973-66 



inter AP-186 

notice that the 80186 provides two interrupt acknowl­
edge signals, one for interrupts signaled by the INTO 
line, and one for interrupts signaled, by the INTI line 
(on the INT2/INTAO and INT3/INTAllines, respec­
tively). These two interrupt acknowledge signals are 
mutually exclusive. Interrupt acknowledge status will 
be driven on the status lines (SO-S2) when either 
INT2/INTAO or INT3/INTAI signal an interrupt ac­
knowledge. 

6.5;4 EFFECT OF LOCK PREFIX ON 
INTERRUPT ACKNOWLEDGE CYCLES 

When tb,e interrupt controller is operating in either the 
cascade or slave modes and an interrupt occurs during 
an instruction that has been LOCKED by software, the 
LOCK signal timing shown in Figures 59 and 60 may 
be altered. Some peripheral devices used with the 80186 

T, 

SO-S2 

.T, 

require contiguous INT A cycles to allow correct inter­
rupt controller response. In such cases, the external cir­
cuitry in Figure 61 should be used to ensure that DMA 
or HOLD requests are blocked from stealing the bus 
during INTA cycles. 

6.6 Interrupt Controller External 
Connections 

The four interrupt signals can be configured into 3 ma­
jor options. These are direct interrupt inputs (with the 
integrated controller providing the interrupt vector), 
cascaded (with an external interrupt controller provid­
ing the interrupt vector), or Slave Mode. In all these 
modes, any interrupt presented to the external lines 
must remain set until the interrupt is acknowledged. 

T, T, 

AOO-AD7--~----~--~,----~----~----.,----~--~~-L~T-__ -L)---;--
,. . , 
, I I , 

I , 

INTrRRUPT rJPE 
(FROM EXTERNAL 

. CONTROLLER) 

210973-67 

Figure 60. 80186 Cascaded Interrupt Acknowledge Timing 

ORQO,ORQl 
OR HOLD 

501----100 
51 01 
52 02 

OMA OR HOLD REQUEST 

QOt--a-_ 
Qll--~rJI 
Q2t--a--

74LS373 
ALE G 

210973-A1 

Figure 61. Circuit Blocking DMA or HOLD Request Between INTA Cycles 

5-46 



inter AP-186 

6.6.1 DIRECT INPUT MODE 

When the Cascade Mode bits are cleared, the interrupt 
input pins are configured as direct interrupt pins (see 
Figure 62). Whenever an interrupt is received on the 
input line, the integrated controller will do nothing un­
less the interrupt is enabled, and it is the highest priori­
ty pending interrupt. At this time, the interrupt con­
troller will present the interrupt to the CPU and wait 
for an interrupt acknowledge. When the acknowledge 
occurs, it will present the interrupt vector address to 
the CPU. In this mode, the CPU will not run any exter­
nal interrupt acknowledge (INTA) cycles. 

INTERRUPT 

SOURCES 

. 

80186 
INTO 

INTt 

INT2 

INT3 

210973-68 

Figure 62. 80186 Non-Cascaded 
Interrupt Connection 

6.6.2 CASCADE MODE 

When the Cascade Mode bit is set and the SFNM bit is 
cleared, the interrupt input lines are configured in Cas­
cade Mode. In this mode, the interrupt input line is 
paired with an interrupt acknowledge line. The INT2/ 
INTAO and INT3/INTAllines are dual purpose; they 
can function as direct input lines, or they can function 
as interrupt acknowledge outputs. INT2/INT AO pro­
vides the interrupt acknowledge for an INTO input, and 
INT3/INTA1 provides the interrupt acknowledge for 
an INTI input. Figure 63 shows this connection. 

When programmed in this mode, in response to an in­
terrupt request on the INTO line, the 80186 will provide 
two interrupt acknowledge pulses. These pulses will be 
provided on the INT2/INT AO line, and will also be 
reflected by interrupt acknowledge statll,s being gener­
ated on the SO-S2 status lines. The interrupt type will 
be read on the second pulse. The 80186 externally vec­
tored interrupt response is covered in more detail in 
Section 6.5. 

INTO/INT2/INTAO and INTI/INT3/INTAI may be 
individually programmed into interrupt request/ac­
knowledge pairs, or programmed as direct inputs. This 
means that INTO/INT2/INT AO may be programmed 
as an interrupt/acknowledge pair, while INTI and 
INT3/INTAI each provide separate internally vec­
tored interrupt inputs. 

8259A 80186 

INT INTO 

INTA 

~ Vee 

INTAO 

8259A 

INT INn 

INTA 

~vee 

INTAl 

210973-69 

Figure 63. 80186 Cascade and Special 
Fully Nested Mode Interface 

When an interrupt is received on a cascadcd inlcrrupl 
pin, the priority mask bits and the in-service hils in the 
particular interrupt control register will be set. This 
will prevent the controller from generating an 80186 
CPU interrupt request from a lower priority interrupt. 
Also, since the in-service bit is set, any subsequent in­
terrupt requests on the particular interrupt input line 
will not cause the integrated interrupt controller to gen­
erate an interrupt request to the 80186 CPU. This 
means that if the external interrupt controller receives a 
higher priority interrupt request on one of its interrupt 
request lines and presents it to the 80186, it will not 
subsequently be presented to the 80186 CPU by the 
integrated interrupt controller until the in-service bit 
for the interrupt line has been cleared. 

6.6.3 SPECIAL FULLY NESTED MODE 

When both the Cascade Mode bit and the SFNM bit 
are set, the interrupt input lines are configured in Spe­
cial Fully Nested Mode. The external interface in this 
mode is exactly as in Cascade Mode. The only differ­
ence is in the conditions allowing an interrupt from the 
external interrupt controller to the integrated interrupt 
controller to interrupt the 80186 CPU. 

When an interrupt is received from a Special Fully 
Nested Mode interrupt line, it will interrupt the 80186 
CPU if it is the highest priority interrupt pending re­
gardless of the state of the in-service bit for the inter­
rupt source in the interrupt controller. When an inter-

- rupt is acknowledged from a special fully nested mode 
interrupt line, the priority mask bits and the in-service 
bits in the particular interrupt control register will be 

5-47 



intJ AP-186 

set into the interrupt controller's in-service and priority 
mask registers. This will prevent the interrupt control­
ler from generating an 80186 CPU interrupt request 
from a lower priority interrupt. Unlike Cascade Mode, 
however, the interrupt controller will not prevent addi­
tional interrupt requests generated by the same external 
interrupt controller from interrupting the 80186 CPU. 
This means that if the external (cascaded) interrupt 
controller receives a higher priority interrupt request 
on one of its interrupt request lines and presents it to 
the integrated controller's interrupt request line, it may 
cause an interrupt to be generated to the 80186 CPU, 
regardless of the state of the in-service bit for the inter­
rupt line. 

If the SFNM bit is set and the Cascade Mode bit is not 
set, the controller will provide internal interrupt vector­
ing. It will also ignore the state of the in-service bit in 
determining whether to present an interrupt request to 
the CPU. In other words, it will use the SFNM condi­
tions of interrupt generation with an internally vectored 
interrupt response, i.e., if the interrupt pending is the 
highest priority type pending, it will cause a CPU inter­
rupt regardless of the state of the in-service bit for the 
interrupt. This operation is only applicable to INTO 
and INTI, which have SFNM bits in their control reg­
isters. 

6.6.4 SLAVE MODE 

When the SLA VE/MASTER bit in the peripheral relo­
cation register is set, the interrupt controller is in Slave 

80186 8259A/ 

INTO INT 82C59A 

~ 
INT2 INTA 

"'= 7 

CASCADE 
INTI ADDR. 

DECODE 

INT3 

210973-70 

Figure 64. 80186 Slave Mode Interface 

Mode. In this mode, all four interrupt controller input 
lines are used to perform the necessary handshaking 
with the external master interrupt controller. Figure 64 
shows the hardware configuration of the 80186 inter­
rupt lines with an external controller in Slave Mode. 

Because the integrated interrupt controller is a slave 
controller, it must be able to generate an interrupt input 
for an external interrupt controller. It also must be sig­
naled when it has the highest priority pending interrupt 
to know when to place its interrupt vector on the bus. 
These two signals are provided by the INT3/Slave In­
terrupt Output and INTI/Slave Select lines, respective­
ly. The external master interrupt controller must be 
able to interrupt the 80186 CPU, and needs to know 
when the interrupt request is acknowledged. The INTO 
and INT2/INTAO lines provide these two functions. 

6.7 Example 8259A or 82C59A 
Cascade Mode Interface 

Figure 65 shows the'80186 and 8259A (or 82C59A) in 
Cascade Mode. The code to initialize the 80186 inter­
rupt controller is given in Appendix E. Notice that an 
interrupt ready signai must be returned to the 80186 to 
prevent the generation of wait states in response to the 
interrupt acknowledge cycles. In this configuration the 
INTO and INT2 lines are used as direct interrupt input 
lines. Thus, this configuration provides 10 external in­
terrupt lines: 2 provided by the 80186 interrupt control­
ler itself, and 8 from the external 8259A. Also, the 
8259A is configured as a master interrupt controller. It 
will only receive interrupt acknowledge pulses in re­
sponse to an interrupt it has generated. It may be cas­
caded again to up to 8 additional 8259As (each of 
which would be configured in Slave Mode). 

6.8 Interrupt Latency 

Interrupt latency time is the time from when the 80186 
receives the interrupt to the time it begins to respond to 
the interrupt. This is different from interrupt response 
time, which is the time from when the processor actual­
ly \)egins processing the interrupt to when it actually 
executes the fIrSt instruction of the interrupt service 
routine. The factors affecting interrupt latency are the 
intstruction being executed and the state of the inter­
rupt enable flip-flop. The interrupt enable flip-flop 
must be explici~ly set by issuing the STI instruction. 
Since interrupt vectoring automatically clears the flip­
flop, it is necessary to set the flip-flop within the inter­
rupt service routine if nested interrupts are desired. 

5-48 



AP-186 

80186 - ---< b.. -ARDY --INTO 
INT2 

INn 
~vcc 

INTAl 
ADO-AD7 

Ri5 
WR 

PCSA 

OTHER ARDY 

8259A-2 
INT 

INTA 
00-07 

Ri5 SP 
WR 

cs 
t 

./ 

8/ 

+r 

1 
10 

EXTERNAL 
INTERRUPTS 

210973-71 

Figure 65. 80186/8259A Interrupt Cascading 

When interrupts are enabled in the CPU, the interrupt 
latency is a function of the instructions being executed. 
Only repeated instructions will be interrupted before 
being completed, and those only between their respec· 
tive iterations. This means that the interrupt latency 
time could be as long as 69 CPU clocks, which is the 
time it takes the processor to execute an integer divide 
instruction (with a segment override prefix, see below), 
the longest single instruction on the 80186. 

Other factors can affect interrupt latency. An interrupt 
will not be accepted between the execution of a prefix 
(such as segment override prefixes and lock prefixes) 
and the instruction. In addition, an interrupt will not be 
accepted between an instruction which modifies any of 
the segment registers and the instruction immediately 
following the instruction. This is required to allow the 
stack to be changed. If the interrupt were accepted, the 
return address from the interrupt would be placed on a 
stack which was not valid (the Stack Segment register 
would have been modified but the Stack Pointer regis· 
ter would not have been). An interrupt will not be ac· 
cepted between the execution of the WAIT instruction 
and the instruction immediately followinL!!...if the 
TEST input is active. If the WAIT sees the TEST input 
inactive, however, the interrupt will be accepted, and 
the, WAIT will be re·executed after the interrupt re­
turn. Finally, the 80C186 and 80C188 will not accept 
interrupts during refresh bus cycles. 

7.0 CLOCK GENERATOR 

The 80186 clock generator provides the main clock sig­
nal for all 80186 integrated components, and all CPU 
synchronous devices in the 80186 system. This clock 
generator includes a crystal oscillator, divide by two 
counter, reset circuitry, and ready generation logic. A 
block diagram of the clock generator is shown in Figure 
66. 

7.1 Crystal Oscillator 

All 80186 family microprocessors use a parallel reso­
nant Pierce oscillator. For all NMOS 80186/80188 ap­
plications and lower frequency 8OC186/8OC188 appli­
cations, a fundamental mode crystal is appropriate. At 
higher frequencies, the diminishing thickness of funda­
mental mode crystals makes a third overtone crystal 
the appropriate choice. The addition of external capaci­
tors at Xl and X2 is always required, and a third over­
tone crystal also requires an RC tank circuit to select 
the third overtone frequency over the fundamental fre­
quency (see Figure 67). 

The recommendations given in the 80186 family prod­
uct data sheets for the values of the external compo­
nents shonld be taken only as guidelines since there are 
situations where the oscillator operation can be modi­
fied somewhat. One example would be the case where 
the circuit layout introduces significant stray capaci­
tance to the Xl and X2 pins. Another example is at low 
frequencies (CLKOUT less than 6 MHz) where slightly 

5-49 



inter AP-186 

larger capacitors are desirable. Finally, it is also possi­
ble to use ceramic resonators in place of crystals for low 
cost when precise frequencies are not required. 

X, 

x,--L.-__ --' 

For assistance in selecting the external oscillator com­
ponents for unusual circumstances, the best resource is 
the crystal manufacturer. The foremost circuit consid­
eration is that the oscillator start correctly over the 
entire voltage and temperature ranges expected in oper­
ation. 

MDY------------~-r~;;w__, 

IIEI-------+---\ 

CPU CLOCK A 

CLOCKOUT 

CPU 

READY 

CPU RESET 

A 
RESET OUTPUT 

210973-74 

FI~ure 66. 80186 Clock Generator Block Diagram 

80186/8 
80C186/8 

XIJ--_-., 

X2 

(a) 
210973-73 

(aj-Fundamental Mode Operation 
(b)-Third Overtone Operation 

80C186/8 

XIJ--_-., 

X2 

Figure 67. 80186 Family Crystal Connections 

XI 

INTERNAL 
CLEAR 

CLKOUT 

, RESET 

NOTES: 
1. RES sampled on rising edge of oscillator input signal (Xl). 
2. Internal clear pulse generated. 
3. Internal clear pulse drives CLKOUT high, resynchronizing the clock generator. 
4. RESET output goes active (T CLRO). 
5. RES allowed to go 'inactive after minimum 4 CLKOUT cycles, recognized at rising CLKOUT. 
6. RESET output goes inactive 1 % CLKOUT cycles plus T CLRO after recognition of RES inactive. 
7. First Instruction prefetch occurs 6% CLKOUT cycles after coming out of reset. 

Figure 68. 80186 Clock Generator Reset 

5-50 

210973-75 



inter AP-186 

7.2 Using an External Oscillator 

An external oscillator may be used with the 80186. The 
external frequency input (EFI) signal is connected di­
rectly to the Xl input of the oscillator. X2 should be 
left not connected. This oscillator input drives an inter­
nal divide-by-two counter to generate the CPU clock 
signal, so the external frequency input can be of practi­
cally any duty cycle, so long as the minimum high and 
low times for the signal (as stated in the data sheet) are 
met. 

7.3 Clock Generator 

The output of the crystal oscillator (or the external fre­
quency input) drives a divide by two circuit which gen­
erates a 50% duty cycle clock for the 80186 system. All 
80186 timing is referenced to this signal, which is avail­
able on the CLKOUT pin of the 80186. This signal will 
change state on the high-to-low transition of the EFI 
signal. 

7.4 Ready Generation 

The clock generator also includes the circuitry required 
for ready generation. Interfacing to the SRDY and 
ARDY inputs this provides is covered in Section 3.1.6. 

7.5 Reset 

The 80186 clock generator also provides a synchroniz­
ed reset signal for the system. This signal is generated 
from the reset input (RES) to the 80186. The clock 
generator synchronizes this signal to the clockout sig­
nal. 

The reset input also resets the divide-by-two counter. A 
one clock cycle internal clear pulse is generated when 
the RES input signal goes active. This clear pulse goes 
active beginning on the first low-to-high transition of 
the Xl input after RES goes active, and goes inactive 
on the next low-to-high transition of the Xl input. In 

order to insure that the clear pulse is generated on the 
next oscillator cycle, the RES input signal must satisfy 
a setup time to the high-to-low oscillator input signal 
(see Figure 68). During this clear, CLKOUT will be 
high. On the next high-to-low transition of Xl, 
CLKOUT will go low, and will change state on every 
subsequent high-to-low Xl transition. 

The reset signal presented to the rest ofthe 80186, and 
also the signal present on the RESET output pin of the 
80186 is synchronized by the high-to-low transition of 
the clockout signal of the 80186. This signal remains 
active as long as the RES input also remains active. 
After the RES input goes inactive, the 80186 will begin 
to fetch its first instruction (at memory location 
FFFFOH) after 6 1/2 CPU clock cycles (Le., TJ of the 
first instruction fetch will occur 6 1/2 clock cycles lat­
er). To ensure that the RESET ouput will go inactive 
on the next CPU clock cycle, the inactive going edge of 
the RES input must satisfy certain hold and setup times 
to the low-to-high edge of the CLKOUT signal of the 
80186 (see Figure 68). 

8.0 CHIP SELECTS 

The 80186 includes a chip select unit which provides 
hardware chip select signals for memory and VO ac­
cesses generated by the 80186 CPU and DMA units. 
This unit is programmable such that it can fulfill the 
chip Select requirements (in terms of memory device or 
bank size and speed) of most small and medium sized 
80186 systems. 

The chip selects are driven only for internally generated 
bus cycles. Any cycles generated by an external unit 
(e.g., an external DMA controller) will not cause the 
chip selects to go active. Thus, any external bus masters 
must be responsible for their own chip select genera­
tion. Also, during a bus HOLD, the 80186 does not 
float the chip select lines. Therefore, logic must be in­
cluded to enable the devices which the external bus 
master wishes to access (see Figure 69). 

80188 CHIPseLECT~ MEMORY or I/O . 

E"'X"TE-RNAUiTLTiLY"'G"'E""N"'E"RA":re"""'D"C"HI;np"se""L"'E"""CT ~ DEVICE CHIP SELECT 
210973-77 

Figure 69. 80186/External Chip Select/Device Chip Select Generation 

5-51 



intJ AP·186 

8.1 Memory Chip Selects 

The 80186 provides six discrete memory chip select 
lines. These signals are named UCS, LCS, and MCSO-3 
for Upper Memory Chip Select, Lower Memory Chip 
Select and Midrange Memory Chip Select 0-3. They 
are meant (but not limited) to be connected to the three 
major areas of the 80186 system memory (see Figure 
70). 

MCS3 { 

MCS2 { 

MCS1 { 

MCSO { 

""I 

FFFFF 

STARTUP 

ROM 

---
PROGRAM 

MEMORY 
---

---

INTERRUPT 

VECTOR 

TABLE 
0 

210973-78 

Figure 70. 80186 Memory Areas & Chip Selects 

The upper limit ofUCS and the lower limit ofLCS are 
fixed at FFFFFH and OOOOOH in memory space, re-

OFFSET: 

Aott UPPER r'::EMORY StilE 

AZH LOWER MEMORY SIZE 

spectively. The other limit is set by. .the memory size 
programmed into the control register for the chip select 
line. Mid-range memory allows both the base address 
and the block size of the memory area to be pro­
grammed. The only limitation is that the base address 
must be programmed to be an integer mUltiple of the 
total block size. For example, if the block size was 
128K bytes (4 32K byte chunks) the base address could 
be 0 or 20000H, but not l0000H. 

The memory chip selects are controlled by 4 registers in 
the peripheral control block ~ Figure 71). These in­
clude 1 each for UCS and LCS, the values of which 
determine the size of the memory blocks addressed by 
these two lines. The other two registers are used to 
control the size and base address of the mid-range 
memory block. 

On reset, only UCS is active. It is programmed to be 
active for the top lK memory block, to insert 3 wait 
states to all memory fetches, and to factor external 
ready for every memory fetch (see Section 8.3 for more 
information on internal ready generation). None of the 
other chip select lines will be active until all necessary 
registers for a signal have been accessed (not necessarily 
written, a read to an uninitialized register will enable 
the chip select function controlled by that register). 

8.2 Peripheral Chip Selects 

The 80186 provides seven discrete chip select lines 
which are meant to be connected to peripheral compo­
nents in an 80186 system. Each of these lines is active 
for· one of seven continuous 128 byte areas in memory 
or I/O space above a programmed base address. 

CD ur.1CS 

0 LMCS 

A4H 

A6H 

A8H 

PERIPHERAL CHIP SELECT BASE ADDRESS CD PACS 

MMCS 

MPCS 

MID·RANGE MEMORY BASE ADDRESS 

MID·RANGE MEMORY SIZE I ~ I : I 
NOTES: 
1. Upper memory ready bits 
2. Lower memory ready bits 
3. PCSO-PCS3 ready bits 
4. Mid-range memory ready bits 
5. PCS4-PCSS ready bits . 
S. MS: 1 = Peripherals active in memory space 

o = Peripherals active in liD space 
EX:1 = 7 PCS lines 
o = PCS5 =:' A1. PCSS = A2 

Not all bits of every field are used 

® 

0 
CD 

Figure 71. 80186 Chip Select Control Registers 

5-52 

210973-79 



inter AP-186 

The peripheral chip selects are controlled bt two regis­
ters in the internal peripheral control block (see Figure 
71). These registers set the base address of the peripher­
als and map the peripherals into memory or I/O space. 
Both of these registers must be accessed before any of 
the peripheral chip selects will become active. 

A bit in the MPCS register allows PCS5 and PCS6 to 
become latched Al and A2 outputs. When this option 
is selected, PCS5 and PCS6 reflect the state of Al and 

\ A2 throughout a bus cycle. These allow external pe­
ripheral register selection in a system in which the ad­
dresses are not latched. Upon reset, these lines are driv­
en higtJ. 

8.3 Ready Generation 

The 80186 includes a ready generation unit. This unit 
generates an internal ready signal for all accesses to 
memory or 110 areas to which the chip select circuitry 
of the 80186 responds. 

For each ready generation area, 0-3 wait states may be 
inserted by the internal unit. Table 5 shows how the 
ready control bits should be programmed to provide 
this. In addition, the ready generation circuit may be 
programmed to ignore or include the state of the exter­
nal ready pins. When using both internal and external 
ready generation, both elements must be fulftlled before 
a busy cycle will end. The external ready condition is 
always required upon RESET for accesses involving the 
top lK of memory. Therefore, at least one of the ready 
pins must be connected to functional ready circuitry or 
be tied HIGH until UCS is reprogrammed early in the 
initialization sequence. 

Table 5. 80186 Wait State Programming 

R2 R1 RO Number of Walt States 

0 0 0 o + external ready 
0 0 1 1 + external ready 
0 1 o I 2 + external ready 
0 1 1 3 + external ready 
1 0 0 o (no external ready required) 
1 0 1 1 (no external ready required) 
1 1 0 2 (no external ready required) 
1 1 1 3 (no external ready required) 

8.4 Examples of Chip Select Usage 

Many examples using the chip select lines are given in 
the bus interface section of this note (Section 3.2). The 
key point to remember when using the chip select func­
tion is that they are only activated during bus cycles 
generated by the 80186. When another master has the 
bus, it must generate its own chip selects. In addition, 
whenever the bus is given by the 80186 to an external 
master (through HOLD/HLDA) the 80186 does not 
float the chip select lines. 

8.5 Overlapping Chip Select Areas 

Generally, the chip selects of the 80186 should not be 
programmed such that any two areas overlap. In addi­
tion, none of the programmed chip select areas should 
overlap any locations of the integrated 256-byte control 
register block. The consequences of doing this are: 

Whenever two chip select lines are programmed to re­
spond to the same area, both will be activated during 
any access to that area. When this is done, the ready 
bits for both areas must be programmed to the same 
value. If this is not done, the processor response to an 
access in this area is indeterminate. This rule also ap­
plies to overlapping chip selects with the integrated 
control block. 

If any of the chip select areas overlap the integrated 
256-byte control block, the timing on the. chip select 
line is altered. An access to the control block will tem­
porarily activate the corresponding chip select pin, but 
it will go inactive prematurely. 

8.6 MCS Functionality and the 80C186 

The 80C186 MCSO, MCSI and MCS3 pins change 
function when the part is configured for Enhanced 
Mode (see Section 9.0 for an explanation of Enhanced 
Mode). The 80C188 MCS pins function the same in 
both modes. These pins are configured to support an 
asynchronous numerics floating point coprocessor (see 
Table 6). Thus, the 80C186 does not provide the com­
plete range of middle chip selects normally available. 
However, the functionality of the MCS2 pin and the 
programming features of the MPCS and MMCS regis~ 
ters are still available. 

Table 6. MCS Pin Definitions 

Pin # 
Compatible Enhanced 

Mode Mode 

35 MCS3 NPS, 
Numerics Processor Select 

36 MCS2 MCS2 
37 MCS1 ERROR, 

Numerics Processor Error 
38 MCSO PEREa, 

Processor Extension Request 

In Enhanced Mode, it is still possible to program the 
starting address, block size and ready requirements of 
the middle chip selects. This allows the user to take 
advantage of the wait-state generation logic on the 
80C186 even though the majority of external chip se­
lects are not active. It is also possible to use MCS2 
which is active for one fourth the block size (see Figure 
72). 

5-53 



inter AP-186 

Block Size { 
Defined by 
t.lPCS 

- - - t.lCS2 remains 
active. 

- Block Start Defined 
by t.lt.lCS 

210973-A6 

Figure 72_ McS2 Functionality During Enhanced Mode 

9.0 80C186 PRODUCT 
ENHANCEMENTS 

The 80C186 and 80C188 are for the most part identical 
to their NMOS counterparts, and may be used inter­
changeably. However, aside from the fact that the 
80CI86 and 8OCl88 are designed with Intel's CHMOS 
III technology and provide greater operating frequen­
cies and less power consumption, they also provide two 
new operating units not found on the 80186 or 80188: 
the Refresh Control Unit and the Power-Save Unit. To 
ensure that the new features of the 80CI86 are not acci­
dentally programmed in older designs, the 80C186 has 
two operating modes: Compatible Mode and Enhanced 
Mode. Compatible Mode implies that the register, pro­
gramming and pin definition of the 80C186 is identical 
to that of the 80186. Enhanced Mode implies that the 
80Cl86 provides a super-set of functionality to that of 
the 80186. 

The different modes are selected during RESET. The 
timing diagram in Figure 73 shows how the 8OC186 
~les the TEST input pin just before and just after 
RES is removed to determine if the device will enter 
Enhanced Mode. Tying the RESET output pin back to 

CLKOUT 

the TEST input pin ensures that the 80C186 or 8OCl88 
enters enhanced mode. If the TEST input is used for 
external synchronization of code, then RESET can be 
OR'ed with the other input provided it is always active 
(low) just after RESET. 

When the 80CI86 (not the 80C188) is in Enhanced 
Mode, some of the MCS chip select lines change func­
tionality to support an asynchronous numerics floating­

. point coprocessor. Refer to Section 8.6 for more detail. 

9.1 Refresh Control Unit 

To simplify the design of a dynamic memory controller, 
the 80C186 incorporates integrated address and clock 
counters which, along with the BIU, facilitate dynamic 
memory refreshing. A block diagram of the Refresh 
Control Vnit (RCV) and its relationship to the BIU is 
shown in Figure 74. To the memory interface, a refresh 
request looks exactly like a memory read bus cycle. 
This is because a refresh bus cycle is a memory read 
operation. Becanse the RCV is integrated into ,the 
80CI86, functions such as chip selects and wait-state 
control can be used effectively. 

~ ® 
TEST../r~~:':'~~~:'-_-_-_-_-_-_-_-_-_-_-_-...J-~;=~---4C=~_ 

210973-A7 

NOTES: 
1. TEST must be high TINVCH when RES transitions high. 
2. TEST must be low TINVCH four clocks later. 

Figure 73. Enhanced Mode Enable Pin Timing 

5-54. 



inter AP-186 

R/W REGISTER 

CPU 
Interface 

R/W REGISTER 

R/W REGISTER MDRAM REGISTER 

REFRESH REQUEST 

REFRESH ACKNOWLEDGE 

20-blt Refresh Address 

BIU 
Interface 

210973-A8 

Figure 74. Refresh Control Unit Block Diagram 

The 9-bit counter is controlled by the BIU and is used 
whenever a refresh bus cycle is executed. Thus, any 
dynamic memory whose refresh address requirement 
does not exceed nine bits can be directly supported by 
the 80C186. The 9-bit address counter along with a 6-
bit base register define a full 20-bit refresh address. The 
9-bit counter generates a signal to initiate a refresh bus 
cycle. When the counter decrements to 1 (it is decre­
mented every clock cycle), a refresh request is present­
ed to the BIU. When the bus is free, the BIU will run 
the refresh (memory read) bus cycle. Refresh requests 
have a higher priority than any other bus request (i.e., 
CPU, DMA, HOLD). 

9.1.1 REFRESH CONTROL UNIT 
PROGRAMMING 

There are several registers in the Peripheral Control 
Block that control the RCU. These registers are only 

OFFSET 

15 

E4H 

E2H 

EOH 

E 

0 

M6 

NOTES: 

0 0 0 

0 0 0 

M5 M4 M3 

0 0 0 T8 T7 

0 0 0 C8 C7 

M2 M1 MO 9 0 

accessible when the 80C186 or 80C188 are operating in 
. Enhanced mode. Otherwise, a read or write to these 
registers is ignored. 

The three control registers are MDRAM, CDRAM, 
and EDRAM (see Figure 75). These registers define the 
operating characteristics of the RCU. The MDRAM 
register programs the base address (upper 7 bits) of the 
refresh address (see Figure 76). This allows the refresh 
address to be mapped into any 4 kilobyte boundary 
within the I megabyte 80C186 address space. The 
MDRAM register is not altered whenever the refresh 
address bits (AI through A9 in Figure 76) roll over. In 
other words, the refresh address does not act like a 
linear counter found in a typical DMA controller. 

o 
T6 T5 T4 T3 T2 T1 TO EORAM Register(l) 

CORAM Register(2) 

MDRAM Register(3) 

C6 C5 C4 C3 C2 C1 CO 

0 0 0 0 0 0 0 

1. Bits 0-8: TO-T8, Refresh request down counter clock count. These bits are read only and represent the current 
value of the counter. Any write operation to these bits are ignored. 
Bit 15: E, enables the operation of the refresh control unit. 
2. Bits 0-8: CO-C8, define the number of CLKOUT cycles between each refresh request. 
3. Bits 9-15: MO-MS, are used to define address bits A13-A19 (respectively) of the 20-bit memory address. These bits 
are set to zero on RESET. 

Figure 75. Refresh Control Unit Registers 

5-55 



intJ AP-186 

Address Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5, 4 3 2 1 0 

PhYSiCaiRefreShlM61M51M41M31M21M11MOI 0 I 0 I 0 ICA8IcA7IcA6IcA5IcA4lcA3IcA2IcA1IcAOI1 
Address 

Bit 0: 'Always driven to 1 (Logic High). This is true for both the 80C~86 and the 80C188. 
Bits 1-9: CAO-CAB, are generated by the 9-bit Linear-Feedback shift counter. 
Bits 10-12: Always driven to 0 (Logie Low). 
Bits 13-19: MO-M6, are defined by the MDRAM Register. 

Figure 76. Physical Address Generation 

The CDRAM register defines the time interval between 
refresh requests by initializing the value loaded into the 
9-bit down counter. Thus, the higher the value, the 
longer the amount of time between requests. The down­
counter is decremented every falling edge of CLKOUT, 
regardless of the activity of the CPU or BIU. When the 
counter decrements to 1, a request is generated and the 
counter is again loaded with the value in the CDRAM 
register. The amount of time between refresh requests 
can be calculated using the equation shown in Figure 
77. The minimum value that can be programmed into 
the CDRAM register is 18 (12H) regardless of the op­
erating frequency. This is due to the minimum number 
of clocks required between each successive request to 
ensure the BIU has enough time to execute the refresh 
bus cycle; The BIU is not capable of queueing requests; 
if another request is generated before the current re­
quest is executed, the current request is lost. This ~p­
plies only to the request itself, not the address assoctat­
ed to the request. Tlie refresh address is only changed 
after the BIU has run the bus cycle. Thus it is possible 
to miss refresh requests, but not refresh addresses. 

The EDRAM register has two functions, depending on 
whether it is being written or read. During writes to the 
EDRAM register, only the Enable bit is active. Setting 
the Enable bit enables the RCU while clearing the En­
able bit disables the RCU. Whenever the RCU is en­
abled, the contents of the CDRAM register are lo~ded 
into the 9-bit down counter and refresh requ~ts wtll be 
generated when the counter reaches 1. Disabling the 
RCU stops and clears the counter. A read of the 

EDRAM register will return the current value of the 
Enable bit as well as the current value ofthe 9-bit down 
counter (zero if the RCU is not enabled). Writing to 
EDRAM register when the RCU is running does not 
modify the count value in the 9-bit counter. 

9.1.2 REFRESH CONTROL UNIT OPERATION 

Figure 78 illustrates the two major functions of the re­
fresh control unit that are responsible for initiating and 
controlling the refresh bus cycles. 

The down counter is loaded on the falling edge of 
CLKOUT, when either the Enable bit is set or the 
counter decrements to 1. Once loaded, the down coun­
ter will decrement every falling edge of CLKOUT (as 
long as the Enable bit rema,ins set). 

When the counter decrements to 1, two things happen. 
First, a request is generated to the BIU to run a refresh 
bus cycle. The request remains active until the bus cy­
cle is run. Second, the down counter is'reloaded with 
the value contained in the CDRAM register. At this 
time, the down counter will again begin counting down 
every clock cycle. It does not wait until the request has 
been serviced. This is done to ensure that each refresh 
request occurs at the correct interval. Otherwise, !he 
time between refresh requests would also be a function 
of bus activity, which is unpredictable. When the BIU 
services the refresh request, it will clear the request and 
increment the refresh address. 

RpERIOD (",s) • FREQ (MHz) = CDRAM Register Value 
'" Refresh Rows + ('" Refresh Rows' % Overhead) -

Rperiod = MlIXimum Refresh period specifi.ed by the DRAM manufacturer (time in microseconds). 
FREQ = Operating Frequency at 80C186 In MHz. 
'" Refresh Rows = Total number of rows to be refreshed. 
% Overhead = Derating factor to compensate for missed refresh requests (typically 1-5%). 

Figure 77. Equation to Calculate Refresh Interval 

5-56 



AP-186 

Refresh Control Unit Operation 

Executed 
; _ • Every 
I Clock J. 

210973-A9 

BIU Refresh Bus Operation 

Continue 
210973-80 

Figure 78. Flowchart of RCU Operation 

9.1.3 REFRESH ADDRESS CONSIDERATIONS 

The physical address that is generated during a refresh 
bus cycle is shown in Figure 76, and applies to both the 
80Cl86 and 80C188. The refresh address bits CAO 
through CAS are generated using a linear-feedback shift 
counter which does not increment the addresses linear­
ly from 0 through IFFH (although they do follow a 
predictable algorithm). Further, note that for the 
80C188, address bit AO does not toggle during refresh 
operation, which means that it cannot be used as part 
of the refresh address applied to the dynamic memory 
device. Typically, AO is used as part of memory decod­
ing in 80Cl88 applications, unlike the 80Cl86 which 
uses AO along with BHE to select an upper or lower 
bank. Therefore, when designing with the 80C188, it is 
important not to include AO as part of the row address 
that is used for refreshing. Appendix K illustrates 
memory address multiplexing techniques that can be 
applied to the 80Cl86 and 80C188. 

9.1.4 REFRESH OPERATION AND BUS HOLD 

When another bus master has control of the bus, the 
HLDA signal is kept active as long as the HOLD input 
remains active. If a refresh request is generated while 
HOLD is active, the 80Cl86 will remove (drive inac­
tive) the HLDA signal to indicate to the current bus 
master that the 80Cl86 wishes to regain control of the 
bus (see Figure 79). Only when the HOLD input is 
removed will the BIU begin the refresh bus cycle. 

Therefore, it is the responsibility of the system designer 
to ensure that the 80C186 can regain the bus if a refresh 
request is signalled. The sequence ofHLDA going inac­
tive while HOLD is active can be used to signal a pend­
ing refresh request. HOLD need only go inactive for 
one clock period to allow the refresh bus cycle to be 
run. If HOLD is again asserted, the 8OC186 will give 
up the bus after the refresh bus cycle has been run 
(provided there is not another refresh request generated 
during that time). 

9.2 Power-Save Unit 
'--

The Power-Save Unit is intended to benefit applications 
by lower power consumption while maintaining regular 
operation of the CPU. The 80C186 Power-Save mecha­
nism lowers current needs by reducing the operating 
frequency. 

The Power-Save Unit is an internal clock divider as 
shown in Figure 80. Because the Power-Save Unit will 
change the internal operating frequency, all other units 
within the 80C186 will be affected by the clock change. 
This includes the CPU, Timers, Refresh, DMA, and 
BIU. Thus, by using the Power-Save feature, the net 
effect is similar to changing the input clock frequency. 

5-57 



AP-186 

HOLD~S sr---s~ 

HLDA __ -!S~~Sp-_____ -,f@ 

S~S ~ 
Ref Actlve __ ~s~s --~SS--SS§-__ JI® '-- 210973-81 

NOTES: 
1. System generates HOLD request. 
2. HLDA is returned and BOC1B6 floats the bus/control lines. 
3. Refresh request is generated by the BOC1B6. 
4. 80C186 lowers (removes) HI,.DA to signal that it wants the bus back. 
5. BOC1B6 waits until HOLD is lowered (removed) for at least 1 clock cycle (minimum HOLD setup and hold time) to 
execute the refresh bus cycle. If HOLD is never lowered. the BOC1B6 will not take over the bus. 
6. 80C1B6 runs the refresh bus cycle. 
7. HOLD can be again asserted after the 1 clock duration. 
B. The refresh request is cleared after the bus cycle has been executed. 
9. If HOLD was again asserted. the BOC1B6 will immediately relinquish the bus back. If no HOLD occurred. normal CPU 
operation will resume. 

Figure 79. HOLD/HLDA Timing and Refresh Request 

9.2.1 POWER-SAVE UNIT PROGRAMMING 

Th~ PDCON register (see Figure 81) controls the oper­
ationof the Power-Save Unit. This register is available 
for programIriing when the 8OC186 or 80Cl88 is in En­
hanced Mode. Reads or Write to the PDCON register 
in Compatible Mode result in no operation, and the 
value returned will be all ones. 

When the Enable bit in the PDCON register is set, the 
Power-Save Unit-is active and, depending on the condi­
tionof the FO and Fl bits, the operating clock of the 
80Cl86 is changed from normal operation. When the 
Enable bit is cleared, the 8OC186 will operate at the 
standard divide by 2 clock rate. The Enable bit is auto­
matically cleared whenever a non-masked interrupt oc­
curs. Thus, if the Power-Save feature is enabled and an 
unmasked interrupt of sufficient priority is received, the 
Enable bit clears and the processor executes at full 
speed. This allows interrupts to be processed at full 
speed. A return from the interrupt does not automati­
cally set the Enable bit. This must be done as part of 
the interrupt routine. Software interrupts do not clear 
the Enable bit. 

.5-58 

Power-Sove 
Divlder­

Multiplexor 

/1 
/4 
/8 
/16 

~-+--+TO CHIP LOGIC 

E.FD-Fl 
210973-82 

Figure 80. Simplified Power-Save 
Internal Operation 



inter AP-186 

PDCON 
Offset FOH 

bit 15 

I E I 0 0 0 0 

Bits 0-1: Clock Divisor Select 

o o o 0 000 o 0 F1 

o 
FO 

F1 FO Division Factor Minimum X1 Frequency 
o 0 divide by 1 1 MHz 
o 1 divide by 4 4 MHz 
1 0 divide by 8 8 MHz 
1 1 divide by 16 16 MHz 

Bits 2-14: Reserved. read back as zero 
Bit 15: Enable (set) Power-Save mode. Cleared (disabled) on RESET. 

Figure 81. Power-Save Register Definition 

The FO and Fl bits determine the divisor of the Power­
Save unit. Figure 81 provides a list of the various com­
binations of the bits and their division factor. Note that 
the divisor is related to the output clock. not the input 
clock at pin XI. Selecting a divisor of 1 does not reduce 
the power consumption. The operating clock of the 
80C186 must not be divided below the minimum oper­
ating frequency specified in data sheet (500 kHz). Fig­
ure 81 also indicates the minimum operating frequency 
required in order to use a specific divisor. 

9.2.2 
POWER-SAVE OPERATION 

When the Enable bit in the PDCON register is set, the 
clock divider circuity will turn on during the write to 
the PDCON register (refer to Figure 82). At the falling 
edge of T3 of the register write, CLKOUT will change 
to reflect the new divisor. If any values of FO-Fl other 
than zero have been programmed, the CLKOUT peri­
od will be increased over undivided CLKOUT, starting 
with the low phase. CLKOUT will not glitch. 

The Power-Save Unit remains active until one of three 
events happens: either the Enable bit in the PDCON 
register is cleared, new values for FO and Fl are pro­
grammed, or an unmasked interrupt is received. In the 
first two cases, the changes directly follow Figure 82. 

CLKOUT 

When an unmasked interrupt is received, the operating 
frequency is changed as shown in Figure 82, but may 
occur at any T3 bus state in progress at the time of the 
interrupt. Thus, it is not possible to determine exactly 
when, in the event of an interrupt, the Power-Save unit 
will be disabled. 

10.0 SOFTWARE IN AN 80186 
SYSTEM 

Since the 80186 is object code compatible with the 8086 
and 8088, the software in an 80186 system is very simi­
lar to that in an 8086 system. Because of the hardware 
chip select functions, however, a certain amount of ini­
tialization code must be included when using those 
functions on the 80186. 

10.1 System Initialization in an 
80186 System 

The 80186 includes circuitry which direc~ly affects the 
ability of the system to address memory and I/O devic­
es, namely the chip select circuitry. This circuitry must 
be initialized before the memory areas and peripheral 
devices addressed by the chip select signals can be used. 

'''''' ______ ...J1 
210973-83 

NOTES: 
1. Write to PDCON register (as viewed on the bus) 
2. Low going edge of T3 starts new clock divider 

Figure 82. Power-Save Clock Transition 

5-59 



inter Ap·186 

Upon reset, the UMCS register is programmed to be 
active for all memory fetches within the top lK byte of 
memory space. It is also programmed to insert three 
wait states to all memory accesses within this space. If 
the hardware chip selects are used, they must be pro­
grammed before the processor leaves this lK byte area 
of memory. If a jump to an area for which the chips are 
not selected occurs the processor will fetch garbage. 
Appendix F shows a typical initialization sequence for 
the 80186 chip select unit. 

10.2 Instruction Execution Differences 
between the 8086 and 80186 

There are a few instruction execution differences be­
tween the 8086 and the 80186. These differences are: 

UNDEFINED OPCODES: 

When the opcodes 63H, 64H, 65H, 66H, 67H, FlH, 
FEH XXlllXXXB and FFH XXlllXXXB are exe­
cuted, the 80186 will execute an illegal instruction ex­
ception, interrupt type 6. The 8086 will ignore the op­
code. 

OFH OPCODE: 

When the opcode OFH is encountered, the 8086 will 
execute a POP CS, while the 80186 will excecute an 
illegal instruction exception, interrupt type 6. 

WORD WRITE AT OFFSET FFFFH: 

When a word write is performed at offset FFFFH in a 
segment, the 8086 will write one byte at offset FFFFH, 
and the other at offset 0, while the 80186 will write one 
byte at offset FFFFH, and the other at offset l0000H 
(one byte beyond the end of the segment). One byte 
segment underflow will also occur (on the 80186) if a 
stack PUSH is executed and the Stack Pointer contains 
the value 1. 

SHIFT/ROTATE BY VALUE GREATER THAN 31: 

Before the 80186 performs a shift or rotate by a value 
(either in the CL register,or by an immediate value) it 
ANDs the value with IFH, limiting the number of bits 
rotated to less than 32. The 8086 does not do this. 

LOCK PREFIX: 

The 8086,activates its LOCK signal immediatelY after 
executing the LOCK prefix. The 80186 does not acti­
vate the LOCK signal until the processor is ready to 
begin the data cycles associated with the LOCKed in­
struction. 

NOTE: 
When executing more than one LOCKed instruction, 
always make sure there are 6 bytes of code between 
the end of the first LOCKed instruction and the start 
of the second LOCKed instruction. 

INTERRUPTED STRING MOVE INSTRUCTIONS: 

If an 8086 is interrupted during the execution of a re­
peated string move instruction, the return value it will 
push on the stack will point to the last prefix instruc­
tion before the string move instruction. If the instruc­
tion had more than one prefix (e.g., a segment override 
prefix in addition to the repeat prefix), it will not be re­
executed upon returning from the interrupt. The 80186 
will push the value of the first prefix to the repeated 
instruction, so long as prefixes are not repeated, allow­
ing the string instruction to properly resume. 

CONDITIONS CAUSING DIVIDE ERROR WITH 
AN INTEGER DIVIDE: 

The 8086 will cause a divide error whenever the abso­
lute value of the quotient is greater than 7FFFH (for 
word operations) or if the absolute value of the quotient 
is greater than 7FH (for byte operations). The 80186 
has expanded the range of negative numbers allowed as 
a quotient by 1 to include 8000H and 80H. These num­
bers represent the most negative numbers representable 
using 2's complement arithmetic (equaling - 32768 and 
-128 in decimal, respectively). 

ESC OPCODE: 

The 80186 may be programmed to cause an interrupt 
type 7 whenever an ESCape instruction (used for co­
processors like the 8087) is executed. The 8086 has no 
such provision. Before the 80186 performs this trap, it 
must be programmed to do so. 

These differences can be used to determine whether the 
program is being executed on an 8086 or an 80186. 
'Probably the safest execution difference to use for this 
purpose is the difference in multiple bit shifts. For ex­
ample, if a multiple bit shift is programmed where the 
shift count (stored in the CL register) is 33, the 8086 
will shift the value 33 bits, whereas the 80186 will shift 
it only a single bit. 

5-60 

In addition to the instruction execution differences not­
ed above, the 80186 includes a number of new instruc­
tion types, which simplify assembly language program­
ming of the processor, and enhance the performance of 
higher level'languages running on the processor. These 
new instructions are covered in depth in the 
8086/80186 users manual and in Appendix H of this 
note. 



inter AP-186 

APPENDIX A 
PERIPHERAL CONTROL BLOCK 

All the integrated peripherals within the 80186 micro­
processor are controlled by sets of registers contained 
within an integrated peripheral control block. The reg­
isters are physically located within the peripheral devic­
es they control, but are addressed as a single block of 
registers. This' set of registers encompasses 256 contigu­
ous bytes and can be located on any 256 byte boundary 
of the 80186 memory or I/O space. Maps of these regis­
ters are shown in Figure A-I for the 80186/80188 and 
in Figure A-2 for the 80CI86/80CI88. Any unused 
bytes are reserved. 

A.1 SETTING THE BASE LOCATION 
OF THE PERIPHERAL CONTROL 
BLOCK . 

In addition to the control registers for each of the inte­
. grated 80186 peripheral devices, the peripheral control 

block contains the peripheral control block relocation 
register. This register allows the peripheral control 
block to be re-located on any 256 byte boundary within 
the processor's memory or I/O space. Figure A-2 
shows the layout of this register. 

This register is located at offset FEH within the periph­
eral control block. Since it is itself contained within the 
peripheral control block, any time the location of the 
peripheral control block is moved, the location of the 
relocation registers will also move. 

In addition to the peripheral control block relocation 
information, the relocation register contains two addi­
tional bits. One is used -to set the interrupt controller 
into slave mode. The other is used to force the proces­
sor to trap whenever an ESCape (coprocessor) instruc­
tion is encountered . 

OFFSET 

Relocation Register FEH 

OMA Descriptors Channell 

DMA Descriptors Channel 0 

Chip-Select Control Registers 

Timer 2 Control Registers 

Timer 1 Control Registers 

Timer 0 Control Registers 

Interrupt Controller Registers 

DAH 

DOH 

CAH 

COH 

A8H· 

AOH 

66H 

60H 
SEH 

S8H 
56H 

SOH 

3EH 

20H 

210973-81 

Figure A-1. 80186/80188 Integrated Peripheral Control Block 

5-61 



inter 

NOTES: 

Ap-186 

Relocation Regiller 

-............. 

__ AogiIterI 

DMA Descriptor. Channel' 

OMA Descriptors Channel ° 

ChlpoSelect Control Register. 

TImer 2 Control Reglste .. 

Timer 1 Control Register. 

Timer 0 Control Registers 

Interrupt Controller Reglstera 

OFFSET 

FEH 

FOH 

E4H 

EOH 

OAH 

OOH 

CAH 

COH 

A811 

AOH 

IIOH 
5EH 

58H 
56H 

SOH 

3EH 

20H 

210973-84 

Figure A-2. 80C186/80<;:188 Integrated Peripheral Control Block 

15 14 13 12 11 10 9 • 7 e 5 4 3 2 a 
OFF$ET: FEHI ET ISLAVE/IIlITEJII X I MIlO I AelClCllllon Add,... BIll AI9-R1 

ET = ESC Trap I No ESC Trap (1/0) 
MIlO = ReR~~er Block Located in Memory I 110 Space (1/0) 
SLAVE/MA R = Master Interrupt Controller Mode I Slave 

Interrupt Controller Mode (011) 

Figure A-3. 80186 Relocation Register Layo"t 

210973-82 

Because the relocation register is contained within the 
peripheral control block, upon reset the relocation reg­
ister is automatically programmed with the value 
20FFH. This means that the peripheral control block 
will be located at the very top (FFOOH to FFFFH) of 
VO space. Thus, after reset the relocation register will 
be located ~t word location FFFEH in VO space. 

To relocate the peripheral control block to the memory 
range lOOOOH-IOOFFH, for example, the user pro­
grams the relocation register with the value lIOOH. 
Since the relocation register is contained within the pe­
ripheral control block, it moves to word location 
lOOPEH in memory space. 

5-62 



intJ AP-186 

Whenever mapping the 188 peripheral control block to 
another location, the programming of the relocation 
register should be done with a byte write (i.e., OUT 
DX,AL). Any access to the control block is done 16 
bits at a time. Thus, internally, the relocation register 
will get written with 16 bits of the AX register while 
externally, the BIU will run only one 8 bit bus cycle. If 
a word instruction is used (i.e., OUT DX,AX), the relo­
cation register will be written on the first bus cycle. The 
BIU will then run a second bus cycle which is unneces­
sary. The address of the second bus cycle will no longer 
be within the control block (i.e., the control block was 
moved on the first cycle), and therefore, will require the 
generation of an external ready signal to complete the 
cycle. For this reason we recommend byte operations to 
the relocation register. Byte instructions may also be 
used for the other registers in the control block and will 
eliminate half of the bus cycles required if a word oper­
ation had been specified. Byte operations are only valid 
on even addresses though, and are undefined on odd 
addresses. 

A.2 Peripheral Control Block 
Registers 

Each of the integrated peripherals' control and status 
registers are located at a fixed location above the pro­
grammed base location of the peripheral control block. 
There are many locations within the peripheral control 
block which are not assigned to any peripheral. If a 
write is made to any of these locations, the bus cycle 
will be run, but the value will not be stored in any 
internal location. This means that if a subsequent read 
is made to the same location, the value written will not 
be read back. 

The processor will run an external bus cycle for any 
memory or I/O cycle which accesses a location within 
the integrated control block. This means that the ad­
dress, data, and control information will be driven on 

the 80186 external pins just as if a "normal" bus cycle 
had been run. Any information returned by an external 
device will be ignored, however, even if the access was 
to a location which does not correspond to any of the 
integrated peripheral control registers. The above is 
also true for the 80188, except that the word access 
made to the integrated registers will be performed in a 
single bus cycle internally, while externally, the BIU 
runs two bus cycles. 

The processor internally generates a ready signal when­
ever any of the integrated peripherals are accessed; thus 
any external ready signals are ignored. This ready will 
also be returned if an access is made to a location with­
in the 256 byte area of the peripheral control block 
which does not correspond to any integrated peripheral 
control register. The processor will insert 0 wait states 
to any access within the integrated peripheral control 
block except for accesses to the timer registers. Any 
access to the timer control and counting registers will 
incur 1 wait state. This wait state is required to proper­
ly multiplex processor and counter element accesses to 
the timer control registers. 

All accesses made to the integrated peripheral control 
block will be word accesses. Any write to the integrated 
registers will modify all 16 bits of the register, whether 
the opcode specified a byte write or a word write. A 
byte read from an even location should cause no prob­
lems, but the data returned when a byte read is per­
formed from an odd address within the peripheral con­
trol block is undefined. This is true both for the 80186 
and the 80188. As stated above, even though the 80188 
has an external 8 bit data bus, internally it is still a 16-
bit machine. Thus, the word accesses performed to the 
integrated registers by the 80188 will each occur in a 
single bus cycle internally while externally the BIU 
runs two bus cycles. The DMA controller cannot be 
used for either read or write accesses to the peripheral 
control block. 

5-63 



inter AP-186 

APPENDIX B 
80186 SYNCHRONIZATION INFORMATION 

Many input signals to the 80186 are asynchronous, that 
is, a specified set up or hold time is not required to 
insure proper functioning of the device. Associated 
with each of these inputs is a synchronizer which sam­
ples this external asynchronous signal, and synchroniz­
es it to the internal 80186 clock. 

B.1 WHY SYNCHRONIZERS ARE 
REQUIRED 

Every data latch requires a certain set up and hold time 
in order to operate properly. At a certain window with­
in the specified set up and hold time, the part will actu­
ally try to latch the data. lethe input makes a transition 
within this window, the output will not attain a stable 
state within the given output delay time. The size of 
this sampling window is typically much smaller than 
the actual window specified by the data sheet, however 
part to part variation could move this window around 
within the specified window in the data sheet. 

Even if the input to a data latch makes a transition 
while a data latch is attempting to latch this input, the 
output of the latch will attain a stable state after a cer­
tain amount of time, typically much longer dian the 
normal strobe to output delay time. Figure B-1 shows a 
normal input to output strobed transition and one in 
which the input signal makes a transition during the 
latch's sample window. In order to synchronize an 
asynchronous signal, all one needs to do is to sample 
the signal into one data latch long cnough for the out­
put to stabilize, then,latch it into a second data latch. 
Since the time between the strobe into the first data 
latch and the strobe into the second data latch allows 
the first data latch to attain a steady state (or to resolve 
the asynchronous signal), the second data latch will be 
presented with an input signal which satisfies any set up 
and hold time requirements it may have. 

Thus, the output of this second latch is a synchronous 
signal with respect to its strobe input. 

A synchronization failure can occur if the synchronizer 
fails to resolve the asynchronous transition within the 

STROBE __ ==~, 
INPUT SET.U~ME IHOLD liME 

ACTUAL SAMPLING INSTANT 

INVALID V 
INPUT~ 

RESPONSE I ' RESOLUTION TIME '1 

VAUD --.J 
INPUT 

RESPONSE _____ ---1' 
210973-83 

Figure B-1. Valid and Invalid Latch Input 
Transitions and Responses 

time between the two latch;s strobe signals. The rate ,of 
failure is determined by the actual size of the sampling 
window of the data latch, and by the amount of time 
between the strobe signals of the two latches. Obvious­
ly, as the sampling window gets smaller, the number of 
times an asynchronous transition will occur during the 
sampling window will drop. In addition, however, a 
smaller sampling window is also indicative of a faster 
resolution time for an input transition which manages 
to fall within the sampling window. 

B.2 80186 SYNCHRONIZERS 

The 80186 contains synchronizers on the RES, TEST, 
TmrInO-l, DRQO-l, NMI, INTO-3, ARDY, and 
HOLD input lines. Each of these synchronizers use the 
two stage synchronization technique described above 
(with some minor modifications for the ARDY line, see 
section 3.1.6). The sampling window of the latches is 
designed to be in the tens of pico-seconds, and should 
allow operation of the synchronizers with a mean time 
between failures of over 30 years assuming continuous 
operation. 

5-64 



intJ AP-186 

APPENDIX C 
80186 EXAMPLE DMA INTERFACE CODE 

Smodl86 
name assembly.examplc.80 I 86.DMAsupport 

This file contains an example procedure which initializes the 80186 DMA 
controller to pcrfonn the DMA transfers between the 80186 system and the 
8212 Aoppy Disk Controller (FDC). It assumes that the 80186 
peripheral control block has not been moved from its reset location. 

argl equ 
arg2 equ 
arg3 equ 
DMA.FROM.LOWER equ 
DMA.FROM.UPPER equ 
DMA.TO.LOWER equ 
DMA.TO.UPPER equ 
DMA.COUNT equ 
DMA.CONTROL equ 
DMA.TO.DISK.CONTROL equ 

DMA.FROM.D1SK.CONTROLequ 

FDG-DMA equ 
FDG-DATA equ 
FDC.5TATUS equ 

cgroup group 

word ptr [BP + 4) 
word ptr [BP + 6) 
word ptr [BP + 8) 
OFFCOh 
OFFC2h 
OFFC4h 
OFFC6h 
OFFC8h 
OFFCAh 
01486h 

OA046h 

6B8h 
688h 
680h 

code 

DMA register locations 

destination synchronization 
source to memory, incremented 
destination to I/O 
no terminal count 
byte transfers 

source synchronization 
source to I/O 
destination to memory. incr 
no terminal count 
byte transfers 
FDC DMA address 
FDC data register 
FDC status register 

code segment public 'code' 
public seLdma.. 
assume cs:cgroup 

seLdma (offset, to) programs the DMA channel to point one side to the 
disk DMA address, and the other to memory pointed to by ds:offset. If 
'to' = 0 then will be a transfer from disk to memory; if 
'to' = I then will be a transfer trom memory to disk. The parameters to 
the routine are passed on the stack. 

seLdma.. proc near 
enter 0,0 
pusb AX 
push BX 
push DX 
test arg2,1 

jz fro'"-disk 
performing a transfer from memory to the disk controller 

moy 
rol 

AX,DS 
AX,4 

5-65 

set stack addressability 
save registers used 

check to sec direction of 
transfer 

get the segment value 
gen tbe upper 4 bitsoftbe 
physical address in the lower 4 
bits of the register 

210973-84 



AP-186 

mov BX,AX save the result ... 
mov OX,OMA.FROM.UPPER prgm the upper 4 bits of the 
out OX,AX DMA source register 
and AX,OfFFOh form the lower 16 bits of the 

AX,argl 
physi<al address 

add add the orrset 
mov OX,OMA.FROM.LOWER prgm the lower 16 bits ofthe 
out OX,AX DMA source register 
joe no.carry..from check Cor carry out of addition 
inc BX if earry out, then need to adj 
mov AX,BX the upper 4 bits ofthe pointer 
mov OX,OMA.FROM.UPPER 
out OX,AX 

no.carry_from: 
mov AX,FOC.OMA prgm the low 16 bits ofihe OMA 
mov OX,OMA. TO.LOWER destination register 
out OX,AX 
ltOr AX,AX zero the up 4 bits of the OMA 
mov OX,OMA. TO.UPPER destination register 
out OX,AX 
mov AX,OMA.TO.DISK.CONTROL: prgm the OMA ell reg 
mov OX,OMA.CONTROL : note: DMA may begin immediatly 
out OX,AX after this word is output 
pop OX 
pop BX 
pop AX 
leave 
ret 

from.disk: 

performing a tran5fe,r from the disk to memory 

mov AX,OS 
rol AX,4 
mov OX,OMA. TO.UPPER 
out OX,AX 
mov BX,AX 
and AX,OFFFOh 
add AX,argl 
mov OX,OMA.TO.LOWER 
out OX,AX 
jne na.carry_to 
inc BX 
mov AX,BX 
mov OX,OMA. TO.UPPER 
out OX,AX 

mov AX,FDC.OMA 

mov OX,OMA.FROM.LOWER 
out OX,AX 
xor AX,AX 
mov OX,OMA.FROM.UPPER 
out OX,AX 
mov AX,OMA.FROM.OISK.CONTROL 
mov OX,OMA.CONTROL 

210973-85 
out OX,AX 
pop OX 
pop BX 
pop AX 
leave 
ret 

set.dma. endp 

eode ends 
erid 

210973.,.86 

5-66 



inter AP-186 

APPENDIX D 
80186 EXAMPLE'TIMER INTERFACE CODE 

Smodl86 
name example.80 186.timer.code 

this file contains ex.ample 80186 timer routines. The first roulinc 

argl 
arg2 
arg3 
timer2int 

sets up the timer and interrupt controller to cause the timer 
to generate an interrupt every 10 milliseconds. and to service 
interrupt to implement a real time clock. Timer 2 is used in 
this example because no input or output signals are required. 
The code example assumes that the peripheral control block has 
not been moved from its reset location (FFOO-FFFF in I/O space). 

equ word ptr lOP + 4] 
equ word ptr lOP + 6] 
equ word ptr lOP + 8] 
equ 19 

timeT.2eonlro1 equ OFF66h 
timer.2max...ctl equ OFF62h 
timednLctl equ OFF32h 
eaLregister equ OFF22h 
interruputat equ OFF30h 

data segment 
public houT .• minutc .. seconcL,mscc_ 

mseC-. db ? 
hour_ db ? 
minutt- db 
seconcL db 
data ends 

cgroup group code 
dgroup group data 

code segment 
public seLtimc-
assume cs:code,ds:dgroup 

seLtime(hour,minute,second) sets the time variables, initializes the 
80186 timer2 to provide interrupts every 10 milliseconds, and 
programs the interrupt vector for timer 2 

scLtime. proc near 
enter 0,0 
push AX 
push DX 
push SI 
push DS 

xor AX,AX 

mov DS,AX 

mov SI,4 • timer2Jnt 

5-67 

timer 2 has vector type 19 

interrupt controller regs 

public 'data' 

public 'code' 

set stack addressability 
save registers used 

set the interrupt vector 
the timers have unique 
interrupt 
vectors even though they share 
the same control register 

210973-87 



infef 

seLtimc.. 

timer2Jnterrupuoutine 

bump.sc<:ond: 

bump..minute: 

timer2Jnterruplroutine 
code 

Ap·186 

mov word ptr DS:[SI1,offset timer_2_interrupt_routine 
inc SI 
inc SI 
mov OS:[SI),CS 
pop DS 

mov AX,arg 1 set the time values 
mov hour_,AL 
mov AX,ara2 
may minutc.,AL 
mev AX,arg) 
mav second.,AL 
mev msec.,O 

mov 
mov 

oul 
mov 
mov 

oul 

mov 
mov 

DX,timcr2.max..ctl 
AX,20oo0 

OX,AX 
OX,Iimer2.coniroi 
AX,IIIooOOOooOOOool b 

OX,AX 

OX,limer-inLctI 
AX,OOOOb 

oul OX,AX 

set the max count value 
10 ms / Soo n. (Iimer 2 counts 
all/4lhe CPU clock rale) 

.ellhe conlrol word 
enable counting 
generale inlerrupts on TC 
contin,:,-ous c,aunling 

.el up the inlerrupl conlroUer 
unmask interrupts 
highesl priorily inlerrupl 

sti enable processor interrupts 

pop 81 
pop OX 
pop AX 
leave 
rei 
endp 

proc 
push 
push 

cmp 
jae 
inc 
jmp 

mov 
cmp 
j.e 
inc 
jmp 

mov 
cmp 
jae 
inc 
jmp 
pop, 
pop 
rei 
endp 
ends 
end 

far 
AX 
OX 

msec.,99 
bump..second 
msec.. 
rcsclinLctl 

msec..,O 
second.,S9 
bump.minute 
second. 
reseLint.ctl 

second.,O 
minute.,S9 
bump.hour 
minute.. 
reseUnLctI 
OX 
AX 

210973-89 

5-68 

see if one second has passed 
if above or equaL 

reset millisecond 
see if one minute has passed 

see if one hour bas passed 

210973-88 



inter 

bump.hour: 

rescLhour: 

rcseLinLctl: 

timcr2..intcrrupLroutine 
code 

Smodl86 
name 

AP·186 

may minute-.O 
cmp hour., I 2 
jae rcscLbour 
inc houT. 
jmp reseLinLctl 

may hour., I 

may DX,coLregister 
may AX,8000h 
out OX,AX 

pop OX 
pop AX 
iret 
endp 
ends 
end 

examplc.80 I 86.bauclcode 

this file contains example 80186 timer routines. The second routine 
sets up the timer as a baud rate generator. In this mode, 
Timer I is used to continua1ly output pulses with a period of 
6.S usee for use with a serial controller at 9600 baud 
programmed in divide by 16 mode (the actual period required 
for 9600 baud i. 6.51 u.ee). Thi. assume. that the 80186 i. 
running at 8 MHz. The code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FfOO·FFFF in I/O .pace). 

timerl..control equ OFF5Eh 
timeri-Dl3Lcnt equ OFF5Ah 

code segment 
assume cs:code 

; .eLbaudO initializes the 80186 timer I a. a baud rate generator for 
a serial port running at 9600 baud 

sCLbaucL proc near 
pu.h AX 
pu.h OX 

may DX,timerl-111ax.cnt 
mov AX,I3· 
out OX,AX 
mov DX,timerl.control 
may AX,II 0000000000000 I b 

out OX,AX 

pop OX 
pop AX 

5-69 

sec if 12 hours have passed 

non-specific end of interrupt 

public 'code' 

save registers used 

set the max count value 
SOOn •• 13 = 6.5 usee 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max count register 

210973-90 



seLbaud. 
code 

Smodl86 
name 

ret 
endp 
ends 
end 

AP-186 

example.80 I 86.counLcode 

this file contains example 80186 timer routines. The third routine 
sets up the timer as an external event counter. In this mode. 
Timer 1 is used to count transitions on its input pin. After 
the timer has been set up by the routine. the number of 
events counted can be directly read from the timer count 
register at location FF58H in I/O space. Tbe timer will 
count a ml,lximum of 65535 timer events before wrapping 
around to zero. This code example also assumes that the 
peripheral control block has not been moved from its reset 
I~ation (FFOO·FFFF in I/O space). 

timerl.control equ OFF5Eb 
timeri.malLcnt cqu OFF5Ab 
timerl.cnLreg equ OFF58H 

code segment 
assume cs:code 

; seLcountO initializes the 80186 timer 1 as an event counter 

seLcounL 

seLcounL 
code 

proc 
pusb 
pusb 

mov 
mov 

out 
mov 
mov 

out 

xor 
mov 
out 

pop 
pop 
ret 

endp 
ends 
end 

near 
AX 
OX 

OX.timerl.max..cnt 
AX,O 

OX,AX 
DX,timerl.control 
AX,llOOOOOOOOOOOIOlb 

OX,AX 

AX,AX 
OX,timeri.cnLreg 
OX,AX 

OX 
AX 

5-70 

public 'code' 

save registers used 

set the max count value 
allows the timer to count 
all tbe way to FFFFH 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max. count register 
external clocking 

zero AX 
and zero the count in the timer 
count register 

210973-91 



intJ AP-186 

APPENDIX E 
80186 EXAMPLE INTERRUPT CONTROLLER 

INTERFACE CODE 

, Smodl86 
, name example.80186.interrupLcode 

This routine configures the 80186 interrupt controller to provide 
two cascaded interrupt inputs (through an external 82S9A 
interrupt controller on pins INTO/INT2) and two direct 
interrupt input. (on pin. INTI and INn). The derault priority 
I .. el. are used. Because or this, thc priority I .. el programmed 
into thc control rcgister is sct the III, thc levcl all 
interrupts arc programmed to at reset. 

intO.control 
inLmask 

. code 

:set.inL 

·seunL 
code 

:Smod186 
ln8mc 

cqu 
equ 

segment 
assume 
proc 
push 
push 

mov 

mov 
out 

mov 

mov 
oul 
pop 
pop 
reI 
cndp 
ends 
cnd 

OFF38H 
OFF28H 

CS:codc 
near 
OX 
AX 

AX,OIOOIIlB 

OX,intO.control 
OX,AX 

AX,OIOOIlOlB 

DX,inLmask 
OX,AX 
AX 
OX 

c,..mple.80186.inlerrupLcode 

This routine conflJurcs the 80186 interrupt controller into Slave 
Mode. 11tiscodc docs not initialize any of the 80186 
intcsrated peripheral control resisters, nor does it initialize 
the cxt.c:mal 82S9A interrupt conraller. 

,relocation.rCB equ OFFFEH 

code selment 
assume CS:code 

IJet.Slave proc near 
push OX 
push AX 

mov DX,fclocalion.reg 
in AX,OX 
or AX,O 100000000000000B 
aul OX,AX 

5-71 

public 'code' 

Cascade Mode 
interrupt unmasked 

now unmask the other external 
interrupts 

public 'code' 

read old contents of register 
set the Slave/Master mode bit 

210973-92 



AP-186 

APPENDIX F 
80186/8086 EXAMPLE SYSTEM INITIALIZATION CODE 

name example.80 I 86..syslem..inil 

This file contains a system initialization routine for the 80186 
or Ihe 8086. The code delermines whelher il is running on 
an 80186 or an 8086, and irit is running on an 80186, il 
initializes the integrated chip select registers. 

restart .egmenl al 

This is the processor reset address at OFFFFOH 

org 0 
jmp far ptt initialize 

restart ends 

extrn monitor:far 
iniLhw sesmenl al 

assume CS:iniLhw 

Thi. segmenl inilializes Ihe chip .elecls. II musl be localed in Ihe 
lap I K to in.urelhallhe ROM remains selected in Ih. 80186 
.yslem unlillhe proper size or Ihe selecl area can be programmed. 

UMC8.reg 
LMCS.reg 
PAC8.reg 
MPC8.reg 
UMCS.value 
LMC8.value 
PACS. •• lue 
MPCS •• alue 

initialize 

equ 
equ 
equ 
equ 
equ 
equ 
equ 
equ 

proc 
mov 
I1\OV 
.hr 
lesl 
jz 

mov 
mov 
oul 

mov 
mov 
oul 

mo. 

mov 
oul 
mov 
mov 
out 

OFFAOH 
OFFA2H 
OFFA4H 
OFFA8H 

IOF038H 
01F8H 

'OO1EH 
81B8H 

rar 
AX,2 
CL,33 
AX,CL 
AX,I 
noL80186 

OX,UMC8.reg 
AX,UMCS.value 
OX,AX 

OX,LMCS.reg 
AX,LMCS.value 
OX,AX 

OX,PAC8.reg 

AX,PACS.value 
OX,AX 
OX,MPCS.reg 
AX,MPCs.value 
OX,AX 

Now Ihatlhe chip selects are an set up, the main pregram or the 
computer may be executed. 

noLB0186: 

initialize 
iniLhw 

jmp 
endp 
ends 
end 

far ptr monitor 

OFFFFh 

OFFFOh 

chip select register locations 

64K, no wait states 
32K, no wait stales 
peripheral base a1400H, 2 Ws 
PCSS and 6 supplies, 
peripheral. in I/O space 

determine if this is an 
8086 or an 80186 (checks 
lo.ee ir Ihe multiple bit 
shirt value was ANDed) 

program Ihe UMCS regisler 

program Ihe LMCS register 

sel up the peripheral chip 
selecl. (note the mid·range 
memory chip selecls are not 
needed in this syslem, and 
are Ihus nol initialized 

210973-94 

5-72 

210973-93 



intJ AP-186 

APPENDIX G 
80186 WAIT STATE PERFORMANCE 

Because the 80186 contains separate bus interface and 
execution units, the actual performance of the proces­
sor will not degrade at a constant rate as wait states are 
added to the memory cycle time from the processor. 
Jlhe actual rate of performance degradation will depend 
on the type and mix of instructions actually encoun­
tered in the user's program. 

Shown below are two 80186 assembly language pro­
grams, and the actual execution time for the two pro­
grams as wait states are added to the memory system of 
the processor. These programs show the two extremes 
to which wait states will or will not affect system per­
formance as wait states are introduced. 

Program 1 is very memory intensive. It performs many 
memory reads and writes using the more extensive 
memory addressing modes of the processor (which also 
take a greater number of bytes in the opcode for the 
instruction). As a result, the execution unit must con­
stantly wait for the bus interface unit to fetch and per­
form the memory cycles to allow it to continue. Thus, 
the execution time of this type of routine will grow 
quickly as wait states are added, since the execution 
time is almost totally limited to the speed at which the 
processor can run bus cycles. 

Note also that this program execution time calculated 
by merely summing up the number of clock cycles giv­
en in the data sheet will typically be less than the actual 
number of clock cycles actually required to run the pro­
gram. This is because the numbers quoted in the data 
sheet assume that the opcode bytes have been pre­
fetched and reside in the 80186 prefetch queue for im­
mediate access by the execution unit. If the execution 

unit cannot access the opcode bytes immediately upon 
request, dead clock cycles will be inserted in which the 
execution unit will remain idle, thus increasing the 
number of clock cycles required to complete execution 
of the program. . 

On the other hand, program 2 is more CPU intensive. 
It performs many integer multiplies, during which time 
the bus interface unit can fill up the instruction prefetch 
queue in parallel with the execution unit performing the 
multiply. In this program, the bus interface unit can 
perform bus operations faster than the execution unit 
actually requires them to be run. In this case, the per­
formance degradation is much less as wait states are 
added to the memory interface. The execution time of 
this program is closer to the number of clock cycles. 
calculated by adding the number of cycles per instruc­
tion because the execution unit does not have to wait 
for the bus interface unit to place an opcode byte in the 
prefetch queue as often. Thus, fewer clock cycles are 
wasted by the execution unit laying idle for want of 
instructions. Table G-l lists the execution times mea­
sured for these two programs /is wait states were intro­
duced with the 80186 running at 8 MHz. 

TableG-1 

# of 
Program 1 Program 2 

Walt Exec Perf Exec Perf 
States Time Degr Time Degr 

(lksec) (lksec) 

0 505 294 
1 595 18% 311 6% 
2 669 12% 337 8% 
3 752 12% 347 3% 

$modl86 
name cxampic:-wail.5tatc..performancc 

Tbis file contains Iwo programs whicb demonstrale Ihe 80186 performance 
degradation as wait states are inserted. Program 1 performs a 
transformation between two types of characters sets, then copies 
Ihelransformed characlers back 10 Ihe original buffer (which is 64 

cgroup 
dgroup 
data 

byles long. Program 2 performs Ibe same Iype of lransformation, however 
inslead of performing a table lookup, il mulliplies each number in Ihe 
original 32 word buffer by 8 constant (3, note the use of the integer 
immediate multiply instruction), Program "nothing" is used to measure 
Ibe call and relurn limes from Ihe driver program only. 

group code 
group dala 
segment public 'dala' 

5-73 

210973-95 



inter AP-186 

1.lable db 256 dup (1) 
utring db 64 dup (1) 
m..array dw 32 dup (1) 
data ends 

code segment public 'code' 
assume eS:cgroup,DS:dgroup 
public bench.l.bench..2,nothing...waitstatc,..scuimer. 

bench. I proc near 
push SI ; save registers used 
push ex 
push ox 
push AX 

mo. eX,64 lranslale 64 bytes 
mo. SI,O 
mo. OH,O 

loop.back: 
mov OL,ulring[SI) gellhe byle 
mo.' AL,L\able[OX) lranslale byle 
moy ulring[SI),AL and store it 
inc SI increment index 
loop loop-back do Ihe ne.t byte 

pop AX 
pop OX 
pop ex 
pop SI 
ret 

bench. I endp 

bench.2 proc near 
push AX save registers used 
push SI 
push ex 

mo. eX,32 multiply 32 numbers 
mo. Sl,offset m.array 

loop-back..2: 
imul AX,word ptr [SI),3 immediate multiply 
mo. word ptr [SI),AX 
inc si 
inc SI 
loop loop:.back.2 

pop ex 
pop SI 
pop AX 
reI 

bench.2. endp 
210973-96 

5·74 



inter 

nothing. 

nothin8-

proc 
ret 
endp 

AP-186 

near 

waiutate(n) sets the 80186 LMCS resister to the number of wait states 
(0 to 3) indicated by the parameter n (which is passed on the stack). 
No other bits of the LMCS register are modified. 

waiLstatc. proc near 
enter 0,0 
push AX 
push BX 
push OX 

mov BX,word ptr IBP + 4) 
mov OX,OFFA2h 

contents 
in AX,OX 

and AX,OFFFCh 
and BX,3 
or AX,BX 
out OX,AX 

pop OX 
pop BX 
pop AX 
leave 
ret 

waiLstate.. endp 

scLtimcr() initializes the 80186 timers to count microseconds. Timer 2 
is set up as a prescaler to timer O. the microsecond count can be read 

directly out of the timer 0 count resister at location FFSOH in 110 
space. 

seLtimcr. proc near 
push AX 
push OX 

mov OX,Off66h 
mov AX,4000h 
out OX,AX 

mov OX,OffSOh 
mov AX,O 
out OX,AX 

mov OX,OrfS2h 
mov AX,O 
out OX,AX 

5-75 

set up stack frame 
save registers used 

sct argument 
get current LMCS resi.ter 

and off existins ready bits 
insure ws count is good 
adjust the ready bits 
and write to LMCS 

tear down stack frame 

stop timer 2 

clear timer 0 count 

timer 0 counts up to 6SS3S 

210973-97 



AP-186 

mov OX,Off56h enable timer 0 
mov AX,0c009h 
oul OX,AX 

mov OX,Off60h clear timer 2 count 
mov AX,O 
oul OX,AX 

mov DX,Off62h set maximum count of timer 2 
mov AX,2 
oul OX,AX 

mo. DX,Off66h re--cnable timer 2 
mov AX,OcOOlh 
oul OX,AX. 

pop OX 
pop AX 
reI 

scLtimer_ endp 
cod. ends 

end 
210973-98 

5-76 



AP-186 

APPENDIX H 
80186 NEW INSTRUCTIONS 

The 80186 performs many additional instructions to 
those of the 8086. These instructions appear shaded in 
the instruction set summary at the back of the 80186 
data sheet. This appendix explains the operation of 
these new instructions. In order to use these new in­
structions with the 8086/186 assembler, the 
"$mod186" switch must be given to the assembler. This 
can be done by placing the line: "$mod186" at the be­
ginning of the assembly language file. 

PUSH IMMEDIATE 

This instruction allows immediate data to be pushed 
onto the processor stack. The data can be either an 
immediate byte or an immediate word. If the data is a 

. byte, it will be sign extended to a word before it is 
pushed onto the stack (since all stack operations are 
word operations). 

PUSHA,POPA 

These instructions allow all of the general purpose 
80186 registers to. be saved on the stack, or restored 
from the stack. The registers saved by this instruction 
(in the order they are pushed onto the stack) are AX, 
CX, DX, BX, SP, BP, SI, and DI. The SP value pushed 
onto the stack is the value of the register before the first 
PUSH (AX) is performed; the value popped for the SP 
register is ignored. , 

This instruction does not save any of the segment regis­
ters (CS, DC, SS, ES), the instruction pointer (IP), the 
flag register, or any of the integrated peripheral regis­
ters. 

IMUL BY AN IMMEDIATE VALUE 

This instruction allows a value to be multiplied by an 
immediate value. The result of this operation is 16 bits 
long. One operand for this instruction is obtained using 
one of the 80186 addressing modes (meaning it can be 
in a register or in memory). The immediate value can 
be either a byte or a word, but will be sign extended if it 
is a byte. The 16-bit result of the multiplication can be 
placed in ,any of the 80186 general purpose or pointer 
registers. 

This instruction requires three operands: the register in 
which the result is to be placed, the immediate value, 

5-77 

and the second operand. Again, this second operand 
can be any of the 80186 general purpose registers or a 
specified memory location. 

SHIFTS/ROTATES BY AN IMMEDIATE 
VALUE 

The 80186 can perform multiple bit shifts or rotates 
where the number of bits to be shifted is specified by an 
immediate value. This is different from the 8086, where 
only a single bit shift can be performed, or a multiple 
shift can be performed where the number of bits to be 
shifted is specified in the CL register. 

All of the ~hift/rotate instructions of the 80186 allow 
the number of bits shifted to be specified by an immedi­
ate value. Like all multiple bit shift operations per­
formed by the 80186, the number of bits shifted is the 
number of bits specified modulus 32 (Le., the maximum 
number of bits shifted by the 80186 multiple bit shifts is 
31). 

These instructions require two operands: the operand 
to be shifted (which may be a register or a memory 
location specified by any of the 80186 addressing 
modes) and the number of bits to be shifted. 

BLOCK INPUT/OUTPUT 
The 80186 adds two new input/output instructions: 
INS and OUTS. These instructions perform block input 
or output operations. They operate similarly to the 
string move instructions of the processor. 

The INS instruction performs block input from an I/O 
port to memory. The I/O address is specified by the 
DX register; the memory location is pointed to by the 
DI register. After the operation is performed, the DI 
register is adjusted by 1 (if a byte input is specified) or 
by 2 (if a word input is specified). The adjustment is 
either an increment or a decrement, as determined by 
the Direction bit in the flag register of the processor. 
The ES segment register is used for memory address­
ing, and cannot be overridden. When preceded by a 
REPeat prefix, this instruction allows blocks of data to 
be moved from an I/O address to a block of memory. 
Note that the I/O address in the DX register is not 
modified by this operation. 



AP·186 

The OUTS instruction performs block output from 
memory to an I/O port. The I/O address is specified by 
the DX register; the memory location is pointed to by 
the SI register. After the operation is performed, the SI 
register is adjusted by I (if a byte output is specified) or 
by 2 (if a word output is specified). The 'adjustment is 
either an increment or a decrement, as determined by 
the Direction bit in the flag register of the processor. 
The DS segment register is used for memory 8ddress­
ing, but can be overridden by using a segment override 
prefix. When preceded by a REPeat prefix, this instruc­
tion allows blocks of data to be moved from a block of 
memory to an I/O address. Again note that the I/O 
address in the DX register is not modified by this oper­
ation. 

Like the string move instruction, these two instructions 
require two operands to specify whether word or byte 
operations are to take place. Additionally, this determi­
nation can be supplied by the mnemonic itself by add­
ing a "B" or "W" to the basic mnemonic, for example: 

INSB ;pertorm byte input 

REP OUTSW ;pertorm word block output 

BOUND 

The 80186 supplies a BOUND instruction to facilitate 
bound checking of arrays. In this instruction, the calcu­
lated index into the array is placed iri one of the general 

purpose registers ofthe 80186. Located in two adjacent 
word memory locations are the lower and upper 
bounds for the array index. The BOUND instruction 
compares the register contents to the memory loca­
tions, and if the value in the register is not between the 
values in the memory locations, an interrupt type 5 is 
generated. The comparisons performed are SIGNED 
comparisons. A register value equal to either the upper 
bound or the lower bound will not cause an interrupt. 

This instruction requires two arguments: the register in 
which the calculated array index is placed, and the 
word memory location which contains the lower bound 
of the array (which can be specified by any of the 80186 
memory addressing modes). The memory location con­
taining the upper bound of the array must follow imme­
diately the memory location containing the lower 
bound of the array. 

ENTER AND LEAVE 

The 80186 contains two instructions which are used to 
build and tear down stack frames of higher level, block 
structured languages. The instruction used to build 
these stack frames is the ENTER instruction. The algo­
rithm for this instruction is: 

PUSH BP ,*sav~ the previous trame 
pointer*, 

it level=O then 
BP:=SP; 

else templ:=SP;,*save current trame pointer ., 
temp2:= level - 1; 
do while temp2>0,*copy down previous level 

trame', 
BP:::: BP - 2; /"pointers*, 
PUSH [BP]; 

BP:=templ; 
PUSH BP; ,'put current level trame 

pointer', 

,'in the save area', 
SP:=SP - disp; ,'create space on the stack 

tor', 

,'local variables', 

5-78 



intJ AP-186 

Figure H-l shows the layout of the stack before and 
after this operation. 

This instruction requires two operands: the first value 
(disp) specifies the number of bytes the local variables 
of this routine require. This is an unsigned value and 
can be as large as 65535. The second value (level) is an 
unsigned value which specifies the level of the proce­
dure. It can be as great as 255. 

The' 80186 includes the LEAVE instruction to tear 
down stack frames built up by the ENTER instruction. 

? 

BP ~ BEFORI: 

sP-----~----------------~ 

As can be seen from the layout of the stack left by the 
ENTER instruction, this involves only moving the con­
tents of the BP register to the SP register, and popping 
the old BP value from the stack. 

Neither the ENTER nor the LEAVE instructions save 
any of the 80186 general purpose registers. If they must 
be saved, this must be done in addition to the ENTER 
and the LEAVE. In addition, the LEAVE instruction 
does not perform a return from a subroutine. If this is 
desired, the LEAVE instruction must be explicitly fol­
lowed by the RET instruction. 

AFTER 

BP___ OLDBP -

SP---

1------1 
OLD FRAME 

PTAS. 

CURRE~FRAME _ 

LOCAL 
VARIABLE 

AREA 

210973-99 

Figure H-1. ENTER Instruction Stack Frame. 

5-79 



intJ Ap·186 

APPENDIX I 
80186/80188 DIFF.ERENCES 

The 80188 is exactly like the 80186, except it has an 8 
bit external bus. It shares the same execution unit, tim­
ers, peripheral control block, interrupt controller, chip 
select, and DMA logic. The differences between the 
two caused by ,the narrower data bus are: 

• The 80188 has a 4 byte prefetch queue, rather than 
the 6 byte prefetch queue present on the 80186. The 
reason for this is since the 80188 fetches opcodes 
one byte at a time, the number of bus cycles re­
quired to fill the smaller queue of the 80188 is actu­
ally greater than the number of bus cycles required 
to fill the queue of the 80186. As a result, a smaller 
queue is required to prevent an inordinate number 
of bus cycles being wasted by prefetching opcodes to 
be discarded during a jump. 

• AD8-AD15 on the 80186 are transformed to A8-
A15 on the 80188. Valid address information is 
present on these lines throughout the bus cycle of 
the 80188. Valid address information is not guaran­
teed on these lines during idle T states. 

• BHE/S7 is always defined HIGH by the 80188, 
since the upper half of the data bus is non-existent. 

• The DMA controller of the 80188 only performs 
byte transfers. The B/W bit in the DMA control 
word is ignored. 

• Execution times for many memory access instruc­
tions are increased because the memory access must 
be funnelled through a narrower data bus. The 
80188 also will be more bus limited than the 80186 
(that is, the execution unit will be required to wait 
for the opcode information to be fetched more often) 
because the data bus is narrower. The execution 
time within the processor, however, has not changed 
between the 80186 and 80188. 

Another important point is that the 80188 internally is 
a 16-bit machine. This means that any access to the 
integrated peripheral registers of the 80188 will be done 
in 16-bit chunks, not in 8-bit chunks. All internal pe­
ripheral registers are still 16-bits wide, and only a single 
read or write is required to access the registers. When a 
word access is made to the internal registers, the BIU 
will run two bus cycles externally. 

Access to the control block may also be done with byte 
operations. Internally the ful116-bits of the AX register 
will be written, while externally, only one bus cycle will 
be executed. 

·5-80 



inter AP-186 

APPENDIX J 
80186/80C186 DIFFERENCES 

There are two operating modes of the 80CI86 and 
80C188: Compatible Mode and Enhanced Mode. In 
Compatible Mode, the 80CI86 will function identically 
to the 80186 with the following noted exceptions: 

I) All non-initialized registers in the peripheral control 
block will reset to a random value on power-up on 
the 80C186. Non-Initialized registers consist of those 
registers which are not used for control, i.e., address 
pointers, max count, etc. For compatibility, all regis­
ters should be programmed before being used on ex­
isting 80186 applications as well as on new 80C 186 
applications. 

2) The ET (Esc/Trap) bit in the relocation register has 
no effect in Compatible Mode. If an escape opcode is 
executed, the 80CI86 will always trap to an inter­
rupt vector type 7. The 80C186 does not support any 
numerics operations when in Compatible Mode. 

5-81 

In Enhanced Mode, the 80CI86 provides additional 
features not found on the 80186. There are newly de­
fined registers to support these new features, and three 
of the output pins of the 80CI86 change functionality. 
The new registers and pin descriptions are covered in 
Section 9.0. 

The 80CI88 in Enhanced Mode functions similarly to 
the 80C 186 except for numerics operation. It is not pos­
sible to interface a numerics coprocessor with the 
80C188. Therefore, none of the MCS pins change func­
tionality when invoking Enchanced Mode on the 
80C188. Further, any attempted execution of an escape 
opcode will result in a trap to interrupt vector type 7. 



AP-186 

APPENDIX K 
DRAM ADDRESSING CONFIGURATIONS 

FOR THE 80C186/80C188 

80C186 DESIGNS 
Row Address Column Address 

(AO-AX) (AO-AX) 

64Kx 1 (12BK Bytes) A1-AB A9-A16 
16Kx4 (32K Bytes) A1-AB A9-A14 
256Kx 1 (512K Bytes) A1-A9 A10-A1B 
64Kx4 (12BK Bytes) A1-AB A9-A16 
1M x 1 (2M Bytes) A1-A10 A11-A19(+ Bank) 
256Kx4 (512K Bytes) A1-A9 A10-A1B 

80C188 DESIGNS 

NOTE: 
Address bit AO can be used in either RAS or CAS addresses, so long 
as it is not included in any refresh address bits. 

Row Address Column Address 
(AO-AX) (AO .. AX) 

64Kx 1 (64K Bytes) A1-A7, AO AB-A15 
16Kx4 (16K Bytes) A1-A7,AO A!3-A13 
256Kx 1 (256K Bytes) A1-AB,AO A9-A17 
64Kx4 (64K Bytes) A1-AB AO,A9-A15 
1Mx 1 (1 M !3ytes) A1-A9, AO A10-A19 
256Kx4 (256K Bytes) A1-A9 AO, A10-A17 . 

RAM Type RASAdd CAS Add Refresh Add 

64Kx 1 AO-A7 AO-A7 AO-A6 
16Kx4 AO-A7 AO-A5 AO-A6 
256Kx 1 AO-AB AO-AB AO-A7 
64Kx4 AO-A7 AO-A7 AO-A7 
1M x 1 AO-A9 AO-A9 AO-AB 
256Kx4 AO-AB AO-AB AO-AB 

5-B2 



inter APPLICATION 
NOTE 

AP-258 

February 1986 

High Speed Numerics with the 
80186/80188 and 8087 

© Intel Corporation, 1987 

STEVE FARRER 
APPLICATIONS ENGINEER 

5-83 
Order Number: 231590-001 



Ap·258 

1.0 INTRODUCTION 

From their introduction in 1982, the highly integrated 
16-bit 80186 and its 8-bit external bus version, the 
80188, have been ideal processor choices for high-per­
formance, low-cost embedded· control applications. The 
integrated peripheral functions and enhanced 8086 
CPU of the 80186 and 80188 allow for an easy upgrade 
of older generation control applications to achieve 
higher performance while lowering the overall system 
cost through reduced board space, and a simplified pro­
duction flow. 

More and more controller applications need even high­
er performance in numerics, yet still require the low­
cost and small form factor of the 80186 and 80188. The 
8087 Numerics Data Coprocessor satisfies this need as 
an optional add-on component. 

The 8087 Numeric Data Coprocessor is interfaced to 
the 80186·and 80188 through the 82188 IBC (Integrat­
ed Bus Co1)troller). The IBC provides a highly integrat­
ed interface solution which replaces the 8288 used in 
8086-8087 systems. The IBC incorporates all the nec­
essary bus control for the 8087 while also providing the 
necessary logic t? support the interface between the 
80186/8 and the 8087. 

This application note discusses the design considera­
tions associated with using the 8087 Numeric Data Co­
processor with the 80186 and 80188. S¢ctions two, 

three, and four contain an overview of the integrated 
circuits involved in the numerics configuration. Section 
five discusses the interfacing aspects between the 
80186/8 and the 8087, including the role of the 82188 
Integrated Bus Controller and the operation of the inte­
grated peripherals on the 80186/8 with the 8087. Sec­
tion six compares the advantages of using an 8087 Nu­
meric Data Coprocessor over software routines written 
for the host processor as well as the advantage of using 
an 80186/8 numerics system over an 8086/8088 nu­
merics system. 

Except where noted, all future references to the 80186 
will apply equally to the 80188. 

2.0 OVERVIEW OF THE 80186 

The 80186 and 80188 are highly integrated microproc­
essors which effectively combine up to 20 of the most 
common system components onto a single chip. The 
80186 and 80188 processors are designed to provide 
both higher performance and a more highly integated 
solution to the total system. 

Higher integration results from integrating system pe­
ripherals onto the microprocessor. The peripherals con­
sist of a clock generator, an interrupt controller, a 
DMA controller, a counter/timer unit; a programma­
ble wait state generator, programmable chip selects, 
and a bus controller. (See Figure 1.) 

INT3/INTA1" 

INT2JJRTU 

HOLD 
"LDA 

lIES 
RESET 

ClKOUT Vee G~D 

Figure 1.8018618 Block Diagram 

5-84 

,-----I-ORoo 
DRal 

CONTROL 
REGISTERS 

231590-1 



AP-258 

Higher performance results from enhancements to both 
general and specific areas of the 8086 CPU, including 
faster effective address calculation, improvement in the 
execution speed of many instructions, and the inclusion 
of new instructions which are designed to produce opti­
mum 80186 code. 

The 80186 and 80188 are completely object code com­
patible with the 8086 and 8088. They have the same 
basic register set, memory organization, and addressing 
modes. The differences between the 80186 and 80188 
'are the same as the differences between the 8086 and 
8088: the 80186 has a 16-bit architecture and 16-bit bus 
interface; the 80188 has a 16-bit internal architecture 
and an 8-bit data bus interface. The instruction execu­
tion times of the two processors differ accordingly: for 
each non-immediate 16-bit data read/write instruction, 
4 additional clock cycles are' required by the 80188. 

3.0 NUMERICS OVERVIEW 

3.1 The Benefits of Numeric 
Coprocessing 

The 8086/8 and 80186/8 are general purpose micro­
processors, designed for a very wide range of applica­
tions. Typically, these applications need fast, efficient 
data movement and ,general purpose control instruc­
tions. Arithmetic on data values tends to be simple in 
these applications. The 8086/8 and 80186/8 fulfill these 
needs in a low cost, effective manner. 

However, some applications require extremely fast and 
complex math functions which are not provided by a 
general purpose processor. Such functions as square 
root, sine, cosine, and logarithms are not directly avail­
able in a general purpose processor. Software routines 
required to implement these functions tend to be slow 
and not very accurate. Integer data types and their 
arithmetic operations (i.e., add, subtract, multiply and 
divide) which are directly available on general purpose 
processors, still may not meet the needs for accuracy, 
speed and ease of use. . 

Providing fast, accurate, complex math can be quite 
complicated, requiring large areas of silicon on inte­
grated circuits. A general data processor does not pro­
vide these features due to the extra cost burden that less 
complex general applications must take on. For such 
features, a special numeric data processor is required -
one which is easy to use and has a high level of support 
in hardware and software. -

3.2 Introduction to the 8087 

The 8087 is a numeric data coprocessor which is capa­
ble of performing complex mathematical functions 
while the host processor (i.e. the main CPU) performs 

more general tasks. It supports the necessary data types 
and operations and allows use of all the current hard­
ware and software support for the 8086/8 and 80186/8 
microprocessors. The fact that the 8087 is a coproces­
sor means it is capable of operating in parallel with the 
host CPU, which greatly improves the processing pow­
er of the system. 

The 8087 can increase the performance of floating­
point calculations by 50 to 100 times, providing the 
performance and precision required for small business 
and graphics applications as well as scientific data pro­
cessing. 

The 8087 numeric coprocessor adds 68 floating-point 
instructions and eight 80-bit floating-point registers to 
the basic 8086 programming architecture. All the nu­
meric instructions and data types of the 8087 are used 
by the programmer in the same manner as the general 
data types and instructions of the host. 

The numeric data formats and arithmetic operations 
provided by the 8087 support the proposed IEEE Mi­
croprocessor Floating Point Standard. All of the pro­
posed IEEE floating point standard algorithms, excep­
tion detection, exception handling, infinity arithmetic 
and rounding controls are implemented. The IEEE 
standard makes it easier to use floating point and helps 
to avoid common problems that are inherent to floating 
point. 

3.3 Escape Instructions 

The coprocessing capabilities of the 8087 are achieved 
by monitoring the local bus of the host processor. Cer­
tain instructions within the 8086 assembly language 
known as ESCAPE instructions are defined to be co­
processor instructions and" as such, are treated differ­
ently. 

The coprocessor monitors program execution of the 
host processor to detect the occurrence of an ESCAPE 
instruction, The fetching of instructions is monitored 
via the data bus and bus cycle status S2-S0, while the 
execution of instructions is monitored via the queue 
status lines QSO and QS 1. ' 

All ESCAPE instructions start with the high-order 5-
bits of the instruction opcode being 11011. They have 
two basic forms, the memory ,reference form and the 
non-memory reference form. The non-memory form, 
shown in Figure 2A, initiates some activity in the co­
processor using the nine available bits of the ESCAPE 
i1istruction to indicate which function- to perform. 

Memory referen'ce forms of the ESCAPE instruction, 
shown in Figure 2B, allow the host to point outa mem­
ory operand to the coprocessor using any host memory 

5-85 



intJ AP-258 

115 114 113 112 111 110 19 Ie 17 16 15 14 13 12 11 10 
1 st byte 2nd byte 

Figure 2A. Non-Memory Reference ESCAPE Instructions 

addressing mode. Six bits are available in the memory 
reference form to identify what to do with the memory 
operand. 

Memory reference forms of ESCAPE instructions are 
identifieq by bits 7 and 6 of the byte following the ES­
CAPE opcode. These two bits are the MOD field of the 
8086/8 or 80186/8 effective address calculation byte. 
Together with the RIM field (bits 2 through 0), they 
determine the addressing mode and how many subse­
quent bytes remain in the instruction. 

3.4 Host Response to Escape 
Instructions 

The host performs one of two possible actions when 
encountering an ESCAPE instruction: do nothing (op­
eration is internal to 8087) or calculate an effective ad­
dress and read a word value beginning at that address 
(required for all LOADS and STORES). The host ig­
nores the value of the word read and hence the cycle is 
referred to as a "Dummy Read Cycle." ESCAPE in­
structions do not change any registers in the host other 
than advancing the IP. If there is no coprocessor or the 
coprocessor ignores the ESCAPE instruction, the ES­
CAPE instruction is effectively a NOP to the host. Oth­
er than calculating a memory address and reading a 
word of memory, the host makes no other assumptions 
regarding coprocessor activity. 

The memory reference ESCAPE instructions have two 
purposes: to identify a memory operand and, for certain 
instructions, to transfer a word from memory to the 
coprocessor. 

MOD RIM 

3.5 Coprocessor Response to Escape 
Instructions 

The 8087 performs basically three types of functions 
when encountering an ESCAPE instruction: LOAD 
(read from memory), STORE (write to memory), and 
EXECUTE (perform one of the internal 8087 math 
functions). . 

When the host executes a memory reference ESCAPE 
instruction intended to cause a read operation by the 
8087, the host always reads the low-order word of any 
8087 memory operand. The 8087 will save the address 
and data read. To read any subsequent words of the 
operand, the 8087 must become a local bus,master. 

When the 8087 has the local bus, it increments the 20-
bit physical address it saved to address the remaining 
words of the operand. 

When the ESCAPE instruction is intended to cause a 
write operation by the 8087, the 8087 will sa'le the ad­
dress but ignore the data read. Eventually, it will get 
control of the local bus and perform successive writes 
incrementing the 20-bit address after each word until 
the entire numeric variable has been written. 

ESCAPE instructions intended to cause the execution 
of a coprocessor calculation do not require any bus ac­
tivity. Numeric calculations work off of an internal reg­
ister stack which has been initialized using a LOAD 
operation. The calculation takes place using one or two 
of the stack positions specified by the ESCAPE instruc­
tion. The result of the operation is also placed in one of 
the stack positions specified by the ESCAPE instruc­
tion. The result may then be returned to memory using 
a STORE instruction, thus allowing the host processor 
to access it. 

10 I 0 I 11 11 10 I I 
16-bit direct displacement 

II I I I I I I I 
115114113112111110 19 Is 17 16 15 14 13 12 11 10 D15D14D13D12DllDl0 Dg De D7 D6 D5 D4 D3 D2 D1'Do 

MOD RIM 16-bit displacement 

11 11 10 11 11 I 11 10 I I I I I I II 

11 11 10 11 11 I 
MOD 

10 1 d 
RIM I 

I I I . 
B·bit displacement 

I I I I I 
115 114 113 112 111 110 19 Is 17 16 15 14 13 12 11 10 D7 D6 D5 D4 D3 D2 Dl Do 

MOD 

10 I 0 I RIM I 
I I 

Figure 2B. Memory Reference ESCAPE Instruction Forms 

5-86 



inter Ap·258 

4.0 OVERVIEW OF THE 82188 
INTEGRATED BUS CONTROLLER 

4.1 Introduction 

The 82188 Integrated Bus Controller (IBC) is a highly 
integrated version of the 8288 Bus Controller. The IBC 
provides command and control timing signals for bus 
control and all of the necessary logic to interface the 
80186 to the 8087. 

4.2 Bus Control Signals 

The bus command and control signals consist of RD, 
WR, DEN, DTIR, and ALE. The timings and levels 
are driven following the latching of valid signals on the 
status lines 80-82. When 80-82 change state from pas­
sive to active, the IBC begins cycling through a state 
machine which drives the corresponding control and 
command lines for the bus cycle. As with the 8288, an 
address enable input (AEN) is present to allow tri-stat-

5.0 DESIGNING THE SYSTEM 

ing when other bus masters supply their own bus con­
trol signals. 

4.3 Bus Arbitration 

The IBC also has the ability to convert bus arbitration 
protocols ofRQ/GT to HOLD-HLDA. This allows the 
82586 Local Area Network (LAN) Coprocessor, the 
82730 Text Coprocessor, and other coprocessors using 
the HOLD-HLDA protocol to be interfaced to the 
8086/8 as well as allowing the 80186/8 to be interfaced 
to the 8087. In addition to cOllverting arbitration proto­
cols, the IBC makes it possible to arbitrate between two 
bus masters using HOLD-HLDA with a third using 
RQ/GT. 

4.4 Interface Logic 

In addition to all the bus control and arbitration fea­
tures, the IBC provides logic to connect the queue 
status to the 8087, a chip-select for the 8087, and the 
necessary READY synchronization required between 
the 8087 and the 80186/8. 

5.1 Circuit Schematics of the 80186/8-82888-8087 System 

16MH %~ 

-f 

r:: 

'--

TO OPTIONAL 
THIRD BUS MASTER 

I + 
~0186 ADDRESS DATA BUS ... 

SYS SYS JI--HOLD HLDA 

HLDA HLDA '\r 
HOLD HOLD 
MCSO CSIN 

ARDY OSO OSOI 
Rii 

OSl OS1I 

SRDY 
RESETOUT 

CLOCKOUT 

INTO S2r---- ALE -
TEST Sir-- 52 sof-

Sl 
so 

r:: CLK 
RESET 

50- f- SRO 
BUSY Si-INT 

52 -----
82188 

CLK 
RESET DT/R = ROY DEN 

OSO OSOO 
OSl OSlO 

iffi/GTO RQ/GTO 
iffi/GTl RO/GTl 

.'f' .1'. 
8087-1 ADDRESS DATA BUS 

J.DY S~DY 

-

i-+STB 
L...J,., =I 74LS 

r-v' 373 

"1:C:!. 

~1Diil r- iiE 

=I L...J,., 74LS 

r-v' 24S 

~ 

Figure 3. 80186/8-82188-8087 Circuit Diagram 

5-87 

COMMAND/CONTROL 

ADDRESS 

DATA 

231590-2 



inter Ap·258 

5.2 Queue Status 

The 8087 tracks the instruction execution of the 80186 
by keeping an internal instruction queue which is iden­
tical to the processor's instruction queue. Each time the 
processor performs an instruction fetch, the 8087 latch­
es the instruction into its own queue in parallel with the 
processor. Each time the processor removes the first 
byte of an instruction from the queue, the 8087 removes 
the byte at the top of the 8087 queue and checks to see 
if the byte is an ESCAPE prefix. If. it is, the 8087 de­
codes the following bytes in parallel with the processor 
to determine which numeric instruction the bytes repre­
sent. If the first byte of the instruction is not an ES­
CAPE prefix, the 8087 discards it along with the subse­
quent bytes of the non-numeric instruction as the 80186 
removes them from the queue for execution. 

The 8087 operates its internal instruction queue by 
monitoring the two queue status lines from the CPU. 
This status information is made available by the CPU 
by placing it into queue status mode. This requires 
strapping the RD pin on the 80186 ~ound. When 
RD is tied to ground, ALE and WR become QSO 
(Queue Status #0) and QSl (Queue Status # 1) respec­
tively. 

Table 1. Queue Status Decoding 

QS1 QSO Queue Operation 

0 0 No queue operation 
0 1 First byte from queue 
1 0 Subsequent byte from queue . 
1 1 Reserved 

Each time the 80186 begins decoding a new instruction, 
the queue status lines indicate "first byte of instruction 
taken from the queue". This signals the 8087 to check 

, for an ESCAPE prefix. As the remaining bytes of the 
instruction are removed, the queue status indicates 
"subsequent byte removed from queue". The 8087 uses 
this status to either continue decoding subsequent 
bytes, if the first byte was an ESCAPE prefix, or to 
discard the subsequent bytes if the first byte was not an 
ESCAPE prefix. 

The QSO(ALE) and QSl(WR) pins of the 80186 are fed 
directly to the 82188 where they are latched and de­
layed by one-half-clock. The delayed queue status from 
the 82188 is then presented directly to the 8087. 

The waveforms of the queue status signals are shown in 
Figure 4. The critical timings are the setup time into 
the 82188 from the 80186 and the setup and hold time 
into the 8087 from the 82188. The calculations for an 8 
MHz system are as follows: 

.5TcLCL - TCHQSV (186 max) 
.5(125 ns) - 35 

;;::: TQIVCL (82188 min) 
;;::: 15 ns 

;setup to 82188 

TCLCL - TCLQOV (82188 max) 
(125 ns) - 50 

;;::: TQVCL 
;;:::10 ns 

;setup to 8087 

TCLQOV (82188 min) ;;::: TCLQX (8087 min) 
;;::: 5 ns 

;hold to 8087 
5 

elK --\."" ___ -¥ . \ -I 
:J TCHQSV t I :J TCHQSV t 

80186 QUEUE STATUS ----------3 I Y 
INTO 82188 ''11110---;.------

fQlVclSi § _________________ L~_C_lQ_O_V _____ _!-"'" TClQOV 

82188 QUEUE STATUS Z 
INTO 8087 ______________ .,..., ~-------I_...J . c:= TQVCL • TClQX 

r r 

231590-3 

Figure 4. Queue Status Timing 

5-88 



inter AP-258 

5.3 Bus Control Signals 

When the 80186 is in Queue Status mode, another com­
ponent must generate the ALE, RD, and WR signals. 
The 82188 provides these2ignals by monitorin~ 
CPU bus cycle status (SO-S2). Also provided are DEN 
and DT/R: which may be used for extra drive capability 
on the control bus. With the exception of ALE, all con­
trol signals on the 82188 are almost identical to their 
corresponding 80186 control signals. This section dis­
cusses the differences between the 80186 and the 82188 
control signals for the purpose of upgrading an 80186 
design to an 80186-8087 design. For original 80186-
8087 designs, there is no need to compare control signal 
timings of the 82188 with the 80186. 

5.3.1 ALE 

The ALE (Address Latch Enable) signal goes active 
one clock phase earlier on the 80186 than on the 82188. 
Timing of the ALE signal on the 82188 is closer to that 
of the 8086 and 8288 bus controller because the bus 
cycle status is used to generate the ALE pulse. ALE on 
the 80186 goes active before the bus cycle status lines 
are valid. 

The inactive edge of ALE occurs in the same clock 
phase for both the 80186 and the 82188. The setup and 
hold times of the 80186 address relative to the 82188 
ALE signal are shown in Figure 5 and are calculated 
for an 8 MHz system as follows: 

Setup Time 
For 80186 = TAVCH (186 min) + TCHLL (82188 min) 

=10+0=lOns. 

NOTE: 
The hold time calculation is the same for both the 
80186 and 8087. 

These timings provide adequate setup and hold times 
for a 74LS373 address latch. 

T1 

eLK 

ALE --1 ~ ____ _ 
ADDRESS ~ VALID I~ 

t:SETUP-t-HOLD :I 
231590-4 

Figure 5. Address Latch Timings 

For 8087 = 0.5 (TCLCU - TCLAV (8087 max) + TCHLL (82188 min) 
= 0.5 (125) - 55 + 0 = 7.5 

Hold Time 
= 0.5 (TCLCL) - TCHLL (82188 max) + TCLAZ (186 min) 
= 0.5 (125) - 30 + 10 = 42.5 ns. 

5-89 



inter AP-258 

T1 

ClK 

80186 Ro 

82188----------------~~~ 
RD AND WR 

80186 WR 

TCLRL = TCLML = TcVCTV = 10 to 70 ns 
TCLRH = TCLMH = III to 55 ns 
TCVCTX = 5 to 55 ns 

T2 T3 T4 

231590-5 

" Figure 6. Read and Write Timings 

5.3.2 Read ,and Write 

The read and write signals of the 82188 have identical 
timings to those of the 80186 with one exception: the 
82188 WR inactive edge may not go inactive quite as 
early as the 80186. This spec is, in fact, a tighter spec 
than the 80186 WR timing and should make designs 
easier. The timings for RD and WR are shown in Fig­
ure 6 for both the 80186 and the 82188. 

5.3.3 DEN 

The DEN signal on the 82188 is identical to the DEN 
signal on the 80186 but with a tighter timing specifica­
tion. This makes designs easier with the 82188 and 
makes upgrades from 80186 bus control to 82188 bus 
control more straightforward. The timings for DEN on 
both the 80186 and 82188 are shown in J.<:igure 7. 

T1 

ClK 

80186 DEN 

82188 DEN 

T CVCTV = 10 to 70 - clock edge to DEN active/inactive 
T CVOEX = 10 to 70 - falling edge of T 4 to DEN inactive 
T CHDNV = 10 to 55 - rising edge of clock to DEN active 
T CHDNX = 10 to 55 - clock edge to DEN inactive 

T2 

5.3.4 DT/Fi 

The operation of the DT;R signal varies somewhat be­
tween the 80186 and the 82188. The 80186 DT/R: sig­
nal will remain in an active high state for all write cy­
c1es~d will default to a high state when the ~stem bus 
is idle (i.e., no bus activity). The 80186 DT/R goes low 
only for read cycles and does so only for the duration of 
the bus cycle. At the end of the read cycle, assuming 
the following cycle is a non-read, the DT/R: signal will 
default back to a high state. Back-to-back read cycles 
will result in the DT/R: sign~ remaining low ~til the 
end of the last read cycle. 

The DT/R: signal on the 82188 operates differently by 
making transitions only at the start of a bus cycle. The 
82188 DT;R signal has no default state and therefore 
will remain in whichever state the previous bus cycle 
required. The 82188 DT/R signal will only change 
states'when the current bus cyCle requires a state differ­
ent from the previous bus cycle. 

T3 T4 " 

231590-6 

Figure 7. Data Control Timings 

5-90 



infef AP-258 

T4 T1 T2 T3 T4 

ClK 

80186DT/R:::::::~~~~~'~L-____________________________________ ~ll::::::: 

(READ) I 
80186 DT/R / ~ \. (WRITE) ____ ..l. '-__ 

I~~L=O~W ____________________________________ __ 

82188 DT/R -------------"'\ If" (WRITE) 

READ/WRITE ---------' fIo------------------ (READ) 

T CLOW = 0 10 55 ns. 231590-7 

Figure 8. Data Transmit & Receive Timings 

5.4 Chip Selects 

5.4_1 INTRODUCTION 

Chip-select circuitry is typically accomplished by using 
a discrete decoder to decode two or more of the upper 
address lines. When a valid address appears on the ad­
dress bus, the decoder generates a valid chip-select. 
With this method, any bus master capable of placing an 
address on the system bus is able to generate a chip-se­
lect. An example of this is shown in Figure 9 where an 
8086/8087 system uses a common decoder on the ad­
dress bus. Note the decoder is able to operate regardless 
of which processor is in control of the bus. 

ADDRESS 

ADDRESS 
DECODER 

231590-8 

Figure 9. Typical 8086/8087 System 

With high integration processors like the 80186 and 
80188, the chip-select decoder is integrated onto the 
processor chip. The integrated chip-selects on the 
80186 enable direct processor connection to the chip­
enable pins on many memory devices, thus eliminating 
an external decoder. But because the integrated chip-se­
lects decode the 80186's internal bus, an external bus 
master, such as the 8087, is unable to activate them. 
The 82188 IBC solves this problem by supplying a 
chip-select mechanism which may be activated by both 
the host processor and a second processor. 

5.4.2 CSI AND CSO OF THE 82188 

The CSI (chip select in) and CSO (chip select out) pins 
of the 82188 provide a way for a second bus master to 
select memory while also making use of the 80186 inte­
grated chip-selects. The CSI pin of the 82188 connects 
directly to one of the 80186's chip-selects while CSO 
connects to the memory device designated for the chip­
selects range. An example of this is shown in Figure 10. 

231590-9 

Figure 10. Typical 80186/82188/8087 System 

5-91 



intJ AP-258 

When the 80186 has control ofthe bus, the circuit acts 
just as a buffer and the memory device gets selected as 
if the circuit had not been there. Whenever CSI goes 
. active, CSO goes active. When a second b~aster,c 
such as the 8087, takes control of the bus, CSO goes 
active and remains active until the 8087 passes control 
back to the processor. At this time CSO is deactivated. 

A functional block diagram of the CSI-CSO circuit is 
shown in Figure 1 L A grant pulse on the RQ/GTO line 
gives. control to the 8087 and also causes the 
8087CONTROL signal to go active, which in tum 
causes CSO to go active. The 8087CONTROL signal 
~ inactive when either a release is received on 
RQ/GTO, indicating that the 8087 is relinquishing con­
trol to the main processor, or a grant is received on the 
RQ/GTl line, indicating that the 8087 is relinquishing 
control to a third processor. Both actions signify that 
the 8087 is relinquishing the bus. If CSO goes ·inactive 
because a third processor took control of the bus, then 
CSO will go active again for the 8087 when a release 
pulse is transmitted on the RQ/GTl line to the 8087. 
This release pulse occurs as a result of SYSHLDA go­
ing inactive from the third processor. 

5.4.3 SYSTEM DESIGN EXAMPLE 

To provide the 8087 access to data' in low memory 
through an integrated chip-select, the LCS pin should 
be disconnected from the bank that it is currently se­
lecting and fed directly into the 82188 CSI. The CSI 
~ut should be connected .!£...!.he banks which the 
LCS formerly selected.· The LCS will still select the 
same banks because CSO goes active whenever CSI 
goes active. But now the 8087, when taking control of . 
the bus, may also select these banks. 

Care must be taken in locating the 8087 data area be­
cause it must reside in the area in which the chip-select 
is defined. If the 8087 generates an address outside of 
the LCS range, the CSO will still go active, but the 
address will erroneously select a part of the lower bank. 
Note also that this chip-select limits the size of the 8087 
data area to the maximum size memory which can be 
selected with one chip-select. However, this does not 
place a limit on instruction code size or non-8087 data 
size. All 80186 and 8087 instructions are fetched by the 
processor and therefore do not require that the 808.7 be 

82188 IBC 

=D-

8087 CONTROL 

HOLD r--- RQ/GTO 
ARBITRATION 

LOGIC 
HLDA r---

SYSHOLD SYSHLDA 
231590-10 

Figure 11. 82188 Chip Select Circuitry 

5-92 



AP-258 

able to address them. Likewise, non-8087 data is never 
accessed by the 8087 and therefore does not require an 
8087 chip-select. 

5.5 Wait State & Ready logic 

The 8087 must accurately track every instruction fetch 
the 80 186 performs so that each op-code may be read 
from the system bus by the 8087 in parallel with the 
processor. This means that for instruction code areas, 
the 80 186 cannot use internally generated wait states. 
All ready logic for these areas must be generated exter­
nally and sent into the ,82188. The 82188 then presents 
a synchronous ready out (SRO) signal to both the 
80186 and the 8087. 

5.5.1 INTERNAL WAIT STATES WITH 
INSTRUCTION FETCHES 

If internal wait states are used by the processor with the 
8087 at zero wait states, then the 8087 will latch op­
codes using a four clock bus cycle while the processor is 
using between five and seven clocks on each bus cycle. 
If the wait states are truly necessary to latch valid data 
from memory, then a four clock bus cycle will force the 
8087 to latch invalid data. The invalid data may then be 
possibly interpreted to be an ESCAPE prefix when, in 
reality, it is not. The reverse may also hold true in that 
the 8087 may not recognize an ESCAPE prefix when it 
is fetched. These conditions could cause a system to 
hang (i.e., cease to operate), or operate with erroneous 
results. 

If the memory is fast enough to allow latching of valid 
data within a four clock bus cycle, then the 80186 inter­
nal wait states will not cause the system to hang. Both 
processors will receive valid data during their respec­
tive bus cycles. The 8087 will finish its bus cycle earlier 
than the processor, but this is of no consequence to 
system operation. The 8087 will synchronize with the 
processor using the status lines SO-S2 at the start of the 
next instruction fetch. 

5.5.2 INTERNAL WAIT STATES WITH DATA & 
1/0 CYCLES 

With the exception of "Dummy Read Cycles" and in­
struction fetches, all memory and I/O bus cycles exe­
cuted by the host processor are ignored by the 8087. 
Coprocessor synchronization is not required for un­
tracked bus cycles and, therefore, internally generated 
wait states do not affect system operation. All of the 
I/O space and any part of memory used strictly for 
data may use the internal wait state generator on the 
80186. 

Memory used for 8087 data is somewhat different. 
Here, as in the case of code segment areas, the system 
must rely on an external ready signal or else the memo­
ry must be fast enough to support zero wait state opera­
tion. Without an external ready signal, the 8087 will 
always perform a four clock bus cycle which, when 
used with slow memories, results in the latching of in­
valid data. 

Internal wait states will not affect system operation for 
data cycles performed by the 8087. In this case the 8087 
has control of the bus and the two processors operate 
independently. 

One type of data cycle has not yet been considered. 
Each time a numerics variable is accessed, the host 
processor runs a "Dummy Read Cycle" in order to 
calculate the operand address Jor the 8087. The 8087 
latches the address and then takes control of the bus to 
fetch any subsequent bytes which are necessary. If the 
8087 variables are located at even addresses, then an 
intern'ally generated wait state will not present any 
problems to the system. If any numeric variables are 
located at odd addresses, then the interface between the 
host and coprocessor becomes asynchronous causing 
erroneous results. 

The erroneous results are due to the 80186 running two 
back-to-back bus cycles with wait states while the 8087 
runs two back-to-back bus cycles without wait states. 
The start of the second bus cycle is completely uncoor­
dinated between the two processors and the 8087 is un­
able to latch the correct address for subsequent trans­
fers. For this reason, 8087 variables in a 80186 system 
must always lie on even boundaries when using the in­
ternal wait state generator to access them. 

Numeric variables in an 80188 system must never be in 
a section of memory which uses the internal wait state 
generator. The 80188 will always perform consecutive 
bus cycles which would be equivalent to the 80186 per­
forming an odd addressed "Dummy Read Cycle." 

5.5.3 AUTOMATIC WAIT STATES AT RESET 

The 80186 automatically inserts three wait states to the 
predefined upper memory chip select range upon power 
up and reset. This enables designers to use slow memo­
ries for system boot ROM if so desired. If slow ROM's 
are chosen, then no further programming is necessary. 
If fast ROM's are chosen, then the wait state logic may 
simply be reprogrammed to the appropriate number of 
wait states. 

The automatic wait states have the possibility of pre­
senting the same problem as described in section 5.5.1 if 

5-93 



AP-258 

the boot ROM needs one or more wait states. Under 
these conditions the 8087 would be forced to latch in­
valid opcodes and possibly mistake one for an ESCAPE 
instruction. 

If the boot ROM requires wait states, then some sort of 
external ready logic is necessary. This allows both proc­
essors to run with the same number of wait states and 
insures that they always receive valid data. 

If the boot ROM does not require wait states, then 
there is no need to design external ready logic for the 
upper chip select region. But if 8087 code is present in 
the upper memory chip select region, the situation de­
scribed in section 3.4 regarding ','Dummy Read Cycles" 
must be considered. 

The 82188 solves this problem by inserting three wait 
• states on the SRO line to the 8087 for the first 256 bus 

cycles. By doing this the 82188 inserts the same number 
of wait states to both processors keeping diem synchro­
nized. The initialization code for the 80186 must pro­
gram the upper memory chip select to look at external 
ready and to insert zero wait states within these first 
256 bus cycles. At the end of the 256 bus cycles, the 
82188 stops inserting wait states and both processors 
run at zero wait states. 

5.5.4 EXTERNAL READY SYNCHRONIZATION 

The 80186 and 8087 sample READY on different clock 
edges. This implies that some sort of external synchro­
nization is required to insure that both processors sam­
ple the same ready state. Without the synchronization, 
it would be possible for the external signal to change 

. state between samples. The 80186 may sample ready 
high while the 8087 samples ready low. This would lead 
to the two processors running different length bus cy­
cles and possibly cause the system to hang. 

The 82188 ,provides ready synchronization through the 
ARDY and SRDY inputs. Once a valid transition is 
recorded, the 82188 presents the results on the SRO 
output and holds the output in that state until both 
processors have had a chance to sample the signal. 

5.6 BUS ARBITRATION 

In order for the 8087 to read and write numeric data to 
and from memory, it must have a means of taking con­
trol of the local bus. With the 8086/88,this is accom­
plished through a request-grant exchange protocol. The 
80186, however, makes use of HOLD/HOLD AC-

KNOWLEDGE protocol to' exchange control of the 
bus with another processor. The 82188 supplies the 
necessary conversion to interface RQ/GT to HOLD/ 
HLDA signals. The RQ/GT~nal of the 8087 con­
nects directly to the 82188's RQ/GTO input while the 
82188's HOLD and HLDA pins connect to the 80186's 
HOLD and HLDA pins. 

When the 8087 requires control of the bus, the 8087 
sends a request on the RQ/GTO line to the 82188. The 
82188 responds by sending a HOLD request to the 
80186. When HLDA'is received back from the 80186, 
the 82188 sends a grant back to the 8087 on the same 
RQ/GTO line. 

The 82188 also has provisions for adding a third bus­
master to the system which uses HOLD/HLDA pro­
tocol. This is accomplished by ~inLthe 82188 
SYSHOLD, SYSHLDA, and RQ/GTl signals. 
The third processor requests the bus by pulling the 
SYSHOLD line high. The 82188 will route (and trans­
late if necessary) the requests to the current bus master. 
If the 8087 has control, the 82188 will request control 
via the RQ/GTl line which should be connected to the 
8087's RQ/GTl line. 

The 8087 will relinquish control by~tt3 off the bus 
and sending a grant pulse on the RQ/GTI line. The 
82188 responds by sending a SYSHLDA to the third 
processor. The third processor lowers SYSHOLD when 
it has finished on the bus. The 82188 routes this in the 
form of a release pulse on the RQ/GTI line to the 
8087. The 8087 then continues bus activity where it left 
off. The maximum latency from SYSHOLD to 
SYSHLDA is equal to the 80186 latency + 8087 laten­
cy + 82188 latency . 

5.7 SPEED REQUIREMENTS 

One of the most important timing specs associated with 
the 80186-8087 interface is the speed at which the sys­
tem should run. The 8087 was designed to operate with 
a 33% duty cycle clock whereas the 80186 and 80188 
were designed to operate with a 50% duty cycle clock. 
In order to run both parts off the same clock, the 8087 
must run at a slower speed than is typically implied by 
its dash number in the 8086/88 family. 

!;i-94 



inter AP-258 

To determine the speed at which an 8087 may run 
(with a 50% duty cycle clock), the minimum low and 
high times of the 8087 must be examined. The maxi­
mum of these two minimum specs becomes the half-pe­
riod of the 50% duty cycle system clock. For example, 
the 8087-1 provides worst case spec compatibility with 
the 80186 at system clock-speeds of up to 8 MHz. The 
clock waveforms are shown in Figure 12 using 10 MHz 
timings. 

The minimum clock low time spec (T CLCH) of the 10 
MHz 8087 is 53 ns. The clock low time of an 8 MHz 
80186 is specified to be: 

%(TCLCU - 7.5 

Solving for TCLCL of the 80186 using TcicH of the 
8087 yields the following: 

%(TCLCU - 7.5 = TCLCH 

(TCLCL) = 2(TcLCH + 7.5) 

TCLCL = 121 ns 

The calculation shows minimum cycle time of the 
80186 to be 121 ns. This time translates into a maxi­
mum frequency of 8.26 MHz. 

6.0 BENCHMARKS 

6.1 Introduction 

The following benchmarks compare the overall system 
performance of an 8086, 80188, and an 80186 in nu­
meric applications. Results are shown for all three 
processors in systems with the 8087 coprocessor and 
in systems using an 8087 software einulator. Three 
FORTRAN benchmark programs are used to dem-

onstrate the large increase in floating-point math per­
formance provided by the 8087 and also the increase in 
performance due to the enhanced 80186 and 80188 host 
processors. 

The 8086 results were measured on an Intellec® Series 
III Microcomputer Development System with an 
iSBC® 86/12 board and an iSBC 337 multimodule. 
Typically, one wait state for memory read cycles and 
two wait states for memory write cycles are experienced 
in this environment. 

The 80186 and 80188 results were measurep on a proto­
type board which allowed zero wait state operation at 
8 MHz. The benchmarks measured using the 8087 
showed little sensitivity to wait states. Instructions exe­
cuted on the 8087 tend to be long in comparison to the 
amount of bus activity required and, therefore, are not 
affected much by wait states. 

The benchmarks measured using the software emulator 
are much more bus intensive and average from 10 to 15 
percent performance degradation for one wait state. 

All execution times shown here represent 8 MHz oper­
ation. The 8086 results were measured at 5 MHz and 
extrapolated to achieve 8 MHz execution times. 

6.2 Interest Rate Calculations 

Routines were written in FORTRAN-86 to calculate 
the final value of a fund given the annual interest and 
the present value. It is assumed that the interest will be 
compounded daily, which requires the calculation of 
the yearly effective rate. This value, which is the equiv­
alent annual interest if the interest were compounded 
daily, is determined by the following formula: 

yer = (1 + (ir/np»**np - 1 

~-------------100ns------------~ 

10t.1Hz--""""\. 
8087 SPECS " 

33% DUTY CYCLE \ 
CLOCK 

I 
I 

8MHz ---, 
80186 SPECS " 

1------ TCLCH -----+I 
MIN. LOW TIME 

50% DUTY CYCLE \. . 
CLOCK 

I 
I 

" \ 

" '--
1------------------- TClCl MINIMUM ------------------1 

231590-11 

Figure 12. Clock Cycle Timing 

5-95 



intJ Ap·258 

where: 
yer is the yearly effective rate 
ir is the annual interest rate 
np is the number of compounding periods per 
annum 

Once the yer is determined, the filjal value of the fund 
is determined by the formula: 

where: 

Iv = (1 +yer) • pv 

pv is the present value 
fv is the future value 

Results are obtained using single-precision, double-pre­
cision, and temporary real precision operands when: 

ir is set to 10% (0.1) 
np is set to 365 (for daily compounding) 
pv is set to $2,000,000 

THE RESULTS: 

yer Final Value 

Single-Precision 10.514% $2,210,287.50 
(32-bit) 

Double-Precision 10.516% $2,210,311.57 
(64-bit) 

Temporary Real 10.516% $2,210,311.57 
Precision 

The difference between the final single-precision and 
double-precision values is $24.07; the difference in the 
fmal value between the double-precision and the tempo­
rary real precision is 0.000062 cents. Since the 8087 
performs all internal calculations on 80-bit floating 
point numbers (temp real format), temporary real pre­
cision operations perform faster than single- or double­
precision. No data conversions are required when load­
ing or storing temporary real values in the 8087. Thus, 
for business applications, the double-precision comput­
ing of the 8087 is essential for accurate results, and the 
performance advantage of using the 8087 turns out to 
be as much as 100 times the equivalent software emula­
tion program. 

6.3 Matrix Multiply Benchmark 
Routine 

A routine was written in FORTRAN-86 to compute 
the product of two matrices using a simple row/column 
inner-product method. Execution times were obtained 
for the multiplication of 32 X 32 matrices using double 
precision. The results of the benchma~k are shown in 
Figure 14. 

The results show the 8087 coprocessor systems per­
forming from 23 to 31 times faster than the equivalent 
software emulation program. Both the 80188/87 and 
the 80186/87 systems outperform the 8086/87 system 
by 34 to 75 percent. This difference is mainly attributed 
to the fact that the matrix program largely consists of 
effective address calculations used in array accessing. 
The hardware effective address calculator of the 80186 
and 80188 allow each array access to improve by as 
much 'as three times the 8086 effective address calcula­
tion. 

6.4 Whetstone Benchmark Routine 

The Whetstone benchmark program was developed by 
Harry Curnow 'for the Central Computer Agency of the 
British government. This benchmark has received high 
visibility in the scientific community as a,measurement 
of main frame computer performance. It is a "synthet­
ic" program. That is, it does not solve a teal problem, 
but rather contains a mix of FORTRAN statements 
which reflect the frequency of such statements as me!lo­
sured in over 900 actual programs. The program com­
putes a performance metric: "thousands of Whetstone 
instructions per second (KIPS)." 

Simple variable and array addressing, fixed- and float­
ing- point arithmetic, subroutine calls and parameter 
passing, and standard mathematical functions are per­
formed in eleven separate modules or loops of a pre­
scribed number of iterations. 

Table 2 Interest Rate Benchmark Results 

8087 Software Emulator , 8087 Coprocessor 

80188 8086 80186 80188 8086 80186 

Single Precision 70.3 ms 62.8 ms 43.4 ms .7,0 ms .66ms .61 ms 

Double Precision 72.1 ms 62.9 ms 44.4 ms .71 ms .66ms' .61 ms 

Temp Real Precision 72.6ms 63.0 ms 44.8 ms .69ms .65ms .59ms 

Average 71.7 ms 62.9ms 44.2 ms .70ms .66ms .60ms 

5-96 



inter Ap·258 

The original coding of the Whetstone benchmark was 
written in Algol-60 and used single-precision values. It 
was rewritten in FORTRAN with single-precision val­
ues to exactly reflect the original intent. Another ver­
sion was created using double-precision values. The re­
sults are shown in Table 3. 

.. 
g 
I'! 
w 

" Z 

'" ,. 
0: 

~ .. 

110 

100 

90 

8 
~ 2.0 

~ 
0: 
o 
Z 

1.0 0.9 
r-

80188 

1.4 
;--

1.0 -

8086 80186 

The results show the 8087 systems with the 80186 and 
80188 outperforming the equivalent software emulation 
by 60 to 83 times. Additionally, the 80186 coupled with 
the 8087 outperformed the 8086/87 system by 22 per­
cent. 

104.1 

0 95.5 

89.7 0 -[] 
I'-"'""' r-- ---

80188/8087 8086/8087 80186/8087 231590-12 

Figure 13_lnterest Rate Benchmark Results 

41.1 

40 

31.5 .. 30 

0 
., 
0 ., 
I'! 
w 23.6 
" 0 
z 

'" '" 0: 20 e 
~ 

~ 2-
I'-"'""' --- ---

'" 1.6 '" 0: ;--0 z 

, 1.0 1.0 
It- - ;--

u u u 

= . = . 
* 

u 

"' "' "' : 
'" "1 

'" "' ..; <Xi ;:; ;:; 
~ ~ 

0 III 
.2 .; .. '" 

80188 8086 80186 80188/8087 8086/8087 80186/8087 231590-13 

Figure 14. Double Precision Matrix Multiplication 

5-97 



inter Ap·258 

Table 3. Whetstone Benchmark Results 

Units = KIPS 
8087 Software Emulator 8087 Coprocessor 

80188 8086 80186 80188 8086 80186 

Single 
2 2.3 

Precision 

Double 
2 2.2 

Precision 

6.5 Benchmark Conclusions 

These benchmarks show that the 8087 Numeric Data 
Coprocessor, coupled with either the 80186 or the 
80188, can increase the performance of a numeric ap­
plication by 75 to 100 times the equivalent software 
emulation program. 

Applications which require array accessing with effec­
tive address calculations will benefit even more by us­
ing the 80188 and 80186 as the host processor as com­
pared to the 8086. The results of the matrix multiplica­
tion show both the 80188 and 80186 outperforming the 
8086 by 34 and 75%, respectively, in an 8087 system. 
In general, an 80186/8087 system will offer a 10% to a 
75% improvement over an equivalent 8086/8087 sys­
tem, depending on the instruction mix. 

7. CONCLUSION 

For controller applications which require high perform­
ance in numerics and low system cost, the 16-bit 80186 
or 8-bit 80188 coupled with the 8087 offers an ideal 
solution. the integrated features of the 80186 and 

REFERENCES: 
82188 Data Sheet #231051 
80186 Data Sheet #210451 " 
80188 Data Sheet #210706 

3.3 165.8 178.0 197.6 

3.2 151.7 152.0 185.2 

80188 offer a low system cost through reduced bOard 
space and a simplified production flow while the 8087 
fulfills the performance requirements of numeric appli­
cations. 

The 82188 !BC provides a straightforward, highly inte­
grated solution to interfacing the 80188 or 80186 to the 
8087. The bus control timings of the 82188 are compat­
ible with the 80186 and 80188, allowing easy upgrades 
from existing designs. The 82188 features present a 
highly integrated solution to both new and old designs. 

The coprocessing capabilities of the 8087 bring per­
formance improvements of 75 to 100 times the equiva­
lent 80186 or 80188 software emulation program and 
an 80186/8087 system will offer a 10% "to a 75% im­
provement over an equivalent 8086/8087 system de­
pending on the instruction mix. 

In addition a growing base of high-level language sup­
port (FORTRAN, Pascal, C, Basic, PL/M, etc.) from 
Intel and numerous third-party software vendors facili­
tates the timely and efficient generation of application 
software. 

iAPX 86/88 80186/188 Users Manual 
Programmers Reference #210911 
Hardware Reference #210912 

AP-I13 "Getting Started with the 
Numeric Data Processor #207865 

5-98 



intJ APPLICATION 
NOTE 

AP-286 

October 1986 

80186/188 Interface to Intel 
Microcontrollers 

@ Intel Corporation, 1987 

PARVIZ KHODADADI 
APPLICATIONS ENGINEER 

5-99 
Order Number: 231784-001 



AP-286· 

1.0 INTRODUCTION 

Systems which require I/O processing and serial data 
transmission are very software intensive. The commu­
nication task and I/O operations consume a lot of the 
system's intelligence and software. In many conven­
tional systems the central processing unit carries the 
burden of all the communication and I/O operations in 
addition to its main routines, resulting in a slow and 
inefficient system, 

In an ideal system, tasks are divided among processors 
to increase performance and achieve flexibility. One at­
tractive solution is the combination of the Intel highly 
integrated 80186 microprocessor and the Intel 8-bit mi­
crocontrollers such as the 80C51, 8052, or 8044. In 
such a system, the 80186 provides the processing power 
and the 1 Mbyte memory addressability, while the con­
troller provides the intelligence· for the I/O operations 
and data communication tasks. The 80186 runs appli­
cation programs, performs the high level communica­
tion tasks, and provides the human interface. The mi­
crocontroller performs 8-bit math and single bit boole­
an operations, the low level communication tasks, and 
I/O processing. 

Vee 

ADO-151+"'1-I~ 

ueS 
ALE 1--1---1 

RD~~~--~~ 
WRI--I----~~ 

LCS·I--I-----4~~ 

PCSO 

PCSl 

DROO 

INTO 

RESET 

This application note describes an efficient method of 
interfacing the 16-bit 80186 high integration micro­
processor to the 80C51, 8052, or the microcontroller­
based 8044 serial communication controller. The inter­
face hardware shown in Figure 1.1, is very simple and 
may be implemented with a programmable logic device 
or a gate-array. The 80186 and the microcontroIIer may 
run asynchronously and at different speeds. With this 
technique data transfers up to 200 Kbytes per second 
can be achieved between a 12 MHz microcontroller and 
an 8 MHz 80186. 

The 8-bit 80188 high integration microprocessor can 
also be used with the same interface technique. The 
performance of the interface is the same since an 8-bit 
bus is used. 

Interface to the 8044, 80C51, and the 8052 is identical 
because they have identical pinouts (some pins have 
alternate functions). As an example, the software pro­
cedures for the 8044/80186 interface, which is the 
building block for the application driver, is supplied in 
this Application Note. 

MRD INTrRFACE 
MWR CHIP 

CS 

DACK 

DRO 

INT 

RESET 

231784-1 

Figure 1_1. 80186/Microcontroller Based System 

5-100 



AP-286 

1.1 System Overview 

The 80186 and the microcontrollers are processors. 
They each access memory and have address/data, read, 
and write signals. There are three common ways to in­
terface multiple processors together: 

1) First In First Out (FIFO) 

2) Dual Port .RAM (DPRAM) 

3) Slave Port 

The FIFO interface, compared to DPRAM, requires 
less TTL and is easier to interface; however, FIFOs are 
expensive. The DPRAM interface is also expensive and 
even more complex. When DPRAM is used, the ad­
dress/data lines of each processor must be buffered, 
and hardware logic is needed to arbitrate access to 
DPRAM. The slave port interface given here is cheaper 
and easier than both FIFO and DPRAM alternatives. 

The 80186 processor, when interfaced to this circuit, 
views the microcontroller as a peripheral chip with 8-
bit data bus and no address lines (see Figure 1.1). It can 
read status and send commands to the microcontroller 
at any time. The microcontroller becomes a slave co­
processor while keeping its processing power and serial 
communication capabilities. 

The microcontrollers, with the interface hardware, 
have a high level command interface like many other 
data communication peripherals. For example, the 
80186 can send the microcontroller commands such as 
Transmit or Configure. This means the designer does 
not have to write low level software to perform these 
tasks, and it offioads the 80186 to serve other functions 
in the application. 

1.2 Application Examples: 

The combination of the 80186 and a microcontroller 
basically provides all the functions that are needed in a 
system: a 16-bit CPU, 8-bit CPU, DMA controller, I/O 
ports, and a serial port. the 80C51 and the 8052 have 
an on-chip asynchronous channel, while the 8044 has 
an intelligent SDLC serial channel. In addition, many 
other functions such as timers, counters, and interrupt 
controllers are integrated in both the 80186 and the 
microcontrollers. 

Applications of the system described above are in the 
area of robotics, data communication networks, or seri­
al communication backplanes. A typical example is 
copiers. Different segments of the copy machine like 
the motor, paper feed, diagnostics, and error/warning 
displays are all controlled by microcontrollers. Each 
segment receives orders from and replies to the central 
processor which consists of the 80186 interfaced with a 
microcontroller. 

Another common application is in the area of process 
controllers. An example is a central control unit for a 
multiple story building which controls the heating, 
cooling, and lighting of each room in each floor. In 
each room a microcontroller performs the above func­
tions based on the orders received from the central 
processor. Depending on the throughput and type of 
the serial communication required, the 8044 or the 
80C51 (8052) may be selected for the application. 

2.0 OVERVIEW OF THE 80186, 
80C51, 8052, AND 8044 

This section briefly discusses the features of the micro­
controllers and the 80186. For more information about 
these products please refer to the Intel Microcontroller 
and Microsystem components hand-books. Readers fa­
miliar with the above products may skip this section. 

2.1 The 80186 Internal Architecture 

The 80186 contains an enhanced version ofIntel's pop­
ular 8086 CPU integrated with many other features 
common to most systems (Figure 2.1). The 16-bit CPU 
can access up to 1 Mbyte of memory and execute in­
structions faster than the 8086. With speed selection of 
8, 10, and 12.5 MHz, this highly integrated product is 
the most popular 16-bit microprocessor for embedded 
control applications. 

The on-chip DMA controller has two channels which 
can each be shared by multiple devices. Each channel is 
capable of transferring data up to 3.12 Mbytes per sec­
ond (12.5 MHz speed). It offers the choice of byte or 
word transfer. It can be programmed to perform a 
burst transfer of a block of data, transfer data per speci­
fied time interval, or transfer data per external request. 

The on-chip interrupt controller responds to both ex­
ternal interrupts and interrupts requested by the on­
chip peripherals such as the timers and the DMA chan­
nels. It can be configured to generate interrupt vector 
addresses internally like the microcontrollers or exter­
nally like the popular 8259 interrupt controller. It can 
be configured to be a slave controller to an external 
interrupt controller (iRMX 86 mode) or be master for 
one or two 8259s which in turn may be masters for up 
to 8 more 8259s. When configured in master mode, 
each channel can support up to 64 external interrupts 
(128 total). 

Three 16-bit timers are also integrated on the chip. 
Timer 0 and timer 1 can be configured to be 16-bit 
counters and count external. events. If configured as 
timers, they can be started by software or by an exter­
nal event. .Timer 0 and I each contain a timer output 
pin. Transitions on these pins occur when the timers 
reach one of the two possible maximum counts. Timer 

5-101 



inter AP-286 

2 can be used as a prescaler for timer 0 and 1 or can be 
used to generate DMA_requests to the on-chip DMA 
channel. 

Finally, the integrated clock generator, the wait state 
generator, and the chip select logic reduce the external 
logic necessary to build a processing system. 

2.2 The MCS-51 Internal Architecture 
The 80C5lBH, as shown in Figure 2.2, consists of an 8-
bit CPU which can access up to 64 Kbytes of data 
memory (RAM) and 64 Kbytes of program memory 
(ROM). In addition, 4 Kbytes of ROM and 128 bytes 
of RAM are built onto the chip. 

The on-chip interrupt controller supports five inter­
rupts with two priority levels. There are two timers 
integrated in the 80C5!. Timer 0 and 1 can be config­
ured as 8-bit or l6-bit timers or event counters. 

Finally the integrated full duplex asynchronous serial 
channel provides the human interface or communica-

CLOCK 

INTERRUPT 
CONTROLLER 

16-BIT 
CPU 

BUS 
CONTROLLER 

tion capability with other microcontrollers. The UART 
supports data rates up to 500 kHz (with 15 MHz crys­
tal) and can distinguish between address bytes and data 
bytes. 

The 8052 has the same features as the 80C5l except it 
has 8 Kbytes of on-chip ROM and 256 bytes of on-chip 
RAM. In addition the 8052 has another timer which 
may be configured as the baud rate generator for the 
serial port. 

2.3 The 8044 Internal Architecture 

The 8044 has all the features of the 80CS!. In addition 
the on-chip RAM size is increased to 192 bytes and an 
intelligent HDLC/SDLC serial channel (SIU) replaces 
the 80C51 serial port (see Figure 2.3). It supports data 
rates up to 2.4 Mbps when an external clock is used and 
375 Kbps when the clock is extracted from the data 
line. The serial port can be used in half duplex point to 
point, multipoint, or one-way loop configurations. 

2DMA 
CHANNELS 

TIMER/ 
COUNTER 

WAIT STATE 
GENERATOR 

CHIP SELECT. 
LOGIC 

Figure 2.1. 80186 Block Diagram 

CLOCK 

TIMER/ 
COUNTERS. 

IB051l 
~ 

I 8-BIT INTERRUPT 
CPU CONTROLLER 

I 4KBYTES 128 BYTES 
ROM RAM 

Figure 2.2: 80C51 Block Diagram 

BAUD 
RATE 
GENERATOR. 

NRZI DECODER/ 
ENCODER 

FLAG 
DETECT 

Figure 2.3. 8044 Block Diagram 

COMMANDS B RRor 
PRIMARY RNR or -+ 

INFO -
RESPONSES 
RR or 
RNR or 
INFO or 
REJ 

SERIAL 
PORT 

I/O 
PORTS 

PHASE LOCKED 
LOOP 

FRAME CHECK SEQ. 
GEN/CHECK 

Figure 2.4. 8044 Automatic Response to SDLC Commands 

5-102 



intJ AP-286 

FLAG FLAG FLAG 
ADDRESS ADDRESS 
CONTROL DATA 

DATA FIELD DATA FIELD 
FIELD 
FCSO FCSO FCSO 
FCS1 FCS1 FCS1 
FLAG FLAG FLAG 

FLAG FLAG FLAG 
ADDRESS ADDRESS 
CONTROL 

DATA 
DATA 
FIELD 

DATA 
FIELD 

FIELD 

FLAG FLAG FLAG 

Figure 2.5. The 8044 Frame Formats 

The SIU is called an intelligent channel because it re­
sponds to some SDLC commands automatically with­
out the CPU intervention when it is set in auto mode. 
These automatic responses substantially reduce the 
communication software. Figure 2.4 gives the com­
mands and the automatic responses. 

The 8044 supports many types of frames including the 
standard SDLC format. Figure 2.S shows the types of 
frames the 8044 can transmit and receive. If a format 
with an address byte is chosen, the 8044 performs ad­
dress filtering during reception and transmits the con~ 
tents of the station address 'register during transmission 
automatically. Ifa format with FCS bytes is chosen, the 
8044 performs Cyclic Redundancy Check (CRe) dur­
ing reception and calculates the FCS bytes during 
transmission of a frame in hardware. Two preamble 
bytes (PFS) may optionally be added' to ,the frames. 
Formats that include the station address and the con­
trol byte are supported both in the auto and flexible 
modes. 

3.0 80186/MICROCONTROLLER 
INTERACTION 

The 80186 communicates with the microcontroller 
(8044, 80CSI or 80S2) through the system's memory 
and the Command/Data and Status registers. The CPU 
creates a data structure in the memory, programs the 
DMA controller with the start address and byte count 
of the block, and issues a command to the microcon­
troller. A hypothetical block diagram of a microcon­
troller when used with the interface hardware is given 
in Figure 3.1. 

Chip select and interrupt lines are used to communicate 
between the microcontroller and the host. The inter-

rupt is used by the microcontroller to draw the 80186's 
attention. The Chip Select is used by the 80186 to draw 

, the microcontroller's attention to a new command. 

There are two kinds of transfers over the bus: Com­
mand/Status and data transfers. Command/Status 
transfers are always performed by the CPU. Data 
transfers are requested by the microcontroller and are 
typically performed by the DMA controller. 

The CPU writes conimands using CS and WR signals 
and interrupts the microcontroller. The microcontroller 
reads the command, decodes it and performs the neces­
sary actions. The CPU reads the status register using 
CS and RD signals (see Figure 4.1). 

To initiate a commnad like TRANSMIT or CONFIG­
URE, a write operation to the microcontroller is issued 
by the CPU. A read operation from the CPU gives the 
status of the microcontroller. Section S discusses details 
on these commands and the status. 

Any parameters or data associated with the command 
are transferred between the system memory and the 
microcontroller using DMA. The 80186 prepares a 
data block in memory., Its first byte specifies the length 
of the rest of the block. The rest of the block is the 
information field. The CPU programs the DMAcon­
troller with the start 'address of the block, length of the 
block and other control information and then issues the 
command to the microcontroller. 

When the microcontroller requires access to the memo­
ry for parameter or data transfer, it activates the 80186 
DMA request line and uses the DMA controller to 
achieve the data transfer. Upon completion of an opera­
tion, the microcontroller interrupts the 80186. The 
CPU then reads results of the operation and status of 
the microcontroller. 

5-103 



inter AP-286 

ORO 

WR 
STATUS 

CS 80C51 

OATA 
OR 

00-7 8052 
REGISTER 

OR 

R5 80~ 

i5AcK 
REGISTER 

INT 

231784-2 

Figure 3.~. Mlcrocontroller Plus the Interface Hardware Block Diagram 

4.0 SYSTEM INTERFACE 

There are two kinds of transfers over the bus: com­
mand/status and data transfers. The command/status 
transfers are always initiated and performed by the 
80186. The data transfers are requested by the micro­
controller using the DMA request (DRQ) line. In rela­
tively slow systems the 80186 might also perform the 
data transfers. In that case, the request from the micro­
controller will serve as an interrupt to the CPU. This 
mode of operation depends on the serial data rate. 

The system interface performs command/status trans­
fers, data/parameter transfers, and interrupts. This sec­
tion describes the interface between the 80'186 and a 
microcontroller shown in Figure 1.1. Section 6 de­
scribes the interface hardware. 

4.1 Command/Status Transfers 

The 80186 controls the microcontroller by writing into 
the command/data register and reading from the status 
register. The CPU writes a command by activating the 
chip select (PCSO), putting the command onto the data 
bus, and activating the WR signal. The command byte 
is latched into the command/data register, and the mi­
crocontroller is interrupted. In the interrupt service 
routine, the microcontroller reads the command byte 
from the command/data register, decodes the com­
mand byte, and activates the DRQ for data or parame-

ter transfer if the decoded command requires such 
transfer. 

At the end of parameter transfer the microcontroller 
updates the status register and interrupts the 80186. 

4.2 Data/Parameter Transfer 

Datlilparameter transfers are controlled by a pair of 
REQUEST/ACKNOWLEDGE lines: DMA Request 
line (DRQ) and DMA Acknowledge line (DACK). 
Data and parameters are transferred via the Com­
mandlData register to or from memory. 

In order to request a transfer from memory, the micro­
controller activates the DRQ pin. The DRQ signal goes 
active after a read operation by the microcontroller., In 
response, the 80186 DMA controller performs a byte 
transfer,from the memory to the CommandlData regis­
ter. Data is transferred on the bus and written into the 
ComrnandlData register on the rising edge of the 
80186 WR signal (MWR), which is activated by the 
DMA controller. Figure 4.2 shows the write timing. 

In order to request a transfer to memory, the microcon-. 
troller activates the DRQ signal and outputs the data 
into the CommandlData latch. When the microcon­
troller WR signal goes active, DRQ is set. In response, 
the DMA performs the data transfer and resets the 
DRQ signal. Figure 4.3 shows the read timing. 

5-104 



inter AP-286 

4.3 Interrupt 

The microcontroller reports on completion of an event 
by updating the status register and raising the interrupt 
signal assuming this signal is initially low. The inter­
rupt is cleared by the command from the CPU where 

the INTERRUPT ACKNOWLEDGE bit is set 
(MD7). The INT A bit is the most significant bit of the 
command byte. Figure 4.4 and 4.5 show the interrupt 
timing. Note that it is the responsibility of the CPU to 
clear the interrupt in order to prevent a deadlock. 

80186 Pin Name Function 

CS RD WR 

1 X X No Transfer to/from Command/Status 
0 1 1 

0 0 0 Illegal 

0 0 1 Read from Status Register 

0 1 0 Write to Command/Data Register 

DACK RD WR 

1 X X No Transfer 
0 1 1 

0 0 0 Illegal 

0 0 1 Data Read from DMA Channel 

0 1 0 Data Write to DMA Channel 

NOTE: 
Only one of CS, DACK may be active at any time. 

Figure 4.1. Data Bus Control Signals and Their Functions 

\~----------------------~I 

\~:--------------~I 
10100-7 x x 

231784-3 

Figure 4.2. Write Timing 

\~----------------------~I 
\~--------------~I 

10100-7 x x 
231784-4 

Figure 4.3. Read Timing 

5-105 



intJ AP-286 

\~--------------I 
MD7 _______ ...J1 

',-' -----

INT 

231784-5 

Figure 4.4. Interrupt Timing (Going Inactive) 

CLKOUT 

RESET --1 
o~ •• ' =f f 

75 (nSEC) 

,"-----

231784-6 

Figure 4.5. Reset Timing 

5.0 COMMANDS AND STATUS 

This section specifies the format of the commands and 
status. The commands' and status given here are similar 
to most common coprocessors and data communication 
peripherals (e.g., the 82588 and 82586). The user may 
add more commands or redefine the formats for his/ 
her own specific application. 

5.1 Commands 

A command is given to the microcontroller by writing 
it into the Command/Data register and interrupting 
the microcontroller. The command can be issued at any 
time; but in case it is not accepted, the operation is 
treated like a NOP and will be ignored (although the 
INT will be updated). 

Format: 

7 6 5 4 321 0 

, INTA " X 'X X OPERATION 

5.1.1 ACKNOWLEDGING INTERRUPT (BIT 7) 

The INT A bit, if set, causes the interrupt hardware 

only way to clear the interrupt bit and reset the 80186 
interrupt signal other than by a hardware reset. 

5.1.2 OPERATIONS (BITS 0-3) 

,The OPERATioN field initiates a specific operation: 
The microcontroller executes the following commands 
in software: ' 

NOP 
ABORT 
TRANSMIT" 
CONFIGURE' 
DUMP' 
RECEIVE" 
TRA-DISABLE 
REC-DISABLE 
'Requires DMA operation. 

The above operations except ABORT are executed only 
when the microcontroller is not executing any other 
operation. Abort is accepted only when the CPU is per­
forming a DMA operation. 

signal and the interrupt bit to be cleared. This is the 
5-106 



inter AP·286 

Operations that require parameter transfer (e.g., CON­
FIGURE and DUMP) or data transfer (e.g., TRANS­
MIT and RECEIVE) are called parametric operations. 
The remaining are called non-parametric operations. 

An operation is initiated by writing into the command 
register. This causes the microcontroller to execute the 
command decode instructions. Some of the operations 
cause the microcontroller to read parameters from 
memory. The parameters are organized in a block that 
starts with an 8-bit byte count. The byte count specifies 
the length of the rest of the block. Before beginning the 
operation, the DMA pointer of the DMA channel must 
point to the byte count. There is no restriction on the 
memory structure of the parameter block as long as the 
microcontroller receives the next byte of the block for 
every DMA request it generates. Transferring the bytes 
is the job of the 80186 DMA controller. 

The microcontroller requests the byte-count and deter­
mines the length of the parameter block. It then re­
quests the parameters. 

Upon completion of the operation, (when interrupt is 
low) the microcontroller updates the status, raises the 
interrupt signal, and goes idle. 

NOP 

This operation does not affect the microcontroller. It 
has no parameters and no results. 

ABORT 

This operation attempts to abort the completion of an 
, operation under execution. It is valid for CONFIG­
URE, TRANSMIT, DUMP, and RECEIVE. It is ig­
nored for any of the above if transfer of parameters has 
already been accomplished. The microcontroller, upon 
reception of the ABORT command, stops the DMA 
operation and issues an Execution-Aborted interrupt. 

TRANSMIT 

This operation transmits one message. A message may 
be transmitted as an SDLC frame by the 8044, or in 
ASYNC protocol by the 80C51 or the 8052 serial port. 

Figure 5.1 shows the format of the Transmit block. A 
typical transmit operation parameter block includes the 
destination address and the control byte in the informa­
tion field. As an example, see the 8044 transmit block 
in Figure 7.2. 

7 6 5 4 3 2 o 
BYTE COUNT 

FIRST INFO BYTE 

LAST INFO BYTE 

Figure 5.1. Format of Transmit Block 

The transmit operation will either complete the execu­
tion or be aborted by a specific ABORT operation. A 
Transmit-Done or Execution-Aborted interrupt is is­
sued upon completion of this operation. 

CONFIGURE 

This operation configures the microcontroller's internal 
registers. The length and the part of the configuration 
block that is modified are determined by the first two 
bytes of the command parameter (see Figure 5.2). The 
FIRST BYTE specifies the first register in the config­
ure block that will be configured, and the BYTE 
COUNT specifies the number of registers that will be 
configured starting with the FIRST BYTE. For exam­
ple, if the FIRST BYTE is 1 and the BYTE COUNT is 
the length of the configure block, then all of the regis­
ters are updated.. If FIRST BYTE is 4 and BYTE 
COUNT is 2, then only the fourth register in the con­
figure block is updated. Minimum byte count is 2. 

765 432 1 0 

BYTE COUNT 

FIRST BYTE 

FIRST REGISTER 

LAST REGISTER 

Figure 5.2. Format of Configure Block 

A Configure-Done interrupt is issued when the opera­
tion is done unless ABORT was issued during the 
DMA operation. 

DUMP 

This operation causes dumping of a set of microcontrol­
ler internal registers to system memory. Figure 7.4 
shows the format of the 8044 DUMP block. 

The DUMP operation will either complete the execu­
tion or be aborted by a specific ABORT operation. A 
Dump-Done or Execution-Aborted interrupt is issued 
upon completion of this operation, 

5-107 



AP-286 

RECEIVE 

This operation enables the' reception of frames. It is 
ignored if the microcontroller's serial channel is already 
in reception mode. 

The serial port receives only frames that pass the ad­
dress filtering. The microcontroller transfers the re­
ceived information and the byte 'count to the system 
memory using DMA. The completion of frame recep­
tion causes a Receive-Done event. 

REC-DISABLE 

This operation causes reception to be disabled. If trans­
fer of data to the 80186 memory has already begun, 
then it is treated like the ABORT command. This oper­
ation has no parameters. ],tEC-DISABLE is accepted 
only when the microcontroller's serial port is in receive 
mode. 

TRA-DISABLE 

This operation -causes the transmission process to be 
aborted. If the microcontroller is fetching data from 
80186 memory, then it is treated like the ABORT com­
mand. This operation has no parameter~. It is accepted 
only when the serial port is in transmit mode. 

5.1.3 ILLEGAL COMMANDS 

Parametric and non-parametric commands except 
ABORT will be rejected (interrupt will not be set) if the 
microcontroller is already executing a command. 

ABORT is rejected if issued when the microcontroller 
is not requesting DMA operation, or a non-Parametric 
execution is performed, or transfer of parameters/data 
has already been accomplished. 

DMA operations shall not bc aborted by any non-para­
metric or parametric command except by the ABORT 
command. 

REC-DISABLE and TRA-DISABLE will not be ac­
cepted if the serial channel is idle. 

5.2 Status 

The microcontroll~r provides the information ~bout the 
last operation that was executed, via the status, register. 

The microcontroller reports on these events by updat­
ing a status register and raising the INTERRUPT sig­
nal. Information from the status register is valid pro­
vided the interrupt signal is high or bit 0 of the status 
being read is set. 

Format: 
7 6 5 4 3 ,2 1 0 

I CTS' I ATS' E EVENT I DMA INT 
'8044 only 

5.2.1 INTERRUPT (BIT 0) 

The interrupt bit is set together with the hardware in­
terrupt signal. Setting the INT bit indicates the occur­
rence of an event. This bit is Cleared by any command 
whose INT A bit is set. Status is valid only when this bit 
is set. 

5.2.2 DMAOPERATION (BIT 1) 

The DMA bit, when set, indicates that a DMA opera­
tion is in progress. This bit is set if the commnad re­
ceived by the microcontroller requires data or parame­
ter transfer. If this bit is clear, DRQ will be inactive. 
The DMA bit, when cleared, indicates the completion' 
of a DMA operation. 

5.2.3 ERROR (BIT 5) 

The E bit, if set, indicates that the event generated for 
the operation that was completed contains a warning, 
or the operation was not accepted. 

5.2.4 REQUEST TO SEND (BIT 6) 

The RTS bit, if clear, indicates that the serial channel is 
requesting a transmis~ion. 

5.2.5 CLEAR TO SEND (BIT'7) 

The CTS bit indicates that, if the RTS bit is clear, the 
serial port is active and transmitting a frame. 

5.2.6 EVENT (BITS 2-4) 

The event field specifies why the microcontroller needs 
the attention of the 80186. 

The following events may occur: 

, CONFIGURE-DONE 
TRANSMIT-DONE 
DUMP-DONE 
RECEIVE-DONE 
RECEPTION-DISABLED 
TRANSMISSION-DISABLED 
EXECUTION-ABORTED 

5-108 



Ap·286 

CONFIGURE-DONE 

This event indicates the completion of a CONFIGURE 
operation. 

TRANSMIT-DONE 

This event indicates the completion of the TRANSMIT 
operation. 

If the E bit is set, it indicates that the transmit buffer 
was already full. 

DUMP-DONE 

This event indicates that the DUMP operation is com­
pleted. 

RECEIVE-DONE 

This event indicates that a frame has been received and 
stored in memory. 

The format of the received message is indicated in Fig­
ure 5.3. 

7 6 5 4 3 2 o 
FIRST INFO BYTE 

LAST INFO BYTE 

RECEIVED BYTE COUNT 

Figure 5.3. Format of Receive Block 

Following the byte count, a few more bytes relating to 
the received frame such as the source address and the 
control byte may be transferred to the system memory 
using DMA. As an example, see the 8044 receive block 
in Figure 7.3. 

Note that the format of a frame received by the micro­
controller serial channel is configured by the CONFIG­
URE command. 

If the E bit is set, buffer overrun has occurred. 

RECEPTION-DISABLED 

This event is issued as a result of a RCV-DISABLE 
operation that causes part of a frame to be disabled. 

If the E bit is set, the serial port was already disabled, 
and the RCV-DISABLE is not accepted. 

. TRANSMISSION-DISABLED 

This event is issued as a result of a TRA-DISABLE 
operation that causes transmission of a frame to be dis-
abled. -

The E bit, if set, indicates that the TRA-DISABLE 
operation was not accepted since the serial port was 
already idle, or transmission of a frame has already 
been accomplished. 

EXECUTION-ABORTED 

This event indicates that the execution of the last opera­
tion was aborted by the ABORT command. 

If the E bit is set, ABORT was issued when the micro­
controller was not executing any commands. 

6.0 HARDWARE DESCRIPTION 

The interface hardware shown in Figures 6.1 and 6.2 
are identical. The difference is the status register. In 
Figure 6.2, an external latch is used to latch the status 
byte. This hardware is recommended if an extra I/O 
port on the microcontroller is required for some other 
applications, or external program and data memory is 
required for the microcontroller. The hardware shown 
in Figure 6.1 makes use of one of the microcontroller's 
I/O ports (Port I) to latch the status to minimize hard­
ware. The discussion of Sections 1 through 5 apply to 
both schematics. 

6.1 Reset 

After an 80186 hardware reset, the microcontroller is 
also reset. The on-chip registers are initialized as ex­
plained in the Intel Microcontroller Handbook. The re­
set signal also clears the 80186 interrupt and the micro­
controller interrupt signals by resetting FF3 (Flip-Flop 
3) and FF2 (Flip-Flop 2). Figure 4.5 shows the RESET 
timing. 

6.2 Sending Commands 

A bidirectional latched transceiver (74ALS646) is used 
for the Command/Data register. When the 80186 
writes a command to the Command/Data register, it 
interrupts the microcontroller. The interrupt is generat­
ed only when bit 7 (INT A), of the command byte is set. 
When the 80186 PCSO and WR signals go active to 
write the command, FF2 will tie set and FF3 will be 
cleared. The output of FF3 is the interrupt to the 80186 
and the INT status bit. The INT bit is cleared immedi" 
ately to indicate that the status is no longer valid. The 
output ofFF2 is the interrupt to the microcontroller. A 
high to low transition on this line will interrupt the 
microcontroller. The interrupt signal will be cleared as 
soon as the microcontroller reads the command from 
the CommandlData register. 

5-109 



Ap·286 

6.3 DMA Transfers 

In the interrupt service routine the command is decod­
ed. If it requires a DMA transfer, the microcontroller 
sets the DMA bit of the status register which activates 
the DMA request signal. DRQ active causes the 80186 
on-chip DMA to perform a fetch and a deposit bus 
cycle. The first DMA cycle clears the DRQ signal (FFI 
is cleared). When the microcontroller performs a read 
or write operation, the output of the FFI will be set, 
and DRQ goes active again. 

The DMA controller transfers a byte from system 
memory to the Command/Data register. Data is 
latched when the 80186 PCSI and WR signals go ac­
tive. PCSI and WR active also clear FFl. The micro­
controller monitorS the output of FFI by polling the 
P3.3 pin. When FFI is cleared the microcontroller 
reads the byte "from the Command/Data register. The 
P3.3 pin is also the interrupt pin. If a slow rate of trans­
fer is acceptable, every DMA transfer can be interrupt 
driven to allow the microcontroller to perform other 
tasks. 

The DMA controller transfers a byte from the Com­
mand/Data register to system memory by activating 

Vee 

DRQO 

the 80186 PCSI and RD signals. PCSI and RD active 
also clear FFI. When FFI is cleared the microcontrol­
ler writes the next byte to the Command/Data register. 

When all the data is transferred, the microcontroller 
clears the DMA status bit to disable DRQ. It then up­
dates the status, sets the INT bit, and interrupts the 
80186. 

If the interface hardware in Figure 6.1 is used Pl.l is 
the DMA status bit and PI.O is the INT bit. The micro­
controller enables or disables them by writing to port 1. 
In Figure 6.2, DRQ or INT is disabled or enabled by 
writing to' the 74LS374 status register. Note that the 
INT status bit is cleared by the hardware when the 
80186 writes a command. 

6.4 Reading Status 

The command is written and the status is read with the 
same chip select (PCSO), although the status is read 
through the 74LS245 transceiver and the command is 
written to the Command/Data register. 

LS245 

14.0-7 

14-----Pl.7 

14-----Pl.6 

14-----Pl.5 1+-----Pl.4 
14-----Pl.3 

1+-----Pl.2 
I+-_---Pl.l 

L---+---+-I----+-~-lf_--- P3.3/OO1 

/O;::::t:::::tl==== Ro \0 ViR 

;t--+-------4---- P3.2/1"TO 

INT _-----++-::=:--!---~------'_I 
PloD 

RESET L----________________ -+R~ET 

Figure 6.1_ Hardware Interface (Port 1 is the Status Register) 

5-110 

231784-7 



inter AP-286 

LS245 
07 

LS374 

06 

05 
~ AO-7 

04 ~ 

03 

02 
ORao LS74 01 In'~ CLR I-

J 
DO 

G OIR OE CLK 

f I 
... t P3.3/INT1 

:L- GND GND 
>-MRD 

'---

~ LS373 

I+~" A B 
ALS646 

MDO-7 00-7 

~ ~ DIR L<t - i 
~ CAB G CBA I+-

PCS1 

- I 
~ Ld -~ 

L Vee LS136 A2 

A'ii' 

RO 

t ....or1: I -
AT -

MWR 

~o FF2 
MD7 LSLS4 

CLR a ,- ---/ 

I 
p0- ..--

INT 

RESET 

I 

I 

I~ I a LS74 0 
CLR 

Y 

-
ALE 

WR 

P3.2/INTO 

RESET 

231784-8 

Figure 6.2. Hardware Interface 

The microcontroller updates the status byte whenever a 
change occurs in the status and outputs the result to the 
status register. In order to read status, the 80186 acti­
vates the PCSO line, and then activates the RD line. 
The contents of the status are put on the data bus, 
through the 74LS245 transceiver. 

For systems that require two DMA channels, a second 
pair of DRQ1/DACK1 signals may easily be added to 
the hardware. In that case one of the status bits 
(DMA2) ANDed with the output of FF1 will serve as 
the second DMA request signal (DRQ1). DACK1 can 
be generated with the 80186 PCS2. 

7.0 8044/80186 INTERFACE 

This section shows how to make use of the status and 
commands described in section 5 and the hardware giv­
en in Figure 6.1 to interface the 80186 with the 8044. 
The 8044 code to implement these functions is shown 
in Appendix A. 

7.1 Configuring the 8044 

This operation configures the 8044 registers. The for­
mat of the configure block is shown in Figure 7.1. The 
part of the configuration block that is modified is deter­
mined by the first two bytes of the command parame­
ter. The FIRST BYTE specifies the first register in the 
configure block that will be configured, and the BYTE 
COUNT specifies the number of registers that will be 
configured starting with the FIRST BYTE. For exam­
ple, if the FIRST BYTE is 1 and the BYTE COUNT is 
13, then all of the registers are updated. If FIRST 
BYTE is 4 and BYTE COUNT is 2, then transmit buff­
er start register'is configured. 

The configure command performs the following: 1) 
configures the interrupts and assigns their priorities; 2) 
assigns the start address and length of the transmit and 
receive buffers; 3) sets the station address; 4) sets the 
clock option and the frame format. 

5-111 



inter AP-286 

For other microcontrollers the 'format of the configure 
block should be modified accordingly. For example, the 
80CSI .serial port registers (e.g., T2CON, SCON) re­
place the 8044 SIU registers in the configure block. 

7 6 543 2 1 0 

BYTE COUNT 

FIRST BYTE 

STS 

SMD 

STATION ADDRESS 

TRANSMIT BUFFER START 

TRANSMIT BUFFER LENGTH 

RECEIVE BUFFER START 

RECEIVE BUFFER LENGTH 

INTERRUPT PRIORITY 

INTERRUPT ENABLE 

TIMER/COUNTER MODE 

TIMER/COUNTER MODE 

PROCESSOR STATUS WORD 

Figure 7.1. Format of the 8044 Configure Block 

7.2 Transmitting a Message 
with the 8044 

A message is a block of data which represents a text file 
·or a set of instructions for a remote node or an applica­
tion program which.resides on the 8044 program mem­
ory. A message can be a frame (packet) by itself or can 
be comprised of multiple frames. An SDLC frame is 
the smallest block of data that the 8044 transmits. The 
8044 can receive commands from the 80186 to transmit 
and receive messages. The 8044 on-chip CPU can be 
programmed to divide messages into frames if neces­
sary. Maximum frame size is limited by the transmit or 
receive buffer. 

To transmit a message, the 80186 prepares a transmit 
data block in memory as shown in Figure 7.2. Its first 
byte specifies the length of the rest of.the block. The 
next two bytes specify the destination address of the 
node the message is being sent to and the control byte 
of the message. The 80186 programs the DMA control­
ler with the start address of the block, length of the 
block and other control information and then issues the 
Transmit command to the 8044. ' 

Upon receiving the ~ommand, the 8044 fetches the first 
byte of the block using DMA to determine the length of 
the rest of the block. It then fetches the destination 
address and the' control byte using DMA. 

The 8044 fetches the rest of the message into the on­
chip transmit buffer. The size and location of the trans­
mit buffer in the on-chip RAM is configured with the 
Configure command. The 8044 CPU then enables the 
Serial Interface Unit (SID) to transmit the data as an 
SDLC frame. The SIU sends out the opening flag, the 
station address, the SDLC control byte, and the con­
tents of transmit buffer. It then transmits the calculated 
CRC bytes and the closing flag. The 8044 CPU and the 
SIU operate concurrently. The CPU can fetch bytes 
from system memory or execute a command such as 
TRANSMIT-DISABLE while the SIU is active. 

Upon completion of transmission, the SIU updates the 
internal registers and interrupts the 8044 CPU. The 
8044 then updates the status and interrupts the 80186. 
Note that baud rate generation, zero bit insertion, 
NRZI encoding, and CRC calculation are automatical­
ly done by the SIU. 

7.3 Receiving a Message 
with the 8044 

To receive a message, the 80186 allocates a block of 
memory to store the message. It sets the DMA channel 

. and sends the Receive command to the 8044. , 

Upon reception of the command, the 8044 enables its 
serial channel. The 8044 receives and passes to memory 
all frames whose address matches the individual or 
broadcast address and passes the CRC test. 

The SIU performs NRZI decoding and zero bit dele­
tion, then stores the information field of the received 
frame in the on-chip receive buffer. At the end of recep­
tion, the CPU requests the transfer of data bytes to 
80186 memory using DMA. After transferring all the 
bytes, the 8044 transfers the data length, source ad­
dress, and control byte of the received frame to the 
memory (see Figure 7.3). Upon completion of the 
transfers, the 8044 updates the status register and raises 
the interrupt signal to inform the 80186. 

If the SIU is not ready when the first byte of the frame 
arrives, then the whole frame is ignored. Disabling re­
ception after the first byte was passed to memory caus­
es the rest of the frame to be ignored and an interrupt 
with Receive-Aborted event to be issued. 

5-112 



AP-286 

PREAMBLE 

BYTE COUNT FLAG 

DESTINATION ADDRESS DESTI ADDRESS 

TRANSMIT CONTROL BYTE CONTROL BYTE 

FIRST DATA BYTE FIRST DATA BYTE 

LAST DATA BYTE LAST DATA BYTE 

FCSBYTE 

FCSBYTE 

FLAG 

Figure 7.2. The 8044 Transmit Frame Structure 
and Location of Data Element in System Memory 

PREAMBLE 

FLAG 

rr- DESTI ADDRESS 

CONTROL BYTE 

FIRST DATA BYTE FIRST DATA BYTE 

/1 
LAST DATA BYTE LAST DATA BYTE 

Ir;!J BYTE COUNT FCS BYTE 

DESTI ADDRESS FCS BYTE 

CONTROL BYTE FLAG 

231764-9 

Figure 7.3. The 8044 Receive Frame Structure 
and Location of Received Data Element in 

System Memory 

7.4 Dumping the 8044 Registers 

Upon reception of the Dump command, the 8044 trans­
fers the contents of its internal registers to the system 
memory (See Figure 7.4). 

7 6 5 4 3 2 o 
STSREG. 

SMDREG. 

STAD REG. 

TBSREG. 

TBLREG. 

TCB REG. 

RBSREG. 

RBLREG. 

RCBREG. 

RFLREG. 

PSWREG. 

IPREG. 

IE REG. 

TMODREG. 

TCONREG. 

Figure 7.4. Format of the 8044 Dumped Registers 

7.5 Aborting an Operation 

To abort a DMA operation, the 80186 sends an Abort 
command to the Command/Data latch and interrupts 
the 8044. During a DMA operation, the 8044 puts the 
external interrupt to high priority; therefore, the Abort 
interrupt will suspend the execution of the operation in 
progress and update the status register with the Execu­
tion-Abortedevent. It then returns the 8044 program 
counter to a location before the aborted operation start­
ed. The Abort software procedure given in Appendix A 
gives the details of the execution of the ABORT com-
mand. . 

7.6 Disabling the Transmission or 
Reception 

Transmission of a frame is aborted if the 80186 sends a 
TRANSMIT-DISABLE command to the 8044. The 
command causes the 8044 to clear the Transmit Buffer 

5-113 



intJ AP-286 

Full (TBF) bit. During transmission, if the TBF bit is 
cleared, the SIU will discontinue the transmission and 
interrupt the 8044 CPU. 

The RECEIVE-DISABLE command causes the 8044 
to clear the Receive Buffer Empty (RBE) bit. The SIU 
aborts the reception, if the RBE bit is cleared by the 
CPU. 

When transmission or reception of a frame is discontin­
ued, the SIU interrupts the 8044 CPU. The CPU then 
updates the status and interrupts the 80186. 

7.7 Handling Interrupts 

When the 80186 sends a command, it sets the 8044 
external interrupt flag. The 8044 services the interrupt 
at its own convenience. In the interrupt service routine 
the 8044 executes the appropriate instructions for a giv­
en command. During execution of a command the 8044 
ignores any command, except ABORT, sent by the 
80186 (see section 5.1.2). This is accomplished by clear­
ing the interrupt flag before the 8044 returns from the 
interrupt service routine. During DMA operations the 
8044 sets the external interrupt to high priority. An 
interrupt with high priority can suspend execution of 
an interrupt service routine with low priority. The 
ABORT command given by the 80186 will interrupt 
the execution of the DMA transfer in progress. Upon 
completion of ABORT, execution of the last operation 
will not be resumed (see Appendix A). Note that any 
other command given during the DMA operation will 
also abort the operation in progress and should be 
avoided. 

8.0 8044 IN EXPANDED OPERATION 

To increase the number of information bytes in a frame, 
the 8044 can be operated in Expanded mode. In Ex­
panded operation the system memory can be used as 
the transmit and receive buffer instead of the 8044 in­
ternal RAM. AP-283, "Flexibility in Frame Size Oper­
ation with the 8044", describes Expanded operation in 
detail. 

8.1 Transmitting a Message in 
Expanded Operation 

In Expanded operation the 8044 transmits the frame 
while it is fetching the data from the system memory 
using DMA. An'internal transmit buffer is not neces­
sary. The system memory can be used as the transmit 
buffer by the 8044. 

Upon receiving the Transmit command, the 8044 en­
ables the SIU and fetches the first data byte from the 
Command/Data register. The SIU transmits the open­
ing flag, station address, and the control byte if the 
frame format includes these, fields. It then transmits the 

fetched data. The 8044 CPU fetches the next byte while 
the previously fetched byte is being transmitted by the 
SIU. The CPU fetches the remaining bytes using 
DMA, then the SIU transmits them simultaneously un­
til the end of message is reached. The SIU then trans­
mits the FCS bytes, the closing flag and interrupts the 
8044 CPU. The 8044 updates the status with the Trans­
mit-Done event and interrupts the 80186. If the DMA 
does not keep up with transmission, the transmission is 
an underrun. 

8.2 Receiving a Message in Expanded 
Operation 

In Expanded operation the DMA controller transfers 
data to the system memory while the 8044 SIU is re­
ceiving them. 

To receive a message, the 80186 allocates a block of, 
memory for storing the message. It sets the DMA chan­
nel and sends the Receive command to the 8044. 

Upon rec.;:ption of the command, the 8044 enables its 
serial channel and waits for a frame. The SIU performs 
flag detection, address filtering, zero bit deletion, NRZI 
decoding, and CRC checking as it does in Normal op­
eration. 

After the SIU receives the first byte of the frame, the 
8044 CPU requests the transfer of the byte to memory 
using DMA. The 80186 DMA moves the information 
byte into the system memory while the SIU is receiving 
the next byte. The next byte is transferred to the memo­
ry after the SIU receives it. When the entire frame is 
received, the SIU checks the received Frame Check Se­
quence bytes. If there is no CRC error, the SIU updates 
the 8044 registers and interrupts the 8044 CPU. The 
CPU updates the status and interrupts the 80186. 

9.0 CONCLUSION 

This application note describes an efficient way to in­
terface the 80186 and the 80188 microprocessors to the 
Intel 8-bit microcontrollers like the 80C51, 8052, and 
8044. To illustrate this point the 80186 microprocessor 
interface to the 8044 microcontroller based serial com­
munication chip was described. The hardware interface 
given here is very general and can interface the 8-bit 
microcontrollers to a variety of Intel microprocessors 
and DMA controllers. The microcontrollers with this 
interface hardware have the same benefits as both the 
Intel UPI-41/42 family and data communication pe­
ripheral chips such as the 82588 and the 82568 LAN 
controllers. Like the Intel UPI chips, they can be easily 
interfaced to microprocessors, and' like the data com­
munication peripherals, they execute high level com­
mands. A similar approach can be used to interface 
Intel microprocessors to the 16-bit 8096 microcontrol­
ler. 

5-114 



AP-286 

APPENDIX. A 
SOFTWARE 

The software modules shown here implement the exe­
cution of commands and status explained in sections 5 
and 7. The 80186 software provides procedures to send 
commands and read status. The 8044 software decodes 
and executes the commands, updates the status, and 
interrupts the 80186. The procedures given here are 
called by higher level software drivers. For example, an 
80186 application program may use the Transmit com­
mand to send a block of data to an application program 
that resides in the 8044 ROM or in another remote 
node. The application programs and the drivers that 
perform the communication tasks run asynchronously 
since all communication tasks are interrupt-driven. 

Figure A-I shows how to assign the ports and control 
registers for an 80186-based system. The software is 
written for an Intel iSBC® 186/51 computer board. 
The 8044 hardware is connected to the computer board 
iSBXTM connector. 

Figure A-2 shows the 80186 command procedures. 
These procedures are used by the data link driver. 

Figure A-3 shows how the DMA controller is loaded 
and initialized for data and parameter transfer from the 
80186 memory to the 8044. This procedure is used by 
the TRANSMIT and CONFIGURE commands. 

Figure A-4 shows how the DMA controller is loaded 
and initialized for data and parameter transfer from the 
8044 to the 80186 memory. This procedure is used by 
the RECEIVE and DUMP commands. 

Figure A-5 shows an interrupt service routine which 
handles interrupts resulting from various events. Note 
that this routine is not complete. The user should write 
the software to respond to events. 

Figure A-6 shows an example of the 80186 software. It 
shows how to start various operations. This is not a 
data link driver, but it gives the procedures needed to 
write a complete driver. 

Figure A-7 shows how to initialize the 8044. The user 
application program should be inserted here. 

Figures A-8 through A-13 show the 8044 external in­
terrupt service routine. In this routine a command re­
ceived from the 80186 is decoded, and one of the com­
mand procedures shown in Figures A-9 through A-13 
is executed. 

Figure A-I4: shows the serial channel (SIU) interrupt 
service routine. Note that execution of TRANSMIT, 
RECEIVE, and TRANSMIT-DISABLE commands 
are completed in this routine. 

5-115 



infef AP-286 

NAME COM_DRIVER 

,.. 80186 SOl"l'liARE FOR THE 80186/MICROCONTROLLER INTERFACE 

,* 8044 BOARD CONNECTED TO THE SBXl OF THE SBC 186/51 BOARD. ,* SBXl INTO TIED TO 80130 IR[0-71. CONNECT JUMPER 30 TO 46. ,* 80186 DMA CHANNEL 1 lISED. CONNECT JUMPER 202 TO 203. 

TRlIE EQlI OFFFFH 
FALSE EQlI OH 

, 8044 REGISTERS 

CMD 44 
ST i4 
DAi'A_44 

", EVENTS 

CON DONE 
TRA-DONE 
DtIM-DONE 
REC-DONE 
REC-DISA 
TRA-DISA 
ABO=DONE 
: COIlMANDS 

EQlI 080H 
EQlI 080H 
EQlI OD4H 

EQlI OlM 
EQlI 02H 
EQlI 03H 
EQlI 04H 
EQlI 05H 
BQlI 06H 
BQlI 07H 

(INTA=l) 

ABO CMD EQlI 
'REC-DIS CMD EQlI 
XMli' DIS CMD EQlI 
REC ClIO - EQlI 

080H 
081H 
082H 
083H 
084H 
085H 
086H 
087H 

TRA-CMD EQlI 
DtIM-CMD EQU 
CON-CMD EQlI 
NOP=CMD EQU 

, 80186 DNA CHANNEL 1 REGISTERS 

SL DNAl 
SH-ORAl 
DL-DNAl 
DH-DNAl 
CNi'DNAl 
CTL=DNAl 

EQU OFFDOH 
EQU 0,FFD2H 
EQU . OFFD4H 
EQlI OFFD6H 
EQlI OFFD8H 
EQU OFFDAH 

ADDRESS OF THE COIlMAND REGISTER 
ADDRESS OF THE STj\TtlS REGISTER 
ADDRESS OF THE DATA REGISTER 

CONFIGtIRE DONE 
TRANSMIT CoNE 
DtlMP • DONE 
RECEIVE DONE 
RECEPTION DISABLE 

, TRANSMISSION DISABLE 
EXECtlTION_ABORTED 

ABORT 
RECEIVE DISABLE 
TRANSMIT DISABLE 
RECEIVE 
TRANSMIT 
DtlMP 
CONFIGURE 
'NOP 

SOURCE ADDRESS (LO WORD) 
SOllRCE ADDRESS (HI WORD) 
DESTINATION ADDRESS (LO WORD) 
DESTINATION ADDRESS (HI WORD) 
TRANSFER COUNT ADDRESS 
CONTROL ADDRESS 

: 80186 INTERRlIPT CONTROLLER REGISTERS 

CTLO INTR 
CTLCINTR 
MASK-INTR 
EOI INTR 
NSPEC_BIT 

EQU OFF38H 
EQU OFF3AH 
EQU OFF28H 
EQU OFF22H 
EQU 08000H 

INT 0 CONTROL ADDRESS 
INT 1 CONTROL REGISTER 
INT MASK REGISTER 
INT EOI REGISTER 
NON-SPECIFIC EOI 

: 80130 INTERRUPT CONTROLLER REGISTERS 

EOI SIIITR EQlI OEOK INT EO! REGISTER 
MASK_SINTR EQlI OE2H MASK REGISTER 

RD IRR EQU OlOH COIlMAND TO 80130 TO READ IRR REG 
RD=ISR EQU OllH COIlMAND TO 80lJO TO READ ISR REG 

IV_BABE EQlI 20H , BASE OF 80 lJ 0 INT CONTROLLER VECTOR 

Figure A-1. Port and Register Definitions for 80186 System 

5-116 

231784-10 

231784-11 



AP-286 

; ...................................... *. * ........... * .... *. *. *** ............... 1t * ...... * ......... ** ** ...... III .. .. 
; INTERRUPT TABLE 

INTERRUPTS SEGMENT AT 0 

ORG (IV_BASE+1) *4H 

LABEL DWORD 

INTERRUPTS ENDS 

IR1 VECTOR 

; .... *** .......... * ..... *** ....... **** **** .... * ... * ............. **** ** ........ * ... *. *** ...... ** .. 

STACK SEGMENT STACK 'STACK' 

THE STACK OW 
TOS- LABEL 

STACK ENDS 

200H 
WORD 

DUP(?) 

; ................................ ** .............. ** .. * ............ ** ............ * ....... * ......... ** ........... * .... * 
DATA SEGMENT PUBLIC 'DATA' 

REC_BUFFER DB 1024 DUP(?) 

CON_BUFFER DB 08H, 01.H,,00H, ODOH, 55H,20H, 05H, 30R, aSH 

DUM_BUFFER DB O"H DUP(?) 

TRA_BUFFER DB 07H, 55H, 11H, 01K, 02H, 03H, 04H, aSH 

CMNDJLAG OW FALSE 

DATA ENDS 
231784-12 

Figure A-1. Port and Register Definitions for 80186 System (Continued) 

; .... ." .................. ** **** ......... * ....... ** ............................ * ..... ** ............. * .. .. 
CODE SEGMENT PUBLIC 'CODE I 

ASSUME 
& 
& 
& 

CS:CODE, 
DS:DATA, 
ES: NOTHING, 
SS:STACK 

; ... * ...... ** .... * ............. *** ............................ *** .............. ** ....... *. * *** ... . 

PUSH 
MOV 
LES 
MOV 
MOV 
CALL 
MOV 
OUT 
POP 
RET 

PROC FAR 

BP 
BP,SP 
SI,DWORD PTR [BP+6) 
AX, WORD PTR(BP+lO) 
AH,OH 
REC DMA 
AL,REC CMD 
eKD 44;AL 
BP -

LOAD BUFFER POINTER 
LOAD BUFFER SIZE 

CALL REC-DMA 
LOAD RECEIVE COMMAND 
S,END TO COMMAND/DATA REG 

: ....... ***** ** * ........ *** ...... ** ...... ** .... * * * * * ** •• * .* ••• ** ••• *** •• * •• * 

PUSH 
MOV 
LES 
MOV 
MOV 
CALL 
MOV 
OUT 
POP 
RET 

BP 
BP,SP 
SI,DWORD PTR [BP+6) 
AX,WORD PTR[BP+10) 
AH,OH 
TRA ORA 
AL,TRA CMD 
CMD 44;AL 
BP -

ENDP 

LOAD BUFFER POINTER 
LOIID BUFFER SIZE 

CALL TRA-DMA 
LOAD TRANSMIT COMMAND 
SEND TO COMMAND/DATA REG 

Figure A-2. Setup and Execution of Commands 

5-117 

231784-13 



AP"286 

; *._ Itltt .... * * ......... tltt Ittt •• _._. ___ ...... tit ._. It It .. Itt .. * * .... ttt ........... .. 

CONF.:.. COIlMAl/D PROC FAR 

PUSH 
MOV 
LES 
MOV 
MOV 
CALL 
MOV 
Otrr 
POP 
RET 

BP 
BP,SP 
SI,DHORD PTR[BP+6) 
AX,WORD PTR[BP+10) 
AH,OK 
TRA Il!IA 
AL,CON CMD 
CMD 44;AL 
BP -

LOAD BUFFER POINTER . 
LOAD BUFFER SIZE 

CALL TRA-1l!IA 
LOAD CONFIGURE COIlMAl/D 
SEIID TO COIlMAl/D/DATA REG 

I" * **** _ ••• t._ •••.• ____ **_.t.t. * __ ttttlt .... "" •••• lttt .. * * It It _. __ * ttlt 

PUSH 
MOV 
LES 
MeV 
MOV 
CALL 
MOV 
otrr 
POP 
RET 

PROC 

BP 
BP,SP 

FAR 

SI,DWORD PTR[BP+6) 
AX,WORD PTR[BPHO) 
AK,OH 
REC DMA 
AL,DUM CMD 
CMD 44;AL 
BP -

DUMP COIlMAl/D ENDP 

LOAD BUFFER POINTER 
LOAD BUFFER SIZE 

/ CALL REC-DMA 
LOAD DUMP COIlMAl/D 
SEND TO COIlMAl/D/DATA REG 

; * ........ _It. * It_""" *_ ...... * * t.t._ .. * .. *._ ... _ .. Itt It. ,. •• ** ._ ... It It It_" Itltt * 

MOV 
otrr 
RET 

PROC 

AL,XMIT DIS CND 
CMD_44,AL -

FAR 

LOAD XMIT-DIS COIlMAl/D 
./ SEND TO COIlMAl/D/DATA REG 

; .it. __ .t. __ * * ...... * It It .... Itttt. * * tt •• t.t. * .. * tltt ..... ltlt It It * *t ttlttlt ••• * 

NOV 
Otrr 
RET 

PROC 

AL,REC DIS CMD 
CMD_44;AL -

FAR 

LOAD REC-DIS COIlMAl/D 
SEND ~ COlIMAI/O/DATA' REG 

; .... ttlt .. * .. __ ._*.t .... *. _ ... ttt._. *. ttlt ••••••• * t.* It'" * ... * It It .... It ... * 
ABOR_COIlMAl/D . PROC FAR 

MOV AL,ABO CMD LOAD ABORT COlIMAI/O 
ODT CMD_44;AL SEND TO COlIMAI/O/DATA REG 
RET 

: ..... _tltt.tit" ___ tt._._ ... __ ... *t.,.. .. tlttt •• tit •• _._.t .. _ ..... * ..... 
NOP _ COIlMAl/D PROC FAR 

MOV AL, NOP CMD / LOAD NOP COIlMAl/D 
Otrr CMD_ 44;AL SEND TO COlIMAI/O/DATA REG 
RET 

NOP _COlIMAI/O EIIDP 

Figure A·2. Setup and Execution of COlTlmands(Continued) 

5-118 

231784-14 

231784-15 



intJ AP-286 

* ...... "'''' * .. "'''' "' •• "' .............. * ....................... ** .... if if ...... if." "' ............. * .. .. 
.... RECEIVE DMA 
ARGS AX BUFFER SIZE 

ES: SI BUFFER POINTER 

REC_DMA PROC NEAR 
MOV ex,eNT_OHAl 
OUT DX,AX 

XOR Bx,ax 
MOV AX,ES 
SML AX,l 
RCL BX,l 
SHL AX,l 
RCL BX,l 
SHL AX,l 
RCL BX,l 
SHL AX,l 
RCL BX,l. 
ADD AX,SI 
ADC BX,C 
MOV eX,OL_DHA! 
OUT DX,AX 
MOV AX,BX 
MOV DX,OH_DHAl 
OUT OX,AX 

MOV AX,OATA_44 
MOV DX,SL_DMAl 
OUT DX,AX 

XOR AX,AX 
MOV OX,SM_DMAl. 
OUT DX,AX 

MOV DX,CTL_DMAl 
MOV AX,lOlOOOlOlOlOOl1OB 
OUT DX,AX 
RET 

REC_DMA ENDP 

LOAD ADD OF TRANSFER COUNT REG 
PROGRAM TRANSFER COUNT REGISTER 

CLEAR BX 
LOAD SEG ADDRESS OF BUFFER 
CALCUlATE LINEAR ADDRESS OF THE BUFFER 

ADD THE OFFSET TO BASE 

LOAD ADDRESS OF DEST POINTER (LO WORD) 
PROGRAM DEST POINTER REGISTER (LO WORD) 

LOAD ADDRESS OF DEST POINTER (HI WORD) 
PROGRAM DEST POINTER REGISTER (HI WORD) 

LOAD ADDRESS OF DATA REGISTER 
LOAD ADDRESS OF SOURCE POINTER 
PROGRAM SOURCE POINTER REGISTER (LO WORD) 

CLEAR AX 
LOAD ADDRESS OF SOURCE POINTER (HI WORD) 
PROGRAM SOURCE POINTER REGISTER (HI WORD) 

LOAD ADDRESS OF CONTROL REGISTER 
LOAD THE CONTROL WORD 
PROGRM THE CONTRL REGISTER 

Figure A-3. Loading and Starting the 80186 DMA Controller 

;''''ifif •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

; *. TRANSMIT DNA 
; ARGS AX BUFFER SIZE 

; 
TRA DHA 

- INC 
MOV 
OUT 

XOR 
MOV 
SHL 
RCL 
SHL 
RCL 
SHL 
RCL 
SHL 
RCL 
ADD 
ADC 
MOV 
OUT 
MOV 
MOV 
OUT 

MOV 
MOV 
OUT 

XOR 
MOV 
OUT 

MOV 
MOV 
OUT 
RET 

ES: SI BUFFER POINTER 

PROC NEAR 
AX 
eX,CNT DHAl. 
DX,AX -

BX,BX 
AX,ES 
AX,l 
BX,l 
AX,l 
BX,l 
AX,l 
BX,l 
AX,l 
BX,l. 
AX,SI 
BX,O 
DX,SL DMA1 
OX, AX­
AX,BX 
OX,SH 0HA1. 
OX, AX-

AX,DATA 44 
DX,DL DMAl 
DX,Ale 

AX,AX 
DX,DH DMA1 
DX,A~C 

DX,CTL DMA1 
AX,00010ll010100ll0B 
OX, AX 

TRA_DMA ENDP 

; LOAD ADD OF TRANSFER COUNT REG 
PROGRAM TRANSFER COUNT REGISTER 

CLEAR BX' 
LOAD SEG ADDRESS OF BUFFER 
CALCUlATE LINEAR ADDRESS OF THE BUFFER 

ADD THE OFFSET TO BASE 

LOAD ADDRESS OF SOURCE POINTER (LO WORD) 
PROGRAM SOURCE POINTER REGISTER (LO WORD) 

LOAD ADDRESS OF SOURCE POINTER (HI WORD) 
PROGRAM SOURCE POINTER REGISTER (HI WORD) 

LOAD ADDRESS OF DATA REGISTER 
LOAD ADDRESS OF DEST POINTER 
PROGRAM DEST POINTER REGISTER (LO WORD) 

CLEAR AX . 
LOAD ADDRESS OF DEST POINTER (HI WORD) 
PROGRAM DEST POINTER REGISTER (HI WORD) 

LOAD ADDRESS OF CONTROL REGISTER 
LOAD THE CONTROL WORD 
PROGRAM THE CONTRL REGISTER 

Figure A-4. Loading and Starting the 80186 DMA Controller 

5-119 

231784-16 

231784-17 



AP-286 

1 ** .. *********** * *. *. * * ** .****.*.*. ***-**** * ••• ********* ** *****. *** •• 
80186 INTERRUPT ROUTINE 

INT_186: 

PUSH 
PUSH 
MOV 
MOV 
OUT 

AX 
DX 
AX, NSPEC BIT 
DX,EOI liiTR 
DX,AX -

MOV AL,OllOOOOlB 
OUT EOI_SINTR,AL 

IN AL,ST 44 
AND AX,OFFH 

SEND NSPEC END OF INT 

I READ THE STATUS 

I DECODE STATUS AND TAKE APPROPRIATE ACTION 

MOV DX,CTL DHAl 
IN AX,DX -

I DISABLE DHA 

OR AX,OlOOB 
AND AX,NOT 010B 
OUT DX,AX 

MOV CMND _FLAG, TRUE 

pop DX 
pop AX 
lRET 

Figure A-5. Interrupt Service Routine 

: ***.********** ********* *.** ***** *.*** ***** * ******* *** *. * ... *.* 
BEGIN: 

CLI 
CLD 

SET ALL REGISTERS SMALL MODEL 

MOV SP,DATA 
MOV DS,SP 
HOV ES,SP 
HOV SP,STACK 
MOV SS,SP 
MOV SP, OFFSET TOS 

SETUP INTERRUPT VECTORS 

PUSH 
XOR 
MOV 
MOV 
MOV 
pop 

ES 
AX,AX 
ES,AX 
WORD PTR ES:IV INTRO +0, 
~~RD P'rR ES: IV:::INTRO +2, 

SETUP 80130 INTERRUPT CONTROLLER 

MOV AL,00010011B 
OUT EOI_SINTR,AL 
MOL AL 

MOV AL,IV_BASE 
OUT MASK_SINTR,AL 
MOL AL 

MOV AL,OOOOOOOOB 
OUT MASK_SINTR,AL 
MOL AL 

MOV AL,OFCH 
OUT MASK_SINTR,AL 

OFFSET INT 186 cs -

ICWl 

ICW2 

ICW4 

,MASK 

Figure A-6. Example of Exec::utlng Commands 

5-120 

231784-18 

231784-19 



inter Ap·286 

SETUP 80186 INTERRUPT CONTROLLER 

HOV AX,0000000000100000B 
HOV OX, CTLO INTR 
OUT DX,AX-

MOV OX, CTLl INTR 
IN AX,DX -
OR AX,0000000000101000B 
OUT DX,AX 

HOV 
HOV 
OUT 
STI 

AX,OOOEDH 
OX, MASK INTR 
OX,AX -

; * * * SEND COHFIURE COMMAND 

PUSH 
PUSH 
PUSH 
CALL 
ADD 

WORD PTR CON BUFFER 
OS -
OFFSET CON BUFFER 
CONF COIlllAiiD 
BP,3*2 

r WAIT FOR END OF COMIIAND 

WAIT1: 
CMP CRND FLAG, TRUE 
JNE WAITl 
MOV CRND _FLAG, FALSE 

; ••• SEND DUMP COMMAND 

WAIT2: 

PUSH 
PUSH 
PUSH 
CALL 
ADD 

WORD PTR DUM BUFFER 
DS -
OFFSET DUM BUFFER 
DUMP COIlllAiiD 
SP,3*2 

CMP CMND]LAG,TRUE 
JNE WAIT2 
HOV CMND]LAG, FALSE ; .*. SEND TRANSMIT COMMAND 

PUSH WORD PTR TRA_BUFFER 
PUSH OS 
PUSH OFFSET TRA BUFFER 
CALL XHIT COIlllAiiD 
ADD SP, 3*2 

WAIT3: 
CMP CMND_FLAG, TRUE 
JNE WAIT3 
MOV CMND _FLAG, FALSE 

, ... SEN)) RECEIVE COMIIAND 

PUSH WORD PTR REC _BUFFER 
PUSH DS 
PUSH OFFSET REC BUFFER 
CALL RECV COIlllAiiD 
ADD SP,3*2 

WAIT4: 
CMP CMND]LAG,TRUE 
JNE WAIT4 
MOV CMND]LAG, FALSE 

CODE ENDS 
END BEGIN 

; MASIC ALL BUT 10 

: ENABLE INTERRUPTS 

PUSH BUFFER SIZE 
PUSH BUFFER SEGMENT REGISTER 
PUSH OFFSET OF BUFFER 
CALL CONFIGURE 

PUSH BUFFER SIZE 
PUSH BUFFER SEGMENT REGISTER 
PUSH OFFSET OF BUFFER 
CALL CONFIGURE 

PUSH BUFFER SIZE 
PUSH BUFFER SEGMENT REGISTER 
PUSH OFFSET OF BUFFER 
CALL COMIIAND 

PUSH BUFFER SIZE 
PUSH BUFFER SEGMENT REGISTER 
PUSH OFFSET OF BUFFER 
CALL COMIIAND 

Figure A-6. Example of Executing Commands (Continued) 

5-121 

231784-20 

231784-21 



inter 
$DEBUG NOHOD51 
$INCWDE (REG44.PDF) 

AP-286 

; rHE 8044 SOF'l'lIARE DRIVER FOR rHE 80186/8044 INrERFACE. 

ORG 
SJHP 
ORG 
JHP 
ORG 
JHP 

OOH 
INIT 
03H 
EINTO 
23H 
SIINT 

LOCATIONS 00 TIIRU 26H ARE USED 
BY INrERRUPT SERVICE ROUTINES. 
VEC1'OR ADDRESS FOR Exr INro. 

VECTOR ADDRESS FOR SERIAL INT 

; ••••••••••••••••• , ••• INITIALIZATION •••••••• , ••••••••••••••••• 

INIT. 

001'. 

ORG 
HOV 
HOV 
CLR 
SETB 
SJHP 

26H 
TCON, 'OOOOOOOlB 
IE, '00010001B 
Pl.l 
EA 
001' 

EXT INTO. EDGE rRIGGER 
SI=EXO=l 
CLEAR DRQ STA1'US Blr 
ENABLE INrERRUPTS 
WAIT FOR AN INTERRUPT 

231784-22 

Figure A-7. Initialization Routine 

; •• ** •••••••••• ** ••• EXTERNAL INTERRUPT 0 ••••••••••••••••• " ••• 
EINro. CLR Pl. 5 CLEAR THE E BIT 

. HOV DPTR, nOOH LOAD DATA POINTER WUH A DUMY NUMBER 
HOVX A,@DPTR READ rilE COIlllAND ByrE. 
ANL A, 'OOOOl1l1B KEEP rilE OPERArION FIELD 
MOV R2, A ; SAVE COMMAND 

DECODE COIlllAND AND JUMP 1'0 rHE APPROPRIATE ROUrINE 

Jl. 

J2. 

J3. 

J4. 

J5: 

J6. 

J7. 

J8. 

J9. 

COMMAND OPERATION (BITSO-3) 

ABORr 
REC-DISABLE 
TRA-DISABLE 
RECEIVE 
TRANSMIr 
DUMP 
CONFIGURE 
NOP 

JNB 
JMP 

CJME 
JMP 

CJNE 
JKP 
CJNE 
JKP 
CJNE 
JKP 
CJIIE 
JKP 
CJNE 
JHP 
CJNE 
JHP 
CJNE 
JMP 
RETI 

PXO,Jl 
CABO 

A, #OOH,J2 
CABO 

A,'OlH,J3 
CRDIS 
A, 'OB5H,J4 
CTDIS 
A,'03H,JS 
CREC 
A,'04H,J6 
CTRA 
A,t05H,J7 
CDUMP 
A,'06H,J8 
CCON 
A, '07H,J9 
CNOP 

OOH 
01H 
02H 
03H 
04H 
05H 
06H 
07H 

, IF INTO IS SET TO PRIORUY 1, 
,THEN DMA OPERATION WAS IN PROGRESS. 
, EXEcurE ABORT REGARDLESS OF rHE 
;COMMAND ISSUED. 
, EXECUTE ABORr 
, THIS LINE WILL BE EXECUTED IF ABORT WAS 
,ISSUED WHEN THE 8044 IS NOT EXECUTING 
; ANY COMMANDS. 

EXECUTE RECEIVE-DISCONNECT 

EXECUTE TRANSMIT-DISCONNECT 

EXECUTE RECEIVE 

EXECUTE TRANSMIT 

EXECUTE DUMP 

EXECUTE CONFIGURE 

EXECUTE NOP 
, RE1'URN. OPERATION NOT RECOGNIZED. 

Figure A-S. External Interrupt Service Routine 

5-122 

231784-23 



intJ 

: *. NOP COMMAND 

CNOP: CLR lEO 

RETI 

; ** ABORT COMMAND 

CABO: JNB PXO,CABOJl 
CLR PXO 
CLR Pl.l 

SETB P1.2 
SETS Pl.3 
SETS Pl.4 

CLR lEO 
CLR PLO 
SETB Pl.O 
JB P3.2,$ 

pop ACC 
pop ACC 
MOV B, 'HIGH($+lO) 
MOV ACC, 'LOW($+7) 
PUSH ACC 
PUSH B 

CABOJ2: RETI 

CABOJ1: NOP 
SETB Pl.5 

SETB P1.2 
SETS Pl.3 
SETS Pl.4 

CLR lEO 
CLR Pl.O 
SETB Pl.O 
JB P3.2,$ 
RETI 

AP-286 

IGNORE PENDING EXT INTO (IF ANY) • 
ANY INTERRUPT (COHHNAD) DURING 
EXECUTION OF AN OPERATION IS IGNORED 
RETURN 

WAS DNA IN PROGRESS? 
YES. EXT INTO: PRIORITY 0 
CLEAR DNA REQUEST 

; UPDATE STATUS WITH 
: ABORT-DONE EVENT 

(STATUScDDH; E=O) 

IGNORE PENDING EXT INT,O (IF ANY) • 

I SET INT BIT AND INTERRUPT 80186 
WAIT TILL INTERRUPT IS ACKNOWLEDGED 
EXECUTE THE NEXT "RETI" mICE 
POP OUT THE OLD HI BYTE PC 
POP OUT THE OLD LOW BYTE PC 
HI BYTE ADDRESS OF CABOJ2 
LOW BYTE ADDRESS OF CABOJ2 

; PUSH THE ADDRESS OF THE NEXT 
; "RETI" INSTRUCTION INTO STACK 

RETURN 

DNA WAS NOT IN PROGRESS 
SET THE E BIT 

; UPDATE STATUS WITH 
;ABORT-DONE EVENT 
I (STATUS=FDH; E=l) 

IGNORE PENDING EXT INTO (IF ANY) • 

SET INT BIT AND INTERRUPT 80186 
WAIT TILL INTERRUPT IS ACKNOWLEDGED 

I RETURN 

Figure A-g. Execution of NOP and ABORT Commands 

; * * CONFIGURE COMMNAD 

CCON: MOV DPTR, 1100H 
CLR lEO 
SETB PXO 

SETB Pl.l 
JB P3.3,$ 
HOVX A,@DPTR 
MOV RO,A 
DEC RO 
JS P3.3,$ 
MOVX A,@DPTR 
MOV Rl,A 
JB P3.3,$ 
MOVX A, @DPTR 
CJNE Rl, 'OlH,CCONJl 
MOV STS,A 
INC Rl 
DJNZ RO, CCONF4 
JMP CCONTl ' 

CCONF4: JB P3.3,CCONF4 
MOVX A,@DPTR 

CCONJ1: CJNE lU, '02H,CCONJ2 
MOV SMD,A 
INC Rl 
DJNZ RO, CCONFS 
JMP CCONTl 

CCONFS: JS P3.3,CCONFS 
MOVX A,@DPTR 

CCONJ2: CJNE Rl, '03H,CCONJ3 
MOV STAD,A 
INC Rl 
DJNZ ao, CCONF6 
JMP CCONTl 

CCONF6: JB P3 • 3 ,CCONF6 
MOVX A,@DPTR 

CCONJ3: CJNE Rl, ,04H, CCONJ4 

IGNORE PENDING EXT INTO (IF ANY) 
EXT INTO: PRIORITY 1 
PXO IS SET TO ACCEPT ABORT 

DURING DNA OPERATION. 
ENABLE DNA REQUEST 
WAIT FOR DNA ACK. 
READ FROM COMMAN/DATA REGISTER 
LOAD SYTE COUNT 
DECREMENT SYTE COUNT 
WAIT FOR DNA ACK. 
READ FROM COMMAND/DATA REGISTER 
LOAD FIRST-BYTE 
WAIT FOR DNA ACK. 
READ FROM COMMAND/DATA REGISTER 
CHECK THE FIRST-BYTE 
UPDATE THE STS REGISTER 
INC. POINTER TO THE CONF. BLOCK 
CHECK THE BYTE COUNT 

Figure A-10. Execution of CONFIGURE Command 

5-123 

231784-24 

231784-25 



intJ 

HOV 
INC, 
DJNZ 
JHP 

CCONF7; JB 
HOVX 

CCONJ4; CJNE 
HOV 
INC 
DJNZ 
JMP 

CCONFS; JB 
HOVX 

CCONJ5; CJNE 
HOV 
INC 
DJNZ 
JHP 

CCONF9; JB 
HOVX 

CCONJ6; CJNE 
HOV 
INC 
DJNZ 
JMP 

CCONFA; JB 
HOVX 

CCONJ7; CJNE 
HOV 
INC 
DJNZ 
JMP 

CCONFB; JB 
HOVX 

CCONJS; CJNE 
HOV 
INC 
DJNZ 
JMP 

CCONFC; J6 
HOVX 

CCONJ9; CJNE 
HOV 
INC 
DJNZ 
JMP 

CCONFD; JB 
HOVX 

CCONJA; CJNE 
HOV 
INC 
DJNZ 
JMP 

CCONFE; JB 
HOVX 

CCONJB; CJNE 
MOV 
INC 
DJNZ 
JHP 

ERROR1; NOP 
SETB 

CCONT1; NOP 
cta 
Cta 

SETB 
Cta 
Cta 

Cta 
Cta 
SETB 
JB 
RETI 

TBS,A 
Rl 
RO,CCONF7 
CCONTl 
P3 • 3, CCONF7 
A,@DPTR 
Rl, 'OSH,CCONJ5 
TBL,A 
Rl 
RO,CCONF8 
CCONT1' 
P3. 3, CCONFS 
A,@DPTR I 

Rl, '06H, CCONJ6 
RBS,A 
Rl 
RO,CCONF9 
CCONTl 
'P3 • 3, CCONF9 
A,@DPTR 

,Rl,'07H,CCOIlJ7 
RBL,A 

'Rl 
RO,CCONFA 
CCONTl 
'PJ. :3, CCONFA 
A,@DPTR 
Rl, 'OSH,CCONJS 
IP,A 
Rl 
RO,CCONFB 
CCONTl 
P3 • 3, CCONFB 
A,@DPTR 
Rl, '09H, CCONJ9 
IE,A 
Rl, 
RO,CCONFC 
CCONTl 
PJ • 3 , CCOHFC 
A',@DPTR 
Rl, tOAH,CCONJl\ 
THOO,A 
Rl 
RO,CCONFD 
CCONTl 
P3 • 3 ,CCOHFn 
A,@DPTR 
Rl, 'OBH, CCONJB 
TCON,A 
Rl 
RO,CCONFE 
CCONTl 
P3. 3, CCONFE 
A,@DPTR 
Rl,'OCH,ERRORl 
PSW,A 
Rl 
RO,ER,RORl 
CCONTl 

Pl.S 

1>1.1 
PXO 

Pi. 2 
Pl.3 
Pl.4 

lEO 
Pi. 0 
Pl.O 

P3.2,$ 

Ap·286 

ILLEGAL BYTE COUNT 
SET THE E STATUS BIT 

I CLEAR DIIA REQUEST 
EXT INTO I PRIORITY 

, UPDATE STATUS WITH 
,CONFIGURE-DONE EVENT 

(STATUS=C5H IF E=O) 

231784-26 

IGNORE PENDING EXT INTO (IF ANY) 

INTERRUPT THE SOlS6 
WAIT TILL INTERRUPT IS ACI<IIOWLEDGED 
RETURN 

Figure A·10. Execution of CONFIGURE ,CommlJnd (Continued) 

5-124 

231784-27 



inter AP·286 

; • * DUMP COMMAND 

CDUMP: MOV 
MOVX 
CLR 
SETB 
SETB 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
MOV 
MOVX 
JB 
CLR 
CLR 

SETB 
SETB 
CLR 

CLR 
CLR 
SETB 
JB 
RETI 

A,STS 
@OPTR,A 
lEO 
PXO 
Pl.l 
PJ. J, $ 
A,SMD 
@DPTR,A 
PJ. J, $ 
A,STAD 
@DPTR,A 
PJ.J,$ 
A,TBS 
@DPTR,A 
PJ.J,$ 
A,TBL 
@DPTR,A 
P3. 3, $ 
A,TCB 
@DPTR,A 
PJ.J,$ 
A,RBS . 
@DPTR,A 
P3.3,$ 
A,RBL 
@DPTR,A 
PJ. J, $ 
A,RCB 
@DPTR,A 
PJ. J, $ 
A,RFL 
@DPTR,A 
PJ.J,$ 
A,PSW 
@DPTR,A 
PJ.J,$ 
A/IP 
@DPTR,A 
P3. 3, $ 
A,IE 
@DPTR,A 
PJ. J, $ 
A,TMOD 
@DPTR,A 
PJ.J,$ 
A,TeON 
@DPTR,A 
PJ. J,$ 
Pl.l 
PXO 

Pl.2 
Pl.J 
Pl.4 

lEO 
PloD 
PloD 
PJ.2,$ 

LOAD THE FIRST DUMP REG INTO ACC 
WRITE TO THE COMMAND/DATA REGISTER 
IGNORE PENDING EXT INTO (IF ANY) 
INTRERRUPT 0: PRIORITY 1 
ENABLE DMA REQUEST 
WAIT FOR DMA ACK 

DISABLE DRQ 
EXTERNAL INTO: PRIORITY 0 

: UPDATE STATUS WITH 
; DUMP-DONE EVENT 

(STATUS=CDH) 

IGNORE PENDING EXT INTO 

INTERRUPT THE 80186 , 
WAIT TILL INTERRUPT IS ACKNOWLEDGED 
RETURN 

Figure A·11. Execution of DUMP Command 

5-125 

231784-28 

231784-29 



i~ 

; ** RECEIVE COMMAND. 
CREC: JNB RBE,CRECJl 

SETB Pl.S 
CRECJ 1: SETB RBE 

CLR RBP 
CLR lEO 
RETI 

; ** TRANSMIT COMMAND. 
CTRA: MOV Rl, TBS 

CLR lEO 
SETB PXO' 
SETB Pl.l 
JB P3.3,$ 
MOVX A,@DPTR 
MOV RO,A 
DEC A 
DEC A 
MOV TBL,A 

CTRAJ2: JB P3.3,CTRAJ2 
MOVX A,@DPTR 
MOV STAD, A 
DEC RO 

CTRAJ3: JB P3. 3, CTRAJ3 
MOVX A, @DPTR 
MOV TCB,A 
DJNZ RO,CTRAJ4 
SJHP CTRAJS 

CTRAJ4: JB P3.3,CTRAJ4 

CTRAJ5: 

MOVX A,@DPTR 
MOV @Rl,A 
INC Rl 
DJNZ RO,CTRAJ4 

CLR 
CLR 
SETB 
SETB 
CLR 
RETI 

Pl.l 
PXO 
TBP 
RTS 
lEO 

AP-286 

I IS SIU ALREADY IN RECEIVE MODE? 
YES. SET THE E BIT 

I NO. ENABLE RECEPTION 
CLEAR RECEIVE BUFFER PROTECT BIT 

I IGNORE PENDING EXT INTO (IF ANY) 
; RETURN. UPDATE STATUS IN THE 
; SIU INTERRUPT ROUTINE. 

I LOAD TRANSMIT BUFFER START 
IGNORE PENDING EXT INTO (IF ANY) 
EXT INTO: PRIROITY 1 
ENABLE DHA REQUEST 
WAIT FOR DHA ACK. 
READ FROM COMMAND/DATA REG. 
LOAD THE BYTE COUNT 

; SUBTRACT 2 FROM ,THE BYTE 
; COUNT AND LOAD INTO XHIT 

LOAD BUFFER LENGTH 
WAIT FOR DHA ACK. 
READ FROM COMMAND/DArA REG. 
LOAD DESTINAl'ION ADDRESS 
DECREMENT THE BYTE COUNr 
WAIT FOR DNA ACK. 
READ FROM COMMAND/DArA REG. 

I LOAD THE TRANSMlr CONTROL BYTE 
IS THERE ANY INFO. BYTE? 
NO. 
YES. WAIT FOR DNA ACK. 
READ FROM COMMAND/DATA REG. 
MOVE DATA TO THE TRANSMIT BUFFER 
INC. POINTER TO BUFFER 
LAST BYTE FETCHED INTO THE BUFFER? 
NO. FErCH THE NExr BYrE 
YES. DISABLE DHA REQUEST 
EXT INTO: PRIORITY 0 
SET TRANSMIT BUFFER FULL 
ENABLE TRANSMISSION 
IGNORE PENDING EXT INTO (IF ANY) 

• RETURN. UPDATE STATUS IN THE 
I SIU INTERRUPT ROUTINE 

Figure A-12. Execution of RECEIVE and TRANSMIT Commands 

I •• TRANSMIT-DISCONNECT COMMAND 

CTDIS: 

CTDIJ1: 

JB 
SETB 
CLR 
CLR 
RETI 

TBF,CTDIJl 
Pl.S 
rBF 
lEO 

• •• RECEIVE-DISCONNECT COMMAND 

CRDIS: JB RBE,CRDIJl 
SErB Pl.S 

CRDIJ1: CLR RBE 

SETB Pl.2 
CLR Pl.3 
SETB Pl.4 

CLR 
CLR 
SETB 
JB 
RETI 

lEO 
Pl.O 
Pl.O 
P3.2,$ 

IS TRANSMIT BUFFER' ALREADY EMPTY? 
YES, SET THE E BIr 
NO. CLEAR TRANSMlr BUFFER 
IGNORE PENDING EXT INTO (IF ANY) 

I RETURN. UPATE STATUS IN THE 
ISIU INTERRUPT ROUTINE. 

IS RECEIVE BUFFER ALREADY EMPTY? 
YES. SEr rHE E BIr 
NO. CLEAR RECEIVE BUFFER 

I UPDATE srATUS WITH 
.RECEPTION-DISABLED EVENT 
; (SrATUSaDS IF E=O) 

INTERRUPT THE 80186 
WAIl' TILL INTERRUPT IS ACKNOWLEDGED 
RErURN 

231784-,30 

231784-31 

Figure A-13. Execution of RECEIVE-DISCONNECT and TRANSMIT-DISCONNECT Commands 

5-126 



intJ AP-286 

;************ SERIAL CHANNEL (SIU) INTERRUPT •• * •••••••••••••• *. 
SlINT: CLR SI 

MOV A,R2 LOAD THE OPERATION FIELD 
CJNE A, 'OJH, SINTJl RECEIVE COMMAND PENDING? 
JMP SIREC YES. 

SINTJ1: CJNE A, '02H,SINTJ2 TRANSMIT-DISCONNECT PENDING? 
JMP SITDIS YES. 

SINTJ2: JMP SITRA TRANSMIT COMMAND IS PENDING 

; •• TRANSMISSION IS DISABLED 

SITOIS: JB RTS,SINTJJ REQUEST TO SEND ENABLED? 
JNB TBF,SINTJ3 YES. TRANSMISSION DISABLED? 

YES. 
CLR Pl.2 ; UPDATE STATUS WITH 
SETB Pl.3 ;TRANSMISSION-DISABLED EVENT 
SETB Pl.4 (STATUS=D9H) 

CLR lEO IGNORE PENDING EXT INTO 
CLR Pl.O 
SETB PLO INTERRUPT THE 80186 
JB P3.2, $ WAIT TILL INTERRUPT IS ACKNOWLEDGED 
RETI 

:*. A FRAME IS TRANSMITTED 

SITRA: JB RTS,SINTJJ ; A FRAME TRANSMITTED? 
; YES. 

CLR Pl.2 ; UPDATE STATUS WITH 
SETB Pl.3 :TRANSMIT-DONE EVENT 
SETB Pl.4 ; (STATUS~C9) • 

CLR lEO 
CLR Pl.O 
SETB Pl.O INTERRUPT THE 80186 
JB P3.2,$ WAIT TILL INTERRUPT IS ACRIIOWLEDGED 
RETI 

.* A FRAME IS RECEIVED 
231784-32 

SIREC: JB RBE,SINTJ3 RECEIVE BUFFER FULL? 
JNB BOV,SINTJ4 YES. BUFFER OVERRUN? 
SETB Pl.5 YES. SET THE E BIT 

SINTJ4 : MOV RO,RFL LOAD RO WITH RECEIVE BYTE COUNT 
MOV Ri,RSS LOAD Rl WITH RECEIVE BUFFER ADDRESS 
CLR lEO IGNORE PENDING EXT INTO (IF ANY) 
SETB PXO EXT INTO: PRIORITY 1 

MOV A,@Rl MOVE FIRST BYTE INTO ACC. 
MOVX @DP'I'R,A WRITE TO THE COMMAND/DATA REG 
SETB Pl.l ENABLE DNA REQUEST 
INC Rl INC POINTER TO RECEIVE BUFFER 
JB P3.3,$ WAIT FOR OHA ACK. 
DJNZ RO,CINTJ7 LAST BYTE MOVED? 
SJMP CINTJ8 YES 

CINTJ7: MOV A,@Rl LOAD RECEIVED DATA INTO ACC. 
MOVX @DPTR,A WRITE TO THE COMMAND/DATA REG. 
INC Rl INC POINTER TO RECEIVE BUFFER 
JB P3. 3, $ WAIT TILL DNA ACK 
DJNZ RO,CINTJ7 LAST BYTE MOVED TO COMMAND/DATA REG? 

NO. DEPOSIT THE NEXT BYTE 
CINTJ9: MOV A,RFL LOAD BYTE COUNT 

MOVX @DPTR,A WRITE TO THE COMMAND/DATA REG 
JB P3.3,$ WAIT FOR DNA ACK. 
MOV A,STAD LOAD STATION ADDRESS 
MOVX @DPTR,A WRITE TO THE COMMAND/DATA REG 
JB P3.3,S WAIT FOR DNA ACK. 
MOV A,RCS LOAD RECEIVE CONTROL BYTE 
MOVX @DPTR,A WRITE TO THE COMMAND/DATA REG 
JB P3.3,$ WAIT FOR DNA ACK. 
CLR Pl.l CLEAR DNA REQUEST 
CLR PXO EXTERNAL INTERRUPT: PRIORITY 0 

231784-33 

Figure A-14. Serial Channel Interrupt Routine 

5-127 



intJ 

CLR 
CLR 
SETB 
CLR 
CLR 
SETB 
JB 
RETI 

SINTJl: NOP 
RETI 

END 

Pl.2 
Pl. l 
Pl.4 
lEO 
Pl.O 
Pl.O 
Pl. 2, $ 

AP-286 

, UPDATE STATUS WITH 
'RECElVE~DONE EVENT 

(STATUS=D1H IF E-O) 
IGNORE PENDING EXT INTO 

, INTERRUPT THE 80186 
WAIT TILL INTERRUPT IS ACKNOWLEDGED 

Figure A-14. Serial Channel Interrupt Routine (Continued) 

5-128 

231784-34 



intJ APPLICATION 
BRIEF 

AB-36 

December 1987 

80186/80188 DMA Latency, 

@ Intel Corporation, 1987 

STEVE FARRER 
APPLICATIONS ENGINEER 

5-129 
Order Number: 270525-001 



inter AB-36 

When using the DMA controller of the 80186 and 
80188, there are several operating conditions which af­
fect the service time (latency) between when the DMA 
request is generated and when the bus cycles associated 
to the DMA transfer are actually rul).. This application 
brief describes those conditions which affect DMA La­
tency. 

DMA REQUEST GENERATION 

The minimum DMA latency is 4 clocks and, depending 
on when the signal arrives (Le. if the signal just missed 
the setup time), ii might appear to be almost 5 clocks. 
This 4 to 5 clock delay is due to a two phase synchroni­
zer and various transfer gate delays the DRQ signal 
must take before reaching the BIU. Conceptually the 
circuit looks like Figure 1. 

If the Bus Interface Unit (BIU) is available when the 
DRQ signal reaches it, then a DMA cycle will proceed 
at Tl of the bus cycle as the next clock. 

Also note that the DRQ signal is not latched, and must 
remain active until serviced. If the DRQ signal is 
brought low'after being asserted high, then a '0' will 
propagate through and; if the request had not yet been 
serviced, then the BIU will see a '0' and the cycle will 
never take place. 

Conditions Affecting DMA Latency 

The circumstances that affect DMA latency in order of 
worst case are as follows: 

1) HOLD 
2) LOCK - INTA 
3) Odd byte accesses 
4) Effective Address Calculations (EA) 

HOLD can indefinitely delay a DMA cycle. There is no 
mechanism internally to remove HLDA when a DMA 
request is pending. 

LOCKed instructions can also delay a DMA cycle by a 
significant amount, depending on the type of instruc­
tion locked. A typical locked XCHG instruction from 
memory to register could delay the DMA cycle by as 
much as 18 clocks if the memory access required two 
bus cycles (80188 or odd locations on the 80186). On 
the other hand, a locked repeat MOVS could delay a 
DMA cycle by up to 1.05 million clocks depending on 
the number of transfers and the number of bus cycles 
per transfers. 

Interrupt acknowledges can also affect DMA latency 
because the bus is locked out during the first two bus 
cycles required to fetch the interrupt vector type. This 
causes the worst case latency during interrupt acknowl­
edges to be: 

4 Clocks (Minimum Setup) 
10 Clocks (2 Bus Cycles + 2 Idle Clocks) Min 

14 Clocks Total 

Both HOLD and LOCK are extremely dependent on 
the type of system being designed and therefore are not 
really considered to be normal worst case latency. 
However, odd byte accesses and effective address calcu­
lations are conditions that frequently occur in almost 
all systems. Under these conditions of no HOLD, no 
LOCK, and no wait states, the worst case occurs when 
the DMA request loses to an instruction data cycle re­
quiring an effective address calculation. 

Effective addresses (EA) always require 4· clocks for 
calculation and can only take place during 
T3-T4-TI-TI, T4-TI-TI-TI, or TI-TI-TI-TI. This cre­
ates an extra minimum insertion of 2 T-idle cycles, If 
the EA requires an immediate value in the prefetch 
queue, then a signal goes active which places the EA 
bus cycle at a higher priority than any other BIU re­
quests. This is so the execution unit won't be waiting on 
the bus interface unit. If the EA hadn't required the 
value in the queue, then the EU could proceed with the 
next instruction shortly after it had sent the request to 
the BIU. Figure 2 shows the effects EA calculations 
have on DMA Latency. 

MO~'. 
CLK--------------------L----------------------~------~--------~-------' 

L- two phase synchronizer 
to sample asynchronous signals 

270525-1 

Figure 1. DMARequest Synchronfzatlon 

5-130 



inter AB-36 

Address Code Instruction 

-FA058 90 NOP 
FA059 90, NOP 
FA05A 2E87060100 XCHG AX,CS:WORD PTR 0001 

At..o STATUS 

269 FA05E 1100 ALE T1 11 =treCOgnlZed on edge 

Fetch of { 
270 OA05E 0100 FETCH T2 11 

last byte 271 OAOOO 0111 PASSIVE T3 11 DRO active 
272 OAOOO 0111 PASSIVE T4 11 necessary 
273 FA05F 1100 ALE T1"~ for the XCHG 
274 OA05F 0100 FETCH T2 11 DRO presented to BIU 

Instruction. 
275 OAOBE 0111 PASSIVE T3 .11 -L (too'late to stop fetch) 
276 OAOBE 0111 PASSIVE T4 11 
277 OAOBE 0111 PASSIVE T3 11 EA calculation 

278 OAOBE 0111 PASSIVE :::: } . 18 279 FAOll 1101 ALE 
CLOCKS 280 OA011 0101 READ T2 11 . 1 ~, DADO 1 0111 PASSIVE T3 11 

282 DADO 1 0111 PASSIVE T4 11 Fetch or memory read cycle for 
2B3 FA012 1101 ALE T1 11 the XCHG Instruction. 
284 OA012 0101 READ T2 11 
285 DADO 1 0111 PASSIVE T3 11 
286 DADO 1 0111 PASSIVE T411 
287 F800C 1101 ALE 11 -Dt.lA cycle begins 
288 1800C 0101 READ 11 
289 180FF 0111 PASSIVE 11 
290 180FF 0111 PASSIVE 11 

270525-2 
• If an immediate value had not been used, the EA would have been aborted and the DMA would have begun its bus 

cycle. In this case, the latency would be 8 clocks. 

Figure 2. Logic State Analyzer Trace and Accompanying Program Code . 

5-131 



inter APPLICATION· 
BRIEF 

AB-37 

December 1987 

80186/80188 EFI Drive and 
OscillatQr Operation 

© Intel Corporation, 1987. 

STEVE FARRER 
APPLICATIONS ENGINEER 

5-132 
Order Number: 270526-001 



inter AB·37 

There has been some confusion in the past regarding 
the correct input for EFI (External Frequency Input) 
use and what parameters should be used for crystal 
selection. This Application Brief discusses· the trade­
offs with each input so that one can decide which input 
suits his design and also lists the parameters for crystal 
selection. 

EFI Operation 

The oscillator circuit on the 186/188 is as shown in 
Figure I (simplified). Either input may be used for an 
EFI signal. Using XI requires very little drive from an 
external oscillator since it is essentially the gate of an 
NMOS transistor. Clock operation works fine using 
this input, but at higher frequencies the stray capaci­
tance on X2 begins to change the duty cycle of the 
clock. This will eventually cause the part to fail. 

270526-1 

NOTE: 
Driving X2 does not allow compatibility with future 
CMOS designs. 

Figure 1. Oscillator Circuit on the 186/188 

Using X2 as an EFI gives a broader frequency range 
but places a more stringent requirement on the drive 

capability of the external oscillator. Since X I is an in­
put, it may be grounded to minimize the capacitance. 
This in tum allows for a higher frequency range since 
the duty cycle remains closer to 50%. But with XI 
grounded, the output of the inverter (which is directly 
connected to X2) is always trying to output a high. This 
means the oscillator driving X2 must be capable of 
sinking up to IS rnA at cold temperatures when trying 
to drive it low. If the external oscillator is capable of 
supplying IS rnA, then this method is preferred. Other­
wise, XI should be used as an EFI. 

Caution: using X2 for EFI does not allow for CMOS 
compatibility at a future date. 

Crystal Operation 

The oscillator circuit is a single stage amplifier connect­
ed as a Pierce oscillator. There are no passive compo­
nents in the oscillator circuit, only a unique combina­
tion of depletion and enhancement mode FET's. Char­
acterization of the oscillator circuit showed that opera­
tion was optimum with crystal parameters as follows: 

ESR 30 ohms maximum 
(Equivalent Series Resistance) 

Co (Shunt Capacitance) 

CI (Load Capacity) 

7.0pfmax. 

20pf ±2 pf 

(mWmax. Drive Level 

This characterization data was supplied by: 

Standard Crystal Corporation 
9940 East Baldwin Place 

EI Monte, CA 91731 
(213) 443-2121 

5-133 



inter APPLICATION 
BRIEF 

AB-31 

December 1987 

The 80C186/80C188 Integrated 
Refresh Control Unit 

GARRY MION 
ECO SENIOR APPLICATIONS ENGINEER 

. @ Intel Corporation, 1987 Order Number: 270520-001 
5-134 



intJ AB·31 

The 80C186 and 80C188 incorporate a special control 
unit that integrates address and clock counters which, 
along with the Bus Interface Unit (BIU), facilitates dy­
namic memory refreshing. Refreshing is an operation 
required by dynamic memory to ensure data retention. 

Dynamic memory refreshing can be controlled using 
anything from an exotic memory controller to a simple 
timer along with a DMA controller. In fact, the 
80C186 device accomplishes the task memory refresh­
ing by using one of the internal timer/counters and a 
DMA channel. However, doing this meant that very 
desirable internal functions were no longer available to 
do more useful work. 

Dynamic memory, unlike static or non-volatile memo­
ry, always require some form of a memory controller to 
enable read and write operations. Therefore, even the 
most basic dynamic memory interface has a minimum 
set of support logic. The advent of programmable logic 
and highly integrated dynamic memory has made the 
job of designing a memory controller somewhat 
straightforward. However, directly supporting memory 
refresh still can complicate many controller designs. 

The designer of a memory controller must take into 
account CPU-versus-refresh arbitration and must pro­
vid~ a mechanism to generate periodic refresh requests. 
Most dynamic memory devices now contain internal 

RAS 

CAS R/W CONTROL 

WE 
CLOCK 

GENERATORS 
ROW CLOCK 

OE COLUMN CLOCK , 

r 
INTERNAL ADDRESS 

GENERATOR R D 

----1' 
o E 

MUX 
Wc MEMORY 

11' 
0 ARRAY 
D 
E 

l...l\ A 
R 

'----II D B SENSE AMPS 
ADDRESS BUS J\ D U 

R F COLUMN DECODER .. E F 
S E 
S R SENSE AMPS 

""--
R D 

---" 
o E 
Wc MEMORY 

---v 0 ARRAY 
D 
E 
R 

refresh address counters which eliminate the need for 
external refresh address generation. However, such de­
vices tend to complicate a memory controller design. 
The 80C186 simplifies dynamic memory controller de­
sign by integrating a refresh mechanism into the opera­
tion of the CPU. 

This application brief is not intended to be a discussion 
of dynamic memory controller design. Instead, it will 
concentrate on the operation of the Refresh Control 
Unit with the 80C186, and how it can help simplify a 
memory controller. 

The discussions on the following pages apply to BOTH 
the 80C186 and 80C188 except where noted. 

UNDERSTANDING DYNAMIC 
MEMORY 

Before explaining how memory refreshing is accom­
plished, some understanding of a Dynamic Random 
Access Memory (DRAM) device is needed. Figure 1 
shows a simplified block diagram of a DRAM device, 
while a block diagram of a typical dynamic memory 
controller is shown in Figure 2. 

R D 

f..---..1I 
o E 
Wc MEMORY 

R/~l ~ 
0 ARRAY CONTROL D 
E 
R 

SENSE AMPS IN/OUT 

.. BUFFERS .Q2!!4 
COLUMN DECODER 

r ~ SHIFT 
SENSE AMPS REGISTER 

R D 

-----" 
o E 
Wc MEMORY 

--y 0 ARRAY 
D 
E 
R 

270520-1 

Figure 1. Random Access Memory Device 

5-135 



AB-31 

ADDRESS 
MUL llPLEXERS 

Al:AI9 
..J:::::;" 9 bit Memory Address Bus (MAO:MA8) 

CPU ADDRESS ~ 

sa 1J. j l 
256KX4 256KX4 
DRAMS DRAMS 

RAS RAS 
CAS CAS 
WE ~ WE 

MEMORY CHIP SELECT MUX OE OE 
READ RAS --..JI 

00-7 
-J. 

00-7 
~, ....... 

WRITE CAS 

MEMORY WEH 
AfJJ CONTROLLER 

WEL 
SHE OE 

CLKOUT 

'" Q lSI 
Iii Q 

16 CPU DATA BUS ;:; S 

270520-2 

Figure 2. Minimum Configuration Memory Controller 

The typical DRAM memory array is built as a matrix. 
Thus, any bit or cell in the memory array is accessed by 
specifying a unique row and column address. As shown 
in Figure I, the row and column addresses are multi­
plexed through one set of address inputs. Multiplexing 
the address inputs helps reduce the number of pins re­
quired to support large memory arrays. For instance, 
adding only one address bit will result in a memory 
array 4 times as large. 

Two control lines, RAS and CAS, are used to strobe an 
address into the memory chip. Figure 3 illustrates a 

timing diagram for a typical memory read access and 
the relationship between the RAS and CAS signals. 
The signal MUX controls which half of the address is 
presented to the memory devices. After generating the 
row address strobe (RAS), the decoder selects a row of 
memory cells whose data value will be detected by a 
Sense Amplifier. The Sense Amplifier then presents the 
data to the column decoder. Note that all cells associat· 
ed to a row get accessed. The fact that all cells within a 
row are accessed will be used later to explain why only 
the RAS portion of the memory address is required to 
refresh a device. 

MEMORY -"'\.I,,....----~I-------------------­

ADDR~SBUS __ -'r~~--__ --~rl~------------~--------------''-----------

DATA OUT Valid Data x::: -----------------------
tRS =: Row Address Setup to RAS J, 
tRH = Row Address Hold from RAS J, 
tos = Column Address Setup to CAS J, 
tcH = Column Address Hold from RAS J, 

tRACC =, RAS Access Time 
tcACC = CAS Access Time 
toEACC = DE Access Time 

Figure 3. DRAM Signal Timings 

5-136 

270520-3 



AB-31 

When the column address is strobed, it is here that only 
one of the memory cells is selected. The memory cell 
will either be written to or read from depending on the 
the control signals WE and OE respectively. Since data 
from one entire row is presented to the column decod­
er, it is possible (on some devices) to simply cycle 
through column addresses to access additional data. 
The basic idea, however, is that two sets of addresses 
are required to access a memory cell within a memory 
array. Furthermore, specifying a single row address in­
ternally accesses all memory cells within that row. 

The minimum memory controller interface consists of a 
sequencer and an address multiplexer. The sequencer is 
responsible for generatin~e correct control signals: 
RAS; CAS; MUX; WE; OE. The address multiplexer 
logic is responsible for translating the processor address 
bus to the memory address bus. These two pieces of 
logic can exist in any form, from simple TTL gates to 
single chip solutions. However, what is missing from 
the simplified memory controller is a mechanism to 
perform memory refresh. 

UNDERSTANDING MEMORY 
REFRESH 

As indicated earlier, dynamic memory needs to be re­
freshed in order to maintain its data. Refreshing is ac­
complished whenever a memory cell is accessed. It is 
not necessary to read a memory location and then write 
the value back in order to refresh a memory cell. Sim­
ply cycling through a complete set of row addresses is 
all that is required. Remember, since a row accesses all 
memory cells associated to it, accessing all rows will 
access all the cells within the device. . 

Referring back to Figure 2, the 9 address bits presented 
to the memory devices are multiplexed from the 18 bits 
of address generated by the 80C186. In the design, ad­
dress bits A1-A9 are presented during RAS, while ad­
dress bits A10-A18 are presented during CAS. Note 
that address bit AO is not used because the memory 
array is organized as word wide; AO along with BHE 
are used to select one or both of 'the bytes within a 
word. 

Cycling through row addresses is the only requirement 
needed to refresh a DRAM device. Using the example 
in Fignre 2, 9 bits of address are needed. Nine bits 
represent 512 unique addresses, ,and the only require­
ment is that each unique address be regenerated every , 

8 ms (maximum refresh rate for most devices with 512 
rows). An 8 ms refresh interval divided by 512 address­
es results in an average refresh cycle rate of 15.625 mi­
croseconds. Therefore, every 15.625 microseconds a 
mechanism must exist that will access the DRAM de­
vice, each time presenting a new row address. Any rate 
faster than 15.625 microseconds is acceptable, but sig­
nificantly faster times have the potential of decreasing 
memory performance. 

WAYS TO REFRESH A MEMORY 
DEVICE 

For most dynamic memory devices, there are several 
ways in which a refresh cycle can be run. The first and 
simplest way is to generate memory read cycles every 
15.6 'microseconds. Each new memory read cycle 
would generate a unique address. When refreshing is 
accomplished using memory read cycles, the memory 
controller is simplified. Only the basic control signals 
need to be generated, which are the minimum needed to 
access the memory anyway. Simplicity is, however, ac­
companied by one drawback; bus overhead. Using 
memory reads to perform DRAM' refreshing means 
that one bus cycle every 15.6 microseconds is wasted. 
When operating at very slow speeds, a wasted bus cycle 
might appear to be significant. But if a bus cycle takes 
only, say, 320 nanoseconds to complete, running a re­
fresh cycle every 15.6 microseconds represents a two 
percent hit in bus performance. 

A second method relies on the fact that most dynamic 
memory devices now have built in refresh address 
mechanisms. DRAM refreshing can be accomplished 
by generating CAS before RAS signaling (see Fignre 
4a). This method requires that an external signal gener­
ate a periodic request to the DRAM controller to init1- ' 
ate the refresh cycle. A method similar to CAS before 
RAS refreshing ~s hidden refresh. Figure 4c illustrates 
the timing involved to perform hidden refresh. No re­
quest logic is needed, since the memory access itself is 
what initiates the refresh cycle. However, constant 
memory accessing is required in order to maintain re­
freshing. Once accessing stops, refreshing stops. Both of 
the methods described have the advantage of not con­
suming bus bandwidth, but require the memory con­
troller to, handle the somewhat different (from normal 
memory accessing) signaling requirements. 

5-137 



inter AB·31 

:::)( ADDRESS (DON'T CARE)<D x::: 
RAS '---I 
CAS ------------~-------------

270520-5 
OE = WE = YOH 

270520-4 
OE = Wi: = YOH 

Figure 4a. CAS before RAS Refresh 

Figure 4b. RAS Only Refresh 

=x==x _________ x: 
NORMAL ACCESS 

, ______ r--
270520-6 

Figure 4c. 

NOTES: 
1. Refresh address provided internal to memory device. 
2. Refresh address presented external to memory device. 
3. Refresh address generated internally, and cycle does not effect memory access in progress (i.e. hidden). 

Figure 4. Alternate Refreshing Methods 

A final method is to implement a discrete design that 
supports refresh control and refresh address genetation. 
The circuit details are shown in Figure 4b. A discrete 
design allows the most design flexibility and can be tai­
lored to meet any system-to-memory interfacing re­
quirements. 

There are other methods available, most of which in­
volve single-chip dedicated memory controllers. How­
ever, any memory controller design that performs the 
function of refreshing either directly or through exter­
nal support circuitry has one major concern; arbitration 
between the refresh cycle and a normal memory access. 
The best way to make the operation of the DRAM 
memory controller a true slave to the operation of the 

CPU is to include refreshing as part of the functionality 
of the CPU. By offioading the task of memory refresh­
ing onto the CPU, the memory controller can be sim­
plified and dedicated to the duty of DRAM interfacing. 

The idea that the 80C186 refresh, cycle is simply a 
memory read means that the dynamic memory control 
logic does not need to differentiate between refresh cy­
cles and normal memory read cycles. This simplifies 
the design of the memory controller. There are no 
special signaling requirements needed, and RAS only 
refreshing (for low-power designs) can be easily accom­
modated. Funher, since the request is generated inter­
nally and synchronous with the operation of the BIU, 
no special external logic needs to detect when a refresh 
cycle conflicts with a CPU access. 

5-138 



AB-31 

R/W REGISTER 

CPU 
Interface 

R/W REGISTER 

R/W REGISTER MDRAM REGISTER 

REFRESH REQUEST 

REFRESH ACKNOWLEDGE 

20-blt Refresh Address 

BIU 
Interface 

270520-7 

Figure 5. Refresh Control Unit Block Diagram 

80C186 REFRESH CONTROL 
FEATURES 

The Refresh Control Unit (RCU) of the 80CI86 con­
sists of a 9-bit address counter, Ii 9-bit down counter, 
and support logic. The block diagram can be seen in 
Figure 5. 

The '9-bit address counter is controlled by the BIU and 
used whenever a refresh bus cycle is executed. Thus, 
any dynamic memory device whose refresh address re­
quirement does not exceed nine bits can be directly sup­
ported by the 80C186. A special register has been de­
fined to allow the base (starting) address of the refresh 
memory region to be specified. This base address can be 
located .on any 4 kilobyte boundary. Furthermore, if 
this refresh base address overlaps any of the defined 
chip select regions, the chip select defined for that re­
gion will go active. 

The 9-bit down counter initiates a refresh request. 
When the counter decrements to 1 (it decrements every 
clock cycle), a refresh request is presented to the BIU. 
When the' bus is free, the BIU will run the refresh 
(memory) bus cycle. Note that since a refresh bus cycle 
is executed by the BIU, the faster refresh cycles are 
requested the greater the impact on bus performance. 
Referring back to the discussion of request rates, the 
maximum refresh period is typically 15.6 microseconds. 
With the 80C186 operating at 12.5 MHz, this repre­
sents a refresh bus impact of only 2%. However, at 5 
microseconds the bus impact is 15%. Therefore, the 
refresh request rate should be tailored to meet the needs 
of the dynamic memory and the system. The 80CI86 
provides flexibility by allowing the request rate to be 
programmable in 80 ns steps (at 12.5 MHz). 

To facilitate low power designs, the refresh bus cycle 
provides a mechanism whereby the dynamic memory 

devices can be turned off during refresh accesses. Low 
power control is accomplished by driving both address 
bit AO and the control signal BHE to a high level. Es­
sentially an invalid bus access condition exists, since AO 
and BHE are used to indicate which half of the data 
bus is being accessed. When both are high during the 
access, the indication is that neither half of the bus is 
being used for the data transfer. This is acceptable for 
refresh bus cycles since no data is actually being trans­
ferred. If the memory controller takes advantage of this 
condition, the output enables of the dynamic memory 
devices (as well as the CAS strobe) can be disabled 
during refresh bus cycles, providing overall lower pow­
er consumption. 

PROGRAMMING CHARACTERISTICS 
OF THE REFRESH CONTROL UNIT 

A block of control registers are defined in the 
Peripheral Control Block (PCB) that define the operat­
ing characteristics of the refresh control unit (refer to 
Figure 5). These registers are only accessible when the 
80C186 is operating in enhanced mode. When in com­
patibility mode, the 80CI86 will ignore any reads or 
writes to the RCU registers. 

The three registers associated with the refresh unit 
(MORAM, CORAM, EORAM) provide the following 
features: 

I) Enable/disable refresh unit 
2) Establish a refresh request rate 
3) Establish a refresh memory region 
4) Examine the refresh down counter 

It is not necessary to program any of these registers in a 
. specific sequence, although the refresh request rate and 
refresh base address registers should be programmed 
before the refresh unit is enabled. 

5-139 



inter AB·31 

Programming the Memory Partition 
Register . 

The MDRAM register (Figure 6) is used to define ad­
dress bits A13 through Al9 of the 20 bit refresh ad­
dress. This essentially establishes a memory region 
which will be accessed during refresh bus cycles. Typi­
cally, the refresh memory region will overlap a chip 
select that is used to access the dynamic memory. Over­
lapping the refresh memory region with a chip select 
memory region, means no additional external hardware 
is needed to support refresh bus cycles since it essential­
ly operates the same as memory read cycles. When the 
80C186 is reset, the MDRAM register is initialized to 
zero. 

Figure 7 illustrates how the refresh address is generat­
ed. Address bits AI0-AI2 are not programmable and 
are always driven to a zero during a refresh bus cycle. 
Address bits Al through A9 are derived by a 9-bit lin­
ear-feedback shift counter. The address counter is not 
ascending or contiguous, meaning that the counter does 
not start at 0 and increment to 511 before resetting 
back to o. For refreshing purposes, it is not important 
that the address be contiguous and count up or down. 
Rather, the only requirement is that all combinations of 
the 512 addresses be cycled through before being re­
peated. Equation 1 provides the state definition of the 
9-bit refresh address counter and can be used to deter­
mine the exact counting sequence. Figure 8 illustrates 
the gate logic used to create such a counter. 

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

MDRAM:IM6 M5 M4 M3 M2 M1 MO 0 0 0 0 0 0 0 0 0 

bits 0-8: Reserved, should be written as a 0 to maintain future compatibility, will be read back as o. 
bits 9-15: MO-M6, are used to define address bits A 13-A 19 (respectively) of the 20-bit memory refresh address. These 

bits are set to 0 on RESET. 

Figure 6.MDRAM Register Format 

Address Bit 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

PhYSicalARdedfrreeSshs I M6 M5 M4 M3 M2 M1 MO 0 . 0 0 CAB CA7 CAB CAS' CM CA3 CA2 CM CAO 

Bit 0: Always driven to a 1 (Logic High). This is true for both the 80C186/80C188. 
Bits 1-9: CAO-CAB, are generated by the 9-bit Linear-Feedback shift counter. 
Bits 10-12: Always driven to a 0 (Logic Low). 
Bits 13-19: MO-M6, are defined by the MDRAM Register. 

Figure 7. Physical Refresh Address Generation 

CAO - CA1 
CA1 - CA2 

CA2 -- CA3 
CA3 - CM 
CM - CAS 
CA5 - CA6 
CA6 - If (CM-CA6 = 1111·11B), 

then CAS = Inverted CAO 
else CA6 = «CAO .XOR. CM) .XNOR. (CA2 .XOR. CAS» 

CA7, CAB - If (CAO - CA6 = 0111111B) 
then CA7, CAB = CA7. CAB + 1 
else CA7. CAB = CA7. CAB 

Equation 1. Refresh Counter Operation 

5-140 



inter AJ3-31 

RESET 
OA 

C 
RESET 

REFRESH Oe A5 
CLK ACKNOWLEDGE Oc 

IN 00 to BIU 
OE 
OF 
OG 

SEL A A t-..... -o.C "'--I-_.J 
'-----iOUT 

MUX 

CLKON 
~R~E;\iFR;.:.:E:.::S::.:H_I>CLK A J---'CA:::7:..... ______ • 
ACK C to BIU 

..:.R:.:E~SET:.:..-_-I CLR B J---'A:::;Bl...... ______ • 

Biriary Counter 
270520-B 

Figure 8. Logic Representation of Refresh Address Counter 

Bit 15 14 13 12 11 10 9 876 5 4 3 2 0 

CDRAM: I 0 0 0 0 0 0 0 ~ ~ ~ ~ ~ ~ ~ ~ ~I 
Bits 0-8: CO-CB, define the number of CLKOUT cycles between each Refresh Request 

o = 512, 1 = 1,2 = 2, ... These bits are set to 0 on RESET. 
Bits 9-15: Reserved, should be written as 0 to maintain future compatibility, will always be read ~ack as o. 

Figure 9. CORAM Register Format 

There are no limitations placed on the programming of 
the MORAM register, but be aware that any chip se­
lect memory region that overlaps the address estab­
lished by the MORAM register will be activated during 
refresh bus cycles. Therefore, the register should be 
programmed to correspond to the chip select address 
that is activated for the dynamic memory partition: 

Programming the Refresh Clock 
Register 

The CORAM register (Figure 9) is used to define the 
rate at which refresh requests will be internally generat­
ed. The CORAM register is used to maintain the start-

ing value of a down counter, which decrements each 
falling edge of CLKOUT. When the counter decre­
ments to 1, a refresh request is generated and the coun­
ter is again loaded with the value contained in the 
CORAM register. Initially, however, the contents of 
the CORAM register is loaded into the down counter 
when the enable bit in the EORAM register set. Thus, 
if the CORAM register is changed, the new value will 
take effect when either the down counter reaches 1 and 
reloads itself, or whenever the E bit is written to a 1 
(this is true whether the bit was previously set or not). 
When the 80C186 is reset, the CORAM register is ini­
tialized to zero. A value of zero in the CORAM regis­
ter is used to indicate the maximum count rate of 512 
clocks. . 

5-141 



'intJ AB-31 

I RpERIOD (,..,S) • FREQ (MHz) I = CORAM Register Valve 
# Refresh Rows + (# Refresh Rows· % Overhead) 

Rperiod = Maximum Refresh period specified by the DRAM manufacturer (time in microseconds). 
FREQ = Operating Frequency at BOCIBS in megahertz. 
#Refresh Rows = Total number of rows to be refreshed. 
% Overhead = Derating factor that estimates the number of missed refresh requests (typically 1-5%). 

Figure 10. Equation to Calculate Refresh Interval 

Bit 15 14 13 12 11 10 9 

lEO 0 0 0 0 0 

876 5 4 320 

~ ~ ~ ~ ~ ~ ~ ~ ~I 
, Bits 0-8: T 0-T 8, Refresh request down counter clock count. These 'bits are read only and represent the current value of 

the counter. Any write operation to these bits is ignored. These bits are set to 0 on RESET or when the E bit is 
cleared. 

Bits 9-14: Reserved, should be Wrillen to as a 0 to maintain future compatibility, will always be read back as zero. 
Bit 15: E, enables the operation of the refresh control unit. Selling the E bit will automatically load the Request Down 

Counter. Clearing the E bit stops refresh operation and clears the Down Counter. 

Figure 11. EDRAM Register Format 

The equation shown in Figure 10 can be used to deter­
mine the value of the CDRAM register needed to estab­
lish a desired refresh request ratl;. Note that the equa­
tion is based on the internal operating frequency of the 
8OC186. Therefore, the request rate is effected by any 
change in operating frequency. Modification of the op­
erating frequency can occur in two ways: modifying the 
input clock or entering power-save mode. There is no 
upper limitation as to the frequency of refresh requests 
(other than programming), but there is a lower limit. 
This lower limit is based on the fact that the request 
rate can be no faster than the time it takes to service the 
request. Subsequently, the minimum programming val­
ue of the CDRAM register should be 18 (12H). It is 
very doubtful that this will ever become a problem 
when operating at normal frequencies, since the refresh 
rate of most dynamic memories is well above this mini­
mum programming value. 

However, when making use of the power-save feature 
of the 80C186, it is possible to lower the operating fre­
quency such that it will prevent adequate refreshing 
rates. When operating at 12.5 MHz, dividing the clock 
by 16 results in a cycle time of 1.28 microseconds. Since 
the minimum value of the CDRAM is 18, the mini­
mum refresh rate is 23.04 microseconds. 23 microsec­
onds is not fast enough to service most dynamic memo­
ries. Therefore, caution must be exercised when using 
the power-save feature of the 80C186. When there is a 
need to keep dynamic memory alive, the clock should 
not be divided much below 2 MHz to avoid monopoliz­
ing the bus with refresh activity. If there is no desire to 
keep memory alive during power-save operation, then 
the refresh unit can simply be disabled during this time. 

Programming the Refresh Enable 
Register 

The EDRAM register (Figure II) is used to enable and 
disable the refresh control unit. Furthermore, reading 
the register returns the current value of the down coun­
ter. 

Setting the E bit enables the RCU and loads the value 
of the CDRAM register into the down counter. When­
ever the E bit is cleared, the refresh control unit is 
disabled and the down counter is cleared. Disabling the 
refresh control unit does not change the contents of the 
refresh address counter (i.e. it is not cleared or initial­
ized to any specific value). Thus, when the refresh unit 
is again enabled, the address generated will continue 
from where it left off. Resetting the 80CI86 automati­
cally clears the E bit. There are no refresh bus cycles 
during a reset. 

The current value of the. down counter, as well as the 
present state of the E bit can be examined whenever the 
EDRAM register is read. Any unused bits will be re­
turned as zero. Whenever the E bit is cleared, the TO 
through T8 bits will be read as zero. 

REFRESH CONTROL UNIT 
OPERATION 

Figure 12 illustrates the two major operational func­
tions of the refresh control unit that are responsible for 
initiating and controlling DRAM refresh bus cycles. 

5-142 
\, 



inter AB·31 

Refresh Control Unit Operation 

Executed 
~ _ • Evary 
, Clock.J.-

270520-9 

BIU Re~resh Bus Operation 

Continua 
270520-10 

Figure 12. Flowchart of RCU Operation 

The down counter is loaded (with the contents of the 
CORAM register) on the falling edge of CLKOUT, 
either when the EFRSH bit is set or whenever the 
counter decrements to 1. Once loaded, the down coun­
ter will decrement every falling edge of CLKOUT. It 
will continue to decrement as long as the EFRSH bit 
remains set. 

When the down counter fmally'decrements to 1, two 
things will happen. First, a request is generated to the 
BIU to run a refresh bus cycle. The request remains 
active until the bus cycle is run. Second, the down 
counter is reloaded with the value contained in the 
CORAM register. At this time, the down counter will 
again begin counting down every clock cycle, it does 
not wait until the request has been serviced. This is 
done to ensure that each refresh request occurs at the 
correct interval. Otherwise, if the down counter only 
started after the previous request were service, the time 
between refresh requests would also be a function of 
bus activity, which for the most part is unpredictable. 
When the BIU services the refresh request, it will clear 
the request and increment the refresh address. 

80C188 Address Considerations 

The physical address that is generated during a refresh 
bus cycle is shown in Figure 7, and it applies to both 
the 8OC186 and 8DC188. For the 8DC188, this means 

. that, the lower address bit AD will not toggle during 
refresh operation. Since the 8DC188 has an 8-bit exter­
nal bus, AD is used as part of memory address decod-

ing. Whereas the 8DC186, with its 16-bit external bus, 
uses AD (along with BHE) to select memory banks. 
Therefore, when designing 8DC188 memory subsystems 
it is important not to include AD as part of the ROW 
address that is used as a refresh address. Appendix A 
illustrates Memory Address Multiplexing Techniques 
that can be applied to the 8DC186 and the 8DC188. 

MISSING REFRESH REQUESTS 

Under most operating conditions, the frequency of re­
fresh requests is a small percentage of the bus band­
width. Still, there are several conditions that may pre­
vent a refresh request from being serviced before anoth­
er request is generated. These conditions include: 

1) LOCKED Bus Cycles 
2) Long Bus accesses (wait states) 
3) Bus HOLD 

LOCKED Bus Cycles 

Whenever the bus is LOCKED, the CPU maintains 
control of the BIU and will not relinquish it until the 
locked operation is complete. Therefore, internal opera­
tions like refresh and DMA are not allowed to execute 
'until the LOCKED instruction has completed. Where 
this presents the greatest problem is when an instruc­
tion such as a move string is executed, and is locked . 
The move string instruction can take from several 
clocks to hundreds of thousands of clocks to complete. 
Obviously anything that takes longer than 512 clocks to 
complete will always cause a refresh overflow. 

5-143 



. AB·31 

Care should be taken not to generate long executing 
. instructions that require bus accesses and are locked. 
'The refresh request interval can be shortened to com-
pensate for missing requests. 

Long Bus Accesses 
The 80C186 does not provide any mechanism to abort 
or terminate a bus access in the event ready is not re­
turned within a specified amount of time (the 80C186 
will infinitely wait for ready). Therefore, if a bus access 
is in progress when a refresh request is generated, the 
bus access must complete before the request will be 
serviced. 

Bus HOLD 

Special consideration is given when a refresh request is 
generated and the 80C186 is currently being held off 
the bus due to a HOLD request. 

When another bus master has control of the bus, the 
HLDA signal is kept active as long as the HOLD input 
remains active. If a refresh request is generated while 
HOLD is active, the 8OC186 will remove (drive inac­
tive) the HLDA signal to indicate to the other bus mas­
ter that the8OC186 wishes to regain control of the bus 
(see Figure 13). If, and only if, the HOLD input is 
removed will the BIU begin to run the refresh bus cy­
cle. 

Therefore, it is the responsibility of the system designer 
to ensure that the 8OC186 can regain the bus if a refresh 
request is signaled. The sequence of HLDA going inac­
tive while HOLD is active can be used to signal a pend­
ing refresh request. HOLD need only go inactive for 

one clock period to allow the refresh bus cycle to be 
run. If HOLD. is again asserted, the 80C186 will give 
up the bus after the refresh bus cycle has been run 
(provided there is not another refresh request generatljd 
during that time). 

EFFECTS OF MISSING REFRESH 
REQUESTS 

If a refresh request has not' been serviced before another 
request is generated, the new request is not recorded 
and is lost. For instance, if the interval between refresh 
request is 15 microseconds and one request is lost, then 
the time between two requests will be 30 microseconds 
when the next request is fmally serviced. In this exam­
ple, missing one request will add 15 p.s to the total 
refresh time. If it is anticipated that refresh requests 
may be missed (due to programming or system opera­
tion), then the refresh request interval should be short­
ened to allow for missed requests. 

Since the BIU is responsible for maintaining the refresh 
address counter, missing a refresh requests does not im­
ply that refresh addresses are skipped. In fact, an ad­
dress can never be skipped unless a reset occurs. 

CONCLUSION 

The Internal Refresh Control Unit of the 80C186 and 
80C188 helps solve three issues concerning DRAM re­
freshing: a way to generate periodic refresh requests; a 
way to generate refresh addresses; a way to simplify 
DRAM memory controllers. Once a memory controller 
has been designed to handle the simple tasks of reading 
and writing the task of refreshing has already been built 
in. 

5-144 



inter AB·31 

@r"'~@ I®® HLDA _____ ooo...:l:::/ ~ 000 ___________ --1. 

ooo-ooo~ooo _____ _1~ 

Ref Active __________________ ..JJ® '--- 270520-11 

NOTES: 
1. System generates HOLD request. 
2. HLDA is returned and 80C186 floats bus/control. 
3. Refresh request is generated internal to 80C186. 
4. 80C186 lowers (removes) HLDA to signal that it wants the bus back. 
5. 80C186 waits until HOLD is lowered (removed) for at least 1 clock cycle (minimum HOLD setup and hold time) to 
execute the refresh bus cycle. If HOLD is never lowered. the 80C186 will not take over the bus. 
6. 80C186 runs the refresh bus cycle. 
7. HOLD can be again asserted after the 1 clock duration. 
8. The refresh request is cleared after the bus cycle has been executed. 
9. If HOLD was again asserted. the 80C186 will immediately relinquish the bus back. If no HOLD occurred. normal CPU 
operation will resume. 

Figure 13. HOLD/HLDA Timing and Refresh Request 

5-145 



inter 

APPENDIX A 
TYPICAL DRAM ADDRESS GENERATION 
CONSIDERATIONS FOR 80C186/80C188 

80C186 DESIGNS 
Row Address Column Address 

(AO-AX) (AO-AX) 

64Kx 1 (128K Bytes) A1-A8 AS-A16 
16Kx4 . (32K Bytes) A1.·A8 AS-A14 
256Kx 1 (512K Bytes) A1-AS A10-A18 
64Kx4 (128K Bytes) A1-A8 AS-A16 
1Mx 1 (2M Bytes) A1-A10 A11-A1S(+ Bank) 
256Kx4 (512K Bytes) A1-AS A10-A18 

80C188 DESIGNS 

NOTE: 
Address bit AO can be used in either RAS or CAS addresses, so long as it is not included in any refresh address 
bits. . 

Row Address Column Address 
(AO-AX) (AO-AX) 

64Kx 1 (64K Bytes) A1-A7,AO A8-A15 
16Kx4 (16K Bytes) A1-A7,AO A8-A13 
256Kx 1 (256K Bytes) . A1-A8, AO AS-A17 
64Kx4 (64K Bytes) A1-A8 AO, AS-A15 
1Mx1 (1M Byte) A1-AS,AO A10-A1S 
256Kx4 (256K Bytes) A1-AS AO, A10-A17 

RAM Type RASAdd CAS Add Refresh Add 

64Kx 1 AO-A7 AO-A7 AO-A6 
16Kx4 AO-A7 AO-A5 AO-A6 
256Kx 1 AO-A8 AO-A8 AO-A7 
64Kx4 AO-A7 AO-A7 AO-A7 
1Mx 1 AO-AS AO-AS AO-A8 
256Kx4 AO-A8 AO-A8 AO-A8 

5-146 



inter APPLICATION 
BRIEF 

AB-3S 

December 1987 

DRAM Refresh/Control with the 
80186/80188 

@ Intel Corporation, 1987 

STEVE FARRER 
APPLICATIONS ENGINEER 

5-147 
Order Number: 270524-001 



intJ AB-3S 

In many low-cost 80186/80188 designs, dynamic mem­
ory offers an excellent cost/performance advantage. 
However, DRAM interfacing is often complicated by 
the need to perform memory refreshing. This applica­
tion brief describes how to use the Timer and DMA 
functionality of the 80186/80188 to perform memory 
refresh. 

THEORY OF OPERATION 

Dynamic RAM refreshing is accomplished by strobing 
a ROW address to every ROW of the DRAM within a 
given period of time. One way to do this is to perform 
periodic sequential reads to the DRAM using a DMA 
controller and'a Timer. This can be achieved with the 
80186/188 by Programming Timer 2 and one of the 
DMA channels such that the timer generated one 
DMA' cycle approximately every 15 micro-seconds. 
Please note that this is a single row refresh method and 
not a burst refresh. Single row refreshing reduces the 
bus overhead considerably when compared to burst re­
freshing. 

The control logic of the DRAM is such that a' RAS 
(row address strobe) occurs on every memory read, re­
gardless of the address. This is necessary because the 
DMA channel is cycling through the entire 1 MByte 
address space and the address of the refresh cycle does 
not always fall within the range of the DRAM bank. 

Although the address may be outside the DRAM 
range, the lower address bits continue to change and 
roll over to provide the row address. ' 

READY LOGIC WITH MEMORY 

Since the DMA controller is cycling through the entire 
I MByte address space, care must be taken to ensure 
that a READY signal is available for all addresses. One 
way to do this is to use only the internal wait state 
generator for memory areas and to strap the SRDY and 
ARDY pins HIGH. Whenever a refresh cycle occurs 
outside of a predefined internal wait state area, the ex­
ternal ready pins, which are active HIGH, will com­
plete the bus cycle. 

If it is necessary to use the external ready signals for 
certain memory regions, then it will be necessary to add 
logic which will generate a ready signal whenever the 
address of a refresh cycle falls where there is no memo- , 
ry. This can easily be accomplished by either decoding 
a couple of high order address lines, or by AND-ing 

all the chip selects so that READY goes active whenev­
er all the memory chip selects are inactive (i.e. the cycle 
is not in a valid memory region). 

BUS OVERHEAD 

The absolute maximum overhead can be calculated at a 
given speed by taking the number of refresh cycles di­
vided by the total number of bus cycles for a given 
period of time. At 8 MHz these values can be calculat­
ed as follows: 

2 bus cycles , 
/ X 100 = 6.6% maximum overhead 

15.2 p.s 500 ns 

In reality, the bus overhead associated with the DMA 
cycles is much lower due to the instruction prefetch 
queue. When a DMA cycle is requested by the timer for 
a refresh cycle, -the Bus Interface Unit honors the re­
quest on the, next bus cycle boundary (with the excep­
tion of LOCKed bus cycles and odd aligned accesses). 
Typically this time is idle time on the bus and the im­
pact on the overall performance is extremely small. The 
following table shows more realistic data which was 
acquired by running 6 different benchmarks with and 
without the DMA channel enabled to provide refresh 
every 15.2/1s. 

BENCHMARK RESULTS @ 8 MHz 

Minimum Maximum Average 

80186 1.3% 5.9% 2.5% 
80188 2.4% 6.5% 3.4% 

The programs which showed the highest bus overhead 
tended to be very bus intensive. Also note that at faster 
frequencies the bus overhead becomes even less. 

DMA OPERATION 

The DMA controller is programmed to be source syn­
chronized with the TC (transfer count) bit cleared. This 
ensures that the DMA controller never reaches a final 
count. The source pointer continues to increment 
through memory on every cycle. When FFFFFH is' 
reached, the address rolls over to OOOOOH 

The programming values for the DNA registers are 
shown in Figure 1. The source pointer may be initial­
ized to any location since the starting location of the 
refresh is arbitrary. 

5-148 



inter AB-3S 

The value of the Transfer Count register is also arbi­
trary since the TC bit is not set. The DMA channel will 
continue to run cycles upon request from Timer 2 even 
after the Transfer Count register has reached zero. 
Once zero is reached, the Transfer Count register will 
roll over to FFFFH and continue to count down. 

The destination pointer may be set to any available 
memory or I/O location. This pointer must be set so 
that it neither increments nor decrements. Otherwise, 
the address of the deposit cycle would cycle through 
memory or I/O doing writes which could possibly be 
destructive. Thus the INC and DEC bits of the control 
register should be cleared . 

NOTES: 

.-------SQURCE SYNCHRONIZED 
,.-----ACCEPT TIMER REQUEST 

r---- PROGRAM AND START 
+ I WORD TRANSFER 

,....-.....,....-..... ~, 
543210 

CAH '-;---:'~-i-:rIT""""""'-'...!.r" ... '_1......,' -+--1 CONTROL WORD 

15 

L..-___ HIGH PRIORITY 
L..-_______ DO NOT INTERRUPT 

L..-________ DO NOT STOP ON TERMINAL COUNT 
'-----------SOURCE = MEMORY (INCREMENT) 

'-------------DESTINATION = I/o (NO INC/DEC) 

87 

~~~ I--"":'A":":VA":":I:-LA:-:B:":"L'='E":"I/~O~~~:-:::-::-'-'-II-+-- DESTINATION POINTER 

15 87

C2H r--___ "'= __ - ______ J-..:-:=::-=c'-ll_+__ SOURCE POINTER

COH,.
270524-1

1. Locations of registers are relative to the base address of the peripheral control block. The offsets shown are for
ChannelO.
2. The byte/word bit is a don't ca,re in a B01BB system. In a B01B6 system this bit should be set to a 1 to represent word
transfers.
3. The transfer count register is located at offset CBH. It is not necessary to program this register.

Figure 1. DMA Registers

5-149

intJ AS-3S

TIMER OPERATION

Timer 2 must be programmed to generate a DMA re­
quest every time a row 'must be refreshed. Since we are
not using a burst refresh, the refresh time is divided up
evenly among the number of rows. For a 2 ms refresh
DRAM with 128 rows, the time between rows equals
15;62 microseconds.

When setting the count value of the timer, keep in mind
the timer clock is· operating at 'one-fourth the CPU
clock frequency. Thus, the equation for setting the tim­
er count is:

(CPU CLOUT FREQ) x (Time Between ROWS)

4
= COUNT_VALUE (decimal)

For an 8 MHz clock, programming the Maximum
Count Register to lEH provides a 15.2 ,""S refresh. This
programming is indicated in Figure 2.

,15 87' 0

66H 1111101 DON'T CARES 1010101011~ ~ I MODE/CONTROL WORD I
'-,...Jj Ji'-----CONTINUOUS OPERATION

'-----DO NOT ALTERNATE
, '-------INTERNAL CLOCKING

'----------------DO NOT INTERRUPT
'---------------START OPERATION

15 87 0

62H 10101010101010101010101111111110' ~ I MAX COUNT A REGISTER I
Figure 2. Timer 2 Registers programmed for a 15.2 ,""s Refresh at 8 MHz

5-150

270524-2

inter AB-3S

EXAMPLE 1:
DRAM CONTROL WITH
A DELAY LINE

This is the most straight forward way of implementing
t~e RAS and CAS'logic. A RAS signal is generated by
either RD or WR going active while the address is
within the corresponding range. Normally the logic for
~S would also go active for a refresh cycle status, but
since this information is, not available on the
80186/80188, a RAS must be generated for every RD
and WR, regardless address.

The MUX signal is used to change from the RAS ad­
dress to the CAS address after latching with RAS. This
is accomplished by using a delay line which generates a
MUX signal by a fixed number of nano-seconds after
RAS is generated. The important timing here is the
necessary ,hold time for the row address into the
DRAM.

The MUX signal is initially HIGH which sends the A
side (see Figure 3) Row address through the multiplex-

er to the DRAM. This address consists of AO through
A7. The B address (A8 through A16) is selected when
MUX goes LOW. The system shown in Figure 3 repre­
sents that of an 80188 system.

For an 80186 system, the A address would start at AI.
The least significant address line AO along with BHE
would be used to decode WE into WEH and WEL
which will be shown in the second example. Also, the
186 DMA must be set to do word transfers so that the
address is incremented by 2 after each refresh cycle.
This is necessary to ensure Al increments by 1 every
refresh cycle.

CAS is generated in the same manner by delaying the
MUX signal a fixed number of nano-seconds. Typically
CAS goes inactive at the same time as RAS to ensure a
valid CAS precharge time before the next DRAM ac­
cess. The 80186/188 chip selects are used to ensure that
CAS only goes active when the address falls within the
DRAM bank range, and to ensure that CAS does not
go active during I/O cycles.

BOIBB

DIRQ DMA

DATA ...
-..

DYNAMIC

r+1 CONTROL

~ H
MEMORY

.. 74l.S157
74LS373 MUX

TIMER ADDRESS LATCH A/B
"-

COUNTER 15:0

l~LE MUX
25ns

WE

T

BUS WR 1 __
CONTROL

RD :I '-- IN J DELAY

~ ~ -I LINE
CAS

BANK SELECT
CHIP RAS

SELECTS

270524-3

Figure 3. Using A Delay Line for DRAM Control

5-151

AB·35

EXAMPLE 2:
DRAM CONTROL WITH A PAL *
This design uses a PAL to generate all the control logic
for the DRAM array. Internal feedback is used on the
signals to control the timing and states of the RAS,
MUX and CAS signals.

This design uses 256k X 4 DRAMs. With minor chang­
es to the PAL equations this design could just as easily
make use of 64k X 1, 64k X 4, or 256k X 1 DRAMs.

The RAS signal is generated off ALE going LOW, bus
cycle status active, and PRE~S being active. The
PRE_RAS signal is necessary to ensure that a RAS is
not accidentally generated when S2-S0 are becoming
valid and ALE has not yet gone HIGH in T4 phase 2.
PRE_RAS does not go active until ALE has gone
HIGH. .

RAS is initiated for every memory read and write re­
gardless of the bus cycle address. This ensures a row

A

ADDRESS
MULTIPLEXERS

Al-9 ~
ROW

LATCHED ..
DDRESS <A18-Al> ..

COL
A1D-18 ,. T

--..§2 MUX

-----i! RAS
---¥ CASO
~

WR A19

~ 16L8 PAL CASl

I

~ PRE_RASN•C• ~
--l!£§. WEH
~ WEL ~

LATCHED A19

... DATA <15:8>
"I

... DATA <7:0>
"I

refresh when the refresh address falls outside of the
DRAM bank and also a refresh to both banks simulta­
neously so that the frequency of the refresh can be set
for the number of rows in one bank of DRAM.

The UCS (Upper Chip Select) from the 80186/188 is
used to disable DRAM signals when the processor is
attempting to access upper memory control ROM.
Thus the portion of memory used by the UCS (maxi­
mum 256k) is unavailable in the upper DRAM. How­
ever, the RAS signal must still be allowed during UCS
access to ensure refreshing when the DMA refresh cy­
cle occurs in the UCS region.

MUX is generated off T2 phase 1 and RAS active.
MUX will remain low until the current RAS signal
goes inactive during T3 phase 2.

CASO and CASI are generated off MUX being active
and T2 phase 2 of the bus cycle. CAS goes inactive at
the start of T4 phase 2.

DRAM ADDRESS (A8 -AO)

I I
(2) 256KX4 (2)256KX4

RASa RASa
CASO

,.-; ~O WEH
... 015-8 07-0 .. I r I

(2) 256KX 4 (2)256KX4

- --+ RASl RASl
CASl -,. CASl
WEH

... 015-8
WEL

... 07-0
HIGH BYTE LOW BYTE

270524-4

Figure 4. Using a PAL for DRAM Control

'PAL" is a registered trademark of Monolithic Memories.

5-152

ADDRESS

ALE

STATUS
SO-S2

RD.WR

DRAM
ADDRESS

RD DATA

,

.LJ!!J!U

\. \(1CHSV:J\. \.

AB-3S

TW
)

.. H ..

II , If
~ \

I-TCLAV I1 _TCLCL

) ADDRESS VALID X VALID DA A (WRITE C LE)

I\~"\ !/uoIlJ11!/

STATUS VALID /~/ "\~"\

~ \(Ta.Rl.:J\. \. /,(TOIJIYI
TCVCTV TCVCTX

\.\91\"\ !/!/~!//. V///

I\.\. 'ClruV!J\ ~

~ N:lruV~

X lID ROW XII] COLUMN X

"\~"\ /
TOVCL

I::::: ~DATA~
I

270524-5

Figure 5 .. Timing Diagram for PAL DRAM Controller

5-153

inter

TIMING EQUATIONS

AS-35

PAL EQUATIONS FOR 80186 SYSTEM

ALE • 52 • 51 * 50+
ALE' 52' 51' 50 +
ALE • S2 • S1 • 50 +
PRE RA5' 52 • 51 • 50 +
PRE RA5' 52 * 51 * SO +
PRE-RA5' 52 * 51 • SO

PRE RA5 * ALE 52 • 51 • SO +
PRE RA5' ALE 52 • 51 • 50 +
PRE_RAS' ALE 52 • 51 • 50 +
RA5' ClK

RA5 • elK +
RA5' MUX

A19' MUX' ClK' RA5 +
CAS1 • RD +
CA51 'WR +
CAS1 • ClK

A19 *UC5 • MUX • ClK." RA5 +
CAS1 • RD +
CAS1 'WR +
CAS1 * ClK

WR*AO

WR' BHE

;IN5TRUCTION FETCH
;READ DATA/REFRE5H
;WRITEDATA
;KEEP PRE-RA5 VALID
; WHilE STATU5
;15 VALID

;IN5TRUCTION FETCH
;READ DATA/REFRESH
;WRITEDATA
;KEEP ACTIVE DURING T3A

The .following equations are with reference to given

8 MHz 10 MHz
clock edge. The edge in reference is indicated by the
first element in the equation: T3 t = rising edge of T3

TClAV 55 50
TCHlH 35 30
TCHll 35 30
TCH5V 55 45
TCl5H 65 50
TClRl/TCVCTV 70 56
TClRH 55 44
TDVCl 20 15

clock .J, T1 = falling edge of T1 clock. .

DELAY 1 = T1 t + TCHll + (PAL DELAY)
DELAY 2 = .J, T2 + (PAL DELAY)
DELAY 3 = T2 t + (PAL DELAY)
DELAY 4 = .J, T1 + (PAL DELAY)
DELAY 5 = .J, T3 + TCl5H + (PAL DELAY)
DELAY 6 = .J, T1 + TCLAV + (MUX DELAY)
DELAY 7 = .J, T2 + DELAY 2 + (MUX DELAY)

ACCESS TIME FROM RAS = 2.5 (TCLCL)-DELAY 1.
-TDVCL
ACCESS TIME FROM CAS 1.5 (TCLCL)-DELAY 3
-TDVCL

5-154

MCS® ... 96 Application Notes & 6
Article Reprint .

inter

© Intel Corporation, 1987

APPLICATION·
NOTE

Using The 8096

IRA HORDEN
MCO APPLICATIONS ENGINEER

6-1

AP-248

September 1987

Order Number: 270061-002

AP-248

1.0 INTRODUCTION

High speed digital signals are frequently encountered in
modem control applications. In addition, there is often
a requirement for high speed 16-bit and 32-bit precision
in calculations. The MCS®-96 product line, generically
referred to as the 8096, is designed to be used in appli­
cations which require high speed calculations and fast
I/O operations.

The 8096 is a 16-bit microcontroller with dedicated
I/O subsystems and a complete set of 16-bit arithmetic
instructions including multiply and divide operations.
This Ap-note will briefly describe the 8096 in section 2,
and then give short examples of how to use each of its
key features in section 3. The concluding sections fea­
ture a few examples which make use of several chip
features simultaneously and some hardware connection
suggestions. Further information on the 8096 and its
use is available from the sources listed in the bibliogra­
phy.

2.0 8096 OVERVIEW

2.1. General Description

Unlike microprocessors, microcontrollers are generally
optimized for specific applications. Intel's 8048 was op­
timiz~ for general control tasks while the 8051 was
optimized for 8-bit math and single bit boolean opera­
tions. The 8096 has been designed for high speed/high
performance control applications. Because it has been
designed for these applications the 8096 architecture is
different from that of the 8048 or 8051.

There are two major sections of the 8096; the CPU
section and the I/O section. Each of these sections can
be subdivided into functional blocks as shown in Figure
2-1.

YPD XTAL 1 XTAL 2 CLKOUT

YREF

ANGND

I
I
I
I
I L __________ _

POACH

--~--------- --------------,
CLOCK P3 REG

GEN
ON-CHIP

ROM
a A·BUS

INST. REG

RALU

Ei
ALE
iiiiE
iiO
Wii
READV

~--~====~==-1--RESET
DATA

p, P2/ ALT. FUNCTIONS HS1 HSO

270061-1

Figure 2-1. 8096 Block Diagram

6-2

inter AP-248

2.1.1. CPU SECTION

The CPU of the 8096 uses a 16-bit ALU which operates
on a 256-byte register file instead of an accumulator.
Any of the locations in the register file can be used for
sources or destinations for most of the instructions.
This is called a register to register architecture. Many
of the instructions can also use bytes or words from
anywhere in the 64K byte address space as operands. A
memory map is shown in Figure 2-2.

65535

16384

8320

8210

8192

8190

256
255

DO

EXTERNAL MEMORY
OR
1/0

INTERNAL PROGRAM
STORAGE ROM

FACTORY TEST CODE

8
INTERRUPT ;
VECTORS 0

PORT 4
PORT 3

EXTERNAL MEMORY
OR
1/0

INTERNAL RAM
REGISTER FILE
STACK POINTER

SPECIAL FUNCTION REGISTERS
(WHEN ACCESSED AS

DATA MEMORY)

In the lower 24 bytes of the register file are the register­
mapped I/O control locations, also called Special
Function Registers or SFRs. These registers are used to
control the on-chip I/O features. The remaining 232
bytes are general purpose RAM, the upper 16 of which
can be kept alive using a low current power-down
mode.

FFFFH

4DOOH

2080H ~ RESET

2012H

2000H

lFFEH

0100H
OOFFH

OOOOH

r----------------------,255

EXTERNAL MEMORY RESERVED
FOR USE BY INTEL DEVELOPMENT
SYSTEMS
(WHEN ACCESSED AS PROGRAM
MEMORY)
~ ____________________ ~OO

270061-2

Figure 2-2. Memory Map

6-3

i~ AP-248

Figure 2-3 shows the layout of the register mapped
I/O. Some of these registers serve two functions, one if
they are read from and another if they are written

to. More information about the use of these registers is
included in the description of the features which they
control.

19H
18H

17H

16H

15H

14H
13H
12H

11H

10H

OFH

OEH

ODH

OCH

OBH

OAH

09H

08H

07H

06H

05H

04H

03H

02H

01H

OOH

OFFH 255

POWER·DOWN
RAM

OFOH 240
OEFH 239

INTERNAL
h

REGISTER FILE

1AJ

(RAM)

I6
STACK POINTER STACK POINTER

PWM_CONTROL

IOS1 IOC1

10SO lOCO

RESERVED RESERVED

SP_STAT SP_CON

10 PORT 2 10 PORT 2

10 PORT 1 10 PORT 1

10 PORTO BAUD_RATE

TIMER2 (HI)

TIMER2 (LO) RESERVED

TIMER1 (HI)

TlMER1 (LO) WATCHDOG

INT_PENDING INT_PENDING

INT_MASK INT_MASK

SBUF (RX) SBUF (TX)

HSLSTATUS HSO_COMMAND

HSLTIME (HI) HSO_TlME (HI)

HSLTIME (LO) HSO_TlME (LO)

AD_RESULT (HI) HSLMODE

AD_RESULT (LO) AD_COMMAND

RO (HI) RO (HI)

RO(LO) RO (LO)

(WHEN READ) (WHEN WRITTEN)

Figure 2-3: SFR Layout

6-4

25
24

23

22

21

20
19
18

17

16

15

14

13

12

11

10

7

6

5

270061-3

infef AP-248

2.1.2.110 FEATURES

Many of the I/O features on the 8096 are designed to
operate with little CPU intervention. A list of the major
I/O functions is shown in Figure 2·4. The Watchdog
Timer is an internal timer which can be used to reset
the system if the software fails to operate properly. The
Pulse· Width· Modulation (PWM) output can be used as
a rough D to A, a motor driver, or for many other
purposes. The A to D converter (ADC) has 8 multi·
plexed inputs and IO-bit resolution. The serial port has
several modes and its own baud rate generator. The
High Speed I/O section includes a 16-bit timer, a 16-bit
counter, a 4-input programmable edge detector, 4 soft­
ware timers, and a 6·output programmable event gener­
ator. All of these features will be described in section
2.3.

2.2. The Processor Section

2.2.1. OPERATIONS AND ADDRESSING MODES

The 8096 has 100 instructions, some of which operate
on bits, some on bytes, some on words and some on
longs (double words). All of the standard logical and
arithmetic functions are available for both byte and
word operations. Bit operations and long operations are
provided for some instructions. There are also flag ma­
nipulation instructions as well as jump and call instruc­
tions. A full set of conditional jumps has been included
to speed up testing for various conditions.

Bit operations are provided by the Jump Bit and Jump
Not Bit instructions, as well as by immediate masking
of bytes. These bit operations can be performed on any
of the bytes in the register file or on any of the special
function registers. The fast bit manipulation of the
SFRs can provide rapid I/O operations.

A symmetric set of byte and word operations make up
the majority of the 8096 instruction set. The assembly
language for the 8096 (ASM-96) uses a "B" suffix on a
mnemonic to indicate a byte operation, without this
suffix a word operation is indicated. Many of these op­
erations can have one, two or three operands. An exam­
ple of a one operand instruction would be:

NOT Value1; Value1: = 1's complement (Value1)

A two operand instruction would have the form:

ADD Value2,Value1; Value2: = Value2 + Value1

A three operand instruction might look like:

MUL Value3,Value2,Value1;
Value3 : = Value2' Value1

The three operand instructions combined with the reg­
ister to register architecture almost eliminate the neces­
sity of using temporary registers. This results in a faster
processing time than machines that have equivalent in­
struction execution times, but use a standard architec­
ture.

Long (32-bit) operations include shifts, normalize, and
multiply and divide. The word divide is a 32-bit by 16-
bit operation with a 16-bit quotient and 16-bit remain­
der. The word multiply is a word by word multiply
with a long result. Both of these operations can be done
in either the signed or unsigned mode. The direct un­
signed modes of these instructions take only 6.5 micro­
seconds. A normalize instruction and sticky bit flag
have been included in the instruction set to provide
hardware support for the software floating point pack­
age (FP AL-96).

Major 1/0 Functions

High Speed Input Unit Provides Automatic Recording of Events

High Speed Output Unit Provides Automatic Triggering of Events and Real-Time Interrupts

Pulse Width Modulation Output to Drive Motors or Analog Circuits

A to D Converter Provides Analog Input

Watchdog Timer Resets 8096 if a Malfunction Occurs

Serial Port Provides Synchronous or Asynchronous Link

Standard I/O Lines Provide Interface to the External World when other Special Features
are not needed

Figure 2-4. Major 110 Functions

6-5

Ap·248

. Mnemonic Oper-
Operation (Note 1)

Flags
Notes

ands Z N C V VT ST

ADD/ADDB 2 D - D+A ". ". ". ". t -
ADD/ADDB 3 D - B+A ". ". ". ". t -
ADDQ/ADDCB 2 D +- D+A+C ,J. ". ". ". t -
SUB/SUBB 2 D - D-A ". ". ". ". t -
SUB/SUBB 3 D - B-A ". ". ". ". t -
SUBC/SUBCB 2 D-D-A+C-1 ,J. ". ". ". t -
CMP/CMPB 2 D-A ". ". ". ". t -
MULIMULU 2 D,D + 2 - DO A - - - - - ? 2

MULIMULU 3 D,D + 2 - BOA - - - - - ? 2

MULB/MULUB 2 D,D + 1 - DO A - - - - - ? 3

MULB/MULUB 3 D,D + 1 - BO A - - - - - ? 3

DIVU 2 D - (D, D + 2)/ A, D + 2 - remainder - - - ". t - 2

DIVUB 2 D - (D, D + 1)/A, D + 1 - remainder - - - ". t - 3

DIV 2 D - (D, D + 2)/A, D + 2 - remainder - - - ? t - 2

DIVB 2 D - (D,D + 1)/A,D + 1 - remainder - - - ? t - 3

AND/ANDB 2 D - DandA ". ". 0 0 - -
AND/ANDB' 3 D - BandA ". ". 0 0 - -
OR/ORB 2 D - DorA ". ". 0 0 - -
'XOR/XORB 2 D - D (excl. or) A ". ". 0 0 - -
LD/LDB 2 D-A - - - - - -
ST/STB 2 A-D - - - - - -
LDBSE 2 D-A;D+1 - SIGN(A) - - - - - - 3,4

LDBZE 2 D-A;D+1-0 - - - - - .- 3,4

PUSH 1 SP - SP-2;(SP) - A - - - - - -
POP 1 A - (SP);SP - SP+2 - - - - - -
PUSHF 0 SP - SP - 2; (SP) - PSW; 0 0 0 0 0 0

PSW - OOOOH 1-0

POPF 0 PSW - (SP); SP - SP + 2; 1-". ". ". ". ". ". ".

SJMP 1 PC - PC + 11·bit offset - - - - - - 5

LJMP 1 PC - PC + 16-bit offset ,- - - - - - 5

BR (indirect) 1 PC - (A) - - - - - -
SCALL 1 SP ~ SP - 2; (SP) -E- PC; - - - - - - 5

PC - PC + 11·bit offset

LCALL 1 SP - SP - 2; (SP) - PC; - - - - - - 5
PC - PC + 16·bit offset

RET 0 PC - (SP);SP - SP + 2 - - - - -
J (conditional) 1 PC - PC + B·bit offset (if taken) - - - - - - 5

JC 1 JumpifC = 1 - - - - - - 5

JNC 1 ~umpifC = 0 - - - - - - 5

JE 1 JumpifZ = 1 - - - - - - 5

Figure 2·5. Instruction Summary

NOTES:
1. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands D, B, and A
must conform to the alignment rules for the required operand type. D and B are locations in the register file; A can be
located anywhere in memory.
2. D, D + 2 are consecutive WORDS in memory; D is DOUBLE·WORD aligned.
3. D, D + 1 are consecutive BYTES in memory; D is WORD aligned.
4. Changes a byte to a word.
5. Offset is a 2's complement number.

6·6

inter AP-248

Mnemonic Oper- Operation (Note 1) Flags Notes
ands Z N C V VT ST

JNE 1 JumpifZ = 0 - - - - - - 5

JGE 1 Jump ifN = 0 - - - - - - 5

JLT 1 Jump ifN = 1 - - - - - - 5

JGT 1 Jump if N = 0 and Z = 0 - - - - - - 5

JLE 1 Jump if N = 1 or Z = 1 - - - - - - 5'

JH 1 Jump if C = 1 and Z = 0 - - - - - - 5

JNH 1 Jump if C = 0 or Z = 1 - - - - - - 5

JV 1 Jump if V = 1 - - - - - - 5

JNV 1 Jump if V = 0 - - - - - - 5

JVT 1 Jump if VT = 1; Clear VT - - - - 0 - 5

JNVT 1 Jump if VT = 0; Clear VT - - - - 0 - 5

JST 1 Jump ifST = 1 - - - - - - 5

JNST 1 JumpifST = 0 - - - - - - 5

JBS 3 Jump if Specified Bit = 1 - - - - - - 5,6

JBC 3 Jump if Specified Bit = 0 - - - - - - 5,6

DJNZ 1 D +- D - 1; if D "" 0 then
PC +- PC + 8-bit offset - - - - - - 5

DEC/DECB 1 D+-D-1 '" '" '" '" t -
NEG/NEGB 1 D+-O-D '" '" '" '" t -
INC/INCB 1 D+-D+1 '" '" '" '" t -
EXT 1 D +- D; D + 2 +- Sign (D) '" '" 0 0 - - 2

EXTB 1 D +- D; D + 1 +- Sign (D) '" '" 0 0 - - 3

NOT/NOTB 1 D +- Logical Not (D) '" '" 0 0 - -
CLR/CLRB 1 D+-O 1 0 0 0 - -
SHLlSHLB/SHLL 2 C +- msb-----Isb +- 0 '" ? '" '" t - 7

SHR/SHRB/SHRL 2 0-+ msb-----Isb -+ C '" ? '" 0 - '" 7

SHRA/SHRAB/SHRAL 2 msb -+ msb-----Isb -+ C '" '" '" 0 - '" 7

SETC 0 C+-1 - - 1 - - -
CLRC 0 C+-O - - 0 - - -
CLRVT 0 VT +- 0 - - - - '0 -
RST 0 PC +- 2080H 0 0 0 0 0 0 8

DI 0 Disable All Interrupts (I +- 0) - - - - - -
EI 0 Enable All Interrupts (I +- 1) - - - - - -
NOP 0 PC +- PC + 1 - - - - - -
SKIP 0 PC+-PC+2 - - - - - -
NORML 2 Left Shift Till msb = 1; D +- shift count '" ? 0 - - - 7

TRAP 0 SP +- SP - 2; (SP) +- PC
PC +- (2010H) - - - - - - 9

Figure 2-5. Instruction Summary (Continued)

NOTES:
1. If the mnemonic ends in "B", a byte operation is performed, otherwise a word operation is done. Operands D, B, and A
must conform to the alignment rules for the required operand type. D and B are locations in the register file; A can be
located anywhere in memory.
5. Offset is a 2's complement number.
6. Specified bit is one of the 2048 bits in the register file.
7. The "L" (Long) suffix indicates double-word operation.
8. Initiates a Reset by pulling RESET low. Software should re-initialize all the necessary registers with code starting at
2080H.
9. The assembler will not accept this mnemonic.

6-7

intJ AP-248

One operand of most of the instructions can be used'
with anyone of six addressing modes. These modes
increase the flexibility and overal) execution speed of
the 8096. The addressing modes are: register-direct, im­
mediate, indirect, indirect with auto-increment, and
long and short indexed.

The fastest instruction execution is gained by using ei­
ther register direct or immediate addressing. Register­
direct addressing is similar to normal direct addressing,
except that only addresses in the register file or SFRs
can be addressed. The indexed mode is used to directly
address the remainder of.the 64K address space. Imme­
diate addressing operates as would be expected, using
the data following the opcode as the operand.

Both of the indirect addressing modes use the value in a
word register as the address of the operand. If the indi­
rect auto-increment mode is used then the word register
is incremented by one after a byte access or by two after
a word access. This mode is particularly useful for ac­
cessing lookup tables.

Access to any of the locations in the 64K address space
can be obtained by using the long indexed addressiI.lg

mode. In this mode a 16-bit 2's complement value is
added to the contents of a word register to form the
address of the operand. By using the zero register as the
index, ASM96 (the assembler) can accept "direct" ad­
dressing to any location. The zero register is' located at
OOOOH and always has a value of zero. A short indexed
mode is also available to save some time and code. This
mode uses an 8-bit 2's complement number as the offset
instead of a 16-bit number.

2.2.2. ASSEMBLY LANGUAGE

The multiple addressing modes of the 8096 make it easy
to program in assembly language and provide an excel­
lent interface to high level languages. The instructions
accepted by the assembler consist of mnemonics fol­
lowed by either addresses or data. A list of the mne­
monics and their functions are shown in Figure 2-5.
The addresses or data are given in different formats
depending on the addressing mode. These modes and
formats are shown in Figure 2-6. '

Additional information on 8096 assembly language is
available in the MCS-96 Macro Assembler Users
Guide, listed in'the bibliography.

Mnem Dest or Src1
Mnem Dest, Src1

; One operand direct
; Two operand direct

Mnem Dest, Src1, Src2

Mnem #Src1
Mnem Dest, #Src1
Mnem Dest, Src1, #Src2

Mnem [addr]
Mnem [addr] +
Mnem Dest, [addr]
Mnem Dest, [addr] +
Mnem ,Dest, Src1, [addr]
Mnem Dest, Src1, [addr] +

Mnem Dest, offs [addr]
Mnem Dest, Src1, offs [addr]

; Three operand direct

; One operand immediate
; Two operand immediate
; Three operand immediate

; One operand indirect
; One operand indirect auto-increment
; Two operand indirect
; Two operand indirect auto-increment
; Three operand indirect
; Three operand indirect auto-increment

; Two operand indexed (short or long)
; Three operand indexed (short or long)

Where: "Mnem" is the instruction mnemonic
"Dest" is the destination register
"Src1", "Src2" are the source registers
"addr" is a register containing a value to be used in computing the address of an operand
"offs" is an offset used in computing the address of an operand

270061-83

Figure 2-6. Instruction Format

6-8

inter AP-248

SOURCE INTERRUPT

r--- IOC1.1

EXTINT ~'O-------- EXTINT
ACH.7 --4

TI FLAG ---,--------- SERIAL PORT

RIFLAG--.J

r--- HSO_COMMAND.4

~o--------- SOFTWARE TIMER

SOFTWARE TIMER 0 ~
SOFTWARE TIMER 1
SOFTWARE TIMER 2
SOFTWARE TIMER 3

RESET TIMER 2'
START AID CONVERSION'

HSI.O----------- HSI.O

r--- HS(l£OMMAND.4

ANY HSO OPERATION --0 ~o--------- HIGH SPEED OUTPUTS

,.---IOC'.7
FIFO IS FULL ~ HSI DATA AVAILABLE

HOLDING REGISTER LOADED __

AID CONVERSION COMPLETE ----------- A:D CONVERSION COMPLETE

,.---IOC1.2
I

TIMER' OVERFLOW __ "0'0----.--- TIMER OVERFLOW

TlMER2 OVERFLOW __ "lo
I

'Only when Inillated by the HSO unit. L---IOC'.3

Figure 2-7. Interrupt Sources

2.2.3. INTERRUPTS .

The flexibility of the instruction set is carried through
into the interrupt system. There are 20 different inter­
rupt sources that can be used on the 8096. The 20
sources vector through 8 locations or interrupt vectors.
The vector names and their sources are shown in Fig­
ure 2-7, with their locations listed in Figure 2-8. Con­
trol of the interrupts is handled through the Interrup~
Pending Register (INT_PENDING), the Interrupt
Mask Register (INT_MASK), and the I bit in the
PSW (PSW.9). Figure 2-9 shows a block diagram of the
interrupt structure. The INT_PENDING register
contains bits which get set by hardware when an inter­
rupt occurs. If the interrupt mask register bit for that
source is a 1 and PSW.9 = 1, a vector will.be taken to
the address listed in the interrupt vector table for that

Source

Software
Extint
Serial Port
Software Timers
HSLO
High Speed

Outputs
HSI Data

Available
AID Conversion

Complete
Timer Overflow

Vector
Location

(High (Low
Byte) Byte)

2011H 2010H
200FH 200EH
200DH 200CH
200BH 200AH
2009H 2008H
2007H 2006H

2005H 2004H

2003H 2002H

2001H 2000H

270061-4

Priority

Not Applicable
7 (Highest)
6
5
4
3

2

1

o (Lowest)

Figure 2-8. Interrupt Vectors and Priorities

6-9

intJ AP·248

source. When the vector is taken the INTJENDING
bit is cleared. If more than one bit is set in the INT_
PENDING register with the corresponding bit set in
the INT~ASK register, the Interrupt with the high­
est priority shown in Figure 2-8 will be executed.

The software can make the hardware interrupts work in
almost any fashion desired by having each routine run
with its own setup in the INT_MASK register. This
will be clearly seen in the examples in section 4 which
change the priority of the vectors in software. The

EXTINT

SOFTWARE

SERIAL PORT TIMERS HSI.O

1---'" (PSW:9)

TRANSITION
DETECTOR

HSO

PRIORITY ENCODER

INTERRUPT
GENERATOR

D-BUS CONTROL
UNIT

AID CONV.
TIMER

OVERFLOW

o

INTERRUPT MASK REG.

Figure 2·9. Interrupt Structure Block Diagram

6-10

270061-5

inter AP-248

WHERE:

Z is the zero flag. It is set when the result of an operation is zero.

N is the negative flag. It is set to the algebraically correct sign of the result regardless of overflows.

V is the overflow flag. It is set if an overflow occurs.

VT is the overflow trap flag. It is set when the VT flag is set and cleared by JVT, JNVT. or CLRVT ..

C is the carry flag. It is set if a carry was generated by the prior operation.

I is the global interrupt enable bit.

ST is the sticky bit. It is set during a right shift if a one was shifted into and then out of the carry flag.

INT _MASK is the interrupt mask register and contains bits which individually enable the 8 interrupt vectors.

Figure 2-10. The PSW Register

PSW (shown in Figure 2-10), stores the INT_MASK
register in its lower byte so that the mask register can
be pushed and popped along with the machine status
when moving in and out of routines. The action of
pushing flags clears the PSW which includes PSW.9,
the interrupt enable bit. Therefore, after a PUSHF in­
struction interrupts are disabled. In most cases an inter,
rupt service routine will have the basic structure shown
below.

INT VECTOR:

PUSHF
LDB INT_MASK, #xxxxxxxxB
EI

POPF
RET

;Insert service routine here

The PUSHF instruction saves the PSW including the
old INT.-MASK register. The PSW, including the in­
terrupt enable bit are left· cleared. If some interrupts
need to be enabled while the service routine runs, the
INT_MASK is loaded with a new value and inter­
rupts are globally enabled before the service routine .
continues. At the end of the service routine a POPF in-

6-11

struction is executed to restore the old PSW. The RET
instruction is executed and the code returns to the de­
sired location. Although the POPF instruction can en­
able the interrupts the next instruction will always exe­
cute. This prevents unnecessary building of the stack by
ensuring that the RET always executes before another
interrupt vector is taken.

2.3. On-Chip 110 Section

All of the on-chip I/O features of the 8096 can be ac­
cessed through the special function registers, as shown
in Figure 2-3. The advantage of using register-mapped
I/O is that these registers can be used as the sources or
destinations of CPU operations. There are seven major
I/O functions. Each one 'of these will be considered
with a section of code to exemplify its usage. The first
section covered will be the High Speed I/O, (HSIO),
subsystem. This section includes the High Speed Input
(HSI) unit, High Speed Output (HSO) unit, and the
Timer/Counter section.

2.3.1. TIMER/COUNTERS

The 8096 has two time bases, Timer 1 and Timer 2.
Timer 1 is a 16-bit free running timer which is incre­
mented every 8 state times. (A state time is 3 oscillator
periods, or 0.25 microseconds with a 12 MHz crystal.)

inter AP-248

HSI TRIGGER OPTIONS

LHITOLO

___ --'r LO TO HI

EVERY EIGHTH POSITIVE
TRANSITION

HSI.O
HSI.l
HSI.2
HSI.3

CHANGE
DETECTOR

2.0 "SCLOCK

TRIGGERED
INPUT«S)

16

20 t, FIFO
CURRENT
STATUS

2700S1-S
• Pulse measurement with 2.0 Itsec resolution
• Input transitions lrigger the recording of the reference

Timer (IS·bit) and triggered input(s) (4-bit)

Figure 2-11. HSI Unit Block Diagram

Its value can be read at any time and used as a refer­
ence for both the HSI section and the HSO section.
Timer I can cause an interrupt when it overflows, and
cannot be modified or stopped without resetting the
entire chip. Timer 2 is really an event counter since it
uses an external clock source. Like Timer I, it is 16-bits
wide, can be read at any time, can be used with the
HSO section, and can generate an interrupt when it
overflows. Control of Timer 2 is limited to increment­
ing it and resetting it. Specific values can not be written
to it.

Although the 8096 has only two timers, the timer flexi­
bility is equal to a unit with many timers thanks to the
HSIO unit. The HSI enables one to measure times of
external events on up to four lines using Timer I as a
timer base. The HSO unit can schedule and execute
internal events and up to six external events based on
the values in either Timer I or Timer 2. The 8096 also
includes separate, dedicated timers for the baud rate
generator and watchdog timer.

2.3.2. HSI

The HSI unit can be thought of as a message taker
which records the line which had an event and the time
at which the event occurred. Four types of events can
trigger the HSI unit, as shown in the HSI block dia­
gram in Figure 2-11. The HSI unit can measure pulse
widths and record times of events with a 2

6-12

LOCATION 03H

HSI.O MODE

L----HSI.l MODE

'------HSf.2 MODE

L--------HSI.3 MODE

2700S1-7
Where each 2-bit mode control field
defines one of 4 possible modes:

00 8 positive transitions
01 Each positive transttion
10 Each negative transition
11 Every transition (positive and negative)

Figure 2-12. HSI Mode Register

inter AP-248

microsecond resolution. It can look for one of four
events on each of four lines simultaneously, based on
the information in the HSI Mode register, shown in
Figure 2-12. The information is then stored in a seven
level FIFO for later retrieval. Whenever the FIFO con­
tains information, the earliest entry is placed in the
holding register. When the holding register is read, the
next valid piece of information is loaded into it. Inter­
rupts can be generated by the HSI unit at the time the

holding register is loaded or when the FIFO has six or
more entries.

CONTROL
LOGIC

2.3.3. HSO

Just as the HSI can be thought of as a message taker,
the HSO can be thought of as a message sender. At
times determined by the software, the HSO sends mes-

630

I x I TID I I I CHANNEL I

CHANNEL c)'5 HSO.O - HSO.5
HSO.O AND HSO.1
HSO.2 AND HSO.3

80a SOFlWARE TIMERS
E RESET TIMER 2
F START AID CONVERSION

L-------------INTERRuPTmOINTERRUPT
L-_____________ SET/CLEAR

L-_________________ TIMER 2fTIMER 1

Figure 2-13. HSO Command Register

2.0 ItS CLOCK

270061-8

HIGH SPEED OUTPUT CONTROLS
6 PINS
4 SOFlWARE TIMERS
2 INTERRUPTS
INITIATE AID CONVERSION
RESET TIMER 2

Figure 2-14. HSO Block Diagram

270061-9

" inter Ap·248

sages to various devices to have thein tum on, tum off,
start processing, or reset. Since the programmed times
can be referenced to either Timer 1 or Timer 2, the
HSO makes the two timers look like many. For exam­
ple, if several events have to occur at specific times, the
HSO unit can schedule all of the events based on a
single timer. The events that can be scheduled to occur
and the forrilat of the command written to the HSO
Command register are shown in Figure 2-13.

The software timers listed in the figure are actually 4
software flags iii I/O Status Register 1 (lOS 1). These
flags can be set, and optionally cause an interrupt, at
any time based on Timer 1 or Timer 2. In most cases
these timers are used to trigger interrupt routineS which
must occur at regular intervals. A multitask process
can easily be set up using the software timers.

SP_ST~T
(READ ONLY)

l RB8~RPE J
6 I 5 4

3 • I
RI TI TB8 REN

~

A CAM (Content Addressable Memory) file is the
main component of the HSO. This file stores up to
eight events which are pending to occur. Every state'
time one location of the CAM is compared with the
two timers. After 8 state times, (two microseconds with
a 12 MHz clock), the entire CAM has been searched
for time matches. If a match occurs the specified event
will be triggered and that location of the CAM will be
made available for another pending event. A block dia­
gram of the HSO unit is shown in Figure 2-14.

2.3.4. Serial Port

Controlling a device from a remote location is a simple
task that frequently requires additional hardware with
many processors. The 8096 has an on-chip serial port to
reduce the total number of chips required in the system.

SP_CON
(WRITE ONLy)

2 I 1 I 0 I PEN M2 M1

J
L M2,M1 SPECIFIES THE MOD E;

NOTE:
TI and RI are cleared when SP _CON is read.

~PEN

REN

TB8

TI

RI

RB8

0,0 = MODE 0
0.1 = MODE 1
1.0=MODE2
1.1 = MODE 3

ENABLE THE PARITY

ENABLES THE RECEI

PROGRAMS THE 9TH
TRANSMISSION;

FUNCTION (EVEN PARITY);

VE FUNCTION;

IS THE TRANSMIT INT

DATA BIT (IF NOT PARITY) ON

ERRUPT FLAG;

IS THE RECEIVE INTE RRUPT FLAG;

IS THE 9TH DATA BIT RECEIVED (If NOT PARITY);
RPE IS THE PARITY ERROR INDICATOR (IF PARITY ACTIVE).

270061-10

Figure 2-15 .. Serial Port Control/Status Register,

6-14

intJ AP-248

The serial port is similar to that on the MCS-Sl prod­
uct line. It has one synchronous and three asynchro­
nous modes. In the asynchronous modes baud rates of
up to 187.S Kbaud can be used, while in the synchro­
nous'mode rates up to I.S Mbaud are available. The
chip has a baud rate generator which is independent of
Timer 1 and Timer 2, so using the serial port does not
take away any of the HSI, HSO or timer flexibility or
functionality.

Control of the serial port is provided through the
SPCON/SPSTAT (Serial Port CONtrol/Serial Port
STATus) register. This register, shown in Figure 2-1S,
has some bits which are read only and others which are
write only. Although the functionality of the port is
similar to that of the 80S 1 , the names of sOIlte of the
modes and control bits are different. The way in which
the port is used from a software standpoint is also
slightly different since RI and TI are cleared after each
read of the register.

The four modes of the serial port are referred to as
modes 0, 1, 2 and 3. Mode 0 is the synchronous mode,

, and is commonly used to interface to shift registers for
I/O expansion. In this mode the port outputs a pulse
train on the TXD pin and either transmits or receives
data on the RXD pin. Mode 1 is the standard asyn­
chronous mode, 8 bits plus a stop and start bit are sent
or received. Modes 2 and 3 handle 9 bits plus a stop and
start bit. The difference between the two is, that in
Mode 2 the serial port interrupt will not be activated
unless the ninth data bit is a one; in Mode 3 the inter­
rupt is activated whenever a byte is received. These two
modes are commonly used for interprocessor communi­

'cation.

Using XTAL 1:

M d O. Baud _ XTAL 1 frequency B
o e . Rate - 4'(B+1) , '" 0

Other' Baud = XT AL 1 frequency
s. Rate 64'(B+1)

Using T2CLK:

Md' Baud _ T2CLK frequency.
o e O. Rate - 8 ' 8 '" 0

O h . 8aud _ T2CLK frequency.
t ers. Rate - 16'8 ,8 '" 0

Note that 8 cannot equal 0, except when using
XT ALlin other than mode 0.

Figure 2-16. Baud Rate Formulas

6-15

Baud rates for all of the modes are controlled through
the ·Baud Rate register. This is a byte wide register
which is loaded sequentially with two bytes, and inter­
nally stores the value as a word. The least significant
byte is loaded to the register followed by the most sig­
nificant. The most significant bit of the baud value de­
termines the clock source for the baud rate generator. If
the bit is a one, the XTALI pin is used as the source, if
it is a zero, the T2 CLK pin is used. The formulas
shown in Figure 2-16 can be used to calculate the baud
rates. The variable UB" is used to represent the least
significant IS bits of the value loaded into the baud rate
register.

The baud rate register values for common baud rates
are shown in Figure 2-17. These values can be used
when XTALI is selected as the clock source for serial
modes other than Mode O. The percentage deviation
from theoretical is listed to help assess the reliability of
a given setup. In most cases a serial link will work if
there is less than a 2.S% difference between the baud
rates of the two systems. This is based on the assump­
tion that 10 bits are transmitted per frame and the last
bit of the frame must be valid for at least six-eights of
the bit time. If the two systems deviate from theoretical
by 1.2S% in opposite directions the maximum toler­
ance of 2.S% will be reached. Therefore, caution must
be used when the baud. rate deviation approaches
1.2S% from theoretical. Note that an XTALl frequen­
cy of 11.0S92 MHz can be used with the table values
for 11 MHz to provide baud rates that have 0.0 percent
deviation from theoretical. In most applications, how­
ever, the accuracy available when using an 11 MHz
input frequency is sufficient.

Serial port Mode 1 is the easiest mode to use as there is
little to worry about except initialization and loading
and unloading SBUF, the Serial port BUFfer. If parity
is enabled, (i.e., PEN = I), 7 bits plus even parity are
used instead of S data bits. The parity calculation is
done in hardware for even parity. Modes 2 and 3 are
similar to Mode I, except that the ninth bit needs to be
controlled and read. It is also not possible to enable
parity in Mode 2. When parity is enabled in Mode 3 the
ninth bit becomes the parity bit. If parity is not enabled,
(i.e., PEN = 0), the TB8 bit controls the state of the
ninth transmitted bit. This bit must be set prior to each
transmission. On reception, if PEN = 0, the RBS bit
indicates the state of the ninth received bit. If parity is
enabled, (i.e., PEN = 1), the same bit is called RPE
(Receive Parity Error), and is used to indicate a parity
error.

AP-248

XTAL 1 Frequency = 12.0 MHz

Baud Rate Baud Register Value Percent Error

19.2K 8009H +2.40
9600 8013H +2.40

4800 8026H -0.16

2400 804DH -0.16

1200 809BH -0.16

300 8270H 0.00

XTAL 1 Frequency'= 11.0 MHz

19.2K 8008H +0.54

9600 8011H +0.54

4800 8023H +0.54
2400 8047H +0.54

1200 808EH -0.16

300 823CH +0.01

XTAL 1 Frequency = 10.0 MHz

19.2K 8007H -1.70

9600 800FH -1.70

4800 8020H +1.38

2400 8040H -0.16

1200 8081H -0.16

300 8208H +0.03

Figure 2-17. Baud Rate Values for 10, 11, 12 MHz

The software used to communicate between processors
is simplified by making use of Modes 2 and 3. In a basic
protocol the ninth bit is called the address bit. If it is set
high then the information in that byte is either the ad­
dress of one, of the processors on the link, or a com­
mand for all the processors. If the bit is a zero, the byte
contains information for the processor or processors
previously addressed. In standby mode all processors
wait in Mode 2 for a byte with the address bit set.
When they receive that byte, the software determines if
the next message is for them. The processor that is to

receive the message switches to Mode 3 and receives
the information. Since this information is sent with the
ninth bit set to zero, none of the processors set to Mode
2 will be interrupted. By using this scheme the overall
CPU time required for the serial port is minimized.

A typical connection diagram for the multi-processor
mode is shown in Figure 2-18. This type of communica­
ton can be used to connect peripherals to a desk top
computer, the axis of a multi-axis machine, or any oth-'
er group of microcontrollers jointly performing a task.

6-16

AP-248

8018680286
MAIN SYSTEM {

-CALCULATE COORDINATE TRANSFORMS
- DETERMINE VECTOR ENDPOINTS AND

TRAVEL TIMES
'-__ """,,:~ ___ '" - PROVIDE USER INTERFACE

270061-11

Figure 2-18. Multiprocessor Communication

Mode 0, the synchronous mode, is typically used for
interfacing to shift registers for I/O expansion. The
software to control this mode involves the REN (Re­
ceiver ENable) bit, the clearing of the RI bit, and writ­
ing to SBUF. To transmit to a shift register, REN is set
to zero and SBUF is loaded with the information. The
information will be sent and then the TI flag will be set.
There are two ways to cause a reception to begin. The
first is by causing a rising edge to occur on the REN
bit, the second is by clearing RI with REN = 1. In
either case, RI is set again when the received byte is
available in SBUF.

2.3.5. A to D CONVERTER

Analog inputs are frequently required in a microcon­
troller application. The 8097 has a lO-bit A to D con­
verter that can use anyone of eight input channels. The
conversions are done using the successive approxima­
tion method, and require 168 state times (42 microsec­
onds with a 12 MHz clock.)

The results are guaranteed monotonic by design of the
converter. This means that if the analog input voltage
changes, even slightly, the digital value will either stay
the same or change in the same direction as the analog

6-17

input. When doing process control algorithms, it is fre­
quently the changes in inputs that are required, not the
absolute accuracy of the value. For this reason, even if
the absolute accuracy of a lO-bit converter is the same
as that of an 8-bit converter, the lO·bit monotonic con­
verter is 'much more useful.

Since most of the analog inputs which are monitored by
a microcontroller change very slowly relative to the 42
microsecond conversion time, it is acceptable to use a
capacitive filter on each input instead of a sample and
hold. The 8097 does not have an internal sample and
hold, so it is necessary to ensure that the input signal
does not change during the conversion time. The input
to the A/D must be between ANGND and VREF.
ANGND must be within a few millivolts of VSS and
VREF must be within a few tenths of a volt of vee.

Using the A to D converter on the 8097 can be a very
low software overhead task because of the interrupt and
HSO unit structure. The A to D can be started by the
HSO unit at a preset time. When the conversion is com­
plete it is possible to generate an interrupt. By using
these features the A to D can be run under complete
interrupt control. The A to D can also be directly

Ap·248

AID Command Register

(LOCATION 02H)

I L CHANNEL II SELECTS WHICH OF THE 8 ANALOG INPUT
~ CHANNELS IS TO BE CONVERTED TO DIGITAL FORM;

GO INDICATES WHEN THE CONVERSION IS TO BE
INITIATED (GO: 1 MEANS START NOW, GO: 0
MEANS THE CONVERSION IS TO BE INITIATED
BV THE HSO UNIT AT A SPECIFIED TIME).

AID Result Register

(LOCATION 03H) (LOCATION 02H)

AID CHANNEL NUMBER

~--- STATUS
o : AID CURRENTLV IDLE
1 : CONVERSION IN PROCESS

AID RESULT:

270061-12

'-------- LEAST SIGNIFICANT 2 BITS
MOST SIGNIFICANT BYTE

270061-13

Figure 2·19. A to D Result/Command Register

controlled by software flags which are located in the
AD~ESULT/AD_COMMAND Register, shown
in Figure 2-19.

2.3.6. PWM REGISTER

Analog outputs are just as impo~nt as analog inputs
when connecting to a piece of equipment. True digital
to analog converters are difficult to make on a micro­
processor because of all of the digital noise and the
necessity of providing an on chip, relatively high cur­
rent, rail to rail driver. They also take up a fair amount
of silicon area which can be better used for other fea­
tures. Th~ A to D converter does use a D to A, but the
currents Involved are very small.

For many applications an analog output signal can be
replaced by a Pulse Width Modulated (PWM) signal.
This signal can be easily generated in hardware, and

takes up much less silicon area than a true D to A. The
signal is a variable duty cycle, fixed frequency wave­
f?rm that can be integrated to provide an approxima­
tIon to an analog output. The frequency is fixed at a
period o~ 64 microseconds for a 12 MHz clock speed.
~ontrollmg the PWM simply requires writing the de­
SIred duty cycle value (an 8·bit value) to the PWM
Register. Some typical output waveforms that can be
generated are shown in Figure 2-20.

Converting the PWM signal to an analog signal varies
in difficulty, depending upon the requirements of the
system. Some systems, such as motors or switching
power supplies actually require a PWM signal, not a
true analog one. For many other cases it is necessary
only to amplify the signal so that it switches rail.to-rail,
and then filter it. Switching rail·to-rail means that the
output of the amplifier will be a reference value when
the input is a logical one, and the output will

6-18

inter Ap-248

be zero when the input is a logical zero. The filter can
be a simple RC network or an active filter. If a large
amount of current is needed a buffer is also required.
For low output currents, (less than 100 microamps or
so), the·circuit shown in Figure 2-21 can be used.

DUTY PWM CONTROL
CYCLE REGISTER VALUE

0% 00
HI
LO

The RC network determines how quiet the output is,
but the quieter the output, the slower it can change.
The design of high accuracy voltage followers and ac­
tive filters is beyond the scope of this paper, however
many books on the subject are available.

OUTPUT WAVEFORM

10% 25 ~~J1 ______ ~n~ ____ ~n~ ____ _

50% 128 HI
LO

110% 230 HI ..J
LO u u

19.8% 255
HI
LO

270061-14

Figure 2-20. PWM Output Waveforms

Vee

* 1/2 VQ3001P

270'
__ ----JV5·V1K~----~-----ANALOG

OUT PWM----~~~----.

270061-15
'This resistor limits Rise Time to reduce spikes and high frequency noise.

Figure 2-21. PWM to Analog Conversion Circuitry

6-19

AP-248

3.0 BASIC SOFTWARE EXAMPLES

The examples in this section shOw how to use each I/O
feature individually. Examples of using more than one
feature at a time are described in section 4. All of the
examples in this ap-note are set up to be used as listed.
If run through ASM96 they will load and run on an
SBE-96. In order to insure that the programs work, the
stack pointer is initialized at the beginning of each pro­
gram. If the programs are going to be used as modules
of other programs, the stack pointer initialization
should only be used at the beginning of the main pro­
gram.

To avoid repetitive declarations the "include" file
"DEM096.INC", shown in Listing 3-1, is used. ASM-
96 will insert this file into the code file whenever the
directive "INCLUDE DEM096.INC" is used. The file
contains the definitions for the SFRs and other vari­
ables. The include statement has been placed in all of
the examples. It should be noted that some of the lab-

els in this file are' different from those in the file
8096.1NC that is provided in the ASM-96 package.

3.1. Using the 8096's Processing
Section

3.1.1. TABLE INTERPOLATION

A good way of increasing speed for many processing
tasks is to use table lookup with interpolation. This can
eliminate lengthy calculations in many algorithms. Fre­
quently it is used in programs that generate sine wave­
forms, use exponents in calculations, or require some
non-linear function of a given input variable. Table
lookup can also be used without interpolation to deter­
mine the output state ofI/O devices for a given state of
a set of input devices. The procedure is also a good
example of 8096 code as it uses many of the software
features. Two ways of making a lookup table are de­
scribed, one way uses more calculation time, the second
way uses more table space.

,•..............................•......•..........•.......••...•.....
: DBM096.INC - DBFINITION OF $YMBOLIC NAMBS rOR THB I/O REGISTERS or THB 8096

! .. . ,
ZBRO
AD COMMAND
AD-RBSOL'I" LO
AD-RESUL"-HI
HSI MODE -
HSO-TIME
HSI-TIMI
HSO-COMMAND
HBI-STATUS
SBUP
IN" MASK
IH'I"-PBNDING
SPCON
SPS'I'AT
MA'I'CHOOG
TIMBRl
TIMBR2
POR,.O
BAUD REG
POR,.I
POR,.2
lOCO
IOSO
IOC 1
10Sl
PIIM CONTROL
SP -

RSBG • t lCH

BOU
BOU
BOU
BOU
BOU
BOU
BOU
BOU
BOU
BOU
BOU
BOU
BOU
BOU
SOU
IOU
SOU
IOU
BOU
BOU
BOU
BOU
BOU
BOU
BOU
BOU
BOU

AX, DSN
ox I OSII
BX IDSit'
eXI OS"

AL
AH

BOU
BOU

OOh IIIORO
0281BYTI
02HI'8Y"l'B
OlRIBYTB
Ol8In,.!
OCR IIIORO ,
0481WORD ,
068 I BY,.!
06R I BY,.!
078, By,.B
0.8IBYTB I
09". BY"'. ,
118 I BYTB
llft,BYTB
OAH I BYTB
OAB IIIORO
OCHIIfORO
OSH I BYTB
OBH I BY,..
OFftln,.B
lOa,BYTB
lSHIBYTB
lSft,BY,.B I
16HIBYTB ,
16H IBy,.B I
178.BYTB I
lIH Ilf0ltO I

AX I n,.s
(AX+l) IBY,.S

R/II
II

R
R

If
II

R
If

R
R/If
R/II
R/If

If IfATCHOOG TIMSit
It
R'
It

If
R/If
R/II

If
It

If
R

If
R/If S,.ACK ,OINTBR

, LIsting 3-1. Include File DEMO.96.INC

6-20

270061-16

AP-248

In both methods the procedure is similar. Values of a
function are stored in memory for specific input values.
To compute the output function for an input that is not
listed, a linear approximation is made based on the
nearest inputs and nearest outputs. As an example, con­
sider the table below.

If the input value was one of those listed then there
would be no problem. Unfortunately the real world is
never so kind. The input number will probably be 259
or something similar. If this is the case linear interpola­
tion would provide a reasonable result. The formula is:

Delta Out ~ UpperOutput·Lower Output '(Actual Input.Lower Input)
Upper Input·Lower Input

Actual Output ~ Lower Output + Delta Out
For the value of 259 the solution is:

900·400 500
Delta Out ~ 300-200 '(259-200) ~ 100 '59 ~ 5' 59 ~ 295

Actual Output ~ 400 + 295 ~ 695

To make the algorithm easier, (and therefore faster), it
is appropriate to limit the range and accuracy of the
function to only what is needed. It is also advantageous
to make the input step (Upper Input-Lower Input)
equal to a power of 2. This allows the substitution of
multiple right shifts for a divide operation, thus speed­
ing up throughput. The 8096 allows multiple arithmetic
right shifts with a single instruction providing a very
fast divide if the divisor is a power of two.

For the purpose of an example, a program with a 12-bit
output and an 8-bit input has been written. An input
step of 16 (2**4) was. selected. To cover the input range
17 words are needed, 255/16 + I word to handle val­
ues in the last 15 bytes of input range. Although only
12 bits are required for the output, the 16-bit architec­
ture offers no penalty for using 16 instead of 12 bits.

The program for this example, shown in Listing 3-2,
uses the definitions and equates from Listing 3-1, only
the additional equates and definitions are shown in the
code.

Input Value Relative Table Address Table Value

100 0001H 100
200 0002H 400
300 0003H 900
400 0004H 1600

$TITLE('INTERl.AJI'TI Interpolation routine I"l
J J '111; 8096 AsseMbly code fOr table lookup and interpolation

$INCLUOE(:FlsDEH096.INC)

RSEG at 22"

IN VALl
TABLE LOW;
TABLE:HIGH:

I Include deao definitions

1
1
1
1

I Actual Input 'Value

I Upper Input - Lower Input
Ibyte

IN DIP,
IN-DIFB
TAB DIP,
OUT,
RESULT,
OUT_DIl'l

dab
daw
dow
dow
eq u
dow
daw
dew
dal

IN DIP
1 , Upper Output - Lover output
1
1
1 r Delta Out

CSEG at 2080H

LD SP, 1100R

270061-17

Listing 3-2. ASM-96 Code for Table Lookup Routine 1

6-21

infef
lookr

cseg

tables

END

LOB
SHRD
ANOB

AP-248

AL, IN VAL , Load teap with Actual Value
AL, 13- J Divide the byte by 8
AL, .lllllllqa , Insure At 1 •• word addre ••

Thi. eftectively divide. At by 2
80 AL - IN_VAL/I'

LOBZB AX, At I Load byte AL to word AX
LO TABLE_LOM, TABLB lAX) , TABLE LOW Ie loaded with the'value

In the table at table location AX

LD (TABLB+2) lAX) J TABLE HIGH 1. loaded with the
, value In the table at table
I location Ax+2

(The next value In the t~ble)

SUB TAB_DIP, TABLE_HIGH, TABLB LOW
J TAB_DIP.TABLE_HIGH-TABLB_LOW

SHRAL

ADD

SRRA

ADDC

8R

AT 2100R

Dew
Dew
Dew
Dew
Dew

J IN DIF8-leaat alqnlflcant 4 bita
of IN VAL

I Load byte IN_DtFB to word IN DIP

Output difference -
Input-difference-Table difference

I Divide-by 16 (2··4)

OUT, OUT DIP, TABLE_LOM J Add output difference to output
generated with truncated IN VAL
as input -

OUT, '4 I Round to 12-blt answer

OUT, • Round up if Ca~rv - 1

OUT, RESULT , Store OUT to RESULT

look

000 OR, 2000H, HOOH. 4COOR J A cando. function
5000R, 'AOOH, 1200R', 7800R
7BOOH, 7DOOR, 7600H, 6DOOR
50008, 4800R, 34008, 2200H
1000H

270061-18

Listing 3-2. ASM-96 Code for Table Lookup Routine 1 (Continued)

If the function is known at the time of writing the soft­
ware it is also possible to calculate in 'advance the
change in the output function for a given change in the
input. This method can save a divide and a few other
instructions at the expense of doubling the size of the

lookup table. There are many applications where time
is critical and code space is overly abundant. In these
cases the code in' Listing 3-3 will work to the same
specifications as the previous example.

$TITLE('INTER2.APT: Interpol,tion routine 2')

J,.r",
I "r",

8096 AsseMblv code fot table lookup and interpolation
Usin9 tabled values in place of division

$INCLUDE(lrlIDBM09~.INC) J Inelu~e de.o definit~on.

aBBG at 24H

, Actual Input Value
, Table value for function

IN VALl
TABLE LOWI
TABLE-INC:
IN DIP;
IN-DIPB
OUT:

1
1
1
1

J Inere.ental change in function
1 Upper Input -"Lower Input

RESULT:
OU,._OI,.

IN DIP
1
1
1

.byte

, Delta Out

Listing 3-3. ASM-96 Code For Table Lookup Routine 2

6-22

270061-19

inter AP-248

esse; at Z0800

LD SP, ,100B J Initiali"e SP to top of reg. file

look, LDB AL, ro VAL - J Load t •• p with Actual Value
SURa
AMDB

AL, ,] Divide the byte by • AL, '1111111 OB r¥cr~·et~.~~i:.r;r~i:t~~:OfL by Z
00 AL - rN VAL/U

LDBIS AX, AL Load byte At: to VOE'd AX

LD TABLB_LOW, VAL TABLS(AXI I TABLE LOW 1_ loaded with the value
in the value table at location AX

LD

ANOB

LDBZB

IN_DIl'B, IN_VAL, 'OPR

IN_DIP, IN_oIPB

, TABLE INC 1. loaded with the value
In the incre.ent table at
location AX

I IN DIPS-Iea.t significant. bits
of IN VAL

, Load byte IN_DIYS to word IN_Dlr

MUL OUT_DIP, IN_DIP, TABLE INC
I Output difference.

Input:dlfference-Incre.ental change

ADD OUT, OU'l' DIP, - TABLB_LOW I Add output difference to output
98nerated with truncated IN VAL

SHR
ADDC

cseg AT 2100H

val_table:

OUT,
OUT,

OU'I',
look

'4 zero

RBSUL'I'

as input -
I Round to 12-blt anaver
I Round up if Carry = 1

J Store OUT to RESULT
I B~Anch to -look:-

DeW
Dew
Dew
Dew
Dew

OOOOH, 2000H,]400H, fCOOR J A ~ando. function
5000H, 6AOOH, 7200R, 7BOOH
7BOOH, 7DOOH, 7600H, 6000H
5000H, 4800H, 34008, 22008
1000H

inc table:
Dew
Dew
Dew
Dew

0200R, 0140R, 0180R, 0110H
OODOH, 0080H, 0060R, 0030R

00020H, OPP908, OPp708, Opr008
OrBEOR, Or8908, DPBEOR, OPBBOR

I Table of tncre.entll
I differences

END

270061-20

Listing 3-3. ASM-96 Code for Table Lookup Routine 2 (Continued)

By making use of the second lookup table, one word of
RAM was saved and 16 state times. In most cases this
time savings would not make much of a difference, but
when pushing the processor to the limit, microseconds
caD. make or break a design.

3.1.2. PL/M-96

Intel provides high level language support for most of
its micro processors and microcontrollers in the form of
PL!M. Specifically, PL/M refers to a family of lan­
guages, each similar in syntax, but specialized for the
device for which it generates code. The PL!M syntax is
similar to PL/l, and is easy to learn. PLM-96 is the
version of PL!M used for the 8096. It is very code
efficient as it was written specifically for the MCS-96
family. PLM-96 most closely resembles PLM-86, al­
though it has bit and I/O functions similar to PLM-51.
One line of PL/M-code can take the place of many

lines of assembly code. This is advantageous to the pro­
grammer, since code can usually be written at a set
number of lines per hour, so the less lines of code that
need to be written, the faster the task can be completed.

If the first example of interpolation is considered, the
PLM-96 code would be written as shown in Listing 3-4.
Note that version 1.0 of PLM-96 does not support 32-
bit results of 16 by 16 multiplies, so the ASM-96 proce­
dure "DMPY" is used. Procedure DMPY, shown in
Listing 3-5, must be assembled and linked with the
compiled PLM-96 program using RL-96, the relocator
and linker. The command line to be used is:

6-23

RL96 PLMEX1.0BJ, DMPY.OBJ, PLM96.LIB &
to PLMOUT.OBJ ROM (2080H-3FFFH)

AP-248

/. PLM-96 CODE FOR TABLE LOO~-UP AND INTERPOLATION *'
PLMEX: DO,

DECLARE IN VAL
DECLARE TABLE LOW
DECLARB TABLE:HIGH
DECLARE TABLE DIF
DECLARE OUT -
DECLARE RESULT
DECLARE OUT DIP
DECLARE TEMP

WORD,
INTBGER
INTEGER.
INTEGER
INTEGBR
INTEGER
LONG IN'!'
WORO

PUBLIC,
PUBLIC,
PUBLIC,
PUBLICr
PUBLIC,
PUBLIC,
PUBLIC,
PUBLIC,

DECLARE TABLBC171 INTEGER DA'!'A
OOOOH, 2000H, 34008, teaOR,
5000H, 6AOOH, 72008, 7800R,
78008, 7000H, 7600H, 6DOOR,
5000H, 4BOOH, 3400H, 22008,
1000HI,

DMPY, PROCEDURE (A,B) LONGIH'!' BJtTERNALI
DECLARE (A,B) INTEGERr

END DMPYr

LOOP,

/* A randOM function *'

TEMP-SHR(IN VAL,.), /* TEMP 1. the .ost significant 4 bits of IN_VAL 6/

TABLE LOW-TABLBCTEMPI,
TABLE:HIGH-TABLB(TEMP+l),

/* If -TEMp· waa replaced by ·SHR(tN VAt,t)·
/. The code would work but· the 8096 ;ould
/* do tvo shifts

'/
'/
'I

OUT_OIF-OHPYCTABLE_OIF,SIGNEDCIN_VAL AND OPHII 116,

OUTmSARI(TABLB_LOW+OUT_DIF),4)J /* SAR pertor.s an arith.etic right shift,

IF CARRY-O THEN RESULT-OUT,
ELSE RESULT-OUT+l,

in this case 4 places are< shifted */

'I
'I
'I

GOTO LOOP,

/* U81ng the hardware flagB .uat be done
/* with care to ensure the flag is tested
/* in the desired inst[ucti~n sequence

I' BND OF PLH-96 CODE '/

END;

Listing 3-4. PLM-96 Code For Table Lookup Routine 1

$TITLE('MULTeAPT: 16*16 multip\y procedure for PLM-96')

r seg

caeg

SP

EXTRN

18HtW,ord

PLMRBG Iiong

, Multiply two integers and return a
, longint result 1n AX, DX registers

, Load return address
J Load one operand

, Load second. operand a~d 1ncre.ent SP

, Return to PLM code.

Listing 3-5. 32-Bit Result Multiply Procedure For PLM-96

6-24

270061-21

270061-22

inter AP-248

Using PLM, code requires less lines, is mu~h faster to
write, and easier to maintain, but may take slightly
longer to run. For this example, the assembly code gen­
erated by the PLM-96 compiler takes 56.75 microsec­
onds to run instead of 30.75 microseconds. If PLM-96
performed the 32-bit result multiply instead of using
the ASM-96 routine the PLM code would take 41.5
microseconds to run. The actual code listings are
shown in Appendix A.

3.2. Using the 1/0 Section

3.2_1. USING THE HSI UNIT

One of the most frequent uses of the HSI is to measure
the time between events. This can be used for frequency
determination in lab instruments, or speed/acceleration
information when connected to pulse type encoders.
The code in Listing 3-6 can be used to determine the
high and low times of the signals on two lines. This
code can be easily expanded to 4 lines and can also be
modified to work as an interrupt routine.

$TITLE"PULSBaAPTz Measuring pulses

$INCLUDEIDEM096.INCl

[seg

0889

at 2BH

HIGH TIME a dB"
LOW TIME: dB"
PERIOD: dB ..
HI -LO -

at

LD
LOB
LOB

EDGEI dB ..
EDGBI dBW

20B08

SP, '100B
lOCO, 'OOOOOOOlB
HSI_MODE, '000011118

Frequently it is also desired to keep track of the num­
ber of events which have occurred, as well as how often
they are occurring. By using a software counter this
feature can be added to the above code. This code de­
pends on the software responding to the change in line
state before the line changes again. If this cannot be
guaranteed then it may be necessary to use 2 HSI lines
for each incoming line. In this case one HSI line would
look for falling edges while the other looks for rising
edges. The code in Listing 3-7 includes both the counter
feature and the edge detect feature.

The uses for this type .of routine are almost endless. In
instrumentation it can be used to determine frequency
on input lines, or perhaps baud rate for a self adjusting
serial port. Section 4.2 contains an example of making a
software serial port using the HSI unit. Interfacing to
some form of mechanically generated position informa­
tion is a very frequent use of the HSI. The applications
in this category include motor control, precise position­
ing (print heads, disk drives, etc.), engine control and

usl ng the USI un! t' J

, Enable RSI 0
I H51 0 look tor either edge

wal t; ADD PERIOD, HIGH TIMB, LON TIME
JBS
JDC

contini LOB

LD

JDB

hal 10: ST - SOD
DR

hBI hi. ST - SOB
BR

BND

IOS1, 6, contin J If rIPO 18 full
1091, " walt J Walt while no pulae Ie entered

J Load atatuB, Note that reading
RSI_TIME cl •• ra HSI_STATUS

8X, HBI_TIMB r Load the HSI_TIME

, J u. p If H S I .0 I a hi 9 h

BX. LO BDGB
HIGH TIMS, LO BDGB, HI BDGB
wait-

BX, HI BOGB
LON TIME, HI BDGB, LO_BDGB
w.lt

Listing 3-6. Measuring Pulses Using The HSI Unit

6-25

270061-23

AP-248

transmission control. The HSI unit is used extensively
in the example in section 4.3.

HSO line not change so quickly that it changes twice'
between consecutive reads of I/O Status Register 0,
(IOS0).

3.2.2. USING THE HSO UNIT

Although the HSO has many uses, the best example is
that of a multiple PWM output. This program, shown
in Listing 3-8, is simple enough to be easily understood,
yet it shows how to use the HSO for a' task which can
be complex. In order for this program to operate, an­
other program needs to set up the on and off time vari­
ables for each line. The program also requires that a

A very eye catching example can be made by having the
program output waveforms that vary over time. The
driver routine in Listing 3-10 can be linked to the above
program to provide this function. Linking is. accom­
plished using RL96, the relocatable linker for the 8096.
Information for using RL96 can be found in the
"MCS-96 Utilities Users Guide", listed in the bibliogra­
phy. In order for the program to link, the register dec-

$TITLE C'BNNSI.APT. BNNANCBD NSI PULSE ROUTINB'I

$INCLUDBCDBN096.INCI

R5BG AT 2 BN

"rIMEa
LAST RISEI -LAST PALLa
NSI SO I

IosI BAIC I
PB.RIDDe
LON 'lIMBe
RIGH TIMEr
COUNT.

caeg at 20BON

i nl t: LD SP,Il00R

DBN 1
DSN 1
DSN 1
DSB 1
DSa 1
DSN 1
DSN 1
DSN 1
DSN 1

LDa IOCl,'OOlOOl018 r DI •• ble 880.4,890.5, HSI tNT-fIrat,
• Enable PWM,TXD,TIMBRl_ovivLOW_INT

LDB
LDB

waltl AND8

N51 MODB,'lOOllOOlB
I OC '0 , • 00000 lllB

.r .et hal.l -, bal.O +
, Enable bal 0,1
I T2 CLOCK-T2CLI, T2RST-T2RST
• Clear tlaer2

, Clear tOSl BAIC.l
ORa

IOSl BAK,'OlllllllB
I05l::BAK,IOSl • Store into-teap to avoid clearing

, other flag_ which •• y be needed
Jac

ANDa
LD

.IRS
Jas
aR

a rlae; SUB - SUB
LD
BR

• fall • SUB - SUB
LD

inete.antl
INC

no cnt; aR -
END

JOS1_BAK,7,valt r If hal 1& not triggered then
J juap to valt

NSI SO,NSI STATUS,.OlOlOlOlB
,"IMI, HSI_TIME

R81 SO,O,II rill'"
H81-S0,2,.-fall
no_cnt

LOW 'lIMB, '11MB, LAST PALL
PBRIOD, TIMB,LAST RliB
LAST RISB, TIMB -
increaent

HIGH TIME, TIME, LAST RISE
PERIOD, TIMB,LAST PALL
LAST_PALL, TIMB -

wait

Listing 3-7. Enhanced HSI Pulse Measurement Routine

6-26

270061-24

AP-248

$TITLE ('HSOPWM.APTI 8096 EXAMPLE PROGRA" POR PWM OUTPUTS')

I Thi. proqram will provide 1 PMM outputs on USO pine 0-2
The input paraMeters passed ~o the progr •• ares

RSO ON N
HSO=OFP_N

RSO on tl_e lor pin N
"SO off time for pin N

Where; Tl.eB are In tl.erl cycles
N takes values fro. 0 to]

I J I J I I J I I , I JI I I I , I I J I I I I I I ,. J I I I I I JI I J I I r I J I I I I I , I I I r r I I J J I I

$INCLUDEfDEM096.rNC)

RSEG AT 288

eeoC)

uso ON 0: DSW
RSO-OrF 01 DSW
USa-ON I I DSW
HSO-OP' 1 DSW
OLO-STAT, dab
NBW=STAT: dab

AT 2080H

LD
LD
LD
LD
LD
AN DB
KORa

JBS
NOP

SP.II008
HSO ON 0, ,lOOH
Rso-orF 0, '400H
RSO-ON I, 1280H
USO-OPF 1, 1280H
OLD-STAi. 1050, IOPR
OLD:STAT, IOPR

10SO, 6, walt

• Set Inltlel value.
Note that tl_es .Ullt be 10n'9 enough
to allow the routine to run after each

, line chan"e.

I LoOp until HSO holding regiater
, Is e .. pty

For opperatlon with interrupts 'store atat,' would be the
entry point of the routine. -

J Note that. Dr or PUSHP .lght have to be added.

store stat:
- ANDB

check 0:

CMPB
JB
KORB

JBC
JBS

set_on 0:
LDB
ADD
BR

set off 0:

'check 1;

LDB
ADD

J BC
J as

set_on 1:
LOB
ADD
BR

check done:
LDB

NEN STAT, 1050, 10rli
OLO-STAT, N8W_STAT
.. att
OLD_STAT, NBW_STAT

OLD STAT, 0, check 1 NI"=:5,.",.,. 0, set_off

HSO COMMAND, 1001100008
HSO-TIME, TIMERI, HSO_OPF 0
check_l

HSO COMMAND, 1000100008
HSO=TIME, TIMERI, HSO_ON 0

OLD STAT, 1, check done
NEW:STAT, 1, .et_olf_l

H50 COMMAND. 100110001B
HSO-TIME, TIMERI, HSO orr I
check_done -

HSO COMMAND. 100010001B
HSO:TIME, TIMBal, HSO_ON

,Store atatuB of HSO

I If atatus h •• n't changed

r Set 1150 for tt.erl, set pin 0
"1'1 •• to set pin· Tiaerl value

+ Till. for pin to be low

I Set H50 for tlaerl, clear pin 0
I Tl.e to clear pin ~ Tlaerl value

+ Tille for pin to be high

J Set HSO for tt •• rl, •• t pin I
J Tlae to eet pin - Tlaerl v.lue

r Set 880 tor tl •• rl, cl •• r pln I
J Tl •• to cle.r ptn • Ti •• rl valu.

+ TI •• for pin to b. hlgh

J Store current atatu. and
I valt for Interrupt fla9

8a valt

BND

r uee RBT If ·walt- la called froa another routine

Listing 3-8. Generating a PWM with the HSO

6-27

270061-25

AP-248

laration section (Le., the section between "RSEO" and
"eSEOn) in Listing 3-8 must be changed to that in
Listing 3-9.

quency twice that of the first one. A slightly different
driver routine could easily be the basis for a switching
power supply or a variable frequency/variable voltage
motor driver. The listing of the driver routine is shown
in Listing 3-10. The driver routine simply changes the duty cycle of the

waveform and sets the second HSO output to a fre-

RSEG

cseq

NOTE: Use this tLle to replace ,the declaration aectlon of
the HSO PWM prograa froM -,INCLUDE(DEH096.INC)- throuqh
the line prlor to the label ·wait-. A180 change the last
branch in the proqr •• to a -RET-, .

D STA't1 DSB 1
extrn HSO ON 0 aword RSO OPF 0 .word - - - -extrn RSO ON 1 aword , RSO OFP 1 =vord -extrn HSO:TIME ,wotd , RSO COMMAND Ibyte
extrn TIMERl Iword , IOSO :byte
extrn SP :word

public OLD_STAT
OLD STAT; dab
NEW:S,.,.T I dab

PUBLIC wait

Listing 3-9. Changes to Declarations for HSO Routine

$TITLEI'HSODRV.APT. Driver Module for HSO PWM program')

HSODRV

PUBLIC
PUBLIC
PUBLIC
PU BL IC

MODULB MAlN, STACKSIIBI8)

HSO ON 0 , HSO OFP a
HSO-ON-l , H80-0PP"1
HSO-TIME , RSO"COMMAND
SP ; TIMERl , 1050 1

$INCLUDEIDEH09fi.INC)

t8eg at 288

EXTRN Ibyte

HSO ON a. dBW
HSO-Orr as daw
8S0-0N II dew
HSO-Orr 11 dew
count; - 4sb

cee9 at 2080H

EXTRN valt rentry

stetl 01
SP, 1100H LD

ANDB
XORB

OLD STAT, 1080, 10FB
OLD::STAT, 10PR

1 n 1 t 1.1 I

LD

loopa LD
SUB
LD

CX. 10100H

AX, 11000H
BX, AX, CX
AX, ex

ST AX, H90_0N_O
ST BX, HSO_OrF_O

270061-26

270061-27

listIng 3-10. Driver Module for HSO PWM Program

6-28

intJ AP-248

SUR AX,')
SUR OX,ll
ST AX, USO ON 1 -ST ox, USO OPF 1 - -
CALL W G 1 t

INC ex
CHP CX, IOOFOOU
ON E loop

DR 1 n 1 t 1 II 1

END
270061-28

Listing 3-10. Driver Module for HSO PWM Program (Continued)

Since the 8096 needs to keep track of events which of­
ten repeat at set intervals it is convenient to be able to
have Timer 2 act as a programmable modulo counter.
There are several ways of doing this. The first is to
program the HSO to reset Timer 2 when Timer 2
equals a set value. A software timer set to interrupt at
Timer 2 equals zero could be used to reload the CAM.
This software method takes up two locations in the
CAM and does not synchronize Timer 2 to the external
world.

To synchronize Timer 2 externally the T2 RST (Timer
2 ReSeT) pin can be used. In this way Timer 2 will get
reset on each rising edge of T2 RST. If it is desired to
have an interrupt generated and time recorded when
Timer 2 gets reset, the signal for its reset can be taken
from HSI.O instead of T2RST. The HSI.O pin has its
own interrupt vector which functions independently of
the HSI unit.

Another option available is to use the HSI.l pin to
clock Timer 2. By using this approach it is possible to
use the HSI to measure the period of events on the
input to Timer 2. If both of the HSI pins are used
instead of the T2RST and T2CLK pins the HSIO unit
can keep track of speed and position of the rotating
device with very little software overhead. This type of
setup is ideal for a system like the one shown in Figure
3-1, and similar to the one used in section 4.3.

In this system a sequence of events is required based on
the position of the gear which represents any piece of
rotating machinery. Timer 2 holds the count of the
number of tooth edges passed since the index mark. By
using HSl.l as the input to Timer 2, instead of T2
CLK, it is possible to determine tooth count and time
information through the HSI. From this information
instantaneous velocity and acceleration can be calculat­
ed. Having the tooth edge count in Timer 2 means

HSI.1 OR T2CLK

TIMER 2 HOLDS TOOTH COUNT

HSI MEASURES PULSE PERIOD

l-~----HSI.O OR T2RST

RESETS TIMER 2 AND/OR
CAUSES INTERRUPT

Figure 3-1. Using the HSIO to Monitor Rotating Machinery

6-29

270061-29

AP-248

that the HSO unit can be used to initiate the desired
tasks at the appropriate tooth count. The interrupt rou­
tine initiated by HSI.O can be used to perform any soft­
ware task required every revolution. In this system, the
overhead which would normally require extensive soft­
ware has been done with the hardware on the 8096,
thus making more software time available for control
programs.

3.2.3. USING THE SERIAL PORT IN MODE 1

Mode 1 of the serial port supports the basic asynchro­
nous 8·bit protocol and is used to interface to most
CRTs and printers. The example in Listing 3·11 shows
a simple routine which receives a character and then

transmits the same character. The code is set up so that
minor modifications could make it run on an interrupt
basis. Note that it is necessary to set up some flags as
initial conditions to get the routine to run properly. If it
was desired to send 7 bits of data plus parity instead of
8 bits of data the PEN bit would be set to a one. Inter­
processor communication, as described in section 2.3.4,
can be set up by simply adding code to change RB8 and
the port mode to the listiQ,g below. The hardware
shown in Figure 3-2 can be used to convert the logic
level output of the 8096 to ± 12 or 15 volt levels to
connect to a CRT. This circuit has been found to work
with most RS-232 devices, although it does not con­
form to strict RS-232 specifications. If true RS-232
conformance is required then any standard RS-232
driver can be used.

$TITLE('SP.APTI SERIAL PORT DEMO PROGRAM t)

$INCLUOEIOEM096~I~CI

rseg at ZIU

CHR: dab
SPTEMP: dab
TEMPOs dab

, TEMPI: dab
ReV_FLAG. dab

caeg at 20UCH

caeg at 20808

LO SP, 'lOOH

LOB IOC1. '00100000B , Set '2.0 to ~XD

, Baud rate. input frequency I ('.-baud val)
• baud_val • (Input frequency/'.) / baud rate

BAUD HIGH
BAUO=LOW

equ

equ
equ'

39 , 39 • (12,000,000/'4),4.00 baud

Ilboud vol-ll/2S61 OR 10H
Ibaud.vol-ll MOD 256

, Set MS8 to 1

LOB BAUD RBG. 'BAUD LON
LOB BAOO:RBG, IBAUO:HIGH

loop:

LOB

S'1'B
LOB

LOB
BI
BR

ser port inti
• PUSHF

I'd agalnl
. LOB

ORB
ANDB
JNB

SPCqN, ,o10010018 , Bnable receiver, Hode 1

r The aerial port Is now initialized

seup, eHR
TEMPO. 'OOlOOOOOB

IN".MASK. 'OlOOOOOOB

r C1.ar .erla1 Port
r Set TI-te.p

r Enable Serial Port Interrupt

loop J Walt for a.rlal port interrupt

SPT!MP, SPSTAT
.,EMPO, SPT!MP
SPTEMP.'OllOOOOOB

• Thi. aectlon of code can be replaced
• vl th ·ORB TEMPO, SP STAT-' when the
• .erlal port 71 and Rt bug8 are fixed

r4_agatn • Repeat until TI and RI are properly cleared

Listing 3-11. Using the Serial Port in Mode 1

6-30

270061·30

intJ

get by tel
- JDe

STB
AN DB
LOB

put byte:
- JDe

JBC
L08
ANDB

"NOB
CHPB
JHE
LOB
8R

clr reva
CLRB

continuel
POPF
RET

END

AP-248

TEMPO, 6, put byte
SOUP, CUR -
TEMPO, .101111118
Rev _FLAG, IOFFH

Rev FLAG, 0, continue
TEMPO,S, continue
SOUP, CHR
TEMPO, '110111118

CHA, ,OIII1111B
CHR,IODH
cir rey
CHR-; 10AH
continue

Rev _FLAG

I If RI-te.p is not Bet
I Store byte
I eLR AI-temp
J Set bit-received flag

I If receive flA9 Is cleared
I If TI vas not set
I Send by to
I eLR ~I- tellp

I This aectlon of code appends
J an LP after a eR Is sent

I Clear bit-received flag

Listing 3-11. Using the Serial Port in Mode 1 (Continued)

RXD

VCC 02,03 = 1N914 -..... R2-R6 = 1800 n

R3
VCC

-r-
R2

~ T1
TXD 2N2907 XMITDATA R6

(TO RS232 PIN 3)

~ ,

R4
RCV DATA

02 RS , T2 ...-. ~ 2N2222

'::: C1
J~ 01

110 P

RCV DATA '----
(FROM RS232 PIN 2)

~

SIGNAL GROUND (RS232 PIN 7)

~
Figure 3-2. Serial Port Level Conversion

6-31

270061-31

270061-32

intJ AP-248

3.2.4. USING THE A TO D

The code in Listing 3-12 makes use of the software flags
to implement a non-interrupt driven routine which
scans A to D channels 0 through 3 and stores them as
words in RAM. An interrupt driven routine is shown in
section 4.1. When using the A to D it is important to
always read the value using the byte read commands,
and to give the converter 8 state times to start convert­
ing before reading the status bit. .

Since there is no sample and hold on the A to D con­
verter it may be desirable to use an RC filter on each
input. A lOOn resistor in series with a 0.22 uf capacitor
to ground has been used successfully in the lab. This
circuit gives a time constant of around 22 microseconds
which should be long enough to get rid of most noise,
without overly slowing the A to D response time.

4.0 ADVANCED SOFTWARE
EXAMPLES

Using the 8096 for applications which consist only of
the brief examples in the previous section does not

really make use of its full capabilities. The following
examples use some of the code blocks from the previous
section to show how several I/O features can be used
together to accomplish a practical task. Three examples
will be shown. The first is simply a combination of sev­
eral of the section 3 examples run under an interrupt
system. Next, a software serial port using the HSIO
unit is described. The concluding example is one of in­
terfacing the HSI unit to an optical encoder to control a
motor. .

4.1. Simultaneous 1/0 Routines under
Interrupt Control

A four channel analog to PWM converter can easily be
made using the 8096. In the example in Listing 4 ana­
log channels are read and 3 PWM waveforms are gen­
erated on the HSO lines and one on the PWM pin.
Each analog channel is used to set the duty cycle of its
associated output pin. The interrupt system keeps the
whole program humming, providing time for a back­
ground task which is simply a 32 bit software counter.
To show which routines are executing and in which

$TITLE('ATOD.APT: SCANNING THE A TO 0 CHANNELS')

$INCLUDE(DEM096.INCI

RSEC .t 28u

BL EOU 8XIBYTE
DL EOU DX1BYTE

RESULT TABLE:
RESULT i. d." -RESULT 2. dB" -RESULT] . d." -RESULT 4. d." -

cseg at 2080H

start: LO SP, 'lOOH J Set Stack Pointer

n ex t,:

C!.R !!!

1.008

NOP
NOP

I Start conversion on channel
J indicated by BL register

, Wait for' conversion to start

check: JOS AD RBSULT_LO, 3, check , Walt while A to D is busy

LOB
Loa

ADOB
LDBZE
ST

INCB
ANDB

AL, AD_REBULT_LO
AH, AD_RBSULT_HI

CL, BL, BL
OX, DL

Load low order result
Load high order result

AX, RESULT 'I'ABLB(DX} • Stoce result lndexed by BL-2

BL , Incce.ent BL aodulo 4
BLf f038

BR nex t

END

Listing 3-12. Scanning the A to D Channels

6-32

270061-33

AP-248

order, Port 1 output pins are used to indicate the cur­
rent status of each task. The actual code listing is in­
cluded in Appendix B.

The initialization section, shown in Listing 4-1 a, clears
a few variables and then loads the first set of on and off
times to the HSO unit. Note that 8 state times must

be waited between consecutive loads of the HSO. If this
is not done it is possible to overwrite the contents of the
CAM holding register. An AID interrupt is forced by
setting the bit in the Interrupt Pending register. This
causes the first AID interrupt to occur just after the
Interrupt Mask register is set and interrupts are en­
abled.

Listing 4-1. Using Multiple 1/0 Devices

$TITLE ('8096 EXAMPLE PROGRAM POR PHM OUTPUTS FROM A TO 0 INPIJTS')
$PAGEWIDTH (110)

J This progrAm ",ill provide J PWH outputs on lisa pins 0-2
and on the PWH.

The PHM values are determined by the input to the Aln converter.

; J III III II J I r I J IIII 111111.,111111111 J I" r II II I. J I J IIII1IIIII

$INCLUDE(OEH096.INC)

RSEC AT 28U

DL EOU DX,BYTI!!

ON TIME:
PHH TIME I. D8W
HSO-ON 01 D8W
HSO-ON-l: D8W
H50:0N=2. DSW

RESULT TABLE.

c8eg

RESULT 0:
RESULT-I:
RESULT-Z:
RESULT:):

NXT ON T:
NXT-Ol"P 0;
NXT-OFY-l,
NXT-or'-2.
COUNT: -

DSW
OS"
DSW
DSIi

DSW
DSIi

,DSW
DSW
DSL
DSW
DSIi

HSD_PERr DSW
LAST LOAD: DS8

AT 2000H

J Channel belnq converted

. DeW
DCIi
DCW

start I Tlaer_ovf_lnt
Atod done lnt
start I H5I_data_lnt

Dew HSO exec lnt

cseg AT 2080H

start: LD
CL.

wldt: DEC
JNE

CLR8

LD
LD
LD
LD
LD

SP, 1100H
AX

I Set Stack Polnte~

AX
wai t

PHM TIME 1, 1080H
USO-PER, -IIOOH
IISO-ON 0, 1040"
HSO-ON-i, ,OOOH
HSO=ON=2, ,OeOl1

wal t approx. 0.2 8econds foc
S8E to finish co •• unlcatlona

Listing 4-1a. Initializing the A to D to PWM Program

6-33

270061-34

loopl

LD.
LD
NOP
NOP
LD.
ADD

AP-248

USO COMMAND, '001101108
HSO:TIME, NXT_ON_T

HSO COMMAND. '00100010.
HSO=TIME, NXT_ON_T

Set HSO for tl.erl, aet pin 0,1
with interrupt

Set uso tor tl.erl, set pin 2
without interrupt

ORO LAST LOAD, '000001118 ,Last loaded value WBS Bet all pins
LDB tNT MASK, 1000010108 ,Bnable Rsa and AID interrupts
LDB INT:PENDING, '000010108 J Pake an AID and uso t nt'errupt
Et

ORB
ADD
ADDe
ANDB
BR

portl, '000000018
COUNT. '01
COUNT+2,zeto
Portl, .111111108
loop

I Bet Pl.0

, clear P1.0

Listing 4-1a. Initializing the A to 0 to PWM program (Continued)

270061-35

" "111',, IIIIJI" '" ,,,",,",, """" "1'" ,,," ""'111 1'" ",,'."11,'" ':1;"""""" USO EXECUTED INTERRUPT ",1"""1""",,,1
I J 1111"'1" 11111111111'11""" """ """""1""""".",11, ""l ",,11
uso exec tntl

- PUSHF
ORB pottl, .000000108 , Set pl.l

SUB TMP,TIMERl, NXY ON T
CMP TMP,ZERO -
JLT set_off_tlaes

set_on tilles:
ADD
LDB
LD
NOP
NOP
LD.
LD

NXT ON T, HSO PER
HSO-COMMAND. 100110110B
HSO:TIME, NXT_ON_T

I Set RSO fot tillet!, set pin 0,1

ORB

"SO COMMAND, 1001000108
HSO:TIME, NXT_ON_T

LAST_LOAD. '000001118

J Set HSO for tilletl, set pin 2

I Last loaded value vas all one a

I Nov is as good a tl.e as ~ny
I to update the PMM teg

set off ti.e81
Joe LAST_LOAD, 0, check_done

ADD NXT OFr 0, NXT ON T, HSO ON_O
LOB HSO-COMMAND, .00010000B I Set HSO fot tilletl, clear pin
LD HSO:TIME, NXT_OFF_O

NOP
ADD NXT OFr 1, NXT ON T, USO ON 1
LOB USO-COMMAND, '000100018 - - I Set RSO fol' tillel'l, clear pin
LO iSO-TIMB, N~T OPF 1

NOP
ADD NXT OPF 2, NXT ON T, HSO ON 2
LOB RSO-COMMAND. ,00010010B - - I Set usa fot timerl, cleat pin 2
LO HSO:TIME, NXT_OFF_2

ANDB

check done:
ANDB
PO PF
RET

LAST LOAD, 1111110009

Portl, '1~1111018

La'st loaded value was alIOs

, Clear PI.l

Listing 4-1b.lnterrupt Driven HSO Routine

6-34

270061-36

intJ AP-248

1, •• , ,","",,",,,,, """"1"1"",,,,1,,,"'111,"'" III ,,""""",,,,
"II'JII,J""" A TO 0 COMPLETE INTERRUPT 1II"".r""",.,.

11"""""" """,,"," ',JJII.""""""""""""" ,,,,,,""""",,
ATOD done intI

- POSHP
ORB PottI, 1000001008 J Set Pl.]

AMOB
LOB
ADDB
LDBIB
ST

AL,
AH,
DL,
OX,
AX,

AD RESULT LO,I11000000B
AD-RESULT-HI
AD-NUM, AD NUH
DL- -

, Load low order result
I Load high order reBult
J DL- AD_NUM -2

RESULT_TAaLE(DXI , Store reBult Indexed by OX

CNPB AL, 101000000B
JNH no rnd I Round up if needed
CMPB AH;'OPPR , Don't lnere.ent If AR-o,rH
JE no rnd
INCB AR-

no_rnd. LDB AL, AU , Align byte and change to word
CLRa
ST

INca
ANDa

AR
AX, ON_'rINB(DX)

AD HUN
AO:NUM, 1038 J Keep AD_NUM between 0 and J

next: ADDa AD_COMMAND, AD NUH, '1000D J Start conversion on channel
I indicated by AD NUM register

ANDB
POPP
RBT

PortI, ,11111011B r Cleat Pl.2 -

BND

270061-37

Listing 4-1c.lnterrupt Driven A to D Routine

The HSO routine shown in Listing 4-1b is slightly dif­
ferent than the one in section 3, All of the HSO lines
tum on at the same time, only the tum-ofT-time is var­
ied between lines. This action is what is most common­
ly required for multiple PWM outputs and simplifies
the software. A comparison is made between Timer 1
and the next HSO tum on time at the beginning of the
routine. If the next tum on time has passed, then the
on-times are loaded into the CAM, otherwise the ofT
times are loaded,

The maximum number of events in the CAM at any
given time is 7. This occurs when the first line to tum
ofT does so, causing the ofT-times for all of the lines to
be loaded. For two of the lines there will be an offiime,
an on-time, and the just loaded ofT-time. The other line
(the one that just turned oft) will have only the on-time
and the just loaded ofT-time.

AID conversions ar~ performed by the code in Listing
4-1c about every 60 microseconds, 42 for the conver­
sion, the rest for overhead, The AID routine sets up the
HSO and PWM on and ofT times. Since the AID

has a ten bit output, the most significant 8 bits are
rounded up or down based on the least significant two
bits.

4.2. Software Serial Port Using the
HSIO Unit

There are many systems which require more than one
serial port, an example is a system which must commu­
nicate with other computers and have an additional
port for a local console, If the on-board UART is being
used as an inter-processor link, the HSIO unit can be
used to interface the 8096 to an additional asynchro­
nous line.

Figure 4-1 shows the format of a standard lO-bit asyn­
chronous frame. The start bit is used to synchronize the
receiver to the transmitter; at the leading edge of the
START bit the receiver must set up its timing logic to
sample the incoming line in the center of each bit. Fol­
lowing the start bit are the eight data bits which are
transmitted least significant bit first. The STOP bit is
set to the opposite state of the START bit to guar-

6-35

inter Ap·248

STOP

270061-38

Figure 4·1. 10·bit Asynchronous Frame

antee that the leading edge of the START bit will cause
a transition on the line; it also provides for a dead time
on the line so that the receiver can maintain its syn·
chronization.

3. Transmit ISR. This routine runs as an ISR (interrupt
service routine) in response to an HSO interrupt in"
terrupt. Its function' is to serialize the data passed to
it by the interface routines.

The remainder of this section will show how a full-du­
plex asynchronous port can be built frQm the HSIO
unit. There are four sections to this code:

4. Receive ISRs. There are two ISRs involved in the
receive process. One of them runs in response to an
HSI interrupt and is used to synchronize the receive
process at the leading edge of the start bit. The sec­
ond receive.ISR runs in response to an HSO generat~
ed software timer interrupt, this routine is scheduled
to run at the center of each bit and is used to deseri7
alize the incoming data.

1. Interface routines. These routines provide a proce­
dural interface between the interrupt driven core of
the software serial port and the remainder of the ap­
plication software.

'2. Initialization routine. This routine is called during
the initialization of the overall system and sets up the
various variables used by the software port.

The routines share the set of variables that are shown in
Listing 4-2. These variables should be accessed only by
the routines which make up the software serial port.

VARIABLES NEEDEO BY THE SOFTWARB SBRIAL PORT

(seg

reve atate:
[xrdy
(xaverrun
rip

reve b uf I -rcve _reg:
sa.ple ti.e I -
seri al out: -
baud co un t I -
txd time, -
char: ,

dab
equ
equ
equ
d.b
dab
d ...

d ... 1

d ... 1

dB .. 1

dab 1

indicatea receive done
indicatea receive overflow
receive in progress flag
used to double buffer receive data
uaed to 'de8erlallze recelve
recorda last receive a •• ple tia.

Holda the output character+fr •• lng (atart and
atop bits) for tran •• lt pr?Ce88.

Holda the perlod of one bit In units
of 71 ticke.

T,ranaltlon tias of last Txd bit that"wa.
sent to the CAM

for tea.t only

COMMANDS ISSUED ~O ~HB RBO UNIT

.ark coamand equ
space co •• and equ
sa_Ple_co •• and equ

$eject

OllOlOlb
OOlOlOlb
OOllOOOb

• tl.~rl,8et,lnt.rruPt on
, tt •• clrele,lnterrupt on
f Boftware tiaer 0

Listing 4·2. Software Serial Port Declarations

6-36

270061-39

infef AP-248

The table also shows the declarations for the com­
mands issued to the HSO unit. In this example HS1.2 is
used for receive data and HSO.5 is used for transmit
data, although other HSI and HSO lines could have
been used.

The interface routines are shown in Listing 4-3. Data is
passed to the port by pushing the eight-bit character
into the stack and calling char _out, which waits for
any in-process transmission to complete and stores the
character into the variable serial_out. As the data is

stored the START and STOP bits are added to the data
bits. The routine char-in is called when the applica­
tion software requires a character from the port. The
data is returned in the ax register in conformance to
PLM 96 calling conventions. The routine csts can be
called to determine if a character is available at the port
before calling char _in. (If no character is available
char _in will wait indefinitely).

The initialization routine is shown in Listing 4-4. This
routine is called with the required baud rate in the

I
char outl
I Output character to the software aerial port

pop ex I the return address
pop bx I the character f 0' output
Idb (bx'l),IOlh I add the start and atop bi to
add b.,bx to the char and leave aa 16

"a 1 t for x.l t I -
CliP aortal out, ° wait for aerial out-O (I t "Ill
bne walt for •• 1 t the heo interrupt process)
at bx,aerial_out I put the tor.atted character
b, (ex I I [eturn to caller

csta:
I Returns -true- (8X<>0) if char_in haa a character.

c 1 r ax
bbe rcve_state,O,cata_exlt
inc ax

cats ext tl
,et

I
char in:
, Get a character tro. the software aerial port

bbe
pushf
andb
Idbze
popf
ret

I walt for
reve at.te,O,char In

- ,-set up a
reve atate,'not(rxrdy)

character ready

cri tical re9ion

al,rcve_buf
I leave the critical reglon

Listing 4-3. Software Serial Port Interface Routines

setup serial port~
I Called on iyste. reBet to lntlate the software aerlal port.

ex r the return addreBs
r the b~ud rate (In declaal)

1 n

bit

be cleared by

aerial out -

270061-40

pop
pop
Id
Id

bx
dx.I0007h
ax"OA120h
IX, bx

, dX'8K,-500,000 lalau.es 12 Mhz crystal)

dlvu
at
at
idb
bbe

add
idb
Id
clrb
cltb
clrb
call
br

, calcul.te the baud count (500,OOO/baudrate)
ax,baud count
O'.aerlaI out • clear •• rl.l out
locl,.OllOOOOOb r Bn.ble H50.5 and Txd
10aO,6,$ I Walt for roo. In the HSO CAM

• and la.ue • MARK eo •• and.
txd tla.,tlaerl,20
h.o-eo •• and •••• rk· co •• and
hao-tla.,txd tla.-
reve_but - ,clear out the receive variables
reve reg
reve-.tate
lnlt-recelve
(exl-

J setup to detect a atart bit
J return

Listing 4-4. Software Serial Port Initialization Routine

6-37

270061-41

intJ , AP-248

stack; it calculates the bit time from the baud rate and '
stores it in the variable baud_count in units of
TIMERI ticks, An HSO command is issued which will
initiate the transmit process and then the remainder of
the variables owned by the port are initialized. The rou­
tine init_receive is called to setup the HSI unit to look
for the leading edge of the START bit.

nificant bit is output and the register shifted right one
place. The framing information (START and STOP
bits) are appended to the actual data by the interface
routines. Note that this routine will be executed once
per bit time whether or not data is being transmitted. It
would be possible to use this routine for additional low
resolution timing functions with minimal overhead.,

The transmit process is shown in Listing 4-5. The HSO
unit is used to generate an output command to the
transmit pin once per bit time. If the serial_out regis­
ter is zero a MARK (idle condition) is output. If the
serial_out register contains data then the least sig-

The receive process consists of an initialization routine
and two interrupt service routines, hsi_isr and
software_timer _isr. The listings of these routines are
shown in Listings 4-6a,4-6b, and 4-6c respectively. The

• haG 1.,;
, Frelds the haa interrupti and perfor •• the a.rializ.tion of the data.
I Note, this routine would be lncorpora~ed Into the haG'service atrategy for an

. actual .yat ••.

caeC)
dew

caaC)
pu.hl
odd
ClOp
be
ahr
be

Bend apace.
Idb
Id
br

Bend .arka
Idb
Id

heo_ler exit.
popf
ret

$eject

•

r Set up vector

txd tia.,baud count
aeri.l out,O - I If character 1. done sen4 a .ark
lend •• C'k
aerial out"t ,el •• aend btt 0 of leria1 out and shift
Bend_8ark ,I.rtal_out left one place.

haG co •• and,tepee. co ••• nd
haa-tia.,txd tia. -
hao:lal'_exit-

haG co •• and, •• ark co •• and
hao:tiae,tx4_tl •• -,

Listing 4-5. Software Serial Port Transmit Process

Listing 4-6. Receive Process

Inlt receivel

270061-42

I Carled to prepare the aerial input proceaa to find the leading edge of
~ a atart bit.

Idb
Idb '

flush fifol

locO.IOOOOOOOOb
hal __ ode"OOlOOOOOb

orb 10801 •• ve,loal

disconnect change detector
negative edgee on HSI.2

bbc loal- •• ve,7,fluah fifo done
14b al,hel atatuB -
1d ax,hal-ti.. , tra.h the rlfo entry
andb 1081 .ive,Inot(80h) I clear bit 7.
br flush_fifo

flush fifo 40ne.
Idb locO.IOOOIOOOOb connect HSI.2 to detector
ret

listing 4-6a. Software Serial Port Receive Initialization

6-38

270061-43

inter Ap-248

,
h B lis r :

Frelds interrupts frail the R51 unit, used to detect the leading edge
J of the START bi t
J Note: this routine would be incorporated Into the USI strategy of an actual

system.

caeg at 200Ch
de,", hal_lsr I setup the interrupt vector

caeg
push!
pua h
ldb
ld
bbc
bb.
ld

o.
al,hal statUIl
sample-time,hal tl~e
11.1,4 ,eil thai
10110,7,$ - J walt for (OOID 1n nso holding reg
ax,baud count I send out sample co.mand in 1/2
ax,II - I bit tillle
a •• ple tille,ax

shr
add
ldb
at
ldb

hao co •• and,laample comlland
aample tille,haD time
locO,IOODOODOOb- I disconnect hsl.2 from change detector

ex 1 t hs 1 :
pop ax
pop!
ret

270061-44

Listing 4-6b. Software Serial Port Start Bit Detect

software timer lacl
I Flelds-the software timer interrupt, used to deserialize the IncommlRg data.
I Note: this routine would be incorporated into the software timer stategy
I in an actual system.

cseg at 200ah
dcw software timer_isr I setup vector

, c1e,ar bit 0

cBeg
pushf
orb
andb
andb

iosl a.ve,ioa1
ioal-save,lnot(Olh)
O,rcve state,'Orch
process data

I All bita except rxrdy and overrun-O
bne

process B to r t
bbc
call

bi t, -

br
atart OkE

hat atatuB,S,start ok
init receive
software_timer_exit

orb reve atate,trip , Bet receive in progress flag
br schedule_sample

process data.
bbs
ahrb
bbc
orb

datazero:
oddb
br

check stopbit:
bbc
Idb
orb
andb
call
br

schedule sa_plel

reve atate,7,eheek atopbit
reve-reg,ll
hai BtatuB,S,datazero
reve_reg.,80h I sot the new data bit

rcve state,IIOh I increment bit count
schedule_sample

hsi atatua,S,$ I DEBUG ONLY
reve buf,reve reg
rcve-state"rxrdy
reve-utate,I03h I Clear all but ready and overrun bita
init-receive
software_timer_exit

bbs iosO,7,$ I wait for holding reg e.pty
Idb hso co •• and,lsaaple co •• and
add aaaple time,baud count
at aamp1e:tl.e,hso_time

software tiller exitE
popf
ret

Listing 4-6c. Software Serial Port Data Reception

6-39

270061-45

AP-248

start is detected by the hsi_isr which schedules a soft­
ware timer interrupt in one-half of a bit time. This first
sample is used to verify that the START bit has not
ended prematurely (a protection against a noisy line).
The software timer service routine uses the variable
rcve_state to determine whether it should check for a
valid START bit, deserialize data, or check for a valid
STOP bit. When a complete character has been re­
ceived it is moved to the receive buffer and in it_receive
is called to set up the receive process for the next char­
acter. This routine is also called when an error (e.g.,
invalid START bit) is detected.

Appendix C contains the complete listing of the rou­
tines and the simple loop which was used to initialize
them and verify their operation. The test was run for
several hours at 9600 baud with no apparent malfunc­
tion or the port.

4.3. Interfacing an Optical Encoder to
the HSI Unit

Optical encoders are among one of the more popular
devices used to determine position of rotating equip­
ment. These devices output two pulse trains with edges
that occur from 2 to 4000 times a revolution.

OPTICAL
CHOPPER
ENCODER

DISK

Frequently there is a third line which generates one
pulse per revolution for indexing purposes. Figure 4-2
shows a six line encoder and typical waveforms. As can
be seen, the two waveforms provide the ability to deter­
mine both position and direction. Since a microcontrol­
leI" can perform real time calculations it is possible to
determine velocity and acceleration from the position
and time information.

Interfacing to the encoder can be an interesting prob­
lem, as it requires connecting mechanically generated
electrical signals to the HSI unit. The problems arise
because it is difficult to obtain the exact nature of the
signals under all conditions.

The equipment used in the lab was a Pittman 9400 se­
ries gearmotor with a 600 line optical encoder from
Vernitech. The encoder has to be carefully attached to
the shaft to minimize any runout or endplay. Fortu­
nately, Pitmann has started marketing their motors
with ball bearings and optical encoders already in­
stalled. It is recommended that the encoder be mounted
to the motor using the exact specifications of the encod­

'er manufacturer and/or a good machine shop.

CLOCKWISE

PHASEA~
PHASEB~

COUNTERCLOCKWISE

PHASEA~
PHASEB~

270061-46
Inside track generates Phase A. Outside track generates Phase B.

Figure 4-2. Optical Encoder and Waveforms

6-40

intJ AP-248

Digital filtering external to the 8096 is used on the en­
coder signals. The idealized signals coming from the
encoder and after the digital filter are shown in Figure
4-3. The circuitry connecting the encoder to the 8096
requires only two chips. A one-shot constructed of
XOR gates generates pulses on each edge of each sig­
nal. The pulses generated by Phase A are used to clock
the signal from Phase B and vice versa. The hardware is
shown in Figure 4-4. CMOS parts are used to reduce
loading on the encoder so that buffers are not needed.
Note that T2CLK is clocked on both edges of both
filtered phases.

By using this method repetitive edges on a single phase
without an edge on the other phase will not be passed
on to the 8096. Repetitive edges on a phase can occur
when the motor is stopped and vibrates or when it is

. changing direction. The digital filtering technique caus­
es a little more delay in the signal at slow speeds than
an analog filter would, but the simplicity trade off is
worthwhile. The net effect of digital filtering is losing
the ability to determine the first edge after a direction
change. This does not affect the count since the first
edge in both directions is lost.

FORWARD

PHASE A

PHASE B

PHASE A'

PHASE B' -.JII..... __ ..

If it is desired to determine when each edge occurs be­
fore filtering, the encoder outputs can be attached di­
rectly to the 8096. As these would be input signals, Port
o is the most likely choice for connection. It would not
be required to connect these lines to the HSI unit, as
the information on them would only be needed when
the motor is going very slowly.

The motor is driven using the PWM output pin for
power control and a port pin for direction control. The
8096 drives a 7438 which drives 2 opto-isolators. These
in turn drive two VFETs. A MOV (Metal Oxide Varis­
tor, a type of transient absorber) is used to protect the
VFETs, and a capacitor filters the PWM to get the best
motor performance. Figure 4-5 shows the driver cir­
cuitry. To avoid noise getting into the 8096 system, the
± 15 volt power supply is isolated from the 8096 logic
power supply.

This is the extent of the external circuitry required for
this example. All of the counting and direction detec­
tion are done by the 8096. There are two sections to the
example: driving the motor and interfacing to the en­
coder. The motor driver uses proportional control with

REVERSE

PHASE A' --------------------------------~., XOR PHASE B

NOTES:
Phase A' is Phase A clocked by Phase 8
Phase 8' is Phase 8 clocked by Phase A

Figure 4-3. Filtered Encoder Waveforms

6-41

270061-47

AP-248

some modifications and a braking algorithm. Since the
main point of this example is I/O interfacing, the mo­
tor driver will be briefly described at the end of this
section.

PHASE A.

PHASE B

In order to interface to the encoder it is necessary to
know the types of waveforms that can be expected. The
motor was accelerated and decelerated many times us­
ing different maximum voltages. It was found that the

0

PHASE B'
Q

HSIO,l

D-nCLK
0

Q
HS12.3

PHASE A'

270061-48

Figure 4-4.,Schematic of Optical Encoder to 8096 Interface

PWM

(POWER)

P2.7

'1/47438

75

OC2
HllAl

+15V

.,+->-----'1---, 0

-15V

Figure 4-5. Motor Driver Circuitry

6-42

P = IR9533
HEXFET

0.1 "F

N = IR533
HEXFET

270061-49

inter AP-248

motor would decelerate smoothly until the time be­
tween encoder edges was around 100 microseconds. At
this point the motor would either continue to decelerate
slowly, or would suddenly stop and reverse. The latter
case is the one that was most problematic.

After a brief overview, each section of the program will
be described separately, with the complete listing in­
cluded in the Appendix D. In order to make debugging
easier, as well as to provide insight into how the pro­
gram is working, I/O port 1 is used to indicate the
program status. This information consists of which rou­
tine the program is in and under which mode it is oper­
ating. The main program sections are: Main loop, HSI
interrupt, Timer 2 check, and Motor drive. There are
also minor sections such as initialization, timer over­
flow handling, and software timer handling. Tying ev­
erything together is some overhead and glue. Where the
glue is not obvious it will be discussed, otherwise it can
be derived from the listings.

The program is a main loop which does nothing except
serve as a place for the program to go when none of the
interrupt routines are being run. All of the processing is
done on an interrupt basis.

There are three basic software modes which are in­
voked depending on the speed of the motor. The modes
referred to as 0, 1 and 2, in order from slowest to fastest
operation. When the program is running the operating

mode is indicated by the lower 2 bits of Port I, with the
following coding:

P1.0 P1.1 Mode Description

0 0 0 HSI looks at every edge
1 0 1 HSI looks at Phase A edges only
0 1 2 Timer 2 used instead of HSI
1 1 2 (alternate form of above)

The example is easiest to see if mode 2 is described first,
followed by mode 1 then mode O. In mode 2 Timer 2 is
used to count edges on the incoming signal. A software
timer routine, which is actually run using HSO.O, uses
the Timer 2 value to update a LONG (32-bit) software
counter labeled POSITION. The HSO routine runs ev­
ery 260 microseconds. The HSO.O interrupt is used in­
stead of an actual software timer because of the ability
to easily unmask it while other software timer routines
are running.

In the code in Listing 4-7, the mode is first determined.
For the first pass ignore the code starting with the label
in_mode_I. Starting with in_mode_2 the counter is
incremented or decremented based on bit zero of DI­
RECT. If DIRECT.O = 0 the motor is going back­
ward, if it is a I the motor is going forward. Next the
count difference is checked to see if it is slow enough to
go into mode 1. If not the routine returns to the code it
was running when the interrupt occurred.

11".,111"""""'" JIII,JI"""I""",,""" II JIII""',II'" "" ,,,",
IIIIII SOPTWARE TIMER ROUTINE 0 I J ,.,,',111
",11 J NOW USING HSO.O TO TRIGGER II III1III1I
"",","" 1"'1,1111 .,",,,."",,.,.,"""",,,,,""",,""",,"",,,"

hBO

In

•• t

eSEG AT 2280H

exec 1 nt I -
PUSHF
Idb
add

orb
Id
jb.

.odell
Bub
cap
1h

aodeO • - jbc
.ndb
Idb
Idb
br

I Check .ode - Update position 1n .ode 2

HSO COMMANO,I30H
HSO:TIMB,TIMBRl,HSOO dly

portl,'OOlOOOOOB
Tlaer 2,TIMBR2 .
portl~1,ln_.04e2

tapl,TI.er 2,014 t2
t.p1,,2 -
end_."tO

Port1.D.enCi .vtD
Portl •• lllliIOOB
IDe 0., 0101 0 10 18
laat .tat •• ero
end_ivtD

J Bet Pl.S

, Check count ,difference In tapl

J If already in .04e 0
Clear P1.0, Pl.l (set .ode OJ
enable all HSI

Listing 4-7. Motor Control HSO.O Timer Routine

6-43

270061-50

AP-248

1" __ 04e2:
Bub
Id

In_fwdt add
.ade
br

In rey: sub
Bube

chk ftl,odet
- sub

cmp
19 t

Bet model:

delta p,timar 2,t.r2 old
t.r2_o1d,tl~er_2 -

posl tion,delta p
poaltlon+2,zero
chk_Jlode

position,delta p
poaltion-+2,zero

tJlpl,Tl.er 2,01d t2
tapIr'S -
end_8wtO

, get ti.er2 count difference

Cheek count difference In tJlpl
aet Model if count Is too low

I count <- 5

andb Portl"llllllOIB I Clear PI.I, set PI.O (set mode 11
PortI,'OQOaODOIS orb

Idb
Id
Bub

IOCO"OOOOOlOlB- r enable HSI 0 and 1
zero, HSl -'lIMB
lastl time,Tlmerl,mln hall

- I set up BO (tlme-last2_tlae»mln_hsll on next aSI
clr hal t

I d
andb
orb
1bs

end swtO:
Id
andb
paPF
ret

ZERO, HSI TIME
10sl bak,iOlllllllB
lost-bak,losl
losl:bak,7,cl,_hsl

old t2,TIMER 2
portl,'llOllIllB

; clear bit 7

J If hsl is triggered then clear hsi

r clear Plw5

270061-51

Listing 4-7. Motor Control HSO.O Timer Routine (Continued)

If the pulse rate is slow enough to go to mode 1, the
transition is made by enabling HSI.O and HSI.1. Both
of these lines are connected to the same encoder line,
with HSl.O looking for rising edges and HSl.l looking
for falling edges. The HSI_TIME register is read to
speed up clearing the HSI FIFO and the LASTI_
TIME value is set up so the mode 1 routine does not
immediately put the program into another mode. The
HSI FIFO is then cleared, the Timer 2 value used
throughout this routine is saved, and the routine re­
turns.

This routine still runs in" modes 0 and 1, but in an
abbreviated form. The section of code starting with the
label in_model checks to see if the pulses are coming
in so slowly that both HSI lines can be checked. If this
is the case then all of the HSIs are enabled and the
program returns. This routine is the secondary method
for going-from mode 1 to mode 0, the primary method
is by checking the time between edges during the HSI .

" routine, which will be described later.

The HSO routine will enable mode 0 from mode 1 if
two edges are not received every 260 microseconds. The
primary method, (under the HSI routine), can only

enable mode 0 after an edge" is received. This could
cause a problem if the last 2 edges on Phase A before
the encoder stops were too close to enable mode O. If
this happened, mode 0 would not be enabled until after
the encoder started again, resulting in missed edges on
Phase B. Using the HSO routine to switch from mode 1
to mode 0 eliminates this problem.

Figure 4-6 shows a state diagram of how the mode
switching is done. As can be seen, there are two sources
for most of the mode decisions. This helps avoid prob­
lems such as the one mentioned above.

When either Mode 1 or Mode 0 is enabled the HSI
interrupt routine performs the counting of edges, while
the HSO routine only ensures that the correct mode is
running. The routines for modes 0 and 1 share the same
initialization and completion sections, with the main
body of code being different.

The initialization routine is similar to many HSI rou­
tines. The flags are checked to ensure that the HSI
FIFO data is valid, and then the FIFO is read. Next,
the main body of code (for either mode 0 or mode 1) is

6-44

inter

NOTES:
Mode 0: HSI Examines edges on Phase A and B
Mode 1: HSI Examines edges on Phase A only
Mode 2: TIMER 2 stores edgecount

AP-248

Figure 4-6. Mode State Diagram

270061-52

I , , 1 , I J J , , I J J J , , J J J , , J J J J J , , I I I I I J I , J I J , J J J J I I I J J , J J r J J I I I I J J J r J I J I I I J J J I J r J J
IJIII HSI DATA AVAILABLE INTERRUPT ROUTINE 'JIII,rIIJIII
J """" JIII",III"""',"" "1"""'" JIIII J 11",'1' I JIIII JIIII,'I"'III

This routine keeps track of the current tiMe and position of the aotor.
The upper word of infor.atlon is provided by the timer overflow routine.

CSBG 11'1' 2400H
nolt mode 1 J

no_rntl:-

hal_data intI
orb
andb
orb
jbe

get valuesl
Id
andb
Id

1 b.

br
br

In .ode 1
no:lnt -

pUBhf
portl,'D100000DB
1081 blk"01111111B
lOBI-bak,loal
loBI:bak,1,no_intl

tiaer 2,'I"I"£R2

r used to save execution time for
J vorst case loop

, set Pl.6
, Clear 10al bak.1

I If hal is not tri9gered then
, :I u.p to no_int

hoi oO,HSI S'I'II'I'US,'0101010IB
ti.e, HSI_TIMB

11111111111, ••• ",
II1II JIII •• ,"'.,1

II1I1 '" ""'1 J •• I

INSER'I' BODY or ROU'I'INE

load laata;
- Id

no_cnt' andb
orb
1 be

a9a1nl br

no_inti andb
.popf
ret

$EJEC'I'

tNr2 old, tiMer 2
1001-bok,'D11IIIIIB
IOBI-bak,loBI
ioal-bak,7,no int
get_values -

portl,flOlll1118

J clr bit 7

I Clear Pl.6

I end of hal data Interrupt routine
, Routine for .ode I follows and then

Listing 4-8. Motor Control HSI Data Available Routine

6-45

270061-53

Ap·248

run. At the end time and count values are saved and the.
holding register is checked for another event. Listing 4-
8 contains the initjalization and completion sections of
the HSI routine.

Listing 4-9 is the main body of the Mode 1 routine.
Before any calculations are done in Mode 1, the incom­
ing pulse period is measured to see if it is too fast or too
slow for mode 1. The time period between two edges is
used so that the duty cycle of the waveform will not
affect mode switching. If it is determined that Mode 2

. should be set, Port 1.1 is set, all of the HSI lines are
disabled; and the HSI fifo is cleared. If Mode 0 is to be
set all of the HSI lines are enabled and the variable
LAST -.STAT is cleared. LAST_STAT = 0 is used as
a flag to indicate the first HSI interrupt in Mode 0 after
Mode 1. After the mode checking and setting are com­
plete the incremental value in Timer 2 is used to update

POSITION. The program then returns to the comple­
tion section of the routine.

There is a lot more code used in Mode 0 than in Mode
1, most of which is due to the mUltiple jump statements
that determine the current and previous state of the
HSI pins. In order to save execution time several blocks
of code are repeated as can be seen in Listing 4-10. The
first determination is that of which edge had occurred.
If a Phase A edge was detected the LAST1_TIME and
LAST2_TIME variables are updated so a reference to
the pulse frequency will be available. These are the
same variables used under Mode 1. A test is also made
to see if the edges are coming fast enough to warrant
being in Mode I, if they are, the switch is made. If the
last edge detected was on Phase B, the information is
used only to determine direction.

I aode 1 HSI routine

.ndb
ine

Clip tiae:

tapl,hal aO,'010100008
no_cnt -

Id la.t2 ti •• ,l.atl tla.
Id 1 •• tl:tiae,tlae

8ub
CliP

ih

Bet Mode 2:
- orb

ldb
at_hal: Id

.ndb
orb
i b8
br

check •• x ttael

tapl,tlae,1 •• t2 tl.e
t. pi, • 1 n h. t 1 -
cheCk_aax_tiae

partl •• GDOOOOloa
IOCO"OOOOOOO'OB
sero,hal tl ••
1001 bok~'01111111B
lost-bat,losl
losl-bak,7,at hal
done:'chk -

Bub tapl,tlae,1 •• t2 tiae
cap tapt,.ax_hall-

set lIode 0:
_ndb
ldb
ldb

clORe chk;
sub
ibc

odd_fwd:

Portl,ll1111100B
IOCO.'OIOIOlOIB
la!!t_etat,:etc

delta p,tt.ar 2,t.r2 old
dlrect,O,add_rev

add position,delta p

add rev;

$eject

adele poaitlon+2,zero
be load_Iaata

8ub
Bubc
br

posltion,delta p
poaltlon+2,zero
load_lasts

r Procedure whic~ aeta Mode 1 also
seta tl.ea to pas. the teata

Set Pl.l (In aode 2)
Di.able all R5I

, eapty' the hal fifo
I clear btt 1

, If hall. triggered then clear hat

I .ax hal· addition to atn_hat for
, totil tia.

I clear Pl.0,1 set Mode 0)
J Bnable all HSI

J get tlaer2 count difference

270061-54

Listing 4·9; Motor Control Mode 1 Routines

6-46

inter

In lIode 0;
- - lb.

lb.
lb.
lb.
br

a_rIBI!: Id
Id
• ub
c.p
I h

,eet lIodel-
orh
Idb

tat atatt;
- lb.

lb.
jb.
e.pb
I·
br

8_fall' Id
Id
• ub
ClOp

j h
IS.t aodel-

orb
Idb

tat statf;
- lb.

j b.
lb.
cl8pb

I·
br

b_l'lBe: jb8
lb.
j b.
c.pb
Ie
br

b_'al1. jb.
Ibs
j b.
cllpb
je
br

fl.rst tl.me:
5tb
br

1 np e1' r 1

- br

change dt r:
notb

901nll) fwd;
- orb

Idb
add
addc
br

gol n9 rev r
andb
Idb
• ub
8ubc

at stet:
.tb

AP-248

hal 80,0,8 ria.
hal-sO , 2,.-rall
ha'-.O,.,b-rll.
h •• -.O,6,b:rall
no_cnt

1 •• t2 tl •• ,1 •• t1 t1ae
1 •• t1-tla.,tl ••
tl •• ,i •• t2 tl ••
tl •• ,aln hi,
tat_Btati'

Portl,I000000018 Set Pl.0 (In aode It
IOCO,'OOOOOl018 Inable HalO and 1

l •• t 8t8t,6,901n9 fwd
1 •• t-.tat,.,90Ing-rav
1 •• t-.tat,2,change dlr
1 •• t-.tat,aero -
first tla. r firat tiM. In .0deO
inp_err

1 •• t2 tl •• ,l •• t1 tl ••
1 •• t1-tll1.,tl ••
tlll.,I •• t2 tl ••
tIll. ,.' n hit
tat_Btatl

'o(tl,'OOOOOOOI8
I OC 0 • I 000001018

laat atat,.,901ng fvd
laat-atat,6,golng-rev
last-atat,a,change die
last-Btat,zero -
flrat' tl ••
lnp_err

laat Btat,O,golng lvd
last-atat,2,golng-rev
laat-.tat,6,change dit
laat-stet,zero -

Set Pl.0 (In .ode 1)
Bnable R51 0 and 1

, firat tl •• in ,a0480

first tl.. J firat tlae In aodeO
lnp_err

last stat,2,golng fwd
last-stat,D,golng-rev
laat-stat,4,change dit
laat-stet,zero -
first tl.e , first tl •• 1n aodeO
lnp_err

hal sOrlest stat
doni .. chk J add delta position

direct
dlrict,O,golng rev

PORT2.IOIOOOOOOB
dlre:ct,IOl
pOIII tion,IOI
poal tlon+2,zero
at_Btat

PORT2.IIOlll111B
direct,IOO
poaltlon"Dl
po.ltlon+2,lero

J .et P2.'
I direction. forward

J cl •• r '2.'
I direction. revers.

Listing 4-10. Motor Control Mode 0 Routines

6-47

270061-55

AP-248

After mode correctness is confirmed and the LASTx_
TIME values are updated the LASTJTAT (Last
Status) variable is used to determine the current direc­
tion of travel. The POSITION value is then updated in
the direction specified by the last two edges and the
status is stored. Note that the ,first time in Mode 0 after
being in Mode 1, the Mode I done_chk routine is used
to update'POSITION, instead of the routines going_
fwd and going_rev from the Mode 0 section of code.
The completion section of code is then executed.

Providing the PWM value to drive the motor is done by
a routine running under Software Timer 1. The first
section of code, shown in Listing 4"l1a, has to do with
calculating the position and timer errors. Listing 4-11b
shows the next section of code where the pow.er to be
supplied to the motor is calculated. First the direction
is checked and if the direction is reverse the absolute
value of the error is taken. If the error is greater than
64K counts, the PWM routine is loaded with the maxi­
mum value. The next check is made to see if the motor

is close enough to the desired location that the power to
it should be reversed, (i.e., enter the Braking mode). If
the motor is very close to the position or has slowed to
the point that is likely to turn around, the Hold_Posi­
tion mode is entered.

The determination of which modes are selected under
what conditions was done empirically. All of the pa­
rameters used to determine the mode are kept in RAM
so they can be easily changed on the fly instead of by
re-assembling the program. The parameters in the list­
ing have been selected to make the motor run, but have
not been optimized for speed or stability. A diagram of
the modes is shown in Figure 4-7.

In the Hold_Position mode power is eased onto the
motor to lock it into position. Since the motor could be
stopped in this mode, some integral control is needed,
as proportional control alone does not work well when
the error is small and the load is large. The BOOST
variable provides this integral control by increasing the
output a fixed amount every time period in which the

Listing 4-11. Motor Control Software Timer 1 Routine

J II ", "11,,,,11,',"" ,,,"",," 11," 1,',""""""""" II' """""11
JJIIII SOPTWARE TIMBR ROUTINE 1 I I I1IIII ,.,

"'I",J".". """"""",.""""",111 """""""",,1 '" ,,,""" II
CSEG AT HOOH

111"

'" II ,,,"
1111I

I I",
II; II

pushf
orb

ldb

portl.110000000B J let portl.?

, enable HSI, TOY!, HSO

ldb HSO COMMAND.I]9~
add USQ=~IME,TIMERl,8Wtl_dly

Id time err+2.dea tiae+2 I Calculate 'tt •• , position error
Id poa err+2,dea poa+2
8ub tiai err,dea ttae,ttae r valuea are Bet
8ubo tlae-err+2,tr.e+2
lub pOI err,dea pos,posltlon
subc poa:~rr+2,pisltlon+2

El

Bub
ld

Bub
ld

tl.i delta,last tiae err,tia. err
laat:tiae_err,trae_err -

poa delt_,lalt poa err,po. err
last_poa_err,pia_err -

Tiae err. Desired tiae to finiah - current tla.
P08 err • Desired position to finish - current position
Pos-delta • Laat position error - Curent position error
Tt.i deli •• Laat ttae error - Current ti.e error

n~te that errors should qet ~.aller 80 deltas will be
positive for forward aotlon (tl •• la always forward)

Listing 4-11a. Motor Control Software Position .Counter

6-48

270061-56

inter AP-248

chk_dl r:
cap pas erc+2,zero
1ge go_forward

go backward,
neg
Idb
e. p
j ne
b,

go forward:
Idb
ClOp

j e

Id ... x: Idb
b,

Chk brk:

emp
jge
neg

chk delta:
ClOp

j nh

brake: Idb
Idb
nalb
Idb

Hold pool tio",
ClOp

j h
elc
el'
DR

calc out:
.. ul ub

b,
no bat: cit
ct:.ax; cap

jnh
.axed; ld
output; Idb

chk .anlty:
br

ldb
notb
jb.

p2bkwd: 01 ,
andb
ldb
EI
b,

p2fv4 ~ 01
orb
ldb
El

pOB err
pw.-dlr ,'DOh
poa-errt2,IOffffH
Id .4.
chk_brk

pw. dir.IOIH
poa-err+2,zero
chk:brk

pw. pVt ,.alt pwr
chk:.anlty -

pOB err,poa pnt

• A09 VAL

hold pOllitlon J poaltlo"_error<poaltlo"_control_polnt
pOll err,brk pnt
Id_.8. - I poeltlo"_error>brake_polnt

POB delta,zero
chk-delta
pos:delta

POB delta, vel pnt
hold_poBI tt on

pWII pVt ,aax brk
tllp;dl\rect -
tm p
p",._dlr,t.p

I velocity· POB delta/sa.ple ti ••
I jllP t fADS (veloel tV) ~ vel:pnt

I If braking apply power In opposite
I direction of current aotlon

I pooltlon hold Mode
po. err.t02
calc out .
tap.2'

I it poaitlon error < 2 then turn off paver

boost
output

t.p,.ax hold,'25~
t.p,poa-err
pOB_delta.zero
no bst
booat"04
tMp+2.booBt
ck II ax
boost
tllP+ 2 ,.ax_hold
output
t.p+2 •• ax hold
p",,_pvr I tap+ 2

rpvr,pwa pwr
rpvr
p"a_dlr,O,p2twd

port2"OlllllIIB
p"a_control,rpwr

p"tllet

port2"l00000008
p"._control.rpwr

Boost is integral control
TMP+2 • HS8(pos_err-.ax hold)

I clear P2.7

Listing 4-11b: Motor Control Power Algorithm

6-49

270061-57

inter AP-248

FORWARD BRAKING

+

POWERr--L------------~----~~_+_

270061-58

Figure 4-7. Motor Control Modes

error does not get smaller. Once the error does get
smaller, usually because the motor starts moving,
BOOST is cleared.

A sanity check can be performed at this point to double
check that the 8096 has proper control of the motor. In
the example the worst that can happen is the proto-

p"tBet1

'"
cap
jgt
br

eap
jlt
14
ele

get vala,

ld
ld
ld
ld
ld
odd
.ddc
8ub

popf
ret

del
dew
del
de ..
del
de ..
del
dew

del
de ..
del
de ..
del
de ..
del
de ..

tiae err+2,lero ,do poa_table when err Is negative
end p
end:p

nxt p08,IC32+p08 table)
get-vala - , JUMP If lower
nat-poa"poa table
tlae+2 -

dell po.,lnKt poa)+
de.-poa+2,(nit pOllt+
de.-tl •• +2,[nxt poa)+
••• -pvr,lnxt poi]+
••• -bl'k, •• 1C pvc
dea-po.,otfeet
de.-poa+2,aero
la.t_poe_err,de. pos,positlon

portl,IOllllll18

OOOOOOOOR , poaltlon 0
OOZOB, OOIOH , next ti •• ,
OOOOeOOOB , poaltlon 1
OOtOR, OOtOH , n ex t tia ••
000000008 , pORitlon 2
0060R, OOeOH , next tia.,
oprppaOOOH position 1
OOaOR, OOaOH next ti •• ,

ooOOOaOOH , po_ition 4
0058H, OOIOH , next ti •••
OOOO]OOOH , poaltlon 5
0070H, OOffH next ti •• ,
OOOOOOOOH position 6
0090R, OOfOR , next tlae,
000000008 , position 7
00918, OOfOH , next tille,

po"er

pover

power

pow.r

pover

pover

power

power

Listing 4-12. Motor Control Next Position Lookup

6-50

270061-59

AP-248

type will need to be reset, so the sanity check was not
used. If one were desired, it could be as simple as
checking a hardware generated direction indicator, or
as complex as checking motor condition and other en­
vironmental factors.

After all checks have been made, the power value is
loaded to the RPWR register using a software inversion
to compensate for the hardware inversion. Direction is
determined next and the power and direction are
changed in adjacent instructions with interrupts dis­
abled to prevent changing power without direction and
vice versa.

To exercise the program logic the desired position is
changed based on the time value using the code and
lookup table shown in Listing 4-12.

The remaining sections of the program are relatively
simple, but worth discussing briefly. The initialization
routine initializes the I/O features and places several
variables from ROM into RAM. Having these variables
in RAM makes it easier to tweak the algorithm. Timer
I is expanded into a 32-bit timer by the interrupt rou­
tine shown in Listing 4-13. .

Software timer overhead is handled by the routine
shown in Listing 4-14. In this routine the status of each
timer bit is checked in a shadow register. If any of the
timers have expired the appropriate routine is called.

11,',11",111,', """"1',,, "",,1 111111,.,11111111111111111' "'1 ,',111 11"
I I I"l TIMBR INTBRRUPT SERVICE ,"",,,,"
I I , J J J I , I I J I I I I I r I J J I I I I , I I J I J I I I I I I , I I J I I , I I J I I I ,'J J I I I ~ I I I , J I I J I I I I I I I , J I J J J

CSEG AT 2200H

t111er ovf intI
push!

orb
chk_tl; jbc

Inc
andb

tllr_lnt_~g~f:

ret

1081 bak,JOSl
IOBl-bek,S,tar tnt_4one
till t" 2
IOBl_bak,1110llll18 , clear bit 5

, End of tl.er interrupt routine

. Listing 4-13. Motor Control Timer Interrupt Routine

270061-60

""JI""",'I,"I ril""" IIIIII',.,JII".,.,"'.,.""'."·""""",,
.JIII SOFTWARB TIM!R INTERRUPT SERVIC! ROUTINB JI'I,.'"
JIJI '111 1,.1"",.1. 1.,11,111 •• ,.,11 J,."",.r"""",,"""""""'"

CSSG AT 222bH

110ft i.1" lhtl
puahf
orb

cbk .wtOi
- j be

.ndb
tbk ."tl"all

- j be
andb

chk awt2~·11
jbe

~:n
chk .lItll

- j be
andb
call

.wt tnt clonel
popf
ret

$eject

1081 bak,IOSI

losl bak,O,chk awtl
loI1-bak,'lllllllOB 1 Cle.r bit 0 - end .wtO
.wto:exP,l red
10111 bak,l,chk .~t2
101l1-bak,,11111101B , Clear ~'lt
8wtl:explre4

loa1 bak,2,chk .wt]
~~f~~~:~ltlAllIOllB I Cl.ar bit

10a1 bak,t,.wt tnt done
lo.l-b.k"llll~llli I .Cl •• r bit 3
."tl:explrecl

I '~ND or SOFTWARB TIMBR INTERRUPT ROUTINE

Listing 4-14. Motor Control Software Timer Interrupt Handler

6-51

270061-82

AP-248

, ' '

".""""1""",, ,,,,,,," JI', rlll"""""'" """,",11,"', •• ".""
I~'J" SOFTWARB TIMER ROUTINB 2· r""""11
".""""",."."""",. r." , ,.,. "Ir,.", ,.,1 111",r,""""""""'"

CSBG AT 23808

."t2 explredl
puahl
Idb
odd

hao co ••• nd,'lAH J Bet avt_2
hao:tl.e,tiMerl,avt2 dly

orb
CliP
bnh
Id

pul.in9'
jbc

at
at

portl,lOOOOOlOOB
out ptr,.7ffH
pulslng
out_ptr,.lfOH

poaltlon+2,[out ptE)+
poaltlon,[out_ptrl+

at direct, lout ptt]+
at pw __ pwr,[out_ptr)+

• ..,t2_donel

I Bet port 1.2

poaltlon high, poaltlon low

r atore a byte. externally

8ub t.pl,tl.erl,l •• tl tl ••
c.p t.pl,11800B -
jnh ."'t2_cet J keep (tl.e_l.at4_tl.e)<7000H

odd
• .,t2 ret,

andb
popf
ret

laatl_tla.,llOOOH

portl,Il1111011B r clear poett.2

270061-61

listing 4-15: Motor Control Software Timer 2 Routine

The last routine, shown in Listing 4-15, is the Software
Timer 2 routine which outputs some variables to exter­
nal RAM. It also keeps LAST1_Time within.1800H
of Timerl to prevent overflows from occurring when
the Mode 0 and Mode 1 software check this variable.

A complete listing of the program as it is used in our
lab can be found in Appendix D. For a given motor or
encoder it will probably be necessary to change some of

, the time constants on the first page of the listing. With
the motor used in our experimentation, pulses are
missed from time to time when direction changes
quickly. If the motor were not as fast to tum around or
the encoder were mounted better these problems should
disappear. The missing pulses occur when switching
from Mode 1 to Mode 0, other than that no anomalies
were found in the lab.

Prior to the version of code just discussed, several at­
tempts were made, one of which could be used' under
certain constraints. It is possible to use only modes 2
and 0 to monitor the encoder, provided the encoder

always operates smoothly and provides at least 200 mi­
croseconds between the last several edges of Phase A
before reversing. This idea was originally tried because
the motor was not characterized thoroughly at first,
and caused proble1Ds because of the motors tendency to
stop suddenly when its speed was low.

If an encoder has a lower line count and therefore more
time J>etween output pulses the two mode solution can
be used. The software for the two mode version can be
easily extracted form the three mode version, so it will
not be presented.

5.0 HARDWARE EXAMPLE

5.1. EPROM Only Minimum System

The diagram in Figure 5-1 illustrates how to connect an
8096 in a minimum configuration system. Either 2764s
or 27128s can be used in the system. Note that the
lower EPROM contains the even bytes while the upper

6-52

inter AP-248

C7 C6

+SV J 2PF 33~F 1
3S

ROY

NMI

+SV
'::"

14
TEST

EA

114
VPD

+SV
VCC

RESET

~ .01

~ 10 lN4148
42

Vss

VSS
":' 12

RESET

13
EXTINT

34
nCLK

':' 36
T2RST

39
PWM

60
TXD

11
RXD

ACHO

ACHI

ACH2

ACH3

67
ACH4

68
ACH5

ACHe
VCC +SV

ACH7

65
VREF

one contains the odd bytes, and the addressing is not
fully decoded. This means that the addressing on a
2764 will be such that the lower 4K of each EPROM is
mapped at OOOOH and 4000H while the upper

6-53

12

CLKOUT
13

BHE
37

WR
38

RD
17

RD

ALE
18

ALE

INST
15

33
ADIS

32
AD14

AD13
31

30
AD12

29
AD11

28
AD10

27
AD9 2a
.loa

AD7
25

ADa
24

23
ADS

22
AD4

8096 21
AD3

20
AD2

11
ADI

18
ADO ADO-

.lOIS

Pl.0
59

P1.1
58

57
P1.2

P1.3
58

55
P1.4

P1.5
48

47
Pl.6

Pl.7
41

50
HSO.O

HSO.l
49

HSO.2
..

HSO.3
43

270061-62

4K is mapped at 2000H. If the program being loaded is
16 Kbytes long the first half is loaded into the second
half of the 2764s and vice versa. A similar situation
exists when using 27128s.

inter· AP-248

Vee , Vee Vee

veeJ

~ T 11
G

• 27 PGM vlJ DC
H CC l' A015

*
A015 II 0If1!--. MAl. A'3 D!I 07 A01. AD1. 17 07 16 MA' .. MA13 2 A •• III

II
07

AD13 .. Q6 .5 MA'3 MA •• 23 AlI 05
17 AD13

Q6
A012 • 3

05 •• MA •• IIA11 •• A'D DC •• 4012
05

AD11 • t 11 IIA10 •• At .5 AD11
DO 04 03

.. 010 7 0 MAlO MAt .5 13 A010
03 03 AI 0. - • 02

5 MAl MAl 3 A7 •• ADI
O' ,0'

ADI 3 • MAl MA7 • AO
II ADe

D' O. 00 .0

~.
MAl 5

GND 74LS373 A6 eE
MA. I ~ ~ A. DE
MA. 7

A3
MAl e

A.
MA' • A.
MA. .0

VPP~
AO

vPP 2764

-i: GND 27128

RD

vee

T T "

veeJ
ALE II .1 G Vee

• DC '7 PGM 07,
,. AD7

*
AlJ7 II DI

19 MA7 IIA1" 26 AI3 III II ADI
Q6

ADI 17 .. MAO MA13 '. A •• O~
17 ADS

07 07
. A05 .. '5 MAS 11 .. ,2 23 All 00 .. AD.

D6 Q6
ADO .3 •• MA. IIA1' .. A.O 03 15 AD3

DS OS
AD3 • • MA3 0 24 At 02 '3 AIJ •

DO O' ·.02 7 I MA. ItOA. •• AI 0. '2 . AIJ'
03 03

AD. 0 • MAl ,
A7 00 " ADO

D2 O.
ADO 3 2 MAO MA7 0

AO eE 20
D' O'

-:!=-~ GND 74LS373
MAl • AS DE r!L
MAS 0

AO
MAO 7

MAl • A3

MA' t
A.

AD = ADDRESS/DATA
MA. '0

A.
... = MEIIORY AOORESS

vpp--1
AO

vpp 2764

~ GND 27128

ADO-AD .. ~
~

270061-63

Figure 5-1 (2 of 2).

This circuit will allow most of the software presented in
this ap-note to be run. In a system designed for proto­
typing in the lab it may be desirable to buffer the I/O
ports to reduce the risk of burni~g out the chip during
experiIqentation. One may also want to enhance the
system by providing RC 'filters on the A to D inputs, a
precision VREF power supply, and additional RAM.

5.2. Port Reconstruction

If it is desired to fully emulate a 8396 then I/O ports 3
and 4 must be reconstructed. It is easiest to do' this if

the usage of the lines can be restricted to inputs or
outputs on a port by port rather than line by line basjs.
The ports are reconstructed by using standarq memory­
mapped I/O techniques, (i.e., address decoders and
latches), at the appropriate addresses. If no external
RAM is being used in the system then the address de­
coding can be partial, resulting in less complex logic.

The reconstructed I/O ports will work with the same
code as the on chip ports. The ofiIy difference will be
the propagation delay in the external circuitry. '

6-54

intJ AP-248

6.0 CONCLUSION

An overview of the MCS-96 family has been presented
along with several simple examples and a few more
complex ones. The source code for all of these pro­
grams are available in the Insite Users Library using
order code AE-16. Additional information on the 8096
can be found in the Microcontroller Handbook and it is
recommended that this book be in your possession be­
fore attempting any work with the MCS-96 family of
products. Your local Intel sales office can assist you in
getting more information on the 8096 and its hardware
and software development tools.

6-55

7.0 BIBlOGRAPHY
1. MSC-96 Macro Assembler User's Guide, Intel Cor­

poration, 1983.

Order number 122048-001.

2. Microcontroller Handbook (1985), Intel Corpora­
tion, 1984.

Order number 210918-002.

3. MSC-96 Utilities User's Guide, Intel Corporation,
1983.

Order number 122049-001.

4. PL/M-96 User's Guide, Intel Corporation, 1983.

Order number 122134-001.

~ ...
-I
III

ct>
tT
CD

01 r m- 0
0
~
C

"1:1-

SERIES-III MCS-96 MACRO A5SEMULER. VI 0

SOURCE FILE F3 INTERI A96
OBJECT FILE F3' INTERI OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND NOSB

ERR LOC OBJECT LINE
1
2
3
4

=1 5
=1 53

54
0022 55

56
0022 57
0024 58
0026 59
0028 60

0028 61
002A 62
002C 63
002E 64
0030 65

66
67

2080 68
69

2080 AIOOO1l8 70
71

2084 B0221C 72
2087 18031C 73
208A 71FEIC 74

75
76
77

2080 ACICIC 78
2090 A31D002124 79

80
81

SOURCE STATEMENT
$TITLE('INTERI A96. Interpolation routine I')
•• i~. i, 8096 AS5embl~ code for table loo~up and interpolation

$INCLUDE(·FO.DEM096 INC) ; Include demo definItIons
$nollst Turn listing off for Include file

End of include file

RSEG at 22H

IN_VAL:
TABLE_LOW.
TABLE_HIGH:

Actual Input Value

IN_DIF.
IN_DIFB
TAB_DIF.
OUT:

dsb
ds ..
ds ..
ds ..
e'lu
ds ..
ds ..
d5 ..
d51

Upper Input - Lower Input
IN_DIF :byte
1 Upper Output - LDIIII~r Output

RESULT:
OUT_DIF: ; Delta Out

CSEG at 2080H

look:

LD SP. _100H

LOB
SHRB
ANDB

AL. IN_VAL
AL. _3
AL. _11111110B

Load temp ~ith Actual Value
Divide the byte by 8
Insure AL is a word address
This effectively divides AL b~ 2
so AL = IN_VAL/16 .

LDBZE AX. AL Load byte AL to .. ord AX
LD TABLE_LOW. TABLE [AX] TABLE_LOW 15 loaded .. ith the value

in the table at table location AX

270061-64

aJ
~ en -o
en
O~
"T1"U
-I"U
~m
~Z
JJC m-><
~~
~ s::
"U
r­m
en

l

J>
l'
N
~
01)

~
~
IT
iD
r
0

q> 0
:01"

0'1 C
--J 'tI

'0
0
::!.
:j"
c:
CD .e,

2095 A310022126

2~9A 4824262A

209E 510F2228

20A2 AC2828

20A5 FE4C2A2830

20AA OE0430

20AD 4424302C

20Bl OA042C
20B4 A4002C

20B7 C02E2C

20BA 27C8

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

LO

SUB

ANDB

LDBZE

MUL

SHRAL

ADD

SHRA
ADDC

no_inc: ST

BR

TABLE_HIGH. (TABLE+2) [AX] , TABLE_HIGH is loaded with the
value in the table at table
location AX+2
(The ne.t value in the t~bl.)

TAB_DIF. TABLE_HIGH. TABLE_LOW
TAB_DIF=TABLE_HIGH-TABLE LOW

IN_DIFB. IN_VAL. 10FH

IN_DIF. IN_DIFB

OUT_DIF. IN_DIF. TAB_DIF

OUT_DIF. 14

OUT. OUT_DIF. TABLE_LOW

OUT. 14
OUT, zero

OUT. RESULT

look

IN_DIFB=least significant 4 bits
of IN_VAL

Load byte IN_DIFB to word IN_DIF

i Output_difference =
Input_difference*Table_difference

Divide by 16 (2**4)

Add output dlfference to output
generated wIth truncated IN_VAL
as input

Round to 12-blt answer
Round up if Carr~ =

Store OUT to RESULT

Branch -to "look. II

2100

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

cseg AT 2100H

2100 000000200034004C
2108 005D006A00720078
2110 007B007D0076006D
2118 0050004B00340022
2120 0010

2122

table: DCW

END

OCW
DCW
DCW
DCW

ASSEMBLY COMPLETED. NO ERROR(S) FOUND.

OOOOH. 2000H. 3400H. 4COOH , A random function
5000H. 6AOOH. 7200H. 7800H
7BOOH. 7000H. 7600H. 6000H
:lOOOH. 4BOOH. 3400H. 2200H
1000H

270061-65

cf

)­
"'U
I

N

"'" CD

?>
~
-t
III

q> !l
CD

(11

b <»
0

!I

SER I ES-III MCS -96 MACHO ASSf 11IJl UI, V I 0

SOURCE FILE F3 INTER2 A96
OBJECT FILE F3 INTER2 OB,)
CONTROLS SPECIFIED IN INVOCATION COMMAND NOSB

ERR LOC OBJECT LINE
1
2
3
4
5
6

~1 7
=1 55

56
0024 _ 57

58
0024 59
0026 60
0028 61
002A 62

002A 63
002C 64
002E 65
0030 66

67
68

2080 69
70

2080 AI000118 71
72

2084 B0241C 73
2087 18031C 74
208A 71FEIC 75

76
77

208D ACICIC 78
79

2090 A31D002126 80
81
82

2095 A31D222128 83
84
85
86

SOURCE STATEMENT
$TITLE('INTER2 A96- Interpolation rout.ne 2')

";; i;;

8096 Assembly code for table lookup and InterpolatIon
USing tabled values In place of dIVISIon

$INCLUDEI.FO. DEM096. INC) , Include demo definitions
$nolist TUTn listing off for Include file

End of include fiie

RSEG at 24H

IN_VAL
TABLE_LOW:
TABLE_INC:
IN_DIF:
IN_DIFB
OUT:
RESULT:
OUT_DIF.

dsb
dsw
dsw
dsw
e'lu
dsw
dsw
dsl

1
IN_DIF :byte

Actual Input Value
Table value for function
Incremental change in functIon
Upper Input - Lower Input

, Delta Out

CSEG at 2080H

LD

look: LDB
SHRB
ANDB

LDBZE

LD

LD

SP. .IOOH Initialize SP to top of-reg. "ie

AL. IN_VAL Load temp with Actual Value
AL. .3 Divid~ the byte by 8
AL. .111111 lOB Insure AL is a word address

This ef~ectively divides AL by 2
so AL = IN,_VAL/16

AX, AL . Load byte AL to word AX

TABLE_LOW, VAL_TABLECAXl TABLE_LOW IS loaded with the value
in the value table at locatIon AX

TABLE_INC, INC_TABLECAXl TABLE INC IS loaded with the value
in the increment table at
location AX+2

270061-66

l

;a.
"P
N
~
CD

en
~

~
~

~
0-
ii'

b o
~
C
'a ..,
'0 o
:::J

3-
f::
(1)

.s

209A 510F242A

209E AC2A2A

20Al FE4C282A30

20A6 4426302C

20AA 08042C
20AO A4002C

2080 C02E2C
20B3 27CF

87
88
89
90
91
92
93
94
95
96
97
98
99

ANDB

LDBZE

MUL

ADD

SHR
AODC

no inc: ST
BR

IN_DIFB. IN_VAL. *OFH

IN_DIF. IN_DIFB

IN_DIFB=least significant 4 bits
af IN_VAL

Laad bvte IN_DIFB to word IN_DIF

OUT_DIF. IN_DIF. TABLE_INC

OUT. OUT_DIF. TABLE_LOW

OUT. *4
OUT. zero

OUT. RESULT
loak

J Output_difference
Input_difference*Incremental_change

Add output difference to autput
generated with truncated IN_VAL
as input

Raund to 12-bit answer
Round up if Carry = 1

Store OUT to RESULT
Branch to "look: II

2100

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

cseg AT 2100H

2100
2100 000000200034004C
2108 0050006A00720078
2110 0078007000760060
2118 0050004B00340022
2120 0010
2122
2122 0002400180011001
212A 0000800060003000
2132 200090FF70FFOOFF
213A EOFE90FEEOFEEOFE

2142

val_tab Ie:
OCW
OCW
DCW
DCW
OCW

inc_tab la:

END

Dew
OCW
DCW
OCW

ASSEMBLY COMPLETED. NO ERROR(S) FOUND.'

OOOOH. 2000H. 3400H. 4COOH i A random function
5000H. 6AOOH. 7200H. 7800H
7BOOH. 7DOOH. 7600H. 6DOOH
5DOOH. 4BOOH. 3400H. 2200H
1000H

0200H.
OODOH.

00020H.
OFEEOH.

0140H.
ooaOH.

OFF90H.
OFE90H.

0180H.
0060H.

OFF70H.
OFEEOH.

0110H
0030H

OFFOOH
OFEEOH

Table of incremental
differences

270061-67

l

»
"D
I

N
~
CI:I

~ o

~
~
'U

!iii:
ch
aI
o o a.
CD
=:
~
In
>C
'U
Dl
::J
1/1
0'
::J

SERIES-III PL/M-9b VI 0 COMPILATION OF' MODULE PLMEX
OBJECT MODULE PLACED IN .F3 PLMEXl.OBJ
COMPILER INVOKED BY. PLM9b.8b 'F3 PLMEXI.P9b CODE

2
3
4
5
b
7
8
9

10

II
12
13 .

14

15
Ib

17

18

19

I
2
2

5-TITLEI'PLMEXI. PLM-9b Example Code for Table Lookup')

1* PLM-9b CODE FOR TABLE LOOK-UP AND INTERPOLATION *1

PLMEX. DO,

DECLARE' IN_VAL
DECLARE TABLE LOW
DECLARE TABLE-HIGH
DECLARE TABLE:DIF
DECLARE OUT
DECLARE RESULT
DECLARE OUT_DIF
DECLARE TEMP

DECLARE TABLE(17)
OOOOH, 2000H,
5DOOH. bAOOH.
7BOOH. 7DOOH.
5DOOH. 4BOOH.
IOOOHI,

WORD PUBLIC,
INTEGER PUBLIC,
INTEGER PUBLIC,
INTEGER PUBLIC,
INTEGER PUBLIC,
INTEGER PUBLIC,
LONGINT PUBLIC,
WORD PUBLIC,

INTEGER DATA
3'lOOH. 4COOH.
7200H. 7800H.
7600H. bDOOH.
3·l00H. 2200H.

1* A T~ndQm function */

DMPY: PROCEDURE IA.BI LONGINT EXTERNAL,
DECLARE (A.BI INTEGER,

END DMPY,

LOOP.
TEMP=SHR I IN_VAL. 41, 1* TEMP is the most significant 4 bits of IN_VAL *1

TABLE_LoW=TABLE(TEMPI,
TABLE_HIGH=TABLEITEI1P+II,

1* If "TEMP" .. as replaced by "SHRIIN_VAL.41" *1
1* The code would work but the 809b would *1
1* do twa shifts *1

TABLE_DIF=TABLE_HIGH-TABLE_LoW'

OUT_DIF=DMPYITABLE_DIF.SIGNEDIIN_VAL AND OFHII lib,

OUT=SAR(ITABLE LOW+OUT DIFI.4I, 1* SAR performs an arithmetic right shIft.
- - in this case 4 places are shifted *1

270061-68

l

)0

'P
iii)
.c.
CIt

--
20 IF CARRY=O THEN RESULT=OUT, 1* Using the hardware flags must be done *1

I I t 22 ELSE RESUL T=OUT + 1, 1* with care to ensure the flag is tested *1
1* in the desired instruction sequence *1

23 GOTO LOOP,

1* END OF PLM-96 CODE *1

24 END,
270061-69

PL/M-96 COMPILER PLMEXI' PLM-96 Example Code for Table Lookup
ASSEMBLY LISTING OF OBJECT CODE

:to
~
"G STATEMENT 14
r- 0022 PLMEX.
3: 0022 AI00001B R LD SP,IISTACK
~ 0026 LOOP:
(I)

0026 AOOOI0 R LD TEMP, IN_VAL
0
0 0029 OB0410 R SHR TEMP,1I4H
Co STATEMENT 15
CD 002C 4410101C R ADD TMPO, TEMP, TEMP
::e 0030 A31DOOOO02 R LD TABLE_LOW,TABLE[TMPOl)0

O'l
;:;:

STATEMENT 16 "0

~
:r I

I'll 0035 A31D020004 R LD TABLE_HIGH,TABLE+2H[TMPOl N
>C STATEMENT. 17 .j:o.

'a 003A 4B020406 R SUB TABLE_DIF,TABLE_HIGH,TABLE_LOW
CD

III
::J STATEMENT IB
III 003E CB06 R PUSH TABLE_DIF O·
::J 0040 410FOOOOIC R AND TMPO,IN_VAL,IIOFH

'0 0045 CBIC PUSH TMPO
0 0047 EFOOOO E CALL DMPY
::!. 004A OE041C SHRAL TMPO,1I4H
:i" 004D AOIEOE R LD OUT_DIF+2H,TMP2
c 0050 AOICOC R LD OUT_DIF,TMPO CD
.& STATEMENT J9

0053 A00220 R LD TMP4,TABLE_LOW
0056 0620 EXT TMP4
005B 64lC20 ADD TMP4,TMPO
005B A41E22 ADDC TMP6,TMP2
005E OE0420 SHRAL TMP4,1I4H
0061 A0200B R LD OUT,TMP4

STATEMENT 20
0064 BIFFIC LDB TMPO,IIOFFH
0067 DB02 BC C!0003
0069 l11C CLRB TMPO
006B @0003:

270061-70

~
"0
r-
3:
cl>
Q)

0
0 a.
CD

~
;:;:

% :::T
",

I\) >C
"'C
III
:s
!e.
0
:s
0
0
::J

"" ::J
c:
CD
.9:

006B 981COO CMPB RO, TMPO
006E 0705 BNE @OOOI

STATEMENT 21
0070 A0200A R LD RESULT,TMP4
0073 2005 BR @0002

STATEMENT 22
0075 @0001:
0075 A0080A R LD RESULT, OUT
0078 '070A R INC RESULT

STATEMENT 23
007A @OO02:
007A 27AA BR LOOP

STATEMENT 24
END

MODULE INFORMATION:

CODE AREA SIZE 005AH 900
CONSTANT AREA SIZE 0022H 340
DATA AREA SIZE OOOOH 00
STATIC REGS AREA SIZE 0012H 180

PL/M-96 COMPILER PLMEXl PLM-96 Example Code For Tdble Lookup
ASSEMBLY LISTING OF OBJECT CODE

OVERLAYABLE REGS AREA SIZE
MAXIMUM STACK SIZE
48 LINES READ

PL/M-96 COMPILATION CO~iPLETE

OOOOH
0006H

00
60

o WARNINGS. o ERRORS
270061-71

t

~
l'
N
.co.
(XI

~I
~
"U

~I
I

CD
Q)

0
0
a.
III

::IE
C» :. :r m m U) >II

'0
AI
::I
Ul o·
::I

'0
0
::J

5"
c:
(l)

S

MCS-96 MACRO ASSEMBLER MULT APT' 16*16 mult1ply procedure for PLM-96

SERIES-III MCS-96 MACRO ASSEMBLER, VI.O

SOURCE FILE. : F3: MULT.
OBJECT FILE': : F3: MULT.
CONTROLS SPECIFIED IN

ERR LOC OBJECT

0018

0000

0000

0000 CC04
0002 CCOO
0004 FE6EI900

0008 E304
OOOA

ASSEMBLV COMPLETED,

A96
OBJ
INVOCATION COMMAND: NOSB

LINE SOURCE STATEMENT
I $TITLEC'MULT. APT: 16*16 multlply procedure for PLM-96 1)

2
3
4 SP EGU 18H: .. ord
5
6 rseg
7 EXTRN PLMREG : long
8
9 c:seg

10
II PUBLIC DMPV Multiply t .. o integers and return a
12 longint result in AX, DX registers
13

E 14 DMPV: POP PLMREG+4 , Load return address
E 15 POP PLMREG , Load one operand
E 16 MUL PLMREG, [SPl+ Load second operand and increment SP

17
E 18 BR [PLMREG+41 , Return to PLM code.

19 END

NO ERRORCS) FOUND.

270061-72

l

»
"tI .
I\)

""'­
CO

cp
.~

1-
~
"a

i
~
It
:IE
;::;:
~

m
Ie

i ::s
!!!. o ::s
g
a:
E
!

SERIES-III MCS-96 RELOCATOR AND LINKER. V2.0
CoPUright 1983 Intel Corporation

INPUT FILES: : F3: PLMEXL OBJ. : F3· MUloT. OBJ. PLM96 LIB
OUTPUT FILE: :F3:PLMOUT.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND:

ROM (2080H-3FFFH) -

INPUT MODULES INCLUDED:
·F3:PLMEXI OBJ(PLMEX) 12/25/84
·F3:MULT.OBJ(MULT) 12/25/84
PLM96.LIB(PLMREG) 11/02/83

SEGMENT MAP FOR :F3:PLMOUT.OBJ(PLMEX):

TYPE BASE LENGTH

**RESERVED* OOOOH 001AH
*** GAP *** 001AH 0002H

REG 001CH 0OO8H
REG 0024H 0012H
STACK 0036H 0006H

*** GAP *** 003CH 2044H
CODE 2080H 0003H

*** GAP *** 2083H 000lH
CODE 2084H 007CH
CODE 2100H OOOAH

*** GAP *** 210AH DEF6H

ALIGNMENT

ABSOLUTE
WORD
WORD

ABSOLUTE

WORD
BYTE

MODULE NAME

PLMREG,
PLMEX

PLMEX

PLMEX
MULT

270061-73

i

~
l'
N
.j:Io
CD

m c»
01

»
~
"tI
r­
:!:
I

CD
QI

~
Q.
CD

!.
:;:
m
>c
-g
:::I
III o·
:::I

a
o
:::J g.
c:
(1)

.a

SYMBOL TABLE FOR :F3:PLMOUT.OBJ(PLMEX).

ATTRIBUTES VALUE NAME

PUBLICS·
REG WORD 0024H IN_VAL
REG INTEGER 0026H TABLE_LOW
REG INTEGER 0028H TABLE_HIGH
REG INTEGER 002AH TABLE_DIF
REG INTEGER 002CH OUT
REG INTEGER 002EH RESULT
REG LONGINT 0030H OUT_DIF
REG WORD 0034H TEMP
CODE ENTRY 2l00H DMPY
REG LONG OOlCH PLMREG
NULL NULL. 003CH MEMORY
NULL NULL lFC4H ?MEMORY_SIZE

MODULE: PLMEX

MODULE: MULT

MODULE: PLMREG

RL96 COMPLETED. o WARNING(S). o ERROR(S)
270061-74

l

»
'tI

~
CD

~I
~

" c :1
'en iI: a, CD
en DI

I/)
C ..
CD
3
CD ::s -

SERIES-III MCS-96 MACRO ASS~MDLER. VI 0

SOURCE FILE' F3,PULSE A96
OD~ECT FILE ,F3,PULSE OD~
CONTROLS SPECIFIED IN INVOCATION COMMAND NOSD

ERR LOC OD~ECT LINE
I
2
3

=1 4
=1 52

53
0028 54

55
0028 56
002A 57
002C 58
002E 59
0030 60

61
62
63

2080 64
65
66

2080 AIOOO118 67
2084 010115 68
2087 1l10F03 69

70
208A 442A282C 71
208E 3EI603 72
2091 3716F6 73

74
2094 D0061C 75

76
77

2097 A00420 78
79

209A 391C09 80
81

2090 C03020 82
20AO 482E3028 83
20A4 27E4 84

85
86

20A6 C02E20 87

SOURCE STATEMENT
5TITLE('PULSE A96 MeasurIng pulses uSIng the HSI unIt')

5INCLUDE(DEM096 INC)
Snolist

Tseg

cseg

wai t:

contin:

hsi_Io:

hsi_h i:

Turn listing off for include file
End of Include file

at 28H

HIGH_TIME, dsw
LOW_TIME: dsw
PERIOD: dsw
HI_EDGE' dsw
LO_EDGE: dsw

at 2080H

LO
LOB
LDD

SP, #IOOH
lOCO. #OOOOOOOIB
HSI_MODE, #000011111l

Enable HSI 0
i HSI 0 look for either edge

ADD PERIOD, HIGH_TIME, LOW_TIME
~BS

~IlC

LDD

LD

~DS

ST
SUB
IlR

ST

1051, 6, contin i If FIFO is full
1051, 7, wait ; Wait whIle no pulse is entered

AL, HSI_STATUS

ax. HSI_TIME

AL, 1, hsi_hi

BX, LO,,:,EDGE

Load status; Note that reading
HSI_TIME clears HSI_STATUS

Load the HSI_TIME

~ump if HSI,O is high

HIGH_TIME, LO_EDGE, HI_EDGE
walt

ax, HI_EIlGE

270061-75

·a
CL,'-

):0

~
0Iloo
CD

20A9 48302E2A 88 SUB LOW_TIME. HI_EDGE. LO_EDGE
20AD 27DB 89 BR wait

90
(

20AF 91 END

ASSEMBLY COMPLETED. NO ERROR IS) FOUND.
270061-76

»
~
'tI
C
iii
CD

3:
CD

I I
l0-

II "0 q> I
I\) Ol
.&:10 --J
Q)

~ ..
0
0
:::l

S'
c:
CD
.s

»
!n
m
::::I
:::r
DI
::::I
()
CD
12.

cp 'tI
C

(l) iii 00 CD
iii:
CD
DI
1/1
C ...
CD
3
1D
::::I ..

SERIES'I I I MCS '''16 MACRO A~,SI11D1 HL VI (j

SOURCE FlU. ~3 ENHSI A"I6
UBJECT FILE F3 ENIISI OU.!
CUN1FlOLS SPECIFIED IN INVIJCArlON COMMAND N051l

ERR LOC OIlJECl LINE
1
2
3

~1 4
=1 52

53
0028 54

55
0028 56
002A 57
002C 58
002E 59
002F 60
0030 61
0032 62
0034 63
0036 64

65
2080 66

67
2080 AI000118 68

69
2084 1112516 70

71
72

2087 B19903 73
208A 1110715 74

75
76
77
78

2080 717F2F 79
2090 90162F 80

81
2093 ~72FF7 82

83
84

2096 5155062E 85
209A A00428 86

87

SOURCE STATEMENT
STIflE ('ENHSI A96 ENHANCED HSI PULSE ROUTWE')

SINCLUOECOEM096 INC)
$nollst Turn listing off for Include file

End of Include fIle

RSEG AT 28H

cseg

in i t:

lIIal t:

TIME OSW
LAST_RISE. OSW
LAST_FALL' OSW
HSI_SO OSB
10SI_BAII: DSB
PERIOD: OSW
LOW_TIME: OSW
HIGH_TIME: OSW
COUNT OSW

at 2080H

LO SP.III00H

LOB IOC1.1I00IOOIOlll Disable HSO. 4.HSO 5. HSI_INT=f.rst.
Enable PWM. TXO. TIMERl __ OVRFLOW_INT

LOB
LOO

HSI_MOOE.III0011001B
IOCO.IIOOOOOI1IB

set hsi. 1 -; hsi. 0 +
Enable hSl 0,1
T2 CLOCII=T2CLII. T2RST=T2RST
Clear tlmer2

Clear IOSl_BAII.7 ANOB
ORO

JBe

IOS1_BAII.IIOIII1111B
10SI_BAII. 1051

,IOS1_BAII.7 ... ait

Store Into temp to avoid clearing
; other flags which may be needed

If hSl is not triggered then

ANOB
LO

Jump to walt

HSI_SO,HSI_STATUS.IIOI0I0101B
TIME. HSI_TIME

270061-77

cl

):0
'U
1
I\)
-..:.
CI)

0)

a,
(0

»
~
m
:::I
::T
III
:::I
(')
CD
Co
"'IJ
C
iii
CD

5:
CD
III
1/1
C ;a
3
CD
3-
'§
;:;
:i"
c
(!l
,a,

2090 382E05
20AO 3A2EOF
20A3 20lA

20A5 482C2832
20A9 482A2830
20AD A0282A
20BO 200B

20B2 482A2834
20B6 482C2830
20BA A0282C

20BD
20BD 0736
20BF 27CC

20Cl

ASSEMBLY COMPLETED'.

88 .IDS
89 JDS
90 DR
91
92 a_rise: SUB
93 SUB
94 LD
95 BR
96
97 a_fall: SUB
98 SUB
99 LD

100
101 Increment:
102 INC
103 no_cnt: BR
104
105 END

NO ERROR(S) FOUND.

HSI_SO,O,a_rise
HSI_SO. 2. a_fall
no_cnt

LOW_TIME. TIME. LAST_FALL
PERIOD. TIME. LAST_RISE
LAST_RISE. TIME
increment

HIGH_TIME. TIME. LAST_RISE
PERIOD. TIME. LAST_FALL
LAST_FALL. TIME

COUNT
wa1t

270061-76 .

l

:>
"0
I

I\)
~
CO

~
iJl
::e
iii:

en c:
..!.J Ie.
0 ::I

O· -':t CD
:z:
0
0

SERIES-III MCS-96 MACRO ASSEMBLER, Vl.O

SOURCE FILE: ·F3:HSODRV.A96
OBJECT FILE: :F3:HSODRV.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB

ERR LOC OBJECT LINE
1
2
3
4
5
6
7
8
9

10
11

=1 12
=1 60

61
0028 62

63
64
65

0028 66
002A 67
002C 68
002E 69
0030 70

71
2080 72

73
74
75

2080 FA 76
2081 AI000118 77
2085 510F1500 E 78
2089 9:10FOO E 79

BO
208C 81
208C AI000122 82

83
2090 AlOOI01C 84
2094 48221C20 B:I
2098 A0221C 86

B7

SOURCE STATEMENT
$TITLE('HSODRV.A96: Driver module for HSO PWM'program')

HSODRV

PUBLIC
PUBLIC
PUBLIC
PUBLIC

MODULE MAIN, STACKSIZE(81

HSO_ON_O HSO_OFF_O
HSO_ON_l HSO_OFF_l
HSO TIME HSD_COMMAND
SP • TIMERI • 1050

SINCLUDE(DEM096. INC)
$nolist Turn listing off for include file

;, End of include file

rseg at 28H

EXTRN OLD_STAT

HSO_ON_O:
HSO_OFF _0:
HSO_ON_l:
HSO_OFF_l:
count:

ds ..
ds ..
ds ..
ds ..
dsb

: byte

cseg at 20BOK

strt:

ini tia'l:

loop:

EXTRN

DI
LD
ANDB
XORB

LD

LD
SUB
LD

wait : entrv

SP. .100H
OLD_STAT. 10SO. .OFH
OLD_STAT. .OFH

CX. .0100H

AX. .1000H
BX. AX'. CX
AX·. CX

i

:J-

~
00

270061-79

209B C02B1C BB
209E C02A20 B9

90
-20Al OB011C 91
20M OB0120 92
20A7 C02CIC 93
20AA C02E20 94

95
20AD EFOOOO E 96

97
20BO 0722 9B
20B2 89000F22 99
20B6 07DB 100

101
20BB 27D2 102

EI
20BA

ASSEMBLY COMPLETED.

103
104

NO ERRORIS) FOUND.
~
3:
c:
til
S'
IC

en ...
-!::J.

::r
CD

%
til
0
0
0
::J

3-
c
CD
S

ST
ST

SHR
SHR
ST
ST

CALL

INC
CMP
BNE

BR

END

AX. HSO_ON_O
BX. HSO_OFF_O

AX. 111
BX.lIl
AX. HSO_ON 1
BX. HSO_OFF _1

IAIait

CX
CX. '1I00FOOH
loop

Initial

270061-80

(

):0
"tI

I
N
~
<XI

~

1»
."
::E
i:
c:
!II.
:::J

CO
(J) ..
~ ::r

CD J\)

~I
()
0

~
:l
C
CD
.9:

SERIES-III MCs-9b MACRO ASSEMBLER. VI 0

SOURCE FILE F3.HsOMOD A9b
OBJECT FILE. . F3:·HsOMOD ODJ
CONTROLS SPECIFIED IN INVOCATION COMri,IND. NOsD

ERR LOC ODJECT LINE
1
2
3
4
5
b
7
8
9

10
11
12
13
14
15
Ib
17
18
19
20

0000 21
22

0000 23
24
25
2b
27
28
29
30

0001 31
0002 32

33
34

0000 35
3b
37

0000 3EOOFD E 38
0003 FD 39

40
41
42
43
44

SOURCE STATEMENT
STITLEC 'HSOMOD. A9b: 809b PWM PROGRAM MODIFIED FOR DRIVER')
SPAGEWIDTHCI30)

This program will provide 3 PWM outputs on HsO p,ns ()-2
The input parameters passed to the program aTe:

HSO_ON_N
HSO_OFF_N

HSO on time for pin N
HsO off time for pin N

Where: Times are in timer! cycles
N takes values from 0 to 3

;.;;; iii;, i,; iii;; i; iii;;; iii;;;;;; iii iii;; iii; iii;;;;;; iii;

RSEG

[seg

NOTE: Use this file to replace the declaration section of
the HSO PWM program from "SINCLUDECDEM09b. INC)" through
the line prior to the label "wait". Also change the last
branch in the program to a "RET".

D_STAT: DSB
ext,," HSO ON.:.O : word
eltTn HSO_ON_l :word
eltTn HSO_TIME :word
extTn TIMER! : word
extTn SP : lIIord

public OLD STAT
OLD_STAT: dsb
NEW_STAT: dsb

PUBLIC wait

!
HSO OFF 0 :word
HSO:::OFF _1 : word
HSO_COMMAND :byte
1050 :byte

Ulai t; JBS
NOP

1050, b, wait Loop until HsO holding register
is empty

For opperation with Interrupts 'store_stat:' would be the
.entr~ point of the routine.
Note that a DI or PUSH~ might have to be added.

270061-81

(

»
"U .
N
.j:o.
CO

_.
0004 45 store_stat:

I I t 0004 510FOO02 E 46 ANDB NEW_STAT. 1050. IIOFH i Store new status of HSD
0008 980201 R 47 CMPB OLD_STAT. NEW_STAT
OOOB DFF3 48 JE wait
0000 940201 R 49 XORB OLO_STAT. NEW_STAT

50
51

0010 52 chec k_O.
0010 300113 R 53 JBC OLD_STAT. O. c h ec k 1 Jump if OLD._STAT(O);NEW _STAT(O)
0013 380209 R 54 JllS NEW_51 AT. O. set _off_O

55
0016 56 set_cn_O:
0016 813000 E 57 LD8 HSO_COMMAND. 1*001100008 Set HSO for tlmer!, set pin 0
0019 44000000 E 58 ADD HSO_TIME. TIMER I. HSO_OFF 0 Tlme to set pIn; Timer! value
0010 2007 59 BR check - I + Time for pin to be low

60

» 001F 61 set_off _0:

~ OOIF BII000 E 62 LOB HSO_COMMAND. IIOOOIOOOOB Set HSO for timer!. clear pin 0
0022 44000000 E 63 ADD HSO_TIME. TIMERI. HSO_ON_O Tlme to clear pln = Timer! value

" 64 + "rime for pIn to be hIgh =E
==

0026 65 check_I:
0026 310113 R 66 JBC OLD_STAT. 1. check done Jump if OLD_STAT(I);NEW_STAT(I) c: 0029 390209 R 67 JBS NEW_STAT. 1. set_off I en -

5' 68

I I
CO 002C 69 set_on 1: »

0> :;: 002C B13100 E 70 LOB HSO_COMMAND. IIOOIIOOOIB Set HSO for timer L set pin I "tI
.!..J .

(1) 002F 44000000 E 71 ADD ·HSO_TIME, TIMER!. HSO_OFF Time to set pin = Timer1 value I\)
W ".. :::t: 0033 2007 72 BR thee k_done <XI en 73

0 0035 74 set off I: -
'0 0035 BIII00 E 75 LOB HSO_COMMAND, 1I0001000lB Set HSO for timerl. clear pin I
0 0038 44000000 E 76 ADD HSO_TIME, TIMERI. HSO_ON - Time to clear pin = Tlmer! value ;a 77 + TIme for pin to be high :i" 003C 78 check_done; C
CD 003C B00201 R 79 LOB OLD_STAT, NEW_STAT Store current status and
£, 80 wait for interrupt flag

81
003F FO 82 RET

83 use "BR wait" if this routine is used with the driver
84

0040 85 END

ASSEMBLY COMPLETED, UO ERRORCS) FOUND.

270061-82

:I> ;..
rn m CD

~ ::!.
.1>0 !!!.

" 0

SERIES-Ill MCS-96 MACRO ASSEMJJLER. VI 0

50URCE FILE F3 5P A96
OBJECT FILE F3 SP OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND NOSB

ERR LOC OBJECT

002B

002B
0029
002A
002B
002C

200C

200C 9C20

2080

20BO AIOOOllB

20B4 BI2016

0027

OOBO
0026

20B7 BI260E
20BA BIBOOE

=1
=1

LINE
I
2
3
4
5

53
54
55
56
57
5B
59
60
61
62
63
64
65
66
67
6B
69
70
71
72
73
74'
75
76
77
7B
79
BO
Bl
B2
B3
B4
B5

SOURCE STATEMENT

$TITLE('SP A96: SERIAL PORT DEMO PROGRAM')

UNCLUDE(DEM096. INC)
Snolist Turn listing off for include file

End of include file

rseg at 2BH

cseg

cseg

CHR: dsb
SPTEMP: dsb
TEMPO: dsb
TEMPI: dsb
RCV_FLAG: dsb

at 200CH

DCW ser-port_int

at 20BOH

LD SP. ~100H

LOB lOCI. ~00100000B , Set P2,0 to TXD

baud_val

BAUD_HIGH
BAUD_LOW

LOB
LOB

Baud rate
baud_val

input frelluenc~ 1 (64*baud_val)
(input frelluenc~/64) 1 baud rate

ellu 39 ,39 (12,000.000/64)/4BOO baud

ellu
ellu

«baud_val-l)/256) OR BOH
(baud_val-I) MOD 256

BAUD_REG. IIBAUD._LOW
BAUD_REG. IIBAUD_,HIGH

Set MSB to 1

270061-83

l

)0

l'
I\)

t

2080 014911

2090 C42807
2093 BI202A

209b 014008
2099 FO
209A 27FE

209C
209C F2
2090
2090 001129
20AO 90292A .,. 20A3 716029
20Ab 07F~

:"I
(I) 20A8
CD 20A8 3b2A09 :::!.
!!!. 20AO C42807
"0 20AE 710F2A

m 0 20BI 0lFF2C .!.,J ~
(J1

9 2004
2004 302CI8

::J 20B7 352AI5 C!:
::J 200A 002807 c:: ·m .s 2000 710F2A

20CO 717F28
20C3 990028
20Cb 0705
20C8 BIOA28
20CB 2002

20CO
20CO 112C

20CF
20CF F3
2000 FO

2001

ASSEMBLY COMPLETED.

8b
87
88
89
90
91
92
93
94
95
9b
97
98

loop:

LOB

STB
LOB

LOB
EI
OR

99 seT_part_Int'
100 PUSHF
101
102
103
104
10'
lOb
107
108
109
110
III
112
113
114
11:1
l1b
117
118
119
120
121
122
123
124
12'
12b
127
128
129
130
131
132

rd_agal n.
LOB
ORO
ANOO
JNE

get_byte.
JOC
STO
ANOB
LOB

put_byte·
JOC
JOC
LOB
ANOO

cIT_rev:

ANOB
CMPO
JNE
LOO
BR

CLRB

continue:
POPF
RET

ENO

NO ERROR IS) FOUND.

SPCON. .010010010 Enable receIver, Mode

The serial port is now Initialized

SBUF. CHR
TEMPO. .00100000B

INT_MAS~ •• 01000000B

Clear serlal Port
Set TI-temp

Enable SerIal Port Interrupt

loop ; Walt for serial port interrupt

ThIS settlon of code can be replaced
SPTEMP. SPSTAT • "'1 th "ORB TEMPO. SP _STAT" ",hen the
TEMPO. SPTEMP serIal port TI and RI bugs ar~ Fixed
SPTEMP •• OIIOOOOOO
rd_agaln Repeat until TI and RI are properly cleared

TEMPO, 6, put_blJte
SOUF. CHR
TEMPO •• 101111110
RCV_FLAG. .OFFH

ReV_FLAG, 0, continue
TEMPO, 5, continue
SBUF. CHR
TEMPO. UI0n 1110

CHR. .011111110
CHR •• OOH
CIT_Tev
CHR. .OAH
continue

RCV_FLAG

If RI-temp 15 not set
Store b~te
CLR RI-temp
Set bit-receIved fl.g

If receive flag is cleared
If TI ",as not set
Send byte
CLR TI-t"mp

; This section of code appends
an LF after a CR is sent

Clear bit-received flag

270061-84

l

»
"P
1\0)

t

:1 -0
m °1 -!.J 0 m 0

~

II

SERIES-III MCS-96 MACRO ASSEMID_ER. VI 0

SOURCE FILE: :F3:ATOD A96
OBJECT FILE: :F3:ATOD.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB

ERR LOC OBJECT LINE
1
2
3

=1 4
=1 52

53
0028 54

55
0020 56
001E 57

58
0028 59
0028 60
002A 61
002C 62
002E 63

64
65

2080 66
67
68

2080 Al00011B 69
2084 0120 70

71
2086 55082002 72

73
74

208A FD 75
20B8 FD 76
208C 3B02FD 77

78
208F B0021C 79
2092 B0031D 80

Bl
2095 5420201E B2
2099 AC1E1E B3
209C C31E281C B4

85
20AO 1720 86

SOURCE STATEMENT
$TITLE('ATOD.A96: SCANNING THE A TO D CHANNELS')

$INCLUDECDEM096. INC)
$nolist·, Turn listing off for include file

End of include file

RSEG at 28H

BL
DL

RESULT_TABLE:
RESULT_l
RESULT_2
RESULT_3
RESULT_4

EGU
EGU

cseg at 20BOH

BX:BYTE
DX: BYTE

dsur'
dSId

dSId

ds ...

start: LD SP, *100H
CLR . BX

1·

Set Stack Pqinter

next: AD08 AO_COMMAND,BL, *1000B Start conversion on channel
indicated by BL register

NOP
NDP

check: JBS

LDB
LOB

ADDB
LDBZE
_ST

INCB

Wait for conversion to start

AO_RESULT_LO, 3, check I Wait ... hile A to D is busy

AL. AD_RESULT_LO
AH, AD_RESULT_HI.

OL, BL, BL
OX, OL
AX, RESULT_TABLECOXJ

Load low order result
Load high order result

DL=BL*2

Store result indexed by BL*2

BL Increment DL modulo 4

270061-85

(

l>
"P
N
~
Q)

::t:
M
0

*' ...
j " ~
III C

·111
Q Q
Z II: Z
<I: .. W

i'CDO'-O-m 111m 0-0-

0
N
M "-0 Q - "-
"- N

N .,
" <I: <I: <I:

0 0 0
r~ N N·

c:i
Z
::l
0
"-

CD

II:
0
II:
II:
W

0 z

Q
w
~
W
..J
a..
1:
0
u

>
..J ..
1:
W
CD
CD
<I:

AP-248

A.B. A to D Converter (Continued)

6-77

cp
I ,..,.

(Xl

SERIES-Ill MCS-96 'MAC~O ASSEMBLER. VI 0

SOURCE FILE. :F3:A2DHSO.A96
OBJECT FILE' :F3:A2DHSO.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB

ERR LOC OBJECT LINE
1
2
3
4
5
6
7
8
9

10
=1 11
=1 59

60
0028 61

62
001E 63

64
0028 65
0028 66
002A 67
002C 68
002E 69

70
0030 71
0030 72
0032 73
0034 74
0036 75

76
0038 77
003A 78
003C 79
003E 80
0040 81
0044 82
0046 B3
0048 84
004A 85

86

SOURCE STATEMENT
$TITLE ('A2DHSO. A9b: GENERATING PWM OUTPUTS FROM A TO D INPUTS')

This pTogTam will pTovide 3 PWM outputs on HSO pins 0-2
i and one on the PWM.

The PWM values aTe deteTmined·by the input to the AID conveT~er.

iii;;;;;;;;;;;;;;;;; iii;;;;;;;;;;;;.;;·;;,;; iii;;;;;;;;;;;;;;

.INCLUDE(DEM09b. INC)

.nolist TUTn listing off for include file
End of include.file

RSEG AT 28H

DL EGU DX:BVTE

ON TIME:
- PWM_TIME 1: DSW

HSO_ON_O: DSW
HSO_ON_l: DSW
HSO_ON_2: DSW

RESULT_TABLE:
RESULT_O DSW
RESULT_l DSW
RESULT_2 DSW
RESULT_3 DSW

NXT_ON_T:
NXT_OFF_O
NXT_OFr_l
NXT_OFF_2
COUNT:
AD_NUM:

DSW
DSW
DSW
DSW
DSL
DSW
DSW
DSW
DSB

Channef being converted
TMP:
HSO PER:
LAST_LOAD:

270061-87

:::J:
tJ)
o
.~ z c
~
-I o
C
c:~ z"V c"V mm
:D Z

C --Z><
~m·
:D
:D
c:
"V
-I
o o
Z
-I
:D o
r-

(

:.
"U .
N
.&lIo
011

_.
2000 87 cseg AT 2000H

I I t 88
2000 8020 89 DCW start Timer _ovf _i nt
2002 ID21 90 DCW Atod_done_int
2004 8020 91 DCW start HSI_data int
2006 CC20 92 DCW HSO_p.xec_int

93
94 $E.JECT
95

2080 ~6 cseg AT 2080H
97

2080 AIOOOl18 98 5 tart: LD SP. IIIOOH Set Stack Pointer
2084 OIIC 99 CLR AX
2086 051C 100 UJalt: DEC AX blait approx. O. 2 seconds foT'
2088 D7FC 101 .JNE wait SBE to finish communications

102
208A 1144 103 CLRB AD_NUM

104
208C AI800028 105 LD PWM TIME_I. 1I080H
2090 AIOOOl48 106 LD HSO_PER. IIIOOH
2094 AI40002A 107 LD HSO_ON_O. 1I040H
2098 AI80002C 108 LD HSO_ON_I. *080H
209C AICOO02E 109 LD HSO_ON_2. *OCOH

110

I I
):0 20AO 4500010A38 III ADD NXT_ON_T. Timer!, *100H "tI en 112 I

~ II)
CO 20A5 1113606 113 LDB HSO_COMMAND. *00110110B Set HSO for timer!. set pin 0,1 .0.

20A8 A03804 114 LD HSO_TIME. NXT_ON_T with interrupt CI
20MI FD 115 NOP
20AC FD 116 NOP
20AD 812206 117 LDB HSO_COMMAND. 1I00100010B • Set HSO for timerl. set pin 2
20BO 643804 118 ADD HSO_TIME. NXT_ON_T • without interrupt

119
20B3' 91074A 120 ORB LAST_LOAD. *OOOOOI1IB Last ,loaded value .,as set all pins
20116 Bl0A08 121 LDB INT_MASK. IIOOOOIOIOB Enable HSO and AID interrupts
20119 810A09 122 LDIl INT_PENDING. 1I000010l0B Fake an AID and HSO interrupt
20BC FB 123 EI

124
20llD 91010F 125 loop: ORB Portl, 1I00000001B set PI.O
20CO 65010040 126 ADD COUNT. 1101
20C4 A40042 127 ADDC COUNT+2. zero
20C7 71FEOF 128 ANDB Portl. IIll111110B clear PI.O
20CA 27FI 129 BR loop

130
131 $E.JECT

270061-88

132
133
134
135
136

20CC 137
20CC F2 13B
20CD 91020F 139

140
20DO 4B3BOA46 141
20D4 BB0046 142
20D7 DE19 143

144
20D9 145
20D9 644B3B 146
20DC 013606 147
20DF A03B04 14B
20E2 FD 149
20E3 FD 150
20E4 012206 151
20E7 A03B04 152

153
20EA 91074A 154

155
20ED 002B17 156

~ 157
0 20FO 2026 15B

159
160

20F2 161
20F2 304A23 162

163
20F5 ~42A3B3A ' 164
20F9 011006 165
20FC A03A04 166

167
20FF FD 16B
2100 442C383C 169
2104 011106 170
2107 A03C04 171

172
210A FD 173
2100 442E3B3E 174
210F 011206 175
2112 A03E04 176

177
2115 71FB4A 17B

179
211B IBO
211B 71FDOF IBI

••• ".;; ••• ". II.i •• ;; .,; f •••••• II' Ii i, f'" ., •• , •• ; ••••• Ii •• II ••• Of j .,. II •• , i

•• i.;; if;,;" ." HSO EXECUTED IN1ERRlIPI , . . ; ~ . ; ; ; , . -' ..
"". Ii •• i;;. ,i, If;' .".; i. i ,;,.,; i j i;i ;"., •• ;1, ii II; ••• if'; i •• ,. to oj ii" ;1;;

HSO exeC_Int.
PUSHF
ORO Portl. .000000100

SUO TMP.TIMERI. NXT~ON_T

CMP TMP. ZERO
JLT set_off_times

set on_t imes·
ADD
LDO
LD
NOP
NOP
LDO
LD

ORO

-LDD

BR

set_off _times;

NXT_ON_T. HSO_PER
HSO_COMMAND •• 001101100
HSO_TIME. NXT_ON_T

HSO_COMMAND. .00100010B
HSO_TIME. NXT_ON_T

LAST_LOAD •• 00000111B

PWM_CONTROL. PWM_TIME_l

check_dane

JBC LAST_LOAD. O. checl_done

; Set pi 1

; Set HSO for timerL set pin 0.1

Set HSO for timer1. set pin 2

Last loaded value was all ones

Now is as good a time as an~
to update the PWM reg

ADD NXT_OFF_O. NXT_ON_T. HSO_ON_O
LDO HSO_COMMAND •• 000100000 Set HSO for timerl. clear pin 0
LD HSO_TIME. NXT_OFF_O

NOP
ADD NXT_OFF_l. NXT ON_T. HSO_ON_l
LDO HSO_COMMAND •• 000100010 Set HSO for timerl. clear pin
LD HSO_TIME. NXT_OFF_l

NOP
ADD NXT_OFF_2. NXT_ON~T. HSO_ON_2
LDD HSO_COMMAND •• 00010010B Set HSO for timerl. clear pin 2
LD HSO_TIME. NXT_OFF._2

ANDB LAST_LOAD •• 11111000B Last loaded value was aliOs

check_dDne:
ANDB Portl •• 11111101B Clear PI, 1

l

~

~
CD

270061-89

m
~

211B F3
211C FO

211D
211D F2
211E 91040F

2121 51C0021C
2125 B0031D
212B 5444441E
212C AC IEIE
212F C31E301C

2133 99401C
2136 DI07
213B 99FF1D
213B DF02
213D 171D

213F BOIDIC
2142 IIID
2144 C31E2B1C

2148 1744
214A 710344

214D 55084402

2151 71FBOF
2154 F3
2155 FO

2156

ASSEMBLY COMPLETED.

182
183
184
IB5
lB6
lB7
lBB
lB9
190
191
192
193
194
195
196
197
19B
199
200
201
202
203
204
205
206
207
20B
209
210
211
212
213
214
215
216
217
218
219
220
221

$E.JECT

POPF
RET

"; ,i,;j;; i,; j ij iii i.;;i i.i j. j ;i,; i •• j;;;;;. II ,,;';;; ;1' i i.,.; •• i IJ ••• ;.j;; i oj
i,;;i;; li;i i; Ii; A TO D COMPLETE INTERRUPT • j;. i ••• ,. j; Ii oj j i;

" iii ;i;;.i;; ;;.i;;;;;;;,,;; ii, ,;;,. ii; ii; ;;';I;".;j Ii j, ;1.;' i,i,. i •• • ,;,; i"

ATOD_done_int:
PUSHF
ORB Portl. #OOOOOIOOB ; Set PI 2

ANDB
LDB
ADDB
LDBZE
ST

CMPB
.JNH
CMPB
.JE
INCB

no_rnd: LDB
CLRB
ST

INCB
ANDB

neKt: ADDB

ANDB
POPF
RET

END

AL. AD_RESULT_LO.#ll000000B Load low order result
AH. AD_RESULT_HI Load high order result
DL. AD_NUM. AD_NUM DL; AD_NUM *2
DX. DL
AX. RESULT_TABLECDXJ Store r~sult indeKed by DX

AL. #OIOOOOOOB
no rnd
AH:-#OFFH
no_rnd
AH

AL. AH
AH
AX. ON_TIMECDX]

AD NUM
AD::::NUM. #03H

; Round up if needed
Don't increment If AH~OFFH

; Align byte and change to word

Keep AD_NUM between 0 and 3

AD COMMAND. AD NUM. #IOOOB ; Start conversion on channel
- - i indIcated by AD_NUM register

Port!. IIllII10llB ; Clear PI. 2

NO ERROR (5) FOUND.

270061-90

cl

~
l'
N

"" CD

en
<»
I\)

SERIES-III MCS-96 MACRO ASSEMBLER. VI 0

SOURCE FILE: :F3.SWPORT.A96
OBJECT FILE: :F3:SWPORT.OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB

ERR LOC OBJECT

0000

0000
0001

0001
0002
0004

0002
0003
0004

0006

OOOB

OOOA

oooe

0035
0015
001B

LINE
1
2
3
4
~
6
7

=1 B
=1 56

~7
5B
59
60
61
62
63
64
65
66
67
6B.

- 69
70
71
72
73
74
75
76
77
7B
79
BO
B1
B2
B3
B4
B:5
B6
B7

SOURCE STATEMENT
$TITLEI'SWPORT.A96: SOFTWARE IMPLEMENTED ASYNCHRONOUS SERIAL PORT')

This module provides A 50ftwa~e implemented a5gnch~onous serial port
for the 8096. HSD. ~ 15 used for transmit data. HSI.2 is used for
receive data. Note: the choice of HSO.:5 and HSI.2 is arbitraru).

$INCLUDEIDEM096. INC)
$nolist Turn listing off for include file

End of include file

VARIABLES NEEDED BY-THE SOFTWARE SERIAL PORT

T"seg

josl_save:"
Tcvo_state:

rn:rdtj
rnOverrun
rip

rcvD_buf:
t"eve_reg:
sample_time:

serlal_out:

baud_count:

txd_time:

char:

dsb
dsb
equ 1
equ 2

-equ 4
dsb 1
dsb 1
do.. 1

d

ds ..

ds ..

d.b

Used to save contents of iosl

indicates receive done
indicates receive overflow

i receive in progress flag
used to double buffer receive data
used to deserialize receive
records last receive sample time

Holds the output character+framing (start and
stop bits) for transmit process.

Holds the pe~10d of one bit in units
of Tl ticks.

J Transition time of last Txd bit that was
sent to the CAM

faT' t@st only

COMMANDS ISSUED TO THE HSO UNIT

mark_command equ
space_command equ
sample_command equ

SeJect

011(>101b
0010l0lb
001'1000b

tirnerl.5et. interrupt on ~

timerl,clr,interrupt on 5
software timer 0

270061-91

en o
:!I
:c»
»"
::rJ" mm
enz me
::rJ­-><
~n

" o
::rJ
-I

l

• l'
N

t

cp
~

20BO

20BO

20BO FA
20B1 A1F0001B
20B5 C9C012
20B8 EFOOOO
20BD Bl6COB
20BE FB

20BF.

OOOD
20BF B10DOC
2092
2092 ACOC1C
2095 C81C
2097 EF3000

209A 990DOC
209D D706
209F 011-(;
20Al
20AI 071C
20A3 D7FC
20A5

20A5 170C
20AT
20A7 EF4400
20AA 9B001C
20AD DFE3
20AF EF4COO
2002 DOICOC
2005 27DB

R

R

R

R

R

R

R

R
R

BB
B9
90
91
92
93
94
95
96
97
9B
99

100
101
102
103
104
'10~

106
107
lOB
109
110
111
112
113
114
115
116
117
118
119
120
121
122-
123
124
12~

126
127
128
129
130
131

cseg at 20aOh

reset lac:
Th.-a096 starts executing here on reset, the program ~il1 initialize the
the software serial port and run a simple test to elcereile it.

t"st1:

di
.ld
push
call
ldb
ei

sp •• OfOh
.4BOO
5etup_5eTi~1-port

int_mask •• OU01100b serial, 511ft, hso, hsi

A simple test of the serial port routines.
While no characters are received an' incrementing pattern i5 sent to the
lier1..-1 output. When a cha1'acteT is received tbe incrementing patt.ern
"Jumps" to the- character ".ceved and p-roceeds from the"e.

CR
1db

e'lu ODH
·char. KR

tRstlloop:

pause:

nopause:

te.t2:

$eJect

Idbze
push
call

cmpb
bn"
clr

ai, choar
a.
char _out

char •• CR
nopa,:,s.
a.

inc ax
bne pause

incb.

call
cmpb
be
call
Idb·
br

char

cst.
al.O
test1100p
char _in
char.al
testlloop

Carriage re-turn

Pause on Carriage return

chaT ready?

loop if not

270061-92

(

);0
'V
I

N
.IIo­m

0000

0000

0000 CC22
0002 CC20
0004 Al07001E
0008 A120AliC
OOOC 8C201C
OOOF C0081C
0012 C00600
001:5 81601b
0018 3EI:5FO

0018 44140AOA
OOIF 813:50b
0022 AOOA04
0025 1102
0027 1103
0029 1101
0028 EF4800
oo2E E322

% 0030 ",.

0030 CC22
0032. CC20
0034 810121
0037 b42020
003A
003A 88000b
0030 07F8
003F C00620
0042 E322

0044

0044 OIIC
004b 300102
0049 071C
004B
004B FO

004C

R
R

R

R
R
R
R

132
133
134
135
13b
137
138
139
140
141
142
143
144
14:5
14b
147
148
149
1:50
151
1:52
153
1:54'
1,:5:5
15b
157
158
159
160
161
1'62
l,b3
164
165

R 16b

R

R

167
168
169
170
171,
172
173
174
175,
176'
177
178
179
180'

cseg

setup_spr,al_port,
Called on system reset to intiate the software serial port

CI the return address pop
pop
Id
Id
tfivu
st
st
Idb
bbs

bl
dl.1I0007h
al.IIOA120h
ax,bl

the baud rate (In deCimal)
dl:al:=500.000 (assumes 12 Mhz crystal)

calculate the baud count (SOO.OOO/baudrate)

$eJect

add
ldb
Id
clrb
clrb
clrb
call
br

char _out·

ax. baud_count
O,serial_out clear serial out
1ocl.IIOll00oo0b • Enable HSO,:5 and Txd

'10.0.6.$ i Wait for room in the HSO CAM
and issue a MARK command.

txd time,timerl,20
hso:cammand,.mar'_command
hSD_time, tid_time
rcv __ buf

reve_reg
l'c:vR_state
1nlt_rIPcIP1vIP
[CI]

clear out the receive variables

SIPtup to detect a start bit
return

Output character to the software serial port

pop ex, tbe return address
pop b'l the character for output
Idb (bl+l).IIOlh add the start and stop bits
add b I. b I to the-char and leave as 16 b,t

",a 1 t_for - xmlt:
cmp se1'1al Qut.O wait for serial _out=O (it .. ill be cleared by

",b,ne .. a; t_for _"m; t the hso interrupt process)
st bx,serial _out put the formatted character
br [c I] return to caller

csts:
Returns "true" (ax<::>O) if char_in has a character.

C 11' ax
bbc l"cve_state, 0, ests __ ex i t
inc ax

ests_elit:
ret

char _in:

in serial_out

l

~

~
OJ

270061-93

en a,
01

004C 3001FO
004F F2
0050 71FEOI
0053 AC021C
0056 F3
0057 FO

0058

2006
200b 5800

0058
0058 F2
0059 b4080A
005C 88000b
005F OFOO
0061 08010b
00b4 OB08
006b
0066 B11506
0069 AOOA04
006C 200b
006E
006E 81350b
0071 AOOA04

0074
0074 F3
0075 FO

0076

007b 810015
0079 812003
007C
007C 901bOO
007F 370008
0082 BOOblC
0085 A0041C

R

R
R

R

R
R

R

R

R

R
R

181
182
183
184
185
18b
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
20:5
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
22b
227
228
229
230

G~t a character from the software serial port

SeJeet

hso isr

bbe
pushf
andb
Idbze
popf
ret

i wait for character ready
rcve_state,O,char_ln

• set up a critical reglon
rcve_state,*not(rxrdy)
aI.rcve_buf

leave the critical region

F;eldS the hso interrupts and performs the serializatIon of the data
Note: t~i5 routine would be Incorporated into the hso service strategy

for an actual system.

[seg
dew

cseg
pushf
add
emp
be
shr
be

send_spac e:
Idb
Id
br

send_mark:
Idb
Id

hSD iST_elit:
popf
ret

.eJect

Inlt receive:

at 2006h
hso_isT ; Set up vee tor

tId_time, baud_count
serial_out/O if character is done send a mark
s~nd_mark

serial_out, tn
send_mark

else send bit 0 of serial_out and shift
serial_out left one place.

h so_.c ommand •• 5 pac e _C ommand
hso_.time. txd_tlme
hSD iST'_exit

h~o_command,.maT'k_command

hso_time, tId_time

Called to prepare the serial Input process to find the leading edge of
a start hit

Idb
Idb

f 1 ush_f i fo.
orb
bbe
Idb
Id

ioeO.1I0000000Qb
hsl_mod~.1100100000b

iost_save, iosl

disconnect change detector
negative edgeG on HSI 2

iost_save. 7, flush._fifo_done
aL hSi_status
ax, hsi time ; traGh the fifo entry

270061-94

(

»
'P
N
.".
CD

:h
--.j

00C3
00C3 350604
00C6 2FAE
00C8 2032
OOCA
OOCA 910401
OOCD 2021

OOCF
OOCF 3F010E
0002 180103
0005 350603
0008 918003
0000
0000 751001
OODE 2010

OOEO
OOEO 3506FD
00E3 B00302
00E6 910101
00E9 710301
OOEC 2F68
OOEE 200C

OOFO
OOFO 3F15FD
00F3 B11806
00F6 640804
00F9 C00404

OOFC
OOFC F3
OOFD FO

OOFE

ASSEMOLY COMPLETED.

R

R
R

R

R

R
R
R

R
R

281
282
2B3
284
285
286
287
2BB
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
30B
309
310
311
312
313
314
315
316
317

proces&_start_bit:
bbc hsi_status,5, start_ok
call tnit_receive
br software_time~_exit

start_ok:
orb
br

rcve_state •• r1p set receive in progress flag
schedule_sample

rcve_state,7.check_stopbit
rcve_reg,.l
hsi_status.5,datazero

process_data:
bbs
shrb
bbc
orb rcve_reg •• BOh ; set the new data bit

data zero:
addb
br

rcve_state,#10h increment bit count
schedule_samp Ie

hsi status.5.$ DEBUG ONLY
rcve_buf,rcve_reg
~cve_5tate,.rxrd~

check_stopbit:
bbc
Idb
orb
andb
call
br

rcve_state,_03h ; Clear all but ,ready and overrun bIts
init_Teceive
software_timeT_exit

schedule_sample:
bbs i050,7,$; wait for holding
ldb hso_command,#sample_command
add sample_time,baud_count
st sample_time.hso_time

software_timer_exit:
popf
ret

end

reg empty

NO ERROR(S) FOUND.

270061-96

l

~

;!!
.c.
CD

m
00
0')

SERIES-III MCS-96 MACRO ASSEMBLER. VI 0

SOURCE FILE. :F3:MOTCON.A96
OB.!ECT FILE. : F3: MOTCOI~. OB.!
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSS

ERR LOC OB.!ECT LINE
I
2
3
4
5
6
7

=1 8
=1 56

57
58
59

OOIE 60
61

003C 62
63
64

0069 65
66
67
68

006E 69
70
71

OOFA 72
OOFA 73
OOFF 74
OOFF 75
0·080 76
04BO 77
0064 78
0010 79

80
81

0024. 82
83

0024. 84
0028 85

SOURCE STATEMENT
$TITLE ('MOTCON.A96: Motor Control Example Program')

USE WITH C-STEP O~ late~ pa~ts

December 20, 1984

$INCLUDE(DEM096. INC)
Sno11st Turn listing off for include file

End of ~nclude file

;;, i;;;;;;; Initial Values

min_h'sil_t e'lu

min_hsi_t e'lU

max_hsil_t e'lu

HSOO~dl~-PD~iod e'lu

5wtl..:..dlVJoriod _qu.
swt2_dlv-pcriod equ
rnaxJower equ
max_brake equ
maximum_hold equ
brakeJnt equ
posltionJnt equ
velocitv-pnt equ

RSEG at 024H

tmp:
timer _2:

30 ; min period for PHA edges In model before mode2

2*min_hstl_t
; min period for PHA edges in medeO before model

3*min_hsl1_t + min_hsil_t/2
.; max period for PHA·edges in model before madeO

110

250
250·
Offh
Offh
080H
1200
100
16

dsl
dsl

delav for HSO timer 0 (timed count of pulses)
min peTiDd. ~OT ~ T2 clocks before mode 1

dela~ for software timer 1
d~lay for software timer 2

270061-97

s:
~
o
:z:I
0»
0."
Z'"
-1 m
:z:IZ oc
1)(
"'C :z:I o
C)
:z:I » s:

l

~
13
N
.1:10 c»

_.
002C 86 tm .. 2_Dld: dsl

I I cf 0030 87 position: dsl
0034 88 des_pos. dsl
0038 89 pas_err dsl
003C 90 delta_p. dsl
0040 91 time. dsl
0044 92 des time: dol
0048 93 time_err: dsl

94
95 $E.JECT
96

004C 97 last _t Im@ .~err dsw
004E 98 last_pas_err. dsw
0050 99 pos_delta. dsw
0052 100 time_delta dsw
0054 101 Idst_pos. dsw
0056 102 lastl time: dow
0058 103 last2_tlme. dow
005A 104 boost: dsw
005C 105 tmpl : dsw
005E 106 Dut_p t ... dsw
0060 107 offset. dsw
0062 108 nxt_pos: dsw
0064 109 Tpwr: dsw

I I
~ 0066 110 old t2: dsw

en 111 "U • CD 0068 112 di .. ect: dsb l=.forward, O=reverse I\)
<0 0069 113 pwm_dir: dsb "" ~ 006A 114 hsi sO: dsb

006B 115 last stat: dsb -
-006C 116 pwmJwr: d·sb

0060 117 iosl_bak: dsb
006E 118 TR_COL: DSB ; COLLECT TRACE IF TR_COL=OO
006F 119 main_dl~: dsb

120
0070 121 rna.Jlllr: dsw
0072 122 max_ b .. k: dsw
0074 123 max_hold: dsw
0076 124 vel _pnt: dsw
0078 125 b .. k_pnt: dsw
007A 126 pDs_pnt: dsw
007C '127 HSOO_dly: dsw
007E 128 swtl _dly: dsw
0080 129 swt2_d Iy: dsw
0082 130 min_hsi: dsw
0084 131 min_hsil: dsw
0086 132 max hul: dsw -133

134
0100 135 dseg at 100H

270061-98

cp
~

0100
0102
0104

2000
2000 0022
2002 1020
2004 0424
2006 8022
2008 1020
200A 2022
200C 1020
200E 1020

2010
2010
2010
2010

2080

2080 AIFOOOl8
2084 DIFF17

2087 1168
2089 A170175C
2080 055C
208F E068FD
2092 88005C
2095 02F6

2097 BIFFOF
209A DIFFIO

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

-183
184
185

mode_vie..,:
count_out:
err _view:

$eJect

PINtI

22
23
24
25
26
37
38
39
40
45

cseg at
de ..
de ..
de ..
dew
de ..
de ..
dew
de ..

atod_done_int;
hsi_O_int;
seT _port_jnt:
external int:

cseg at

init; Id
Idb

elrb
Id

dela~; dec
dJnz
emp
Jyt

ldb
Idb

dsb
dsw
ds ..

PORT FLAG USAGE

modeO 0
o

model mode2 or 0
o

PI. 0
PI 1
PI 2
PI 3
PI. 4
PI. :5
PI. 6
Pl.7
P2. 6
P2. 7

software timer 2 routine enter/leave
Main' program toggle
HSI overflo .. toggle
software timer 0 routine enter/leave
hsi_int enter/leave
software timer 1 routine enter/leave
Input di1'ectlon (O=reverse. l=forward)
direetlon O=rev, l;::fwd

2000H
timer ovf _int
atod_done_int
hsi data tnt
hso=.xec:=int
hsi_O_int
soft_tmr _int
ser _port_jnt
extern.l_int

2080H

sp.tlOFOH
pwm_control,AOFFH

direct
tmpl.tl6000
tmpl
direet.$
tmpl, zero
dela~

portl. tlOFFH
port2.tlOffH

; wait about 3 seconds for motor
to come to a stop

; wait O. ~12 milliseconds

270061-99

l

~

2:
~
CO

0>
<b

2090 812516

20AO 71FeOF
20A3 019903
20A6 015715

20A9 A00400
20Ae 0140
20AE 0142
2080 0128
2002 012A
2004 0130
2006 0132
2088 0154
200A 0134
200C 0136
200E 0144
"20eO 0146
20e2 AOOA56
20e5 490008~658
20eA 1160
20eC 1109
20eE AIF0015E
2002 AI3eOOB2
2006 AllEOOB4
20DA A16900B6
200E AI6E007e
20E2 AIFA007E
20E6 A1FAOOBO
20EA A1FF0070
20EE AIFF0072
20F2 AIB00074
20F6 Al00047B
20FA AI64007A
20FE AII00076
2102 AI002962
2106 00006e
2109 010169

210C 01200B
210F 013006
2112 447COA04
2116 FO
2117 FO
2118 013906
2110 447EOA04

186
lB7
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
21~
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

.eJect

Idb

andb
Idb
ldb

Id
cl,.
cl,.
cl"
cll'
cl,.
cl,.
cl,.
cl,.
cl,.
cll'
cl,.
Id
sub
clrb
clrb
Id
Id
Id
Id
Id
Id
Id
Id
Id
Id
Id
Id
Id
ld
Idb
Idb

ldb
Idb
add
nop
NOP
Idb
add

IOCl •• 001001018 Disable HSO 4. HSO. ~. HSI_INT=f'l'st.
; Enable PWM.TXD.TIMERl_0VRFLOW_INT

Portl •• lllll1000
HSI_mDde •• l0011001B
IOCO •• Ol0101110

zero. hSl .. tllne
time
t Ime+2
tlmer _2
tImer _2+2
position
position+2
last_pos
desJos
des_pos+2
des_time

clear Pl. 0, 1 (set mode 0)
set hsi. 1,:3 -; hsl. 0. 2 +
Enable all hs.
T2 CLOCKaT2CLK. T2RST=T2RST
Clear t1mer2

des_time+2
lastl_time.Timerl
last2_time.lastl_time •• BOOH
josl_ball:
int_pending
Dut_ptr.llIFOH
min_hsi •• min_hsi_t
min_hsil •• min_hsil_t
max_hsil •• max_hsil_t
HSOO_dl~.'HSOO_dl~_periDd

swtl_dl~ •• swtl_dl~-periDd
s .. t2_dl~"(s .. t2_dl~-periodl
max-pwr,.max_power
mal_brk._max_brake
max_hold •• maximum_hold
br k-pnt.-IIb r ... k e-pn t
posJnt, .pos"i ti on-pnt
velJnt,.valQcit~-pnt

nxt_pDs.llpos_table
platlftJl&fr, zero
pwm_dir •• Olh

int_mask •• 001011018
hso_command,.30H
hSD_time.timerl.HSOO_dl~

hSD_command •• 39H
hSD_time,timerl,swtl_dlU

FORWARD

Enable tmr_ovf, hsi, 5Wt. HSO. interrupts
set HSO_O

set swt __ l

270061-AO

l

~
"'a .
I\)

~

211F FO
2120 F"D
~t.21 [U3A06
2124 44800A04

21.28 AOOA40
2129 AOOC2C
212E FB

212F E7CE06

2200

2200
2200 F2

2201 901660

:b
2204 356005
.2207 0742

ro 2209 710F60
220C
220C F3
2200 FO

2220

2220
2220 F2
2221 901660
2224
2224 306003
2227 71FE6D

222A
222A 316006
2220 71FD6D

236
237
238
239
240
241
242
~43

244
245
246
247 $eJect
248
~49

nap
nap
ldb
add

ld
ld
el

br

hso_command •• 3AH set swt_2
hso_ttme.t1merl. swt2_dl~

time. TIMER1
tmr2_o1d. timer2

main_prog

250 ..••..•••••••••••••••••••••....••..••.•••..••••••.••..••...•.•••••..••.••••••
2:;1 TIMER INTERRUPT S~HVICL

252 "".".; .. I'.; ••••• , ••••••••••••••••••••• , ••• , ••• ,.;,,; ••••••••••• ,.···.,···

253
254 CS~G AT 2200H
255
256 tlmer_ovf_int
257 pushf
258
259
260
261
262
263
264
265
266
267
268

orb
chk_tl. Jbc

inc
andb

tmr _1 nt_done·
popf
ret

iasl_bak.IOSI
iasl_baL ~, tmr lot_done
ti.me f 2
los1_bak •• ll011111B . clear bit :;

; End of timer int~TTupt routine

269 ,;, i;,;;; i; i;;; i i;;;;; i;;, i i; i,;;;;;';;;,; i;;; i;;; j;; i;;;;, i,;;;; •• ,;;;;;;
270 i,; ;; SOFTWARE TIMER INTERRUPT SERVICE ROUTINE ;.;,; iii;

271 i,; ,;,;,; ;;; i;;;; ,;,; j;;,;;,; i,;;;,;;,; ;'; ;,; i,;;,;;;,;;,;;;,,;,;,;,;; ;;;,;;,; j;,;,;,; j,; ,;,; ,; I ,;; ,;; j i i

272
273 CSEG AT 2220H
274
275
276
277
278
279
280
281
282
283
284
285

soft_tmr _int
pushf
orb

chk_swtO:
JbC
andb
cali

chk_5wtl:
Jbc
andb

iosl_bak.IOSI

1os1_bak.0.chk_swt1
1os1_bak •• l1111110B
swtO_expil"ed

los1_bak.1.chk_.wt2
iosl_bak •• llllll01B

Clear blt 0 - end swtO

Clear bi t 1

l

>
~ ,..
CD

2700S1-A1

2230 EFCD03'
2233
2233 326D06
2236 71F06D
2239 EF4401
223C
223C 346D03
223F 71F760

2242
2242 F3
2243 FO

2280

2280
m
tb 2280 F2
W 2281 013006

2284 447COA04

2288 91200F
2288 AOOC28
228E 390F18

2291
2291 486628:5C
229:5 890200:5C
2299 D94C
229B
2290 300F49
229E 71FCOF
22Al 01:5:51:5
22A4 00006B
22A7 203E

22A9
22A9 482C283C
22AD A0282C

22BO 306808

call 286
287
288
289
290
291
292
293
294
29:5

chk_swt2:
Jbc
andb
call

chk_swt3:
Jbc
andb
call

296 swt 1nt_done:
297 popf
298
299
300 $eJect
301

ret

swtl_eXplred

!osl_bak.2.chk_swt3
iosl_bak •• 111110110
swt2_expired

1os1_bak.4. s~t_lnt_done
iosl_bak •• 111101110
swt3_expired

; Clear bit 2

Clear bIt 3

• END OF SOFTWARE TIMER INTERRUPT ROUTINE

302 •••••••••••••••••••••••••.••••••..••••••••..•••..•..•.••••.•••.•••.•••.• ; ••••
303
304

; ,i,; I SOFTWARE TIMER ROUTINE ()
NOW USING HSO 0 TO TRIGGER

30:5 .;; •• ;;;; •••• ; •.• ;;.;; •••••••••• ; •.•.•.•.•......••.••••........•.•.•.••••••..
306
307 CSEG AT 2280H
308
309
310
311
312
313
314
31:5
316
317
318
319
320
321
322
323
324
32:5
326
327
328
329
330
331
332
333
334
33:5

hSD_elCeC_lnt.

PUSHF
ldb
add

orb
ld
Jbs

in_model:
sub
cmp
Jh

set_mod"O:
Jbc
andb
ldb
ldb'
br

in_mode2:
sub
Id

Jbc

. Check mode'- Update position In mode 2

HSO_COMMANO •• 30H
HSO_TIME.TIMERI.H500_dly

portl •• 001000000
Timer_2.TIMER2
Portl, 1, io_mode2

tmpl.Timer 2.old t2
tmpl •• 2 - -
end_swtO

Portl,O,end_swtO
Portl •• l1111100B
IOCO.IIOI0I0101B
last_stat. zero
end_swtO

delta-p. tim"r_2. tmr2_old
tmr2_o1d. tim"r_2

direct,O, in_rev

set Pi.:5

Check count difference in tmpl

if alread~ in mode a
Clear Pl,O. PI. I (set mode 0)
enable all HSI

get timer2 count difference

270061-A2

l

:J>
'tI
I

I\)
~
CD

cp
cg

2203 643C30
2206 A40032
2209 2006

22BO 683C30
220E A80032

22Cl
22Cl 4866285C
22C5 8905005C
22C9 D21C

22CO
22CB 71FDOF
22CE 91010F
22Dl BI0515
2204 A00400
2207 48840A56

2200
220B A00400
220E 717F6D
22El 90166D
22E4 3F6DF4

22E7
22E7 A02866
22EA 71DFOF
22ED F3
22EE FO

2380

2380
2380 F2
2381 013A06
2384 44800A04

238891040F,
238B 89FF075E
238F DI04
2391 AIF0015E

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

in_f .. d: add
addc
br

in_rev: sub
'lube

chk_mode:
sub
cmp
Jgt

set_model:
andb
orb
Idb
Id

pas1tion.delta~p
position+2, zero
chk_mode

pos1tian.delta-p
position+2. zero

tmpl.T1mer_2.ald_t2
tmp 1 •• 5
end_s .. tO

Portl •• llllllOlB
Partl •• OOOOOOOIB
IOCO •• OOOOOIOIB
' .. ra. HSI_TIME

Check count difference in tmpl
set model if count 15 too low
count <- :t

i Char PI. 1. s"t PI. 0 (s .. t mode 1)

"nable HSI 0 and 1

sub Iastl_time,Tlmerl,min_hsil

SE.JECT

c 1 r _hs 1.

Id
andb
orb
Jb s

end_s .. tO:
Id
andb
POPF
r"t

set up so (tim,,-last2_tim,,»min hsil on next HSI

ZERO. HSI_TIME
iosl_bak •• Ollll111B
iosl_bak.l0s1
iosl_bak,7.clr_hsl

old_t2. l'IMER_2
portl •• ll0llll10

clear bit 7

If hsi is trlggered then clear hSl

clear P1.5

;, ii; i;; ;;;;i;;;;,;; iii ii;; i;;;;;; iii;;;; ii ii;;;; iii;;i iii;;; •• ;.o ii, ;", ij;:,
iii;;; SOFTWARE TIMER ROUTINE 2 ;i, ,j,; I iii

; ii;;i'i; ;i;iii,;;;;;;;ii,;;;; ;i;;;;;;;; oj ;i;;";;; ij i;i;ijiii;;; iii;: i iii;i to;:

CSEG AT 2380H

s .. t2_ ... pired:
pushf
ldb hsa_cammand •• 3AH
add hsa_time.t1merl.s .. t2_dl~

arb
cmp
bnh
Id

partl •• OOOOOlOOB
aut-ptr •• 7ffH
pul,.1ng
aut-ptr •• 1fOH

set s .. t_2

set -part 1. 2

l

~

~ .,.
CII

270061-A3

2395
2395 306EOC

239B C25F32
2398 C25F30

239E C25F6B
23AI C25F6C

23A4
23A4 4B560A5C
23AB 8900185C
23AC 0104

23AE 65001056
23B2
23B2 71FBOF
23B5 F3
23B6 FO

m
tb
01

2400
2400 20CE
2402 20C7

2404 F2
2405 91400F
240B 717F60
240B 901660
240E 3760Fl

2411
2411 AOOC2B
2414 5155066A
241B A00440

241B 380FE2

241E
241E 3B6AOB

3B6
3B7
3BB
3B9
396
391
392
393
394
39:5
396
397
39B
399
400
401
402
403
404
40:5
406
407
40B
409
410
411
412
413

pulsing:
Jbc

st
st

st
st

swt2_done:
sub
cmp
Jnh

add
5wt2_ret:

$EJECT

andb
popf
ret

tr_col.0.swt2_don"

position+2. [out_ptrl+
position. [out_ptrJ+

direct. [out_ptrl+
pwm_pwr. [out_ptr]+

tmp 1, timert. lastt_time
tmpl.IIIBOOH

position high, position low

store B bytes externall~

swt2_ret ; keep (Timerl-lastl_tlme)<2000H

lastl_tlme.~1000H

portl.811111011D ; clear pOTtl.2

;; j;,;i. j j,;i ,i,; j j; i,. i; iii ";1 i •• j i ••• ". Ii i •• j ••••• ,. ",; ••••••••• II ••••••

HSI DATA AVAILABLE INTERRUPT ROUTINE
i,"-j;;; • • i;ii j. j •• i;; ii i, j; •• Ij ,i, j;" j II •• j •• "'" II i., j .,., ,. i, •• , ••••••• ".

414 This routine keeps track of the current time and position of the motor
415 The upper word of information is provlded by the timer overflow routine
416
417 CSEG AT 2400H
41B
419
420
421
422
423
424
425
426
427
42B
429
430
431
432
433
434
435

now_mode 1:
no_inti:

hSl_data_lnt:
orb
andb
orb
Jb c

get_values:
ld
andb
ld

Jbs

In_mod"_O:
Jbs

br
br

pushf

in_made
no_int

portl •• OIOOOOOOB
iosl_bak •• OlllllIIB
iosl_bak, iosl
iosl_bak,7,no_intl

used to save executIon t1me for
worst case loop

s"t Pl. 6
Clear iosl_bak.7

If hsi is not trigg"red then
Jump to no_int

tlmer _2. TIMER2
hsi_sO.H51_5TATU5 •• 0101010IB
time. H5I_TIME·

portl,O,now_mode_l ; Jump If in mode

h&i_SO, 0, a_rise

270061-A4

(

):0
"C
I

I\)

"" CO

2421 3A6A2C 436 Jbs hst - sO. 2. II_fall I I (2424 3C6A40 437 Jbs h.t - sO, 4, b_ri 5e·

2427 3E6A5A 438 Jbs hoi sO. 6. b_fall
242A 2094, 439 br no_cnt

440
242C A05658 441 a_"ise: ld last2_tlm., last I_tim.
242F A04056 442 ld Jasti_time. time-
2432 685840 443 sub time.last2_tiftll.
2435 888240 444 cmp tim., min_h!li
2438 0906 445 Jh tst_statr

446 ; Sltt madel-
243A 91010F 447 orb Portl •• OOOOOOOIB Set PI,O (in mode I)
2430 BI0515 448 ldb IOCO •• 00000IOI8 Enllble HSI 0 and I
2440 449 tst_statr:
2440 3E6B58 450 Jbs lllst_stat.6. going_'wd
2443 3C6B67 451 Jbs last_stat. 4, going_rev
2446 3A6B50 452 Jbs last_stat.2.change_dir
2449 980068 453 cmpb last_stat. zero
244C OF46 454 Je first_time first time in mod eO
244E 27B2 455 br no inti

456
2450 A05658 457 a_fall: Id last2_time, Jasti_time
2453 A04056 458 ld lastl_time. time
2456 685840 459 sub time.last2_time

I I
»

~
2459 888240 460 cmp time, mio_hsi "U
245C 0906 461 Jh tst_statf •

462 i set modeI- N
.0-

245E 91010F 463 orb Portl •• OOOOOOOIB Set PI 0 (In mode I) CD
2461 BI0515 464 Idb IOCO •• OOOOOIOIB Enable HSI 0 and I

465 SEJECT
2464 466 tst_statf.
2464 3C6837 467 jbs last _stat,4. going_f~d
2467 3E6B43 468 jbs last_stat.6,golng_"ev
246A 386B2C 469 Jbs last_stat. O. change._dl"
2460 980068 470 cmpb last._stat. zero
2470 OF22 471 je first_time first time In modeO
2472 2057 472 br no int -

473
2474 386B27 474 b -rIse. jb s last_stat.O. going_fwd
2477 3A6B33 475 jbs last_stat, 2, gOln'g_rev
247A 3E6BIC 476 Jbs last_stat,6,change_dir
2470 98006B 477 cmpb last_stat, zero
2480 OFI2 478 Je first_time i first time in modeO
2482 2047 479 br no int -

480
2484 3A6BI7 481 b - fall: Jbs last_stat. 2. going_fwd
2487 386B23 482 Jbs last_stat,O,going_rev
248A 3C6BOC 483 Jbs last_stat, 4, change_dir
2480 98006B 484 cmpb last_stat. zero
2490 OF02 485 Je first_tim .. first time in modeO

270061-A5

_.
2492 2037 486 br no iot

I I cf 487
2494 488 first_time.
2494 C461l6A 489 stb hSI sO, last_stat
2497 2072 490 br done_chk add delta posItion

491
492

2499 493 change_dir"
2499 1268 494 notb direct
2491l 3068PF 495 no - inc: Jb c dlrect,O, going_rev

496
249E 497 going_ fwd:
249E 914010 498 orb PORT2 •• 01000000B set P2 6
24AI 1110168 499 ldb dlrect,ttOl direction forward
24A4 65010030 500 add position •• Ol
24A8 A40032 501 addc pos1t1on+2. zero
24AB 2000 502 br st stat -
24AO 503 gOing_rev:
24AO 71BFI0 504 andb PDRT2 •• IOII111IB clear P2.6
24BO 1110068 503 ldb direct,ttOO directIon ~ reverse
24B3 69010030 506 sub position.#Ol
24B7 A80032 507 subc positlon+2. zero

508
24BA 509 st -stat:

I I

»
O'J 241lA C461l6A 510 stb hsi -sO. last_stat '"0
cO 24110 511 load lasts ,.

N
--J 24110 A0282C 512 ld tmr2_Qld, timeT_2

"" 24CO 7l7F60 513 no_cnt. andb iost - bak •• 01111111B ; ell' bit 7 !XI
24C3 901660 514 orb iDS! bak,los1 -
24C6 376002 515 Jbc ios! bak.7.no int -
24C9 2746 516 again. br get_values

517
24CIl 71BFOF 518 no lnt- andb portl •• l011111IB ; Clear PI 6
24CE F3 519 popf
24CF FO 520 ret end of hSl_data- Interrupt routine

521 Routine for mode I follows and then returns to "load lasts"
522 $EJECT
523
524

2400 525· In_mode 1 mode I fiSI routine
526

2400 51506A5C 527 andb tmpll hSl_ sO.IIOIOIOOOOB
2404 07EA 528 Jne no_cnt
2406 529 c:mp_ tIme" Procedure which sets mode I also

530 sets tImes to pass the tests
2406 A05658 531 Id last2_time,lastl_ttme
2409 A04056 532 ld lastl - tIme. tIme

533
240C 4858405C 534 cmp I. sub tmpl, tIme. last2_time
24EO 88845C 535 cmp tmp 1, min_hsi 1

270061-A6

Ol

~

24E3 D914

24E5
24E5 91020F
24E8 010015
24EO A00400
24EE 717F6D
24Fl 90166D
24F4 3F6DF4
24F7 2012

24F9
24F9 4858405C
24FD 88865C

2500 DI09

2502
2502 71FCOF
2505 015515
2508 000068

2500
2500 482C283C
250F 306808
2512
2512 643C30
2515 A40032
2518 27A3
251A
251A 683C30
251D A80032
2520 2798

2600

2600

2600 F2
2601 91800F

2604 BI0D08

2607 B13906
260A 447EOA04

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
:!84
58:!

Jh

set_moda_2:
orb
ldb

mt_hsi: ld
andb
orb
Jbs
br

check_mill_time:
sub
cmp

Jnh

set_made_O:
andb
ldb
ldb

done_ch k:
sub
Jbc

add_fwd:

add_rev:

$eJect

add
addc
br

sub
subc
br

chee k_max_t im.

Portl •• 000000l0B Set PI 1 (in mode 21
10CO •• 00000000B Dlsable all HSI
zero.hsi_time empty the hsi fifo
iosl_bAk .•• 01l11111B i clear bit 7
tasl_bak.10s1
jos1_bak. 7, mt_hsi ; If hsi is triggered thenr clear hsi
done_chk

tmpl, time. last2_time
tmpl.max_hsil max_hsi = addition to ml·n_hsi for

total time
dona_chk

Portl •• l111l100B clear Pl.0. 1 set mode 00
IOCO •• Ol0l0l0lB Enable dll HSI
last_stat. zero

delta-p. timel"_2,tm1"2_o1d ; get timer2 count1difference
dil"ect,Q,add_l"ev

position.delta-p
position+2. ze1"O
load_lasts

position.delta-p
position+2,zero
load_lasts

,.,' i,,; ,;",,;" •.• , j., ,.".;1 """" i •• oi i, .. II II II oj i •• , ., •• • ,.;. j j.

'" II;
SOFTWARE TIMER ROUTINE 1 .• ".,. i. Ii

".,,. i II";' i, ,,, i oi ";,,.,.,i ;, •• II"" i i I'" ;,;;i;; i".i"" ••• ".",.;. j,

CSEG AT 2600H

swtl_expired:

pushf
orb

ldb

ldb
add

portl.810000000B

int_mask •• 000011010

HSO_COMMAND •• 39H
HSO_TIME.TIMER1.swtl_dl~

; set port1.7

enable HSI. Tovf. HSO

270061-A7

l

»
'P
N
.j:o,
OCI

<»
tb
to

260E A0464A
2611 A0363A
2614 48404448
2618 A8424A
2610 4830343B
261F A8323A

2622 FO

2623 48484C52
2627 A0484C

262A 48384E50
262E A0384E

2631
2631 88003A
2634 0600

2636
2636 033B
2638 910069
263B 89FFFF3A
263F 070A
.2641 20()0

2643
2643 910169
2646 88003A
2649 OF05

2649 90706C
264E 2051

2650
2650 887A38
2653 011E
2655 887838

586
587
58B
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
60B
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
62B
629
630
631
632
633

;; ; ;;

iii;;

i;, ;;
iii ij

;, ";

;; i;i

chk_dir:

Id
Id
sub
5ubt
sub
subc

EI

sub
Id

sub
Id

cmp
Jge

go_backward:
neg
Idb
cmp
Jne
br

go_forward:

"E.JECT

Idb
cmp
Je

Id_mal. Idb
br

Chk_brk.
cmp
Jnh
cmp

time_err+2,des_time+2
pOi_err+2,des_pos+2

Cal~ulate time & position error

time err, des time. time
tlme:err+2.t1me+2

_pos_eTr,des_postposition
pos_err+2,po5ition+2

time_delta.last_time_err.time_err
last_time_err. time_err

pos_delta.last-pos_err.pos_err
last-pos_erT.pos_err

values are set

Time_err c Desired time to finish - current time
Pos_err Desired position to finish - current pos1tlon
Pos_delta Last positlon error - Curent pOSItion error
Time delta = Last time error - Current time error

n;te that eTrors should get smaller 50 deltas 'WIll be
positive for for~ard motion (tIme 15 always forward)

pos_err+2, zero
go_forward

pos_err Pas_err A9S VAL (pos_err)
pwm_dir •• OOh
pos_err+2 •• 0ffffH
Id_mal
chk_brk

pwm_dir •• OlH
pos_err+2. zero
chk_brk

pwm_pwr,max_pwr
chk_sanit~

p05_err'PQ5_pnt
PosItIon_Error now ADS(pos_errl

hald-posltion ,posltl0"_error(posltion_control_polnt
pos_err. brk_pnt

270061-A8

l

:J>
'U .
N
~
OCI

~
g

2658 09FI

265A
265A 880050
2650 0602
265F 0350
2661 -
2661 887650
2664 0100

2666 B0726C
2669 B06824
266C 1224
266E B02469

2671 2030

2673
2673 89020038
2677 0906
2679 0126
267B 015A
2670 201F

267F:
267F 50FF7424
2683 6C3824
2686 880050
2689 0709
268B 650400SA
2b8F b45A26
2692 2002
2694 01SA
2696 887426
2699 0103
269B A07426
269E B0266C

2bAl
26Al 2000

26A3
26A3 B06C64
26A6 1264
26A8 38690A

634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
6:53
6:54
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

braking'

Jh

cmp
Jg e
ne9

chk_delta:
cmp
Jnh

brake Idb
Idb
notb
Idb

br

Hold_position
cmp
Jh
clr
clr
DR

calc_out:
mulub
mulu
cmp
Jne
add
add
br

no_bst: CIT
ck_max: cmp

Jnh
maled: Id
output: ldb

chk_sanlt~:

br
;;

i.

$E.JECT

ldJl"'r.
Idb
notb
Jb 5

Id_max

pos_delta, zero
chk_delta
pas_delta

pos_delta,vel_pnt
hold_position

pwm_pWT. max_bTk
tmp. direct
tmp
pwm_d 1 r, tmp

Id_pwr

pD5_err •• 02
Col 1 c_out
tmp+2
boost
output

tmp,max_hold,*255
tmp" pos_err
pos del ta, leTO

no_bst
boost. 1104
tmp+2.boost
ck_rnax
boost
tmp+2,max_hold
output
tmp+2.max_hold
pwm_pwT, tmp+2

Id_pwr

rpwr.pwm_pWT
rplLll',
pwm_dir.0.p2fwd

POSltlO"_erTor>brake_polnt

velOCity = pos_delta/sampJe_tlme
Jmp if ABS(veloclty) ~ vel_pot

If braking apply power In Opposite
direction of current motion

position hold mode

if position error < 2 then turn off power

, Tmp pos_err * max_hold

Boost. is integral control
TMP+2 = M5B(pos._err*max_hold)

270061-A9

l

J>
'P
N

it

~
~

26AB FA
26AC 717FI0
26AF 806417
2682 FB
2683 200B
2685 FA
2686 91BOI0
2689 806417
268C FB

26BO
26BO BB004A
26CO 0225

26C2 B9202962
26C6 OE06
26CB AI002962
26CC 0142
26CE

26CE A26334
2601 A26336
2604 A26346
2607 A26370
260A A07072
2600 646034
26EO A40036
26E3 4B30344E

26E7 717FOF

26EA F3
26E8 FO

2800

2800
2800 90166D
2B03 366009
2806 71BF6D
2B09 9:i100F
2BOC EFF5FB

684
6B:5
6B6
6B7
6BB
689
690
691
692
693
694
695
696
697
69B
699
700
701
702
703
704
705
706
707
70B
709
710
711
712
713
714
715
716
717
71B
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

p2b kwd:

p2fwd:

PWTSltt:

01
~ndb

Idb
EI
br
DI
orb
Idb
EI

cmp
Jgt

;;; br

cmp
Jlt
Id
clr

g.t_vAl":

Id
Id
Id
Id
Id

-add
addc
sub

endJl: andb

$E.JECT

popf
ret

port2 •• 0111111IB clear P2.7
pwm_controll~pwr

pwrset

port2 •• 10000000B i set P2. 7
pwm_contTDl.rp~T

timlt_el"1"+2, zero ; do pas_table when .err is negative
endJl
endJl

nxt_pos •• <32+pos_tablel
gott_vals
nxtJlos •• po5_table
time+2

deS-PDS. [nxt-posJ+
des-pos+2. [nxt-posl+
des_time+2. [nxt-pos]+
mal_pWl", (nxt-pos]+
max_brll. malJIIIl"
deSJDS, offset
des,J1Qs+2. zero

Jump if lower

last-pos_err, des_po5, positIon

portl •• 0l111111B clear PL7

,i.;i i" ii. i,.,;i;i ."i.;i ii. i,,;. i, " .,. i,,;i ;;;.; il;;i; •• ,. IJ'" i;; Ij,,;. il;;

i';1 Ii II Ii Ii, il; II ";; maIn program ii,., II;' Ij, ii".;;;;;;

;,;i i" "~,; ii "~,; Ii ;i;;, iii; II';;; i. j Ii j, i" ,.j ,;i;;;i; j; ii;, j II j I Ii i" II; Ii ii,;

CSEG at 2800H

MAINYROG:
orb iosl_bak.1051
Jbc iosl_bak,6,control
andb iosl_bak •• l0111111B
xarb Portl •• 00010000B
call HSI_DATA_INT

clear iosl_bak 6
Campi Bit PI. 4
prevent lockup

270061-80

l

»
"U
I

N

"'" 01)

~
2

2BOF
2BOF '112DOB
2B12 FD
2B13 FD
2B14 FD
2B15 E06FFD
2BIB FD
2Bl'1 '150BOF
2BIC 27E2

2'100

2'100

2'100 00000000
2'104 2000BOOO
2'10B OOCOOOOO
2'10C 40004000
2'110 00000000
2'1146000COOO
2'11B OOBOFFFF
2'11C BOOOBOOO

2'120 OOOBOOOO
2'124 5BOOBOOO
2'128 00300000
292C 7000FFOO
2'130 00000000
2'134 '1000FOOO
2'138 00000000
2'13C 'HOOFOOO

2'140

ASSEMBLY COMPLETED.

control: 734
735
736
737
738
73'1
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

orb
nap
nap
nap
dJnz
nap
xo"b

·BR

int_mask •• 00101101B enable hsi, hSQ. 5Wt, tovf interrupts

mdn_dlv· •

po"tl •• 0000l000B
I'IAINJ'ROQ

CSEQ AT 2'100H

pas_table:

del OOOOOOOOH
delll 0020H. OOSOH
del OOOOeOOOH
delll 0040H. 0040H
del OOOOOOOOH
delll 0060H. OOeOH
del OFFFFSOOOH
delll 0080H. 0080H

del 00000800H
delll 005BH. OOBOH
del 00003000H
delll 0070H. OOffH
del OOOOOOOOH
delll ~00'10H. OOfOH
del OOOOOOOOH
delll 00'11H. OOfOH

END

NO ERROR(S) FOUND.

, compliment pl.3

position 0 , next tim •. pOIII."
position 1
next time. pOIII."
posi tion 2
next time, power
position 3 , next time. paille"

position 4
next time, pOIII." , position :5
next time, power
position 6
next time. pOIII."
position 7
next time. paille"

l

~
'a • I\) • CD

270061-81

intJ APPLICATION
NOTE

AP-275

. October 1988

An FFT Algorithm For MCS®-96
Products Including Supporting

Routines and Examples

IRA HORDEN
ECO APPLICATIONS ENGINEER

@ Intel Corporation, 1988 Order Number: 270189-002
6-103

AP-275

1.0 INTRODUCTION

Intel's 8096 is a l6-bit microcontroller with processing
power sufficient to perform many tasks which were pre­
viously done by microprocessors or special building
block computers. A new field of applications is opened
by having this much power available on a single chip
controller.

The 8096 can be used to increase the performance of
existing designs based on 8051s or similar 8-bit control­
lers. In addition, it can be used for Digital Signal
Processing (DSP) applications, as well as matrix ma­
nipulations and other processing oriented tasks. One of
the tasks that can be performed is the calculation of a
Fast Fourier Transform (FFT). The algorithm used is
similar to that in many DSP and matrix manipulation
applications, so while it is directly applicable to a spe­
cific set of applicati.ons, it is indirectly applicable to
many more.

FFTs are most often used in determining what frequen­
cies are present in an analog signal. By providing a tool
to identify specific waveforms by their frequency com­
ponents, FFTs can be used to compare signals to one
another or to set patterns. This type of procedure is
used in speech detection and engine knock sensors.
FFTs also have uses in vision systems where they iden­
tify objects by comparing their outlines, and in radar
units to detect the dopier shift created by moving ob­
jects.

This application note discusses how FFTs can be calcu­
lated using Intel's MCS®-96 microcontrollers. A re­
view of fourier analysis is presented, along with the spe­
cific code required for a 64 point real FFT. Throughout
this application note, it is assumed that the reader has a
working knowledge of the 8096. For those without this
backgromid the following two publications will be help­
ful:

1986 Microcontroller Handbook

Using the 8096, AP-248

These books are listed in the bibliography, along with
other good sources of information on the MCS-96
product family and on Fast Fourier Transforms.

2.0 PROGRAM OVERVIEW

This application note contains program modules 'which
are combined to create a program which performs an
FFT on an analog signal sampled by tlie on-board
ADC (Analog to Digital Converter) of the 8097. The
results of the FFT are then provided over the serial

channel to a printer or terminal which displays the re­
sults. In the applications listed in the previous section,
the data from this FFT program would be used directly
by another program instead of being plotted. However,
the plotted results are used here to provide an example
of what the FFT does. There are four program modules
discussed in this application note:

FFTRUN - Runs a 64 point FFT on its data buffer. It
produces 32 14-bit complex output values
and 32 14-bit output magnitudes. A fast
square root routine and log conversion rou­
tine are included.

A2DCON - Fills one of two buffers with analog values
at a set sample rate. The sample time can
be as fast as 50 microseconds using
8x9xBH components.

PLOTSP - Plots the contents of a buffer to a serially
connected printer. Routines are provided
for console out and hexadecimal to decimal
conversion and printing.

FTMAIN - The main module which controls the other
modules.

Each of the modules will be described separately. In
order to better understand how the programs work to­
gether, a brief tutorial on FFTs will be presented first,
followed by descriptions of the programs in the order
listed above.

The final program uses 64 real data points, taken from
either a table or analog input 1. Each of the data points
is a 16-bit signed number. The processing takes 12.5
milliseconds when internal RAM is used as the data
space. If external RAM is used, 14 milliseconds are
required. Larger FFTs can be performed by slightly
modifying the programs. A 256-point FFT would take
approximately 65 milliseconds, and a 1024-point ver­
sion would require about 300 milliseconds.

In the program presented, the analog sampling time is
set for 1 sample every 100 microseconds, providing the
64 samples in 6.4 milliseconds. The sampling time can
be reduced to around 60 microseconds per point by
changing a variable, and less than 50 microseconds by
using the 8x9xBH series of parts, since they have a 22
microsecond A to D conversion'time.

The programs are set up to be run in a sequence instead
of concurrently. This provides the fastest operation
if the sampling speed were reduced to the minimum
possible. For the fastest operation above about 80 mi­
croseconds a sample, the programs could be run con­
currently, but this would require some minor modifica­
tions of the program. Figure I shows the timing of the
program as presented.

6-104

inter AP-275

SAMPLE
.6.4ms

(3 ms MINIMUM)

PROCESS
12-14ms

OUTPUT SAMPLE
6.4ms

270189-1

Figure 1. Timing of the FFT Program

These programs have run in the Intel Microcontroller
Operation Application's Lab and produced the results
presented in this application note. Since the programs
have not undergone any further testing, we cannot
guarantee them to be bug proof. We, therefore, recom­
mend that they be thoroughly tested before being used
for other than demonstration purposes. .

3.0 FOURIER TRANSFORMS

A Fourier Transform is a useful analytical tool that is
frequently ignored due to its mathematically oriented
derivations. This is unfortunate, since Fourier trans­
forms can be used without fully understanding the
mathematics behind them. Of course, if one under­
stands the theory behind these transforms, they become
much more powerful.

The majority of this application note deals with how a
Fast Fourier Transform (FFT) can be used for spec­
trum analysis. This procedure takes an input signal and
separates it into its frequency components. One can al­
most treat the FFT as a black box, which has as its
output, the frequency components and magnitudes of
the input signal, much like a spectrum analyzer.

From a mathematical standpoint, Fourier Transforms
change information in the time domain into the fre­
quency domain. The theory behind the Fourier trans­
form stems from Fourier analysis, also called frequency
analysis.

There are many books on the topic of Fourier analysis,
several of which are listed in the bibliography. In this
application note, only the pertinent formulas and uses
will be presented, not their derivations.

The main idea in Fourier analysis is that a function can
be expressed as a summation of sinusoidal functions of
different frequencies, phase angles, and magnitudes.
This idea is represented by the Fourier Integral:

H(f) = f: co h(t) e -j2'1Tft dt

Where: H(t) is a function of frequency
h(t) is a function oftime

Since

e-j8 = COS 8 - jsIN8

(1)

(2)

H(f) = f: co h(t) (cos (2'1Tft) - j sin (2'1Tft» dt (3)

Figure 2 shows a rectangular pulse and its Fourier
transform. Note that the results in the frequency do­
main are continuous rather than discrete. The horizon­
tal axis in Figure 2a is frequency, while that of Figure
2b is time.

In a simplified case, the varying phase angles can be
removed, and the integral changed to a summation,
known as a Fourier Series. All periodic functions can
be described in this way. This series, as shown below,
can help provide a more graphical understanding of
Fourier analysis.

co

(t) = ao + ~ [an cos (2'1Tnfot) +
y 2 ~ bn sin (2'1Tnfot)1

n = 1
for n = 1 to 00

1
Where fo = lo' the fundamental frequency.

(4)

6-105

AP-275

sin (27TT of)
H(f) = 27TTof

-TO
270189-3

270189-2 b.
a.

Figure 2. Rectangular Pulse and Its Fourier Transform

This formula can also be represented in complex form
as:

co I. an e j27Tnfot (5)

n= -00

The Fourier series for a square wave is

co

'" sin ((2k + 1) 27Tfot)
~ (2k+ 1)

(6)

K=O
If these sinusoids are summed,' a square wave will be
formed. Figure 3 shows the graphical summation of the
first 3 terms of the series. Since the higher frequencies
contribute to the squareness of the waveform at the
corners, it is reasonable to compare only th,e flatness of
the top of the waveform. The sharpness or risetime of
the waveform can be determined by the highest fre-

1.0

0.8

0.6

0.4

/ I"\.
L X) ""\

0.2

0.0

quency term being summed. With rise and fall times of
10% of the period, the waveform generated by the first
3 terms is within 20% of ideal. At 7 terms it is within
10%, and at 20 terms it is within 5%. With a 5%
risetime, it is within 20% of ideal after 5 terms, 10%
after 13 terms and 5% after 32 terms. Figure 4 shows
the resultant waveforms after the summation of 7, 15
and 30 terms.

Fourier analysis can be used on equation 4 to find the
coefficients an and bn- To make this process easier to
use' with a computer, a discrete form, rather than a
continuous one, must be used. The discrete Fourier
-transform, shown in Equation 7, is a good approxima­
tion to the continuous version. The closeness of the ap­
proximation depends on several conditions which will
be discussed later. The input to this transform is a set of
N equally spaced samples of a waveform taken over a
period of NT. The period NT is frequently referred to
as the "Sampling Window".

/r'\ V/ "' i'\./ '" 1 L V '\... V\ \
I 1\ ,
'// " / t-\
r ,

L ~ / Ir'i

-0.2 ~L VJ \. / 1\ ' ~ ~ ~ ') /
ll: V "-~I "V

\ r\ I
\ ~ ~ /' t>< /
'v ~ V "V

-0.4

-0.6

-0.8

-1.0
o .. "/2 270189-4

Figure 3. Graphical Summation of Sinewaves

6-106

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

r
V

-0.8

-1.0 -..

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

l/\ A

VV -0.8

-1.0 -..

1.0

0.8

0.6

0.4

0.2

o

-0.2

-0.4

-0.6

-0.8

-1.0

la.

-..

AP-275

1\ ;1'\ n. r 1'\ 1\
'- v v IV ~ "I

,

./", /'\. /'\. /'\. ~l
IV v '" V V

o
7 TERMS SIN(X X 2 .. nfOI)/X

270169-5

~ .1
IV vv v vv vv V

''''A AA A'" A" A
vv IVV vv IVV v~

o
15 TERMS SIN(X X 2 .. nfOI)/X

270169-6

I" -,

.a

o ..
30 TERMS SIN(X X 2 .. nfOI)/X

270169-7

Figure.4. Square Wave from Sinusoids

6-107

inter AP-275

H (:T) = I h(kT)e-j2'lTnk/N

k=O
n = 0,1, ... ,N-1

Wh~rc: H(t) is a function of frequency

h(t) is a function of time

T is the time span betweett samples

N is the number of samples in the window
n =0,1,2 ... N-I

(7)

This transform is used for many applications, including
Fourier Harmonic Analysis. This procedure uses the
transform to calculate the coefficients used in Equation
5. In order to do this, the factor T/NT must be added
to the transform as follows:

N-l

H (~) =.2..- "" h(kT) e -j2'lTnk/N
NT (NT) £..i

k",O
n=O, 1,2,3, ... , N-1 (8)

The factor provides compensation for the number of
samples taken. Note that'the functions H(t) and h(t) are
complex variables, so the simplicity of the equation can
be misleading. Once the values of h(t) are known, (ie.

0.7

0.6

0.5

the value of the input at the discrete times (t», the
Fourier Transform can be used to find the magnitUde
and phase shift of the signal at the frequencies (t).

A spectrum analyzer can provide similar information
on an analog input signal by using analog filters to sep­
arate the frequency components. Regardless of its
source, the information on component frequencies of a
signal can be used to detect specific frequencies present
in a signal or to compare one signal to another. Many
lab experiments and product development tests can
make use of this type of information. Using these meth­
ods, the purity of signals can be measured, specific har­
monics can be detected in mechanical equipment, and
noise bursts can be classified. All of this information
can be obtained while still treating the FFT process as a
black box.

Consider the discrete transfo~ of a square wave as
shown in Figure 5. Note that the component magni­
tudes, as shown in the series of Equation 6, are shown
in a mirrored form in the transform. This will happen
whenever only real data is used as the FFT input, if
both real and imaginary data were used the output
would not be guaranteed to be symmetrical. For this
reason, there is duplicate information in the transform
for many applications. Later in this section a method to
make the most of this characteristic is discussed.

•
I
I
I

I

I THEORETICAL FOURIER SERIES COEFFICIENTS
I
I

0.4

0.3

~

50.2
11.
~ ...

0.1

0.0

-0.1

-0.2

0 2

0 .25

•
I

4 6

.50 .75

• I REAL PART OF QISCRETE FOURIER TRANSFORM :
N=32
T=0.25

T , • I • I I I

J t T . I • I I
I •

8 10 12 14 16 18 20 22 24

"v
1.00 1.25 1.50 1.75 -1.75 -1.50 -1.25 -1.00

FREQUENCY (n/NT)

Figure 5. Discrete Transform of a Square Wave

6-108

I
I
I

I
I

_L
I
I

• I

I I
I I
I I I ,

I I
I
I

I
I
I .

26 28 3031 n

I I
-.75 -.50 -.25 -.125

270189-8

intJ AP-275

If one looks at Equation 8, it can be seen that the calcu­
lation of a discrete Fourier transform requires N
squared complex multiplications. If N is large, the cal­
culation time can easily become unrealistic for real-time
applications. For example, if a complex multiplication
takes 40 microseconds, at N = 16, 10 milliseconds
would be used for calculation, while at N = 128, over
half a second would be needed. A Fast Fourier Trans­
form is an algorithm which uses less multiplications,
and is therefore faster. To calculate the actual time sav­
ings, it is first necessary to understand how a FFT
works.

4.0 THE FFT ALGORITHM

The FFT algorithm makes use of the periodic nature of
waveforms and some matrix algebra tricks to reduce
the number of calculations needed for a transform. A
more complete discussion of this is in Appendix A,
however, the areas that need to be understood to follow
the algorithm are presented here. This information
need not be read if the reader's intent is to use the
program and not to understand the mathematical pro-
cess of the algorithm .

To simplify notation the following substitutions are
made in Equation 8.

W = e-j21TIN

k = kT

n
n=-

NT

The resultant equation being
N-1

x(n) = L n(k)Wnk

k=O
Expressed as a matrix operation

[~1~:]=[~~~! ~! ... ~~]
X(N-1) WO W(N'-1) W2(N-1) ... W(N'-1)2

(9)

[
Xo(O)] Xo(1)
Xo(2)

Xo(N~1)
A brief review of matrix properties can be found in
Appendix A. Because of the periodic nature of W the
following is true:

Wnk MOD N = Wnk (10)

= COS (27T nk/N) - j SIN (27Tnk/N)

WO = 1 therefore, if nk MOD N = 0 , Wnk = 1

This reduces the calculations as several of the W terms
go to 1 and the highest power of W is N. All of W
values are complex, so most of the operations will have
to be complex operations. We will continue to use only
the W, X(n) and XO(k) symbols to represent these com­
plex quantities.

The FFT algorithm we will use requires that N be an
integral power of 2. Other FFT algorithms do not have
this restriction, but they are more complex to under­
stand and develop. Additionally, for the relatively small
values of N we are using this restriction should not
provide much of a problem. We will define EXPO­
NENT ,as log base 2 of N. Therefore,

N = 2EXPONENT

The magic of the FFT, (as detailed in Appendix A),
involves factoring the matrix into EXPONENT matri­
ces, each of which has all zeros except for a 1 and a
wnk term in each row. When these matrices are multi­
plied together the result is the same as that of the multi­
plication indicated in Equation 9, except that the rows
are interchanged and there are fewer non-trivial multi­
plications. To reorder the rows, and thus make the in­
formation useful, it is necessary to perform a procedure
called "Bit Reversal".

This process requires that N first be converted to a
binary number. The least significant bit (Isb) is swapped
with the most significant bit (msb). Then the next lsb is
swapped with the next msb, and so on until all bits have
been swapped once. For N = 8, 3 bits are used, and the
values for N and their bit reversals are shown below:

Number Binary
Bit

DecimalBR
Reversal

0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

Recaii that the FFT of real data provides a mirrored
image output, but the FFT algorithm can accept inputs
with both real and imaginary components. Since the
inputs for harmonic analysis provided by a single A to
D are real, the FFT algorithm is doing a lot of calcula­
tions with one input term equal to zero. This is obvious­
ly not very efficient. More information for a given size
transform can be obtained by using a few more tricks.

6-109

AP-275

It is possible to perform the FFr of two real functions
at the same time by using the imaginary input values to
the FFr for the second real functipn. There is then a
post processing performed on the FFr results which
separate the FFrs of the two functions. Using a similar
procedure one can perform a transform on 2N real
samples using an N complex sample transform.

The procedure involves alternating the real sample val­
ues between the real and imaginary inputs to the FFr.
If, as in our example, the input to the FFr is a 2 by 32
array containing the complex values for 32 inputs, the
64 real samples would be loaded into it as follows:

N 00 01 02 03 04 05 06 07 30 31

REAL 0002 04 06 08 10 12 14 60 62

IMAGINARY 01 0305070911 13 15 61 63

This procedure is referred to as a pre-weave. In order to
derive the desired results, the FFr is run, and then a
post-weave operation is performed. The formula for the
,post-weave is shown below:

V ') [A(n) A(N-n)l ".n [I(N) I(N - n)l " ""n = -+-- + cos- -+-- -
2 2 N 2 2

. ".n [A(n) A(N - n)l
sInN" 2 - -2- n = 0,1, ... , N - 1

X"(n) = [I(n) _ I(N - n)l _ sin "."n [I(n) + I(N - n)l _
I 2 2 N 2 2

1Tn [A(n) A(N - n)]
cos'N 2 - -2-' n =0,1, ... , N - 1 (11)

1.0

11\ L\ 11\
I \ I \ I \ 0.8

I \ I \ I \
II \I \ I \

.6

II I \ \
0.4

I 1\ I \ 1\
.2

I I \ I \ \
0

Iv 1 \ V \ V ~
n-I n n+1

270189-9

(a.) Relative Power of Windows {Side Lobes of
Side Bins Removed for Clarity).

Where R(n) is the real FFr output value

I(n) is the imaginary FFr output value

Xr(n) is the real post-weave output

Xi(n) is the imaginary post-weave output

Note that the output is now one-sided instead of mir­
rored around the center frequency as it is in Figure 5:
The magnitUde of the signal at each frequency is calcu­
lated by taking the square root of the sum of the
squares. The magnitude can now be plotted against fre­
quency, where the frequency steps are defined as:

n
NT n = 0, 1, 2, 3, ... , N-1

Where N is the number of complex samples (ie. 32 in
this case) T is the time between samples

A value of zero on the frequency scale corresponds to
the DC component of the waveform. Most signal analy­
sis is done using Decibels (dB), the conversion is dB =
10 LOO-(Magnitude squared). Decibels are not used as
an absolute measure, instead signals are compared by
the difference in decibels. If the ratio between two sig­
nals is 1:2 "then there will be a 3 dB difference in their
power .

5.0 USING THE FFT

There are several things to be aware of when using
FFrs, but with the proper cautions, the FFr output
can be used just like that of a spectrum analyzer. The

OdB

V ""\ V ""\ V "' / / 1\ / 1\ \
-'OdB

// I \ I \ ,\ t'\. /
V \ I ~

L ~ / !"\.
-20dB

I \ I \
-30dS

n-l " n n+1

270189-73

(b.) 10 Log Relative Power of Windows (Side
Lobes of Side Bins Removed for Clarity).

Figure 6. Bin Windows

6-110

AP-275

first precaution is that the FFT is a discrete approxima­
tion to a continuous Fourier Transform, so the output
will seldom fit the theoretical values exactly, but it will
be very close.

Since the programs in this application note generate a
one-sided transform with N = 32, the frequency granu­
larity is fairly course. Each of the frequency compo­
nents output from the FFT is actually the sum of all
energy within a narrow band centered on that frequen­
cy. This band of sensitivity is referred to as a "bin".
The reported magnitude is the actual magnitude multi­
plied by the value of the bin window at the actual fre­
quency. Figure 6 shows several bin windows. Note that
these windows overlap, so that a frequency midway be­
tween the two center frequencies will be reported as
energy split between both windows. Be careful not to

confuse the sampling window NT with bin windows or
with the windowing function.

Another area of caution is the relationship of the sam­
pling window to the frequency of the waveform. For
the best accuracy, the window should cover an exact
multiple of the period of the waveform being analyzed.
If it covers less than one period, the results will be
invalid. Other variations from ideal will not produce
invalid results, just additional noise in the output.

If the sampling window does not cover an exact multi­
ple of all of the frequency components of a waveform,
the FFT results will be noisy. The reason for this is the
sharp edge that the FFT sees when the edges of the
window cut off the input waveform. Figure 7 shows a
waveform that is an exact multiple of the window and

SAfolPLE WAVEFORM THAT FFT OUTPUT REFLECTS
270189-10

Figure 7. Waveform is a Multiple of the Window

SAfolPLE WAVEFORM THAT FFT OUTPUT REFLECTS
270189-11

Figure 8. Waveform is Not a Multiple of the Window

6-111

intJ AP-275

the periodic waveform that the FFT output reflects. In
Figure 8, the waveform is not a mUltiple of the window
and the waveform that the FFT output reflects has dis­
continuities. These discontinuities contribute to. the
noise in an FFT output. This noise is called "spectral
leakage", or simply "leakage", since it is leakage be­
tween one frequency spectrum and another which is
caused by digitization of an analog process.

To reduce this leakage, a process called windowhig is
used. In this procedure the input data is multiplied by
specific values before being used in the FFT. The term
'~windowing" is used because these values act as a win­
dow through which the input data passes. If the input
window goes smoothly to zero at both endpoints of

,

.11 ,...... -..L\ II
,/ "-

/ :-..
V ""

V V V V V
270189-13

(a). Original Signal and Hanning Window

the sampling window, there can be no discontinuities.
Figure 9 shows a Hanning window and its effect on the
input to an FFT. The Hanning window was named af­
ter its creator, Julius Von Hann, and is one of the most
commonly used windows. More information on win­
dowing and the types of windows can be found in the
paper by Harris listed in the bibliography. As expected,
the results of the FFT are changed because of the input
windowing, but it is in a very predictable way.

Using the Hanning window results in bin windows
which are wider and lower in magnitude than normal,
as can be seen by comparing Figure 6 with Figure 10.
For an input frequency which is equal to the center
frequency ofa bin window, the attenuation will be 6 dB
on the. center frequency. Since the bin windows are

,/ III
/1\ r'\.

j " r/ '\
I'(I '~

\./ I \.
V

\/

270189-74

(b). Signal After Hanning Window

Figure 9. Effect of Hanning Window on FFT Input

1.0 Ode

-? 0.0 /' f'.. ./ "- "--fOdS

J I Jr\ \ \
0.6 il I II \ \ \ -20dB

0.' I I 1\ \ 1\
I I I \ \ \

L L r---.... L I--....
-30 dB

I I I \ \ \ 0.2

/ / '\. / r'\. r'\.
-40d9 II~ II I \ \ (" i\ \ ./ ./ ,...; F-.... "I'--- "!'o..

0 n-l n n+l n-l n n+l

270189-12 270189-75

(a.) Relative Power of Hanning Window (b.) 10 Log Power of Hanning Window (Side
Lobes of Side Bin Window Removed)

Figure 10. Bin Windows after Using Hanning Input Window

6-112

AP-275

wider than normal, the input frequency will also have
energy which falls into the bins on either side of center.
These side bins will show a reading of 6 dB below the
center window. The disadvantage of this spreading is
far less than the advantage of removing leakage from
the FFT output.

A set of FFT output plots are included in the Appen­
dix. These plots show the effect of windowing on vari­
ous signals. There are examples of all of the cases de­
scribed above. A brief discussion of the plots is also
presented.

Applications which can make use of this frequency
magnitude information include a wide range of signal
processing and detection tasks. Many of these tasks use
digital filtering and signature analysis to match signals
to a standard. This technique has been applied to anti­
knock sensors for automobile engines, object identifica­
tion for vision systems, cardiac arrhythmia detectors,
noise separation and many other applications. The abil­
ity to do this on a single-chip computer opens a door to
new products which would have not been possible or
cost effective previously.

The next four sections of this application note cover the
operation of the programs on a line by line basis. Sec­
tion 6 shows an implementation of the FFT algorithm
in BASIC. This code is used as a template to write the
ASM96 code in Section 7. Sections 8, 9, and 10 cover
the code sections which support the FFT module. After
all of the code sections are discussed, an overview of
how to use the program is presented in Section 1l.

6.0 BASIC PROGRAM FOR FFTS

The algorithm for this FFT is shown in the flowchart in
Figure 11 and the BASIC program in Listing l. There
are four sections to this program: initialization, pre­
weaving, transform calculation, and post-weaving. The
flowchart is generalized, however, the BASIC program
has been optimized for assembly language conversion
with 64 real samples.

On the flowchart, the initialization and pre-weaving
sections are incorporated as "Read in Data". The data
to be read includes the raw data as well as the size of
the array and the scaling factor. The details for pre­
weaving have been discussed earlier, and initialization
varies from computer to computer. LOOP COUNT
keeps track of which of the factored matrices are being
multiplied. SHIFT is the shift count which is used to
determine the power of W (as defined earlier) which
will be used in the loop.

For each loop N calculations are performed in sets of
two. Each calculation set is referred to as a butterfly
and has the following form:

Matrix L Matrix L +

X(k) ~ + --+ X(k) ·Wpl

·Wp2
X(k+N2) + --+ X(k+N2)

270189-15

Also Shown as:

X(k)]G Wpl

Wp2
X(k+N2) .

270189-16

OR

X1 (k) = Xo (k + N2)*Wp1 + Xo(k)

X1(k+N2) = Xo(k)*Wp2 + Xo{k+N2)

In general, the W factors are not the same. However,
for the case of this FFT algorithm, Wpl will always
equal (-Wp2). This is because of the way in which "p"
is calculated, and the fact that W(x) is a sinusoidal
function.

The inner loop in the flowchart is performed N2 times.
For LOOP = 1, N2=N!2 and if INCNT=N2 then
k = N2 and k + N2 = N, so the first loop is done and
parameters LOOP, N2, and SHIFT are updated. For
the first loop, all N!2 sets of calculations are performed
contiguously. As LOOP increases, the number of con­
tiguous calculations are cut in half, until
LOOP = EXPONENT.

When LOOP = EXPONENT, N2= 1, the butterfly is
then performed on adjacent variables. Figure 12 shows
the butterfly arrangement for a calculation where
N=8, so that EXPONENT = 3.

The BASIC program follows this flowchart, but opera­
tions have been grouped to make it easier to convert it
to assembly language. Also not shown in the flowchart
are several divide by 2 operations. There are five in the
main section, one per loop. These provide the T /NT
factor in equation 8 for N = 32 (25 = 32). There is also
an extra divide by two in the post-weave section. It is
required to prevent overflows when performing the 16-
bit signed arithmetic in the ASM96 program. As a re­
sult of these operations, the input scale factor is ± 1 =
± 32767 and the output scaling is ± I = ± 16384.
Note, the maximum input values are ±O.99997.

6-113

INNER
LOOP

AP-275

TMi' = wp• X(k + N2)
X(k + N2) = X(k) - TMP

X(k) = X(k) + TMP

NO

YES

Figure 11. Flowchart of Basic Program

6-114

270189-14

inter AP-275

100' THIS IS FFT13, FEBHUARY 4, 1986
105 '
110
115
120 '

, COPYRIGHT INTBL CORPORATION, 1986
, 8Y IRA HORDBN, MCO APPLICATIONS

126' THIS PROGRAM PERFORMS A FAST FOURIER TRANSFORM ON 64 RBAL DATA POINTS
130 ' USING A 2N-POINTS WITH AN N-POINT TRANSFORM ALGORITHM. THB FIRST
135 ' SECTION OF THE PROGRAM PBRFORMS A STANDARD TRANSFORM ON DATA THAT HAS
140 ' BBBN INTBRLBA¥ED BETWEEN THI RIAL AND IMAGINARY INPUT VALUIS. THE
146 ' RESULTS OF THAT TRANSFORM ARE THEN POST-PROCESSED IN THB SBCOND SBCTION
150 ' OF THE PROGRAM TO PROVIDI THE 32 OUTPUT BUCKETS. THE OUTPUT VALUES ARI
155 ' MULTIPLIBD BY "M" TO MAKE IT BASY TO COMPARE WITH THE ASM-96 PROGRAM
160 '
165 INPUT "NAME OF LIST FILB"; LSTt
170 PRINT
175 OPEN LSTt FOR OUTPUT AS .1
180 '

DIM XR(32),XI(32),WR(32),WI(32),8R(32)
, SBT UP VARIABLBS FOR BASIC 200

210
220
230
240
250
260
270

M=16383' , M=MULT. FACTOR FOR SCALING
N=32 : N1=31 : N2=N/2 ' N=NUMBBR OF DATA POINTS
LOOP=l : 1=0 : BXPONENT=5 : SHIFT=IXPONRNT-l ' 2**I=N
PI=3.141592654' : TPN=2*PI/N : PIN=PI/N ,

, RBAD IN CONSTANTS
280 rOR P=O TO 31
290 WR(P)=COS(PN)
300 NBIT P

PN=P*TPN
WI(P)=-SIN(PN) RIAD BR(P)

310 '
320 FOR 1=0 TO 31
330 RIAD XR(I)
350 NItXT I:

RIAD XI(K)

, INITIALIZATION OF LOOP
1=0
IF LOOP>IXPONBNT THBN 700
INCNT=O

, RBAD IN DATA

360 '
400
410
420
430
440
445 '

, ACTUAL CALCULATIONS 81GIN HIRB

450 INCNT=INCNT+1
460 P=BR(INT(I/(2A SRIFT»)
470 WRP=WR(P) : WIP=WI(P) : IN2=I+N2
480'TMPR= (WRP*XR(IN2) - WIP*XI(IN2»/2
490 TMPI= (WRP*XI(IN2) + WIP*XR(IN2»/2
500 TMPRl=XR(I)/2 : TMPIl=XI(K)/2

, WRP AND WIP ARI CONSTANTS BASBD ON
, SINBS AND COSINIS or BIT RIVIRSID
, VALUBS OF I: SHIFTBD, RIGHT S TIMBS

510 XR(I:+N2) = TMPR1 - TMPR ' TMPR, TMPI ARE THB REAL AND IMAGINARY
520 XI(I:+N2) = TMPI1 - TMPI ' RESULTS or A COMPLBX MULTIPLICATION
530 XR(I:) TMPR1 + TMPR
540 XI(I) = TMPII + TMPI
560 '
550 I=K+1
570 IF INCNT(N2 TRBN GOTO 450
580 1=I+N2 ' SINCB THB ARRAY IS PROCBSSBD 2. POINTS AT A TIMB,
590 IF I(NI TRIN GOTO 430 'ONLY N/2 LOOPS NEED TO BE MADE. ON EACH PASS,
800 LOOP=LOOP+1 : N2=N2/2 'THB VALUR OF N2 CHANGRS AND SMALLIR CONSICUTIVI
605 SHIrT=SHIFT-l ' SBCTIONS ARI PROCBSSBD.
810 OOTO 400
620 '
690 '
891 '
692 '
693 '

270189-1-7

Listing 1-BASIC FFT Program

6-115

inter

694 •
695 •
696 •

AP-275

697 •
700
710 •

• POST-PROCBSSING AND RBORDBRING BBGIN HBRB

720 FOR K = 0 TO 31
730 KPIN=K*PIN
740 XRBRK=XR(BR(K» : XIBRK=XI(BR(K» • CONDBNSBD FOR BASB OF ASM PROGRAMMING
750 XRBRNK=XR(BR(N-K» : XIBRNK=KI(BR(N-K»
760' TI = (KIBRK+KIBRNK)/2
770 TR = (XRBRK-XRBRNK)/2
7·80 KRT= (XRBRK+XRBRNK)/4
790 IIT= (KIBRK-KIBRNK)/4
800 OUTR= XRT + TI*COS(KPIN)/2 - TR*SIN(KPIN)/2
810 OUTI= KIT - TI*SIN(KPIN)/2 - TR*COS(KPIN)/2
820 •
830 MAGSQ = OUTR*OUT~+OUTI*OUTI
840 MAG = SQR(MAGSQ)

• THB ASM-96 PROGRAM USBS A TABLE LOOK-UP

845 IF MAGSQ*M < ·.5 THBN DBCIBBL=O
847 DBFACT=M/2/32767*M • MA2 / 64K
850 DBCIBBL=10*LOG(MAGSQ*DBFACT)
860 DBCIBBL=DBCIBBL * .434294481'
900 GO TO 930

"; X,

• ROUTINB TO CALCULATB SQUARB ROOTS
GOTO 900

910 PRINT '1. USING " ••••••
920 PRINT '1. USING .. , ,to; HEX$(M*OUTR). HBX$(M*OUTI). HBX$(M*MAG)
930 • GOTO 950
942 PRINT '1. USING
943 PRINT '1. USING
945 PRINT '1. USING
947 PRINT '1. USING
950 NEXT K
960 •

t", fl. K"
" ••••• ; ••• to; OUTR.OUTI.MAG;
......... to; DBCIBEL;
".,.,.. "; M*OUTR. M*OUTI. M*MAG

970 IF LST$O"SCRN:" THBN PRINT fl. CHR$(l2)
999 BND
1000 BND
1010
1020 DATA
1030 DATA
1040
1050 DATA
1060 DATA
1070 DATA
1080 DATA

• DATA FOR BR(P) - BIT RBVBRSAL
0.16.8.24.4.20.12.28.2.18.10.26.6.22.14.30
1.17.9.25.5.21.13.29.3.19.11.27.7.23.15.31

• DATA FOR KR.XI
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
-2.-2.-2.-2.~2.-2.-2.-2.-2.-2.-2.-2.-2.-2.-2.~2
-2.-2.-2.-2.-2.-2.-2.-2.-2.-2.-2.-2.-2.-2.-2.-2

listing 1-BAS!C FFT Program (Continued)

6-116.

270189-18

inter. AP-275

Lines 165-175 set up the file for printing the data, this
can be SCRN:, LPTl:, or any other file.

X(O) X(O)~X(O) ><: X(O)

X(I)~~-+"7X(I) X(I) ----: X(I)

X(2) X(2) X(2) :><: X(2)

X(3) X(3) X(3) - X(3)

X(4) X(4)~X(4)::::><: X(4)
XeS) XeS) XeS) ------' XeS)

XeS) XeS) XeS) :><: XeS)

X(7) X(7) X(7) - X(7)

270189-19

Figure 12. Butterflies with N = 8

Lines 200-310 set up the constants and calculate the
WP terms which are stored in the matrices WR(P) and
WI(p), for the real and imaginary component respec­
tively.

Lines 320-350 read in the data, alternately placing it
into the real and imaginary arrays. The data is scaled
by 2 to make the data table simpler.

Lines 410-430 initialize the loop and test for comple­
tion.

Lines 450-620 perform the FFr algorithm. Note that
all calculations are complex, with the suffixes "R" and
"I" indicating real and imaginary components respec­
tively.

The variables on line 470, TMPRI and TMPIl would
normally not be used in a BASIC program as more
than one operation can be performed on each line.
However, indirect table lookups always use a separate
line of assembly code, so separate lines have been used
here.

Lines 700-810 perform the post-weave. This is not in
the flowchart, but can be found in Equation 11. Once
again, table look-ups are separated and additional vari­
ables are used for clarity. The variables BR(x) are the
bit reversal values of x.

Line 830 calculates the magnitude of the harmonic
components.

Lines 900-950 print the results of the calculations, with
line 900 determining if the print-out should be in hex or
decimal.

Lines 1000-1080 are the data for the bit reversal values
and input datapoints. The input waveform is one cycle
of a square-wave.

7.0 ASM96 PROGRAM FOR FFTS

The BASIC program just presented has been used as an
outline for the ASM96 program shown in Listing 2.
There are many advantages to using the
BASIC program as a model, the main ones being de­
bugging and testing. Since the BASIC program is so
similar in program flow to the ASM96 program, it's
possible to stop the ASM96 program at almost any
point and verify that the results are correct.

6-117

Co
~
:::J
ca
I\)

!
a> rn , iI:
..... CD
..... 0)
(XI ."

:!I
." o
~
3

IIlS-96 MACRO ASSIIIIBLBR FFT_IWN 02/18/86 PAGE

SBRIES-III 1I)S-96 MACRO ASSEllBLBR, Vl.O

SOIJlICII FILl: : F2: ITTIIIJII. A96
OII.JECT rILl: : F2: FFT1WN. OBJ
COImIOLS SPBCIFIBD IN IIIVOCA'rIOII CQftAIID: I!OSB

ERR LOC 0BJBC'r L~
1
2
3
4
5
6
7
8
9

W
II
~
~
M
~
W

" ~
~
~
~
~
~
~
~
~
~

"~
~
~
~
~
~
M
$
$
~

SOURCB STA'l'BMIIII'I'
...... eleDCth(50)

FFT_RlIlI IClDULE S'rACISIZE(6)

Intel Corporation, .January' 24, 1986
by Ir. RordeD, 1Il0 Applicationa .

'rhi. _Ie perfo ... a fut fourier t fono (FFT) on 64 real data
point. uain, • 2lf-point al,oritblo. !be al,oritba involves uainr a .tandard
FFT procedure for 32 real and 32 illaginary nUllbera. The real and 18ag1oary
arrays are fUled alternately with re.l data point., and the output of the
FFT i. run throUlb a poat"1)rocea.or. !be result i. a one .ided array with 32
output buckets. '!'he poet proce •• iDg inclw:te. • table lookup al,orithll for
takin, the .quara root of an UDairned 32-bi t nU.ber."

All of the calculationa in the a10 FFT prOI(r8ll ere done usinr 16-bi t
d,ned inte,era. !be __ value of any frequency _t is therefore
+/- 3211:. (Note that a .quara wave of" +/-3211: baa a funcIImmItal ,,-ent
greater than +/- 40K). Wherever poaaible tables are used to Increaoe the
speed of _th operationa. !be ceaplete tranafo 1ocludlo, obtainin, the
absolute _itude of each frequency cOllPODent, executes in 12
.Uliseconda with internal variables. 14 _ with external •

!be pro_ requires two 32-word "input,.. with the .eaple values
; alternated betweeu the two. Theile .tart at XRIAL and. XDWJ. The resultant
; _itude will be placed in a 32 __ rd array at FFT_OUT. Theae are aU

externally def10ed variabl... !be external COIIIItant SCALI_FACTOR i. used to
divide the output when averDliol will he uaed. Since the prnrraa &Vereg ..
ita output, it i. _.ary to clear the array baaed at FFT_OUT before
callinr FFT_CALC to .tart the prnrraa.

!be prorrea _ originally written in BASIC for teatin, purpoaea. The
_nt. include theae BASIC .t.t t. to Bake it eaier to follow the
.l,oritba.

tBJBCT
270189-33

l

»
~
U'I

MCS-96 MACRO ASSBMDLBI! Fi'T_RIIN

ERR toe OBJECT LINK
38

0000 39
40
41

0024 42
0024 43
0028 44
002C 45
0030 46
0034 47
0038 48

C 0030 49

~ 0040 50
~ 0044 51
IC 0048 52

t
0030 53
0040 64
0040 55

en 0044 56
s: 57
II) 003C 58
G) 003E 59

0> "'1'1 0040 60
I "'1'1 0042 61 -I 0044 62

(0 'U 63 ..
0 004C 64
IC 004B 65 ..

0050 66 II)

3 0052 67

'0 0064 68
0056 69 0 0068 70 a 004B 71

:::J 0000 72 c:
73 (D

.s 74
75
76
77
78
79

0000 so
0040 81

82
83
84

02/18/86 PAGE

SOURCB STATBMBNT

RSBG
,BXTRN portl. zero, error

oSBa at 248

DSEG

'lMPR:
'lMPI:
'lMPRl:
'lMPn:
XR'lMP:
XI'IMP:
XRRI[:
XRRN8:
KIRK:
XIRNB:
diff
aqrt
log
mctloc

KBP
HIP
PIiR
IIf_CNT
NDIV2

KPTH:
1IN2:
N_SllB_X:
RE:
RNB:

clsl
clsl
clsl
clsl
clsl
clsl
clsl
clsl
clsl
clsl
equ
equ
equ
equ

aqu
equ
equ
equ
equ

88FT CRT:
LOOP=CNT:
ptr equ

BlITDN I'i'T_MODE
BlITDN ~,XDWl

BlITDN I'i'T_OUT

OUTR: claw
OUTI: clsw

PUBLIC OUTR,OUTI

$BJl!CT

1
1
1
1
1
1
1
1
1
1
xrrk
xrmk
xrmk
xirk

xrrk
xrrk+2.
xrmk

TeIIpOrary register. Real
Taporary register, Imaginary
Temporary registerl, Real
Taporary registerl, r.aginary
TellPorary data register t Re@l
Ta.porary data register. Iaaginery

long
long
long
long

:word
: word
:word

Table difference for ·square root
Square root
10 Log _itudeA 2
Next location in table

Multiplication factor, Real
Multiplication factor, Imaginary

xrrnk+2 : word
xirk :word

claw 1
daw 1
daw 1
clsw 1
claw 1
claw 1
dab 1
1m2 : word

n divided by 2 (0 < n < N) *2

K for cou:ater *2 to index words
KPTH + NDIV2
N-II *2 to index worda
Bit reversed pointer -of KPTR
Bit reversed pointer of' N_SDB_K

Pointer for square root table

1'i'T_MODE: _e for I'i'T illPllt and graphing

32
32

XRBAL, XDWl: Base addresses for 32 16-bit Biped
entries for resl end imaginary numbers respectively.
FFT_OllT: Starting eddresa for 32 word array
of ~tude information.

Real cosponent of fft
IBaginary cosponent of NOvefono

2

270189-34

l

l>
'P
N
en

r
0"
C!:
:::I
a::I

t
Ul
i!:
CD
al

Cf> "11
"11 ,...

I\)
0 'U ..

0

~I
3
'0
0
3-
S"
c

~

MCS-96 MACIiO ASS_LlR

ERR LOC 08.1l!CT

2280

2280
2280 1100
2282 BIOIOO

2285 Fe.
2286 BlOl58
2289 BI0456
228C A1200044

2290
2290 950400
22930140

2295 990558
2298 DA0220A3

2290
2290 014.2

'2298
2298 65020042

22A2 A04C40
22A5 085640
22A8 7lFB40
22AB A341003840

2280 A34144393C
2285 A34186393B
22BA 44444C4B

FFT_RUN

B
B

B

LINE
85
86
87
88
89
90
91
82
93
94
95
98
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
11'1:
118
119
120
121
122
123
124
125
126
127

SOURCB STATBIIBNT

asBG at 22808

02/18/86 PAG!

PllBr.IC fft_cale Starting point for FPT algorithm

BXTRN scale_factor Shift factor used to prevent overflow wheD averaging
fft output.

,
FFT CALC:

- elrb error
Idb porti, toOOOOOOlb

clrvt
ldb loop_cnt;,.l
Idb shft_cnt,t4
Id' ndiv2,'32

START FOURIBR CALCULATIONS'
400 'INITIALIZATION OF LOOP

; **** Indication Only

410 8=0
OUT_LOOP:

xorb
elr

portl,toOOOOlOOB ; **** Indication Only

CIIpb
bgt

MID LOOP:
- elr

IN LOOP:
- add

&If:

$eject

Id
shr
andb
Id

ld
ld
add

kptr
, , , , 420 IF LOOP > RXP THEN 700

loop_cnt,'5 ; 32=2 6
tlIIIiI!AW

in_CDt

iD_cnt,12

pwr'tkptr
pwr,.hft_cnt
pwr,#111111l0B
pwr,brev(pwr]

Wt"P,wr[pwr]
"ip,wi[pwr]
1m2, kptr, Ddi v2

430 INCNT=O

440 'CALCULATIONS BEGIN IIBRB

450 INCNT=INCNT+l
460 P=BR(INT(K/(2~SRIFT»)

;; Calculate 1m1 tiplicatioD factora

470 WRP=1iR(P) : WIP=III(P) KN2=K+N2

3

270189-35

i

]>

l'
N
(II

_.
IICS--96 MACRO ASSBMBLBR fFT_RlIN 02/18/86 PAGE 4 I t
ERR LOC ollJKcr LINE SOORCI STATBIIIINT

128 ;; Complex IlUI tiplication follows
129
130

tJlpr, wrp. xreal [b2j . 480 _ (WIIP*XR(KN2) - WIPtXI(KN2ll/2
22BI FB4f4fOOO03C24 E .131 II1II: DlUl
2205 FB4F4fOOO03B28 B 132 DlUl tapi,wip,xilll8g[lm2]
22CC 682A26 133 sub tapr+2, tapi+2

134
taprl, wrp, xiIII8g[i,;,i j

490 TMPI= (WllPtXI(KN2) + WIPtXR(KN2ll/2
220F FB4f4fOOOO3C2O B 136 aul
22D6 FB4f4fOOO03B28 B 136 aul tapi,wip,xreal[kn2]
2200 642BU 137 add tlapi+2, taprl+2

138 r- 139 .. using the high byte only of a sirnad multiply iii' 140 .. provides aD effective divide by two C!:
::I 141

IQ 2280 DC55 142 BVT 8RRl ; Branch on error in complex IlUltiplication8

t
143

2282 A34DOOO02O 1 144 Id . taprl, xreal [kptr] Iitl 500 TMPRl=XR(K) /2
2217 OA012C 145 ahra taprl,'l ""

TMPIl=XI(K)/2
III 22IA A340000030 Ii 146 Id tlapil,xilll8g[kptr]

iii: 22Bf OA0130 147 ahra tapil,n
CD 148
en 149 510 XR(BN2) = 'lMPR1 - TMPR

I I

» 0) 'TI 22F2 48262034 150 gr2: sub xrtmp, tllprl. tmpr+2
"a I ::!I 22f6 C34fOOO034 Ii 151 st xrtap, xreal[lm2] I

I\) 152
~:

520 XI(BN2) = TMPIl - TMPI N" 22m 4B2A3038 153 sub xttmp. tmpil. tmpi~2' I
-., .. c.n 0 22FF C34fOOO038 E 154 st xitlap,xiaag[kn2]

IQ 155 IIII 530 XR(K) = TMPl!l + TMPR ..
AI 2304 44262C34 156 add xrbip. taprl. tmpr+2
3 2308 C340000034 B 157 st xrtlap, xreal [kptr]

'0 158
xitllp, tmpil. tapi~2' I

540 XI(K) = TMPIl + TMPI
2300 442A3038 159 gx: add

0 2311 C~0000038 B 160 st xitap,xilll8g[kptr] a 161 :i' 23160023 162 BVT IRR2 i Branch on error in complex additions c:
CD 163
.s 164 .eJect

270189-36

c
~
~

CQ

i
~
~

en ."
k·~ NI

~
"~

:::l

3-
c:
(I)

.8:

MCS-96 IIACIlO ASSBMBLBR

BRR LOC OBJBCT

2318 66020040

231C 884442
231F 06022778

232364444C

2326 893BOO4O
232A D602276B

2328 1168
2330 01.0144
2333 1556

2335 2759

2337 810100
2331. ro
2338 810200
233B ro

FFl'_RIlII

LINK
166
166
167
168
169
170
171
172
173
174
115
176
117
178
179
180
181
182
183
184
185

B 186
187

B 188
189
190
191

02/18/86 PADB 5 l
SOIlllCB STATBMBIIT

, ... 560 K=KH
ik: add kptr,'2

f.t. 510 IF INCIIT(1I2 TBBN GOTO 450
ClIP ID_cut, Ddiv2
bIt IN_LOOP

I." 580 K=K+N2
add kptr,Ddiv2

'ft' 590 IF K<Nl TBBN GOTO 430
ClIP kptr,tI62
bIt MID_LOOP

tift 600 uxip=LOOP+ 1 : 112=112/2
!Deb l00p_CDt If" 605 SRIFl'=SRIFT+ 1
abra ndiv2,'l
cIecb oft_CDt

IIII 610 GOTO 400
br OllT_LOOP

BRRl: Idb error,tol overflow error. 1st Bet of calculations
ret

BRR2: Idb error,to2 overflow error, 2nd set of calculations
ret

»
~ ...,

$IJBCT 01
270189-37

_.
MCS-96 MACRO ASSBllBLBR ITT_RIlII 02/18/86 PAG!! 6 cf
BRR LOC OB.JllCT LIN! SOURCE STATBIIBNT

192·
193

"" 700 ' POST-PIIIlCESIIIG AND RBORDBRIIIG STARTS IIliIIII
233r 194 UNIIIIAYE:
233F 810200 B 196 Idb portl,ltOOOOOOl0b ;--..

196
197 IIII 720 FOR 1t=0 to 31

2342 0140 198 clr kptr
2344 Al400050 199 Id D_aub_k,164
2348 200 UN_LOOP:

201 740 XIBRK=XI(8R(It» XRBRK=XR(BR(It)
2348 A34D003852 202 Id rk,brev[kptr)

fir 234D A353000030 E 203 Id xrrk ,xreal [rk) - 2352063C 204 ext xrrk
S" 2354 A353000044 E 205 Id xlrk,x~[rkJ
IQ 23590644 206 ext xirk

r 207
rnk,brev[Il_Bub_ki t, t

750 XIBRNJ[=XI (&R(R-It): XRBRNI=XR(BR(R-It)
2358 A351003854 208· Id
2360 A355000040 E 209 Id xrrDk, xreB! [rDkJ

en 2365 0640 210 ext xrrDk
!I: 2367 A355000048 1 211 Id xirDk,x~[rDkJ
CD 236C 0648 212 ext xirDk
GI 213 "it 760 TI=(XIBRK + XIBRNI)/2 ~ C) "TI 2361 44484428 214 ar: add Wpi,xirk,xirDk "U I :!I 2372 AD4A2A 215 1d Wpi+2,xirDk+2

N I\) 2375 A4462A 216 adele Wpi+2, xirk+2 c.u " 2378010128 217 abral Wpi,'l ; 16 bit retlult iD bpi en (I 218
IQ 219

"" 770 TR=(XRBRK - XRBRNI)/2 ...
AI 2378 48403024 220 sub t.pr,xrrk,xrrnk
3 237F A03B26 221 1d bpr+2, xrrk+2

a 2382 A84226 222 subc bpr+2,xrrDk+2
2385 0110124 223 sbral bpr,'l ; 16 bit reault iD bpr 0 224 :::I

!:!: 225
""

780 XRT= (XRBRK + XRBRNI)/4
:::I 2398 44403034 226 add xrtJIP. xrrk. xrrDk c:
CD 23IIC A03B36 227 1d xrt.p+2,xrrk+2 .s 238F A44236 228 adele xrtJrp+2,xrrDk+2

2392 ODOB34 229 shU xrt.p,'14 32 bit reault iD xrt.p
230
231 ,,,, 790 XIT= (XIBRK-XIBRNI)/4

2396 48484438 232 8ub xibp,xirk,ximk
2399 A0463A 233 1d xit.p+2,xirk+2
239C A84A3A 234 aubc xitllp+2,xirDk+2
239F OBOB38 235 ahll xiWp,.14 32 bit reault iD xiWp

236
237 .eject

270189-38

_.
1«:8-96 MACIiO ASSBMBLBR FFT_RUN 02/18/86 PAGB 7 I ct
BRII LOll OIIJBCT LIMB SOIlIlCE STATBMIiNT

238 ,.," Multiply will provide effective divide by 2
239
240 II" 800 OUTR= (XRT + TUCOSI'II(K)/2 - Tll*SIIII'II(K)/2)
241

23A2 FB4F404038242C 242 1Ir: muJ. tmpr1, tmpr, siDfD[kptr]
23A9 1'I!41'4DC2382830 243 1lU1 tmpil, tmpi,eoerD[kptr]
23B0 643034 244 edd xrtmp, tJq>il
2383 A43236 248 eddc xrtlq>+2, tJq>il+2
2386682C34 246 aub xrtlIp, tmpr 1
2389 A82B36 247 aubc xr~2,tmpr1+2
23BC C34D000036 R 248 at xrtIq>+2, outr[kptr] ; i OUTR = Real Output Values ;: 249 - 250

5' 251 "" 810 0tr11= (XIT - TUSIIII'II(K)/2 - 1'II>ICOS1'II(K)f2)
ID 252
I\) 2301 FB4F4DC238242C 253 .i: _1 tmpr1, tmpr, coafD[kptr]

! 23C8 FB4F4040382830 254 11111 tmpU, tapi, s1DfD[kptr]
23CF 683038 255 sub xitmp, tmpil

en 23D2 A8323A 256 sube xi~2,tmpil+2

i: 2305682C38 257 sub xi tmp, tmpr 1
II) 23D8682B3A 258 sub xi~2,tmprl+2
aI 23D8 C34D40003A R 259 at xi~2,outi(kptr] ;; OUTI = Imaginary Output values

I- I
~ 0) '11 260 , '11 261 "U -f .

J\) 252 IIII 830 MAG =SQR(OIJTllj()OTR + OIlTUOIITI) N
~ 'V 263 en

0 23BO 264 GBT_MAG: j ; Get Magnitude of Vector
ID 23BO A03624 265 1d mpr, xrt.p+2
iii 2383 A03A28 266 Id tmpi, xi tmp+2
3 267

'0 2386 FBSC2424 268 11111 tlipr. tJIPr tmpr = tmpi**2 + tmpr**2
238A· FBSC2828 269 aul tllpi. tllpi

0 238B 642824 270 edd tmpr,tmpi
3- 23F1 A42A26 271 edde tmpr+2, tmpi +2 S· 272 c:: 23F4320040 B 273 bbe FFT_MODB,2,CALC_SQRT CD
.9: 274

275 SeJsct
270189-39

MCS-96 MACRO ASSIlMBLRR FIT_RUN

ERR LOC OBJECT ~ LINE
276
277
27B
279

23F7 280
23F7 0156 281
23F9 OF5624 282
23FC 990F56 283
23FF DA04 284

285
2401 0140 286
2403 202C 287

r 288

[2405 289
2405 44585656 290

5' 291
\C 2409 AC274E 292
I\) 240C 444E4E4E 293
I 2410 65083A4E 294
» 295
en 2414 A24F40 296
i!: 2417 A24E44 297
<D 298 (J)

241A 684044 299

Cf>
." 300 ."

j\) -I 241D AC263C 301

'0 2420 6C443C 302
U'I .. 303

0 2423 OC083C 304 \C 2426 843C40 305 ..
Q) 2429 080540 306
3 307

0 242C A7570A3C40 308
0 309
;:!. 310
5' 311
c 2431 312
CD 2431 080040 E 313 .e, 2434 A40040 E 314

2437 674DOOO040 E 315
243C C34DOOO040 E 316

317
2441 2045 318

319

02/18/86

SOURCE STATEMENT

; ; ; i *** CALCULATE 10 log magni tude""2 ***
Output = 512*lO*LOG(x) x=I,2.3 ... 64K

CALC LOG:
- elI"

normi
cmpb
jle

shft cnt
tmpr: shft CDt

ahft_CDt,ilS
LOG_IN_RANGE

elI" log
br LOG_STORE

LOG IN RANGE:

Nonaalize and get normalization factor

Jump if SHIIT_CNT <~ 15

PAGE

- - add shft_CDt.shft_cnt,shft_Cllt Make shift_cnt a pointer

Idbze ptr, tmpr+3 j Most significant byte is table pointer
add ptr,ptr,ptr ;
add ptr,# LOG_TABLE-256 j ptr= Table + offset (offset=tmpr+3)

Id
Id

log, [ptrJ+
DxUoe, fptrJ

sub Dxtloc,log

Idbze diff I tmpr+2
mulu diff ,nxtloc

shrl
add
.br

diff,#B
log,diff
10g,'5

Use -256 since tmpr+3 i8 always >= 128

j j Linear Interpolation

nxtloc = next log - log

diff+ 1 ~ nxtloc * tmpr+2 / 256

log ~ log + diff/256

8192/32 * 20LOG(x) ~ 256 * 20LOG(x)

addc log I 10,_ offset (shft_ cnt] add log of normalization factor

i j Log (M*N) = Log M + Log N

LOG STORE:
- sbr

$eject

addc
add
.t

BR

log,'SCALE FACTOR
log,zero -
log,FFT OUT[kptrJ
log, FIT=OUT[kptrJ

ENDL

Divide to prevent overflow during
averaging of outputs

8

270189-40

l

l>
'tJ .
'"
UI

/CS-96 MACRO ASSEMBLER rrT_RIJIi

ERR we DBJIICT LINI!
320

2443 321
322

2443 0156 323
2445 0F5624 324

325
2448 D705 326
244A C04200 B 327
244D 2029 328

329

!:
244F
244r AC274B

!!L 2462 444B4B4B

330
331
332

3" 2466 65083948
10

333
334

N 245A A24r40 335

~
245D A24B44

2460 684044

ii:
2463 AC263C CD

336
337
338
339
340

c» 2466 6C443C 341
q> 'TI
~ 'TI 2469 AC3D3C
I\) -t 2460 643040
C» 'V ..

342
343
344
345

0 246r 44565656 346
10 ..

2473 6F57C83940 DI
347
348

3 349

C'5
0 2478 a 2478080042

350
361
352

B 363
::l 247B A4OO42 c:
CD 247B 674DOOO042

II 354
II 355

.s 2463 C34DOOO042 B 356
357
358
359
360

2488 6502004C 361
248C 69020060 362
2490 DF022BB4 363

364
2494 FO 365

366

02/18/66 PAGB

SOUIICII STATIIIIBNT
*** CALCIILATB SQUAIIB ROOT ***

CALC_SQRT:

c1r 8hft.~cnt
DOI'llI tlipr. shft_ cnt Normalize and ,et 'normalization factor

Jue
at
br

SQRT III 1IAMlB:
- -ldbze

add
add

1d
1d

aub

1dbze
au1u

1dbze
add

add

SQRT_III_IWIGB
zero.sqrt+2
SQRT_sroJIB

Ju.p if t.pr > 0

ptr, t.pr+3 ; Moat significant byte ia table poiDter
ptr,ptr,ptr '
ptr,' SQ_TABLB-266 ; ptr= Table + offset (offset=t.pr+3)

aqrt, [ptr]+
DXtlOC, [ptr]

DXtloc,.qrt

diff, f:Iopr+2
diff, DXtlOC

diff, diff+ 1
aqrt,diff

Us. -256 siDee t.pr+3 is a1wap >= 128

;; Linear Interpolation

mct10c = sqrt - uext aqrt

diff+ 1 = mctloc * blpr+2 / 256

aqrt = sqrt + delta (diff (OrrB)

IIhft_cut, ahft_cut, IIhft_CDt

.au sqrt, tab_aqr[shft_cut] divide by Do li.ation factor

SQRT_S!ORB:
ahr
addc
add
at

BllDL: add

.eject

sub
bDe

RBT

i; aulu acta .. divide .iDee if tab2=OI'lTFll
; i' sqrt would re.a.in eaaeutialy uuch.lmged

sqrt+2, tscALB_FACroR
sqrt.f-2. zero
aqrt+2,rrT_DUT[kptr]
aqrt+2,rrT_OUT[kptr]

D1 vide to prevent overflow duriDl'
averq1DII of output.

; ; ; ; *** END or LOOP ***

kptr,t2
D_aub_k,t2
1IIf_LOOP

960 BIT J[

9

270189-41

(

~

~ ...
01

_.
~ _ ~~ m__ """" ,_ w ' c(
ERR LOC OB.l!!CT LIN!! SOURCE STATllMBHT

367 ; $nolist
3800 368 CSEG AT 3800& I , , , Use 2k for tables

369
3800 370 BRBY: ; 2*bit reversal value

371
3800 0000200010003000 372 DCII 2*0, 2*16, 2*8, 2*24, 2*4, 2*20, 2*12, 2*28
3810 0400240014003400 373 DeW 2*2, 2*18, 2*10, 2*26, 2*6, 2*22, 2*14, 2*30
3820 0200220012003200 374 Dew 2*1, 2*17, 2*9, 2*25, 2*5, 2*21, 2*13, 2*29
3830 0600260016003600 375 Dew 2*3, 2*19, 2*11, 2*27, 2*1, 2*23, 2*15, 2*31

376
3840 377 SINFN: c: 3~0 0000OO0CF9182825 378 Dew 0, 3212, 6393, 9512, 12539, 15446, 18204, 20787

In 3850 825AFl626D6AE270 379 Dew 23170, 25329, 27245, 28898, 30273, 31356, 32137, 32609 S- 3860 FF7F617F897D7C7A 380 Dew 32787, 32609, 32137, 31356, 30273, 28898, 27245, 25329
CD 3870 825A33511C47563C 381 DCII 23170, 20787, 18204, 15446, 12539, 9512, 6393, 3212

3880 000074F307B7080A 382 Dew 0, -3212, -6393, -9512, -12539, -15446, -18204, -20787
1\)1 3890 7BASOF9D93951E8F 383 Dew -23170, -25329, -27245, -28898, -30273, -31356, -32137, -32609
..... 38A0 01809F8077826485 384 DCII -32767, -32609, -32137, -31356, -30273, -28998, -27245, -25329 Ui 3890 7BASCDAEB4BBAAC3 385 Dew -23170, -20787, -18204, -15446, -12539, -9512, -6393, -3212
!i: 3000 0000 386 Dew 0

~ 3002 ~: COSFN: I I » OJ ." 3002 FF7F617F897D7C7A 389 Dew 32767, 32609, 32137, 31356, 30273, 28898, 27245, 25329 "U
, ." 38D2 825A33511C47563C' 390 Dew 23170, 20787, 18204, 15446, 12539, 9512, 6393, 3212 I

.... -I 3882 000074F307E7D80A 391 Dew 0, -3212, -6393, -9512, -12539, -15446, -18204, -20787 I\)
~ "rJ 38F2 7EASOF9D93951E8F 392 Dct/ -23170, -25329, -27245, -28898, -30273, -31356, -32137, -32609 til o 3902 01809F6077826485 393 Dew -32767, -32609, -32137, -31356, -30273, -28898, -27245, -25329

CD 3912 7EASCDAEE4B8AAC3 394 Dew -23170, -20787, -18204, -15446, -12539, -9512, -6393, -3212
Dl 3922 0000OO0CF9182825 395 Dew 0, 3212, 6393, 9512, 12539, 15446, 18204, 20787
3 3932 825AFl626D6AE270 396 Dct/ 23170, 25329, 27245, 28898, 30273, 31356, 32137, 32609
~ 3942 FF7F 397 Dct/ 32767
o 398
o 3944 399 WR: , , " WI! = COS(K*2PI/N) a 3944 FF7F897D41766D6A 400 Dct/ 32767, 32137, 30273, 27245, 23170, 18204, 12539, 6393
:l 3954 000007B705CFE4B8 401 Dew 0, -6393, -12539, -18204, -23170, -27245, -30273, -32137
~ 3964 01807782BF899395 402 DCII -32767, -32137, -30273, -27245, -23170, -18204, -12539, -6393
Co 3974 0000F918FB301C47 403 Dew 0, 6393, 12539, 18204, 23170, 27245, 30273, 32137
~ 3984 FF7F 404 Dew 32767

405
3986 406 If!: ;;;; WI = -SIN(K*2PI/N)
3986 000007B705CFE488 407 IJCII -0, -6393, -12539, -18204, -23170, -27245, -30273, -32137
3996 01807782BF699395 408 Dew -32767, -32137, -30273, -27245, -23170, -18204, -12539, -6393
39A6 0000F918FB301C47 409 DClf 0, 6393, 12539, 18204, 23170, 27245, 30273, 32137
39B6 FF7F897D41766D6A 410 Dew 32787, 32137, 30273, 27245, 23170, 18204, 12539, 6393
3ge6 0000 411 Dct/ 0

412 $eject
270189-42

_.

MCS-96 MACRO ASSBMBLBH FFT_HUN 02/18/86 PAG! 11 I t
BHH LOC OBJBCT tINK SOUHCB STATBMBNT

413
414

3008 415 TAB_SQH: ; 65535/(oquare root of 2**SIIFT_CNT) 0(;SIIFT_CNT(32
416
417 1 2 4 8 16 32 64 128

3008 FFrI'04B50080825A 418 DCW 65535, 46340, 32768, 23170, 16384, 11585, 8192, 5793
419
420 256 512 1024 2048 4096 8192 16384 32768

3908 0010500BOOO8A805 421 DCW 4096, 2896, 2048, 1448, 1024, 724, 512, 362
422

!:
423 65536, 131072, 262144, 524288,

3988 0001B50080005BOO 424 DCW 256, 181, 128, 91, 64, 45, 32, 23
IIJ 39F8 10000BOOO8000600 425 DCW 16, 11, 8, 6, 4, 3, 2, 1 -S' 426
IQ 427
N 3A08 428 SQ_TABLB: j square root of n * 2**24 N;128, 129, 130 255

I 429

» 3AOa 05B5BA856BB621B7 430 DCW 46341, 46522, 46702, 46881, 47059, 47237, 47415, 47591
en 3A18 97BA46BBFSBBA3BC 431 DCW 47767, 47942, 48117, 48291, 48465, 48637, 48809, 48981
:s:: 3A28 OOCOAAC054C1FDCl 432 DCW 49152, 49322, 49492, 49661, 49830, 49998, 50166, 50332
CD 3A38 43C5BOO58BC633C7 433 DCW 50499, 50665, 50830, 50995, 51159, 51323, 51486, 51649
Q) 3M8 63CA04CBA6CB46CC 434 DCW 51811, 51972, 52134, 52294, 52454, 52614, 52773, 52932

I I
J> q> '11 3AS8 62CFOOD090D03AG1 435 DCW 53090, 53248, 53405, 53562, 53719, 53874, 54030, 54185 'tI '11 3A68 44D4DBD477D511D6 436 DCIf 54340, 54494, 54647, 54801, 54954, 55106, 55258, 55410 I .. -I I\) I\)

'tI
3A78 09D9AOD936DACCDA 437 DCW 55561, 55712, 55862, 56012, 56162, 56311, 56459, 56608 <Xl ... 3A88 B4DD47DBDBDB680F 438 DCIf 56756, 56903, 57051, 57198, 57344, 57490, 57636, 57781 (It

0 3A98 46E2D7B267E3F7E3 439 DCIf 57926, 58071, 56215, 58359, 58503, 58646, 56789, 58931
IQ 3AA8 C1B64FE7DDB76AB8 440 DCIf 59073, 59215, 59357, 59498, 59639, 59779, 59919, 60059
iil 3AB8 27EBB2EB3DECC7BC 441 DCIf 60199, 60338, 60477, 60615, 60754, 60891, 61029, 61166
3 3AC8 77BFOOF088F010F1 442 DCW 61303, 61440, 61576, 61712, 61848, 61984, 62119, 62254

() 3AG8 B4F33BF4C1F446FS 443 DCIf 62388, 62523, 62657, 62790, 62924, 63057, 63190, 63323

0
3AB8 DFF763F8B7F86AF9 444 DCIf 63455, 63587, 63719, 63850, 63982, 64113, 64243, 64374

3- 3AF8 FBFB7AFCFBrC7DFD 445 DCIf 64504, 64634, 64763, 64893, 65022, 65151, 65280, 65408
446 S·
447 $eJect c:

(J) 270189-43
B

[
5'

ID

~
5:
CD
Q)

0> "TI , "TI
i\j-i
CD 'lJ

~
iil
3
'§
::I g.
C
CD
S

MOS-96 MACRO ASSEMB18R FFT_RIIN 02/18/86

ERR LOC OBJECT LIN!! SOURCB STATJ!/oII!NT
448

3808 449 LOG_TAB18: 16384*lO*LOG(n/128) n= 128 ,129 ,130 ... 256
450

3B08 00002A024F047006 451 Dew 0, 554, 1103, 1648, 2190, 2727, 3260, 3789
3810 DAI0C312E914BA16 452 Dew 4314, 4835, 5353, 5866, 6376, 8683, 7386, 7885
3B28 BD20A92292247826 453 Dew 8381, 8873, 9362, 9848, 10330, 10810, 11286, 11758
3B38 C42F973166333335 454 new 12228, 12695, 13158, 13619, 14076, 14531, 14983, 15432
3B48 063BC13F7A413043 455 Dew 15878, 16321, 16762, 17200, 17635, 18067, 18497, 18925
3B58 954B3C4DDF4E8150 456 Dew 19349, 19772, 20191, 20609, 21024, 21436, 21846, 22254
3B68 8458175AA85B365D 457 DCW 22660, 23063, 23464, 23862, 24259, 24653, 25045, 25435
3B78 DE646066E0675D69 458 Dew 25822, 26208, 26592, 26973, 27353, 27730, 28106, 28479
3B88 B370247294730275 459 Dc\1 2RR51, 29220, 29588, 29954, 30318, 30680, 31040, 31399
3898 OB7C6B7DCF7B2FBO 460 Dcrl 31755, 32110, 32463, 32815, 33165, 33512, 33859, 34203
3BAB F28647889B89BDBA 461 Dew 34546, 34887, 35227, 35565, 35902, 36236, 36570, 36901
3BB8 70918892FF934595 462 Dew 37232, 37560, 37887, 38213, 36537, 38860, 39181, 39501
3BC8 8B9BC89C049B3B9F 463 Dew 39819, 40136, 40452, 40766, 41079, 41390, 41700, 42009
3BD8 4CA57BA6AFA7DEAB 464 DC\! 42316, 42622, 42927, 43230, 43533, 43833, 44133, 44431
3BB8 89A1!BOAF07Bl2CB2 465 DW 44729, 45024, 45319, 45612, 45905, 46186, 46486, 46774
3BF8 D6B7F4B811BA2DBB 466 new 47062, 47348, 47633, 47917, 48200, 48482, 48763, 49042
3C08 A9CO 467 Dew 49321

468
3COA 469 LOG_OFFSeT: ; 512*l0*LOG(2**(15-n» n= 0,1,2,3 ... 15

470 ; 512*l0*LOG(0.5) n= 16,17,18 ... 31
471

3COA 4F5A4A54454B3F48 472 Dew 23119, 21578, 20037, 18495, 16954, 15413, 13871, 12330
JelA 252A20241AIB1518 473 DCW 10789, 9248, 7706, 6165, 4624, 3083, 1541, 0

474
3C2A 475 END

ASSEMBLY COMP18TED, NO ERROR(S) FOUND.

--
PAGIl 12 t

I I

:to
"tJ
I

I\)
......
en

270189-44

AP-275

The BASIC program is used as comments in the
ASM96 program. Some of the variables in the ASM96
program have slightly different names than their coun­
ter-parts in the BASIC program. This was to make the.
comments fit into the ASM96 code. Highlights in this
section of code are a table driven square root routine
and log conversion routine which can easily be adapted
for use by any program.

Both the square root routine and the log conversion
routine use the 32-bit value in the variable TMPR. The
square root routine calculates the square root of that
value in the variable SQRT+2, a 16-bit variable. In
this program, the square root value is averaged and
stored in a table.

The log conversion routine divides the value in TMPR
by 65536 (2 16) and uses table lookup to provide the
common log. The result is a 16-bit number with the
value 512 • 10 Log (TMPR/65536) stored in the vari­
able LOG. This calculation is used to present the re­
sults of the FFT in decibels instead of magnitude. With
an input of 63095, the output is 512*48 dB. The graph
program, (Section 10), prints the output value of the
plot as INPUT/512 dB.

The following descriptions of the ASM code point out
some of the highlights and not-so-obvious coding:

Lines 1-104 initialize the code and declare variables.
The input and output arrays of the program are de­
clared external. Note that many of the registers are

overIayable, use caution when implementing this rou­
tine with others with overIayable registers.

Lines 116-124 calculate the power of W to be used.
Note that KPTR is always incremented by 2. The mul­
tiple right shift followed by the AND mask creates an
even address and the indirect look to the BR (Bit Re­
versal) table quickly calculates the power PWR.

Lines 130-138 perform the complex multiplications.
Since WIP and WRP range from - 32767 to + 32767,
the multiplication is easy to handle. The automatic di­
vide by two which occurs when using the upper word
only of the 32-bit result is a feature in this case.

Lines 144-163 use right shifts for a fast divide, then add
or subtract the desired variables and store them in the
array. Note that the upper word of TMPR and TMPI
is used, and the same array is used for both the input
and output of the operations.

Lines 165-189 update the loop variables and then check
for errors· on the complex multiplications and addi­
tions. If there are no overflows at this time the data will
run smoothly' through the rest of the program.

Lines 200-212 load variables with values based on the
bit reversed values of pointers.

Lines 214-236 perform additions and subtractions to
prepare for the next set of formulas. Note that XITMP
and XRTMP are 32-bit values.

6-130

intJ AP-275

Lines 240-260 perform mUltiplies and summations re­
sulting in 32-bit variables. This saves a bit or two of
accuracy. The upper words are then stored as the re­
sults.

Lines 263-272 generate the squared magnitude of the
harmonic component as a 32-bit value.

Lines 278-310 calculate 10 Log (TMPR/65536). The
32-bit register TMPR is divided by 65536 so that the
output range would be reasonable.

First, the number is normalized. (It is shifted left until a
1 is in the most significant bit, the number of shifts
required is placed in SHFT_CNT.) If it had to be
shifted more than 15 times the output is set to zero.

Next, the most significant BYTE is used as a reference
for the look-up table, providing a 16-bit result. The next
most significant BYTE is then used to perform linear
interpolation between the referenced table value and
the one above it. The interpolated value is added to the
directly referenced one.

The 16-bit result of this table look-up and interpolation
is then added to the Log of the normalization factor,
which is also stored in a table. This table look-up ap­
proach works fast and only uses 290 bytes of table
space.

Lines 321-357 calculate the square root of the 32-bit
register TMPR using a table look-up approach.

First, the number is normalized. Next, the most signifi­
cant BYTE is used as a reference for the look-up table,
providing a 16-bit result. The next most significant
BYTE is then used to perform linear interpolation be­
tween the referenced table value and the one above it.
The interpolated value is added to the directly refer­
enced one.

The 16-bit result of this table look-up and interpolation
is then divided by the square root of the normalization
factor, which is also stored in a table. This table look­
up approach works fast and only uses 320 bytes of table
space. The results are valid to near 14-bits, more than
enough for the FFT algorithm.

Lines 352-360 average the magnitude value, if multiple
passes are being performed, and then store the value in
the array. The loop-counters are incremented and the
process repeats itself.

This concludes the FFT routine. In order to use it, it
must be called from a main program. The details for
calling this routine are covered in the next section.

8.0 BACKGROUND CONTROL
PROGRAM

The main routine is shown in Listing 3. It begins with
declarations that can be used in almost any program.
Note that these are similar, but not identical, to other
8096 include files that have been published. Comments
on controlling the Analog to Digital converter routine
follow the declarations.

6-131

c:
1/1
c!:
:::l
ca
w

enl
.!.. iil:
f:S ~.

::D o
c

i

MOS-96 MACRO ASSBllBLER FFT_MAIN_ APNOTB 02/18/86 PAGE

SERIES-III MOS-96 MACRO ASSBMBLER, Yl.O

SOURCB FILE: : F2: FnlAIN. A96
OBJECT FILE: :F2:FnlAIN.0B.1
CONTROLS SPECIFIBD IN INYOCATION CIMIWIO: YOSB

BRR Lac OBJECT

0000
0002
0002
0003,
0003
0004
0004
0006
0006
0007
0008
0009
0011
0011
OOOA

LINE
1
2
3
4
5
6
7
8
9

10
11
12
13
14

=1 15
=1 16
=1 17
=1 18
=1 19
=1 20
=1 21
=1 22
=1 23
=1 24
=1 25
=1 26
=1 27
=1 28
=1 29
=1 30
=1 31
=1 32
=1 33
=1 34
=1 35
=1 36

'=1 37
=1 38
=1 39
=1 40
=1 41

SOURCE STATBMBNT
$pag .. leugth(50)

FFT_fofAIN_APNOTB MODULI! MAIN, STACKSIZB(6)

Intel Corporation, January 24, 1986
by Ira Horden. f«X) Applications,

This prograa perfOl'1lB an FFT on real data and plots' it on a printer.
It uses the progr811 modules A2DCON, PLOTSP, and FFTRUN. The adjustable
paraaetera of each of the progr81U are 8et by thia Jll8.in JIOduie.

$INCLUDE (:FO:DI!M096.INC) ; Include SrK definitions
;$no118t ; Turn listing off for include file

; ***
Copyright 1985, Intel Corporation -
October 28,1985
by Ira Horden, NCO ApplicatioDS

D1!f1096. INC - DEFINITION OF SYMBOLIC NAMBS FOR THE I/O REGISTERS OF THE 8096

; ***l~***
ZERO
AD_ClMWID
AD IIflSULT LO
AD=RflSULT=HI
RBI !IODB
HSO-TIMB
RBI=TIMB
HSO ClMWID
RBI=STATUS
SBUF
INT_lIASK
INT_PBNOING
SPCOII
SPSTAT
IfATCIIDOG

EQU DOh: lIORD
EQU 02H: BYTE
EQU 02H: BYTE
EQU 03H:BYTE
BQO 03H:BYTE
EQU 04H: lIORD
EQU 04H: lIORD
EQU OSH: BYTE
EQU OSH: BYTE
BQU ,078: BYTE
EQU OSH: BYTE
BQU 098: BYTE
EQU llH: BYTE
EQU llH: BYTE -
EQU OAH:BYTE

II/tI Zero Register
" A to D cOIIIIlIlDd register

B LoW byte of reIIul t and channel
R High byte of reaul t

If Controls RBI trsnai tion detector
If RBI tbe tag

R RBO tbe tag
If RBO.,.,....,d tag

R RBI status register (reads fifo)
II/tI Serial port buffer
II/tI - Interrupt .ask register
R/W Interrupt peDdin, re,ister

W Serial port control register
R Serial port status register

If Watchdog tiller -
270189-45

cl

l>
l'
N
en

q>
c;j
U)

c
~
::J

CQ

i
:s::
III s·
:II o
c: -s·
CD

11
::!.
s·
c.
CD
.9:

MCS-96 MACRO ASSBMBLIR

I!RR LOC OBJECT
00001.
OOOC
00011
0001!
OOOF
0010
0015
0015
0016
0016
0017
0018

0000
00001.

ODIC

ODIC
ODIE
0020
0022

ODIC
0010
0020

0007
.0010
0028

0001

FFT_MAIK_APIIOTI! 02/18/86 PAGE

LIKE
=1 42
=1 43
=1 44
=1 45
=1 46
=1 47
=1 48
=1 49
=1 50
=1 51
=1 52
=1 53
=1 54
=1 55
=1 56
=1 57
=1 58
=1 59
=1 60
=1 61
=1 62
=1 63
=1 64
=1 55
=1 66
=1 67
=1 68
=1 69
=1 70
=1 71
=1 72
=1 73
=1 74
=1 75
=1 76
=1 77
=1 78

79
60
81
82
83
84
85
86
87
88

SOURCII STATl!MBN"I'
TIMIIHI IIQU OAR: WORD
TIMB112 IIQU OCR: WORD
PORTO BQU OEft:BYTE
BAUD_RBG IIQU . DEft: BYTE
PORTI EQU om: BYTE
PORT2 BQU 10H: BYTE
lOCO BQU 15H: BYTE
IOSO EQU 15H: BYTE
lOCI IIQU 16H: BYTE
IOSI IIQU 16H: BYTE
PIII,,-COIlTllOL BQU 17H:BYTE
SP EQU 18H:WORD

CH
LF

BQU DOH
IIQU OAR

R Tillerl re,iater
R Timer2 register
R I/O port 0

11 Baud rate register
Rill I/O port I
Rill I/O port 2

W I/O control register 0
R I/O status register 0

W 1/0 control register 1
R 1/0 status regioter 1

W PWM. control register
R/W System stack pointer

PUBLIC ZBRO,AD_C!MWID,AD_RBSULT_LO,AD_RBSULT_HI,B5I_MOOB,HSO_Tu.m,HSI_TIMI!
PUBLIC HSO_C!MWID
PUBLIC HSI_STATUS, sour, IN"I'_MASK, IN"I'_PIIKOIKG,KATCHDOG, TIMIIRI, TIMIIR2
PUBLIC OAUD RIIG, PORTO, PORTI, PORT2,SPSTAT,SPCON,IOCO, lOCI, 10SO, IOSI
PUBLIC PWMj:OIlTllOL, SP, CR, LF

RSI!G at ICR

All:
OX:
ox:
CX:

At
AR
OL

OSK
OSK
OSW
OSw

EQU
EQU
BaU

All
(AII+l)
ox

: BYTE
: BYTE
: BYTE

public &x. bx. ex, dx. aI, ah. bi

Temp registers used in conformance
with PD1-96(tm) conventions.

$list Turn listing back aD
lind of include file

A20 UTILITY C!MWIDS/RIISPONSES FOR "CON"l'ROL_A20"

busy
con bO
<iImIP _bO J>_"

equ
equ
equ

7
OOOlOOOOb; convert to BurFO
OOlOIOOOb; download OurFO as pAIRIIO SIGNED data

,---------- ----------------------
AVR_NlJ!oI equ Nw::aber of times to average the waveform

AVR_NUM < 256

2

270189-46

l

~
"'C • N
-.J
(J1

r-
&
:::I

CQ

t
!!!.

0) :::I
.!..:u
(,) 0
~c -i
~ a
::J

!

I«:S-96 MAC\IO ASSBMBLBft

1l1li LOC OBJBCT

0000

0100
0080
9100

0024

0024
0028
0020
0021

0000
0000
0001
0002

0080
0080
0080

OOCO

0200

0200
0200
0240
02C0

FfT_MAIN_APlIOTB 02/18/86 PAGE

LINB
89
90
91
92
93
94
95
96
'¥1
98
99

100
101
102
103
104
105
106
107
106
109
110
111
112
113
114
115
116
117
lIB
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

501J1iCB STATBMBNT

SCAL8]ACTOft equ o _r of riihta shifts perfol'1lll!<l 011

output of FfT. Used to prevent overflow
oIi .~tion

PLOT_IlBS
- PLOT_IlBS_2

PLOT_'IAJ[

equ
equ
equ

256
plot_ /2
p10t_rea*145

llullber of iDput lID! ts per plot lIDi t

145 chrs/row

PUBLIC ecale_facior, plot_res, plot_rea_2, plot_JIIIX

OSlO lit 2411 ~ 088' erea

tIIp l: da1
tIIp-.: dal
wndptr: claw
varptr: claw

RSIO
fft_lIOde: dab 1
error: dab 1
avr_CDt: dab 1 PUBLIC error, fft __

IXT1IN 8_leJl"riod, control_a2d

OSlO at 80h
IRBAL:
DBS'l_BIDT_BASII: DSW 64
XDWl equ XIIBAL+64

PlJBLIC DIST_BIDT_BASE, IRBAL, XDWl

OSlO AT 20011

PLOT IN:
FfTjiur:
Burro_BASIl:
BUrrI_BASE:

DSW
DSW
DBII

32
64
64

For rrr routiDe
For A2D routine
For rrr routiDe

For FfT routi
For A2D routiue
For A2D routine

PlJBLIC Burro_BASE, BurrI_BASE, FfT_OU'l, PLOT_IN
$eject

270189-47

(

l>
'U
I

N en

_.
MCS-96 MACRO ASSEMBLER FFT_MAIN_APHOTI! 02/18/86 PAGR 4 cf
RRR LOC OBJECT LINK SOURCR STATBMI!NT

134
2080 135 CSIG AT 2080R

136
137 RXTRN INIT_OUTPUT, DRAW_GRAPH, CON_OIlT For Plot Routine
138 EXTRN rFT_CALC For EFT routine
139 EXTRN A2D_BUFF_IlTIL For A2D routine
140

2080 AI000018 R 141 LD SP,ISTACB
2084 ASOI00301C 142 LD AX,3000H
2089 143 SDR_WAIT:
2089 BOICro 144 djnz. aI, abe_wait WAIT FOR SBB TO CLEAR SBRIAL PORT INTRRRllPTS
20SC BOIDrA 145 djnz ah,abe_wsit

146
C 20ar RFOOOO B 147 BEGIN: CALL INIT_ OUTPUT Initialize serial port
In 148
!:t 2092 149 NBIi_TRANSFOIiICSRT: ::I 2092 BI0000 R 150 Idb ttt_mode,IOOOOB Bit 0 - Real data / Tabled datal CQ

Co) 151 Bit 1 - Windowed / Unwindowedot

I 152 Bit 2 - 1010g Mag"'2 / Magnituciet
153 Bit 3 - 256*db plot / Normal Plotot il: 2095 BI0I02 R 154 Idb avr_cnt,.avr_nus III 2098 0120 155 clr bx

I I

» 9' S" 209A C321000200 156 CLRRAM: at zero, ff't_out{bx] clear fit magnitude array 'tI lJ 209r 65020020 157 add bx,#2 ,
U) 0 20AS 89400020 158 cmp bX,ot64 N 0'1 C -.! ... 20A7 DRF! 159 bIt CLlII!AM

U1 S" 160
CD 20A9300004 R 161 C_load: bbc fft_lIOde, 0 t do_tab Branch if real data is not used a 20AC 2819 162 CALL LOAD_DATA
0 20AR 2002 163 br C_win

a 164

::J 20BO 282F 165 do_tab: CALL TABLE_LOAD
c: 166
CD 20B2 310002 R 167 C_win: bbc ftt_DIOde, I. calc Branch if windOti'ing is not used S 2085 2SCB 168 CALL DO _WINIlOIi

169
20B7 BFOOOO B 170 CALC: CALL rFT_CALC
20BA 980001 R 171 errtrp: cmpb error, zero
20BD D7FB 172 Jne errtrp'

173
20Br R00205 R 174

175
DJNZ avr_cnt, LOAD_DATA repeat for AVR_NlM couuts

2002 BFOOOO B 176 CALL DRAW_GRAPB
177

2005 27CB 178 DB NBIi_TRANSFOIifoCSBT
179 $eJect

270189-48

MCS-96 MACRO ASSIiMBLEft

ERR LOC OB.Tl!CT

2OC7

20C7 BI000F

20CA
20CA Bll000
20CD 910100
2000 A1320000

2004 EFOOOO
2007 3FOOm

i-I
200A
200A B12800
2000 BFOOOO

CQ 20BO FO

W

I 20Bl ;: 20El 0120
III 20B3 AI02211C

q> :i" 20B7 A21D22

-" lJ 20BA A21DIE
W 0 20BD C321000022
0> S. 20n C321COOOIB

5" 20F7 65020020
(11 20rn 89400020

(5 20FF DBB6

0 2101 FO

;::!.
2102 :;-

c
(1) 2102 FF7FFF7FFF7FFF7F .s 2112 lF7FrF7FrF71FF7F

2122 FF7FFF7FrF7FFF7F
2132 FF7FFF7FlF7FrF7F
2142 0180018001800180
2152 0180018001800180-
2162 0180018001800180
2172 0180018001800180

FFT_MAIN_APROTB 02/18/86 PAGB

LINK
180
181
182
183
184
185

B 186
B 187
B 188

189
B 190
B 191-

192
193

B 194
E 195

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

SOUllCE STATl!MBNT
j--
LOAD_DATA:

SBT_A2D:

Idb

Idb
orb
Id

CALL
jbs

Down load:
- Idb

CALL
RET

iiij

portl.#OO

control_a2d.#COD_bO
control_a2d. tol
sample_period. #50

a2d buff util
control_&2d. busy 1$

control_a2d •• dlDDP_bO-P_B
a2d_buff_util

LOAD DATA INTO RAM

; **** FOR INDICATION ONLY

Set CODverter for bufferO
Convert chaDnel 1
100 us sample period

Start the cODversion prOCMS
wait for all conversioDs to be done

download bO paired/signed

;--------------
TABLE LOAD:

- clr
Id

load: Id

DATAO:

DCW
DCW
Dew
DOW

Id
st
at
add
ClIP
blt
RET

32767,
32767,
32767,
32767,

bx
ax,'DATAO
cx. (ax]+
dx, [ax]+
cx,xreal[bx)
dx,x!.mag[bx)
bx , #2
bx.'64
LOAD

; S~UARB If A ~B

32767, 32767,
32767, 32767,
32767, 32767,
32767, 32767,

Load tabled data for testing

32767, 32767, 32767, 32767, 32767
32767, 32767, 32767, 32767, 32767
32767, 32767, 32767, 32767, 32767
32767, 32767, 32767, 32767, 32767

Dew -32767, -32767, -32767, -32767, -32767, -32767, -32767, -32767
DOW -32767, -32767, -32767, -32767, -32767, _ -32767. -32767. -32767
Dew -32767, -32767, -32767, -32767, -32767, -32767, -32767, -32767
DCW -32767, -32767. -32767, -32767, -32767. -32767. -32767, -32767

$eject
270189-49

(

l>
"P
N
.......
U1

i s·
ID

t
!!!.

OJ ::I
.!.. ::rJ
~ g

5-
CD

'§
~
5i
So

MCS-96 MACRO ASSBMBLBR

IRR LOC OBJI!CT

2182
2182 0120
2184 0121
2186
2186 A32DBI211C
2188 A32DC02120
2190 R4r2F80001C24
2197 R4r2FC0002028
21911 OD0124
21Al ODOl28
21A4 C32F800026
21AS C32FC0002A
21A1 65040020
21B2 65020028
21B6 89400028
21BA D7CA
21BC 1'0

21BI

2181 000041'003801CI02
21CI BrI26517711CD421
2101 004045467C409352
2111 4060787136757078
21R rF7FB07FC47H317D
2201 406D99688E632B5E
221B 0040BA3983336C2D
2221 BFl2870IC90AlI'07
223B 0000

rFT_MAIN_APIIOTII

LINK SOUReB STATBMBNT

02/18/86 PAGE

223
224
225
226
227
228
228
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

Ix, WINDOW: ------
PSRFOIiM IlAHNING WINDOW

- c1r wndptr
WiDdowiDII provides an -effective
divide by 2 because of tbe 1III1tiply

elr varptr
WINDOW:

1d lIX,bsnniDII(wndptrj
1d bx,bsnniDII+2(wndptrj
au1 blprea1,IIX,xresl(varptrj
aul blpimlll, bx, xiBall(varptr j
ohll blpreol, #1
shll blpiBall,#l COIIPSDSate for the divide by 2
at blpreal+2,xreal(varptrj
at blpiBall+2,ximlll(varptrj
add wndptr, #4
add varptr.'2
alp varptr, t64
Joe window
RBT

IlAHNING: ; Windowing f"UDction

DeW 0, 79, 315, 705, 1247, 1935, 2761, 3719
DeW 4799, 5990, 7281, 8660, 10114, 11628, 13187, 14778
DeN 16384, 17989, 19580, 21139, 22653, 24107, 25486, 26777
DeW 27968, 29048, 30006, 30832, 31520, 32062, 32452, 32688
DeW 32767, 32688, 32452, 32062, 31520, 30832, 30006, 29048
DOW 27968, 26777, 25486, 24107, 22653, 21139, 19580, 17989
DeW 16384, 14778, 13187, 11628, 10114, 8660, 7281, 5990
DeW 4799, 3719, 2761, 1935, 1247, 705, 315, 79
DeW 0

'eject

6

(

I I
»
'tJ .
N
C11

270189-50

_.
MCS-96 MACRO ASSIlMBLBR FFT_MAIN_APNOTB 02/18/86 PAGB I cf
BRR LOC Oll.JBCT LIN!! SOURCE STATBMIlNT

255
3DOO 256 CSBG AT 3D008 ; ADDITIONAL TABLES FOR T1!STING

257 ; SIN!! 7.0 X
3DOO 258 DATAl:
3DOO 00003351897DB270 259 Dew 0, 20787, 32137, 28698, 12539, -9512,-27245,-32609
3DI0 7BA574F31C477C7A 260 DCW -23170, -3212, 18204, 31356, 30273, 15446, -6393,-25329
3D20 01BOOF9D08B7563C 261 UCW -32767,-25329, -6392, 15446, 30273, 31356, 18204, -3212
3D30 7BA59F809395D8DA 262 UCW" -23170,-32B09,-27245, -9512, 12539, 28898, 32137, 20787
3D40 000OCDAB77821B8F 263 Dew -0, -20787 ,-32137, -28898,-12539, 9512, 27245, 32609
3D50 825A8COC84888485 264 UCW 23170, 3212, -18204, -31356, -30273, -15446, 6393, 25329
3D60 FF7FFI62F818AAC3 265 DCW 32767, 25329, 6392, -15446, -30273, -31356, -18204, 3212
3D70 825A617F6D6A2825 266 DCW 23170, 32609, 27245, 9512, -12539, -28890, -32137, -20787

267
r 3DBO 268 DATA2: ; SIBB 7.5 X
iii" 269 .. " 3D80 0000F555617FCF66 270 new 0, 22005, 32609, 26319, 6393,-16846, -31356, -29621 S·

IQ 3090 05CFIF288270287C 271 Dew -12539, 11039, 28898, 31785, 18204, -4808,-25329,-32728
Co)

3DAO 7BA5B8F933519C7B 272 Dew -23170, -1608, 20787, 32412, 272g5, 7982,-15446,-30852

I 3DBO BF8946C92825C96D 273 new -30273,-14010, 9512, 28105, 32137, 19519, -3212,-24279
3DCO 01B029A174F33F4C 274 Dew -32767,-24279, -3212, 19519, 32137, 28105, 9512,-14010 s:: 3000 BF897C87AAC3IA1F 275 Dew -30273, -3085?, -15446, 7952, 27245, 32412, 20787, -1608 II) 3080 7BA528800F9038BD 276 Dew -23170,-32728,-25329, -4808, 18205, 31785, 28898, 11039

I I
l>

~
S· 3DrD 05CF4B8C848533B8 277 DCW -12539, -29521, -31355, -18845, 6393, 25319, 32609, 22005 'U XI 278 I

(.0) 0 3EOO 279 DATA3: ; .707OSIBB 7. 5X I\)

CD C 2BO ::r. en :::s 3EOO 000OC63C0F5AAF48 281 new 0, 15558, 23055, 18607, 4520, -11910,-22169, -20942
CD 3RlO 5FDD7ClBCr4FC857 282 new -8865, 7B04, 20431, 22472, 12870, -3399,-17908,-23138

'0 3820 03C08FFB69398459 283 new -16381, -1137, 14697, 22916, 19262, 5629, -10921, -21812
0 3B30 65AC4FD9451A9B4D 284 Dew -21403, -9905, 6725, 19870, 22721, 13800, -2271,-17165

~ 3840 82A5r38C21F7B835 285 new -23166,-17165, -2271, 13800, 22721, 19870, 6725, -9905
:::s 3850 65ACCCAA58D5FDI5 286 Dew -21403,-21812, -10920, 5629, 19262, 22916, 14696, -1137
C 3860 03C09BA5OCBAB9F2 287 new -16381,-23138,-17908, -3399, 12871, 22472, 20431, 7804
CD 3B70 5FDD32AE67A97ADI 288 Dew -8865,-20942,-22169,-11910, 4520, 18607, 23055, 15557 .s 289

3BBO 290 DATA4: ; • 7070SIBB (l1x) /16
291

3880 0000FD04B40472FF 292 new 0, 1277, 1204, -142, -1338, -1119, 282, 1386
3E90 00045CFB74FA69FC 293 Dew 1024, -420, -1420, -919, 554, 1441, 804, -683
3EAD 58FA55FD2403AI05 294 Dew -1448, -683, B04, 1441, 554, -919, -1420, -420
3EBO 00046A051ADlAIFB 295 Dew 1024, 1366, 282, -1119, -1338, -142, 1204, 1277
3Boo 000003FB4CFB6B00 296 new -0, -1277, -1204, 142, 1338, 1119, -282, -1386
3EDO 00FCA401BC058703 287 new -1024, 420, 1420, 919, -554, -1441, -804, 683
3BB0 A805AB02DCrcsrrA 298 new 1448, 683, -804, -1441, -554, 919, 1420, 420
3BFO 00FC96FAB6FB5F04 299 Dew -1024, -1386, -282, 1119, 1338, 142, -1204, -1277

300
3FOO 301 DATA5: ; .701*(SIHB 7.5X + 1/16 SIBB llX)

270189-51

r­
iii

~

~
0) 3"
~ :II
c.l 0

(0 ~
CD

9
g.
c:

~

MCS-96 MACRO ASSBllBLlR

BRR LOC OBJECT

3100 000OC241C35E2148
3rlO 5BE1081C434A3154
3F20 5BBAB5F8BD3C245F
3F30 55BOB9DE5FlB3F49
3r40 82A5F6B76DF27636
3F60 55A870ACE4DA9419
3F60 ABC54BABEBB61BBD
3"0 5FD9CIlA84DA6D9D5

3FBO

FFT_MAIH_AP!IOTB 02/18/86

LINB
302
303
304
305
306
307
308
309
310
311
312
313

SOURCB STATBIIBNT

DCII 0, 16834, 24259, 18455, 3182,-13029,-21886,-19557
DCII -7842, 7384, 19011, 21553, 13425, -1958,-17103,-23821
DCII -17829, -1819, 15501, 24356, 19816, 4710,-12341,-22232
DCII -20379, -8519, 7007, 18751, 21383, 13558, -1067,-15888
DCII -23166,-18442, -3475, 13942, 24059, 20990, 6442,-11290
DCII -22427,-21392, -9500, 5548, 18708, 21475, 13892, -454
DCII -14933,-22456,-18712, -4840, 12317, 23391, 21851, 8225
DCII -9889,-22328,-22451,-10791, 5857, 18749, 21851, 14281

END

ASSBMBLY COMPLETED, 110 BRROR(S) FOUND.

PAGE 8

270189-52

l

~
l'
N
U1

intJ AP-275

SBRlBS-III MCS-96 RlLOCATOR AND LINKBR, V2.0
Copyright 1983 Intel Corpor"Uon

INPUT FILES: :F2:F'lMAIN.OBJ, :F2:FFTRUN.OBJ, :F2:PLOTSP.OBJ, :F2:A2DCON.OBJ
OUTPUT FILE: : F2: FFTOUT
CONTROLS SPBeIFliD IN INVOCATION C<MWID:

IX

INPUT MOOULBS INCLUDED:
: F2: F'lMAIN. OBJ (FFT_MAIN_APNDTB) 02/18/86
:F2: FFTRUN.OBJ(FFT_RUN) 02/18/86
: F2: PLOTSP.OBJ(PLOT SERIAL) 02/18/86
: FZ:A2DCON.OBJ(A2DjiUFFERING_UTILITY) 02/18/86

TYPE BASE LBNGTII ALIGNMENT MODULE NAME

**RESERVBD* OOOOH 001AH
REG 001AK 0001R BYTE PLOT_SBRIAL

*** GAP *** 001BR OOOlH
REG OOlCH OOOBR ABSOLUTE FFT_MAIN_APNOTB
OVRLY 0024R 0035R ABSOLUTE FFT_RUN

OVERLAP OVRL Y 0024R DOlOR ABSOLUTE PLOT_SERIAL
OVBRLAP OVRLV 0024R OOOCR ABSOLUTE FFT_MAIN_APNOTB
*** GAP *** 0059R OOOlR

OVRLY 005AR OOOGH WORD A2D_BUFFERING_UTILITY
RIG 0060R OOOCR WORD A2D_BUFFERING_UTILITY
REG OOGCH 0003R BYTE FFT_MAIN_APNOTB

*** GAP *** 006ra 0011R
DATA 0080R 0080R ABSOLUTE FFT_MAIN_APNOTB
STACK 0100R OOlER WORD
DATA 011BR 0080R WORD FFT_RUN

*** GAP *** 01911R 0062R
DATA 0200R 0140R ABSOLUTE FFT_MAIN_APNOTB

*** GAP *** 0340H 1CC2R
CODE 2002B 00021 ABSOLUTE A2D _BUFFERING_UTILITY

*** GAP *** 2004H 007CH
CODE 2080H OlCOR ABSOLUTE FFT_MAIN_APNOTB

*** GAP *** 2240B 0040H
CODE 2280R 0215B ABSOLUTE FFT_RUN

*** GAP *** 2495R 0068R
CODE 2500B 0168R ABSOLUTE PLOT_SBRIAL
CODB 2668R DOBeR BYTE A2D _BUFraRING_ UTILITY

*** GAP *** 2754B 10ACH
CODB 3800R 042AR ABSOLUTE FFT_RUN

*** GAP *** 3C2AH' OODGH
CODE 3DOOR 0280B ABSOLUTE FFT_MAIN_APNOTB

*** GAP *** arsoR C080R

Listing 3-Main Routine (Continued)

6-140

270189-53

AP-275

Several, constants are then setup for other routines. The
purpose of centrally locating these constants was the
ease of modifying the operation of the routines. Note
that AVR_NUM and SCALE_FACTOR must be
changed at the same time. SCALE_FACTOR is the
shift count used to divide each FFT output value before
it is added to the output array. A VR_NUM must be
less than 2"SCALE_FACTOR or an overflow could
occur. Next, the public variables are declared for the
arrays and a few other parameters.

The program then begins by setting the stack pointer
and waiting for the SBE-96 to finish talking to the ter­
minal. If this is not done, there may be serial port inter­
rupts occurring for the first twenty five milliseconds of
program operation.

Initialization of the plotter is next, followed by setting
the FFT_MODE byte. This byte controls the graph­
ing, loading and magnitude calculation of the FFT
data. Since FFT_MODE is declared PUBLIC in this
module, and EXTERNAL in the PLOT module and
FFTRUN module, the extra bits available in this byte
can be used for future enhancements.

The next step is to clear the FFT output array. Since
the FFT program can be set to average its results by
dividing the output before adding it to the magnitude
array, the array must be cleared before beginning the
program.

Data is then lo~ded into into the FFT input array by
the code at LOAD_DATA, or the code at TABLE_
LOAD, depending on the value of FFT_MODE bit O.
The tabled data located at DATAO is a square wave of
magnitude 1. This waveform provides a reasonable test
of the FFT algorithm, as many harmonics are generat­
ed. The results are also easy to check as the pattern
contains half zeros, imaginary values which are always
the same, and real values which decrease. Figure 13
shows the output in fractions, hexadecimal and deci­
mal. The hexadecimal and decimal values are based on
an output of 16384 being equal to 1.00.

Note that the magnitude is

SQR (REAL2 + IMAG2)

and the dB value is

10 LOG «REAL2 + IMAG2)/65536)

6-141

The divide by 65536 is used for the dB scale to provide
a reasonable range for calculations. If this was not
done, a 32-bit LOG function would have been needed.

After the data is loaded, the data is optionally win­
dowed, based on FFT_MODE bit 1, and the FFT pro­
gram is called. Once the loop has been performed
A V~CNT times, the graph is drawn by the plot rou­
tine.

Appended to the main routine is the FFTOUT.M96
Listing. This is provided by the relocator and linker,
RL96. With this listing and the main program, it is
possible to determine which sections of code are at
which addresses.

Using the modular programming methods employed
here, it is reasonably easy to debug code. By emulating
the pro grain in a relatively high level language, each
routine can be checked for functionality against a
known standard. The closer the high level implementa­
tion matches the ASM96 version, the more possible
checkpoints there are between the two routines.

Once all of the program routines (modules) can be
shown to work individually, the main program should
work unless there is unwanted interaction between the'
modules. These interactions can be checked by verify­
ing the inputs and outputs of each module. The assem­
bly language locations to perform the program b(eaks
can be retrieved by absolutely locating the main mod­
ule. The other modules can be dynamically located by
RL96.

The more interactive program modules are, the more
difficult the program becomes to debug. This is espe­
cially true when multiple interrupts are occurring, and
several of the interrupt routiries are themselves inter­
ruptable. In these cases, it may be necessary to use de­
bugging equipment with trace capability, like the
VLSiCE-96. If this type of equipment is not available,
then using I/O ports to indicate the entering and leav­
ing of each routine may be useful. In this way it will be
possible to watch the action of the program on an oscil­
loscope or logic analyzer. There are several places with­
in this code that I/O port toggling has been used as an
aid to debugging the program. These lines of code are
marked "FOR INDICATION ONLY."

intJ AP-275

K
Fractional

dB
Decimal Hexadecimal

REAL IMAG MAG2 REAL IMAG MAG2 REAL IMAG ·MAG2

0 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
1 0.0625 -1.2722 1.2738 38.225 1024 -20843 20868 400 AE95 5184
2 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
3 0.0625 -0.4213 0.4260 28.710 1024 -6903 6978 400 E509 1842
4 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
5 0.0625 -0.2495 0.2572 24.329 1024 '-4088 4214 400 F008 1076

·6 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
7 0.0625. -0.1747 0.1855 21.491 1024 -2862 3039 400 F402 80F
8 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
9 0.0625 -0.1321 0.1462 19.421 1024 -2165 2395 400 F78B 95B

'10 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
11 0.0625 -0.1043 0.1216 ,17.820 1024 -1708 1992 400 F954 7C8
12 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
13 0.0625 -0.0843 0.1049 16.540 1024 -1381 1719 400 FA9B 687
14 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
15 0.0625 -0.0690 0.0931 15.499 1024 -1130 1525 400 FB96 5F5
16 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
17 0.0625 -0.0566 0.0844 14.645 1024, -928 1382 400 FC60 566
18 0.0000 0.0000 0.0000 0.000 0 0 0 O' 0 0
19 0.0625 -0.0464 0.0778 13.944 1024 -759 1275 400 F009 4FB
20 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
21 0.0625 -0.0375 0.0729 13.374 1024 -614 1194 400 F09A 4AA
22 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
23 0.0625 -0.0296 0.0691 .12.918 1024 -484 1133 400 FE1C 460
24 0.0000 0.0000 0:0000 0.000 0 0 0 0 0 0
25 0.0625 -0.0224 0.0664 12.564 1024 -366 1088 . 400 FE92 440
26 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
27 0.0625 -0.0157 0.0644 12.305 1024 -256 1056 400 FFOO 420
28 0.0000 0.0000 0.0000 0.000 0 0 0 0 0' 0
29 0.0625 -0.0093 0.0632 12.135 1024 -152 1035 400 FF68 40B
30 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0
31 0.0625 -0.0031 0.0626 12.051 1024 -50 1025 400 FFCE 401 .

Figure 13. FFT Output for a Square Wave Input

9.0 ANALOG TO DIGITAL
CONVERTER MODULE

The module presented in Listing 4 is a general purpose
one which converts analog values under interrupt con·
trol and stores them in one of two buffers. These buffers

can then be downloaded to another buffer, such as the
input buffer to the FFT program. During downloading,
this module can convert the data into signed or un·
signed formats, and fill a linear or a paired array. A
paired array is like the one used in the FFr transform
program. It requires N data points placed alternately in
two arrays, one starting at zero and the other at N/2.

6-142

c:
~
::::I

(Q

t ...
0

C) 0 I 0 -I:>. 0 CAl ::::I
<
CD
~
CD .,
:u
0 c
::!:
::::I
CD

MCS-96 MACRO ASSBMBLIft A2D_BUFFBRING_DTILITY 02/18/86 PAGE

SERIES-III MCS-96 MACHO ASSBMBLlB, Vl.O

SOURCI! FILl: :F2:A2DCON.A96
OBJI!CT FILl: :F2:A2DCON.OBJ
CONTBOLS SPllCIFII!D IN INVOCATION CClfoNAND: NOSB

ERR LOC OBJECT ·LINK
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

SOURCI! STATEMENT
$pagelength(50)

A2D_Bufferin,_Utility JROdule atacksize(12)

Intel Corporation, J'uly 16. 1985
by Dave Ryan. Intel Applications Engineer

Tbis utility fills a memory buffer with AID conversion results. The
conver.toDS are done under interrupt control, and are initiated when
A2D BUFF Uti1 is called. The results of the coDversions are placed
in ;;:ne of two buffers I called BUfFO and BUFri.

This utility provides OptiODS for the selection of the buffer lengths. data
format. saple period. conversion channel and time base. The utility also
has a donwload routine that will load either buffer into B register file
buffer. Output formats can also be chosen for the downloaded buffer. The
data can be formatted as signed or unsigned linear or paried arrays.

RUN-TIM!! OPTIONS

Rather than use the STACK to pass controls, this utility gets its directions
from 2 control words iD memory. The utility expects that itll control words
are valid at the time A2D_BUFF_Util is called and remain· valid throughout
AID interrupt executions and downloads. The control words are:

$BJl!CT

SBllPle Period WORD The tt.e between BBlllPlell in tbter counts
- where the timer used has been specified

Control A2D BYTE Control info1'1l8tion for the utilit'y;
- BIT'

0-2
3
4
5

6
7

Channel liulllber
Signed Result/Unsigned Result'
CODvert/DOWDload'
BUFFl/BUFFOf for coDversions
BUFFO/BUFF1' for downloads
Linear/Paired'
Converter BUSY/lOLl'

270189-54

(

l>
." .
J\) ...,
(11

q>
.j>-
.j>-

r-
iii· ...
S·
ID

tl :.-...
0
C
0
0
~

~
~
CD ...
:u
0
c
~
CD

0
0
3-
:r c
CD .s

MCS-96 MACIID ASSBMBLBR

SRR LOC OBJJ!CT

'----

A2D_BUFFBRDIG_UTILITY 02/18/86 PAGE

LINB
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

SOUIICB STATBMBNT

The following i8 a table of equates that caD be used to amplify the
bit diddling requlreaenta. If you are not nmning conversions concurrently
with downloads, alwaye- LDB CODtrol_A2D with tbe following .,.,..,.,d than
ORB CODtrol_A2D with the channel oUllber you wish to convert if you are
starting a conversion.

ODce the utility is called, care.uat be taken when Control_A2d is'
aodified. You can cause downloada to occur while coDversions are running,
but you CSDDot start conversions during a download. To do this t ORB to the
control byte with the appropriate bits set. Do NOT change the BUFr bit or
the BUSY bit. Just set tbe downlosd bit and set tbe data fonoat bits to tbe
correct values.

The BUFF bit has opposite definitions for conversions and downloadll. This
allows conversions to be done into BurfO wbile downloads come frma BUFI'I. and
vice versa .

A2D UTILITY ClMWlDS

;coD_bO
icon_bI

dump_bO_l_u
dump_bl_l_u
dump _bO-" _ u
dUllp_bl-,,_u
dump_bO_l_s
dUllp_bl_l_s
dump_bO-"_8
dUllp_bl-"_8

$eject

equ
equ

equ
equ
equ
equ
equ
equ
equ
equ

00010000&; COIIVert to BUFFO
0011oooob;" BUFI'l

01100000b
01000000&
00100000&
00000000&
01101000&
01001000&
00101000b
00001000b

doomlosd

doomlosd ..

BUFFO as LlNBAR USIGNBD data
BUrrI" "
BUFFO " PAIRED
BUrrI ..
BUFfO aa LINBAR SIGNBD data
BUFrI" " "
BUFFO .. PAIRED
BUFFI ..

2

270189-55

(

»
l
01

MCS-96 MACRO ASSBMIlLBR

ERR toe OBJECT

c:
(I)

= :J
CQ

"" ! ...
0
c
0
0

Cf>
:J
< CD

.j>. ~
01 CD .,

::D
0 c = :J
CD

0
0 a
:::l
c
11>
.B

A2D_BUFFIIRING_DTILITY 02/18/86 PAGE

LIIiB
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

, 91
92
93
94
95
96
97
98
99

100
101
102
103
104
lOS
106
107
108
109
llO
III
ll2

,

SOURCE STATllMBNT

ASSBllBLY-TIMB OPTIONS

The base addreases ad length of each conversion buffer and the destination
buffer are DECLARED BXnNal in this utility. Other options such 88 selection
of the timer used as a tillebase, the length of the buffer, and the effective
nUllber of bits in the reported reeult are set at as ly ti ... through use
of EQUates in this IIOdule.

The following par tera need to be provided at as • .,.,ly or link time.
The buffer bases are declared BXTRHal by this utility, while the buffer
length shift count and RSO ~ds are BQUated.

BIJITO_BASE
BUFFl_BASB
DBST_BUFF_BASE

BUFF_LENGTH

Shift_count

CLOCK

The starting address of BUFFO
The starting address of BUFFI
The starting eddress of the downloed

; target buffer.

The nUllber of SAMPLES that each
; buffer IIIWJt hold. IIUIIt be >l and (256

The number of tilles that the conversion result ls
to be shifted right from it. netural left justified
position. Setting a shift count greater than 6 will
result in lo.t bits to the rillht. Rounding is NOT
done.

Specify as either TIMBRI or T2CLE. This is the
tillebaae used for conversions.

Samples are stored as words in the buffers. The progrBJI stores
conversions linearly in BUFFO and BUFFI, and linearly or paired in the
destination buffer as selected. If the download is to be paired, the first
.8llple i8 placed in location DBST_BUFF_BASB, the second sllllple i. placed in
location (DBST BUFF BASE + BUFF LBNGTH), the third in (DSSr BUIT BASE + 2),
the fourth in (DEsr:BUFF_BASB +-2 + BUFF_LENGTH), etc. - -

SeJect

3

270189-56

l

):0
'U .
N
...... en

1«:S-96 MAC1IO ASSBllBLBR

BRR LOC OBJBCT

Ii -3'
IC

! -0
0
0
0

cp ~

ii
~ ~
0> CD ...

:D
0 c -3'
CD

'0
0
:3

3-c
(1)

.s

A2D _BUFFBRIHIl_ UTILITY 02/18/86 PAGE

LINE
113
114
US
116
U7
U8
U9
120
121
122
123
124
125
126
127
128
129

SOURCB STATIIMBIIT

; NOTES ON BXBCUTION

When a utility call directs the initiatiOD of a set a'f A2D eonveraious. the
first coDversion i. besun at approx_tely one sapia t~ plus 50 atate
UJIeB frao when the utility called. This aa_ thet DO iDterrupts are
present.

The couversiou busy bit is set approxiJoately 50 atate times after a call
to the utility, if the CODvert bit set iD the A2D_Coutrol byte. The
bwty bit is cleared after all CODVeraiou results bave beeu stored is the
reoult buffer deai_ted (Burro or BUFFl).

ralle great care is _ifyiDg the A2D_Coutrol byte to do a doomload while
; conversions are takin, place. You can never download 8 buffer that is
; beiDg COIlverted iDto. The results would he invalid.
$eject

4

270189-57

l

:..
l! en

!i-s:
10

t
0'
c
0
0

(l)
:l , < CD

:!:j ~
CD ...
:u
0 c s-
CD

'§
::I
t:!:
::I
C
CO
.e,

";:8-96 MACRO ASSBllBLBR

ERR toe OBJECT

0000

0040
0001
OOOA

DOOA
OODe

0000

0001'

0000

0020

0000

0002
0004
0006
0008

0009
0003
0004
0005

0006
0080

A20_BllI'I'BRING_UTILITY

SOURCE STATBMI!NT

RSBG

ElITRII BUFFO_BASB, BUFF1_BASB, DEST_BUFF_BASB
BXTIiIi ad_coo.and. ad_reeu1t_1o. ad_ratlult_hi
BXTRH hao_~d, hso_tille •• p

BUFF L8/1GT11
Shift Count
CLOCB-

EQU
EQU
EQU

64
1
TIMIIRI

02/18/86 PAGE

LINE
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
169
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

eet up hso COIIIIlBIlds for correct tiMr **********************************
TIMIIRL equ OAK'
T2CLB equ DeB

MASK equ (10h>ICLOCB)AHD (40h)

Start_A2D equ (OOOOllllb)OR(MASK)
;atart a2d baaed on tiJRer 1. no interrupt

HSO_O_LDw equ (OOOOOOOOti)OR(MASK)
-; make bao.O low based on timerl DO interrupt

HSO_O_Bigh equ (00100000b)OR(MASK)
; make MO.O hi based on timerl no interrupt

set up storage ***
adudteoopO: DSW 1; temp register for download calls

aducteapQ: DSW 1; temp registers for conversiOD calls
1 aductemp1: DSW

top of buffer: »SW
s.."ple= count: DSB

1
1

Control_A2D: DSB 1; the byte that controls the utility execution
DFora aqu 3 Sl..,ad/Unsi..,edI
COD_Dwn equ 4 ; Convert/Download.
BO_B1 equ 5 ; Buffl/Bu1'fO# for conversions

, ; BuffO{Bu1'fl# for downloads
Lin Par aqu 6 ; Linear/Paired'
Busy 'equ, 10000000B ; Bit 8

.eject

5

270189-58

(

»
l'
N
C1I

II:S-98 MACRO ASsmmLBR

BRR LOC OBJECT

.oOOA

0000

il
0000

0000
0002

CO
0004

tl
>

2002

0
01 2002 ACOO
(')
0

C» :I 0000
I ~

.". ::I.
0) CD .,

:u
0 c -5'
CD

'0 a
~
::::J
c:
CD
.B

A2D_BllITIlRIIICI_UTILITr 02/18/86 PAGE

R

LIMB
175·
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
182
193
194
195
198
197
198
199
200
201
202
203
204
205
206

SOURCB STATBMBNT

SBllp1e_Period: DSII 1; the word thet specifies the n ... er of clock Ucla!
;. that elapse between each s8llPle

PUBLIC Control_AD, SapIa_Period

0SIiG

orc..l'tr: Dsw 1; overlayable tellp registers
tap set srcJtr:WORD

deat..l'tr: DSII 1
loop_count: Dsw I

CSlIG at

PUBLIC A2D_DOMB_ Vector

DCII A2D _DONB_ Vector

CSlIG

200Zh

PUBLIC A2D_BDFF_Util

Load_IISO_C_d MACRO var
LDB bso __ d,_

IIBcro to load IISO

LD bao_tiM,educte.pO
BIIDM
.eJect

6

270189-59

l

l>
."

~
c.n

IICS-96 MACRO ASSBMBLIlR

BRR LOC OBJl!CT

0000

0000 3C0962
0003
0003 AlOOOOOO
0007 350904

OOOA
r l OOOA AI000000

~I OOOB
OOOB AI000002
0012 814004

~ 0016 3B091D ..
0 0018 180104
C
0 0018
0 001B A20000

0) ::I 0018 C20200 , < 0021 65400002
~

ID
(0 ID 0025 A20000 ... 0028 C20200

:II 0028 69400002
0
C

002F B004B9 ..
S'
ID 0032 280D

'0 0034 Fa
0
:>

II 0036
0035 A20000
0038 C20200

003B BOO4F7

0038 2801
0040 Fa

A2D_BUFFERING_UTILITY 02/18/86 PAGB

R

B
R

B

B
R
R

H

R
R
R

R
R
H

H

R
R

R

LINE
207
208
209
210
211
212
213
214
216
216
217
218
219
220
221
222
223
224
226
226
227
228
229
230
231
232
233
234
236
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

SOURCE STATBI!BNT

A2D_BUFF_Util:

JBS Control_A2D, COD_Dwn, Convert ; Select convert or download
Download:

LD arc-ptr •• BUFFI_BASB
JBC Control_A2D, DO_Bl. Set_DBtB_Forwat

Download BUFFO:
I.n arcJltr,.BWFO_BASB

Set Data Format: j Choose linear or paired
- LD destJ>tr, 'DBST_BUFF_BASB

LDB loop_count,'BUlF_LBNGTH
JBS Control_AZD. LiD_Par, Linear_data_loop

PAlR8O: SRRB loop_count,'l

Paired_Data_loop:
to adudtellPO, [ercJ>trJ+
ST adudtellPO. [deatJ>trJ
ADD deat_ptr.'BUFF_LIlNGTH

to
ST
SUB

adudtellPO. [srcJ>trJ+
adudte.pO. [dsat_ptrJ+
deat J>tr. tBUFF _LIlNGTH

The pal~ data routine uses 1/2
as aany loops as the unpaired

Move even word

Length = , of warda = 1/2 , of bytes

Move odd word,

D.JNZ loop_count, Paired_Oats_loop Loop until done

CALL Convert Data
RET -

Linear _Data_loop: Move data linearly
to adudtellPO. [orcJ>trJ+
ST adudtellPO. [deatJ>trJ+

D.JNZ loop_count, Linear_Data_loop Loop until done

CALL Convert_Data
RET

.eject

7

270189-60

(

»
-a
I

N

"" UI

1IlS-96 IIACJII) ASSDmr.n A2D_BUFI'BIIllIO_UTILITY 02/18/86 PAllB 8 I l
BRR LOC OII.JBCT LIlIB SOURCB STATBMBNT

251
0041 252 Convert_Data: ; Ccmvert tbe, data in tbe delltinatiOD buffer

253
0041 1.1400004 a 254 LIl lOGP_cOUDt,IBUFF_LBIIO'lII
0045 AlOOOOOO 1 255 IJl 8rC..ptr,'DIST_Burr_BASB

256
'0049 A20000 a 257 Again: l.D aduclti!lllpO, [arc..ptrj
004C 71COOO a 258 AllDB aduclti!lllpO,'llooOooOb
004r 330909 a 259 JBC CODtrol_A2D, Drora, .UnaiIlDe'CReault

c: 250
1/1 0052 261 Biped_Reault: .. '0052 691D7FOO a 262 SUB aduclti!lllpO, t7feOR S· 0056 OADI00 a 263 ' 'SIIRA aduclteapO,lShift_Count
fQ 00592003 264 Ba Replace_S_le

t 265
0058 266 lIII.illll ... ·CReault:
005B 010100 a 267 SRR aduclta.pO, 'Shift_ Count .. 268

0 ODSI 269 Replace_S_le:
C OD5B C2OOO0 a 270 ST adudt-a, [8rc..ptrj+
(") 0061 1004115 a 271 DJIIZ loop _ COUDt, Again ;. Loop until dODe
0 272

I I
:r-'fJ ::s 0064 FO 273 RBT

~ 'V 274 I
U1 i 275 I\)
0 0065 276 Convert: ;; Prepare to Start Convel'llions 277 U1

:D 0065 F2 278 PDSRF 0 279 C
=t 0066 91SOP9 R 280 ORB Control_A2D, #Buay set converter busy bit
::s 281
CD 0069 B13F08 a 282 LIlB s_le_COUDt,'BUFF_LIII«lTR - 1
'0 oose 1.1000006 1 283 LIl top_ot_buffer,tBUFFO_BABI
0 0070 Al80OOO4 1 284 LIl aductlOlPl,.(BUFFO_BABB + 2*BUFF_LBIIO'lIII

a 285
::I 0074 350908 a 286 JBC ccmtro1_A2D, BO_Bl, start_Converaiona
c 0077 1.1000006 1 287 LD top_of_buffer,.BUFFl_BABB
CD 0078 1.1800004 B 288 LD aduct_l,.(Burrl_BASI + 2*BUFF_LBIIO'lII} .s 289 .eJect

270189-61

C
~I
:J
ca

!I
C
(')
0

m :J
I ~I
~ ~ CD .,

gi ..
5'
CD

(')
0
:::l

S-
f::
(1)

.s

MCS-96 MACRO ASSBMBLBR

ERR LOC OBJIICT

007F

007F 61070900

0083 440AOA02

OOBD CCOO

0095 81020200

0099 640AD2

00A2 C800

OOM Fa
OOAD Fa

A2D_BUFF!iRlNG_OTILITY 02/18/86 PAGE

SOURCE STATBMBNT

Start_Conversion.:

B

LIlli!
290
291
292
293
294
295
296
297
298
299
303
304 .

AIIDB ad_ COIIIIIIand, CODtro1_A2D, #00000111b ; load channel nmaber

R

R

R

R

R

305
306
310
311
312
313
314
316
316
320
321
322
323
324
328
329
330
331 .eject

ADD aductempO,CLOCK,S_le_Period

Load_BSO_COIIIIIIIDd Start_A2D

POP t""'l'

Load_BSO_C_d BSO_O_higb

OR t""'l',#202h

ADD aduct""'l'O,Semp1e]eriod

Load_BSO~C_d Start_A2D

POSR teIIP

Load_BSO_COIIIIIIIDd BSO_0_1ow

POPF
RBT

atart first conversion
ODe 88llP1e tble fra.
now

start A2D at Time=aducteoopO

get a copy of the psw

Bet hao.O high at coDveraion
start tille for external SIB

enable a2d interrupts

atart second cODvertion one
8_1e time frOll the first

put paw back on stack

; lower haa.O for external SIB

9

270189-62

(

»
l'
N
c.n

C
III -s·

CQ

....
~ -0
c
0
0

cp :::J
<

-"" CD
01 :::I.
I\) CD ..

lJ
0
c: .. s·
CD

'0
0
:::J s-
c:
(1)

B

MCS-96 MACRO ASSl!MBLBft

IIRR LOC OBJECT
OOAC

OOAC
OOAl: 1"2

00&0 C60600
ooBO C60600
00B3 51070900

00B7 B00809
OOBA 1708

OOBC 880406
OOBF DI"26
OOC1 F3
OOC2 FO

OOC3
OOC3 640&02
OOC6880406

OOCF 3OOBOB

00D2
00D2 FD

00D9 DFOC
OODB F3
0000 FO

ooDD

0083 DF02
00B5 F3
00116 FO

00B7
00117 717F09
OOBA F3
oon FO
OOIC

A2D_BUFFBRIIIIUITILITY 02/18/86 PAOB 10

II
B
II

R
R

R

R
R

R

R

LINII
332
333
334
335
336
337
338
339
340
341
342
343
344
345
345
347
348
349
350
351
352
353
357
358
359
360
361
362
366
367
368 .
369
370
371
372
376
377
378
379
380
381
382
383
384
385

SOURCB 8TATBMII/iT
CSBG

A2D DONI Vector:
- PusRF

AID INTIIIlRIJPT /IOUTINII

8TH
8TH
AllDB

ad_result_10, [top_of_bufferJ+
ad_result_hi, [top_of_bufferJ+
ad_.,...,..d,Contro1_A2D,lIO0000111b

D.JlIZ _ap1e_COUDt, 8ap1e_ApiD
IIICB • _ap1e_count

ClIP top_of_buffer,aduete.p1
BB Top_of_buffers
POPF
RBT

S-.ple_ACain:
&OD aduetellpQ,8asp1e_Period
ClIP top_of_buffer,aducte.p1

Load_BSO_C_ Start_A2D

JBC aasp1e_COUDt,O, __ SSO_Rieb

Make_lISO_1ow:

; load cbmme1 n_

Check top of buffer

Set next • .-ple tiae
Check top of buffer
for later JIIIIP

nop wait 8 states after SSO' load
LDad_SSO_C_ BSO_O_Low

Lo8d for chaD", of SSO to triccer SIR
DB Top_of_buffers
POPF
HIT

Load for chaD", of BSO to triBBer SIR
Make ElSO hieb:

- Load_BSO_C-d BSO_O_Rieb

DB Top_of_buffers
POpr
HIT

Top_of:.buffera:
AllDB Control_A2D,.IIOT(Buay) Clear cODverter BUSY bit
POPF
HIT

I!Im

ASSBMBLY COMPLBTBD, NO BIIROII(S) FOIINII.
270189-63

l

~
'U
~ ...,
en

inter AP-275

The listing contains a fairly complete description of
what the program does. The block by block operations
are shown below:

Lines 1-198 describe the program, declare the variables
and set up equates. Several of these variables are de­
clared as overhl.yable, so the user needs to be careful if
using this module for other than the FFT program.

Lines 205-210 declare a macro which is used to load the
HSO unit. This will be used repeatedly through the
code.

Lines 212-253 determine whether a conversion or
download has been requested. If a download has been
requested, the data is downloaded to the destination
array as either paired or linear data. Paired data has
been described earlier.

Lines 255-278 contain a subroutine which converts the
destination array to either signed or unsigned numbers.
The numbers are also shifted right to provide the de­
sired full-scale value as requested by SHIFT_
COUNT.

Lines 279-334 initialize the conversion routine. HSO.O
is toggled with the start of each routine so that an ex­
ternal sample and hold can be used. The instructions in
lines 308,316, and 326 have been interweaved with the
Load_HSO_Commands to provide the required 8
state delays between HSO loadings. If this was not
done, NOPs would have been needed. It is easier to
understand the code if these lines are thought of as
being gathered at line 326.

Lines 337-353 are the actual AID interrupt routine.
The AID results are placed BYTE by BYTE on the
buffer, the AID is reloaded, and then the number of
samples taken is compared to the number needed. Note
that the AID command register needs to be reloaded
even if the channel does not change. INCB on line 348
is used to insure that the DJNZ falls through on the
next pass (if sample_count is not reset).

Lines 355-396 complete the routine. The HSO is set up
to trigger the next conversion and provide the HSO.O
toggle for an external sample and hold. Once again, the
time between consecutive loads of the HSO is 8 states
minimum. Note that this section of code has been opti­
mized for speed by reducing branches to an absolute
minimum and duplicating code where needed.

This concludes the description of the A to D buffer
module. In the FFT program, this module is run, then
the FFT transform module, then the plot module. This
allows variables to be overlaid, saving RAM space. The
time cost for this is not bad, considering the printer is
the limiting factor in these conversions. If more RAM

was provided, and the FFT was run with its data in
external RAM, this module could be run simultaneous­
ly with the other modules.

10.0 DATA PLOTTING MODULE

The plot module is relatively straight-forward, and is
shown in Listing 5. After the declarations, which in­
clude overlayable registers, an initialization routine is
listed. This separately called routine sets up the serial
port on the 8096 to talk to the printer. In this case, the
port has to be set for 300 baud.

A console out routine follows. This routine can also be
called by any program, but it is used only by the plot
routine in this example. The write to port 1 is used to
trace the program flow. The character to be output is
passed to this routine on the stack. This conforms to
PLM-96 requirements.

Since all stack operations on the 8096 are 16-bits wide,
a multiple character feature has been added to the con­
sole out routine. If the high byte it receives is non-zero,
the ASCII character in that byte is printed after the
character in the low byte. If the high byte has a value
between 128 and 255, the character in the low byte is
repeated the number of times indicated by the least sig­
nificant 7 bits of the high byte.

The print decimal number routine is next. It is called
with two words on the stack. The first word is the un­
signed value to be printed. The second byte contains
information on the number of places to be printed and
zero and blank suppression. This routine is not over­
flow-proof. The user must declare a sufficient number
of places to be printed for all possible numbers.

The DRAW .:-GRAPH routine provides the plot. It
first sends a series of carriage return, line feeds
(CRLFs) to clear the printer and provides a margin on
the paper. Each row is started with the row number, 2
spaces, and a "+". Asterisks are then plotted until

Number of asterisks> FFT Value I PLOT_RES

Recall that PLOT~ES is a variable set by the main
program. When the number of asterisks hits the desired
value, the value of the line is printed. If the Decibel
mode is selected, the line value is divided by 512 and
printed in integer + decimal part form, followed by
"dB". If the number of asterisks reaches PLOT_
MAX, no value is printed. The next line is then started.
A line with only a "!" is printed before the next plot
line to provide a more aesthetic display on the printer.
If a CRT was used, this extra line would probably not
be wanted.

6-153

r
![
S·
G

q> I
~ :::T
01 ID
.j:>. "U

0" ..
i:
0

~I

MCS-96 MACHO ASS_LIllI PLOT_SERIAL 02/18/86 PAGE

SBRIES-III MCS-96 MACHO ASSBMBLIIII, VI. 0

SOUlICB FILl: : F2: PLOTSP. A96
OBJECT rILl: :F2:PIDTSP.OIIJ'
COIlTROLS SPBCIFIEO IN INVOCATION C<MWID: fIOSB

BRR toe 01lJ'ECT

0000

0000

0024
0024
0028
002C
0021
0030
0032

0000

LIIO!
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
~37

38
39
40
41

SOUllCl! STATEMIIIIT
$pafe1ength(50)

PIDT_SBRIAL IIODDLB STACKSIZB (6)

Intel Corporation, Decaber 12, 1985
by Ira Rarden, NCO Applicati01lll

Tbi. pro....,. produces a plot OIl aerially coDDeeted printer. Tbe
.... iDi tude of each of the 32 input va1_ i. plotted borizoDtally, with ODe
"!" followed. by a linef'eed between each plot line. Bach plot line start.
wit" a "+" and the eDtire plot begins with 3 liDe feeds and euda with a fora
feecl. Tbe values to be plotted are 32 UlllJigaed words b .. ed at the exteraally
defiDed poiDter PIDT_IN.

').'he routiDe INIT_ODTPOT IIWIt be nm to Bet up the Berial port when the
Byat ... iB turned 00. CON_OUT caD be used by a pro....,. to output to the
aerial port. DJIAII_GRAPII i. the routine thet automatically p10ta the data.

Sizing of the graph CBD be doue USiD, PIDT_RES, which determiuea how lIIBDy
ait. are needed for each dot, and PLOT MAX, wbich i8 the IIl8XiJIuII value the
prograa will be paased. Note thet (PLDT_MAX/PIDT_RES) deriDes the """,illNlll
nUliber of eolUJIDS the routine will print.

DBO
BXTRN ioeI, baud_reg, .peon, 8~tat, abuf, portl
BXTRN zero, ax, bx, ex, dx, Fn_MODI
apt.p: deb 1

OSBO at 248
value:
divisor:
xptr:
yptr:
xval:
IOLvaI:

OSBO
IIXTRN PLOT_IN

$eJect

del
del
dew
dew
dew
dew

1
1
1
1
1
1

?70189-64

l

):.
"U .
I\)
crt

q>
01
01

! s·
CD

I ;
"a
§:
iii: o a.
c
iii
g>
a
::J
c
CD .s

NCS-96 MACRO ASSBMBLBR

ERR LOC OBJBCT

2500

2500

2500 812000

0270

0082
006r

2503 B16roo
2506 Bl8200

2509 B14900
2500 B12000

250r FO

PLOT_SERIAL

E

E
E

E
R

LINE
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
69
60
61
62
63
64
65

02/18/86

SOIJIICB STATBMBNT

CSEG at 2500H PIIOClRAM I«lDULB BEGINS

PUBLIC INIT_OUTPUT, CON_OUT, DRAICGRAP8
EITIiN PLOT_RES, PLOT_RES_2, PLOT_MAX

INIT_OUTPUT: INITIALIZB SERIAL PORT

1db ioc1,'00100000B set p2.0 to txd

baud_val equ 624 624=300 baud (at l2 MHz)

PAGE

Baud_bil/h
baud_low

equ
equ

«baud_va1-l)/256) OR BOH
(baud_va1-1) I«lD 256

set for XTAL1 clock

'eject

1db baud_re" #baud_low
1db baud_re" #baud_hil/h

1db
1db

RET

BpcOD,I01001001b
spblp,'00100000B

enable reci ver .ode 1
8et TI-t.p

270189-65

(

»
."

I
I\)
en

II:S-96 iw:Ro ASSBMBLBR PLOT_SERIAL

ERR LOC OB.lBCT LIIIB
66
f/1
68
69
70
71
72
73
74
75
76
77

r- 2810 78
iii" 28100000 E 79
C!: 25120000 E SO
:::I 2814 31"0110 E 81

C 2817 9B00pl B 82

t 251A DF17 83
84

::J"
2810 900000 B 85

CD 251F 3500FA R 86

"1J 252211D1"00 R 87

cp i5" 2825 900000 E 88 89
(]I 3: 2528 BOOOOO B 90
m 0 282B BOOlOO B 91

CL 2828 1101 B 92
C 2530 1171"00 B 93
CD 94

0 2833 1701 B 95
0 2535 1171"01 B 96

a 2838 -900000 B 97

:::I 2538 3500FA R 98
C 2538 11DroO R 99
CD 2541 900000 B 100
oS 101

2544 800000 B 102
2547 BOOlBB B 103
254A B300 B 104

105
106

02/18/86 PAGE

SOIJ!iCB STATBMIINT

CONSOLE OUT IIOUTI/IB

Call with a word parameter on stack. The low byte has tbe ~r
to be sent. If tbe hiib byte has a value betweeu 81R and 8F1!R, tbe
character 10 repeated 1 to 128 times reepective1y. ODe repeat,s
that the character will be printed 2 times. tf tbe high byte contains
a value bet_ 1 and 7FR, tbe charater represented by that value will
be printed after the character in tbe low byte. If the high byte
contains a value of zero only the low byte will be printed.

CON_OUT:
pop ax ex contains the calling adress
pop dx
jbs dx+ 1,7, onechr If bit 7 is Bet print one character
cmpb dxf-l,zero
Je onechr if highbyte=O print one character

twochr: orb sptJap.spstat wait for TI
Jbc aptap, 5, twochr
aodb sptap,#11011111b clear TI-tap
orb zero, spstet remove possible false Tl

Idb abuf,dx
1db dx,dx+l Load second character
clrb dx+l clear count byte
aodb dx,#07FR" k IISB

onechr: inch dx+l
aodb dx+l,#7FR

wait!: orb Bptmp,spstat wait for TI
jbc sptmp,5,waitl
aodb sptap,#IlOlll11b clear TI-tap
orb zero, spatet. ~ve possible falae TI

ldb sbuf,dx
Il.JN2 dx+l,waitl
BR [ax) Effectively a RBT

$eject

3

270189-66

l

l>
'P
N
......
C1I

C
(R
=:
::J

CD

I
::J'
CD
'tI 0) 0' ,

01 ~ -...I 0 a.
C
iD
'0
0
::J
!:!:
::J c
(1)

.s

MCS-96 MACRO ASSI!IIBLBR

JlRR LOC OBJECT

254C
2540 CCOO
254B CCOO
2550 ACOlOO
2553 ASOO962528
2558 CC24
255A
255A 0126
255C 8C2B24
255F 380017
2562980024
2565 D70F
2567
2567 310003
256A 38280C
2560 3AOO15
2570 AlFOOO24
2574 2003

2576910100
2579 65300024
257D 6l7FOO24
2581 C824
2583 2F8B
2585 A02624
2588 OlU
25& BDOA0028
2588 880028
2591 D7C7
2593
2593 B300

2596
2596 00OOO1000A006400

PLOT_SERIAL

E
B
E
E

E
B

B

B

E

B

B

LINE
107
108
109
110
III
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

02/18/86 PAGE

SOllRCE STATI!IIBNT

PRINT DECIMAL II1IIBER ROUTINI!

Call with two words on stack. The first is the value to be printed..
The second hu JIOde luf01"ll8.tioo in the low byte.

MODE: 000 = supre.. all zeros
001 = priot all nUlllbara
010 = supreaa all zeros except righmost
!xx = do not print leading blanks

The bigb byte of tha 2nd word = 2x tha nUllber of places to be printed

PRINT_IIIII:
POP
POP
Idbze
ld
pop

diY_loop:
ell'
diw
jbs
capb
jne

Val_O:
jbe
jba

protap: jba
ld
br

DOD 0: orb
chr=ok: add

and
pusb
call

coot: Id
ell'
diw
ClIP
joe

div clone:
- br

DIVTAB:
dew

ex
bx
dx,bx+l
divisor, di vtab [dx]
value

value+2
value,divisor
bx,O,chr_ok
value, zero
DOD_O

bx.I,prntsp
divisor, O. cbr _ok
bx.2 ,CODt
value.#OFOR
chr_ok

bx,4I000lB
value,t30b
va!ue.#71'h
value
COD_out
value. value+2
diviaor+2
divisor.IIO
divisor. zero
diY_loop

[ex]

Send Decimal number to CON_OUT

bx i8 mode byte. bx+l ia diviaor pointer

divide ax,dx by divisor
print character regardless of value

; Jump if value is non zero
Value is zero

i Print space instead of 0
; If io rtghtmoat posi tioo print 0

Do DOt print apace if bit is set
OFOht30b = 20R = apace

; Set flag ao O's will be printed
; 30b+n=Ot09eaeii

send least 8i, seven bits. clear upper word

output ascii result (reault(9)
load value w1 tb r.ainder

next lower power of ten

• ~er o'f' places for result
0, I, 10, 100, 1000, 10000 ; divioor table - 10_

4

270189-67

(

»
'tI .
I\)
-...I
UI

_.
":S-96 MACIiIl ASSI!MBLIIR PL01'_SBRIAL 02/18/86 PAGII 5 I t
BRR r.oc: OBJIICT LINE SOtIRCB STATI!IIBliT

154
155
158
157

25A2 158 DIWUlIIAPII: ; Graph -iDa routine
25A2 C90DOO 159 push IOcIh
25M 2F69 160 call COD_out
25A7 C90A82 161 pUah t820AB .. , Clear 3 U
25M 2f64 162 call CON_OUT
25AC C90000 163 push 100
25AI' usr 164 call CON_out

165
!: 25Bl 0120 166 clr xptr
(/J 2583 0130 167 clr "",,1
:::. 25B5 168

IIXT __ :

::I 2585 C9ODOA 169 puah IOAODB CIILl CO 2588 US6 170 call OOICOllT r 25BA C90000 171 push toOB au1
25BD 2rli1 172 call CON_OUT 173 :::r'
258F C830 174 push xval CD

." 2501 09020A 175 push '(OAOOR- or 001Ob) ; auPres8 all zerOs except right:.o.t

I I
» 0) 0" 25C4 2J'86 176 call PIIIIIT_NtII ." ,

177 • - N (J1 3: 2!5C6 092020 178 push 12020B PriDt 2 apac:ea 0) 0 25C92r45 179 call OO'COUT CII a. 25CB C92BOO 180 pU8h t2BB ; + c:: 2501 2r4O 181 call COD_out
ii' 182

0 25110 AI00002B 1 183 1d yptr,.PLOT_DS_2 PL01'_DS_2 = PLOT_DS/2
0 184 PLOT_US ia defiDed 7 liDes dowo
:::l 185

5- 2504 186 1IlIi'_OOL: /!eXt coi_
c:: 2504 8B2DOO002B 1 187 cwp yptr,PLOT_IN[xptr]
(1) 25»9 D911 188 Jh PRT_NtII .s 2508 189 PRT_M1t: ; Pruit Mark

2508 C92AOO 190 pU8h 12AB
25DI 2F30 191 call OON_Oor
25BO 192 I!IC_CIIT:
2510 6500002B 1 193 add yptr,IPLOT_DS PLOT_US = D of iDputa per output poiDt
2514 8900002B B 194 cwp yptr,'PLOT_MAX PLOT_lUX = 1IIIX!aD line leocth
25RB DlBA 196 JDh met_col
25BA 204r 196 br IIlIrLN

197 .eject
270189-68

_.
IIlS-96 MACI!O ASSBMBLBR PLOT_SERIAL 02/18/86 PAGE 6 I t
BRH LOC OIl.JBCT LINE SOURCB STATBMBNT

198
258C 199 PNT_NlII:
258C 8900002B 8 200 cmp yptr,.PLOT_HBS_2 If value is l~B then miD:bnDD needed
2510 D149 201 be NXTLN for a plot. do not print value

202
25F2 C92020 203 push .2020R print 2 .paces then value
25r5 2Fl9 204 call con out
251'73BOOOB B 205 JBS FFT)IODB,3,db_lDOde

206
25FA 207 nOnl_JIOde:
25FA CB2DOOOO B 208 pusb PLOT_IN[xptrJ
25rB C9ODOA 209 push '(OMOR or OOOOB) supreas all zeros

C 2601 2F49 210 call ~~_NlM UI 2603 2036 211 BR - 212 5" 2605 213 db_aode: CC 2605 A32DOOO02B B 214 1d yptr,p10t_in[xptrj PLOT_IN = 512*10*LOO(x) c.n

~
260A 08012B 215 8M yptr,'l yptr=265 * 10LOG(x)
260D AC2FOO B 216 Idbze ax.yptr+l ax= 10LOO(x) = yptr/256

217 ::r
2610 C800 8 218 push ax Print AX II)

"tI 2612 C9020A 219 push '(OMOR or 0010B) aupreaB all but rightJloat zero

I I
l> 0) 0' 261521'35 220 call PRINT_NlII '1J I - 2617 C92BOD 221 push tZBR Decimal point .

01 s::: 261A 2BF4 222 call COD_out II)
<0 223

...,
0 UI Q, 2610 B02B01 B 224 Idb ax+l,yptr high byte of ax = fractional portion of
C 2611 1100 B 225 clrb ax 10LOG(x) iD 226

0 2621 6OB60300 B 227 ... lu ax.#3B6B if ax=FFOOR then ax+2 now = 998 decilllal
0 2625370102 B 228 Jbc ax+l. 7. Do_rod
:::l 26280700 B 229 inc dx round value up g. 230
C 262A C800 B 231 no_rod: push dx ; dx=ax+2
(1) 262C C90106 232 push '(600R or OOOlB) print all nUlllbera to three places .s 262F 2FlB 233 call Print_nB

2631 092000 234 push tZOR .pace
2634 2BDA 235 call con out
2636096442 236 push t4264s "dB"
26392BD5 237 call COD_out

238
239 .eject

270189-69

K:S-96 MACRO ASS_LBR PLOT_SERIAL

ERR toe OBJIICT LIllI! 3OUlIC1 STATBMEIiT
240
241

2638 C90DOA 242 NXTLN: push IOAOD!
2631 2BD0 243 call CON OUT
2640 C90000 244 push 100ft
26432BCB 245 call CON OUT
2645 C92086 246 push t8620!
2648 21CS 247 call CON OUT
2641. C92100 248 push '21H
264D 2IC1 249 call COD_out

250
264F 0730 251 ioe xval

Ii 2651 6502002C 252 add xptr,t2
2655 893II002C 253 c.p xptr, 162

= 2659 02022758 254 ble nxt_row
:J 255

Q 2650 C9000A 256 Done: push IOAOO! r 2660 2IAI 257 call CON_OUT
2662 C9000C 258 push IOCOO!

'"4 2665 211.9 259 call COD_out :r 260 GI
2667 FO 261 Rl!T

" 'f' 0- 2668 262 EMO
..... - NO I!RROR(S) FOUNO. Ol ~ ASS_LY COMPLBTEO,
0 0 a.

c
iD
0
0
:J g.
c:
<D
.9:

Setup for next li
CRtP

nul

7epaces

02/18/86

Start priD.t1~ next row

CRLF Fo,,", feed for next qaph

null,"

FAG!!

270189-70

l

l>
"a

I,,
UI

Ap·275

At the end of the plot, a form feed is given to set the
printer up for the next graph. Our printer would fre­
quently miss the character after a CRLF. To solve this
problem, a null (ASCII 0) is sent after every CRLF to
make sure the printer is ready for the next line. This
has been found to be a problem with many devices run­
ning at close to their maximum capacity, and the nulls
work well to solve it.

With the plot completed, the program begins to run
again by taking another set of A to D samples.

11.0 USING THE FFT PROGRAM

The. program can be used with either real or tabled
data. If real data is used, the signal is applied to analog
channel 1. The program as written performs AID sam­
ples at 100 microsecond intervals, collecting the 64
samples in 6.4 milliseconds. This sets the sampling win­
dow frequency at 156 Hz. If tabled data is used, 64
words of data should be placed in the location pointed
to by DATAO in the TABLE_LOAQ routine of the
Main Module.

Program control is specified by FFT_MODE which is
loaded in the main module. Also within the main mod­
ule are settings which control the A to D buffer routine
and the Plot routine. The intention was to have only
one module to change and recompile to vary parame­

. ters in the entire program.

The program modules are set up to run one-at-a-time so
that the code would'be easy to understand. Additional­
ly, the Plot routine takes so long relative to the other
sections, that it doesn't pay to try to overlap code sec­
tions. If this code were to be converted to run a process
instead of print a graph, it might be worthwhile to run
the 'FFT and the AID routines at the same time.

If the goal of a modified program is to have the highest
frequency sampling possible, it might be desirable to
streamline the AID section and run it without inter­
ruption. When the A to D routine was complete the
FFT routine could be started. The reasoning behind
this is that at the fastest AID speeds the processor will
be almost completely tied up processing the AID infor­
mation and storing it away. Using an interrupt based
AID routine would slow things down.

A set of programs which will perform a FFT has been
presented in this application note. These programs are
available from the INSITE users library as program
CA-26. More importantly, dozens of programing exam­
ples have been made available, making it easier to get
started with the 8096. Examples of how to use the hard­
ware on the 8096 have already appeared in AP-248,
"Using The 8096". These two applications notes form a
good base for the understanding of MCS-96 microcon­
troller based design.

6-161

inter AP-275

12.0 APPENDIX A • MATRICES

Matrices are a convenient way to express groups of
equations. Consider the complex discrete Fourier
Transform in equation 9, with N = 4.

:j

Y n = I X(k) wnk n = 0, 1, 2, 3

k=O
This can be expanded to

Y(O) = X(O) wo + X(1) WO + X(2) WO +' X(3) WO
Y(1) = X(O) Wo + X(1) W1 + X(2) W2 + X(3) W3
Y(2) = X(O) Wo + X(1) W2 + X(2) W4 + X(3) W6

. Y(3) = X(O) Wo + X(1) W3 + X(2) W6 + X(3) W9

In matrix notation, this is shown as

[
Y(O) 1 [WO wo wo wo
Y(1) _ wo W1 W2 W3
Y(2) - wo W2 W4 W6

. Y(3) wo W3 W6 W9
1 [X(O) 1 X(1)

X(2)
X(3)

The first step to simplifying this is to reduce the center
matrix. Recalling that

WN = WNMODN and WO = 1

The matrix can be reduced to have less non-trivial mul-
tiplications.

[Y(O)] [i
1 1 1][X(O)

1
Y(1) W1 W2 W3 X(1)
Y(2) W2 wo W2 X(2)
Y(3) W3 W2 W1 X(3)

The square matrix can be factored into

[
Y(O) 1 [1 WO 0 0 1 [1 0 WO 0 '1 [X(O) 1 Y(2) _ 1 W2 0 0 0 1 0 WO X(1)
Y(1) - 0 0 1 W1 1 0 W2 0 X(2)
Y(3) 0 0 1 W3 0 1 0 W2 X(3)

For this equation to work, the Y(J) and Y(2) terms
need to be swapped, as shown above. This procedure is
a Bit Reversal, as described in the text.

Multiplying the two rightmost matrices results in

X(O) + X(2) WO
X(1) + X(3) WO
X(O) + X(2) W3
X(1) + X(3) W2

requiring 4 complex multiplications
& 4 complex additions

Noting that WO = - W2, 2 of the complex multiplica­
tions can be eliminated, with the following results

X(O) + X(2) WO
X(1) + X(3) WO
X(O) - X(2) WO
X(1) - X(3) WO

requiring 2 complex multiplications
and 4 complex addi1ions

Since Wi = - W3, a similar result occurs when ,this'
vector is multiplied by the remaining square matrix.
The resulting equations are:

Y(O) = (X(O) + X(2) WO) + WO (X(O) + ~(3) WO)
Y(2) = (X(O) + X(2) WO) - WO (X(1) + X(3) WO)
Y(1) = (X(O) - X(2) WO) + W1 (X(1) - X(3) WO)
Y(3) = (X(O) - X(2) WO) - W1 (X(1) - X(3) WO)

The number of complex multiplications required is 4, as
compared with 16 for the unfactored matrix.

In general, the FFT requires

N' EXPONENT
2 complex multiplications

and
N • EXPONENT complex additions

where
EXPONENT = LOg2 N

A standard.Fourier Transform requires

N2 complex multiplications

and
N(N -1) complex additions

6-162

inter AP-275

13.0 APPENDIX B - PLOTS

The following plots are examples of output from the
FFT program. These plots were generated using tabled
data, but very similar plots have also been made using
the analog input module. Typically, a plot made using
the analog input module will not show quite as much
power at each frequency and will show a positive value
for the DC component. This is because it is difficult to
get exactly a full-scale analog input with no DC offset.

Plot 1 is a Magnitude plot of a square wave of period
NT.

Plot 2 is the same data plotted in dB. Note how the dB
plot enhances the difference in the small signal val­
ues at the high frequencies.

Plot 3 shows the windowed version of this data. Note,
that the widening of the bins due to windowing
shows energy in the even harmonics that is not
actually present. For data of this type a different
window other than Hanning would normally be
used. Many window types are available, the selec­
tion of which can be determined by the type of
data to be plotted.3

Plot 4 shows a sine wave of period NT 17 or fre­
quency 7/NT.

Plot S shows the same input with windowing. Note the
signal shown in bins 6 and 8.

Plot 6 shows a sine wave of period NT/7.S. Note the
noise caused by the discontinuity as discussed ear­
lier.

Plot 7 uses windowing on the data used for plot 6. Note
the cleaner appearance.

Plot 8 shows a sine wave input of magnitude 0.707 and
period NT/7.S.

Plot 9 shows same input with windowing.

Plot 10 shows a sine wave of magnitude 0.707/16 and
period NT/ll.

Plot 11 shows the same input with windowing. Note
that there is no power shown in bins 10 and 12.
This is because at 6 dB down from 3 dB they are
nearly equal to zero.

Plot 12 uses the sum of the signals for plots 8 and 10 as
inputs. Note that the component at period NT/II
is almost hidden.

Plot 13 uses the same signal as plot 12 but applies win­
dowing. Now the period component at NT/II can
easily be seen. The Hanning window workS well in
this case to separate the signal from the leakage. If
the signals were closer together the Hanning win­
dow may not have worked and another window
may have been needed.

6-163

AP-275

o
1

2

+
!**~*********************** I .

3

4
t**********,***************** 6978·
+
I

5

6

.;.****************
!

!
I

7 3038
8
9 1 •••••••••

!
2394

! 10
11 1991

12
13
14
15
16
17
18
19

!
+

!******* !
t
.;.******
!
+
!
I
+
I

... ***** I
+
!
I

22 +
23 !**** I .

20
21

24
25
26
27
28
29
30
31

+
!
!
+
!
I
+
!
!
+
!
!

1718

1524

1381

1274

1192

1131

1086

1054

1033

1024

4214

20868

- 270189-20

Plot 1-Magnltude Plot of Squarewave

6-164

o

2
3

4

8

9
10
11
12
13
14
15
16
17

IB
19
20
21
22
23
24
25
26
27
28
29
30
31

AP-275

+
!**
I
+
! ... --*-
I

28.706 dB

1**. 24.327 dB
I
+
1**-
I

21.487 dB

!
1
+

19.421 dB

! 17.815 dB
1
+
! 16.538 dB
!
+
I
+******************************* 15.499 dB
I
+

!**,*************************** I
+
!
I

1 •••••••••••••••••••••••••••
!
+
!
+**************************
!
+
!
1

!
!
+
!************************
!
+
!
!

14.639 dB

13.940 dB

13.363 dB

12.908 dB

12.554 dB

12.296 dB

12.125 dB

12.043 dB

Plot 2-Decibel Plot of Squarewave

6-165

38.222 dB

270189-21

intJ AP-275

o

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17

18
19

+************ 6.105 dB
!** 32.203 dB

!*** 28.678 dB

!*** 22.690 dB

!** 20.760 dB

!************************************* 18.308 dB

!********************************** 16.990 dB

!******************************* 15.460 dB

1***************************** 14.476 dB

!*************************** 13.398 dB

!************************* 12.620 dB

1************************ 11.795 dB

1********************** 11.175 dB

1********************* 10.507 dB
1******************** 10.000 dB

!******************* 9.464 dB
!****************** 9.039 dB

!***************** 8.616 dB
!***************** 8.281 dB
!**************** 7.916 dB

20 !***.******.**** 7.628 dB
21 !*************** 7.347 dB
22 !**********.*** 7.121 dB
23 !************** 6.889 dB
24 !************* 6.706 dB
25 !************* 6.542 dB
26 !************* 6.409 dB
27.!************* 6.265 dB

!************ 6.191 dB
!************ 6.094 dB
!
+************
!***********1r
!

29
30 6.082 dB
31 6.031 dB

Plot.3-Plot of Squarewave with Window

6-166

I

270189-22

intJ

o
1
2
3

4

6

+
I
+
I
+
!
+
!
+
I
+
!
+

AP-275

! ... *.*****************

8

9

10

11

12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31

I
+
I
+
!
+
I
+
!
+
I
+
!
+
!
+
!
+
!
+
!
+
!
+
!
+
!
r
+
!
+
I
+
!
+
I
+
!
+
I
r
+
I

r
+
I

Plot 4-Sin (7.0X) without Window

6-167

36.121 dB

270189-23

inter AP-275

o

2
3

4

5

6

7
8
9

10
II

12
13
14
15

16

17
18
19

20
21
22
23
24

25
26

27
28
29
30
31

+
!
+
!
+
I
+
I
+
!
+
!.** ••••• * ••••• *** ••••• * •• ** •••• ** •••••••••••••• * 24 078 dB
! .. ** •• * •• * •• * •••••••••••• * ••••• *.*.* ••• *.* ••••••••••••• :* •• *
I -'

+** 24.078 dB
I
+
!
+
I
+
I
+
!
+
!
+
I
+
!
+
!
+
!
+
!
+
!
+
!
+
!
+
!
i
+
!
+
!
+
!
+
I
+
!

t
t
+
!

Plot 5-5ln (7.0X) with Window

6-168

30.101 dB

270189-24

o

2
3

4

S
6

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Ap·275

+***************************** 14.265 dB
! * •• *............... 14.444 dB

!****************************** 14.943 dB
!................................ 15.865 dB

!********~************************** 17.308 dB
!....................................... 19.569 dB

!*** 23.421 dB
!**.
I .
+**

!** 22.012 dB

!******************************-**** 17.199 dB !............................ 13.943 dB
!....................... 11.472 dB
! ** *....... 9.483 dB
!................ 7.819 dB
!............. 6.402 dB
!.......... 5.164 dB
!........ 4.090 dB
!...... 3.152 dB
!*.... 2.308 dB
! .. * 1.546 dB
! +.. 0.901 dB
! i* 0.300 dB
+
!
+
!
+
I
+
!
+
I
+
I
t
t
+
I

Plot &-Sin (7.5X) without Window

6-169

32.441 dB
31. 971 dB

270189-25

o

2
3

4

5
6

7
8
9

10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24

25

26

27

28

29
30
31

+
I
+
!
+
I
+
I
+
I
+

AP-275

!***************************** 14.706 dB

!*** •• *-
I .

t*****·*********~*****·**·******·***·***·**~*****··~*****.
+*.************** •• *********** 14.694 dB
!
+
!

t
+
I
+
I
+
!
+
I
+
I
+
I
+
I
+
I
+
!

t
+
I
+
I
+
!
+
I
+
!
+
I
+
I
t
t
t

Plot 7-5ln (7.5X) with Window

6-170

28.671 dB

28.678 dB

270189-26

o

2
3
4

5
6

7
8

9

10
11

AP-275

+********************** 11.242 dB
!*********************** 11.417 dB
1........................ 11.936 dB

1************************** 12.846 dB
l............................. 14.296 dB

1********************************* 16 561 dB I .
+******************** •• ******************* 2~.409 dB
I
+************************ •• *********************************
1** I .
+************************************** I .
+********.******************* 14.187 dB
l...................... 10.936 dB

18.994 dB

l................. 8.472 dB

13 !*******.***** 6.468 dB
14 !****.***** 4.819 dB

12

15 !******* 3.382 dB
16 .!**** 2.152 dB
17

18
19
20
21
22
23
24
25
26
27
28
29
30

31

I
+** 1.082 dB
!
+
!
+
I
+
!
+
! r
+
!
+
!
+
I
+
I r r
+
I
+
I
+
I

29.425 dB
28.959 dB

Plot 8-0.707;' Sin (7.5X) without Window

6-171

270189-27

intJ

o

2
3

4

5

+
I
+­
I
+
I
t
+
I
+

AP-275

6

7
8

!********............... 11.694 dB

!**************************************.*************
!~**

9

10
11
12
13
14
15

16
17
18
19
20
21

22
23
24
2S
26
27
28
29

I
.***********************
I
t
+
I
+
I
+
I
t
+
!
+
I

t
+
I
+
I
+
I
+
!
+
I
+
I
+
!
+
I
+
!
+
!

t
t

30 t
31 r

11.674 dB

25.663 dB
25.667 dB

Plot 9-0.707 • Sin (7.5X) with Window

6-172

270189-28

o +
1
+
1
+
I
+
!

4 +
1

5 +
1
+
1
+
I

8 t
+
I

10 +
1

11 +******************
I

12 t
13 +

1
14. r
15 +

1
16 t
17 +

1
18 +

1
19 +

I
20 .j.

1
21 +

I
22 +

1
23 +

I·
24 +

1
25 +

1
26 +

I
27 t
28 +

1
29 t
30 t
31 t

AP-275

9.031 dB

270189-29

Plot 10-0.707/16. Sin (11X) without Window

6-173

AP-275

0 +
I

1 +
I

2 +
I

3 +
I

4 +
I

5 +
I

6 +
I

7 +
I

8 +
I

9 +
I

10 +

11 ! ... * •• 3.008 dB
I

12 +
I

13 +
I

14 +
I

15 +
I

16 +
!

17 +
!

18 +
!

19 +
!

20 +
I

21 +
I

22 +
!

23 +
I

24 +
!

25 +
!

26 +
I

27 +
!

28 +
!

29 +
I

30 +
I

31 +
I

270189-30

" Plot 11-0.707/16 • Sin (11 X) with Window

6-174

o

2
3
4

5
6

7
8

9

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

AP-275

+********************** 11.242 dB
!*********************** 11.425 dB
1************************ 11.936 dB
1************************** 12.846 dB

!***************************** 14.296 dB

1********************************* 16.561 dB
1*** 20.409 dB
1***
1**
1************************************** 19.000 dB

1**************************** 14.187 dB

1************************** 13.105 dB
1***************** 8.472 dB

!************* 6.483 dB
1********** 4.819 dB

!******* 3.382 dB
!**** 2.152 dB
!
+** 1.082 dB
!

t
r
+
!
+
I
+
I
r
r
+
!
+
!
+
!
+
I
+
I

t
t

29.425 dB
28.959 dB

Plot 12-0.707 (Sin (7.5X) + 1/,6 Sin (11X» without Window

6-175

270189-31

o

2
3

4

5

6

7

8
9

10

11
12
13
14
15
16

17
18

19

20
21
22
23
24
25
26
27
28
29
30
31

r
+
!
+
I
+
I
r
+
!***********************
I

Ap·275

11.702 dB
.***
!***
!*********************** 11.674 dB
!
+
!
I
+
!
+
!
+
!

r
+
I
+
!
+
I
+
!
+
I
+
!
+
!
+
!
+
I
+
!
+
I
+
I
+
I
+
!
+
I
+
I

3,074 dB

25.663 dB
25.667 dB

Plot 13--0.707 (Sin (7.5X) + 1J.. Sin (11X» with Window

6-176

270189-32

AP-275

BIBLIOGRAPHY
1. Boyet, Howard and Katz, Ron, The 16-Bit 8096:

Programming, Interfacing, Applications. 1985, Mi­
croprocessor Training Inc., New York, NY.

2. Brigham, E. Oran, The Fast Fourier Transform.
1974, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey.

3. Harris, Fredric J., On the use of Windows for Har­
monic Analysis with the Discrete Fourier Trans­
form. Proceedings of the IEEE, Vol. 66, No.1, Jan­
uary 1978.

4. Weaver, H. Joseph, Applications of discrete and
continuous Fourier analysis. 1983, John Wiley. and
Sons, New York.

INTEL PUBLICATIONS

1. 1986 Microcontroller Handbook, Order Number
210918-004

2. Using the 8096, AP-248, Order Number 270061-001

3. MCS-96 Macro Assembler User's Guide, Order
Number 122048-001

4. MCS-96 Utilities User's Guide, Order Number
122049-001

6-177

inter APPLICATION
BRIEF

AB-32

December 1987

Upgrade Path from 8096-90 to
8096BH to 80C196

@ Intel Corporation, 1987 Order Number: 270521-001

6-178

inter AB·32

Converting applications that use'an 8X9X-90 to use an
8X9XBH requires consideration of a few of the BH
enhancements. Descriptions of each of the differences
between the -90 and the BH follow, along with a discus­
sion of the implications of the change.

BHE and INST are latched: The bus control signals
BHE and INST are valid throughout the bus cycle on
8X9XBH devices. ON -90 devices, these signals need to
be latched on the falling edge of ALE.

Byte Read following RESET rising: The bus control
and bus width 'options of 8X9XBH devices are selected
by configuration of the chip immediately following the
rising edge of RESET. During the usual 10 state reset
sequence, BH parts will perform a byte read of location
20l8H to acquire configuration information prior to
fetching the first opcode at location 2080H. The 8X9X-
90 does not perform this read.

ALE is high while in reset: The ALE/ ADV pin of the
8X9XBH is driven high while the RESET pin is held
low. On -90 devices, ALE is driven low while in RE­
SET. Circuits which rely on the state of ALE while
RESET is low must be modified. The reset state of
ALE was changed to enable implementation of the
Chip Configuration Byte read from external memory
following the rising edge of RESET. '

EA is latched on RESET rising: The 8X9XBH latches
the value of EA on the rising edge of RESET. On -90
devices, EA was not latched and could be changed
without placing the part in'RESET. This change was
necessary to enhance ROM/EPROM security: Circuits
that rely on EA not being latched must be modified.

AID speed increased: The 8X95BH and 8X97BH AID
converters complete conversion in 88 state times. On -
90 devices with AID converters, a conversion takes 168
state times. This translates in an increased conversion
speed from 42J-Ls on -90 parts to 22J-Ls on BH parts
running at 12MHz. Software that relies upon the speed
of conversion for timing must be changed. It is also
recommended that MCS-96 software be written so as to
not be impacted by further changes in AID conversion
speed.

Sample/Hold on A/D: The 8X95BH and 8X97BH
have a sample/hold on the input of the AID converter.
8X9X-90 devices with A/D converters do not have
sample/hold circuitry. External analog circuitry which
also includes a samplelhold must provide a settled ana­
log input within the first four state times of 8X9XBH
conversion.

Duplicate Fetches: The 8X9XBH bus controller was
made more aggressive when it comes to instruction
fetches in order to minimize the execution speed degra-

dation of using an 8-bit bus. As a result, instruction
fetches over a l6-bit bus sometimes occur when there is
no space in the prefetch queue to store the fetched op­
codes. This requires another instruction fetch from the
same address when space in the prefetch queue opens
up.

To the external system, these occurrences appear as du­
plicate instruction fetches. An estimated 10 percent of
all instruction fetches will be "duplicates", while over­
all bus loading will be approximately 65 to 70 percent,
compared to an 8X9X-90 bus loading of-approximately
55 to 60 percent. Execution speed is not impacted by a
duplicate fetch.

Write Pulse Width: The 8X9XBH l6-bit bus write
pulse width is one Tosc longer than on the 8X9X-90,
thus allowing slower memories and peripherals to be
used. In order to widen the WR pulse width, the time
between the end of WR and the next ALE was reduced
by Tosc. Note that the signals WRL, WRH, and WR
with an 8-bit bus are still the same width as on -90
parts.

Vpp Replaces VBB: Vpp is the programming pin for
EPROM devices. Systems that have this connected
through a capacitor to ANGND (required on 8X9X-90
parts) do not need to change. ANGND must be held
nominally at the same potential as VSS, and Vpp must
NOT be connected to Vee. High voltage must NEVER
be placed on the Vpp pin of a ROM device.

While there is almost no reason to do so, an application
should not attempt to execute with the EA pin at logic
zero and Vee at 5.5 Voe on an 879XBH EPROM
device. Additionally, the design should always begin
the "out of RESET" code execution from the internal
EPROM, immediately after the power-on sequence.

Reserved location warning: Intel reserved addresses can
not be used by applications which use 8X9XBH inter­
nal ROM/EPROM. The data read from a reserved lo­
cation is not guaranteed, and a write to any reserved
location could cause unpredictable results. When at­
tempting to program Intel Reserved addresses, the data
must be OFFFFH to ensure a harmless result.

Intel Reserved locations, when mapped to external
memory, must be filled with OFFFFH to ensure com­
patibility with future parts.

A positive transition on NMI: The 8X9XBH does not
clear the Watchdog Timer. The 8X9X-90 does clear the
WDT on a positive transition of NMI, and both part
vector to, external address OOOOH.

The following is the latest information on upgrading a
NMOS 8096 to a CHMOS 80C196.

6-179

inter AB-32

The chip which is the CHMOS 8096BH replacement is
designated the 80C196. The part can be configured to
be pin compatible with the 8096, but because of the
process change and other enhancements, it may not be
plug compatible in some designs. This is to say that you
will not be able to arbitrarily swap out a NMOS 8096
and replace it with the 80C196. However, if a few rules
are followed the changes required will be almost pain­
less.

80C196 OVERVIEW

First, some background on the 80C196 is needed. The
opcode set is a: true superset of the 8096, but some en­
hancements have been made to the peripherals and tim­
ings. The crystal is divided by 2 on the 80C196, instead
of 3, as on the 8096. This means that the 8OC196 run­
ning at 8 MHz will have a 250 ns state time, Just like an
8096 running at 12 MHz.

An 8OC196 running at 8 MHz will emulate an 8096 at
12 MHz except that some of the instructions and pe­
ripherals will operate faster. The instructions which
will be speeded up include mul, div, interrupt, call, ret,
and jumps. The serial port will require a different baud
value and the A to D may not run at exactly the same
speed. This means that timing loops which measure in­
struction speed or A to D completion speed may have
to be modified. The bus timings, while not nanosecond
for nanosecond compatible, will work in most systems.

DESIGN GUIDELINES

1. Do not use undefined register areas for storage or
depend on them to return a specific value if it is not
stated in the Embedded Controller. Undefined regis­
ters and locations on this, or any other, part should
be considered off-limits and reserved for develop­
ment systems, testing or future use.

2. Do not base timings loops on instruction execution
times, as some instructions may execute faster on the
80C.l96 than on the 8096, even when the 80CI96 is
slowed down to 8 MHz, its 8096 compatible rate.
Counter-type loops should be initialized with values
that can easily be changed at compile ti~e.

3. Do not base critical timings on interrupt responses,
A to D completions, flag settings, etc. This is for the
same reason as above; some of these responses may
be slightly different from those on the 8096. Timer 1
is provided for critical timings. With an 8 MHz crys­
tal, it will increment every 2 microseconds, just as an
8096 running lit 12 MHz.

4. The serial port baud register values should be easily
changeable at compile time. Since the serial port is
now capable of running at a higher frequency, a dif­
ferent baud rate value will be needed.

5. The circuitry interfacing to the chip should be capa­
ble of interfacing to the 80C196. The I/O lines on
8OC196 will look a lot like those on the 8OC51.

6. The BHE/WRH signal in eight bit and write strobe
mode will go low for odd ~ transfers and high for
even byte transfers. The WR/WRL signal will go
low for odd byte transfers and high for even byte
transfers. Normally, the WR/WRL signal should go
low for odd and even byte trimsfers since transfers
are on the low byte of the data bus.

7. PUSH and POP operations addressed relative to the
stack pointer work differently on the 80C196 than on
the 8096. On the 8096, the address is calculated
based on the un-updated stack pointer value, on the
80C196, the address is calculated based on the up­
dated value. The only operations effected are: PUSH .
xx [sp), PUSH [sp) , PUSH sp, POP xx [sp) , POP
[sp), POP sp.

8. The VPD pin on the 8X9X parts is now the CDE
(Clock Detect Enable) pin on the 8OC196. When tied
high, CDE enables a clock speed sensor and will re­
set the part if the Xtall frequency drops below a few
hundred KHz. While this is perfect for most produc­
tion boardS, it may be desirable to have a jumper
option on this function for evaluation boards.

6-180

inter APPLICATION
BRIEF

AB-33

December 1987

Memory Expansion for the 8096

DOUG YODER
ECO APPLICATIONS ENGINEER

@ Intel Corporation, 1987 Order Number: 270522-001
6-181

inter AB-33

This Application Brief presents two examples of a pag­
ing scheme for the 8096, allowing either 256K bytes of
total memory, or 544K bytes of total memory. Both
systems utilize PORTI as the output for the upper ad­
dress lines. Because Interrupt vectors, and other critical
sections of code must always be present, addresses
0-7FFFH always refer to the same main page. The
PORTI upper addresses only affect addresses 8000-
FFFFH, by slapping several 32K pages in and out.

THE 256K SYSTEM

Hardware

The hardware for the 256K system (see Figures 4 & 5,
an example with 128K ROM and 128K RAM) utilizes
a 74LS157 quad 2 to 1 multiplexer. The enable pin of
the 74LS157 is tied to the inverted A15 signal, which is
the latched addr/data 15 (ADI5) signal from the 96. In
this way, when A15 is low, the 74LS157 is disabled and
all its outputs are low. Particularly, MA17 is low,
which selects the 27512 and deselects the rams. Also,
MA15 and MA16 are low, which guarantee that ad­
dresses 0-7FFFH of the 27512 are accessed.

When A15 is high, the 74LS157 is enabled to pass
MA15 - MA17 values. The bank select pin of the
74LS157 is connected to the INST pin of the 96. When
the INST pin is high, for a code access, INSTAlS -
INSTA17 (pORTI.O - PORTI.2) are used. When
INST is low, for a data read or write, DATAA15 -
DATAA17 (PORT1.3 - PORT 1.5) are used. This al­
lows for the use of separate pages for code and data
w~thout having to change the upper address lines each
time. Also, it is possible to select a ROM page for a
data table, or load a RAM page with executable code
downloaded from another source. PORTI.6 and
PORTI.7 can still be us~d as I/O ports. If a -90 part
were used, the INST pin would need to be latched since
it is only valid during the address output oli the bus
pins.

This system was designed to get the maximum amount
of memory with a minimum amount of hardware. The

OH

3FFFH

4000H

7FFFH

8000H

BFFFH

COOOH

FFFFH

EPROM
LOCATION

US •

MAIN
PAGE
LOW

PAGE1
LOW
BYTES

PAGE2
LOW
BYTES

PAGE3
LOW
BYTES

OH

3FFFH

4000H

7FFFH

8000H

BFFFH

COOOH

FFFFH

EPROM
LOCATION

U6

MAIN
PAGE
HIGH

PAGE1
HIGH
BYTES

PAGE2
HIGH
BYTES

PAGE3
HIGH
BYTES

amount of ROM and RAM was picked arbitrarily, and
could be reconfigured in various ways, however, this
may require slight modifications or additions to the de­
coder circuitry. This setup has a main page at addresses
0-7FFFH, and upper pages 1-7 at addresses 8000-
FFFFH. Note that upper page 0 is the same as the
main page. The WRL and WRH feature of the BH part
was used to allow for byte writes to RAM. If the -90
part were to be used, additional logic would be neces­
sary to generate these signals from WR and BHE.

The RAM chips utilized were NEC uPD43256-15 32K
x 8 static rams with an access time of 1 SOns. The
ROMs were Intel 27512 64K x 8 EPROMs with an
access time of 200ns. The decoder circuitry used was
entirely LS TTL. Using an 8097BH running at lOMHz,
there was ample time for address decoding and memory
access. Timing analysis showed that 12MHz operation
would also be accommodated easily. If slower memo­
ries are used, further analysis would be necessary. Also,
it would be possible to switch to S TTL to greatly de­
crease the decoding response time.

. Software

When using this system there are several things to keep
in mind when preparing the software.

Since ASM96 will only allow addresses from 0-
FFFFH, it is necessary to generate each page of code in
a separate file. These pages should not be linked togeth­
er, but rather should each be used to program the prop­
er section of the EPROM associated with that page.
The main page routine should be coded with addresses
from 0-7FFFH, and each of the upper pages should be
coded with addresses from 8ooo-FFFH. Because link­
ing is not possible, each module should contain a table
of constants which defines the symbols used in other
modules. These values are easily obtained from the list­
ing file, which can be created using zeros in the table
the first time. The addresses of the pages in a 27512
after splitting low and high bytes into 2 EPROMs are .
shown in Figure 1.

RAM RAM.
LOCATION LOCATION

U7 U8

OH PAGE4 OH PAGE4
LOW HIGH

3FFFH BYTES 3FFFH BYTES

4000H PAGES 4000H PAGES
LOW HIGH

7FFFH BYTES 7FFFH BYTES

U9 U10

OH PAGE6 OH PAGE6
LOW HIGH

3FFFH BYTES 3FFFH BYTES

4000H PAGE7 4000H PAGE7
LOW HIGH

7FFFH BYTES 7FFFH BYTES

Figure 1. The Current System

6-182

AB-33

OH

3FFFH

4000H

7FFFH

BOOOH

BFFFH

COOOH

FFFFH

EPROM
LOCATION

U5

MAIN
PAGE
LOW

PAGEl
LOW
BYTES

PAGE2
LOW
BYTES

PAGE3
LOW
BYTES

OH

3FFFH

4000H

7FFFH

BOOOH

BFFFH

GOOCH

FFFFH

EPROM
LOCATION

U6

MAIN
PAGE
HIGH

PAGEl
HIGH
BYTES

PAGE2
HIGH
BYTES

PAGE3
HIGH
BYTES

OH

3FFFH

4000H

7FFFH

BOOOH

BFFFH

COOOH

FFFFH

EPROM
LOCATION

U7

PAGE4
LOW
BYTES

PAGE5
LOW
BYTES

PAGE6
LOW
BYTES

PAGE7
LOW
BYTES

OH

3FFFH

4000H

7FFFH

BOOOH

BFFFH

COOOH

FFFFH

EPROM
LOCATION

UB

PAGE4
HIGH
BYTES

PAGE5
HIGH
BYTES

PAGE6
HIGH
BYTES

PAGE7
HIGH
BYTES

Figure 2. A System Using all EPROMS and no RAM

All changes to the upper instruction addresses of
PORT! must be made by code located in the main
page. A listing of subroutines for use in the main page,
and a listing of macros for use in all pages is provided.
By invoking one of these macros the programmer can
easily transfer from one page to another, or select a new
data page. The subroutines should not be called direct­
ly, they should be entered by using the appropriate
macro. The subroutines should be located at the ad­
dresses specified, otherwise the macros must be
changed as they are written to call an absolute address
in the main page. Also, any hardware changes may ren­
der the software inoperative.

Because the WRL-WRH feature of the 96BH is used,
the correct Chip Configuration Register value of OFBH
must be loaded into the ROMs at address 2018H. This
is done in the main code file with the following state­
ments:

CSEG AT 2018H

CCR: DCB OFBH ;VALUE FOR CHIP
CONFIGURATION REGISTER

Finally, it is necessary to initialize the DATA address
at the start of the program this can be done using the
NEW_DATAJAGE MACRO.

THE 544K SYSTEM

Hardware

The hardware for the 544K system '(see Figures 6 & 7,
an example with 288K ROM and 256K RAM) has
some slight changes from the 256K system.

First, all pins of PORT 1 are now in use as address lines.
This allows for PORT! to select 16 pages of memory,
with a different address for instructions or data. '

Second, 27128 16K x 8 EPROMS have been added for
use as the main code page. In this system, the main
page is physically separate from upper page O. The
27128's are selected by A15 being low. The upper pages
of memory are selected when A15 is high which enables
the 74LS155 demultiplexer which is used for address
decoding. When the 74LS155 is disabled, its outputs
are all high, which 'disables all upper memories. The
74LS157 is enabled all the time, to speed up address
decoding, as its outputs do not matter when the
74LS155 is disabled.

Software

All rules for the 256K system apply to the 544K sys­
tem, except that the main page no longer overlaps page
O. However, because all of PORT 1 is now in use, differ­
ent macros and subroutines must now be used. These
have been included also.

THE INST PIN

The instruction pin has been verified to work correctly
on the 8X9X- 90, 8X9XBH, and the 80C196. The func­
tionality of the INST pin is as follows.

Instruction Fetches

The INST pin is high during an external memory read
indicating the read is an instruction fetch. This includes
immediate data reads since the data is embedded in the
code.

Data Reads and Writes

The INST is low during an external memory read or
write indicating the bus cycle is a data cycle. This
would be indirect and indexed instructions which are
directed at external memory.

6-183

OH

3FFFH

OH

3FFFH

4000H

7FFFH

BOOOH

BFFFH

COOOH

FFFFH

OH

3FFFH

4000H

7FFFH

OH

3FFFH

4000H

7FFFH

EPROM
LOCATION

U5

U7

PAGEO
LOW
BYTES

PAGE1
LOW
BYTES

PAGE2
LOW
BYTES

PAGE3
LOW
BYTES

RAM
LOCATION

U11

PAGEB
LOW
BYTES

PAGE9
LOW
BYTES

U15

PAGE12
LOW
BYTES

PAGE13
LOW
BYTES

OH

'3FFFH

OH

3FFFH

4000H

7FFFH

BOOOH

BFFFH

COOOH

FFFFH

OH

3FFFH

4000H

7FFFH

OH

3FFFH

4000H

7FFFH

EPROM
LOCATION

US

UB

PAGEO
HIGH
BYTES

PAGE1
HIGH
BYTES

PAGE2
HIGH
BYTES

PAGE3
HIGH
BYTES

RAM
LOCATION

U12

PAGEB
HIGH
BYTES

PAGE9 .
HIGH
BYTES

U16

PAGE12
HIGH
BYTES

PAGE13
HIGH
BYTES

AB-33

OH

3FFFH

4000H

7FFFH

BOOOH

BFFFH

COOOH

FFFFH

OH

3FFFH

4000H

7FFFH

OH

3FFFH

4000H

7FFFH

EPROM
LOCATION

U9

PAGE4
LOW
BYTES

PAGE5
LOW
BYTES

PAGE6
LOW
BYTES

PAGE7
LOW
BYTES

RAM
LOCATION

U13

PAGE10
LOW
BYTES

PAGE11
LOW
BYTES

U17

PAGE14
LOW
BYTES

PAGE15
LOW
BYTES

Figure 3. The 544K Memory Map

6-184

OH

3FFFH

4000H

7FFFH

BOOOH

BFFFH

COOOH

FFFFH

OH

3FFFH

4000H

7FFFH

OH

3FFFH

4000H

7FFFH

EPROM
LOCATION

U10

PAGE4
HIGH
BYTES

PAGE5
HIGH
BYTES

PAGES
HIGH
BYTES

PAGE7
HIGH
BYTES

RAM
LOCATION

U14

PAGE10
HIGH
BYTES

PAGE11
HIGH
BYTES

U1B

PAGE14
HIGH
BYTES

PAGE15
HIGH
BYTES

inter AB-33

+5

~. ~ U2 AIS

4 Ul I

II G ·1 AlB 0..0
~ VREF 0..0..

>.> DATAAIS 2 - PIIl.IIl/ACIIl INSTAlS INSTAlS 3 IA IY 4 HAIS - PIIl.I/ACI PI. III INSTAI6 DATAAI6 5 IB - PIIl.2/AC2 PI.I INSTAI7 INSTAI6 6 2A 2Y 7 HAIS - PIIl.3/AC3 PI.2 2B DATAAI5 DATAAI7 II - PIIl.4/AC4 PI.3 DATAAI6 INSTAI7 1111 3A 3Y 9 HAI7 - PIIl.5/ACS PI.4 3B DATAAI7 rlt - PIIl.6/ACS PI.S 13 4A 4Y r-!3. - PIIl.7/AC7 PI.6 ---« 4B

~
ANGND PI.7 ---« 74LSI57

HAI7 . .• RAH23 --- P2.IIl/TXD EA • U2 - P2.I/RXD BUSWDTH

~ _" 7 LSOO --- P2.2/EXI INST U2 RAHIIlI - P2.31T2C Rii R-=:- ~ RD --- P2.4/T2R BHEI WRH 74LSOO 74 LSOO --- P2.S/PWH READY ~ WRH - P2.6 WRI WRL WRL --- P2.7 ALEI ADV
ADIS 1

~E U3 --- HSD.1Il P4.7/B15 II --- HSD.I P4.S/BI4 ADI4
ADI3 --- HSD.2 P4.S/BI3 ADI2 ADIIl 3 Dill QIIl 2 HAIIl - HSD.3 P4.4/B12 ADI 4 5 HAl - HSO.S/I3 P4.3/BII ADII AD2 7 DI QI 6 HA2 - HSO.41I2 P4.2/BIIIl AD I III AD3 B D2 Q2 9 HA3 AD9 D3 Q3 - HSI.I P4.I/B9 AD4 13 12 HA4 - HSI.1Il P4.IIl/BB ADB AD5 14 D4 Q4 IS HAS AD7 DS Q5 P3.7/B7 AD6 17 16 HA6

'--- NHI P3.6/B6 AD6 AD7 IB D6 Q6 19 HA7
P3.5/B5 ADS D7 Q7

--- RESET P3.4/B4 AD4
AD3 741_5373 P3.3/B3 AD2 --- CLKOUT P3.2/B2 ADI I

~E U4 --- XTALI P3.IIBI 11 ADIIl --- XTAL2 P3.IIl/BIIl
~ ADB 3 Dill QIIl 2 HAB

8X97BH AD9 4 DI QI 5 HA9
AD I III 7 6 HA I III
ADII B D2 Q2 9 HAIl
ADI2 13 D3 Q3 12 HAI2
ADI3 14 D4 Q4 IS HAI3
ADI4 17 DS Q5 16 HAI4
ADIS IB D6 Q6 19 AIS D7 Q7

74LS373
270522-1

NOTE:
All other connections should be made as specified in current Embedded Controller Handbook.

Figure 4. 128KROM + .128K RAM Memory

6-185

~ MAl 10
2!.8.2 91 A0

8 Al MA3
MA4 7 A2

MAS ~
A3
A4 MA6 5

.J:!BZ 4
_ AS

MA8 3
MA9 25
MAIIll 24
MAll 21

21A12 23
MAI3 2

_MAI4 26
J::!B£ 27

~

MAl 10
MA2 9
MA3 8
MA4 7
MAS 6
MA6 5
MA7 4
MA8 3
MA9 25
MAl0 24
MAil 21
MAI2 23
MAI3 2
MAI4 26
MAI5 I

MAl 10
MA2 9
MA3 8
MA4 7
MAS 6
MA6 5

_MA7 4
_MA8 3
_MA9 25

MAI0 24
MAil 21

21A12 23
.1!A13 '2

MAI426
MAI5 l'

=-J

A6
A7
A8
A9
AI0
All
AI2
AI3
Al4
AI5

A0
Al
A2
A3
A4 .
AS
A6
A7
A8
A9
AI0
All
AI2
AI3
AI4

US
. Olll

01
02
03
04
05
06
07

DE
IT

27512

32Kx8
100
101
102
103
104
IDS
106

U7 107

Wi ADIll
12 ADI

.J.3 AD2-
IS AD3
16 AD4
17 AOS-

W8 AD6-
19 AD7

22 RD
20 MAI7

270522-2

II AD0
12 ADI
13 AD2
15 AD3
16 AD4
17 ADS
18 AD6
19 AD7

270522-3

32Kx8 1
II AD0 100

101 12 AD!

102 13 AD2

103 IS AD3

I04
16 AD4

105 17 ADS

106 18 AD6

107 19 AD7

U9
~ \it

DE 22 RD
L5 ~ RAM23

AB-33

MA2 9 A0

MA3 8 Al
MA4 7 A2

_MAS ~
A3

_MA6 5 A4

_MA7 4 AS

21A8 3 A6
MAg 25 A7
MAI0 24 AS
MAIl 21 A9
MAI223 AIIll
MAI3 2 ,All
MAI4 26 AI2
MAI5 27 AI3
MAI6 I AI4

Al5

MAl 10

uPD43256 .
270522-4

Figure 5. 128K ROM + 128K RAM Memory

6-186

U6
00 II AD8

01 12 AD9

02 13 ADIIll

03 ~
04 16 ADI2

OS 17 ADl3

06 18 AD14

07 19 ADI5
~

DE 22 RD
IT 20 MAI7

I
27512

270522-7

inter AB·33

;MACROS FOR 256K SYSTEM

;LONG_BRANCH IS INVOKED TO BRANCH FROM ONE PAGE TO ANOTHER.
;ADDRESS MUST HAVE A VALUE FROM 8000H TO FFFFH.
;NEW_PAGE CAN BE AN IMMEDIATE NUMBER OR A REGISTER NUMBER.

MACRO
LD
LDB
BR
ENDM

ADDRESS, NEW_PAGE
CODE_ADDRESS, #ADDRESS ;SET UP CODE_ADDRESS REGISTER
NEW_PAGE_NO, NEW_PAGE ;SET UP NEW_PAGE_NO REGISTER
7FFOH ;BRANCH TO I_P_BRANCH

;LONG_CALL IS INVOKED TO CALL A SUBROUTINE IN ANOTHER PAGE.
;ADDRESS MUST HAVE A VALUE FROM 8000H TO FFFFH.
;NEW_PAGE CAN BE AN IMMEDIATE NUMBER OR A REGISTER NUMBER.

MACRO
LD
LDB
CALL
ENDM

ADDRESS, NEW_PAGE
CODE_ADDRESS, #ADDRESS ;SET UP CODE_ADDRESS REGISTER
NEW_PAGE_NO, NEW_PAGE ;SET UP NEW_PAGE_NO REGISTER
7FCOH ;CALL I_P_CALL

;PUSH_OLD_DATAPAGE IS INVOKED TO INSTALL A NEW DATA PAGE AND SAVE
;THE OLD VALUE ON THE SYSTEM STACK.

;NEW_PAGE CAN BE AN IMMEDIATE NUMBER OR A REGISTER NUMBER.

PUSH_OLD_DAPAG MACRO
LDB
PUSH
LDB
ANDB
SHLB
ANDB
ORB
ENDM

NEW_PAGE
AL, PORTl
AX
AL, NEW_PAGE
AL, #OOOOOllIB
AL, #3
PORTI, #IIOOOIIIB
PORTI, AL

;GET OLD PAGE NUMBER •••
;STORE IT ON THE STACK
;GET NEW DATA PAGE NUMBER •••
;MASK IT •••
;SHIFT IT TO PROPER POSITION •••
;CLEAR THE OLD ONE •••
;AND LOAD IN NEW ONE

;POP_OLD_DATAPAGE IS INVOKED TO REINSTALL AN OLD DATA PAGE THAT WAS SAVED
JON THE SYSTEM STACK BY PUSH_OLD_DATAPAGE.

POP_OLD_DAPAG MACRO
POP
ANDB
ANDB
ORB
ENDM

AX
AL, #OOllIOOOB
PORTI, #IIOOOIIIB
PORTl, AL

;RECALL OLD PAGE NUMBER •••
;MASK OLD ONE FOR DATA PAGE •••
;CLEAR NEW DATA PAGE •••
;AND LOAD IN OLD ONE

;NEW_DATA_PAGE IS INVOKED TO INSTALL A NEW DATA PAGE.
;NEW_PAGE CAN BE AN IMMEDIATE NUMBER OR A REGISTER NUMBER.

NEW_DATA_PAGE MACRO
LDB
ANDB
SHLB
ANDB
ORB
ENDM

NEW_PAGE
AL, NEW_PAGE
AL, #OOOOOlllB
AL #3
PORTI, #IIOOOIIIB
PORTl, AL

6-187

;GET NEW DATA PAGE NUMBER •••
;MASK IT •••
;SHIFT IT TO PROPER POSITION •••
;CLEAR THE OLD ONE •••
;AND LOAD -IN NEW ONE

intJ AB-33

jSUBROUTINES FOR 256K SYSTEM

CSEG AT 7FCOH

jSUBROUTINE: I_P_CALL
THIS SUBROUTINE ALLOWS FOR THE CALLING OF SUBROUTINES LOCATED IN
A DIFFERENT PAGE OF MEMORY.

PARAMETERS:
SUBROUTINES:

,
LP_CALL:

LP_RETURN:

CSEG AT 7FFOH

LDB
PUSH
ANDB
ANDB
ORB
PUSH
BR

POP
ANDB
ANDB
ORB
RET

CODE_ADDRESS, NEW_PAGE_NO
ANY THAT ARE REQUESTED.

AL, PORTI
AX
PORTI, #IIIIIOOOB
NEW_PAGE_NO, #OOOOOIIIB
PORTI, NEW_PAGE_NO
#LP_RETURN
[CODE_ADDRESS]

AX
PORTI, #IIIIIOOOB
AL, #OOOOOlllB
PORTI, AL

jGET OLD PAGE NUMBER •••
jSTORE IT ON THE STACK
jCLEAR OLD INST PAGE •••
jMASK NEW ONE •••
jAND LOAD IT IN
jSAVE RETURN ADDRESS •• ;
jCALL REQUESTED ROUTINE

jRECALL OLD PAGE NUMBER •••
jCLEAR NEW INST PAGE •••
jMASK OLD ONE •••
jAND LOAD IT IN
jRETURN TO CALLING ROUTINE

jSUBROUTINE: I_P_BRANCH

"

THIS SUBROUTINE AL~OWS FOR BRANCHING TO LOCATIONS IN A DIFFERENT
PAGE OF MEMORY.

PARAMETERS:
SUBROUTINES:

CODE-ADDRESS, NEW_PAGE_NO
NONE

LP_BRANCH: ANDB
ANDB
ORB
BR

PORT I , #IIIIIOOOB
NEW_PAGE_NO #OOOOOIIIB
PORTI, NEW_PAGE_NO
[CODE_ADDRESS]

jCLEAR OLD INST PAGE •••
jMASK NEW ONE •••
jAND LOAD IT IN
jBRANCH TO REQUESTED

ROUTINE

6-188

AB·33

1111 II AI DOd! HAl II AI D:xB 1112 9 RI 1011 II ROIl 1112 9
RI 1011 -8 R2 101 12 ROI HA3 8 R2 101 HA4 7 13 R02 HA4 7

HAS 6 AS 102 15 R03 HAS B AS 102

HA6 5 R4 103 16 R04 HAS 5 R4 103

HA7 4 AS 104 17 nos HA7 4 AS 104
AS lOS AS 105 -S R7 106 18 ROB HAS 3 R7 106 -25 R8 107

19 R07 HA9 25 AI 107 HAIH 24 R9Ull HAIH 24 R9 U13 HAil 21 HAil 21
HAI2 23 AlB 27 gR(HAI2 23 AIH 27gR(

All VE All w: HAI3 2 AI2 II: 22 HAI3 2 AI2 II: 22
1426 RIS "C5 PAG11-9 HAI4 26 RI3 "C5 2B PRGIII-Il

HAIS I AI4 HAIS I R 4

HAl IH uP04325B HAl IH uP04325B
AI D:xB R8 32KxII 1112 9 AI 1011 II ROIl 1112 9 AI 1011 IlR01i1

HA3 8 12 R09 - B 12 R09
HA4 7 R2 101 13 ROIH HA4 7 R2 101 13 ROIH
HAS 6 AS 102 15 ROil HAS B AS 102 15 ROil
HA6 5 A4 103 16 ROI2 HAS 5 A4 103 18 ROI2
HA7 4 AS 104 17 ROI3 HA7 4 AS 104 17 ROI3
HAS S AS lOS 18 ROI4 HAS 3 AS lOS 18 ROI4
HAg 25 A7 106 19 ROIS HA9 25 A7 106 19 ROIS

R8 107 R8 107
HAle 24 R9 U12 HAIl 24 R9 U14 11111 21 HAil 21
l1li12 23 RIB 27 QIIiI HAI2 23 All 27 ~ I

All w: All w:
HAI3 2 AI2 DE 22 HAl! 2

AI2 DE 22
11114 26 2B _9 HAI4 26 2B PAGIII-Il
HAIS I AIS "C5 HAIS I AI3 "C5

AI4 RI4
uP043258 uP043256

U2
SElA

SEL8

STR81
DATAl

HAl II AI 1112 9 AI DB II
HA3 B A2 01 12
HA4 7 13

6 AS 02 15
HA6 5

A4 03 16
HA7 4 AS 04 17
HAS 3 AS OS 18
HA9 24 A7 06 19 R8 07 HRl8 25 R9 us VPP I
HAil 21 AIH lIE 22
HAI2 23 All I'l:R 27
HAl! 2 AI2 a 21
HAI4 2B AI!

HAl II
27128

HA2 9 AI II
1113 8 AI 011 12
HA4 7 R2 01 13 AS 02 HAS B A4 03

IS
HA6 S AS 04 16
Hlt7 4 AS 05 17
HAS 3 IB
HA9 24 A7 06 19 R8 07
HAIH 25 R9 us VPP I
HAil 21 All lIE 22

12 23 All !'Gil 27
HAl! 2 AI2 a 28

74lS37! HAI4 28 AI!
27128

NOTE:
All other connections should be made as specified in current Embedded Controller Handbook.

Figure 6. 288K ROM -+ 256K RAM Memory

6-189

ROIl
ROI
R02
A03
R04
ADS
ROB
A07

AIS

ROIl
A09
ROIl
11111
1I\t2

13
1114
11115

AIS

270522-8

intJ AB·33

IlAI IB !VII IB
11A2 9 All 32Kx8 1'1 ADB HA2 9 All 321::)(8

II AOB
HR3 8

AI lOll 12 AOI ""I1A3-8 Al lOB "iYiiDI
1lA4 7 A2 101 13 R02 HA4 7 A2 101 i3~ A3 102 A3 102 HAS 6 A4 103 IS R03 HRS 6 A4 103 IS AD3
HA6 S 16 R04 HAS S 16 AD4
!VI7 4 AS 104 17 ADS HA7 AS 104 17 ADS
HAS 3 A6 105 18 ADS HAS AS lOS 18 A06 A7 106 A7 106 HA9 25 R8 107 19 AD7 !VI9 2S R8 107 19 A07
HAIB 24

A9 Ul5 !VIIB 24
A9 Ul7 HAil 21 HAil 21

HAI2 23 AlB 27 iii![11A12 23 AI9 27 iii![_
All "lIE All "lIE HAI3 2 AI2 or 22 !VII 3 2 AI2 ill': 22

"AU 26 AI3 13 29 PAGI2-11l IlAU 26 AI3 13 29 PRGU-Is
I1AIs I

AI'
HAIS I AI.

HAl 18 uPD43256 HAl IB
uP0432s6

AI! 32K.8 AB 32K.8 HA2 9 AI lOll II AD8 HA2 9 Al 108 11 R08
HA3 8 A2 101

12 R09 HA3 8 A2 101 12 R09
HR4 7 A3 102 13 ROI8 11A4 7 A3 102 13 ROIB
HAS 6 A4 103 IS ADII I1R5 6 A4 103 IS ROil
HAS S AS 104 16 AOl2 HAS 5 AS 104 16 ROI2
HA7 4 A6 lOS

17 ROI3 ~ 4
AS lOS 17 ROI3

I1A8 3 A7 106
18 ROI4 HAS 3 A7 106 18 AOI'

HA9 2S AS 107 19 ADIS HA9 2S AS 107 19 AOIS
HAI9 24

A9 Ul6 "A19 24
A9 Ul8 HAil 21 HAil 21

HRI2 23 AlB 27 iiRH HAI2 23 AlB 27 ilRii All "lIE All "lIE HAI3 2 AI2 ill': 22 HAI3 2
AI2 DE 22

HAI4 26 29 PAG12-13 HAI4 26 2B PRG14-ls
HAls I

AI3 13 I1AIS I AI3 13
AU AI4

uP043256 uPD432s6

] 288K ROM + 256K RRM MEMORY
_UHI
PAG12-13
PAG14-15
PAGB-I
PRG2-3 IJ2I
PA&4-5
PAG6-7

HAl IB
HR2 9
HAl S
HR4 7
HAS 6
HAS 5
HA7 4
HAl 3

PRGB-3

IJ2I
PRG4-7

All
RI U7
R2 01
R3 01
R4 02
AS 03
AS D.
R7 OS
R8 06
A9 07
AlB
RII 22

HAl IB AS HA2 9 AI U9 HR3 8 11 AOB
HA4 7 .R2 DB 12 RDI
HAS 6 R3 01 13 R02
HAS 5

A4 02 IS R03
HA7 4

AS 03 16 AD4
HAl 3 AS O. 17 R05
HR9 25 A7 OS IB A06
HAIH 2'

AS 06 19 AD7
HAil 21 A9 07

HAI2 23
All
RlI HRI3 2 22

+S HR9 25
liUS 2.
HAll 21
HAI2 23
HAI3 2
HAI4 26
HAI5 27
HAI6 I

AI2
AI3

DE 2B PRGII-3 IT
RI2 DE

HA14 26 21 PRG4-7
RI3 CE

HAl II
HA2 9
HA3 S
HA4 7
HAS 6
HA6 5
HA7 4
HAll 3
HA9 25
HAIB 24
HAil 21
HAI2 23
HAI3 2
HAI4 26
HAIS 27
HRI6 I

RI4
RI5

AI
RI
A2
A3
A4
AS
AS
R7
All
R9
AlB
All
AI2
AI3
RI4
AI5

27512

U8 11 ADB
DB 12 A09 01 13 ROIl
02 IS ROll 03 16 ROI2
04 17 ROI3 05
06 IB ADI4

07
19 ROI5

22 DE 2BPRGI~ IT

ii5i'2-

HAI5 27
HAI6 I

RI4
AIs

HAl 19
27512 -

AB HA2 9 RI UH'l HR3 8
HA4 7

A2 DB

HAS 6 A3 01

HAS 5 A4 02

HA7 4 AS 03

HRB 3 AS 04
A7 05 HR9 25 R8 06 HAIB 24 A9 07 HAil 21

HAI2 23 RII

HAU 2
All

HR14 26 AI2 Of
HAI5 27 AI3 CE
HAI6 I Rl4

AI5
27512 .

Figure 7. 288K ROM + 256K RAM Memory

6-190

11 ROB
12 R09
13 ROIB
IS ROil
16 ADI2
17 ADU
IB ADI4 -19 ADl5

22
28 PAG~. __ .

270522-9

inter AB-33

;MACROS FOR 544K SYSTEM

;LONG_BRANCH IS INVOKED TO BRANCH FROM ONE PAGE TO ANOTHER.
;ADDRESS MUST HAVE A VALUE FROM 8000H TO FFFFH.
;NEW_PAGE CAN BE AN IMMEDIATE NUMBER OR A REGISTER NUMBER.

MACRO
LD
LDB
BR
ENDM

ADDRESS, NEW_PAGE
CODE_ADDRESS, #ADDRESS ;SET UP CODE_ADDRESS REGISTER
NEW_PAGE_NO, NEW_PAGE ;SET UP NEW_PAGE_NO REGISTER
7FFOH ;BRANCH TO I_P_BRANCH

LONG_CALL IS INVOKED TO CALL A SUBROUTINE IN ANOTHER PAGE.
;ADDRESS MUST HAVE A VALUE FROM 8000H TO FFFFH.
;NEW_PAGE CAN BE AN IMMEDIATE NUMBER OR A REGISTER NUMBER.

MACRO
LD
LDB
CALL
ENDM

ADDRESS, NEW_PAGE
CODE_ADDRESS, #ADDRESS ;SET UP CODE_ADDRESS REGISTER
NEW_PAGE_NO, NEW_PAGE ;SET UP NEW_PAGE_NO REGISTER
7FCOH ;CALL I_P_CALL

;PUSH_OLD_DATAPAGE IS INVOKED TO INSTALL A NEW DATA PAGE AND SAVE THE OLD
;VALUE ON THE SYSTEM STACK.

;NEW_PAGE CAN BE AN IMMEDIATE NUMBER OR A REGISTER NUMBER.

PUSH_OLD_DAPAG MACRO
LDB
PUSH
LDB
SHLB

.ANDB
ORB
ENDM

NEW_PAGE
AL, PORTl
AX
AL, NEW_PAGE
AL, #4
PORT1, #OOOOllllB
PORTl, AL

;GET OLD PAGE NUMBER •••
;STORE IT ON THE STACK
;GET NEW DATA PAGE NUMBER: ••
;SHIFT IT TO PROPER POSITION •••
;CLEAR THE OLD ONE •••
;AND LOAD IN NEW ONE

;POP_OLD_DATAPAGE IS INVOKED TO REINSTALL AN OLD DATA PAGE THAT WAS SAVED
;ON THE SYSTEM STACK BY PUSH_OLD_DATAPAGE.

POP_OLD_DAPAG MACRO
POP
ANDB
ANDB
ORB
ENDM

AX
AL, #llllOOOOB
PORT1, #OOOOllllB
PORTl, AL

;RECALL OLD PAGE NUMBER •••
;MASK OLD ONE FOR DATA PAGE •••
;CLEAR NEW DATA PAGE •••
;AND LOAD IN OLD ONE

;NEW_DATA_PAGE IS INVOKED TO INSTALL A NEW DATA PAGE.
;NEW_PAGE CAN BE AN IMMEDIATE NUMBER OR A REGISTER NUMBER.

NEW_DATA_PAGE MACRO
LDB
SHLB
ANDB
ORB
ENDM·

NEW_PAGE
AL, NEW_PAGE
AL, #4
PORT1, #OOOOllllB
PORTl, AL

6-191

;GET NEW DATA PAGE NUMBER •••
;SHIFT IT TO PROPER POSITION •••
;CLEAR THE OLD ONE •••
;AND LOAD IN NEW ONE

intJ AB-33

;SUBROUTINES FOR 544K SYSTEM

CSEG AT 7FCOH

;SUBROUTINE: I_P_CALL
THIS SUBROUTINE ALLOWS FOR THE CALLING OF SUBROUTINES LOCATED IN
A DIFFERENT PAGE OF MEMORY.

PARAMETERS:
SUBROUTINES:

LP_RETURN:

CSEG AT 7FFOH

LDB
PUSH
ANDB
ANDB
ORB
PUSH
BR

POP
ANDB
ANDB
ORB
RET

CODE_ADDRESS, NEW_PAGE_NO
ANY THAT ARE REQUESTED.

AL, PORTl
AX
PORTI, #llllOOOOB
NEW_PAGE_NO, #OOOOIIIIB
PORTI, NEW_PAGE_NO
#LP_RETURN
[CODE_ADDRESS]

AX
PORT I , #IIIIOOOOB
AL, #OOOOlllIB
PORTl, AL

;GET OLD PAGE NUMBER •••
;STORE IT ON THE STACK
;CLEAR OLD INST PAGE •••
;MASK NEW ONE •••
;AND LOAD IT IN
;SAVE RETURN ADDRESS •••
;CALL REQUESTED ROUTINE

;RECALL OLD PAGE NUMBER •••
;CLEAR NEW INST PAGE •••
:MASK OLD ONE •••
;AND LOAD IT IN
;RETURN TO CALLING ROUTINE

;SUBROUTINE: I_P_BRANCH
THIS SUBROUTINE ALLOWS FOR BRANCHING TO LOCATIONS IN A DIFFERENT
PAGE OF MEMORY.

PARAMETERS:
SUBROUTINES:

LP_BRANCH: ANDB
ANDB.
ORB
BR

CODE_ADDRESS, NEW_PAGE_NO
NONE

PORTI, #IIIIOOOOB
NEW_PAGE_NO, #OOOOIIIIB
PORTI, NEW_PAGE_NO
[CODE_ADDRESS]

6-192

;CLEAR OLD INST PAGE •••
;MASK NEW ONE •••
;AND LOAD IT IN
;BRANCH TO REQUESTED ROUTINE

APPLICATION
BRIEF

AB-34

December 1987

Integer Square Root Routine for
the 8096

LIONEL SMITH
ECO APPLICATIONS ENGINEER

@ Intel Corporation, 1987 Order Number: 270523-001

6-193

intJ AB-34

This Application Brief presents an example of calculat­
ing the square root of a 32-bit signed integer.

Theory

Newton showed that the square root can be calculated
by repeating the approximation:

Xnew = (R/Xold + Xold)/2 ; Xold = Xnew

where: R is the radicand

Xold is the current approximation of the
square root

Xnew is the new approximation

until you get an answer you like. A common technique
for deciding whether or not you like the answer is to
loop on the approximation until Xnew stops changing.
If you are dealing with real (floating point) numbers
this technique can sometimes get you in trouble because
it's possible to hang up in the loop with Xnew alternat­
ing between two values. This is not the case with inte­
gers. As an example of how it all works, consider taking
the square root of 37 with an initial guess (Xold) of 1:

Xnew = (3711 + 1)/2 = 19; Xold = 19

Xnew = (37/19 + 19)/2 = 10; Xold = 10

Xnew = (37/10 + 10)/2 = 6; Xold = 6

Xnew = (3716 + 6)/2 = 6; Xold = 6 - done!

Note that in integer arithmetic the remainder of a divi­
sion is ignored and the square root of a number is
floored (i.e. the square root is the largest integer which,
when multiplied by itself, is less than or equal to the
radicand).

Practice

The only' significant problem in implementing the
square root calculation using this algorithm is that the
division of R by Xold could easily be a 32 by 32 divide
if R is a 32 bit integer. This is ok if you happen to have
a 32 by 32 divide instruction, but most 16-bit machines
(including the 8096) only provide a 32 by 16 divide.
However, a little bit of creative laziness will allow us to
squeeze by using the 32 by 16 bit divide on the 8096.

The largest positive integer you can represent with a
32-bit two's complement number is 07fff$ffiTh, or
2,147,483,647. The square root of this number is
Ob504h, or 46,340. The largest square root that we can
generate from a 32-bit radicand can be represented in
16-bits. If we are careful in picking our initial Xold we
can do all of the divisions with the 32 by 16 divide
instruction we have available. Picking the largest possi­
ble 16-bit number (0fllTh) will always work although it
may slow the calculation down by requiring too many
iterations to arrive at the correct result. The algorithm
below takes a slightly more intelligent approach. It uses
the normalize instruction to figure out how many lead­
ing zeros the 32-bit radicand has and picks an initial
Xold based on this information. If there are 16 or more
leading zeros then the radicand is less than 16 bits so an
initial Xold of 0fTh is chosen. If the radicand is more
than 16 bits then the initial Xold is calculated by shift­
ing the value 0fllTh by half as many places as there were
leading zeros in tp.e radicand. To give credit where
credit is due, I first saw this 'trick" in the January 1986
issue of Dr. Dobbs's Journal in a I~tter from Michael
Barr of McGill University.

The routine was timed in a 12.0 Mhz 8096 as it calcu­
lated the square roots of all'positive 32-bit numbers, the
following numbers include the CALL and return se­
quence and were measured using Timer 1 of the 8096.

Minimum Execution Time: 24 microseconds

Maximum Execution Time: 236 microseconds

Average Execution Time: 102 microseconds

Comments

The program module which follows is part of a collec­
tion of routines which perform integer and real arith­
metic on a software implemented tagged stack. The top
element of the stack is call TOS and is in fixed locations
in the register file. Since the square root operation only
involves TOS, further details of the stack structure are
not shown.

6-194

intJ AB·34

MCS-96 MACRO ASSEMBLER SQRT
DOS MCS-96 MACRO ASSEMBLER, Vl.l
SOURCE FILE: ROOT2.A96

05/12/86 10 :44 :30 PAGE 1

OBJECT FILE: ROOT2.0BJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB
ERR LOC OBJECT

0019

0000
0001
0002

OOlC

OOlC
OOlC
OOlD

OOlE
0020
0022,

0018

0030

0030
0030

0030
0032

0034
0034

0000

LINE
1

SOURCE STATEMENT

2 sqrt module
3
4 ; 32 bit integer square root for the 8096
5
6 public qstk.isqrt
7 extrn lntarr :entry
8

TOP+- SQUARE.ROOT (TOP)
Integer error routine

id stags for stack integer routines
10 isqrt.id equ 19h
11
12 ; error codes
13
14 overflow
15 paramerr
16 invalid.input
17
18 oseg at leh
19 =======
20 ax: dsw 1
21 al equ ax:byte

equ
equ
equ

22 ah equ (ax+l) :byte
23 dx: dsw 1
24 ex:
25 bx:
26 sp
27
28

dsw 1
dsw 1
equ 18h :word

29 oseg at 30h
30 =========
31 qstk.reg:
32 dsl

OOh
Olh
02h

make sure of alignment
33 next equ qstk_reg:word pointer to next element In the arg stack.
34 tos.tag equ (qstk_reg+2) :word
35 tos_value:
36 dsl 1
37
38
39
40
41
42
43
44
45
46
47

cseg

bl macro param
bnc param
endm

bhe macro param
be param
endm

'eject

6-195

32 bit integer

inter AB-34

MCS-96 MACRO ASSEMBLER SQRT 05/12/86 10 :44 :30 PAGE 2
ERR LOC OBJECT LIIiE SOURCE STATEIlENT

0000 48 cseg
49
50

0000 51 qstk_isqrt:
52 Takes the square root of the long integer in TOS
53 TOS- Top of argument stack
54 !TOS - iSQRT(TOS)
55

0020 56 Xold set cx
0000 A0341C 57 Id ax,toB_value
0003 A036lE 58 Id dx, (tos_value+2)
0006 371F07 59 bbc ' (dx+l) , 7,qsi05 ; if (TOS < 0)
0009 C90119 60 push #(isqrt_id*256+paramerr)
OOOC EFOOOO E 61 call interr Call interr.
OOOF FO 62 ret Exit
0010 63 qsi05:
0010 OF221C 64 normal ax, bx
0013 DF3B 65 be qstk_isqrtO
0015 991022 66 cmpb bX,#16 it (TOS < 2**16)
0018 DA06 67 ble qs110
OOlA AIFF0020 68 Id Xold, #Offh Use Offh as first estimate.
OOlE 200A 69 br qstk_isqrtloop
0020 70 qs110:
0020 180122 71 shrb bx,#l else
0023 AIFFFF20 72 Id Xold, #Offfth Base the first estimate on the
0027 082220 73 shr Xold, bx number ot leading zeroes in TOS.
002A 74 qstk_isqrtloop;
002A A0341C 75 Id ax,tos ... valu8 do
002D A0361E 76 Id dx, (tos_value+2) if (The divide w111 overflow)
0030 88201E 77 cmp dX,Xold The loop is done.

78 bhe qstk_isqrt_done
0035 8C201C 80 divu ax,Xold if ((ax=TOS/Xold) >= Xold)
0038 88201C 81 cmp ax,Xold The loop is done.

82 bhe qstk_isqrt_done'
003D 0122 84 clr bx Xold= (ax+Xold) /2
003F 641C20 85 add Xold,ax
0042 A40022 86 addc bx,O
0045 OC0120 87 shrl Xold,#l
0048 27EO 88 br qstk_isqrtloop ; wh11e (The loop 1s not done)
004A 89 'qstk_isqrt_done:
004A A02034 90 Id tos_value,Xold ; TOS=OO :Xold

'.
004D AOO036 91 Id (tos_va1ue+2),0
0050 92 qstk_isqrtO:
0050 FO 93 ret Exit
0051 94 end

ASSEIIllLY COMPLETED. NO ERROR(S) FOUND.

6-196

inter APPLICATION
NOTE

MCS®-96

AP-406

December 1987

Analog Acquisition Primer

® Intel Corporation, 1987

DAVID P. RYAN
INTEL CORPORATION

6-197

Order Number: 270365-001

inter AP-406

THE MCS®-96 ANALOG ACQUISITION
PRIMER

INTRODUCTION

As technology advances, embedded control applica­
tions continue to reduce chip-count and demand micro­
controllers with increased features to assist system-cost
reduction. Since every embedded control application in­
terfaces with the physical world, and the physical world
is an analog process, it was inevitable that microcon­
trollers would include integrated analog acquisition ca­
pabilities.

The first such integration of standard microcontroller
and AID converter occurred on Intel's 8022 in 1978."
This opened the door to cost reduction of high volume
applications that required analog inputs. The device fit
well into applications that needed processing of analog
data. But this chip, with its 8-bit CPU, could not per­
form in high-end applications requiring analog inputs,
or in applications that had computationally demanding
analog tasks.

With the introduction of the MCS®-96 family of 16-bit
microcontrollers in 1982, the combined CPU and AID
performance became available to greatly reduce the sys­
tem cost of mid- and high-performance embedded con­
trol applications. These are applications which were
customarily implemented with 16-bit microprocessor
chip-sets teamed with analog acquisition chip sets.

There are less obvious avenues for system cost reduc­
tion when a 16-bit CPU is teamed with an on-chip ana­
log acquisition system. For example, clOsed-loop servo
control had been implemented almost exclusively by
using analog methods. When an MCS-96 device is de­
signed into such an application, it is not only replacing
a microcontroller or microprocessor, but it also re­
places closed-loop analog circuitI"'j which never before
came in contact with the digital system.

To take full advantage of this new level of integration,
digital designers must become familiar with analog ac­
quisition, and analog designers must become familiar

with digital methods of processing analog signals. This
Application Note assists with the first task-under­
standing of an analog acquisition system.

Designers experienced with analog design, or' analog
acquisition systems, may find no revelations herein. To
those unfamiliar with analog acquisition systems, this
Ap Note provides a tutorial on the subject and will
serve as a handy reference.

Answering the limitless number of analog circuit design
questions is beyond the scope of this Ap Note. Suffice it
to say that the effort placed on the design of analog
circuits should increase with a decreasing error budget.

At a minimum, the applications literature of op-amp
manufacturers and analog design manuals are a good
place to start. Furthermore, the applications literature
of monolithic analog acquisition system manufacturers
should be consulted since the suggestions presented
therein are largely transportable to any AID system.

This Ap Note is organized in the following sections.
The components of an ,analog acquisition system and
the errors associated with each is first explained. Then,
interfacing suggestions and ideas for getting more reso~
lution are presented. Finally, a set of appendices
provides back-up information, a bibliography, actual
converter data and some program listings.

The definitions of terms us~, and the examples pre­
sented, are drawn from the body of applications litera­
ture publicly available on the components of an analog
acquisition system. There 'is usually no single meaning
for a particular term or specification used to describe
analog acquisition. However, there is, in most cases, a
generally accepted definition which is most often used.
To the extent possible, we have adopted the most used
definition. To avoid any ambiguity, Appendix A lists
the dictionary of terms as used to refer to the analog
acquisition systems of MCS-96 devices.

For any users of an MCS-96 analog acquisition system
(experienced or not), this document contains very use­
ful information. It should be considered mandatory
reading in addition to the latest Embedded Controller
Handbook and MCS-96 data sheet for the actual device
in use prior to the actual design.

6-198

inter AP-406

WHAT IS AN ANALOG ACQUISITION
SYSTEM?

An analog acquisition system is a collection of individu­
al units which, when logically configured, form a sys­
tem capable of converting an analog input to a digital
value.

The typical components of an Analog Acquisition Unit
(Figure I) include an, Analog-to-Digital Converter
(AID), a Sample-and-Hold (S/H) and an Analog Mul­
tiplexer (MUX). The AID converts the infinitely vary­
ing analog voltage present on the S/H into a digital
representation for use by the digital system. The S/H is
required so a "snapshot" of a changing analog input
can be stored for conversion by the AID. The MUX is
used to leverage the investment in the AID by allowing
a large number of isolated analog input channels to use
the same converter.

The conversion result of an MCS-96 device is a lO-bit
ratiometric representation of the input voltage. This
produces a stair-stepped transfer function when the
output code is plotted versus input voltage. See
Figure 2.

The resulting digital codes can be taken as simple ratio­
metric information, or they can be used to provide in­
formation about absolute voltages or rel,ative voltage
changes on the inputs. The more demanding the appli­
cation is on the AID converter, the more important it
is to fully understand the converter's operation. For
simple applications, knowing the absolute error of the
converter is sufficient. However, controlling a closed
loop with analog inputs necessitates a detailed under­
standing of an AID converter's operation and errors.

The errors inherent in an analog-to-digital conversion
process are many: quantizing error; zero offset; full-

MULTIPLEXER

scale error; differential non-linearity; and non-linearity.
These are "transfer function" errors related to the AID
converter. In addition, the S/H and MUX may induce
channel dissimilarities and sampling error (described
later).

Fortunately, one "Absolute Error" specification is
available which describes the sum total of all deviations
between the actual conversion process and an ideal con­
verter. The various sub-components of error are, how­
ever, important in many applications. These error com­
ponents are described in Appendix A and in the text
below where ideal and actual converters are compared.

AID Converter

There are at least three well-recognized methods for
converting an analog voltage to a digital value-flash,
dual slope and successive approximation.

Flash AIDs are the fastest, and most expensive con­
verters for a given accuracy. Flash converters typically
resolve bits of the result in parallel to achieve fast con­
versions. Flash converter speeds are measured in tens­
of-nanoseconds.

Dual slope converters are the slowest, but most accu­
rate. Dual slope conversion is rather insensitive to noise
on the input, but conversion times are measured in
milliseconds.

Successive approximation converters provide a bal­
anced tradeoff between speed and accuracy. Successive
approximation conversion times are measured in tens­
of-microseconds, and converter implementations are
very economical for a given accuracy.

SAMPLE/HOLD

• •
• •
• •

ANALOG
TO

DIGITAL
CONVERTER

Figure 1. An Analog Acquisition System

6-199

BUSY

GO

270365-1

inter AP-406

7

6

5

I fiNAL CODE TRANSITION OCCURS I
WHEN THE APPLIED VOLTAGE IS 1-__ -0

EQUAL TO (Vr.' - 1 1:/2 (LSB». I
r-------~

.. -,- - ~ --_.
I

I ACTUAL CHARACTERISTIC Of I
AN IDEAL AID CONVERTER I

~: -------t.
I .
I

Q
THE VOLTAGE CHANGE

BETWEEN ADJACENT CODE
TRANSITIONS (THE "CODE

WIDTH") IS = 1 LSB.
I

3 .------_.

2 .-------.

r-------·
-' fiRST CODE TRANsmON OCCURS I ----II WHEN THE APPLIED VOLTAGE IS

EQUAL TO 112 LSB.

O~--~---.--------~-------.--------~-------.---------.---.----~------~
1/2 2 3 5 6 61/2 7 8

INPUT VOLTAGE(lSBs)
270365-2

Figure 2.\dea\ AID Characteristic

MCS796 converters use successive approximation. A
successive approximation conversion is performed by
comparing a sequence of reference voltages to the ana·
log input in a binary search for the reference voltage
that most closely matches the input. The 'I. full·scale
reference voltages is the tested first. This corresponds
to a IO-bit result where the most significant bit is zero,
and all other bits are ones (0111 1111 lIb). If the ana­
log input is less than the test voltage, bit 10 of the result
is left a zero, and a new test voltage of 'I. full-scale
(00 11 1111 11 b) is tried. If this test voltage is lower
than the analog input, bit 9 of the result is set and bit 8
is cleared for the next test (01011111 lIb). This binary
search continues until 10 tests have occurred, at which
time the valid IO-bit conversion result reside,s in a regis­
ter where it can be read by software.

The voltages used during the binary search are generat­
ed from an internal Digital-to-Analog Converter simi­
lar to Figure 3. The figure shows eight resistors being
used as a three-bit D' to A. The first resistor tap is taken
from the center of the first resistor to guarantee that a
zero input voltage will always output a zero code. Each
successive tap then provides a reference voltage
VREP/8 (one LSB) from the previous tap. When the
analog input is above the voltage of the seventh tap, the
AID will resolve to its full-scale value of 111 b. There­
fore, an eighth tap is not needed, and the AID's 1 lOb to
Illb code transition will occur when V ANIN equals
VREP - 1 'I. LSB.

The first error seen in this process is unavoidable, and
results from the conversion of a continuous voltage to

6-200

AP-406

ANGND

270365-3

Figure 3. A Three-Bit D-to-A

an integer digital representation. This error is called
quantizing error, and is always ±0.5 LSB. Quantizing
error is the only error seen in a perfect AID converter,
and is obviously present in actual converters. Figure 2
shows the transfer function for an ideal 3-bit AID con­
verter (i.e. the Ideal Characteristic).

Note that in Figure 2 the Ideal Characteristic possesses
unique qualities: it's first code transition occurs when
the input voltage is 0.5 LSB; it's full-scale code tran­
sition occurs when the input voltage equals the full­
scale reference minus 1.5 LSB; and it's code widths are
all exactly one LSB. These qUalities result in a digitiza­
tion without offset, full-scale or linearity errors. In oth­
er words, a perfect conversion.

Figure 4 shows an Actual Characteristic of a hypotheti­
cal 3-bit converter which is not perfect. When the Ideal
Characteristic is overlaid with the imperfect character­
istic, the actual converter is seen to exhibit errors in the
location of the first and final code transitions and code
widths. The deviation of the first code transition from
ideal is called "zero offset". The deviation of the final
code transition from ideal is "full-scale error".

The deviation of the code widths from ideal causes two
types of errors. Differential Non-Linearity and Non­
Linearity. Differential Non- Linearity is a locallineari­
ty error measure, whereas Non-Linearity is an overall
linearity error measure. For example, Figure 5a shows
a transfer function with a large differential non-lineari­
ty and a little non-linearity. In contrast, Figure 5b
shows a characteristic with small differential errors but
a large overall linearity error.

Differential Non-Linearity is the degree to which actual
code widths differ from the ideal width. Differential
Non-Linearity gives the user a measure of how much
the input voltage may have changed in order to pro­
duce a one count change in the conversion result.

If the absolute value of an input voltage is less impor­
tant than the amount that the input changes, the differ­
ential non-linearity (DNL) specification of a converter
is very important. For example, if the differential non­
linearity of a converter is less than ± 05 LSB, a one
count change in the digital result means that the input
voltage changed at most 1.5 LSB (1 LSB ideal ± 0.5
LSB DNL). This is a much more accurate description
of the input voltage change than would be available if
the differential non-linearity of the converter was not
known.

6-201

inter
7

6

5

2 r-
I
I
I
I
I
I

r-'I"""------.......
I
I

--' ,I
I
I

AP-406

ABSOLUTE ERROR

_.

r---y-----------------
I
I

--:
I
I

FULL SCALE ERROR

O~--~~,-------._------r_------r_------r_------r_--r_--r_----__.
1/2

Q

(a)

2 3 4 5 6 61/2 7 8

INPUT VOLTAGE (LSBs)
270365-4

Figure 4. Actual and Ideal Characteristics

Q

Overall Linearity Is good

(b)

270365-5

Figure 5. TYDes of Linearity Errors

6-202

, , ,

Large Non-Unearlty

Differential Errors are small

270365-6

Ap·406

Non-Linearity is the worst case deviation of code tran­
sitions from the corresponding code transitions of the
Ideal Characteristic. Non- Linearity describes how
much Differential Non-Linearities could add to pro­
duce an overall maximum departure from a linear char­
acteristic.

If the Differential Non-Linearity errors are large
enough, it is possible for an AID converter to miss
codes or exhibit non-monotonicity. Neither behavior is
desirable in a closed-loop system. A converter has no
missed codes if there exists for each output code a
unique input voltage range that produces that code
only. A converter is monotonic if every subsequent
code change represents an input voltage change in the
same direction. Figure 6a shows a converter with
missed codes. Figure 6b shows a non-monotonic con­
verter.

Differential Non-Linearity and Non-Linearity are
quantified by measuring the Terminal Based Linearity
Errors. A Terminal Based Characteristic results when
an Actual Characteristic is shifted and scaled to elimi­
nate zero offset and full-scale error (see Figure 7). The
Terminal Based Characteristic is similar to the Actual
Characteristic that would be seen if zero offset and full­
scale error were externally trimmed away. In practice,
this is done by using input circuits which include gain
and offset trimming. (See the Application Hints section
for more details.)

7

6

5
Q 4

3

2

0
(a)
Missed Codes

270365-7

7

6

5
Q 4

3

2

1

0

(b)
Non·Monotonic 270365-8

Figure 6. Undesirable Converter Operation

. 6-203

An often overlooked characteristic of AID converters
is that code transitions do not really occur instanta­
neously at some finite set of input voltages. Specific
code transitions can be analyzed by doing repeated con­
versions around the transition point using a high accu­
racy input voltage. When this is done, we find that
there is actually a range of voltages around code tran­
sitions where both the lower and upper codes occur for
repeated conversions on the same input voltage.

Figure 8 shows this "repeatability" error. At the lower
end of the region of repeatability error the lower code is '
most prevalent, but the upper code will occur in a small
percentage of the conversion attempts. As the input
voltage increases slightly, a point is reached where both
lower and upper codes occur with 50 percent probabili­
ty. As the input voltage moves slightly higher, the up­
per code occurs most often with the lower code show­
ing up in a small percentage of conversions.

The repeatability error is due to the fundamental ability
of the comparator in the AID to resolve very similar
voltages. Random noise also contributes to repeatabili­
ty errors. On MCS-96 devices, the width of the region
of repeatability error has been found to be typically 1
mY to 1.25 mY. Since this error is specified, all other
errors are specified assuming the code transitions occur
at the voltage where adjacent codes are equally likely.

Q=3

REPEATABILITY

:~~ -lr
,\.50%

POINT

Q=O~~--~~--~-------
iLSB liLSB *SB

VIN

270365-10

Figure S'. Repeatability Error

The Multiplexer

The eight channel multiplexer is implemented as a col­
lection of eight MOS switches. Only one of eight can be
closed at any instant in time. Figure 1 shows the multi­
plexer with the switches acting as resistors when closed
and as small parasitic capacitors when open. The input
protection devices on the analog input pins are also
considered a part of the multiplexer.

AP-406

5

4

Q

3

IDEAL FULL-SCALE CODE
TRANSITION

k---j NON-LINEARITY

2

ACTUAL FIRST TRANSIfION

IDEAL FIRST TRANSITION
O~ ~-.~~==~==~==~------.------,-------.---.---.------~

1/2 2 3 4 5 6 61/2· 7 8

INPUT VOLTAGE (LSBs) 270365-9

Figure 7. Terminal Based Characteristic

The resistance of a closed switch is typically lK to 2K
ohms and the D.C. leakage due to the input protection
is typically 3 microamps maximum. Both values de­
pend upon the process used and day-to-day fabrication
variations. The channel resistance and the D.C. leakage
can also vary from channel-to-channel on the same de­
vice. These variations can be seen in the conversion
process and are described by the channel- to-channel
matching specification.

Channel-to-channel matching specifies the input volt­
age differences induced by mismatched elements of the
multiplexer. This error is quantified by measuring the
difference between the input voltages necessary to cause
the same code transition to occur through different
multiplexer channels under identical test conditions.

Matching errors are more complex than a simple volt­
age offset between channels, and thus are difficult to

externally cancel. Fortunately, multiplexer channels
typically match to within onc millivolt.

A multiplexer that has the potential to short two inputs
together is not very attractive. To keep this from hap­
pening, the circuitry that selects the' active channel is
designed to guarantee that all channels are deselected
before a new channel is selected. Thus, the multiplexer
is said to be Break-Before-Make.

In addition to Break-Before-Make channel selection, an
analog multiplexer must be able to keep deselected
channels isolated from the selected channel. 'As shown
in Figure 1, there are parasitic capacitances coupling
every deselected channel to the. multiplexer output. The
quantification of coupling is called Off-Isolation. Off­
isolation is the multiplexer'S ability to attenuate signals
on deselected channels.

6-204"

AP-406

Sample-and-Hold

The sample-and-hold of an analog acquisition system
can be built using an analog switch and a sample capac­
itor. As with the multiplexer, there is also a parasitic
capacitance coupling the switch input to the sample
capacitor when the switch is open (Figure I).

The resistance of the sample-and-hold switch combines
with the series resistance of the multiplexer to impede
the current necessary to charge the sample capacitor.
For example, with a 5K ohm total input resistance
from the pin to the 2 pf sample capacitor, the RC time
constant is 10 nS (2 pf X 5K ohms).

During the one microsecond that the sample capacitor
is connected to the input, 100 time constants elapse
(I microsecond/lO nS). This means that the sample ca­
pacitor is 100 percent of the voltage on the input pin
(I-e -100), assuming a zero source impedance.

If a source impedance of 2K ohms is assumed, the RC
time constant of the sampling process would be 14nS
(7K ohms X 2 pt). Thus, 71.4 time constants would
pass in one microsecond resulting in the sample capaci­
tor being charged to within 99.9 percent of its final
value. Source impedances above 2K ohms would begin
to degrade the conversion accuracy due to D.C. leakage
(described later).

Figure 9 shows the actual input voltage and the sam­
pled voltage approaching the input voltage. Once the
sample-and-hold switch closes, the sample window be­
gins. The sample window extends for four state times
and ends with the sample-and-hold switch opening on
MCS-96 devices (except 8X9X-90, which is8 state
times and has no sample-hold). Figure 9 also shows the
sample delay, which is the delay from the time a start
conversion signal is generated to the time a conversion
process begins.

It is important to understand the uncertainties associat­
ed with the timing of the sample-and-hold. Digital sig­
nal processing algorithms rely upon the "spectral puri­
ty" of the sampling process. If the sample window
jumps around with respect to the start conversion sig­
nal, or if the start conversion signal cannot be generat­
ed at precise times, consecutive samples of input data
will not be equally spaced in time (i.e. sampling will be
spectrally impure).

v

270365-11

Figure 9. Sample-and-Hold Voltage

To improve the spectral purity of the sampling in digi­
tal signal processing applications, sequential MCS-96
start conversion signals can be generated with less than
50 nanoseconds of jitter using the HSO unit. The sam­
ple delay and sample time are also a constant number
of state times to within 50 nanoseconds each.

Once the sample window closes, it is desired that all
further changes on any input channel be isolated from
the sample capacitor. The multiplexer's off-isolation is
responsible for isolating deselected channels, while the
sample-and-hold switch must attenuate changes on the
selected channel. This source of error is described as
Feedthrough. Feedthrough is quantified as the ability
ofthe sample-and-hold to reject unwanted signals on its
input.

Other factors that affect a real AID Converter system
include sensitivity to temperature. Temperature sensi­
tivities are described by the change in typical specifica­
tions with a change in temperature.

The MCS®-96 Conversion Sequence

The MCS-96 Analog Acquisition System includes an
eight channel analog multiplexer, sample-and-hold cir­
cuit and lO-bit analog to digital converter (Figure 10).
An MCS-96 device can therefore select one of eight
analog inputs, sample-and-hold the input voltage and
convert the voltage into a digital value. Each conver­
sion takes 22 microseconds (8097BH), including the
time required for the sample-hold (with XTALl = 12
MHz). The method of conversion is successive approxi­
mation.

6-205

inter AP-406

VREf .

NOTE:

8 TO 1
ANALOG

MULTIPLEXER

1. Sample and hold not on 8X9X-90 devices.

SAMPLE
AND
HOLD

CHANNEL

START
CONVERSION

HSO COMMAND "f"
270365-33

Figure 10. AID Converter Block Diagram

The conversion process is initiated by the execution of
HSO command OFH, or by writing a one to the GO
Bit in the AID Control Register. Either activity causes
a start conversion signal to be sent to AID control log­
ic. If an HSO command was used, the conversion pro­
cess will begin when Timer 1 increments. This aids
applications attempting to approach spectrally pure
sampling, since successive samples spaced by equal
Timer I delays will occur with a variance of about
±50 ns (assuming a stable clock on XTALl). How­
ever, conversion initiated by writing a one to the
ADCON register GO Bit will start within three state
times after the instruction has completed execution, re­
sulting in a variance of about 0.75 /Ls (XTALI
12 MHz).

Once the AID unit receives a start conversion signal,
there is a one state time delay before sampling (sample
delay) while the successive approximation register is re­
set and the proper multiplexer channe(is selected. Af­
ter the sample delay, the multiplexer output is cOnnect­
ed to the saniple capacitor and remains connected for
four state times (sample time). After this four state time
"sample window" closes, the input to the sample capac­
itor is disconnected from the multiplexer so that chang­
es on the input pin will not alter the stored charge while

the conversion is in progress. The sample delay and
sample time uncertainties are each approximately ± 50
ns, independent of clock speed.

To perform the actual analog-to-digital conversion the
MCS-96 implements a successive approximation algo­
rigthm. The converter hardware consists of a 256-resis­
tor ladder, a comparator, coupling capacitors and a 10-
bit successivc approximation register (SAR) with logic
that guides the process. The resistor ladder provides 20
mV steps (VREF = 5.12V), while capacitive coupling is
used to create 5 m V steps within the 20 m V ladder
voltages. Therefore, 1024 internal reference voltages are
available for comparison against the analog input to
generate a 10- bit conversion result. Appendix B con­
tains a detailed description of the method used to gen­
erate 1024 voltages from a 256-resistor chain.

The total number of state times required for a 10-bit
conversion varies from one MCS-96 version to the next.
Attempting to short-cycle the lO-bit conversion process
by reading AID results before the done bit is set may
work on some versions of MCS-96 devices, however it
is not recommended. Short-cycling is not tested, nor is
it guaranteed. Furthermore, it may not work on future
MCS-96 devices.

6-206

intJ AP-406

APPLICATION HINTS

The analog signals that must be converted by an analog
acquisition system vary widely. The analog input may
arrive at the controller as a voltage or current. The
range may be 0 to 1 volt or ± 30 volts, or some other
arbitrary range. The input may be linear, logarithmic,
non- linear, or perturbated in some bizarre fashion. Al­
though interfacing to such signals could be considered
an art form, some simple suggestions are contained in
this section.

Analog Inputs

The external interface circuitry to an analog input is
highly dependent upon the application, and can impact
converter characteristics. In the external circuit's de­
sign, important factors such as input pin leakage, sam­
ple capacitor size and multiplexer series resistance from
the input pin to the sample capacitor must be consid­
ered.

270365-31

Figure 11. Idealized AID Sampling Circuitry

VREF

01
ANALOG

FROM USER CIRCUIT>-.... --~Iv--+-a INPUT PIN

02

ANGNO
270365-32

Figure 12. Suggested A/Qlnput Circuit

For the 8096BH, these factors are idealized in Figure
11. The external input circuit must be able to charge a
sample capacitor (Cs) through a series of resistance
(RI) to an accurate voltage given a D.C. leakage (Id.
On the 8096BH, Cs is around 2 pF, RI is around 5 K.o.
and IL is specified at 3 ,...A maximum. In determining
the source impedance RS, VBIAS is not important.

External circuits' with source impedances of I . K.o. or
less will be able to maintain an input voltage within a

tolerance of about ±0.61 LSB (1.0 K.o. X 3.0 ,...A =
3.0 mY) given the D.C. leakage. Source impedances
above 2 K.o. can result in an external error of at least
one LSB due to the voltage drop caused by the 3 ,...A
leakage. In addition, source impedances above 25 K.o.
may degrade converter accuracy as a result of the inter­
nal sample capacitor not 'being fully charged during the
1 ,...S (12 MHz clock) sample window.

Placing an external capacitor on each analog input will
reduce the sensitivity to noise, as the capacitor com­
bines with source resistance in the external circuit to
form a low-pass filter. In practice, one should include a
small series resistance prior to an external low leakage
capacitor on the analog input pin and choose the largest
capacitor value practical, given the frequency of the
signal being converted. This provides a low-pass filter
on the input, while the resistor will also limit input
current during over-voltage conditions.

Figure 12 shows a simple analog interface circuit based
upon the discussion above. The circuit in the figure also
provides limited protection against over-voltage condi­
tions on the analog input (limits to 2.6 rnA with 270.0.
(0.7/270)). The circuit induces leakage from the diodes,
which should be kept small.

The wide range of possible analog environ!l1ents that
must be interfaced to, or the existence of stringent accu­
racy requirements, makes the consideration of alterna­
tive input buffer configurations necessary. The most
popular input buffer is a single op-amp in the non- in-

. verting or inverting configurations of Figure 13.

In the npn-inverting circuit of Figure 13 (a), the analog
input is scaled by the buffer gain to output 5 volts when
the input is at its maximum positive input. When the
buffer input is 0 volts, the output will also be 0 volts.

In the inverting circuit of Figure 13 (b), a reference
equal to the maximum possible input voltage is placed
on the non-inverting input of the op-amp and the actual
analog input is placed on the inverting input. The out­
put voltage of the buffer is then proportional to the
deviation of analog input from its maximum possible
value. For example, when the analog input equals
VMAX, the buffer output will equal 0 zero volts. When
the analog input equals its minimum value, the buffer
output equals 5 volts. The digital result from the AID
converter might, of course, have to be complemented
before being used.

The circuits of Figure 13 show only feedback resistors
that set the gain of the buffer. In practice, it will often
be necessary to include offset adjustments, gain irim­
ming, temperature or frequency stability compensation,
or components to build an active filter.

Figure 14 depicts a generalized non-inverting input
buffer that offsets the analog input and scales the input

6-207

inter AP·406

to a 5 volt range. The course offset is set by the ratio of
RBIGI and RBIG2, while offset fine tuning is done by
adjusting RTRIM. The course gain is set by the ratio of
RGI and RG2 while gain trimming is done with
RoTRIM·

>+-+JVl.fv-<HnANALOG PIN

-= ANGND
270365-12

(a): Non·lnvertlng Buffer

>+-+JVl.fv-<H~ANALOG PIN

-= ANGND
270365-13

(b). Inverting Buffer

Figure 13

By trimming the offset and gain, not only can external
component errors be zeroed out, but the offset and full
scale error of the AID converter can be nulled.

The procedure for nulling offset and gain is simple.
First, a voltage is applied to VIN which corresponds to
the ideal first code transition of the AID. RTRIM is
adjusted so that 50 percent of the conversion results ar~
o while 50 percent are 1. Second, a voltage is applied to
VIN which corresponds to the ideal final code tran­
sition of the AID converter. RoTRIM is then adjusted
until 50 percent of the conversion results are 3FEH and
50 percent are 3FFH. Once this adjustment is com­
plete, the converter zero offset and full-scale errors are
nulled, and could be ignored (except for temperature
variation). This allows the system to rely upon the
tighter, more descriptive converter specifications for
Terminal Based Non- Linearity and Differential Non­
Linearity.

>-........ W\t1-£~ANALOG 'PIN

-= ANGND

270365-14

Figure 14. Trimming Offset and Gain

Analog. References

Reference supply levels strongly influence the absolute
.accuracy of the conversion. For this reason, it is recom­
mended that the ANGND pin be tied to a clean
ground, as close to the power supply as possible. Bypass
capacitors should also be used between VREF and
ANGND. ANGND should be connected to Vss only
at the chip. VREF should be well regulated and used
only for the AID converter. The VREF supply can be
between 4.5V and 5.5V and needs to be able to source
around 5 rnA. Figure 15 shows all of these connections.

Note that if only ratiometric information is desired,
V REF can be connected to Vee. In addition, if the AID
converter is not being used, VREF must be connected to
Vee and ANGND to V ss for PortO to work as a digital
port.

SEPERATE
ANALOG
GROUND
PLANE

MCS®.96
(EXCEPT 809X-90)

DIGITAL
GROUND PLANES GROUND
CONNECTED AT PLANE

TH!: CHIP

270365-15

~igure 15. Supply Oecoupling

6-208

intJ AP-406

Getting More Resolution

Given that the AID converter can convert an analog
input ranging from 0 volts to 5 volts into 1024 steps of
5 millivolts each, the desire for more resolution can
corne from three basic needs - need extra LSB, need
extra MSB, need BOTH.

The configuration shown in Figure 16 can be used to
solve each of the "more resolution" problems. This set­
up r~quires the use of two input channels with different
offsets and gains.

When the 5 millivolt step size of the AID is too large
for the application requirements, but the 5 volt range is
sufficient, the system needs an "extra LSB". For exam­
ple, an application requiring 2.5 millivolt steps over a 5
volt range needs an ll-bit conversion result. The 11th
bit needs to be added to the least significant side of the
10- bit result (the "right"). This can be achieved using
the circuit of Figure 16.

If both channels are set for a gain of 2, with channel 1
offset to 2.5 volts, the 5 volt input range is split into 2.5
volt ranges that are amplified by two before being input
to the AID. While YIN is between 0 and 2.5 volts,
channel 0 will be providing a proportional voltage be­
tween 0 volts and 5 volts to the AID converter. Chan­
nell will be clamped to 5 volts. When YIN rises above
2.5 volts, channell will begin to output a proportional
voltage between 0 volts and 5 volts to the AID convert­
er and channel 0 will be clamped at 5 volts. Using this
method, an II-bit (2048 step) result is created with 2.5
millivolt steps (i.e. an extra LSB).

TO CHANNEL 1
R6

R5 TO CHANNELO

R4

270365-16

Figure 16. A Flexible Input Circuit

It is useful to note that only one conversion per sample
will be required if the software keeps track of which
channel is active., The only time that two conversions
will be required for one sample is when the voltage
crosses the midpoint.

The second reason that "more resolution" is requested
is the need for an "extra MSB". When the converter's
input voltage range is too small (5 volts when 10 volts is
needed), but 5 millivolt steps over the actual input volt­
age range is sufficient, an extra bit is needed on the
most significant ("left") side of the lO-bit result. The
circuit of Figure 16 can also be used, with different
gains and offsets, to satisfy this extra MSB need by
splitting the 10 volt range into 5 volt ranges.

If both channels of Figure 16 are set for unity gain, and
channel 1 is offset to 5 volts, an II-bit conversion result
with 5 millivolt steps is available. While YIN is in the
lower half of its range (0 volts to 5 volts), channel 0 will
be active. While YIN is iii the upper half of its range (5
volts to 10 volts), channel 1 will be active. Thus, an
extra MSB is created.

For applications requiring multiple extra bits of result,
the solutions can become more "elegant" (i.e. elabo­
rate). However, it is profitable to first squeeze the most
out of the now familiar circuit in Figure 16.

Assume that the analog input, YIN, ranges from 0 volts
to 10 volts, and it is desired to measure this range in 2.5
millivolt steps. This requires two extra bits of result -
'one extra MSB and one extra LSB. A simple extrapola­
tion of the preceding discussion of creating extra bits
might have the designer planning to tieup four channels
of the multiplexer needlessly. Needlessly, that is, if
the application is a typical control application where
the high accuracy requirements are only important in
the "normal" operating range of the process. Outside of
the normal operating range is the "possible" operating
range which must be measured, but with less stringent
requirements.

Since the requirements of the normal range set the nec­
essary LSB weight, and the extent of the possible range
sets the maximum voltage span, it follows that only two
channels need to be used (Figure 16). Channel 0 would
be set with a gain that compressed the possible YIN
range to 5 volts, while channel I would be offset to the
normal operating range and would have a gain of two
to expand this region of critical interest. With this ap-

6-209

inter AP-406

p:o.a~h, 1.00 per~n~ of the normal operating range is
dlgl~zed In 2.5 millivolt steps, while 100 percent of the
possible range is digitized in 10 millivolt steps.

Unfortu~ately, not all high resolution applications can
be descnbed as a process with a small region of in-con­
trol operation, where the process is out-of-control out­
side of that small region. For example, it is necessary to
measure airflow in an engine controlling earburetion.
T.be air flow at idle is likely to be several orders-of-mag­
nltude lower than the airflow at full RPM. The process
needs to· be in tight control over the entire range, not
only when the engine is at half-speed.

When it is desired to measure a process· with a fixed
percent of error throughout a range spanning several
orders-of-magnitude, a non- linear input buffer be­
c~mes attractive. For example, assume that the analog
signal that needs to be digitized can vary from 1 milli­
volt to ;25 volts and describes a physical process that
must be represented digitally with 1 percent error at
any point in the possible input range. A linear solution
to this application would require a converter with a 10
microvolt LSB (1 % X 1 mV), and a resolution of 22
bits (25 V /10 microvolts). This ·is clearly undesirable.

The use of a log input buffer to compress the 25 volt
range logarithmically to 5 volts would satisfy the appli­
cation requirements. The input would range from 1
millivolt to 25 volts with the output ranging from 0
volts to 5 volts proportionally to the log of VIN/lm V.
Each one-percent change in the input voltage would
change the output voltage by 5 millivolts (one count).
The antilog could be taken in software using a lookup
table, or the control calculations could be performoo in
a log base.

Simple inexpensive log-amps can be built as in Figure
17, or high- accuracy, self-contained log-amps can be
purchased. Which is chosen depends upon the applica­
tion tradeoffs of price and performance.

V3=KI09(~D
270365-17

Figure 17. A Low-Cost Log Amplifier

Other techniques become available for consideration in
systems that have slow sample rate requirements, but
very high resolution requirements. In addition to the
methods described above, which require external hard­
ware, software filtering or other post-processing of the
conversion results can be productive. Each method re­
lies upon the ability to sample the analog input much
faster than the system requires an analog input.

When resolu~on is limited by filterable noise, perhaps
the most straightforward approach to post-processing is
to oversample the input by a factor of N and digitally
low-pass filter the data (i.e. weighted rolling average).
A result would be reported to the rest of the system
every N samples (Figure 18). A low-pass filter can in­
crease the signal- to-noise ratio (SNR) by a factor of N
(see bibliography). However, care must be taken to be
certain that the input voltage varies slowly with respect
to the sampling rate.

6-210

Yl = YO
YO = B'YI +G'X
Band G are constants

270365-18

Figure 18. A Low Pass Filter

AP-406

DITHER OFFSET
IN LSBS

ft
-+

+0 1 -. 1 -. +0

AID
RESULT

038H

036H!
270365-19

JCTUAL SIGNAL

SIGNAL + DITHER

270365-20

Figure 19. Dither

Another approach to creating more resolution is called
"synchronized dither". Figure 19 shows an input volt­
age that is constant somewhere between two code tran­
sition points. This input is "dithered" by adding a small
periodic waveform (% LSB steps) to the input while
performing an AID conversion synchronized with each
dither step. Every time the dither completes a full cycle,
the eight conversion results are averaged to form one
digitized value. Since the dither is periodic and sym­
metrical about 0 volts, its average impact on the input
voltage is 0 volts.

The creation of extra resolution can be seen with the
example shown in Figure 19. Without dither, the input
voltage would always convert to 37H. With dither, one­
eighth of the conversions would be 38H and % of the
conversions would be 37H. If every eight conversions
were averaged, the result would be 37H + 'I. LSB. The
possible results given a four level dither, where the in­
put voltage was always within the 37H code width,
would be

36H + %
36H + %
37H + 0
37H + Va
37H + %

Hence, four new levels exist (two bits).

Dither will only create more resolution up to the limit
of the AID converter comparator's ability to distin­
guish voltages. Since MCS-96 converter repeatability
error is typically around 1 millivolt to 1.25 millivolts,
'14 LSB dither is the practical limit if no other process­
ing is done. Figure 20 shows a simple method by which

the input voltage could be dithered under software con­
trol.

270365-21

Figure 20. Software Controlled Offset and Gain

While only a few of the more obvious interfacing tech­
niques were described here, there are as many innova­
tive interfacing tricks as there are designers.

CONCLUSION

This application note provides a fundamental under­
standing of MCS-96 analog acquisition for the digital
designer. Since answering the limitless number of ana­
log circuit design questions is beyond the scope of this
document, it is expected that analog design manuals
and the large body of publicly available applications
literature will be consulted for detailed design hints.
Furthermore, the applications literature of monolithic
analog acquisition system manufacturers should be
consulted since the suggestions presented therein are
largely transportable to any AID system.

6-211

Ap·406

APPENDIX A
AID GLOSSARY OF TERMS

Figures 2, 4 and 7 display many of these terms.

ABSOLUTE ERROR-The maximum difference .be­
tween corresponding actual and ideal code transitions.
Absolute Error accounts for all deviations of an actual
converter from an ideal converter.

ACfUAL CHARACfERISTIC-The characteristic of
an actual converter. The characteristic of a given con­
verter may vary over temperature, supply voltage, and
frequency conditions. An Actual Characteristic rarely
has ideal first and last transition locations or ideal code
widths. It may even vary over multiple conversions un­
der the same conditions.

BREAK-BEFORE-MAKE-The property of a multi­
plexer which guarantees that a previously selected
channel will be deselected before a new channel is se­
lected. (e.g. the multiplexer will not short inputs togeth-
er.) .

CHANNEL-TO-CHANNEL MATCHING-The dif­
ference between corresponding code transitions of actu­
al characteristics taken from different channels under
the same temperature, voltage and frequency condi­
tions.

CHARACfERISTIC-A graph of input voltage ver- .
sus the resultant output code for an AID converter. It
describes the transfer function of the AID converter.

CODE-The digital value output by the converter.

CODE CENTER-The voltage corresponding to the
midpoint between two adjacent code transitions.

CODE TRANSITION-The point at which the con­
verter changes from an output code of Q, to a code of
Q + 1. The input voltage corresponding to a code tran­
sition is defined to be that voltage which is equally like­
ly to produce either of two adjacent codes.

CODE WIDTH-The voltage corresponding to the
difference between tW? adjacent code transitions.

CROSSTALK-See "Off-Isolation".

D.C. INPUT LEAKAGE-D.C. Leakage current of an
analog input pin. .

6-212

DIFFERENTIAL NON-LINEARITY-The differ­
ence between the ideal and actual code widths of the
terminal based characteristic of a converter.

FEEDTHROUGH-Attenuation of a voltage applied
on the selected channel of the AID converter after the
sample window closes.

FULL-SCALE ERROR-The difference between the
expected and actual input voltage corresponding to the
full-scale code transition.

IDEAL CHARACTERISTIC-A characteristic with
its first code transition at VIN = 0.5 LSB, its last code
transition at VIN = (VREF - 1.5 LSB) and all code
widths equal to one LSB.

INPUT RESISTANCE-The effective series resistance
from the analog input pin to the sample capacitor.

LSB - LEAST SIGNIFICANT BIT-The voltage val­
ue corresponding to the full-scale voltage divided by 2n,
where n is the number of bits of resolution of the con­
verter. For a 10-bit converter with a reference voltage
of 5.12 volts, one LSB is 5.0 mY. Note that this is
different than digital LSBs, since an uncertainty of two
LSBs, when referring to 'an AID converter, equals
10 m V. (This has been confused with an uncertainty of
two digital bits, which would mean four counts, or
20 mV.) ,

MONOTONIC-The property of successive approxi­
mation converters which guarantees that increasiJig in­
put voltages produce adjacent codes of increasing value,
and that decreasing input voltages produce adjacent
codes of decreasing value.

NO MISSED CODES-For each and every output
code, there exists a unique input voltage range which
produces that code only.

NON-LINEARITY-The maxilnum deviation of code
transitions of the terminal based characteristic from the
corresponding code transitions of the actual character­
istic of a converter.

()FF-ISOLATION-Attenuation of a voltage applied
on a deselected channel of the AID converter. (Also
referred to as Crosstalk.)

inter AP-406

REPEATABILITY-The difference between corre­
sponding code transitions from different actual charac­
teristics taken from the same converter on the same
channel at the same temperature, voltage and frequency
conditions.

RESOLUTION-The number of input voltage levels
that the converter can unambiguously distinguish be­
tween. Also defines the number of useful bits of infor­
mation which the converter can return.

SAMPLE DELAY-The delay from receiving the start
conversion signal to when the sample window opens.

SAMPLE DELAY UNCERTAINTY-The variation
in the Sample Delay.

SAMPLE TIME-The time that the sample window is
open.

SAMPLE TIME UNCERTAINTY-The variation in
the sample time.

SAMPLE WINDOW-Begins when the sample capac­
itor is attached to a selected channel and ends when the
sample capacitor is' disconnected from the selected
channel.,

SUCCESSIVE APPROXIMATION-An AID con­
version method which uses a binary search to arrive at
the best digital representation of an analog input.

TEMPERATURE COEFFICIENTS-Change in the
stated variable per degree centigrade temperature
change. Temperature coefficients are added to the typi­
cal values of a specification to see the effect of tempera­
ture drift.

TERMINAL BASED CHARACTERISTIC-An Ac­
tual Characteristic which has been rotated and translat­
ed to remove zero offset' and full-scale error.

Vee REJECTION-Attenuation of noise on the Vee
line to the AID converter.

ZERO OFFSET-The difference between the expected
and actual input voltage corresponding to the first code
transition.

6-213

infef AP-406

APPENDIX B
CAPACITIVE INTERPOLATION

A successive approximation AID converter needs an
internal DI A converter of the same resolution as the
desired AID result. A 10-bit DI A could have been
made using a string of 1024 resistors connected from
the analog reference at one end to ground at the other
end. Although this would be technically ideal, such a
circuit, would be enormous. Therefore, a method was
developed to genera:te the needed reference voltages us­
ing a small area of silicon so that an on-chip lO-bit
AID converter would be economical.

The method used relies upon a 256-resistor chain to
generate reference voltages in 20mV (5.12V /256) steps
while two ratioed capacitors are used to capacitively
"interpolate" voltages in-between the resistor tap volt­
ages. The area of the 256-resistor chain together with
the capacitors is one-fourth the area of the would-be
1024 resistor chain.

Before beginning a detailed description of the capacitive
part of the conversion process, it is necessary to under­
stand a few details about the resistor chain.

There are 256 resistors connected in series from the
analog reference to analog ground. The actual value of
the resistors only impacts the current through the refer­
ence pin. If every resistor in the chain is the same value
the converter will function properly.

To reduce resistor-to-resistor variation, the chain is
folded in half, and then in an accordion fashion to pro­
duce a 16 X 16 block of resistors. This minimizes the
sensitivity of the array to processing gradients, while
also allowing the array to be addressed roughly similar
to a 16 X 16 memory array.

6-214

As explained earlier, it is desired for the AID converter
to have its first code transition at 1/2 LSB followed by
subsequent code widths I LSB wide.

To accomplish this, each resistor is tapped in its center
rather than between resistors. For example, the first
resistor tap is half-way up the first resistor. This means
that the zero resistor tap will output 10m V (20m V 12).
When calculating the voltage on a certain resistor tap,
you must add 10m V to the product of the tap number
and 20mV.

The internal connections while an analOg input is being
sampled are shown in Figure Bla. Once sampling is
complete, the analog input is disconnected and the
comparator inputs are no longer clamped to VBIAS
(Figure Bib).

During the sample window (Figure Bla), V ANIN and
VOPS control the amount of charge stored in CA and
CB (VOPS controls the converter offset). Once the sam­
ple window closes (Figure Bib), voltages applied to
VIN and VIN2 will add or subtract charge proportional
to (V ANIN - VIN) on CA and (VOPS - VIN2) on CB·
Unless a voltage is applied to VIN and VIN2. The in­
verting comparator input of Figure Bib will remain at
VBIAS due to the charges on CA and CB. The non­
inverting comparator input will always remain at
V BIAS and serves as a reference.

Ifa VIN, VIN2 combination is applied which causes the
non-inverting input to drop below VBIAS the compara­
tor will output to a I to indicate that the applied volt­
age was lower than the original V ANIN. To better un­
derstand how the Circuit works, Figure B2 shows the
superposition analysis used to form the equation for
VOUT, given initial charge on CA and CB and new in­
put voltages VIN and VIN2.

inter AP·406

Adding the independent effects shown in Figure B2 we have:

VOUT = V1 + V2 + V3 + V4

VOUT = VIN (CA~CB) + VIN2 (CA~CB) + VAl (CA~CB) + VBI (CA~CB)
CA CB

VOUT = (VIN + VAl) -C C + (VIN2 + VBI) -C C
A+ B A+ B

The initial ~onditions on CA and CB are set-up as shown in Figure B3.

We can see that:

VBI = VBIAS - VOFS

Resistor Str)ng

One of 256
Resistor Taps

From
Pin

One of four
Resistor Taps

1
CB=SCA

Successive
Approximation
Register

CA Is the sample capacitor

(a). Connections during the sample window

Resistor String

One of 256
Resistor Taps

From..J
Pin

One of four
Resistor Taps

Successive
Approximation
Register

(b). Connections aller the sample window closes

Figure 81

'6-215

270365-22

270365-23

(I)

(II)

(III)

inter AP-406

Substituting II and III into I we get:

CA
VOUT = (VIN + ValAS - V ANIN) -C C +

, A + a,

Ca
(VIN2 + ValAS - VOFS) -c c (IV)

A + a

VOUT becomes the input voltage to the comparator
which ideally presents no load. The only way to make
VOUT approach the value of VB lAS (after VBIAS is re­
moved) is to apply a voltage combination which makes
equation IV evaluate to VBIAS, If we had an infinitely
variable internal voltage reference to use, we could
just set the reference on V IN . to the value of
VANIN and make VINZ = VOFS:

We would then have, from IV:

(b)

270365-27
(d)

However, using a 256-resistor chain to provide refer­
ences, we can find a VIN, VINZ combination which can
bring VOUT close to the value of VB lAS, The 256-resis­
tor chain provides a reference voltage in 20 m V steps.
We can then take separate taps of the resistor chain and
connect them to VIN and VIN2' The voltage attached to
VIN will couple to VOUT by a factor OfCA/(CA + CB)
= 8/9 from EQN IV. The voltage attached to VIN2
will couple to VOUT by a factor of Ca/(CA + CB). The
ratio of the impacts on VOUT ofVIN versus VIN2 is:

(aVOUT) + (aVOUT) = (8/9)/(1/9) = 8
aYlN aVIN2

Therefore, a voltage change on VIN will affect the volt­
age seen at VOUT eight times more than the same
change placed on VIN2.

(i) To determine VOUT use
superposition

270365-24

270365-26
(e)

270365-28
(e)

Figure 82. Superposition Analysis of comparator input voltage

. ~1'!h I
..l.. -r-}VBI _

VANIN~ -:b- ~VBIAS

. T 'i'Vo~ I
Figure 83. Initial Conditions

6-216

270365-29

inter AP-406

For example, assume the actual input voltage V ANIN
was 2.S0mV during the sample window. Using EQN
IV, and assuming VBIAS = 3V and VOFS = 70mV, we
substitute and find:

VOUT = (VIN + 2.9975) x (8/9) +
(VIN2 + 2.93) x (1/9) (V)

Using successive approximation, the first trial input
voltage attempted corresponds to the digital code 0111
1111 lIb (127 X 20mV + lOmV). This means that the
voltage applied to VIN will be the 0111 l.111b tap and
the voltage applied to VIN2 will be the 0110b tap (6 X
20mV + lOmV = 3 LSB). Substituting these values
into EQN V we have:

VOUT ~ (2.550 + 2.9975) x (8/9) + (0.130 + 2.93) x (1/9)

4.931 + 0.34
(V)

~ 5.271

Since the 3V reference is lower than VOUT with these
inputs, the comparator will output a 0 which is placed
in the MSB of the successive approximation register.
The next most significant bit of the SAR is then zero'd

and the new ladder tap applied to VIN. The result of
this second comparison, and the subsequent compari­
sons are shown in Table BI. The C program used to
generate Table B 1 is listed in Listing B I.

The value selected for V OFS during the sample window
may not be obvious. The purpose of VOFS is to inject a
constant offset in the sampling process so that the con­
verter's first code transition will occur at 2.5mV.

Using EQN IV we can quickly see why VOFS is chosen
to be the fourth resistor tap (4 X 20mV + lOmV =
70mV). For V ANIN = 2.5mV, we want VOUT to eval­
uate to VBlAS when the SAR is OH.

VOUT = {(0.20 mV + 10 mY) + (VSIAS - 2.5 mV)l x
(8/9) + 1(0.20 mV + 10mV) + (VSIAS-
70 mV)l x (1/9)

VOUT - VSIAS = 7.5 mV x (8/9) -,60 mV x (1/9) = 0

Therefore, ifVOFS = 70 mY, the converter's first code
transition will be when V ANIN = 2.5 mY.

Table 81. Conversion Simulation

A to D simulator. (center taps) •• With
VIN = 0.,002500
VCENT = 3.000000 VOFF = 0.070000
SAR = lFFH (511) VOUT = 5.271111
SAR = FFH (255) VOUT = 4.133333
SAR = 7FH (127) VOUT = 3.564444
SAR = 3FH (63) VOUT = 3.280000
SAR = lFH (31) VOUT = 3.137778
SAR = FH (15) VOUT = 3.066667
SAR = 7H (7) VOUT = 3.031111
SAR = 3H (3) VOUT = 3.013333
SAR = lH (1) VOUT = 3.004444
SAR = OH (0) VOUT = 3.QOOOOO
SAR = lH (1) which means 0.005000 volts

6-217

intJ AP-406

.Include 'CTYPB.H'
'Include 'S'tDIO.B'
1* ualple luocaUOA Unel

12dlll 0.0025 3.0 0.01 II
Vln 9bUI Vofl prlDt to screen and Ip

I2dl1l 0.0015 3.0 0.01
Vln Vblas Vofs print to screen only

'1

lot Illnlt. argvl
tAt t:
cbar *arqvll:

I " latn *1
FILE *tp, *'openll:
double lottl.l.condltlons. vln. ,out, ycent. ,off. v89, Y19:
unllqDed Int sir -013FF:
unS1qDed Int last - 01200:
uDS1gned Int count = 0:
UDuqned lot prloton:
If /8trclplar9Y[O). 'ruo', == 0,

count .. :
1f /It != 14. count)l , It !- 15' countlll

I
prloW'loIovocatlon error!\o":
retarn:
I

count .. ;
sacanf(arqyrcount"I, 'lllf', "101:
slclnfllfqvlcoanttt). 'SU', ',cant);
sSClnflargv(coont .. J, 'IU', .voUl;
tt (count == t)

prlnton = 0:
else prlnton = I:

prlottl'A to D sllulltor.lcanter taps) •• 'I:

If (\lrlntonl
I
11 (lfp • topeol'\pro;'. "'II :. 01

J
If Iprlntonl

i
prlnU('lnCan't open prlnterln'j;
return:
I

fprlntflfp. 'A to D stlulltor .. 'I:

pflnttl' with InVln = IfloVcant : IfloVoff : Itlo'. Yin. vCInt. Yoffl:
If Iprlnton I

fprtntflfp. ' with loVlo = ItlnVcent = "loVOff • It\o',
vln. vcent. voffl:

Initial_conditions' ((8.0 I 9.01 * I,cent - .Inll
+ 111.0 1 9.0) t Ivceot - YolfJI:

v89 - 8,0 I 9.0:
.19 • 1.0 1 9.0:

Listing 81. AID Converter Simulator

6-218

27036S·AS

intJ AP-406

au " last:
prlntt('SAR ' I3xH IUdl It', ur, sari:
It {prlntool

Iprlntf{tp, 'SAB '131H (¥4dllt', sar, sari:
tor (count' 0: count (IO: countU)

I

vout ' Iv89 * ((~doublel (sar » 2)) * 0.02 + O.OI)}
t {v19 * ((Idoublel (lsar' 31 {(1)1 * 0.02 + 0.01))
+ InHlal.condltlOns:

11 Ivout (vcent I
sar I' Ia'.:

IU. », I:
sar " last:
prlntt('Vout ' UlnSAB '.31B ('4dl\t', lout, ur, sari:
11 (prlntonl

i

t~rlnt/(fp. 'Vout ' UlnSAI 'Sl3IY (<<dllt',
vout, sar, sari:

prlnt/(' wblcb leans .t lOItsIDID', (double) sar * 0.005):
It (prlotonl

fprlnttUp, ' wbich lelDS Sf voUslnlo', (doable) sar * 0.005):
return:
I /' laIn */

Listing B1. AID Converter Simulator (Continued)

6-219

270365-AB

inter AP·406

APPENDIX C
ERROR FORMULAS

The following C program listing contains the routines
. used to calculate AID performance in the Embedded
Controller Applications lab. Most of the routines re­
quire floating point arrays to operate upon. In the list­
ings, the array x[] contains the input voltages corre­
sponding to each code transition of the converter. The
array dx[] contains the width of the region in which
each code transition of the converter could occur. For
example, an input voltage of 0.OO3V may cause code 0
and code I to be equally likely outputs. x[O] would then
contain 0.0030000. However, O-to-I code transitions
might be observed infrequently through a range ·of in­
put voltages from 0.0025V to 0.0035V. dx[O] would
then contain 0.0010000 to indicate that there is a
1 millivolt window in which either code could occur.
x[] and dx[] are generated by hardware doing repeat-

6-220

ed conversions using precision voltage standards to pro­
vide the input voltages. The array dd[] is used
throughout as temporary storage.

Generally, typical data is drawn from x[] only. When
minimum and maximum data is desired, x[] and dx[]
are used to find the range of possible input voltages that
could cause each code. For example, typical zero offset
is found by simply subtracting 0.5 LSB from the value
of x[O]. But, the minimum and maximum zero offset
would be calculated as x[O] - 0.5 LSB ± dx[0]/2. .

The listings are provided to show exactly how perform­
ance data is calculated. They are not meant to be com­
piled by the reader. In fact, they are too incomplete to
compile correctly, as some support routines and global
data structures are not provided.

inter AP-406

.Include '\DPRIADTIlAC.H'

.Include 'IDPRlTDBASU'

.Include 'IDPI\IDBASU'
UeUnB LSD (nov.avcC/lPOI(2.nb1tS111
.deflne Fcr I1ntJ(polI2.nbltsl - 21
lundef lin
'undef lax
'nndef aDS

double povla. bl
lnt a, b:

(IA POI AI
double telp:
Int I:
teap': 1.0:
tor (1 : 1: I (: ((IntI bl: Itt, telp: tnp A al

return ItaIPI:
1

double fabslal
double a:

I
If la (01

return (-a I :
else return I a I:
1

lot Iln(a, bl
double I. b:

I
if la (bl

return (II:
elae If la) bl

return /21:
else return 101:
I

Int I .. !a. bl
double a, b:

f
return Illnlb, all:
)

double tYPlotflX, dxl
float II). dxll:

/
double powl):
return (xlO) - {O.!> A LSDII:
1

double Inloftix. dxl
float xII. drl I:

{

dooble POI II :

IA POI AI

return IxlOl + (dx(O) I 2.01 - 0.5 A LSBI:
I

double IIBIOU Ix. drl

Listing C1. Error Formulas

6-221

270365-A7

inter

flolt Ill. dlll;
(

, double pawn:

AP-406

returD 11(0) • (dlIO) / 2.01 - 0.5 * LSI I ;
}

double typlse(l. dll
1100t III, dIll:

I
doable peI'l I :
r.turD (.IFef1 - (.,ow.I'ec - (l.s * LSIJl);
I

double 11II'Se'l. dll
flOit III. dIll:

I
doable povo:
return ((1(FCf1 • (dllFCfI / Z.Oll - 'R~.I'ec - (1.5 * LSIIII:
I

doullle wl.el •• dl I
1100t III. dill:

I
double peI.n:
return ((rlFetl t (dllFeT) / 2.011 - (aov.a,ec - (l.5 * LSIIII:
I

lat xlbllrrorll. dr. dd. Itlrt. stop) /* tra.UUon ablolute error */
f10lt Irl. dlr). ddll:
unll9fted lDt Itlrt. stop:

(
double pawl). 'absO;
IDt 1, .orst;
for /I : .orlt : ltart; 1 C: Itop; Itt I

I
ddUl : xIII - {(doublel 1 • u.sl * LSI:
if ft.bl(ddUlI) fabslddl,otltll I

fOrst: 1:

retarD "orst I: ,
lnt iilliiriOrdi(i, III. dd. start, itOPI 1* truutlOi ilIlOlute error "~ds */
flOit II I. dill. ddIJ;
UDSIgnd lat stert. Itop:

{

double por(J. fibs II ;
IRt I, fOut;
double tI. tZ:
tor /1 : fOrst: start; I C: stop; U+I

{

tl • 'III I . {dllll I 2.01/ - (lldooblel I + 0.51 t LSI I ;
tz : (rUI + (drill I 2.0)) - (((double, .1 + o,sl t LSII;
If Iflblltll) labsltZ))

ddltl : tl: .
els. ddll) = tZ;
11 Ulbs(ddUJI) fabllddl,orst III

,orst : I; .

retura (fOrlt):
I

Listing C1. Error Formulas (Continued)

6-222

270365-A8

inter AP·406

Int tbnonllnll, dl, dd, start, stopl ,I tb nonlin USing I only *1
float III. dIll. ddll:
unsigned Int start, stop:

I
Int I, lorst:
double POlO. typzoffll, typfsell. fabsll:
double oadj. qadj:

Old.! • typZOftll, dll:
qadj = 1.0 f I(tvpfsell, dr) - oadj) / Iistopll:

for (1 • ,orst = start: I (= stop: 1++1
I
dd(l) = 11(1) - oad,1I I qadJ - ([(double) I + MJ * LSI):
if (fabsldd(lJI) fabs(ddl,orstJlI

return I,orstl:
)

,orst = I:

tnt tbnonl1lldl(l. dl, dd, start, stoP) 1* tb non lin uSing I and dl *1
float III. dl! J, ddlJ:
unsigned Int start, stop:

I '
Int 1, ,orst:
double po'O, typ.olt/l, typl180, lab. 0 :
dooble oadJ, qad.l. tl, t2:

O&dj • typlOffil. dll:
qadJ • 1.0 + ((typfs'(I, drl - oadJJ /11.topll:

Listing C1. Error Formulas (Continued)

6-223

270365-A9

intJ . Ap·406

for 11 • IOrst • ltart: 1 c· Itop; 1++1
(
t1 • 11[11 - Idlll) , 2.01 - oadJl * q.dJ - I(ldoUblel I • o,sl * UBI:
t2 = 11(1) t (dllIl , 2.0) - oadj I ' gadJ - IIldoublel I t O.S) * WI:
if /f.bllUl) f'.'lt21)

4411) • ti:
else d4{H = t2:
1f (flblidd[l11) t.blldd[rorstlll

rorat • I;
I

returD (rorat I:
)

lnt Idalil.dI. dd •• t.rt. atop I
flOit xII. dIll. dd[):
lat lurt. stop;

, I
lat 1. IOrst;
double polO. tabs II :
~l. Old,. qadj:
dOalll. typt .. lI. typlOtfO:

, '* ullag I only *1

014.1 • typiOff (I, dll:
91d, • 1.0 t ((typflell, dI. - oadjl 1 II.topll:

rorat •• tlrt:
If (Stlrt •• 01

(
4410J • 0.0;
atart .. ;
I

for (I • atart: 1 (= stop; lUI
(
dd(1) • (1[11 - oadj) * 9adJ

- (1[1 - 11 - oa4jl * !JIdJ
- US:

it /fabsl44UII) fabl(ddirorstlll,
IOrst • I;

retora Irorst I;
I

lnt zdnldzl,. CI, lid. stert, :tcpl
float II), dill. 44(1:
lnt Itart, atop;

(
lit I, IOrst:
double porll. fab.():
4oub.!e tl. t2:
doublll OIdj. gadj;
doBIIle tr,f .. ", tYpioff II:

OId,1 • typBoffll. dll;

/' DUn; : ==d d: *'

!JIdJ, = 1.0 f lItyp ... II, dll - OIdj) ,llltopll:

IOrst = .tart;
if 'atart,·· ,01

(
44[OJ • dl[OI I 2.0:

listing C1. Error Formulas (Continued)

6-224

270365-80

inter AP-406

starlH:
I

for ii : start: t (= stop: 1++1
I
tl : Ix(1J - (dl(1) , 2.01 - oadJ) t gadj
-IX(1 - 11 + (dl(1 - IJ 12.0) - oadJI t Qad.1
- LSB:
t2 : (x[1) • (dx(IJ , Z.OI - oadj\ t gadj
-(1[1 - IJ - (dl[1 - 1) I 2.0) - oadjl * ~adj
- LSB: .
if (fab.(tll) fabs(t2)l

ddll) : tI:
else dd(1) : t2:
If (fabsldd(111) tab.(ddl,orstJl)

,orst : I:

return (rorst): ,
Int reslevels(I, drl '* Unds resolution In levels *'
float I(). dIll:

(

lot I. levels, D:
double po,ll:

levels = I:
n = Untl po'(Z. obits) - 1:
If «r(O) - (dIIOJ I 2.01) O .• OJ'

le,els,+ :

tor (1 : I: I (n: Itt I
1f «1/1 - 11 + (dl(l - II , 2.011

return (levels I;
I

((1[1) - (dl[ll , 2.01 - tparl •• flne_step)1
levelstt:

Listing C1. Error Formulas (Continued)

6-225

270365-81

infef AP-406

APPENDIX D
SAMPLE CONVERTER DATA

The following pages include printouts describing the
performance of an 8097BH. The data shown is for one
device and is provided for illustrative purposes only.
Users should only rely upon data sheet specifications
for the exact device they are designing with.

VREF = 5.120 volts. Following Table D2 are several
error plots that describe Absolute Error, Terminal­
based Non-Linearity, Differential Non-Linearity and
Repeatability for the test device code-by-code. The
y-axis in the plots is the error in volts for each code
transition, where code transitions make up the x-axis.

Table Dl summarizes many performance measures for
one converter at 25 C, 12 MHz, Vee = 5.00 volts and

Table 01. Sample Converter Data

Test ID = DOH
sN: 4130 (1022H)
T = 25.000000
Vee = 5.000000, Avee = 5.120000
Freq = 12.000000
Chan. = 3
States = 188 Mode = OH
XO.15 1/28/87
Transition Characterization Parameter Listing
Large Step = 0.001000 V
Small Step = 0.000100 V
Endpoints when (1/100) are wrong

Center is 50 percent

Typical Offset Error = -0.001923
Maximum Offset Error = -0.002460
Maximum Offset Error = -0.001385

Typical FS Error = -0.000566
Maximum FS Error = -0.001254
Minimum FS Error = -0.000120

Absolute Error (typ) 40 = 0.004157
Absolute Error (max) 40 = 0.004795
Absolute Error (min) 325 = 0.001111

Diff. Non. Lin. Error (max) 40 = 0.003747
Diff. Non. Lin. Error (min) FF = -0.001071

Term. Non. Lin. Error (max) 325 = -0.004102
Term. Non. Lin. Error (min) 40 = 0.002148

Maximum Reliab~li ty Error 3Dl = 0.001875
Minimum Reliability Error 3A7 = 0.000974

Resolution is 1024 levels.

6-226

inter AP-406

nOSOIllte r:rror. SN ' 4(30

,11n= Ylax=
-0.0052 + 0 - 0.00~2

1_. ________ . ________ 1 _____ .. ___ . 1

0: 0.002460: 1
I: 0.002214: 1
2: 0.002257:
J: 0.002171:
4: 0.002597:
5: 0.002201:
b: O.00233f~ , a
7: 0.002172:
8: 0.002579:
9: O.00213b:
A: 0.002263:
B: 0.002219:
C: 0.0026~2:

D: 0.002230:
E: 0.002280:
F: 0.002062:

10: 0.002581:
II: 0.002203:
12: 0.002440:
13: 0.002165:
14: 0.002578:
IS: 0.002129:
16: 0.002262:
1'/: 0.002192:
IH: 0.002533:
19: 0.002223:
lAo 0.002383:
18: 0.002300:
IC: 0.00247:;:
10: 0.002268:
IE: 0.002418:
IF: 0.001994:
20: 0.002.741:
21: 0.002392:
22: 0.002516:
23: 0.002392:
24: 0.002713:
7.5: 0.002588:
26: 0.002612:
27: 0.002299:
28: 0.002687:
29: 0.002580:
2~: 0.002613:
28: 0.002424:
2C: 0.002787:
2D: 0.002487:
2£: 0.002733:
2F: 0.002246:
30: 0.002865:
31: 0.002~34:

32: 0.002605:
33: 0.002155:
34: 0.002841:

Absolute Error, SN = 4130

6-227

270365-69

inter Ap·406

inter Ap·406

'Il: ~.OOJZOJ:

11: G.uc.Jz:m:
'/3: 0.003201 :
7i: 0.003261 :
75: 0.002882:
16: 0.003161 :
1'/: 0.003112:
18: 0.003000:
1~: 0.002833:
lA: 0.002989:
18: 0.002932:
1C: 0.002924:
10: 0.002716:
1E: 0.002159:
1F: 0.002021:
80: 0.003422:
81: 0.003129:
82: 0.00~322:

8J: 0.003169:
84: 0.003202:
85: 0.002953:
&6: 0.0030&6:
8'/: 0.002891:
88: 0.003038:
89: 0.002446:
8A: 0.U02983:
88: 0.002623:
8e: 0.002813:
80: 0.002593:
8E: 0.002485:
OP: U.002415:
90: 0.002191 :
91: 0.002647:
92: 0.002012:
93: 0.002576:
94: 0.002662:
'IS: 0.002514:
96: 0.002111 :
'1'/: 0.002405:
98: 0.002593:
99: 0.002266:
9A: 0.002550:
98: 0.002340:
9C: 0.002412:
9D: 0.002118:
'It: 0.002303:
'IF: 0.001754:
AO: 0.002191:
AI: 0.001893:
Al: 0.002259:
AJ: 0.001986:
At: 0.002103:
AS: 0.001881:
A6: 0.002011:
A7: 0.001933:
A8: 0.002059:
A9: 0.001792:
AA: 0.001961:
A8: 0.001776:
AC: 0.001864:

270365-71

Absolute Error, SN = 4130 (Continued)

6-229

inter

AD: 0.001592:
AI: 0.001781:
Af: 0.001538:
80: 0.001906:
II: 0.001724:
12: 0.001887:

"B3: 0.001773:
84, 0.001585:
85: 0.001598:
86: 0.001650:
87: 0.001554:
88: 0.001'115:
B9: 0.0015.~:

BA: 0.001653:
B8: O,00147C:
Be: 0.001467:
BD: 0.001384:
BE: 0.001588:
Bf: 0.001028:
CO: 0.003214:
Cl: 0.0029U:
r.2: 0.002966:
el: 0.0027'19:
C4: 0.003087:
C5: 0.002717:
C6: 0.003096:
C7: 0.002806:
C8: 0.003030:
C9: 0.002796:
CAl 0.002642:
CB: 0.002885:
cc: 0.003040:
CD: 0.002719:
CE: 0.002878:
CF: 0.002742:
00: 0.002845:
DI: 0,002546:
02: 0.002790:
03: 0.002395:
O~: 0.002848:
D5: 0.002487:
06: 0.002768:
D7: 0.002700:
88: 0.00l681:
D9: 0.002617:
DA: 0.002755:
PB: 0.0026U:
DC: 0.1102684:
DD: 0.002398:
DE: 0.002553:
OF: 0.002223:
£0: 0.002463:
E1: 0.001878:
E2: 0.002t39:
13: 0.002206:
E4: 0.002083:
£5: 0.002055:
£6: 0.002288:
£7: 0.002144:
£8: 0.002356:

AP-406

Absolute Error, SN = 4130 (Continued)

6-230

t

t

t

t

t

t
"t

t

t

270365-72

intJ

E9:
EA:
EB:
Be:
ED,
EE:
RF:
FO,
F1,
F2,
Fl,
Ft:
FS:
Jl6:
F7:
F8:
F9:
FA:
FB:
FC:
FD:
FE:
FF:

100:
101:
102,
103:
104:
105:
tOr ..
107:
108:
109:
lOA:
lOB:
IOC:
100:
lOB:
10F:
110:
III:
112:
113:
114:
115:
116,
117:
118:
119:
HA:
llB:
lie:
liD:
liE:
lIF:
120:
121:
122:
123:
124:

AP-406

0.00U2S,
0.002263,
0.002IlJ,
0.002233,
0.0021'12:
0.002369,
0.002149:
0.002216,
0.001841:
0.002051:
0.001935,-
0.00196S:
0.001729:
0.oom9:
0.001899:
0.001S89:
0.001718:
O.00193~:

0.001756:
0.001975:
0.001832:
0.001920:
0.001041:
0.002291.
0.002008:
0.002296:
0.001975,
0.001946:
0.001874,
0.001884,
0.001817,
0.00213~:

0.001921 :
0.002009:
0.001832:
0.001903:
0.001694:
0.001838:
0.001537:
0.001681:
0.001436:
0.001730:
0.001631:
0.001636:
0.001374:
0.001550:
0.001500:
0.001~30:
O.OOlm:
0.001390:
0.001Z7l:
0.001321:
0.001074:
0.001268:
0.0008ltl
0.001401:
0.001052:
0.001193:
0.001106:
0.001253:

Absolute Error, SN = 4130 (Continued)

6-231

*
*

•
*

•
*

•
*

*

*
*
*

*

*

•
*

.*

*
*

27(}365-73

AP-406

125: 0.000758:
126: 0.000953:
121: 0.000976:
128: 0.001080:
129: 0.000937:
12A: 0.001181:
121: 0.001018:
12C: 0.000959:
128: 0.000862:
121: 0.000812:
12F: 0.000813:
130: 0.000933:
131: 0.000671: •
132: 0.000811: t

133: 0.000634: .-
134: 0.000929:
135: -0.0006n:
136: 0.000888:
137: 0.000539:
138: 0.00102·/:
139: 0.000~50:
13A: 0.000749:
138: 0.000809:
IX: 0.001032:
13D: 0.000788: t

13£: 0.000963:
13F: -0.000681:

-140: 0.002218:
lUI 0.002186:
14?: 0.002327:
143: 0.002196:
Itt: 0.002447:
145: 0.002267:
Ub, 0.002435:
147: 0.002385:
148: 0.002554:
149: 0.002284:
HA: 0.002420:
I4B: 0.002482:
He: 0.002523:
I4D: 0.002299:
14£: 0.002303:
UP: 0.002097:
150: 0.002267:
lSI: 0.002127:
152: 0.002312:
1S3: 0.002092:
154: 0.002264:
155: 0.00197&:
151>: 0.0020341
1~7: 0.002084:
158: 0.002235:
159: 0.001959:
15A: 0.002071:
158: 0.002048:
15C: 0.002104:
15D: 0.001998:
lSi: 0.002110:
ISF: 0.001935:
160: 0.002075:

Absolute Error, SN = 4130 (Continued)

6-232

a
a

t

t-

a

a-

t

•

t

t

t

•

t

t
t

t
270365-74

inter

161:
162:
163:
164:
165:
166:
WI:
168:
169:
16A:
16B:
16C:
16n:
16£:
16F:
170:
171:
172:
173:
174:
]75:
176:
177:
178:
179:
17A:
17B:
17C:
17D:
17£:
I7F:
160:
181:
162:
163:
18t:
165:
186:
187:
188:
lR9:
16A:
lUB:
18C:
160:
18E:
16P:
190:
191:
192:
193:
194:
195:
196:
197:
196:
199:
19A:
19B:
19C:

AP-406

0.001'155:
O.00IQ22:
0.001706:
0.001984:
O.OOURl:
0.001630:
0.001612:
0.001967:
0.001880:
0.002022:
0.001736:
0.00)073:
0.001595:
0.001620:
0.001649:
0.001770:
0.0014Q2:
0.001635:
0.00m2:
0.001725:
0.001534:
0.001601 :
0.001527:
0.001743:
0.001443:
0.001623:
0.001576:
0.001528:
0.001386:
0.001466:
0.00B57:
0.001971:
0.001741 :
0.001616:
0.001707:
0.001694:
0.001598:
0.001600:
O.00U96:
0.001771:
0.001478:
0.001654:
0.001591 :
0.001732:
0.001404:
0.001536:
0.001411 :
0.001811:
0.001467:
0.001372:
0.001370:
0.001323:
0.001306:
0.00H29:
0.001025:
0.001565:
0.001281 :
0.001465:
0.001323:
0.001540:

Absolute Error, SN = 4130 (Continued)

6-233

t

t

270365-75

19b, 0.001262'
191, 0.001245,
19F, 0.001201,
lAO, 0.001413,
IAI, 0.001170,
tA2, 0.001361:
!A3, 0.001321,
lAt, 0.001181,
1A~, 0.000872,

'1A6, 0.001086:
lA7, 0.001080,
lA8, 0.001195,
lA9, 0.001138:
lA': 0.001204:
lAB: 0.001230:
lAC, 0.001210:
1AD, 0.000971:
IAR: 0.001083:
IAF: 0.001274,
IBO: 0.001211:
181: 0.001133:
182: 0.001069:
lBa: 0.001095:
IB4: 0.00106~:

lBS: 0.001081:
186: 0.001124:
181: 0.001019:
188: 0.001010:
189: 0.001081:
114: 0.001183,
188: 0.001291:
lac: 0.001124:
IBO: 0.00100f>:
18E: 0.001016:
18F: 0.001061:
lCO: 0.002"5,
ICI: 0.0023581

'le2: 0.002538:
IC3: 0.002151:
ICI: 0.002112:
ICS: 0.002415:
IC6: 0.002579:
le7: 0.0024:16:
1C8: 0.002796:
IC9: 0.002388:
leA:' 0.002368:
lca: 0.002426:
ICC: 0.002661:
ICD: 0.002162:
ICE: 0.002497:
ICF: 0.002396:
IDO, 0.002617:
101: 0.002399:
102: 0.002503:
103: 0.002153:
IDI: 0.002623:
105: 0.002411:
106: 0.002123:
107: 0.002190:
188: 0.002606:

AP-406

Absolute Error, SN = 4130 (Continued)

6-234

•
t

•
t

•
•
•

t

•
•

•
•

•
t

•
t

•
t

•
t

270365-76

intJ

ID9:
10<1:
lOB:
IDC:
100:
IDE:
lOP:
lEO:
1£1:
112:
IE3:
1E4:
1£5:
116:
187:
11:8:
1£9:
lEA:
IEB:
lEe:
1£0:
1E£:
IEF:
1PO:
IPI:
IP2:
lFl:
IF4:
IPS:
IF6:
IF7:
IF8:
IP9:
lFA:
IF8:
IFC:
IPD,

'IF£:
IFF:
200:
2ul:
202:
l03:
204:
l05:
206:
207:
208:
209:
20A:
208:
lOCI
ZOO:
20E:
lOF:
210:
211:
212:
213:
214:

0.002351 :
0.002439:
0.002382:
U.002426:
0.002376:
0.002H3:
O.002!>31:
0.002583:
0.002038:
0.0023?l:
0.002043:
0.002350:
0.002166:
0.002351 :
0.002363:
0.00245~:
0.002002:
0.002299:
0.002lf6:
0.0022'19:
0.002072:
0.001960:
0.002221 :
0.002314:
0.001940:
0.002086:
0.002310:
0.002188:
0.002075:
0.002065:
0.002267:
0.002187:
0.002002,
0.002120:
0.002133:
0.002158,
0.001937:
0.002079:
0.001409:
0.001819:
0.001707:
0.0019U5:
0.001557:
0.001650,
0.001661:
0.001683:
0.001595:
0.001535:
0.0011'19:
0.001610,
0.001454:
0.001370:
0.001262:
0.001179:
0.000983:
0.001405:
0.001014:
0.001168:
0.001193:
0.001420:

AP·406

I
I
I
I
I
I
I
I
I'
I
I
I
I
I
I
I
I

Absolute Error, SN = 4130 (Continued)

6-235

t

t

*
t

*
t

*
t

•
•
*

•
*

270365-77

intJ

215: 0.001162:
216: 0.001323:
217: 0.001268:
U8: 0.001296:
219: 0.001147:
2U: 0.001036:
1.18: 0.001170:
21e: 0.001551:
21D: 0.001065:
21£: 0.001216:
ZIP: 0.000666:
220: O.OOllOh
221 : 0.000988:
222: 0.001207:
223: 0.001066:
224: ,0.001079.
225: 0.001029:
226:' 0.000971:
221: 0.000968.
228: 0.001203:
229: 0.000949:
220\: 0.001026:
228: a.OOIOM:
22C: 0.00lU8:
22D: 0.000887:
221: 0.001149.
22P: 0.000738:
230: 0.001214:
l~l : 0.000920:
232: 0.001203:
233: 0.000978:
234: 0.001203.'
235. 0.001081:
236: 0.001003:
237: 0.001053:
238: 0.001235:
239: 0.000705:
230\: 0.001066:
238: 0.000924:
2le: 0.001087:'
2311: 0.001000:
231: 0.001006:
23P: -0.000785:
240: 0.002137:
m: 0.001968:
242: 0.002196:
243: 0.002027:
2U: 0.002162:
245: 0.001918:
246: 0.002075:
247: 0.001871:
248: 0.002060:
249: 0.002108:
2fA: 0.002100:
241: 0.002060:
24e: 0.002217:
2tD: 0.00203~:

24B: 0.00224~1
2U: 0.002190:
250: 0.002US:

AP-406

Absolute Error, SN = 4130 (Continued)

6-236

..
t.

t .

t

t

, . t

•

.'
•
•

t

t

t

t

t

•

270365-78

AP-406

l~l: 0.002013:
252: 0.0022~9:

253: 0.002068:
254: 0.002310: •
255: 0.002213: t

256: 0.0023IC:
257: 0.002201:
258: 0.002259:
259: 0.002090:
25A: 0.001956:
258: 0.002095:
2!.r.: 0.002377:
25D: 0.002086:
2~E: 0.002090:
25P: 0.001912:
260: 0.002137:
261: 0.001808:
262: 0.002027.: •
263: 0.0019": t

264: 0.002053:
265: 0.001856:
266: 0.0020t2:
2~'1: 0.001940:
2681 0.002020:
269: 0.001762:
26A: 0.001820:
268: 0.001?73:
26C: 0.001850:
26D: 0.001685:
26£: 0.001910:
26F: 0.00179(:
270: 0.00m8:
211: 0.001653:
272: 0.001632:
273: 0.0015(01
27(: 0.001677:
275: 0.001356:
276: 0.001582:
277: 0.001630:
278: 0.001505: •
279: 0.001403: t

27A: 0.001464:
271: 0.OOU02:
27C, 0.001620:
270: 0.001106:
271: a.OOH37:
27f: 0.001276:
280: 0.001913:
281: 0.001950:
282, 0.002095:
283: 0.001620:
284: 0 •. 0020%: t

285: 0.001850: t

286: 0.001951: t

287: 0.001836: t

288: 0.001726: t

289: 0.001690:
28A: 0.001743: t

288: 0.001775: t "
28C: 0.001551:

270365-79

Absolute Error, SN = 4130 (Continued)

6-237

AP-406

28D: 0.0016l.0:
281: 0.001~99:

28F: 0.0015361
290. 0.001558:
291: 0.OOHZ31
292: o.oum:
293: 0.0012SS:
294: 0.001423:
2951 O.OOllSl:
196: 0.001336:
297: 0.001311:
298: 0.001308:
299: 0.001125:
2%: 0.001060:
291: 0.001131:
29C1 0.001Z09:
29B: 0.000856: -,
29~: 0.001095: I
29F. 0.000190: ,
ZAOI 0.000988: I
2A1: 0.000839: I
2A2: 0.001122: ,
U3: 0.000913: I
U4: 0.000971:
US: 0.000710:
Z0\6. 0.000819.
U'l: 0.000801:
ZA8: 0.001102:
2A9: 0.000120:
UAI -0.000620:
lAB. 0.000799:
lAC: 0.000991:
lAB: 0.000127:
2A£: 0.000684:
UP: 0.000683:
210. 0.000713:
281: -0.000782:
Z8Z: 0.000601:

,283: -0.00070':
Z84: 0.00OM7:
liS: -0.000815: t

286: -0.000685: t

2B'I: -0.099716:
Z18: 0.000688:
Z19: -O.OOO'lM:
lIlA: -0.000661:
2B'1 -0.000781:
ZBC: 0.000904:
ZBD: 0.000707:
ZI£: 0.000763:
1.8F: 0.000844:
ZCO: 0.0022":
2ci: 0.001988:
zez: 0.002117:
2C3: 0.0020051
ZCt, 0.002275:
ZC5: O.OOZl831
2U: 0.002092:
aC7: 0.00Z171:
ZC8: 0.002366:

Absolute Error, SN = 4130 (Continued)

6-238

t

t

t

t

*

t

t·

t

t

• 270365-80

inter

2e9: 0.002105:
leA: 0.002047:
lCD: 0.002142:
lec: 0.002308:
lCD: 0.002226:
lCE: 0.002106:
2Cf: 0.001931:
200: 0.002296:
201: 0.001963:
202: 0.002106:
203: 0.002014:
2D4: O.OOZl36:
2D5: 0.001849:
206: 0.002152:
207: 0.002205:
208: 0.002087:
209: 0.001866:
20A: 0.002304:
208: 0.002234:
ZDC: 0.002308:
200: 0.001769:
2bE: 0.002155:
2DF: 0.002034:
2EO: 0.001801:
2£1: 0.001788:
2E2: 0.001813:
L£3: 0.001724:
2E4: 0.001537:
2E5: 0.001622:
2£6: 0.001797:
2£1: 0.001799:
2£8: 0.001720:
2£9: 0.001537:
2EA: 0.001715:
2£8: 0.001385:
2EC: 0.001687:
2BD: O.OOU64:
2EE: 0.001508:
UF: 0.001373:
2FU: 0.001488:
2FI: 0.001379:
2F2: 0.001508:
2E3: 0.001325:
2Fi: O.001J8~:

2P5: 0.001225:
7.F6: 0.001381:
2F7: 0.001301:
2F8: O.OOH68:
2P9: 0.001136:
2FA: 0.001032,
lfD: 0.000957:
2FC, 0.001102:
lPD: ~.001088,

2PE: 0.000999:
2PF: 0.001571:
300: 0.001484:
30) : 0.001278:
302: 0.001463:
303: 0.001298:
30.: 0.001282:

AP-406

f ,
f
I
I
I

Absolute Error, SN = 4130 (Continued)

6-239

•
t ..

•
t

•
t

270365-81

inter AP-406

305: 0.001267: t '

J06: 0.OUI311:
307: 0.001154:
308: 0.001373:
JU9: 0.001001:
lOA: 0.001208:
30B: 0.001134:
30C: 0.001258:
30D: 0.001135:
30£: 0.001168:
30F: 0.000971:
310: 0.001021:
311: 0.000689:
312: 0.0009'10: t

313: 0.000857: t

314: 0.000944:
liS: 0.000651:
316: 0.000'/94:
317: 0.000744:
318: 0.000790:
319: 0.000702:
314: 0.000724: '
JIB: 0.000613:
l1C: 0.000823:
31D: 0.000691 :
31£: V.000789:
llF: -0.000870:
320: -0.000695:
321: -0.000923:
322: -0.000784:
323: -0.000845:
324: -0.000707:
325: -0.001111:
326: -0.000776:
327: -0.0009'11:
328: -0.000893:
329: -0.0010~9:

32A: -0.000888:
328: -0.00/001:
32e, 0.001505:
:120: 0.001350:
32E: 0.001438:
32F: 0.001358:
330, 0.001612:
331: 0.001368:
332: 0.001645:
333: 0.001482: t

334: 0.001753: t

J35: . 0.001664:
33&: 0.001732:
337: 0.001582: ,
338: 0.00161.1:
339: 0.001472: -

. 33A: 0.OOI4n:
338: 0.001522:
3lC: 0.001102:
330: 0.001311: t'

33E: 0.001545:
l3F: 0.001281:
340: 0.002%0:

270365-82

Absolute Error, SN = 4130 (Continued)

6-240

inter

341: 0,002109:
342: 0.00l828:
343: 0.002~42:

344: 0.002'/84:
345: 0.002119:
346: 0.002590:
347: 0.002811:
348: 0.003014:
349: 0.003003:
lU: 0.002713:
34B: 0.0027U:
34C: 0.003031:
340: 0.002672:
34E: 0.00285t:
34F: 0.0029061
350: 0.002960:
351: 0.002142:
352: 0.002836:
353: 0.002754:
354: 0.003072:
355: 0.002821:
356: 0.003011:
357: 0.003037:
358: 0.002763:
359: 0.002649:
35.\: 0.002595:
358: 0.002113:
J~: 0.002'/93:
350: 0.002419:
35£. 0.002709:
35F: 0.002716:
3&0: 0.002505:
361: 0.002437:
362: 0.002451:
363: 0.002320:
364: 0.002UB:
365: ·0.002264:
366: 0.002315:
;167: 0.002312:
368: 0.002421:
369: 0.002251:
364: 0.002330:
36B: 0.002212:
l6C: 0.002269:
360: 0.001925:
36£: 0.002158:
36F: 0.002229:
370: 0.002246:
J7l: 0.001929:
372: 0.002095:
313: 0.002046:
374: 0.002085:
315: 0.001816:
376: 0.001926:
311: 0.002039:

.378: 0.001961:
379: 0.001932:
31A: Q.002019:
318: 0.001950:
31C: 0.001922:

AP-406

* I t

*
t

* .
t

* •

'* . I , .. , ,
I , ,
I ,

Absolute Error, SN = 4130 (Continued)

6-241

•
•

•
*

•
*

270365-83

intJ

370, 0.001815,
31£: 0.001689:
:11F: 0.002200:
380: 0.00206':
381: 0.00176':
382: 0.00t910:
383: 0.001945:
384: 0.00l'113:
385: 0.0018661
386: 0.001889:
387: 0.001800:
388: 0.001'179:
389: 0.001.454:
38A: 0.00158':
38B: O.ODun:
J8C: 0.001469:
380: 0.001268:
38£: 0.001562:
38F: 0.001268:
390: O.OOt568:
39t: 0.000946:
392': 0.ODH2l:
393: 0.001232:
394: 0.00lf99:
395: 0.001255:
396: 0.001087:
397: 0.001265:
398: 0.001421:
399: 0.001169:
39A: 0.OD126'1:
398: 0.0012n:
39C: 0.001440:
390: 0.001153:
3'1£: 0.00H02:
39F, 0.001260:
3AO: 0.001363:
3AI: O.OOlUS:
342: 0.001221:
3A3: 0.0011551
3A4: 0.001452:
3A5:' 0.001302:
3A6: 0.001138:
3A7: 0.001079:
lA8: 0.001378:
3A9: 0.001043:
3U: 0.001145:
JAB: 0.001207:
3AC: 0.001161:
3ADI 0.001133:
3AB: 0.001137:
3AF: 0.001l7S:
3BO: 0.001159:
J81: 0.000747:
3821 0.000927:
383: 0.000883:
384: 0.OOJll1:
385: 0.000784:
386: 0.001002:
387: 0.0010581
388: 0.000907:

AP-406

Absolute Error, SN = 4130 (Continued)

6-242

t

•

•
•

270365-84

389.
3BA.
3aB.
lllC.
380.
liE:
J8'.
XO:
JC1:
JC2.
le3:
Xi.
3C5:
3C6:
3C7.
le8.
lt9:
leA:
JCB.
3CC.
3CD.
lCI:
lC'.
300:
301.
302.
3D3:
3M:
305.
306.
JD7.
300:
309.
3DA:
30B:
3DC:
3DD.
3DE:
3DP.
3£0.
3EI.
312:
3£3,
3U.
3E5.
J£6.
3£7.
J£8.
3E9:
JEA.
J£B.
3EC.
JED:
JEI.
3£F.
lPO.
3P1.
3FZ.
J.3.
3Ft.
3F5.
3'6.
3P7:
J'8.
In.
3'A.
lFB.
3FC:
3'0.
lPE:
JF'.

AP-406

0.OO075l. •
O.OOO9U. •
0.000972.
0.000949.
0.000972:
0.000996.
0.001226:
0.001%3:
0.001554.
0.00180i.
0.001950.
0.002170,
0.001896:
0.002087.
0.001877.
0.00ll83:
0.0020U:
0.002163:
0.00203b:
0.002131:
O.OOZOI1.
0.001908.
0.001909.
o.oozm.
0.002189.
0.00198b:
0.001811.
0.001939:
0.001809.
0.001920.
0.001776:
0.00206b:
0.00116i.
0.00187 ••
0.001881.
0.00I9t2:
0.001808.
0.001838.
0.001993.
0;001739:
0.001112.
0.001616:
0.001576.
0.001812.
0.001652.
0.001872.
0.001730.
0.001548.
0.001693.
0.001857.
0.001638.
0.001738.
0.001581:
O.ODIS79:
0.001780.
0.00U51:
O.OOlm.
0.0013fZ.
0.00U39.
0.001508:
0.001163.
O.OOI3U:
O.OOllfO:
0.001373.
0.001098.
0.001106.
0.OOI2iS.
0.001320:
0.00108 ••
0.0012Sf:
0.000000.

Absolute Error, SN =:' 4130 (Continued)

6-243

•
•

•
•

•
•

•
•

•
•

•
•

270365-85

270365-86

inter AP-406

_on. Lin. Error. SI • t130

'liD" YlII-
-0.0037, • 0 - 0.0037

'---- , ,
0: -0.000000:
1: -0.000291: I I
2: -0.000256: * ,
3: -0.000343: I
4: 0.000031:
5: -0.000266: . I I
6: -0.000134: I,
7: -0.000397: ,
8: 0.000007:
9: -0.000386: ,
AI -0.000210: I ,
8: -0.000256: I ,
c: 0.000075: ,I
D: -0.000247: I ,
I: -0.000194): I ,
P: -0.000f68: I

10: -0.0000001
11: -0.000330: ,
12: -0.000094: *1
13: -0.000320: I ,
14: 0.000040:
151 -0.000f09: ,
16: -0.000277: I ,
17: -0.000349: ,
18: -0.000009:
19: -0.000270: I ,
IA: -0.000112: I,

11: -0.000296: I ,
lC: -0.0001Z4: I,
10: -0.000281: I ,

,IE: -0.000132: I,
IF: -0.000607: I
20: 0.000137: ,I

ll: -0.000162: I ,
22: -0.000039:
231 -0.000215: I ,
24: 0.000104: '*
25: 0.000028:
ZI" 0.000000:
27: -0.000313: I ,
28: 0.000123: ,I
29: -0.000085: II
2A: 0.000056: ,I

21: -0.00DIt3: I ,
le: 0.000217: , I
2D: -0.000083: *1
21: 0.000061: '*
2F: -0.000276: * I
30: 0.000290: I I
31: 0.000008:
32: 0.000078: 1*
33: -0.000323: ,
341 11.000211: I *

270365-30

Non. Lin. Error, SN = 4130

6-244

inter

35: -U.000065:
36: 0.000165:
'37: -0.000106:
38: 0.000409:
39: 0.000186:
3A: 0.000398:
3B: 0.000166:
3C: 0.000368:
30: 0.000287:
3£: 0.000513.
3r: -0.000275:
40. 0.00m7.
fl. 0.001651.
42. 0.001983:
43. 0.001184.
H: 0.001994:
45: 0.001478.
'6: 0.001922:
47: 0.001617:
48: 0.001910:
49: 0.001616:
fA: 0.001833:
fB: 0.001621:
4e: 0.001812:
4D: 0.00I!l85:
4E: 0.001771:
4F: 0.001392:
50: 0.001900:
51: 0.001682:
52: 0.001571:
53: 0.00U98:
Sf: 0.001755:
55: 0.001485:
56: 0.0015":
57: 0.001455:
58: 0.00IM1:
59. 0.001382.
5A: 0.001604.
58: 0.00U89.
5C: 0.001650.
SD. 0.001323.
SE: 0.001536:
SF. 0.000952:
60: 0.001437:
61. 0.001163.
62: 0.001365.
63: 0.001156:
M: 0.001275:
65: 0.000971:
66: 0.001141.
67. 0.000923:
68: 0.000960:
69. 0.000603.
6A: 0.000797.
6B: 0.000806:
6C. 0.000928:
60: 0.000589:
6E: 0.000793:
tiF. 0.000592.
101 0.000798.

AP-406

*' , '
" ,
I • I

I • ,
, * ,

• I
I
I
I
I
I
I
I
I ,
I
I
I
I
I ,
I
I
I *
I • I
I
I ,
I
I

*,

.'

•
*

•
*

Non. Lin. Error, SN = 4130 (Continued)

6-245

270365-34

intJ AP-406

'1\, 0.nOUU2:
72, O.OOO~16, ,
13, 0.000531: I
74, U.000616: I
15: 0.000216: ,.
16: 0.000493, ,
11, 0.000393, ,
18, 0.000330,
'19, 0.0001ll , I·
"A: 0.000216:

I • 78: 0.000158,
I • 7C: 0.000148: I '

7D: -0.000060: .,
7£: 0.000081, I·
7P: -0.000601: ,
80: 0.000691 : I'
81: 0.000H7: I
82, 0.000588: I
83: 0.000434: ,
84: 0.000566: ,
8~: 0.000265: I •
86: 0.000397: ,
87, 0.000157,

I • 8&, 0.0003%, I
89, -0.0001%: . ,
84: 0.000339: I
8B: -0.000021:
8C: 0.000166:

I • 8D, -0.000104: " 8E: -0.000163: , I
8F: -0.000285: t ,
90: 0.000089:

'* 91: -0.000055:

*' 92: 0.000057:
'* 93: -0.000129:

*' 94: 0.000025:
95: -0.000194: * ,
96, -0.000048:

*' 97, -0.000255: , ,
98, -0.000119:

*' 9Q: -0.000"5, ,
9A: -0.000214: . ,
98: -0.000376: ,
'It: -0.000305: *

,
9D: -0.000650, ,
9R: -0.000467: I
9F: -0.000%7: ,
AO: -0.000481: I
AI, -0.000830: ,
A2: -0.000416: ,
43: -0.000790: ,
At: '0.000574: ,
45: -0.000848: ,
A6: -0.000709: ,
47: -0.000898: ,
48: -0.000774: ,
49: -0.000892: ,
AA: -0;000768: ,
AI: -0.000911, ,
AC: -0.000824: I

270365-35

Non. Lin. Error, SN = 4130 (Continued)

6-246

. inter

AD, -0.001097,
AE, -0.000960:
AF: -0.001154,
SO, -0.000787,
B1, -0.001021,
H2: -0.000909,
83, -0.0010U,
84: -0.001064:
85, -0.001152,
86: -0.0010S1:
B7: -0.001199:
B8: -0.001089:
89: -0.001260:
8A: -0.00110t:
BB: '0.001284:
Be: -0.00IZ42:
BD: -0.001376:
BE: -0.001114:
OF: -0.001735:
co: 0.000398:
Cl: 0.000097:
C2: 0.000248:
C3: 0.000109:
C4: 0.000316:
C5: -0.000054:
C6: 0.000322:
Cl: -0.000018:
C8: 0.000254:
C9: 0.000018:
CA: -0.000086:

. CD: 0.000005:
CC: 0.000208:
CD: -0.000113:
CE: 0.000094:
CP: -0.000093:
DO: 0.000058:
DJ, -0.000191:
02: -0.000049:
D3: -0.0004f5:
Df: 0.000056:
05: -0.000306:
06: 0.000023:
07: -0.000145:
08: -0.000116:
09: -0.000231:
DA: -0.000044:
DB: -0.000158:
DC: -0.000168:
00: -0.000455:
DE: -0.000301:
DP: -0.000633:
EO: -0.000324:
£1: -0.000830:
E2: -0.000421:
E3: -0.000605:
Ee: -0.000729:
IS: -0.000709:
16: -0.000527:
£'/, -0.000672:
E8: -0.000462:

AP-406

*
t

*
*

*
*

*
*

't , *
,* , t

*' , *

, *

*'
, *

' , *, ,* * ,

*' ,
,* * ,

* ,

Non. Lin. Error, SN = 4130 (Continued)

6-247

270365-36

£9: -U.000694:
EA: -O.0005~7:

BB: -0.000709:
EC: -O.OOOMO:
ED: -0.000752:
BE: -o.ooom:
EF: -0.000728:
FO: -0.000612:
Fl: -0.000989:
F2: -0.000780:
F3: -0.0009":
U: -0.000868:
F5: -0.001156:
F6: -0.000807:
P7: -0.001038:
F8: -0.001200:
F9: -0.001222:
FA: -0.000956:
FB: -0.001087:
FC: -0.000919:
PDt -0.001063:
FB: -0.000977:
FF: -0.001857:

100: -0.000509:
101: -0.000"3:
102: -0.000b06:
103: -0.000828:
104: -0.000859:
105: -0.000982:
106: -0.000913:
101: -0.001042:
108: -0.000775:
109: -0.001040:
lOA: -0.000904:

. 108: -0.000982:
IOC: -0.000912:
100: -0.001113:
10£: -0.001030:
10Ft -0.001382:
UO: -0.001240:
111: -0.001386:
112: -0.001093:
113: -0.001244:
114: -0.001240:
115: -0.001503:
116: -0.001328:
117: -0.001480:
118: -0.001401:
U9: -0.001521:
lIA: -O.OOU94:
IlB: -0.001614:
11C: -0.001565:
liD: -0.0018U:
liE: -0.001621:
1lF: -0.002076:
120: -O.ooIMI:
121: -0.001841:
122: -0.001701:
123: -0.001790:
124: -0.0016":

AP-406

•
t

t

•

t

•

. t

• t

Non. Lin. Error, SN = 4130 (Continued)

6-248

270365-37

125: -0.002140:
126: -0.0019~6:

127: -0.001915:
128: -0.001172:
129: -0.001961:
12A: -O.OOl1H:
128: -0.001888:
IlC: -0.001946:
12D: -0.002097:
12K: -0.0020~8:

12F: -0.002148:
130: -0.001960:
131: -0.002243:
132: -0.002054:
133: -0.002233:
134: -0.002039:
135: -0.002342:
136: -0.002083:
137: -0.002333:
138: -0.0018%:
139: -0.002125:
13A: -0.002177:
138: -0.007.166:
13C: -0.001897:
13D: -0.002142:
138: -0.002018:
13F: -0.00U90:
140: -0.000666:
141: -0.000100:
141.: -0.000560:
143: -0.000692:
144: -0.000493:
145: -0.000724:
146: -0.000607:
147: -0.000659:
146: -0.000441:
lt9: -0.000112:
14A: -0.000518:
148: -0.000511:
14C: -0.000527:
140: -0.000753:
I4E: -0.000650:
14F: -0.000857:
150: -0.000686:
151: -0.000880:
152: -0.000146:
153: -0.000911:
J54: -0.000747:
ISS: -0.000986:
156: -0.000929:
157: -0.000931:
1~8: -0.000131:
159: -0.001008:
15A: -0.000898:
158: -0.000912:
15C: -0.000867:
150: -0.001075:
15E: -0.000914:
15F: -0.001140:
160: -0.001002:

AP-406

Non. Lin. Error, SN = 4130 (Continued)

6-249

270365-38

inter

161: -0.001273:
162: -0.001057:
163: -0.00127~:
164: -0.OOI0te:
16~: -0.001~2:

166: -0.001155:
167: -0.001274:
166: -0.001100:
169: -0.001259:
16A: -0.000966:
168: -0.001205:
16«:: -0.001110:
16D: -O.00lf49:
161: -0.001315:
16F: -0.0013471
110: -0.001218:
171: -0.001551:
172: -0.001365:
113: -0.001430:
174: -0.001328:
115: -0.001520:
116: -0.001455:
177: -0.001480:
178: -0.001315:
179: -0.001617:
l1A: -0.001338:
178: -0.00148t:
J7C: -O.OOlt86:
170: -0.001619:
11£: -0.001~0:
1": -0.001611:
180: -0.001098:
181: -0.0013791
182: -0.001306:
183: -0.001366:
184: -0.001230:
1851 -0.001418:
186: -0.001377:
181: -0.001480:
188: -0.001309:
189: -0.001553:
18A: -0.001378:
18B: -0.00U931
18C: -0.001353:
18D: "0.001682:
18E: -0.001502:
18': -0.001618:
)qU:. -0.001229:
191: -0.001624:
192: -0.001671:
193: -0.001674:
194: -0.001672:
195: -0.001841:
196: -0.001669:
191: -0.00202.:
198: -0.001466:
199: -0.001871:
19A: -0.001688:
19B: -0.001182:
lile: -0.OOI5I1i:

AP-406

t

t

t.

Non. Lin. Error, SN = 4130 (Continued)

6-250

intJ

190: -0.OOI~45:
19£: -O'.OOIBM:
19F: -0.001909:
lAO: -0.001698:
lAI: -0.001943:
!A2: -0.001803:
IA3: -0.001894:
IU: -0.001936:
IA5: -0.002146:
1A6: -0.001983:
1A1: -0.002040:
U8: -0.00181'/:
IA9: -0.002035:
IAA: -0.001921:
lAB: -0.001896:
lAC: -0.001861:
lAD: -0.002108:
IA£: -0.001997:
JAF: -0.001807:
IBO: -0.001822:
lSI: -0.002051:
182: -0.001916:
183: -0.001991:
IBf: -0.001913:
185: -0.002108:
186: -0.002067:
187: -0.002013:
188: -0.002053:
189: -0.002113:
18A: -0.001913:
18B: -0.001950:
IBC: -0.001974:
IDD: -0.002IU:
18£: -0.002055:
IBF: -0.0020fl:
ICO: -0.000629:
ICI: -0.OOOH7:
le2: -0.000569:
IC3: -0.000101:
IC4: -0.000'97:
ICS: -0.000746:
IC6: -0.000533:
IC7: -U.000677:
IC8: -0.000fJ9:
IC9: -0.000728:
leA: -0.000699:
lCD: -0.000643:
ICC: -0.000509:
ICD: -0.000159:
ICE: -0.000676:
ICF: -U.000618:
lDO: -0.000508:
101: -0.000178:
102: -0.000675:
103: -0.000126:
lD4: -0.000558:
105: -0.000768:
106: -0.0001bO:
ID1: -0.000645:
108: -0.000580:

AP-406

*
*

Non. Lin_ Error, SN = 4130 (Continued)

6-251

270365-40

109: -0.000836:
IDA: -0.000750:
lDB: -0.000753:
IDe: -0.000715:
1001 -0.000816:
ID£: -0.000'/01:
IDF: -0.0007141
1£0: -0.0006631
1£1: -0.001060:
lE2: -0.000828:
lE3: -0.001107:
1£4: -o.oooaOl:
l£S: -0.001037:
116: -0.000803:
117: -0.000843:
lE8: -0.000702:
l£c/: -0.001156:
lEAl -0.000861:
18B: -0.000965:
lEe: -0.000933:
lED: -0.00IU2:
1££: -0.001205:
IBF: -0.000995:
If 0: -0.000954:
IPl: -0.001179:
IF2: -0.001084:
1J13: -0.001061:
1Ft: -0.001035:
IF5: -0.001099:
IF6: -O.OOllllr
1F7: -0.000960:
IF8: -0.000991:
IP9: -0.001178:
IF41 -0.001061:
1FB: -0.001099:
IFC: -0.001026:
IFD: -0.00IZ48:
IFE: -0.001157:
II'F: -0.001828:
200: -0.001360:
201: -0.001533:
202: -0.001386:
203: -0.001636:
204: -0.001536:
20b: -0.001584:
206: -O.oOlm:
207: -0.001703:
208: -0.001714:
209: -0.002021:
20A: -0.001592:
20B: -0.001799:
zoc: -0.0018841
20D: -0.0019941
20B: -0.002028:
20F: -0.002225:
210: -0.001805:
211: -O.OOZI37:
Z12: -0.001994:
213: -0.002071:
2U: -0.001795:

AP-406

t

t

t

•

..

Non. Lin. Error, S~ = 4130 (Continued)

6-252

270365-41

215: -0.002104:
216, -0.00IQ'5:
211: -0.002001:
218: -0.001911:
219: -0.002115:
2lA: -0.002187:
2lB: -0.00210':
21C: -0.001125:
21D: -0.002212:
21E: -0.002012:
21P: -0.002564:
220: -0.002021:
221: -0.002294:
222: -0.002127:
223: -0.002269:
22.: -0.002157:
225: -0.002308:
226: -0.002268:
227: -0.002372:
228: -0.002039:
229: -0.0023":
2U:· -0.002218:
22B: -O.0022U:
22C: -0.002179:
22D: -0.002361:
221: -0.002101'
22F: -0.00~463:
230: -0.002088:
231: -0.002333:
232: -0.002052:
233: -0.002328:
234: -0.002104:
235: -0.002278:
2361 -0.002357:
237: -0.002259:
238: -0.002078:
239: -0.002559:
23A: -0.002199:
238: -0.002343:
23C: -0.U02181:
23D: -0.002369:
23£: -0.002265:
23F: -0.002833:
240: -0.001181:
241: -0.001357:
242: -0.001130:
243: -0.001301:
244: -0.001167,
245: -0.001462:
246, -O.OOllS·/:
247: -0.OUW2:
2.8: -0.00122':
249: -0.001278:
2fA: -0.001181:
248: -0.001278:
2fC: -0.001023:
2tD: -0.001256:
24E: -0.00Ia7:
24P: -0.001204:
250: -0.000930:

AP-406

*
*

*
*

*
*

t

t

t'

Non. Lin. Error, SN = 4130 (Continued)

6-253

I
I
I
I
I
I
I
I
I
I
I
I

. I
I
I
I
I
I
I
I

270365-42

intJ

m, -0_001283:
252: -0.001008:
253: -0.001281:
2M: -0.000930: '
255, -0.001188:
256: -0.001039:
,257: -0.001147:
258: -0.001096:
259: -0.001217:
2Si: -0.001302:
2511: -0.0012H:
25C: -0.0010114:
25D: -0.001276:
25E: -0.001213:
25F: -0.001343:
260: -0.001229:
261: -0.001509:
262: -0.001297:
263: -0.OOH26:
264: -0.001318:
265: -0.001517:
266: -0.001282:
267: -0.00.,85:
268: -0.00i35?:
269: -0.001616:
26A: -0.001509:
261: -0.001558:
26C: -0.001582:
260: -0.001748:
261: -0.001524:
26F: -0.001692:
270: -0.001589:
?,il; -0.001186:
272: -0.001108:
273: -0.001751:
274: -0.001716:
275: -0.001988:
276: -0.001813:
217: -0.001816:
278: -0.001943:
279: -0.002046:
27.: -0.001936:
27.: -0.002000:
27C: -0.001783.
278: -0.002248:
271: -0.001869:
27F: -0.002131:
280: -O.OOU96:
281: -o.oomo:
282: -0.00131":
283: -0.001792:
284: -0.001318:
285: -0.001615:
286: -0.0014&5:
287: -0.001632:
2~: -0.001643.
289: -0.001730:
28.: -0.001629:
288. -0.001698:
28C: -0.001823:

AP-406

t

t

t

t

•

t

t

•
t

t
t

t

t

Non. Lin. Error, SN = 4,130 (Continued)

6-254

r
I
I
I

270365-43

inter

28B: -0.001855:
28E: -0.001118:
28P: -0.001942:
290: -0.00t871:
291: -0.002008:
292: -0.001945:
293: -o.ooms:
294: -0.001962:
295: -0.002235:
296: -0.002101:
297: -0.002178:
298: -0.002132:
299: -0.002366:
29A: -0.002433:
298: -0.002360:
29C: -0.002236:
29B: -0. 0025tl:
29E: -0.002403:
29P: -0.002609:
2AO: -0.002413:
ZAI: -0.002563:
2A2: -0.002381:
2A3: -0.002542:
214: -0.0024351
2A5: -0.002697:
2A6: -0.002530:
2A7: -0.002653:
?.A8: -0.002459:
2A9: -0.002742:
2AA: -0.002860:
2AB: -0.002666:

- 2AC: -0.002525:
2AD: -0.002741:
ZAB: -0.002'185:
ZAP: -0.002737:
280: -0.002709:
281: -0.003031:
2B2: -0.002823:
283: -0.002906:
2B4: -0.002780:
285: -0.0030J9:
286: -0.002941:
287: -0.002923:
288: -0.002794:
289: -0.002973:
2BA: -0.002872:
288: -0.0029t3:
2BC: -0.002!>84:
280: -0.002832:
28E, -0.002777,
28P, -0.002698:
2CO: -0.001295:
2Cl: -0.0015571
2C2: -0.001429:
2C3: -0.001542:
lC4: -0.001274:
lC5: -0.001417:
2C6: -0.001409:
2C7: -0.001382:
2C8: -0.0011381

AP-406

t

t

*
I

*
*

Non. Lin. Error, SN = 4130 (Continued)

6-255

270365-44

intJ

lCq, -0.001450,
2eA, -0.001(09,
2C8, -0.001366,
2CC: -0.001201,
2CO: -0.001385:
lCE, -0. ooa06,
ZCP: -0.001532:
200, -0.001166:
201: -0.001503:
202: -O.OOHIH
203: -0.001554:
20C: -0.001334:
205: -0.001622:
206: -0.001370:
207: -0.001369:
208: -0.001438:
209: -0.001660:
lOA: -0.00132(:
208: -0.001395:
2OC: -0.001273:
200: -0.001813:
2DB: -0.00U28:
lOP: -0.001550:
2EO: -0.001685:
2SI: -0.001799:
2E2: -0.001725:.
283: -0.001766:
2£4: -0.001954:
285: -0.001920:
2£6: -0.001747:
287: -0.001796:
2£8: -0.001776:
2E9: -0.002011:
2EA: -0.001834:
2E8: -0.00211~:

2BC: -0.001915:
2ED: -0.002089:
2BB: -0.002046:
2EF: -0.002132:
2FO: -0.002069:
2n: -0.002229:
21'2: -0.002101:
2P3: -0.001.236:
2Ft: -u.002177:
2F5: -0.002388:
2F6: -0.00226(:
2P7: -0.002315:
2F8: -0.002449:
2F9: -0.002533:
2FA: -0.002538:
21'8: -0.00256(:
2FC: -0.002411:
21'0: -0.002(86:
2FK: -0.002576:
2PF: -0.002006:
300: -0.00199(:
301: -0.002301:
302: -0.002168:
303: -0.002284:
30(: -0.002?~1:

AP-406

t

t
t

i

i' .

. Non. Lin. Error, SN = 4130 (Continued)

6-256

-I
I
1
I
1
I
I
1

·1
I
1
I
I
I
I
I
I

270365-45

305: -0.002U1:
306: -0.002269:
301: ~0.002483:
308: -0.002265:
309: -0.002589:
30A: -0.002383:
30B: -0.002508:
30C: -0.002336:
JOD: -0.002560:
30B: -0.002428:
JOP: -0.002671:
310: -0.002528:
311: -0.002861:
312: -0.002612:
313: -0.002746:
314: -0.002710:
315: -0.002955:
316: -0.002813:
311: -0.002864:
318: -0.002770:
319: -0.002959:
3U: -0.002688:
31B: -0.002901:
lie: -0.002742:
310: -0.002975:
31E: -0.002B·18:
31F: -0.003165:
320: -0.002991:
321: -0.003220:
322: -0.003083:
323: -0.003195:
324: -0.003109:
325: -0.003314:
326: -0.003130:
321: -0.003246:
328: -0.003301:
329: -0.003397:
32A: -0.003241:.
328: -0.003362:
32C: -0.002182:
32D: -0.002338:
32£: -0.002251:
32P: -0.002332:
330: -0.001919:
331: -0.002225:
332: -0.002099:
333: -0.002164:
334: -0.001894:
335: -D.OO21M:
336: -0.002018:
331: -0.002019:
338: -0.001991:
339: -0.002182:
33A: -0.002183:
338: -0.002134:
33C: -0.002005:
330: -0.002338:
331: -0.002115:
33F: -0.002380:
340: -0.000653:

AP·406

t

t

Non. Lin. Error, SN = 4130 (Continued)

6-257

270365-46

:ltl: -0.001006:
3.2: -0.000888:
343: -0.001175:
3ft: -0. OOoeM:
3t5: -0.000951:
3f6: -0.001030:
3.7: -0.000951:
3f1l: -0.000710:
M91 -0.0006721
3tA: -0.000854:
Mil -0.00093':
MC: -0.00064111
3fD: -0.001008:
341: -0.000828:
MF: -o.ooomi
350: -0.00071':
351: -0.00099':
352: -0.0009011
353: -0.000985:
354: -0.000618:
355: -0.000920:
3S6: -0.000731:
357: -0.000707:
358: -0.000832:
359: -0.001017:
35A: -0.001003:
358: -0.000976:
3SC: -0.000957:
350: -0.001273:
351: -0.000994:
35P: -0.0010381
360: -0.001150:
361: -0.001320:
362: -0.001257:
363: -0.001390:
364: -0.001263:
365: -0.001498:
366: -0.001388:
367: -O.OOU53:
368: -0.001295:
369: -0.001fl6:
36A: -0.001389:
361: -O.OOU98:
36C: -0.001502:
360: -0.001797:
361: -0.001566:
36f: -0.001596:
370: -0.001531:
371: -0.0017991
372: -0.001684:
373: -0.001735:
374: -0.00IM7:
375: -0.001857:
376: -0.001809:
377: -0.001697:
378: -0.0017701
379: -0.0019S6:
37A: -0.001821:
.371: -0.0018UI
37C: -0.0018201

AP-406

•
t

•
•

•
•

•
•

• •

..

Non. Lin. Error, SN = 4130 (Continued)

270365-47

J70: -0.001979:
318: -0.002106:
37F: -0.001597:
380: -0.00178t:
381: -0.002085:
382: -0.001840:
383: -0.001907:
36t: -0.001890:
385: -0.001989:
3116: -0.001867:
387: -0.001957:
~88: -0.002029:
389: -0.002256:
38A: -0.002177:
38B: -0.002285:
38C: -0.002294:
38D: -0.002497:
38£: -0.002204:
38F: -0.002499:
390: -0.002201:

. 391: -0.002774:
392: -0.002398:
393: -0.002591:
394: -0.002325:
395: -0.002570:
396: -0.002590:
397: -0.0025J3:
398: -0.002409:
399: -0.002662:
39A: -0.002513:
39B: -0.002588:
39C: -0.002345:
390: -0.002633:
39£: -0.002485:
39F: -0.002579:
3AO: -0.002427:
3Al: -0.002646:
3A2: -0.002572:
3A3: -0.002639:
3A4: -0.002393:
3A5: -0.002494:
346: -0.002609:
3A7: -0.002570:
3A8: -0.002522:
3A9: -0.002809:
3AA: -0.002658:
3AB: -0.002696:
3AC: -0.002645:
3AO: -0.002724:
3AB: -0.002721:
3AF: -0.002685:
380: -0.002752:
3BI: -0.003015:
382: -0.002837:
383: -0.002932:
384: -0.002689:
385: -0.003034:
386: -0.002817:
387: -0.002812:
386: -0.002965:

AP-406

Non. Lin. Error, SN = 4130 (Continued)

6-259

270365-48

369: -O.0030'H:
3BA: -0.002884:
38B: -0.002953:
31e, -0.002818,
31D: -0.002906:
31E: -0.00218t:
31f: -0.002605,
JeO: -0.001810,
Jel: -0.002229:
31:2: -0.001980.
3C3: -0.001986.
Jet: -0.001668:
JC5: -0.001943,
3C6: -0.001804.
3C1. -0.001915:
Je8: -0.001660.
31:9: -0.001761:
3C.1: -0.001633:
Je8: -0.001861.
3CC: -0.001768:
lCD, -0.001883:
JCE: -0.001943.
JeF. -0.0019":
300. -0.001195.
3DI: -0.001966.
302. -0.001921:
383: -0.002091:
304, -0.001910.
"3D5: -0.002102.
3»6: -0.001992:
3D?: -0.002131:
308: -0.00IM8,
309: -0.002102:
3DA: -0.001942:
3D8: -0.002081:
3De: -0.002028:
3DD: -0.0021\3,
3DE: -0.00203t:
3Df: -0.001931:
3EO: -0.002086:
3El: -0.00231t:
382: -0.002311:
3El: -0.002303:
314: -0.002068:
385: -0.002280:
386: -0.002111:
31'1: -0.002154:
318: -0.002338:
3E9: -0.0023":
3BA: -0.002181:
3EB: -0.002252:
31e, -0.002153:
3EO: -0.002361:
3R, -0.002264:
JEF: -0.002215:
3fO: -0.002U5:
3fl: -0.002536:
3f2: -0.002501:
3F3: -0.002561:
3Ft, -0.002"3,
3F5: -0.002690:
3F6: -0.OOl563:
3n: -0.002565,
3F8: -0.002533:
3F9: -0,002810:
JFA: -0.002753:
3f8: -0.002666:
3fC: -0.002592:
3FD: -0.002829:
3R: -0,002110:

"3FF: 0.000000:

AP-406

•
".

•
•

•
•

•
•
•
•
•
•

Non. Lin. Error, SN = 4130 (Continued)

6-260

270365-49

270365-50

intJ AP-406

01[, Error. SM = 4130

Ylln= ?lar=
-0,0026 • 0 - 0.0026

0: ~.OOOOOO:

I: '0.000297:
2: 0.000011:
3: -0.000081:
4: 0.000374:
~: -0.000291:
6: 0.000131:
7: -0.000263:
8: 0.00040~:

9: -0.000394:
A: 0.000I7~:
B: -0.000045:
e: 0.000331:
D: -0.000323:
E: 0.000046:
F: -0.000269:

10: 0.000467:
II: -0.000329:
12: 0.000235:
13: -0.000226:
H: 0.000361:
IS: -0.000450:
16: 0.000131:
17: -0.000011:
18: 0.000339:
19: -0.000261:
IA: 0.000158:
1B: -0.000184:
Ie: o.ooom:
10: '0.000156:
1K: 0.000U8:
IF: -O.OOOt7S:
20: 0.000745:
21: -0.000300:
22: 0.000122:
23: -0.000115:
24: 0.000319:
2S: -0.000076:
26: '0.000021:
27: -0.000314:
28: 0.000436:
29: -0.000208:
2A: 0.000141:
28: -0.000200:
2e: 0.000361:
2D: -0.000301:
2£: 0.000144:
2F: -0.000338:
30: 0.000567:
31: -0.000282:
32: 0.000069:
33: -0.000401:
34: 0.000534:

1 ________________ , _________________ -'
t

,.
"
1
1
, t , , ,
I •

'I , ,
It ,
1 , ,

, ,

, ' , ,
1

" ,
1 . , , ' , , ,
1
1 '
I
I ,
" ,
I

DNLError,SN = 4130

6-261

270365-87

inter

J~: -0.00027';:
36: 0.000l31:
31: -0.000212:
38: O.OO~M&:

39: -0.000223:
3A: 0.0002U:
3B: -0.000232:
3C: 0.000202:
lD: -0.000081:
3£: 0.000225:
3P: -0.000188:
40: 0.002123:
U: -0.0004%:
42: 0.000331:
fl: -0.000199:
tt: 0.000210:
15: -0.000516:
46: 0.000U3:
f7: -0.00030f:
f8: 0.000292:
f9: -0.00029f:
fA: 0.000211:
4B: -0.000212:
4e: 0.000250:
40: -0.000286:
0: 0.000185:
4F: -0.000319:
50: 0.000508:
51: -0.000218:
52: -0.000111:
53: -0.000012:
54: 0.000256:
55: -0.000270: .
56: 0.000109:
57: -0.000139:
58: 0.000185:
59: -0.000258:
SA: 0.000221:
SB: -0.000115:
sc: 0.000161:
5D: -0.000321:
5E: 0.000212:
5F: -0.000584:
bOo 0.000485:
61: -0.000274:
62: 0.000201:
&l: -0.000208:
64: 0.000118:
65: -0.000304:
66: 0.000110:
&7: -0.000218:
68: 0.000056:
69: -0.000176:
6A: -0.000006:
68: 0.000008:
6C: 0.000122:
60: -0.000339:
6£: 0.000203:
bP: -'0.000201:
10: 0.00020&:

AP-406

I
I
I
I

* 1
1 *
I
I *

*1
1 *
I
I
I
I

* 1
1 *

.*

1*
* I

I *
I
I *

* I
I *

DNL Error, SN = 4130 (Continued)

6-262

270365-88

inter

"II: -0.U00351>:
72: 0.000133:
1~: -0.000038:
14: 0.000076:
1~; -O.OOOtOO:
76: 0.000277:
77: -0.000100:
78: -0.00006);
79: -0.000218:
7A: 0.00010':
78: -0.000058:
7r.: -0.000009:
7D: -0.000209:
7£: O.OOOltl:
7F: -0.000683:
dO: 0.001293:
81: -0.00024+:
62: 0.000141:
83: -0.000154:
84: 0.000131:
85: -0.000300:
86: 0.000131:
87: -0.000240:
60: 0.000239:
b'l: -0_000SQ3:
8A: O_0005JS:
88: -0.0003111:
8C: 0.000186:
80: -0.000271:
8£: -0.000059:
8F: -0.000121:
90: 0.000374:
91: -0.000145:
92: 0.000113:
93: -0.000187:
94: 0.000154:
95: -0.000219:
96: O.000H5:
97: -0.000207:
98: 0.000136:
99: -0.000326:
9A: 0.000230:
98: -0.000161:
9C: O. 000070:
90: -0.000345:
9£: 0.000183:
9F: -0.000500:
AU: 0.000485:
AI: -0.000349:
A2: O.OOOtl4:
A3: -0.000374:
M: 0.000215:
AS: -0.000273:
Ab: 0.000138:
A7: -0.000189:
A8: 0.000124:
A9: -0.000118:
AA: 0.000123:
AD: -0.000142:
AC: 0.000086:

AP-406

I'
'I
I'
I

, I
*1

* I
I '

'I

, I

I *
I
I
I
I'

, I
I'
I
I *
I
I
I
I
I
I , *
I

*' , I
I

* I
I *

* ,
I'

* I
I *

, I

I * ,
I

, I

I'
I
I *

1*

DNL Error, SN = 4130 (Continued)

6-263

270365-89

inter

AD: -O.OOOl73:
AE: 0.000137:
AP: -0.000194:
80: 0.000366:
Bl: -0.000233:
B2: 0.000111:
B3: -0.000115:
B4: -0.000039:
B5: -0.000088:
16: 0.000100:
87: -0.000147:
88: 0.000109:
89: -0.000171:
M: 0.000156:
BB: -0.000180:
Be: 0.000041:
10: -0.000134:
BB: 0.000202:
BF: '-O.Ooo!llll:
co: 0.002134:
el: -0.000301:
czi 0.000150:
e3: -0.000136:
Ct: 0.000206:
C5: -0.000371:
C6: 0.000377:
e7: -0.000341:
C8: 0.000272:
C9: -0.000235:
CAl -0.000105:
eB: 0.000091:
ec: 0.000203:
CD: -0.000322:
eE: 0.000207:
CP: -0.000187:
DO: 0.000151:
01: -0.000250:
02: 0.000142:
D3: -0.000396:
Dt: 0.000501:
DS: -0.000362:
06: 0.000329:
D7: -0.000169:
88: 0.000029:
09: -O.OOOlJS:
OA: 0.000186:
DB: -0.000113:
DC: -0.000010:
DP: -0.000287:
DE: 0.000153:
DF: -0.000331:
10: 0.000308:
£1: -0.000506:
E2: 0.000409:
13: -0.000184:
B4: -0.000124:
IS: 0.000020:
16: 0.000181:
£7: -0.000145:
18: 0.000210:

AP-406

1 *
• 1

1 , , ' , ,
'I
*1
1 '

* I
I '

, I

1 *
, 1

I'
, 1

I t

I
I
I
I '

, I

I *
I
I
I
I
I

• I

, I

I • , I

I
I *
I
I
I
I

, I
, I

1 '
* 1

" '

DNL Error, SN = 4130 (Continued)

6-264

270365-90

inter

£9: -0.000232:
EA: 0.00013b:
ED: -0.000151:
Ee: 0.000168:
ED: -0.000212:
EE: 0.000195:
EF: -0.000171:
FO: 0.000115:
Fl: -0.000376:
F2: 0.000208:
F3: -0.000167:
F4: 0.000078:
F5: -0.000287:
F6: 0.000348:
F7: -0.000231:
Fa: -0.000161:
F9: -0.000022:
FA: 0.000265:
FB: -0.000130:
FC: 0.000167:
FD: -0.000144:
FE: 0.000086:
FF: -0.000880:

100: 0.001348:
101: -0.000334:
102: 0.000236:
103: -0.000222:
104: -0.000030:
105: -0.000123:
106: 0.000006:
107: -0.000068:
108: 0.000266:
109: -0.000265:
lOA: 0.000136:
lOB: -0.000078:
10C: 0.000069:
10D: -0.000260:
10E: 0.000H2:
lOP: -0.000352:
lIO: 0.000142:
lll: -0.000146:
112: 0.000292:
113: -0.000150:
114: 0.000003:
US: -0.000263:
1l6: 0.000174:
117: -0.000151:
118: 0;000078:
U9: -0.000120:
11A: 0.00002'1:
liB: -0.000Il0:
lie: 0.000048:
I1P: '0.000248:
liE: 0.000192:
liP: -0.000455:
120: 0.000535:
J2l: -0.000300:
122: 0.000139:

. 123: -0.000088:
124: .0.000145:

AP-406

, t

* , , , , , , , , ,
, ' ,
I ,

, ,
It , ,
1

• 1 , · , , •
* 1

,* , ,
I
I

* ,
, ,
"I , ,
1 *

'I

" ,
1 • .. 1

1 • , I
I , ,
1
1 •

• 1
'* * 1

t 1
,* , , .. , , ,
I •

*' , *
270365-91

DNL Error, SN = 4130 (Continued)

6-265

infef

125: -0.000496:
121>: 0.000193:
127: -0.000028:
128: 0.000202:
129: -0.000194:
IU: 0.OUOI92:
12B: -O.OOOlU:
12C: -0.00001>0:
12D: -O.OODaS:
12£: 0.000048:
lU: -0.000100:
130: 0.000168:
131: -0.000263:
132: 0.000188:
133: -0.000118:
13': 0.000193:
135: -0.00U3031
136: 0.000259:
137: -0.000250:
138: 0.000436:
139: -0.000228:
13A: -0.000052:
13B: 0.000008:
13C: 0.000271:
130: -0.0002'5:
13£: 0.000123:
13P: -0.000471:
140: 0.001823:
Ul: -0.000033:
H2: 0.000139:
lt3: -0.000132:
144: 0.000199:
145: -0.000231:
146: 0.000116:
1f7: -O;OOOO~I:

148: 0.000217:
149: -0.000271:
If A: 0.00013':
14B: 0.000060:
HC: -0.000010:
UD: -0.0002251
IfB: iJ.000I02:
IfF: -0.000207:
ISO: 0.000168(
151: -0.000191:
152: 0.000133:
153: -0.000171:
154: 0.000170:
155: -0.00023Q:
156: 0.000056:
157: -0.000001:
158: 0.000199:
1591 -0.000217:
lSA: '0.000110:
158: -0.000074:
ISC: 0.000104:
150: -0.000207:
15£: 0.000160:
ISF: ~0.000226:
160: 0.000138:

AP-406

I
I *

I *
* I

I *
* I

*1
* ,

1*
I I
, *
I
, I

I I
, I

I. , ,
I
I

* ,
*'

I *
I , I,
, I

* ,
I * ,
, I I,
I * ,
I *
1*

* ,
I I

I ,

I * * ,
I *

* ,
I I ,
'* *
I * ,
I *

*1
I t

t I
I t

I I
, *

DNL Error, SN = 4130 (Continued)

6-266

270365-92

inter

161: -0.000271:
162: 0.000215:
163: -0.000217~

164: 0.000226:
165: -0.000454:
166: 0.000341:
167: -0.000119:
168: 0.000173:
1&9: -0.000158:
16.\: 0.000290:
168: -0.000237:
16C: 0.0000351
16D: -0.000279:
16E: 0.000073:
16F: 0.000027:
110: 0.000069:
111: -0.000219:
172: 0.000191:
173: -0.000064:
114: 0.000101:
115: -0.000192:
176: 0.00006~:

171: -0.000025:
178: 0.000164:
119: -0.000301:
174: 0.000278:
178: -0.0001(6:
rIC: -0.000001:
no: -0.000193:
11£: 0.000118:
I1F: -0.000110:
180: 0.000512:
181: -0.000281:
182: 0.000013:
183: -0.000060:
184: 0.000135:
18~: -0.0002":
186: 0.000100:
187: -0.000103:
188: O.OOOl1l:
189: -0.0002":
18A: o.ooom:
168: -O.OOOIH:
18C: 0.000139:
18D: -0.000329:
18E: 0.000180:
18F: -0.000116:
190: 0.000448:
191: -0.000395:
192: -0.0000«':
193: -0.000003:
194: 0.000001:
195: -0.000168:
196: o.ooom:
197: -0.000355:
198: 0.000558:
199: -0.000(05:
194: 0.000182:
19B: -0.000093:
19C: 0.OOO26!J:

AP-406

I
I *

* I
I *
I
I

• I
I •

• I I ,
1*
I
1*

,.
I
I *

*1

1 • * 1
1*

I *
I
I

* I

* I
I •

• I I
I
1*

*1
•

* I
I *
I
I
1
I t

*1
1

DNL Error, SN = 4130 (Continued)

6-267

270365-93

19b: -0.000329:
19&: -0.000018:
19F: -0.000045:
lAO: O.OOOUO:
!AI: -0.0002U:
lA2: 0.000139:
1l3: -0.000091:
U4: -0.000041:
IA5: -0.000210:
1A6: ·0.00016'-:
1A1: -0.000051:
lA8: 0.000163:
lA9: -0.000158,
lA4: 0.000U4:
lAB: 0.000024:
lAC: 0.000028:
lAD: -0.000240:
16E: 0.000110:
lAF: 0.000189:
IBO: -0.000014:
181: -0.000229:
182: 0.0001l4:
183: -0.000075:
184: 0.0000181
185: -0.000135:
186: 0.'000041:
181: 0.000053:
188: -0.000040:
1B9: -0.000060:
IBA: 0.000200:
IBB: -0.000031:
l1C: -0.000024:
IBD: -0.000169:
I8E: 0.000088:
IIF: 0.000013:
ICO: O.OOHIl:.
lCIl -0.000118:
IU: 0.000118:
IC3: -0.000132:
IC4: 0.000203:
lC5: -0.000248:
IC6: 0.000212:
Ie?: -0.000144:
IC8: 0.000258:
IC9: -0.000309:
ICA: 0.000028:
leB: 0.000056:
ICC: 0.000133:
lCD: -0.000250:
ICE: 0.000083:
ICP: -0.0000021
100: 0.0001691
ID1: -0.000269:
102: 0.000102:
ID3: -0.000051:
104: 0.000168:
IDS: -0.000210:
ID6: 0.000007:
ID7: O.OOOllS:
IDa: 0.0000641

AP-406

t,
I t ,
, t

tl
tl

t I,
, t

*1
, t

t I
, *

, *
, *

* I
, t

*'
* ,

1*
1* .

*' *1
I t

*'
t I

'*
* I , *
* ,
, * ,
, t

t I ,
, ,
't , . , ,. ., , . ,
, t, t,
I • * I

,t ,t
DNL Errpr, SN = 4130 (Continued)

6-268

270365-94

AP·406

109: -0.000256:
IDA: 0.000086: '*
lOB: -0.000008:
IDC: 0.000042: ,I

100: -0.000101: * ,
IDE: 0.000115: , *
10F: -0.000013:
IBO: 0.000050:

" 1£1: -0.000396:, ,
lE2: 0.000231: ,
IE3: -0.000279: ,
1£4: 0.000305: ,
185: -0.000235: ,
IE6: 0.000233: ,
1E7: -0.000039: *'
IE6: 0.000140: , *
1£9: '0.000454: I
lEA: 0.000295: ,
lED: -0.000104: I,

lEe: 0.000031: *
lED: -0.000208: • ,
1£1: -0.000063: *1
lEP: 0.000209: , I

\FO: 0.000041:

" lFI: -0.000225: * ,
IF2: 0.000094: 't
IF3: 0.000023:
1Ft: 0.000025:
IF5: -0.000064: *1
IF6: -O.UOOOI1:
IF7: 0.000150: I I

IF8: -0.000031:
IP9: -0.000186: * ,
IFA: 0.000116: I *
IfD: -0.000038: *1
lfC: 0.000073: 1*
1FO: -0.000222: I I
IFE: 0.000090: 1*
IFF: -0.000671. I
lOO. 0.000466: I
201: -0.000223: , I
202: 0.000196: I *
203: -0.000249: I
204: 0.000099:

I • 205: -0.000046: I,

lOb: 0.000070:
" 207: -0.000169: , I

208: -O.UOOOI1:
209: ,-0.000307: I
20A: 0.000429: I *
20B: -0.000207: , ,
20C: -0.000085. I'
200: -0.000109: * ,
20E: -0.000034: " 20F: -0.000197: I ,
210: 0.000420: ,
211: -0.000332: I
212: 0.000U2: , '
213: -0.000076: *1
214: 0.000275: ,

270365-95

DNL Error, SN = 4130 (Continued)

6-269

inter

215: ·0.000;109:
?16: 0.0001591
217: ·O.OOOO!l6:
218: 0.000026:
219: ·0.000200:
21.: ·U.000012:
218: 0.000082:
21C: 0.000319:
21D: -0.000487:
21B: 0.000199:
21F: -0.0005~1:

220: 0.000536:
221: -0.000261:
222: 0.000167:
223: -0.000142:
224: 0.000111:
2251 -0.0001~1:

226: O.OOOO~:
227: -0.000104:
228: 0.000333:
229: ·0.000305:
W: 0.000125:
221: -0.000026:
22C: 0.000065:
22D: -0.dOOI82:
22E: 0.000260:
22F: -0.000362:
230: 0.000374:
231: -0.000245:
2321 0.000281:
233: -0.000276:
2:14: 0.000223:
235: -0.000173':
23!l: -U.000079:
23'1: 0.000098:
238: 0.000180:
2391 -0.000481:
23A: 0.000359:
238: -0.000143:
2X: 0.000161:
23D: -0.000188:
231: 0.000104:
23F: -O.OGO~I
2.u: 0.001M61
2U: -0.000170:
242: 0.000226:
243: -0.000110:
2 .. : 0.000133:
245: -0.000295:
2461 0.000305:
2n: -0.000255:
2f8i 0.000181:
249: -0.000053:
2U: 0.000090:
241: -0.000091:
2fC: 0.000255:
2tD: -0.000233:
24£: 0.000108:
2tF: -0.0000!I6:
2!iO: 0.000213:

AP-406

, .
ti . ,
•
I· , , , .
I
I
I

I • • I
I t

t I

'* . ,
I
I
I t

1*
t ,

I
I ,
I
I
I , '

* I I

'I

I *
I
I ,
, *

'I

'* *' ' I
I
I *

*1
I'

DNL Error, SN = 4130 (Continued)

6-270

270365-96

251: -0.000353:
251.: 0.000194:
253: -0.000192:
254: 0.000350:
255: -0.000258:
256, 0.000149:
257: -0.000108:
258: 0.000050,
259, -0.000120:
25&, -0.000085:
258: 0.000087:
2!JC: 0.000130:
25D: -0.000192:
25£, 0.000002:
25;, -0.000069:
260: 0.000113:
261: -0.000280,
262: 0.000212:
263: -0.000129:
264: 0.000107:
265: -0.000198:
266: 0.000234:
267: -0.000203:
268: 0.000128:
269: -0.000259:
26A: 0.000106:
268: -0.0000t8:
26C: -0.000024:
26D: -0.000166:
26£: 0.000223:
26;: -0.000167:
270: 0.000102:
211: -0.000196:
272: 0.000011:
213: -0.000013:
211: 0.000035:
215, -0.000272:
276: 0.000114:
211: -0.000003:
278: -0.000126,
219: -0.000103:
27': 0.000109:
21B: -0.000063:
27C, 0.000216,
27D, -0.000465,
27£, 0.000379:
27;: -0.000262:
280: 0.000635:
281: -O.OOOOH:
282, 0.000193,
283: -0.000476:
284, 0.0004'14:
285, -0.000297,
286: 0.000149,
287, -0.000166:
288: -0.000011:
289: -0.000087,
28A: O.OOOIOli
28B: -0.000069:
2ac: -0.000125:

AP-406

I
, I

I , , ,
, I

I , ,t
I , I,

It
I I

I ,

t

•

*1

I I
I t

* ,
I t

I I ,.
II ,.
I , . . ,

I ,

I I

II
I t

I ,
I
I

I I ,
I
I
I I

I I

II
I I I,

• I

DNL Error, SN = 4130 (Continued)

6-271

270365-97

28D: -0.000032:
28E: 0.000077:
28F: -0.00016':
290: 0.000010:
291: -0.000136:
292: 0.000062:
293: -0.000163:
294: 0.000166,
29~: -0.000213:
296, 0.000133:
297: -0.000076:
298, 0.00004~:

299, -0.000234,
29A: -0.000066:
29B: 0.000012:
29C: '0.000123:
290: -0.00030f:
291: 0.000131:
29F, -0.000206,
240: 0.000196:
2AI: -0.000150:
2A2: 0.000181:
2A3: -0.000160,
2U: 0.000106:
2A5: -0.000262:
2A6: 0.00016'/:
2A1: -0.000Il3:
2A8: 0.000193:
2A9: -0.000283:·
2A4: -0.000U1:
2A8: 0.000193:
2AC: 0.000140:
2AD: -0.000215:
~AH: -O.OOOOH:
2AP: 0.000041:
2BO: 0.000028:
2BI: -0.000322:
282: 0.000207:
283: -0.000082:
21t: 0.00012S:
285: -0.000239:
286: 0.000018:
2D'1: 0.000011:
288: 0.000128:
2B9: -0.000119:
2BA: 0.000101:
2BB: -0.000011:
2ac: 0.000359:
2110: -0.000248:
2B£: 0.000054:
28F: 0.000019:
ZCO: 0.001402:
2Cl: -0.000261,
2C2: 0.000121,
2C3: -0.000113,
2ef: 0.000268:
2C5, -0.000143:
2C6: 0.000007:
ZC7: 0.000021:
2C8: 0.000U3,

AP-406.

" , I
I'

, I

I'
, I

I '
I , '

"
I'
I

*1
1*

, I

I •
I ' , ,

*1

"

I •

*' , '
I

'*
I '

, I

I '
'I
I
I
I'
I' ,
I , ' .

, I ,
, I

DNL Error, SN = 4130 (Continued)

6-272

270365-98

AP-406

2e9: -0.000312:
2eA: 0.000040: I'
2el: 0.000043: I'
2ec: 0.000164: I ,
2CD: -0.000163: , I
2eE: -0.000021:
2CF: -0.000126: ' I
200: 0.000365: I
201: -0.000336: I
202: 0.000091: I'
203: -0.000U3: ' I
204: 0.000220: I ,
205: -0.000288: I
206: 0.000251: I
201: 0.000001:
208: -0.000069: 'I
209: -0.000222: , I
2DA: 0.000336: I
208: -0.000071: 'I
2OC: 0.000122: I ' .
200: -0.000540: I
20E: 0.000384: I
2DF: -0.000122: , I
2£0: -0.000l3f: , I
2BI: -O.OOOIU: ' I
2H2: 0.000073: I'
2B3: -0.000040: 'I
2£4: -0.000168: , I
215: 0.000033: I'
226: 0.000173: I ,
2B7: -0.000049: 'I
2E8: 0.000019:
2E9: -0.000234: I
2EA: 0.000176: I ,
2EB: -0.000281: I
2Ee: 0.000200: I t

2BO: -0.000174: , I
2£B: 0.000042: I'
2EF: -0.000086: 'I
2FO: 0.000063: I'
2F1: -0.000160: ' I
2F2: 0.000127: I '
2F3: -0.000134: ' I
2F4: 0.000058: I'
2F5: -0.000211: , I
2F61 0.000104: I '
2F7: -0.000031:
2i8: -0.000134: , I
2P9: -0.000083: 'I
2FA: -0.000005:
2FB: -0. 000026:
2FC: 0.000093: I'
2FD: -0.000015:
2F£: -0.000090: 'I
2FF: 0.000570: I
300: 0.000011:
301: -0.000307: I
3021 0.000133: I '
303: -0.0001l6: ' I
J04: 0.000032:

270365-99

DNL Error, SN = 4130 (Continued)

6-273

JO~: -0_000166:
306: 0.000148:
307: -0.0002H:
306: 0.000217:
309: -0.000323:
30A: 0.000205:
30B: -0.000125:
30C: 0.000)72:
30D: -0.000224:
30E: 0.000131:
JOF: -0.000246:
310: 0.000148:
311: -0.000333:
312: 0.000249:
313: -0.000134:
314: 0.000035:
315: -O.0002U:
316: 0.000141:
ll7: -0.0000Sl:
3J8: 0.000094:
319: -0.000189:
3Il: 0.000070:
31B: -0.000012:
lie: 0.000153:
310: -0.000233:
31E: 0.000096:
31F: -0.000286:
320: 0.000173:
321: -0.000229:
322: 0.000137:
323: -0.000112:
324: O. 000086:
325: -0.000205:
326: 0.000183:
327: -0.000116:
328: -0.0000~4:

329: -0.000096:
32A: 0.000149:
328: -O.OOOIU:
32C: 0.001180:
320: -0.000156:
32£: 0.000086:
32F: -0.000081:
330: 0.000352:
331: -0.000245:
332: 0.000125:
333: -0.000064:
334: 0.000270:
335: -O.OOOUO:
3.'11>: 0.000116:
337: -0.000001:
336: 0.000027:
339: -0.000190:
33A: -0.000001:
33B: 0.000048:
33C: 0.000126:
33D: -0.000332:
33R: 0.000222:
33F: -0.000265:
340: 0.001727:

AP-406

• I I i

* I
I *
I
I *

* I
I *

• I
I • I

I •
I
I

* I ,t
I
I *

*1
1*

* I
1*

I *
I
1*
I
I *

* I
I *

* I
1*

• I I t

, I

*' 'I
I *

* I
I

, I
1*

*1
I
I
I *

*1
I
I
I *

* I

I·

I • I
I *
I
I

DNL Error, SN = 4130 (Continued)

6-274

270365-AO

inter

341: -0.0003S2:
342: 0.000117:
343. -0.000287:
3ft: 0.000340:
345. -0.000116:
346: -0.000079:
Jt7: 0.000078:
348: 0.000241:
349: 0.000037:
lU: -0.00018\:
341: -0.000080:
341:: 0.000285:
3tO: -0.000360:
3tE: 0.000180:
34F: 0.000050:
350: 0.000002:
351: -0.000219:
352: 0.000092:
353: -0.000083:
354: 0.000366:
355: -0.000302:
356: 0.000188:
357: 0.000024:
350: -0.000125:
359: -0.000215:
35A: 0.000044:
lSI: 0.000026:
3SC: 0.000016:
350: -0.000315:
3SE: 0.000278:
3SP: -0.000044:
360: -0.000112:
361: -0.000169:
362: 0.000062!
363: -0.000132:
364: 0.000127:
365: -0.000235:
366: 0.000109:
367. -0.000064:
368: 0.000157:
369: -0.000121:
364: 0.000027:
368: -0.000109:
36C: -0.000004:
360: -0.000294:
361: 0.000231:
36F: -0.000030.
370: 0.000065:
371: -0.000268:
372: 0.000114:
373: -0.000050:
314: 0.00008'/:
375. -0.000210:
376: 0.000048:
377: 0.000111:
378: -0.000073:
379: -0.000186:
374: 0.000135:
378: -0.000020:
37C: 0.000020.

AP-406

DNL Error, SN = 4130 (Continued)

6-275

I *
I
I

* I
*1
It
I
1*

* I
*1
I
I

I • 1*

• I
1*

*1
I
I
I *

* I
* I

1*

I
I

*1
* I
* I

1*
• I

I • I
I *

*1
I *

* I •
* I

1*
I
I •

*1
j.

* I
1*
I *

*1
* I

I *
. *

270365-Al

AP·406

31D: -0.000158: • I

37E: -0.000127: • I
37F: 0.UOO509: I
380: -0.0001811 * I
381: -0.000301: I
3821 0.0002": I
383: -0.000066: *1
384: 0.000016:
385: -0.000098: *1
386: 0.000121: I • 387: -0.000090: 'I
388: -0.000012: 'I
389: -0.000226: * I
J8A: 0.000078: I'
388: -0.000107: * I
38C: -0.000009:
380: -0.000202: , I
38£: 0.000292: I
38P: -0.000294: I
390: 0.000298: I
391: -0.000572: I
392: 0.000375: I
393: -0.0001921 , I
394: 0.000265: ,
395: -0.000245: I
396: -0.000019:
397: 0.000076: 1*
398: 0.0001041 I *
399: -0.000252: I
39A: 0.000148: I *
398: -0.000015: *1
39C: 0.000243: I
39D: -0.000288: I
391: 0.000147: I *
39F: -0.000093: 'I
lAO: 0.000151 : I *
3A1: -0.000219: • I
342: 0.000074: 1*
3A3: -0.000066: 'I
3U: 0.0002451 I ' .
3A5: -0.000101: , I
3A~: -O.OOOIH: * I
3A7: 0.000038: 1*
3AS: 0.000041: I'
3A9: ~0.OOO286: I
3All 0.000150: I '
3AB: -0.000039: " 3ACI 0.0000521 I'
3AD: ·0.000079: *1
3AI: 0.000003: *
3AP: 0.000036: It
380: -0.000067: " 381: -0.000262: I
382: 0.000178: I ,
383: -0.0000951 *1
384: 0.0002421 I
385: -0.000344: I
386: 0.0002161 I *
3871 0.00000':
3B8: -0.000152: , I

270365-A2

DNL Error, SN = 4130 (Continued)

6-276

389. -0.000106:
3&A: 0.000187.
3BB. -0.000069:
31C. 0.00007~.
310: -0.000028:
3B£: 0.000122:
3BF: 0.000178:
:lCO: 0.000735:
3CI: -0.000359:
3C2: 0.000248:
:lC3: -0.000005:
lC4. 0.000318:
Je5: -0.000274:
3C6: 0.000139:
3C7: -0.000111:
lC8: 0.000254:
3C9. -0.000100:
31:~: 0.000127.
Jel. -0.000228:
3CC: 0.000093.
lCD: -o.ooom:
:lCB: -0.000060:
:lCP: -0.000000:
300: 0.000148.
3DI: -0.000111:
302: 0.00004~:
383: -0.000176:
304: 0.000126:
305: -0.0001311
386: 0.000109:
3D7: -o.ooom:
308: 0.000288:
389: -0.000253:
3DA: 0.000159:
3DI: -0.000145:
3OC: 0.000059:
3DD: -0.000085:
3DE: 0.000078:
3DF: 0.000103:
3EO. -0.00015~:
3EI: -0.000228:
3El: 0.000003:
313: 0.000008:
3Et: 0.000234:
315. -0.000211: '
311>: 0.000168:
31'1: -0.000043:
318: -0.000183.
3£9: -0.000005:
3&A: 0.000162 •
. 1EI. -0.000070,
3EC. 0.000098:
3ED: -0.000208:
3U: 0.000096:
3IF: 0.000049:
3PO; -0.000230:
3FI: -0.000091:
3F2: 0.000029.
3F3. -0.000054.
3,.: 0.000067:
3P5. -0.0001%,
3F6: 0.000126.
3F7: -0.000002:
3F8: 0.000031:
3P9: -0.000276,
3FA: 0.000056:
3F1, 0.000087:
3Fe: 0.000073.
3PD, -0.000237,
3FE: 0.000118.
3PF. 0.000000:

Ap·406

, ,
, '

, ,
"

, ,
"

, ,
"

, ,

, ' , ,
"

, ,
I' , ,
I'

" , ,
, ' , ,
I'

" I'
" " , ,

"
" ,
" ,
"
"

, ,
"

"
"
" ,
"

DNL Error, SN = 4130 (Continued)

6-277

270365-A3

270365-M

AP-406

DJ Arrav. 51 = mo

YIln= YR.=
-0.0020 + 0 - 0.0020

I I I
0: 0.0C!107f: I
1: 0.00l175: I
2: 0.001175: I
3: O.!IOll75: I • t .: 0.00127~: I
~: 0.001075: I
6: 0.00IP75: I
71 0.001275: I
8: 0.001275: I
91 0.0011751 I
A: 0.001075: I
I: 0,001075: ,
c: 0.00127~:
Di 0.001075:
II ~.001975:
P: 0.001175:

10: 0.001275:
11: 0.001115:
~2: 0.00117~:

.13: 1I.001~75:
14: 0.001175:
IS: 0.001175:
16: 0.001175:
17: o.OomS:
181 0.001l75:
19: 0.001075:
lA: 0.001075:
18: 0.001275:
lC: o.oom~:
ID: 0.001175:
11: 0.001175:
IF: 0.001275:
20: 0.0012751 t

21: 0.001175: t

22: 0.001175:
23: 0.001275:
241 0.001275:
25: 0.001175:
26: 0.001275:
27: 0.001275:
28: 0.00l17~:

29: 0.001375:
U: 0.001275:
28: 0.0011751
2C: 0.001175:
21: 0.0011751
21: 0.001375:
U: 0.0010751 t

30: 0.001175: t

31: 0.001075:
32: 0.001075:
33: 0.000975:
3.: 0.001275:

270365-51

Repeatability Error, SN = 4130

6-278

inter Ap·406

35: 0.001175:
36: 0.001075:
37: 0.0012'15:
.~: 0.00101~:

39: 0.001275:
3A: 0.001275:
38: 0.001175:
3C: 0.001175:
3D: 0.0011'15:
3E: 0.001175:
3P: 0.001375:
40, 0.001275:
41: 0.001275:
42: 0.0010'15,
43: 0.001075,
tt: 0.001275,
45, 0.001175,
46, 0.001175:
47, 0.001075:
f8: 0.001175:
49: 0.001175:
4A: 0.001175:
4B: 0.001275:
fe: 0.001375:
40: 0.001075:
41: 0.001375:
fF: 0.001075:
50: 0.001175:
51: 0.001175:
52: 0.001115:
53: 0.000975:
54: 0.000975:
55: 0.001075:
56, 0.001175:
57: 0.001275:
58: 0.001215:
59: 0.001115:
5A: 0.001075:
58: 0.001015:
sc: 0.001275:
5D: 0.001075:
5E: 0.001175:
5F: 0.001175:
60: 0.000915:
61: 0.001015: . t

62: 0.001075:
63: 0.001275:
64: 0.001215:
65: 0.001075:
fill: 0.001115:
61: 0.001375:
68: 0.001075:
69: 0.001075:
6A: 0.001075:
68: 0.001175:
6C: 0.001175,
6D: 0.001175:
6£: 0.001175:
6F: 0.001075:
70: 0.001075:

270365-52

Repeatability Error, SN = 4130 (Continued)

6-279

intJ Ap·406

71: 0.001375:
12: 0.001175:
73: 0.001175:
7t: 0.001l7~:

75: 0.001175:
76: 0.001175:
77: 0.001275:
78: 0.001l75:
79: 0.00IZ75:
74: 0.001375:
78: 0.001375:
7C: 0.001375:
70: 0.001375:
7E: 0.001175:
7F: 0.001075:
80: 0.001275:
81: 0.001175:
82: 0.00IZ7~:

83: 0.001215:
84: 0.001075:
85: 0.001175:
86: 0.001175:
87: 0.001Z75:
88: 0.001075:
89: 0.001075:
8A: 0.001075:
88: 0.001075:
8C: 0.00I07~:
80: 0.001175:
8E: 0.001075:
8f: 0.001175:
90: 0.001l75:
91: 0.001175:
92: 0.0012'15:
93: 0.00U75:
94: 0.0010751
95: 0.001175:
96: 0.001275:
9'1: 0.001075:
98: 0.001175:
9'1: 0.001175:

,91.: 0.0011.75:
98: 0.OO1l7S:
9C: 0.001175:
90: 0.00IZ·15:
9E: 0.001275:
9F: 0.001175:
AD: 0.001075:
AI: 0.001175:
A2: 0.001075:
A3: 0.001275:
At: 0.001075:
AS: 0.OO1l75:
A6: 0.001275:
1.7: 0.001375:
1.8: 0.001375:
1.9: 0.001075:
AA: 0.001175:
AB: 0.001075:
AC: 0.001075:

270365-53

Repeatability Error, SN = 4130 (Continued)

6-280

AP-406

AD, 0.001075:
AB: 0.001l75:
AF: 0.00101~:

DO: 0.001075:
Bl: 0.001l15:
B2: 0.00Il15:
B3: 0.001275:
84: 0.000915:
85: 0.00\115:
B6: 0.001075:
81: 0.001l15:
B8: 0.00127~:

89: 0.001215:
BA: 0.001l75:
BB: 0.001115:
Be: 0.00107~:

BD: 0.001l7~:

BE: 0.001l1~:

DF: 0.001175:
co: 0.001275,
CI: 0.001275:
e2: 0.001015:
C3, 0.000915:
C4: 0.00117~:

C5: 0.001115:
C6: 0.001175:
C1, 0.001215:
C8: 0.001175:
C9, 0.001115:
CA, 0.001015:
CD: o.ooms:
CC: 0.00l2"l5:
CD: 0.001275:
CEo 0.001J7~:

CF: 0.001215:
DO: 0.001175:
01: 0.001075:
02: 0.001275:
03: 0.001275:
04: 0.001175:
05: 0.001175:
06: 0.001075:
07: 0.001275:
D6: 0.001175:
D9: 0.001275:
DA: 0.001115:
DB: 0.001175:
DC: 0.001275:
DO: 0.001275:
DE: 0.001275:
OF: 0.001275:
EO: 0.001115:
£1 : 0.000975:
E2: 0.001275:
E3: 0.001175:
£4: 0.001175:
£5: 0.001075:
Eb: 0.001175:
87: 0.001115:
E8: 0.001175:

270365-54

Repeatability Error, SN = 4130 (Continued)

6-281

intJ AP-406

£9: 0.001315:
EA: 0.001175:
IB: 0.001175:
EC: 0.001075:
ED: 0.001375:
1£: 0.001375:
!iF: 0.001275:
FO: 0.001175:
Fl: 0.00m5:
F2: 0.001175:
F3: 0.001275:
F4: 0.00H7S:
PS: 0.001275:
F6: 0.001075:
F7: 0.001375:
F8: 0.00107S:
Fq: 0.001375:
FA: 0.00127S:
FB: 0.001175:
FC: 0.001275:
PO: 0.00127S:
FE: 0.001275:
FF: 0.001275:

100: 0.001075:
101: 0.001175: t

102: 0.001275: t

103: 0.001075:
104: 0.001075:
105: 0.001175:
106: 0.001175:
107: 0.001115:
108': 0.001215:
109: 0.001375:
IDA: 0.001275:
lOR: 0.001075:
10C: 0.001075:
100: 0.001175:
10E: 0.001l7S;
lOP: 0.00127S:
liD: 0.001215:
111: 0.0010151
112: 0.001015:
113: 0.00111S:
114: 0.00U15:
U5: 0.001175:
116: O.OOl\1S:
U'/: 0.001315:
118: 0.001275:
119: 0.001275:
llA: 0.00ll7~:

118: 0.001175:
I1C: 0.001175:
HD: 0.001175:
liE: 0.001175:
I1F: 0.001175:
120: 0.00127S:
121: 0.00117S:
122: 0.001115:
123: 0.001175:

270365-55
12.: 0',001l1S:

Repeatability Error, SN = 4130 (Continued)

6-282

inter AP-406

IZ5: o.onJl7~:

121>: 0.OO1l7~:

121: 0.001275:
128: O.OOl07b:
129: 0.001175:
12A: 0.001275:
128: 0.001175:
12C: 0.001175:
128: 0.001275:
UE: 0.001075:
12F: 0.001275:
130: 0.00117~:

lJl: 0.001175:
132: 0.001075:
133: 0.001075:
13': 0.001275:
135: 0.001275:
136: 0.001275:
137: 0.001075:
138: 0.001175:
139: 0.001275:
13A: 0.001175:
138: 0.001275:
lle: 0.0011751
13D: 0.001175:
138: 0.001275:
13F: 0.001075:
ltO: 0.001075:
HI: 0.001075:
HZ: 0.001075:
lt3: 0.001075:
Iff: O.OOU7S:
If5: 0.001275:
146: 0.001315:
141: 0.001375:
1f8: 0.001275:
1f9: 0.001275:
lU: 0.001275:
IfB: 0.001275:
IfC: 0.001375:
If 0: 0.00137&:
IfE: 0.001175:
ifF: 0.001175:
lSOI 0.00U7S:
151: 0.001275:
152: 0.001375:
1531 0.001275:
154: 0.001275:
155: 0.001175:
l!i6: 0.001175:
157: 0.001Z7S:
158: 0.001175:
159: 0.0011'/5:
15A: 0.001115:-
158: 0.001275:
15C: 0.00111S:
ISD: 0.00Il75:
151:: 0.001275:
15F: 0.001375:
160: 0.0013'15:

Repeatability Error, SN = 4130 (Continued)

6-283

270365-56

AP-406

161: 0.001275:
162: 0.001115:
163: 0.001175:
16.: 0.001215:
165: 0.001175:
166: 0.001175:
167: 0.001315:
168: 0.001375:
169: 0.001415:
IbA: 0.001115:
168: 0.001075:
16C: 0.001215:
16D: 0.001215:
16£: 0.001175:
16F: 0.001115:
110: 0.001215:
111: 0.001215:
172: 0.001175:
173: 0.001175:
11f: 0.001275:
175: 0.001215:
116: 0.001275:
117: 0.001115:
178: 0.001275:
119: 0.001215:
I1A: 0.001015:
178: 0.001275:
17C: 0.OO1l7S:
11D: 0.001275:
17F.: 0.001015:
I7F: 0.001215:
IRa: 0.001275:
181: 0.001315:
182: 0.001315:
163: 0.001215:
18f: 0.001315:
165: 0.001215:
186: 0.001075:
187: 0.001075:
168: 0.001275:
169: 0.001175:
18A: 0.001175:
168: 0.001275:
IRC: 0.001275: ..
18D: 0.001215:
18£: 0.0011'/5:
18F: 0.001275:
190: 0.001175:
191: 0.001275:
192: 0.001175:
193: 0.001175:
19f: 0.001075.
195: 0.001375:
196: 0.0012'15:
197: 0.001175:
198: 0.0011'15:
199: 0.001375:
19A: 0.001375:
19B: 0.001215:
19C: 0.001115:

270365-57

Repeatability Error, SN = 4130 (Continued)

6-284

inter AP·406

190: 0.00Il15:
19£: 0.001275:
19F: 0.001275:
JAO: 0.001275:
1Al: 0.001275:
JA2: 0.001375:
IU: 0.00lt15:
IAt: 0.001275:
lAS: 0.001015:
JA6: 0.0011'15:
1A7: 0.001275:
lAB: 0.001115:
lA9: 0.001375:
tAi: 0.001275:
lAB: 0.001275:
lAC: 0.001175:
lAD: 0.001175:
IAR: 0.001175:
lAF: 0.001175:
lBO: 0.001075:
IBI: 0.001315:
IB2: 0.000915:
183: 0.001175:
184: 0.001075:
185: 0.001375:
181>: 0.001375:
187: 0.001175:
188: 0.001175:
IB9: 0.001375:
18A: 0.001l75:
lBB: 0.001475:
IBC: 0.001175:
IBD: 0.001275:
181: 0.00ll75:
lBF: 0.001175:
ICO: 0.001175:
lCl: 0.001115:
lC2: 0.001175:
lC3: 0.001275:
le4: 0.001315:
lC5: 0.001275:
lC6: 0.001115:
le1: 0.001175:
IC6: 0.001375:
lC9: 0.001175:
ICA: 0.001075:
lCB: 0.001075:
ICC: 0.001275:
lCD: 0.001375:
ICE: 0.001275:
lCF: 0.001075:
100: 0.001175:
101: 0.001275:
102: 0.001275:
103: 0.001275:
104: 0.001275:
105: 0.001275:
106: 0.001275:
107: 0.001175:
106: 0.001275:

Repeatability Error, SN = 4130 (Continued)

6-285

270365-58

inter AP-406

109: 0.001275:
IDA: 0.001275:
1DB: 0.001175:
IDe: 0.001175:
IDD: O.OOmf ..
ID£: 0.001175:
18P: 0.001375:
lEO: 0.0013751
IE1: 0.001075:
112: 0.00127~:
113: 0.001175:
lE4: 0.001175:
1£5: 0.0012·'5:
116: 0.001175:
1£1: 0.001275:
118: 0.001175:
1191 0.0011751
lEA: 0.00U75:
lE8: 0.001075:
1Eel 0.001275:
liD: 0.001275:
lEE: 0.001115:
IIF:0.001275:
IFO: 0.001375:
IFI: 0.001075:
1F2: o.ooms:
1F3: 0.001574:
1Ft: 0.001275:
IP5: 0.001115:
IF6: 0.001175:
IF7: 0.001215:
1P8: 0.001175:
Ipg: 0.00m5:
IFA: O.001J75:
/FB: 0.001275:
1Fe: 0.001115:
IFD: 0.001175:
IFI: 0.0012751
IFF: 0.001275:
200: 0.001275:
201: 0.001375:
202: 0.001375:
203: 0.001175:
204: 0.001175:
205: 0.001275:
206: 0.001115:
207: 0.001375:
208: 0.001275:
209: 0.001175:
20A: 0.001175:
20B: 0.001275:
20C: 0.001275:
200: 0.001215:
201: 0.001175:
20P: 0.001175:
210: 0.001175:
211: 0.001115:
212: 0.001075:
213: 0.001275:
214: 0.001175:

Repeatability Error, SN = 4130 (Continued)

6-286

270365-59

inter AP-406

215: 0.001275:
216: 0.00127~:

211: 0.001275:
218: 0.001275:
219: 0.001375:
2U: 0.001175:
218: 0.001275:
ZIC: 0.001275:
210: 0.001215:
2IE: 0.001115:
21F: 0.001175:
220: 0.001375:
221: 0.001275:
222: 0.001375:
223: 0.001375:
224: 0.001175:
·225: 0.001375:
226: 0.001175:
227: 0.001375:
228: 0.001175:
229: 0.001275:
22A: 0.001l75:
228: 0.001275:
22C: 0.001275:
22D: 0.001175:
22£: 0.001115:
UF: 0.001075:
230: 0.001275:
231: 0.001175:
232: 0.001175:
233: 0.001275:
234: 0.001275:
235: 0.001375:
236: 0.001375:
237: 0.001275:
238: 0.001275:
239: 0.001175:
23A: 0.001115:
238: 0.001175:
23C: 0.0011'15:
230: 0.001375:
23£: 0.001175:
23F: 0.001275:
240: 0.001275:
241: 0.001275:
242: 0.001215:
243: 0.001275:
244: 0.001275:
245: 0.001375:
246: 0.001075:
247: 0.001175:
248: 0.001l75:
249: 0.001375:
l4A: 0.001175:
2U: 0.001275:
24C: 0.001075:
240: 0.001175:
24£: 0.001375:
24F: 0.0013'151
250: 0.001275:

270365-60

Repeatability Error, SN = 4130 (Continued)

6-287

AP-406

251: 0.001175:
252: 0.001275:
253: 0.001215:
25f: 0.001175:
'255: 0.001375:
256: 0.001275:
257: 0.001275:
258: 0.001275:
259: 0.001175:
25.: 0.001075:
258: 0.001175:
2SC: 0.001475:
250: 0.001275:
25&: 0.~01275:

25F: 0.001175:
260: 0.001275:
261: 0.001175:
262: 0.001175:
263: 0.001275:
264: 0.001275:
265: 0.001275:
1.66: 0.001175:
267: 0.001375:
268: 0.001275:
269: 0.001275:
26&: 0.001175:
268: 0.001l7~:
26C: 0.001375:
260: 0.001375:
26&: 0.00137~:

26F: 0.001475:
270: 0.001175:
271: 0.001375:
272: 0.001115:
273: 0.001075:
274: 0.001275:
215: 0.001175:
276: 0.001275:
7.77: 0.001375:
278: 0.001375:
279: 0.001375:
27A: 0.001275:
278: 0.001275:
27C: 0.001275:
27D: 0.001175:
278: 0.001075:
27F: 0.001275:
280: 0.001275:
281: 0.001375:
282: 0.00127~:

283: 0.001275:
28t: 0.001275:
285: 0.001375:
286: 0.001275:
287: 0.001375:
288: 0.001175:
289: 0.001275:
28&: 0.001175:
28B: 0.001375:
20C: 0.001175:

270365-61

Repeatability Error, SN = 4130 (Continued)

6-288

inter AP-406

26D: 0.001375:
28B: 0,001l7~:

28P: 0,001315:
290: 0,001215:
291: 0.001215:
292: 0,001115:
293: 0,001115:
294: 0,001115:
295: 0,001115:
296: 0,00IZ15:
297: 0,001315:
298: 0,001275:
299: 0,001375:
294: 0,00U7S:
29B: 0,001315:
29C: 0,001275:
29B: 0.001175:
29£: 0,001375:
29F: 0,0011'15:
2AO: O.OOll7S:
2A1: 0,001l75:
2A2: 0,001315:
2A3: 0.001275:
2A4: 0.001115:
2A5: 0,001175:
2A6: D.DOIl15:
2A7: 0,001215:
2A8: 0.001415:
2A9: 0.001215:
lAA: 0.001115:
2AB: 0.001215:
2AC: 0.001315:
2AD: 0.001215:
2AB: 0.001275:
ZAP: 0,001l15:
2BO: 0.001175:
2BI: 0.001l75:
282: 0.00ll75:
2B3: 0.001275:
284: 0,0011%:
285: 0,001215:
286: 0,00ll75:
287: 0,00IZ75:
288: 0,001275:
289: 0.001275:
2B4: 0,001275:
21B: 0,001315:
2BC: 0,001275:
2BB: 0,001375:
2BE: 0,001375:
lBP: 0,001315:
2CO: 0,001375:
2CI: 0,001375:
2C2: 0,001315:
2C3: 0.001375:
2et: 0,001375:
2C5: 0,OOH7S:
2C6: 0,001275:
2C1: 0,001375:
2C8: 0,001275:

270365-62

Repeatability Error, SN'= 4130 (Continued)

6-289

infef AP-406

lC9: 0.001315:
2CA: 0.001175:
2CB: 0.001275:
2CC: 0.001275:
lCO: 0.001415:
2eB: 0.001275:
2CF: 0.001115:
200: 0.00H15:

·201: 0.001115:
202: 0.0012'/5:
7.03: 0.001315:
204: 0.001175:
205: 0.001115:
206: 0.001Z·/5:
201: 0.001315:
208: 0.001215:
209: 0.001215:
20A: 0.001415:
20B: 0.001415:
2OC: 0.001315:
200: 0.001315:
2DE: 0.001315:
20F: 0.001375:
2EO: 0.001115:
ZE1: 0.001315:
282: 0.001215:
283: 0.001115:
2£4: 0.001115:
2£5: 0.001215:
2£6: 0.001215:
2E7: 0.001375:
2£8: 0.001115:
2E9: 0.001215:
2EA: 0.001215:
2ED: 0.001115:
2EC: 0.001315:
2ED: 0.001215:
2£E: 0.001275:
2iF: 0.001175:
lFG: 0.001275: t .

2Fl: 0.001375:
2F2: 0.001375:
2F3: 0.001275:
2F4, 0.001275,
2FS: 0.001375:
2F6: 0.001475:
2P7: 0.001375:
2F8: 0.001375:
2F9: 0.001415:
2FA: 0.001275:
2FB: 0.001115:
2FC: 0.001275:
2FD: 0.001275:
2FE: 0.001275:
2FF: 0.001275:
300: 0.001075:
301: 0.001275:
302: 0.001375:
303: 0.001275:
304: 0.001175:

270365-63

Repeatability Error, SN = 4130 (Continued)

6-290

inter Ap·406

:lOS. 0.OU1475.
JOb. 0.001275.
l07: 1i-00l375:
308: 0.001375:
309: 0.001275:
304: 0.001275:
308: 0.001375:
JOC: 0.001275:
300: 0.001475:
30E. 0.001275.
.10P: 0.001375:
310: 0.001)75:
311: 0.001175:
312: 0.001275:
313: 0.001275:
314: 0.001375:
315: 0.001275:
316: 0.001275:
317: 0.001275:
318: 0.001175:
319: 0.001375:
31,\: 0.00127!"
318: 0.001075:
31C: 0.001175:
310: 0.001375:
31E: 0.001375:
31F: 0.001375:
320: 0.001315,
321: 0.001315:
322: 0.001l1!!:
323: 0.00Il75:
324: 0.00117':
325: 0.001575:
326: 0.00127!"
32'1: 0.00lf75:
328: 0.001174:
329: 0.001375:
32A: 0.001275:
328: 0.001275:
32C: 0.0013'15:
320: ()'001375:
32£: 0.001375:
32F: 0.001375:
330: 0.001174:
331: 0.001174:
332: 0.001415:
333: 0.001275:
334: 0.001275:
335: 0.001515:
336: 0.001475:
337: 0.001174:
338: 0.0012'15:
339: 0.001275:
33'\: 0.001275:
338: 0.001275:
33C: 0.001375:
330: 0.001375:
331: 0.001275:
33F: 0.001275:
340: 0.001174:

270365-64

Repeatability Error, SN = 4130 (Continued)

6-291

inter Ap·406

31D: 0.00131~:

371: 0.00137~:

31P: 0.001315:
380: 0.001475:
381: 0.00lf75:
382: 0.001275:
383: 0.001475:
384: 0.001375:
.~5: 0.OOH75:
386: 0.001275:
387: 0.001275:
388: 0.001375:
389. 0.001174:
38A: O.00121~:

38B: 0.001215:
38C: 0.001215:
380: 0.001275:
38£: 0.001215:
l8P: 0.001215:
390: 0.001215:
391: 0.GOl114:
3q2: 0.nOI315:
393: 0.001315:
394: 0.0013'15:
395: 0.001315:
396: 0.0010'14:
397: 0.001275:
398: 0.001375:
399: 0.001315:
39A: 0.001215:
398: 0.001315:
3ge: 0.001275:
390: 0.001215:
39E: 0.001415:
39F: 0.001375:
3AO: 0.001275:
3A1: 0.001215:
3A2: 0.001215:
:M3: 0.001215:
3A4: 0.001375:
3A5: 0.001275:
3A6: 0.001174:
3A1: 0.000914:
3AB: 0.001475:
3A9: 0.001315:
3AA: 0.001215:
3AB: 0.001415:
JAC: 0.001215: t .

3AD: 0.001315:
:ME: 0.001315:
3AF: 0.001375:
3BO: 0.0014'15:
381: 0.001174:
312: 0.0011":
383: 0.001215:
3B4: 0.001215:
385: 0.001275:
386: 0.001215:
387: 0.001375:
388: 0.001375:

270365-66

Repeatability Error, SN = 4130 (Continued)

6-293

inter AP-406

389: 0.001275:
3U: 0.001275:
~BB: 0.00In5.
3BC: 0.001275:
380: 0.001315:
3BE: 0.001114:
3BF: 0.001215:
leO: 0.001215:
3CI: 0.001114:
3C2: 0.00111.:
3C3: 0.001415:
3Ct: 0.001215:
3C5: 0.001215:
3C6: 0.001315:
3C7: 0.001114:
3C8: 0.001215:
3C'l: 0.001215:
leA: 0.001114:
3CJ: 0.001315:
3CC: 0.001375:
3CD: 0.001315:
leE: 0.001275:
3CP: 0.001215:
300: 0.001675:
3DI: 0.001815:
302: 0.001315:
303: 0.001375:
384: 0.00131&.
305: 0.oom5:
306: 0.001315:
301: 0.001375:
308: 0.001315:
309: 0.001215:
3Dl: 0.00111.:
308: 0.001475:
31e: 0.001f15:
300: 0.001315:
JOE: 0.001215:
30F, 0.001375:
3EO: 0.001174:
JEI: 0.001575:
312. 0.001375,
3E3: 0.001215:
3i1: 0.001275:
3£5: 0.001375:
3£b: 0.001415:
3£7: 0.001215:
3E8, 0.001215:
J£'j: 0.001515:
lEA: 0.001515:
3E8: 0.001215:
3Ee: 0.001215,
JEP: 0.001375:
3EE: 0.00iI1.:
J£F: 0.001f75:
3FO: 0.001275:
3FI: 0.001315:
3F2: 0.00117.:
3F3: 0.001(15:
3Ft: 0.001475:
3.5: O.OOl1U.

270365-67

3F6. 0.001215.
3": 0.001275:
3n. 0.001275:
3f9: 0.001275.
3PA: 0.00117 ••
3F8. 0.001215:
3Ft: 0.001275.
3ah 0.001275.
3' •• 0.001375: 270365-68

Repeatability Error, SN = 4130 (Continued)

6-294

AP-406

APPENDIX E
BIBLIOGRAPHY

AID Processing with Microcontrollers, Katausky,
Horden, Smith

Apfel, R., et. aI., "Signal-Processing Chips enrich tele­
phone line- card Architecture". Electronics, May 5,
1982.

Analog Devices - Data-Acquisition Databook 1984,
Volume 1

Blahut, Richard E., "Fast algorithms for digital signal
processing", Addison Wesley Publishing Company,
Inc., 1985.

Boyes, ed. - Syncro and Resolver Conversion, 1980

Brown, Robert Grover, "Introduction to random signal
analysis and Kalman filtering". John Wiley \& Sons,
Inc., 1983.

Burr-Brown Application Note, Testing of Analog-to­
Digital Converters

Burton and Dexter - Microprocessor Systems Hand­
book, 1977

Candy, J., et. al., "The Structure of Quantization Noise
from Sigma-Delta Modulation", IEEE Transaction on
Comm. Vol. Com. 29, No.9, Sept. 198i.

Candy, J., et. al., "Using Triangularly Weighted Inter­
polation to Get 13-Bit PCM from a Sigma-Delta Mod­
ulator", IEEE Transaction on Comm., Nov. 1976.

Electronic Analog-to-Digital Converters, Seitzer,
Pretzl, Handy

Handbook of Electronic Calculations, Chapter 15, An­
alog-Digital Conversion

Harris Analog and Telecom Data Book

IEEE 162

IEEE STD. 746-1984

Intel Application Note AP-124 - High-Speed Digital
Servos for Motor Control Using the 2920/21 Signal
Processor

Intel Application Note AP-125 - Designing Microcon­
troller Systems for Electrically Noisy Environments

Irwensen, J., "Calculated Quantization Noise of Single
- Integration Delta Modulation Coders" BSTJ Sept.
1969.

ITT Digital 2000 VLSI Digital TV System, MAA 2300
Audio AID Converter, Edition 1983/9.

MIL-M-38510/135 June 4, 1984

MIL-M-38510/135 May 6, 1985

Modern Electronic Circuits Reference Manual

NBS Staff Reports, May/June 1981 P.22/23

Sheingold, ed. - Analog-Digital Conversion Handbook,
1972

Sheingold, ed. - Analog-Digital Conversion Notes, 1977

Sheingold, ed. - Non-Linear Circuits Handbook, 1974

Sheingold, ed. - Transducer Interfacing Handbook,
1980

Steele, R., "Delta Modulation Systems", Pentech Press
Limited, 1975.

Taylor, Fred U., "Digital filter design handbook",
Marcel Dekker, Inc., 1983.

Terminology Related to the Perf of SIR, AID, D/ A
Circuits, IEEE Transactions

6-295

· APPLICATION
NOTE

AP-428

May 1989

Distributed Motor Control
Using the 80C196KB

© Intel Corporation, 1989

TIM SCHAFER
MICHAEL CHEVALIER

80C196KB APPLICATIONS

6-296

Order Number: 270701-001

AP-428

1.0 INTRODUCTION

Distributed control of servo motors has a wide range of
applications including industrial control, factory auto­
mation and robotics. The tasks involved in controlling a
servo motor include position and velocity measure­
ment, implementation of control algorithms, detection
of overrun and stress conditions, and communication
back to a central controller. The 80CI96KB high per­
formance microcontroller provides a low cost solution
for handling these required control tasks.

CURRENT
SENSING

FOR OVERRUN
CONDITIONS

The 80C196KB microcontroller is a highly integrated
and high performance member of the MCS®-96 family.
The part is available in ROM (83C196KB) and
EPROM (87C196KB) versions. A block diagram of the
80C196KB is shown in Figure 2. The availability of a
variety of on board peripherals such as timer/counters,
A/D, PWM, Serial Port and High Speed Input and
Output capture/compare timer subsystem provides for
a flexible architecture for control applications at a rea­
sonable cost.

COMMUNICATION
SOFTWARE FOR

DISTRIBUTED
CONTROL

270701-1

Figure 1. Control Tasks for Distributed Control of a Servo Motor

VREF ANGND

PORT 2 /

A/D PORT 0 HSI HSO

Figure 2. 80C196KB Block Diagram

6-297

CONTROL
SIGNALS

PORT 3

ADDR/
DATA
BUS

270701-2

inter Ap·428

This application note describes several different meth­
ods for motor control using the on board peripherals of
the 80C196KB. Hardware and Software techniques are
addressed to generate PWMs for driving motors and to
measure position from the output of precision optical
encoders.

A Proportional, Integral and Differential (PID) algo­
rithm controls both the position and velocity of the mo­
tor. The PID algorithm employs proportional, integral
and differential feedback to control the system charac­
teristics of the motor. The motor can be moved either
manually or under the control of a velocity profile. The
mode used to position the motor is determined by com­
mands received from a master controller.

Communication to the master controller was imple­
mented using the onboard serial port of the 80C196KB.
The application of distributed control to position and
program a six axis robot arm using six separate motors
will be described. Each 80CI96KB motor controller
acts as a slave under control of the master. An IBM
PCTM was selected as the master controller for the ro­
bot. Turbo Prolog™ was used to develop the human
interface. A robot programming language and control
screen was produced to program movements of each
individual motor.

The motor control hardware, taking full advantage of
the peripheral features of the 80C196KB, will be dis­
cussed first. The control software will be discussed lat­
er.

2.0 HARDWARE

The hardware tasks required to control a servo motor
under the command of a centralized controller include
the following:

. I) Feedback of the motor position and direction.

2) Control of the motor speed and direction.

3) Detection of motor overrun conditions.

4) Communication from/to a master controller.

Two different hardware interface examples for control­
ling a servo motor are shown in Figures 3 and 4. The
first example controls one motor using TIMER2 and
the dedicated PWM unit on the 80CI96KB and would
best fit a high performance, high resolution application.
Example number 2 uses the HSI (High Speed Inputs)
and the HSO (High Speed Outputs) to control two mo­
tors. The second method can control up to four motors
by trading off some performance and resolution.

This section deals with the hardware and software re­
quirements of acquiring position feedback from incre­
mental shaft encoders and generating outputs to drive
DC servo motors. A current limiting circuit ,which is
useful in determining when the motor has stalled is also
presented. Current monitoring can also control the
torque to prevent the motor from crushing an object.
The closed loop digital control algorithms are discussed
in the software section.

2.1 Optical Encoders

Optical encoders can be used to measure the position of
rotating equipment. They provide a cost effective solu­
tion for digital position and velocity feedback to a mi­
crocontroller. Encoders produce two pulse trains which
give an incremental position count. Velocity and accel­
eration may be calculated by measuring the number of
counts in a given sample period. Or, in a slow speed
system, velocity and acceleration can be measured di­
rectly from the time between edges of the pulse train.
Acceleration and velocity ,calculations are discussed in
detail in the software section.

l _______ ~~DEF~P~HA~S~E~A~
T2CLK t ENCODER PHASE B

T2UP /DN t-------UL~O~G~IC:...J.l.:.::=~ ..
1llll1i!16ji6111jA/D BUS OPTICAL ENCODER

ACH0t--;::.;;;:~~~~~
P2.7
PWM

27C64 80C196KB

DC SERVO MOTOR
270701-3

Figure 3. Block Diagram of Motor Control Hardware using PWM and TIMER2

6-298

inter AP-428

HSI.O
PO.O

HS1.1
PO.l

16
AID BUS

ACHO

8 373 P2.7
DATA HSO.O

27C64

ACHI

P2.6
HSO.l

80C196KB

270701-4

Figure 4. Block Diagram of Motor Control Hardware using HSO and HSI

Pulse trains from an encoder can vary from two pulses
per revolution for low cost applications, to over 5000
pulses per revolution for high resolution requirements.
Figure 5 shows an eight line encoder along with the
associated waveforms. A small amount of external logic
and a few discrete components decode a position count
and a direction indication from phase A and phase B.

External logic for encoders is shown in Figure 6. Figure
7 shows a timing diagram of the circuit. Bold type de­
notes the input and desired output waveforms. The
phases from an encoder are mechanically produced
electrical signals. When the motor rotates slowly, the
phases inherently exhibit slow rise and fall times. The
four Schmitt triggers in the circuit protect against oscil­
lation in the digital circuit due to these long rise and
fall times.

CLOCKWISE

PHASE A ----.fLSL
PHASEBSLjL

COUNTERCLOCKWISE

PHASEASLjL

PHASE B ----.fLSL
Inside track generates Phase A and outside track generates Phase B

Figure 5. Eight Line Encoder

6-299

270701-5

intJ AP-428

L.--------------~~~_!£CU~P~/~D~N~D----l U2 > DIRECTION
U4 01-------Ul = 74HC14

U2 = 74HC86
U3 = U4 = 74HC74

CL
270701-6

Figure 6. External Logic for Encoders

CLOCKWISE COUNTERCLOCKWISE

PHASE A

ASHOT u u u u u
PHASE B 11.. ________

I
BSHOTLJ u u LfTlJ u

I

CUP/ON

COUNT

UP/ON

270701-7

Figure 7. Timing Diagram for Logic Circuit

A simple one-shot is constructed with an RC circuit
and an XOR gate to generate a pulse on each edge of
each phase. ASHOT clocks phase Band BSHOT clocks
phase A. This technique of digital filtering insures re­
petitive edges on a single phase without an'edge on the
other phase are not passed on to the processor. Repeti­
tive edges occur when the motor changes direction.

Further logic obtains a direction or UP/ON bit. Note
the first edge after a direction change is lost. A lost
edge does not affect the count since the first transition
is lost in both directions. Since an edge is lost in each
direction, the circuit has an absolute resolution of one
edge.

6-300

inter AP-428

2.2 Interfacing to TIMER2

COUNT indicates an incremental position count on
both its rising and falling edge. TIMER2 on the
80C196KB is a 16 bit externaIly clocked up/down
counter clocked on the rising and falling edge of its
input signal. A one or zero on port pin 2.6 determines
whether TIMER2 counts up or down. By interfacing
an optical encoder to TIMER2 as shown in Figure 8,
an up/down counter is realized. No software interven­
tion is required to keep track of position or direction
changes with the 16 bit TIMER2. The CPU is free to
concentrate on executing the control algorithm.

PHASE A -
DECODE
CIRCUIT

PHASE B -

COUNT

DIRECTION

T2CLK

P2.6

80C196KB
270701-8

Figure 8. TIMER2 and Encoder
Interface Circuitry

For designs requiring greater resolution, a 32-bi~ up!
down counter may be realized with the same CIrcUIt
and minimal software overhead. TIMER2 can cause an
interrupt on an overflow condition. However, an over­
flow interrupt is not the safest way to implement a 32-
bit up/down counter. Repetitive overflow interrupts
could happen when the motor oscillates about a posi­
tion where the LSW (Least Significant Word) is zero,
or TIMER2 keeps overflowing and underflowing. For
this method, the total software overhead required for a
32-bit up/down counter is dependent on the position
and set point of the motor and would be difficult to
predict.

A much better way to implement a 32-bit up/down
counter is shown in Figure 9. TIMER2 is only read at
the beginning of the control algorithm, or once a sam­
ple time. This does not present an acc~racy p.roblem for
a digital control algorithm. TIMER2 IS read mto a tem­
porary register. The temporary value is then subtracted
from TIMER2, rather than c1earin? TIMER2, ensurin.g
no counts will be'missed. The 16-blt temporary value IS
sign extended to form a two's complement 32-bit value
and added to the old 32-bit position value to form the
current position value. This 32-bit up/down count.er
provides the accuracy needed for a control loop whl~e
keeping software overhead constant under all condI­
tions.

A Pittman motor with a Hewlett Packard HEDS - 5310
512 line incremental shaft encoder was interfaced to
TIMER2. Even at a maximum shaft rotation of 6000

6-301

CONTROL ALGORITHM

270701-9

Figure 9. Control Algorithm for TIMER2

RPM, the edges are only clocked into TIMER2 at a
period of about 5 p.s.

(6000 RIM)' (1/60 M/SEC)' (512 LINE)' (4 EDGES/LlNE) =
204,800 edges per second

TIMER2 has a minimum transition period of once a
state time, or 167 ns @ 12 Mhz, in the fast increment
mode. Obviously, much higher resolutions and speeds
may be obtained.

2.3 Interfacing to .the HSI

The HSI can interface more than one motor to the
80C196KB. COUNT is input into an HSI pin which is
configured to recognize events on both the rising and
falling edge of its input signal. UP /DN is input to a
port pin to determine direction. Up ~o four motor~ can
be interfaced to the 80Cl96KB usmg the four mput
pins of the HSI. The disadvantage of using the HSI is
an ISR (Interrupt Service Routine) must be executed
on each edge. Considerable software overhead could oc­
cur if edges are clocked into the HSI faster than about
one every 150p.s.

Two Pittman motors with 2 line encoders were inter­
faced to the HSI to generate two 32-bit up/down coun­
ters as an example. With both motors turning at a max­
imum velocity of 6000 RPM, an edge will occur every
625p.s. The ISR in Figure 10 processes the edges from
the encoders and updates the position values and exe­
cutes in about 15p.s @ 12 MHZ on the 80C196KB.
This still allows 97.6% (1 - 15/1250) of the total pro­
cessing time to implement control algorithms and other
I/O functions.

inter AP-428

iii;;;iii;;;;;;;
HSI INTERRUPT SERVICE ROUTINE

iii;;;iii;;;;;;;;;
hsi data int:

- pushf
orb
jbc

more in fifo:

iosl bak,iosl
iosl:bak,7,no_data

- -andb iosl_bak,'Olllllllb
mot 4 cnt:

- - jbc
jbs
sub
subc
br

hsi status,O.mot 5 cnt
portI,O,mot 4 up - -

mot_4-pos,l"1-
mot_4-pos+2,.O
mot_5_cnt

mot 4 up:
- - add mot_4-pos.fl

addc mot_4-pos+2,fO
mot 5 cnt:

- - jbc hsi_status,4,test_aqain
jbs portl,l,mot 5 up
sub mot_5-pos,11-
subc mot 5-pos+2,fO
br test_aqain

mot 5 up:
- - add mot 5-pos.fl

addc mot~S--pos+2,fO
test aqain:

- ld
nop
nop
nop
nop
orb
jbs

no data:'
- popf

ret

iosl bak,iosl
iosl:bak,7,more_in_fifo

;test for any data received

;test for count of motor 4
;test for up/dn bit
;decrement motor 4 position

;increment motor 4 position

;decrement motor 5 position

;increment motor 5 position

;read hsl time to step fifo
;wait 8 state times for
;holdinq reqister to be loaded

;make sure fifo is flushed

270701-10

Figure 10. HSllnterrupt Service Routine

The HSI approach does add flexibility. Since the HSI
records a TIMER I value with each transition, velocity
and acceleration can be calculated on every edge.

2.4 Driving a DC Servo Motor

Figure II shows the circuit used to drive the motors. A
digital output from the BOCI96KB is converted into an
analog signal capable of driving a DC servo motor.
POWER is a PWM output from the BOCI96KB. DI­
RECTION is a port bit which qualifies the + 15 or
-15 supply. A signal diagram is shown in Figure 12.
Isolation between the motor power supply and the digi­
tal supply is provided by the two optical isolators pre­
venting any inductive glitches caused by the motor
turning on and off from effecting the digital circuit. The
optical isolators in turn drive the two VFE'fS. Size of

the VFETS was determined by the current specifications
of the motors. Heat sinks were used to protect the
VFE'fS. The VFE'fS are protected from voltage spikes by
the MOV, (Metal Oxide Varistor), a type of transient
absorber.

2.5 Using the Dedicated PWM Output

The PWM output unit on the BOCI96KB is an B bit
counter which increments every state time. The output
is driven high when the counter equals zero and driven
low when the counter matches the value in the PWM_
CONTROL register. Typical PWM waveforms are giv­
en in Figure 13. A prescaler can allow the PWM coun­
ter to increment every two state times. With a ·12 Mhz
crystal, the PWM has a fixed output frequency of 23.6
Khz, or 11.B Khz with the prescaler enabled.

6-302

U3 = 7438

PWM
(POWER)

U4 = U5 = OC1Hl1Al
N = IR533 HEXFET
P = IR9533 HEXFET
M = Z47A7 MOV

AP-428

Figure 11. Motor Drive Circuitry

POWER

DIRECTION ___________ ---',

Duty
Cycle

0%

25%

50%

90%

99.6%

OUTPUT

Figure 12. Motor Drive Waveforms

PWM
Register

00

64

128

230

255

Figure 13. PWM Output Waveforms
6-303

+15V

r S
P

o

0.1 }'F

o

5

-15V

+15

-15

270701-11

270701-12

Output Waveform

270701-13

inter AP-428

The PWM unit along with pin 2.7 was used to drive
one motor at a fixed output frequency of 23.6 Khz. By
driving the motor at this frequency, motor whine in the
audible range was eliminated. Note that a 00 value in
the PWM register applies full power to the motor; the
desired 8 bit output value must be inverted before it is
loaded into the PWM_CONTROL register to obtain
the correct output.

2.6 Using the HSO to Generate PWMs

The HSO (High Speed Outputs) of the 80CI96KB can
generate up to four PWMs. The HSO triggers events at
specified times based on TIMERl or TIMER2. For the
specific purpose of generating PWMs, the event is driv­
ing an output pin high or low. HSO commands are
loaded onto the CAM, (Content Addressable Memory),
which specify the time and event to take place. The
CAM is eight positions deep. The HSO triggers the
event on a successful compare with the,associated tim­
er.

The 80CI96KB can optionally lock commands onto
the CAM. This feature is very useful for generating
PWMs using TIMER2 as the time base. Figure 14
shows an example of two PWM outputs using locked
commands in the CAM. TIMER2 is clocked externally
at a frequency which determines the resolution of the
PWMs. TIMER2 can be clocked at a maximum fre­
quency of once every eight state times (1.33,...s @ 12
Mhz) when used with the HSO. The RESET TIMER2
@ T4 command specifies the output frequency of the
PWMs. By changing the external TIMER2 clock fre­
quency and the value of T4, the HSO can generate a
wide range of PWMs. '

7

6

5

4

3

2

o

RESET TIMER2 @ T 4

SET HSO.O & 1 HIGH @ T 4

SET HSO.1 LOW @ T1

SET HSO.O LOW @ TO

HSOCAM

TO and TI specify when the output pins will be driven
low. By varying TO and TI, the duty cycle of the output
waveforms are changed. Both pins are driven high by
the same command at the same time TIMER2 is reset.
Since there are still four positions open in the CAM;
two more PWMs could be generated and one position
would still be left open in the CAM.

For this ap-note, two Pittman motors were controlled
using the HSO along with port pins 2.6 and 2.7. It was
desired to keep the output frequency the same as the
output frequency of the on-board PWM. To accomplish
this, TIMER2 was clocked every 8 state times and reset
when it reached 31 counts. This makes the output fre­
quency 23.6 Khz @ 12 Mhz with 5 bits of resolution.
CLKOUT was externally divided by 16 and input into
TIMER2. Since TIMER2 counts on both the positive
and negative edge of its input signal, a square wave
with a 16 state period clocks TIMER2 every 8 state
times.

The ISR used to load commands onto the CAM is
shown in Figure IS. When the control algorithm deter­
mines an output has changed, a RESET TIMER2 com­
mand gets loaded onto the CAM to generate an inter­
rupt. The interrupt vectors to this routine and updates
the CAM. To clear a locked entry from the CAM, the
entire CAM must be flushed by setting IOC2.7. Care
must be taken to reload all of the commands. This in­
cludes any commands not locked on the CAM.

TIMER21Jlfl n n n n n n n n n n n n n n n r ------------------
HSO.1

HSO.O LJ U
'270701-14

Figure 14. Two PWMs Using HSO Locked Entries

6-304

AP-428

timer2 reset:
-ldb IOC2,#11000000b

Id hso command,111001110b
ld hso=time,t3l
nop
nop
ldb
ld

hso command,~lllOOllOb
hso=time,it31

cmpb mot 4 power,i3l
je check-4

Idb hso command,#11000000b
ldbze hso_time,mot_4~ower

check_4:

cmpb
je
ldb
ldbze

mot_5~ower,lI3l
sanity check
hso command,#llOOOOOlb
hso=time,mot_4_power

sanity check:
-cmp TlMER2,t32

jnh sane
clr TlMER2

sane:

;clear the CAM
;load reset timer2 command

;this command will set both
;hso lines for the PWM

;load mot_4~ower value
;if power is lfh, do not load
; this command, it will cancel
;with the set command

;load mot_5~ower value
;if power is lfh, do not load
;this command, it will cancel
;with set command

;sanity check to make sure
;TI~mR2 is not greater than 3:

ldb hso command,~39h ;reload software timer 1
add swtl~eriod_bak,iswtl_dly~eriod
ld hso_time,swtl~eriod_bak
ldb port2,port2_bak ;load direction bits
popf
ret

270701-15

Figure 15. HSO Interrupt Service Routine

There is the potential for commands to be missed when
they are flushed and reloaded on the CAM. For exam­
ple, an HSO command is loaded on the CAM to clear
HSO pin 3 when TIMER2 = 23 and the CAM is
flushed when TIMER2 = 22. A new HSO command is
then loaded onto the CAM to clear HSO.3 when
TIMER2 = 21. This command will not execute until
TIMER2 is cleared and counts back up to 21. Missed
commands are difficult to avoid without excessive soft­
ware overhead. Software must take missed commands
into account and minimize the effects on the applica­
tion.

The ISR in Figure 15, insures if an output edge is
missed for one period of TIMER2, the HSO pin will
remain high. A logical one applies no power to the mo­
tor. Also, at the end of the routine a sanity check makes
sure TIMER2 is not greater than 31.

6-305

2.7 Current Limiting

When a motor is stalled, or excessively loaded, it will
draw a lot of current. Current limiting can be used to
keep the motor from damaging itself, or anything in its
path. Several options exist to the user on what to do
about a high current condition. Less power could be
applied, or the motor could shut off entirely. This sec­
tion only explains how to recognize a high current con­
dition in a DC servo motor, not what to do about it.

Figure 16 shows a way to convert the current from the
motor into a voltage which can be read by the
80C196KB onboard AID converter. Again, an opto­
isolator keeps the motor and digital power supplies sep­
arate. When enough current flows through the opto­
isolator, the AID input voltage will drop down to
about.7 volts. The current to the opto-isolator is varied
by changing the values of the two resistors, Rl and R2
which split the current flow. By changing Rl and R2,
this circuit can be adjusted to work properly with dif­
ferent motors and load conditions.

intJ

TO MOTOR
GROUND

fROM MOTOR

AP-428

7
4.7K Vee

+----.AjD INPUT

R2=3K
DIGITAL GROUND

270701-16

Figure 16. Current Sensing Circuitry

Motor startup current must be considered when testing
for a high current condition. When a motor is started, it
will draw a great deal of current. This current surge can
last for a few milliseconds. Software must decide if the
motor is drawing excessive current because it is stalled,
or just starting. The section of code in Figure 17 exe-

cutes during the control algorithm. The current must
be above ad~imit for 30 sample times before software
recognizes a high current condition. Of course, these
values must be adjusted up or down depending on the
motor and load cqnditions.

;do a current limit check

jbs
cmpb
jh
incb
cmpb

ad command,3,motor around
acf result hi, ad lImit
current of -
ad count­
ad=count,t30

jne current_maybe_ok

;if AID still running, skip

;want to do 30h AID conversicr.s
;before acting because of ~oc~r
; startup' current

;here is where the user inserts his code on what to do
;about a high current condition

current_ok:
clrb ad count

current maybe ok:
ldb ad_command,IOOOOlOOlb istart another aid conversion

motor around:

Figure 17. Current Sensing Software

6-306

270701-17

inter AP-428

r----------~ I HSI INTERRUPT ROUTINE I
I POSITION CHANGES
I FROM ENCODER. I ,,----------'"

TIMER2 SOFTWARE
POSITION MEASUREMENT

r---------- ..
I HSO INTERRUPT ROUTINE I

PWM GENERATION I ._--------_ ..

270701-18

Figure 18. Software Block Diagram

3.0 SOFTWARE

A block diagram of the software is shown in Figure 18.
The software consists of a main program for hardware
and software initialization of the 80CI96KB peripher­
als and programming of control tasks. The control
tasks include tracking the motor position and direction,
control of the motor speed and direction, detection of
overrun conditions and communication to the master
controller. After initialization is complete, the
80Cl96KB enters idle mode to preserve power while
not performing control tasks. Interrupt service routines
for the serial port, HSI, HSO and software timer per­
form the various control tasks.

The communication protocol to the main controller is
implemented in the serial receive and transmit routines.
Commands from the master controller move the motor
in one of two modes, manual or automatic, depending
on the command. The commands are listed in Figure
28.

Manual mode moves the motor clockwise or counter­
clockwise with a preset maximum control voltage ap­
plied. Manual mode commands include MOTOR UP,
MOTOR DOWN and STOP. The MOTOR UP and
MOTOR DOWN commands send the motor into man­
ual mode. The motor continues to run in the desired
direction until a STOP command is issued from the
master controller. The STOP command loads the desti­
nation position with the current position and enters au­
tomatic mode.

6-307

Automatic mode positions the motor using either a po­
sition or velocity PID algorithm. The position PID al­
gorithm is applied after reception of the STOP com­
mand or when the desired position is reached. The des­
tination position can be changed by a POSITION com­
mand from the master controller.

The maximum motor velocity and the destination posi­
tion are contained in the POSITION command. If the
maximum velocity is zero, a position PID is applied to
move the motor to the destination position. A non zero
maximum velocity will position the motor using a ve­
locity PID algorithm. Position and velocity input to the
algorithms are calculated based on position input from
the encoder.

Position information for the PID algorithms can be
provided by using the High Speed Inputs or TIMER2.
The HSI interrupt routine processes the direction and
position information incoming from the encoder to pro­
vide current motor position. Alternatively, TIMER2
directly measures the position when used as an up/
down counter. Velocity information can be calculated
using the position information given a constant sam­
pling rate. The position and velocity information are
used by the PID control algorithms.

The control algorithm uses a software timer interrupt
to generate the sampling rate of the control software.
The main portion of the software timer routine calcu­
lates the current position and velocity, senses the motor

AP-428

current for overrun conditions, calls the PID control
algorithm and generates the PWM control voltage to
the moior.

The speed of the motor can be controlled ,using the
PWM or the HSO. If the HSO is used, the HSO inter­
rupt routine generates a PWM output to control the
voltage applied to the motor. Otherwise, the PWM unit
controls the voltage applied to the motor.

Each of the major software routines is covered in detail
in this section.

3.1 Main Initialization Routine

The main initialization routine executes immediately
following reset to initialize the 80C196KB peripherals
and enable the interrupt driven control tasks. A flow
chart for the main initialization routine is shown in
Figure 19. The constants and variables for the control
algorithms and software routines are loaded into regis­
ter space for fast execution.

Next, the various penph,erals are programmed to han­
dle the control tasks. The PWM for voltage control of
the servo motor is initialized. TIMER2 is programmed
as an up/down counter with T2CLK as the clock
source. The serial port is set to 19.2 Kbaud and pro­
grammed for mode 2 to receive incoming commands.
An AID conversion, is started to check for initial stress
conditions. Before the motor can be accurately posi­
tioned, an initial reference point must be established.

In order to find the reference point, an I/O port is
connected to a limit switch. The motor is driven in a
preset direction until the limit switch is activated. The
initial position is then loaded and position PID control
is applied to keep the motor stable. Position commands
from the master controller can now precisely position
the motor from the established reference point.

Finally, the software timer, timer overflow, receive and
transmit interrupt routines are enabled and the idle
mode is entered to conserve power. The routines will
execute as each individual interrupt control task re­
quires servicing. Discussion of the control tasks of each
software routine is contained in the following sections.

3.2 Software Timer Interrupt Routine

The software timer interrupt service routine executes
every 500 J-Ls and determines the sampling rate of the
PID control algorithm. Figure 20 shows the flow chart
for the software timer interrupt routine. The routine
determines the operating mode, calculates the current
velocity and position and tests for overrun of preset
boundary conditions and stress conditions.

6-308

ENABLE PWM
ENABLE .TIMER 1 OVERFLOW INTERRUPT

SET T2CLK AS TIMER2 SOURCE

270701-19

Figure 19. Motor Initialization Routine

AP-428

270701-20

270701-21

Figure 20. Software Timer Interrupt Routine

An AID conversion compares the motor current to test
for a stress condition against a preset limit. Thirty con­
versions are done to average the motor current to pre­
vent a false trigger due to a large current surge when
the motor starts up. If the preset limit indicating a
stress condition is exceeded, the motor is stopped.

6-309

The motor is also stopped if the current position ex­
ceeds the preset boundary limits. In the case of the
robot, the movement of joints are limited to prevent
positions which may cause stress conditions or damage,
the robot. The positioning of the robot is dependent on
the mode of operation.

inter AP·428

A manual flag is tested to determine if the automatic or
manual mode should position the motor. The manual
mode moves the motor either up or down with a preset
maximum motor control voltage until a STOP com­
mand is issued. The automatic mode positions the mo­
tor using either the position PID for accurate position­
ing or the velocity PID for long positioning.

The software timer interrupt routine calculates and
stores the current position and velocity of the motor for
use by the appropriate PID algorithm. The current ve­
locity is calculated given the sampling rate, the current
position and the previous position. The calculated ve­
locity and position information is stored in the
80Cl96KB register space for use by the PID algorithm
software.

Recall that either a position PID or a velocity PID
control algorithm will be executed depending on the
maximum velocity value passed by the master control­
ler. If the value is zero, a position PID is employed,
otherwise, the velocity profile is employed. The velocity
profile PID is ideal for large maneuvers while the posi­
tion PID is better for shorter movements or maintain­
ing the current position. The generated output from the
control algorithm is then loaded into the PWM control
register and a return is executed.

3.3 PIO Control Algorithm

The algorithm used to control the angular position and
velocity of the motor is a common PID algorithm. The
algorithIp. uses proportional, integral and differential
feedback to control the output to a motor. The PID
algorithm controls the important system characteristics
of the motor: settling time, steady state error, and sys­
tem stability. Each term in the control algorithm affects
each system characteristic differently. A block diagram
of the PID algorithm is illustrated in Figure 21.

270701-22

Figure 21. Block Diagram of PID Algorithm

The PID algorithm consists of three terms: ·a propor­
tional term, integral term and differential term. The
proportional term drives the motor with an output di­
rectly proportional to the error between the desired and

6-310

measured position. The integral term consists of the
integral of the position errors multiplied by an integral
constant. The differential term is the change in error
multiplied by a differential constant. The sum of the
terms is then scaled to provide a control voltage to the
motor. The system characteristics of the motor are
tuned by the selection of appropriate constants.

The settling time, steady state error and system stability
are impacted by the amount of proportional gain select­
ed. To accurately control a small change in motor posi­
tion, a large gain is desired. Faster system response is
attained by selecting a large gain but at the cost of
greater overshoot and longer settling time. The effect of
varying loads on the motor makes proportional control
in itself inadequate because of system instability and
large steady state error.

Application of integral feedback drives the steady state
error to zero by increasing the output in response to a
steady state error. The integral term increases as the
sum of the steady state error increases causing the error
to eventually be driven to zero. The integral term, al­
though driving the steady state error to zero, can cause
overshoot and ringing if it is too large. This has the
undesirable affect of poorer system response. Applying
PI control works very well, however a faster system
response can be acheived by applying a PID algorithm.

System response can be improved by adding a differen­
tial term. Addition of this term improves the response
time by providing a output proportional to the rate of
change in error. When the motor has a large change in
error, the term produces a large output to the motor.
Therefore, the system responds faster to disturbances in
the system. Most of the system instability is caused by
too high of a differential constant. The size of the pro­
portional, integral and differential constants provide
tradeoffs to the desired system characteristics.

Selection of the three gain constants is critical in pro­
viding fast system response with good system charac­
teristics. A slightly modified PID algorithm controls
the motor which improves both the system response
and the system stability. Two modifications were made
to improve the control algorithm. First, the size of the
integral term was clamped to prevent instability caused
by an extremely large integral term which could occur
after a long time with large errors. Second, the integral
term was cleared when the error changed sign to fur­
ther improve the system stability. The PID control al­
gorithm is written in PL/M-96 for ease of development.

3.4 Position PIO Software

The software flow chart for the PID algorithm is shown
in Figure 22. Upon entering the routine, the position

AP-428

YES
SET MOTOR DIRECTION CLOCKWISE

YES
SET MOTOR DIRECTION COUNTER CLOCKWISE

NO

YES
CLEAR SUM_INTEGRAL

YES

YES
SUM...:INTEGRAL = _MAX-INTEGRAL

OUTPUT = (POS_ERRoKp + SUM_INTEGRAL ° KI + DI" _ERR ° Kd)
SCALER

OUTPUT = LIMIT

YES
SET DIRECTION COUNTER CLOCKWISE

YES
OUTPUT = LIMIT

270701-23

Figure 22. Position PIO Algorithm

6-311

AP-428

error is checked for a minimum value before applying
the position PID algorithm. If the minimum position
error is exceeded, the maximum PWM output is ap­
plied to move the motor a~ rapidly as possible.

Current position error is added to the integral sum.
Position error and integral sum are tested to clear the
integral sum if they are opposite in sign. This improves
the system stability by preventing the integral term
from applying a correction opposite to the desired out­
put.

If the integral sum is greater than the maximum sum
allowed, the integral sum is clamped. This prevents the
integral sum from becoming too large if the error is
large for several samples. Differential error is then cal-'
culated from the current and previous position errors.

Output for the PID algorithm is calculated from the
proportional, integral and differential terms multiplied
by their individual gain constants. The output is then
scaled and tested for the preset PWM output limit. If
the limit is exceeded, the output to the PWM is set to
the maximjlm value. The appropriate motor'direction is
set depending on the sign of the output. The final out­
put to the PWM control is ready and the software re­
turns.

3.5 Velocity Profile

Positioning of a servo motor using only a position PID
algorithm wastes power and gives poor system perform­
ance when moving between two positions. A velocity
profile provides a smooth transition between two angu­
lar positions and improves the energy consumption of
the motor. Three different velocity profiles which can
be applied are trapezoidal, triangular and parabolic.

The parabolic profile is the most power efficient and
provides smooth acceleration and deceleration at the
end points. However, a large amount of processor time
is needed to calculate the profile in real time. The trian­
gular profile provides ease of calculation versus the par­
abolic but generates a rough transition at the peak of
the profile. A trapezoidal profile provides energy effi­
ciency, ease of calculation and relatively smooth accel­
eration and deceleration throughout the velocity pro­
file. For these reasons, the trapezoidal profile was se-
lected. '

A trapezoidal profile consists of an acceleration period,
run period and deceleration period. The variables AC­
CEL_TIME, RUN_TIME and END_TIME repre­
sent the periods. Figure 23 shows the trapezoidal pro­
file. Acceleration and deceleration rates for the motor

,are fixed according to the optimum values found
through testing. The master controller sends a position
command containing the maximum velocity
(MAX_VELOCITY) and the desired end position
(DES_POSITION). The DES~POSITION is equal
to the integral of the velocity profile (i.e., the final posi­
tion can be determined by integrating the velocity, over
the period of the profile. Therefore, the
ACCEL_TIME, RUN_TIME and END_TIME
can be calculated based on the DES_POSITION,
ACCELERATION, DECELERATION and
MAX_VELOCITY.'

The destination position should be reached if the veloci­
ty profile was ideally tracked. However, a certain
amount of position error can be expected as the motor
travels from one point to another. This error is elimi­
nated by applying the position PID at the end of the
velocity profile. This modified control algorithm has
both good motor performance and accurate angular po­
sitioning.

~I,~, ------~~-----------------END_TiME----------------------------~

I----ACCEL_ TIME -----.11--------- RUN_ TIME--------~

VELOCITY , ACCELERATION RUN DECELERATION

MAXIMUM VELOCITY

TIME
270701-24

Figure 23. Trapezoidal Velocity Profile

6-312

AP-428

3.6 Trapezoidal Profile Calculation

The trapezoidal velocity profile is calculated when a
position command with a nonzero maximum velocity is
passed from the master controller. The master passes
the desired end position and the maximum velocity of
the motor. A reasonable acceleration (deceleration) rate
was found through experimentation to be I position
count/sampling rate (500 fLS). ACCEL_TIME,
RUN_TIME and END_TIME can be easily calcu­
lated given the relative acceleration rate of one, the end
position and the maximum velocity.

The acceleration and deceleration time is equal to the
maximum velocity since the acceleration/deceleration
rate is one. RUN_TIME is the difference between the
desired position and current position minus the dis­
tance covered during the acceleration and deceleration
times. END_TIME is the RUN_TIME added to two
times the ACCEL_TIME. With the velocity profile
calculated, the velocity PID algorithm will be applied
until the END_TIME is reached.

The velocity profile software generates the appropriate
velocity depending on the current time. Figure 24

shows the velocity profile generation software. The
TIME variable is incremented every software timer in­
terrupt at the sampling rate if it is less then the end
time (END_TIME) of the profile. Three different ve­
locities are calculated during the profile. DES_ VE­
LOCITY equals the ACCELERATION multiplied by
the TIME until the ACCEL_TIME is reached. The
DES_VELOCITY equals the maxiumum velocity un­
til' the RUN_TIME is exceeded. Once the
RUN_TIME is exceeded, the velocity is equal to the
ACCELERATION (same as deceleration rate) multi­
plied by the TIME-CUR~TIME. When the end of
the profile is reached (which is approximately the de­
sired end position), the time equals the END_TIME
and the position PID controls the motor. If the maxi­
mum velocity passed by the master controller is zero,
the CURRENT_TIME is set to the END_TIME
and the position PID controls the motor.

The velocity control algorithm employs the PID algo­
rithm. The algorithm is similar to the position algo­
rithm used to control the position. The velocity control
algorithm is shown in Figure 25.

~>-=---I DES_VELOCITY = ACCELERATION· CURR_ TIME

DES_VELOCITY = ACCELERATION· (TIME-CURR_ TIME)

270701-25

Figure 24. Velocity Profile Generation Software

6-313

inter AP-428

VELOCllY ALGORITHM

STORE VELOCllY ERRORS

DIFF _ERR = (VEL ERR-VEL ERR3 + 3*VEL ERRl-3*VELERR2)
SCALER

OUTPUT = PREY-OUTPUT + «VEL_ERR-VELERRl)*VKp + (VEL_ERR + VEL ERR 1)*VKI + DIFF _ERR*VKd»
SCALER

270701-26

Figure 25. Velocity Control Algorithm

3.7 Fast Execution of Control
Algorithms

The high speed arithmetic operations capability, avail­
ability of three operand instructions and large register
space of the 80C196KB provide for fast execution of
control algorithms. The 80C196KB running at 12 Mhz
can execute a 16 X 16 Multiply in 2.3 JLs and 32/16
divide in 4.0 JLs. Three operand instructions operate on
two variables without modification and store the result
in the third variable. This eliminates the need for exe­
cuting load and store operations as required by accu­
mulator bound architectures. The large register space
can store all of the constants and variables for the con­
trol algorithm without the use of load and store opera­
tions. In addition, procedures do not need to pass pa­
rameters or store results since they can permanently
reside in register space.

A summary of the execution times for the main soft­
ware routines is shown in Figure 26.

6-314

Execution
Time

Software Timer Interrupt Routine 40 JLs

PIO Control Algorithms:
Velocity PIO (PL/M-961 ASM-96) 300 JLs/30 JLs
Position PIO (PL/M-961 ASM-96) 240 JLs/40 JLs

Velocity Profile Generation 71 JLs

HSI Interrupt Processing 22 JLs

HSO Generate PWM Routine 16 JLs

Receive Interrupt and Command 26 JLs
Processing

Transmit Interrupt Routine 11 JLs

Figure 26. Execution Times for
Main Software Routines

inter AP-428

The HSI, HSO, Receive and Transmit Interrupt rou­
tines take a minimal amount of time. A majority of the
processing time is in executing the Software Timer in­
terrupt routine and either the Velocity PID or Position
PID control algorithms.

PID Control Algorithms take a considerable amount of
'time since they are written in it high level language and
execute a number of thirty-two bit arithmetic opera-

VPID: Id vel_err3,vel_err2
Id vel_err2,vel_errl
Id vel_errl,vel_err
sub vel_err,des_velocity.velocity

tions. Thirty-two bit accuracy is not required since the
maximum position required to accurately track the mo­
tor is about twenty four bits. To optimize the control
algorithm for the accuracy required, the routines can be
written in assembly. A sample Position PID algorithm
is shown in Figure 27. The routine executes in about 30
/A-s by optimizing the control algorithm and minimizing
the number of 32-bit operations.

store velocity errors

calculate velocity error

sub temp,vel_errl.vel_err2 calculate differential error term
mul temp.#3 diff_err=(vel_err-vel_err3+3*vel_errl-3*vel_err2)
sub temp.vel_err3
add temp,vel_err

Output=prev_output + «vel_err-vel_errl)*VKp+(Vel_err+Vel_errl)*Vki + diff_err*Vkd»/
;scaler

OUTPUT:

REVERSE:

FORWARD:

SCALEOUT:

EXIT:

mul temp.Vkd
add temp2.vel_err.vel_errl
mul temp2.Vki
add temp.temp2
sub temp2.vel_err.vel_errl
mul temp2.Vkp
add'temp,temp2
div temp,scaler
add output.prev_output.temp
Id prev_output.output
div Out_scaler
jbc Out+3.7.forward
neg Out+2
Idb p2.#07fh
sjmp scaleout
Idb p2.#OFFh

cmp Out.#Offh
jgt exit
Id Out.#Offh
Idb pwm.Out
ret

calculate differential term

calculate integral term

calculate proportional term

scale output

Scale 32 bit output to get 16 bit result
test output for direction
negate output
set direction down(p2.0=O)

set direction up(P2.0=1)

scale output for maximum pwm value
if Out > maximum pwm output
then clamp output to max pwm value

Figure 27. Position and Velocity PIO Assembly Routine

6-315

infef Ap·428

PID: add sum_int, pos_err
div sum_int,decay

" sum position errors

sub diff_err, pos_err
div diff_err, #2

limit effect of old position errors
differential error = (pos_err - pos_errl)/2

Out = Kp*pos.err + Ki*interr
mul Out pos_err, Kp

+ Kd*differr
OUTPUT:

REVERSE:

FORWARD:
SCALEOUT:

EXIT:

mul temp, Ki interr
add Out, temp
addc Out+2, temp+2
div Out, scaler
jbc Out+3,7,forward
neg Out+2
ldb p2,#07fh
sjmp scaleout
ldb Port2,#Offh
cmp Out,#Offh
jgtexit
ld Out,#Offh
ldb pwm, Out
ret

Calculate proportional term
Calculate integral term
add integral term to Output
32 bit add to maintain full 32 bit accuracy
Scale output
test output for direction
negate output
set direction down (P2.7=O)

set direction up(P2.7=1)
scale output for maximum pwm value
if Out > maximum pwm output
then limit output to maximum value
load pwm with Output 'value

Figure 27. Position and Velocity PIO Assembly Routine (Continued)

4.0 Distributed Control

Distributed control of servo motors requires the passing
of commands and data from a master to a slave. The
master passes commands to report position, start and
stop the motor, or position the motor to an exact loca­
tion using a position PID or velocity profile. The slave
needs to report current position and acknowledge in­
coming commands from the master. This protocol re­
quires addressing of slaves and the distinction between
incoming commands and transmission of data. The
80Cl96KB serial port provides a multiprocessor com­
munication mode for implementing the protocol.

The 80C196KB provides a ninth bit in Mode 2 and
Mode 3 that can assist communication between multi­
ple processors. If the received ninth bit is zero in mode

2, the serial port interrupt will not occur. Each motor is
initially programmed for this mode to distinguish re­
ceiving a command versus a data byte. With the ninth
bit set, indicating a command byte has been received,
all the slaves interrupt and process the incoming byte.
The address of the motor being controlled is embedded
in the command byte. All processors will process the
command byte if the motor address matches.

A motor receiving a poll command from the master
,controller will enter mode 3. The polled motor then
receives the data bytes which are sent with the ninth bit
cleared. Therefore, only the processor receiving data
will interrupt for serial reception while the other proc­
essors await another command byte with the ninth bit
set. A list of available commands and the format for
each is shown in Figure 28.

6-316

AP-428

Command Table

Command Code Operation

Position 01 Position motor using either
position PID or Velocity
profile.

Poll 05 Polls motor for current
position.

Motor Up 08 Enters manual mode
turning motor clockwise.

Motor Down 09 Enters manual mode
turning motor counter
clockwise.

Stop 10 Exits manual mode setting
the desired position to the
current position.

Position Command

Command Position
Maximum
Velocity

01 4 bytes 2 bytes

Poll Command

I Command I Position I
I 05 I 4 bytes I

Figure 28. Master Commands and Format

4.1 Receive Interrupt Service Routine

Communication between the 80Cl96KB and the main
controller is handled by the serial port routine. Figure
29 shows the flow for the receive interrupt service rou­
tine. Upon reception of a byte from the main controller,
a receive interrupt will occur. The RI bit is tested to
ensure a byte has been received. If a byte has not been
received, an error is generated and a return from the
routine is executed. After a valid reception, the ninth
bit is tested to determine if the incoming byte is a com­
mand byte or incoming data sent after reception of a
POSITION command.

-If the byte is a command byte, the motor address is
checked by each slave for its own address. The com­
mand byte is then echoed back to the master controller
by the appropriate slave. TlIe routine is exited if the

6-317

command byte is not for the motor. Since each motor
has a unique address, only the motor receiving the com­
mand will respond. Reception of a POSITION com­
mand will switch the serial port to mode 3.

Desired position and maximum velocity is sent by .the
master to each slave by a POSITION command. Re­
ceived data for the position command is stored in a
buffer. After all data has been received,
MAX_VELOCITY and DES_POSITION is loaded
with the values stored in the buffer and the serial port is
switched back to mode 2.

Each command is then checked and appropriate action
taken depending on the received command. Commands
include POSITION, POLL, UP MOTOR, MOTOR
DOWN and STOP. The commands are summarized in
Figure 28.

4.2 Manual Positioning

The receive routine will check for one of three manual
commands: MOTOR UP, DOWN MOTOR or STOP.
A manual flag is used by the software determine if the
motor should be positioned using either a position or
velocity PID algorithm or by manual control. The mo­
tor up and motor down commands set the manual flag
which will cause the PWM control to be loaded with a
constant value during the software interrupt routine.
The direction port bit is set to the appropriate value
depending on whether the command is up or down.
The motor will continue to move up or down until a
STOP command is issued by the master controller or
the motor's preset limits are reached.

A stop command will reset the manual flag and set the
controller in automatic mode which employs the PID
algorithm. The destination position gets loaded with
the current position and a return from the receive inter­
rupt is executed. The manual position mode is used by
the master controller to position the motor under key­
board or switch control. This is instead to precise posi­
tion control of the motor by sending a position com­
mand.

4.3 Motor Positioning

Either position control or a velocity profile can be used
to position each motor. The maximum velocity infor­
mation.stored in the POSITION command determines
the type of method employed. If the maximum velocity
value is nonzero, the velocity PID algorithm will be
applied to position the motor. If the maximum velocity
is zero, position control using the PID algorithm will
be used. This provides for two alternative methods for
positioning the motor.

infef AP-428

Once a POSITION command is received, the processor
enters serial mode 3 to receive the incoming position
and maximum velocity information. The four bytes of
position data and two bytes of maximum velocity are
retrieved from a six byte storage buffer. A receive count
keeps track of the number of incoming bytes until all
bytes of the six byte frame have been received. If a
frame or overrun error occurs, the motor will shut off
imd a OFFH will be transmitted back to the master
controller to indicate an error condition has occurred.
Otherwise, an 88 is returned to indicate the valid trans­
mission of position and maximum velocity. The manual
flag will be turned off and the appropriate PIO algo­
rithm will be applied on the next software interrupt.

STORAGE(RECLCNT) = RECEIVE BYTE

. DES_POS = STORAGE(O)

4.4 Master Polling of Position

The master controller can poll each motor controller
for position with a poll command. After reception of
the poll command, a transmit buffer is loaded with four
bytes of position information. Each byte is then trans­
mitted using the transmit interrupt routine.

The flowchart for the routine is shown in Figure 30.
The routine simply tests· the TI flag and continues to
transmit a byte from the buffer until the transmit count
goes to zero. After the count goes to zero, the transmis­
sion is complete and processing continues.

270701-29

Figure 29. Serial Port Receive Interrupt Routine

6-318

inter Ap·428

NO

PROGRAM SERIAL PORT
FOR MODE 3 TO

RECEIVE INCOMING
POSITION AND TIME DATA

RECEIVE COUNT = 7

270701-30

Figure 29 .• Serial Port Receive Interrupt Routine (Continued)

6-319

inter AP-428

RETURN

RETURN

270701-31

Figure 30. Serial Transmit Routine

5.0 DISTRIBUTED CONTROL OF A
SIX AXIS ROBOT

A six axis robot demon~tration system was built using
distributed control of its six motors. The robot is a
RHINO XR-JTM prototype robot designed by
SANDHU Machine Design Inc. Robot motors were
replaced with similar models with high resolution en­
coders. The robot allows movement along six joints:
base, shoulder, elbow, wrist, hand and fingers., Each
joint is connected to a motor. The system used an IBM
PC acting as a master controller.

iilllllllHllr:JUmJ

'I ~

The software used to develop the human interface was
Turbo Prolog and the Tu~bo Prolog Toolbox. The hu­
man interface allowed for the programming and move­
ment of the robot by individually controlling each joint
motor. The IBM PC controlled each axis of the robot
by passing commands serially.

The IBM PC provides a flexible master controller for
positioning the robot. There are a large number of soft­
ware languages for developing the control algorithms
and human interface of the master controller. Turbo
Prolog was selected for its low cost and ease of imple­
mentation. The control screen and robot programming
language were rapidly developed using the Turbo Pro­
log. The software and hardware implementation easily
provide for programming and controlling the robot
through a variety of repetitive tasks. A robot using this
control system could easily perform assembly or manu­
facturing, tasks as shown in Figure 31.

5.1 Hardware Interface

, The hardware interface to the robot is shown in Figure
32. Each major joint, elbow wrist, base and shoulder
were controlled with a single 80C196KB using the
PWM and TIMER2 as an up/down counter. The hand
and finger motors used the HSI to track position and
the HSO to generate PWM motor control voltages.

270701-32

, "

Figure 31. Automated Assembly using Distributed Control

6-320

"TI
cD·
C ..
(I)

(,)

~
::r:J g..
0 ...
C')
0
::l ...

en ..
W !2.
~ ::I:

III ..
C. :e
III ..
(I)

m
0"

RXD

0
:I':" TXD

C
iii·
(D

80C196KB ..
III
3

RXD
PWM

TXD
AMP ABASE

80C196KB MOTOR

T2UPDN

T2ClK
~

RXD
PWM

TXD-
AMP A SHOULDER

80C196KB MOTOR

T2UPDN

T2CLK
L __ r- HSO.O

RXD

TXD

RXD P1.0
PWM

TXD HSI.O
ELBOW

80C196KB MOTOR 80C196KB

T2UPDN

T2CLK r----l HSO.1
CLKOUT

'RXD ~ --q PWM T2
P1.1

TXD HSI.1
AMP WRIST

80C196KB MOTOR

T2UPDN

T2CLK

HAND
MOTOR

FINGER
MOTOR

270701-33

cl

»
"tI
I

.j>.
I\)
OJ

inter AP-428

Switches on the robot were fed into 80Cl96KB 1/0
ports to provide a reference position when each motor
starts up. Current sensing for each motor was fed back
to the analog channels to provide an indication of any
overrun or stress conditions. Limits were set for each
motor to prevent the robot joints from entering posi­
tions where obstacles or mechanical limitations were
reached.

Each motor was given a unique. programming address
for communication back to the master controller. The
master controller sent commands with the address of
whichever joint motor needed to be positioned or
polled. The master 80Cl96KB communicated through
a UART to the IBM-PC.

5_2 Human Interface

To control the robot, the human interface provided a
variety of programming options.

The software features included:

Manual control via the keyboard
Editing robot command files
A Motor Control Command language
Table Display of motor position and status
Manual Programming mode
Table Positioning mode

Motor Position Maxval

Base 12345 0

Shoulder 13457 0

Elbow 00282 0

Wrist 00383 0

Hand 11228 0

Fingers 18484 0

The software front end developed only the basic fea­
tures of robotic control to demonstrate the distributed
control of servo motors.

5.3 Control Screen for the Robot

The screen for the control of the robot is shown in
Figure 33. The screen displays a table of the position
and status of each motor, shows the function keys used
to execute commands or enter different modes and dis­
plays the keyboard keys for moving each robot joint up
or down. The software has various modes for position­
ing and programming the robot.

5.4 Programmed Modes

The software provides for movement of the robot
through table entry, execution of include command
files or manually using the keyboard. The robot is posi­
tioned manually by entering the function key for manu­
al mode and then pressing the predefined key for each
joint motor to move up or down. As each key is re­
leased, a STOP command is issued to each motor. The
motors are then polled and the current position updat­
ed in the table.

The table function allows for direct entry of the desired
position and maximum velocity to position the motor
when the table function key (Fl) is pressed. After the

Status Functions

STOPPED F1 - Table F2 - Send

STOPPED
F3 - Manual F4 - Program
F5 - Edit F6 - Include

STOPPED F7 - Home Fa - DOS
F9 - F10 - Exit

STOPPED

STOPPED

STOPPED

Manual Keys

Base Shoulder
Left Right Up Down

1 2 . 3 4

Elbow Wrist
Up Down Up Down
567 a

Figure 33. Robot Control Screen

6-322

Hand
Left Right

9 0

Claw
Close Open

inter AP-428

key is pressed, individual posltloning commands are
sent tb each motor. With maximum velocity set to zero,
the motor is positioned using a position PID. A non­
zero maximum velocity would position the motor using
a velocity profile. The final method of positioning al­
lowed for the sending of commands (MOTOR UP,
MOTOR DOWN, STOP, POSITION or POLL) to
each joint in the robot from an include file.

The include mode function key (F6) executes com­
mands stored in a file. The command file can be entered
using an external editor or using the on board editor,
Turbo Prolog. A sample command file is shown in Fig­
ure 34. The command file allows for programming of
the robot through a sequence of programmed tasks.
The task of programming the robot is eased by' a manu­
al program mode.

The manual program mode generates a command file
while manually positioning the robot. After pressing
the program key (F4), the program mode is entered and
the robot is moved by pressing the appropriate motion
key for each joint motor. When the robot stops, the
position of the robot is polled and translated into a
position command and stored in a file. As the pro­
grammed task is executed, each position of the robot
and the time delay between joint movements is record­
ed. When the task is complete, the file contains all the
stored position commands necessary to execute the pro­
grammed task. The file can be edited with by entering
the edit mode (FS) to fine tune the programmed task or
execute the command file directly. The manual pro­
gram, command file execution and editing modes allow
for a variety of robotic tasks to be developed and tested
easily.

6.0 CONCLUSION

Use of an 80Cl96KB in distributed control of servo
motors has been demonstrated with the effective utili­
zation of the onboard peripherals and high speed math
capability of the 80C196KB. The high performance and
integration of the 80Cl96KB minimized the hardware
interface. The task of controlling the motor resided in
the 80C196KB with the control algorithm residing in
the master. With this approach, the centralized control­
ler can be adapted to the performance requirements of
the system.

Although not implemented, a learn mode could be add­
ed to the robot to provide programming using AI tech­
niques. The IBM PC and Turbo Prolog software pro­
vided the demonstration vehicle for testing the control
of the robot using distributed control. Use of artificial
intelligence programming to position the robot could be
incorporated with the Turbo Prolog package. The ap­
plication of a vision system or a more complex control
algorithm could be realized without modification to the
hardware controlling the robot. A more cost effective
solution is obtained by replacing the IBM-PC with one
80C196KB or 80C186 acting as a master controller.

Repetitive tasks programmed using the robot command
language could be stored in tables in the master
80C196KB. The controller would send the stored com­
mands to each motor and communicate, through a seri­
al UART, to the rest of the manufacturing system. The
master 80C196KB controller would then report status
or receive commands. The choice of controller depends
on the needs of the system. Distributed control of servo
motors using the 80C196KB provides for maximum
flexibility in the selection of the control algorithm with­
out modification to the hardware control modules.

pos{3,4000,lO)
time (lO)
pos{l,lOOO,2)
time (20)
pos{O,14000,5)

move elbow to position 4000 with maximum velocity of 10
delay 10 seconds
move shoulder to pOSition 1000 with maximum velocity of 2
delay 20 seconds
move base to pOSition 14000 with maximum velocity of 5

Figure 34. Sample Robot Command File

6-323

AP-428

REFERENCES
I. Michael Brady, Robot Motion: Planning and Control (MIT Press, 1982).

2. C. S. G. Lee, Tutorial on Robotics (2nd edition) (IEEE Computer Society Press, 1989)

3. Electro Craft Corporation, "DC Motors Speed Controls Servo Systems", 1978.

4. Proceedings of Conferences on Applied Motion Control, University of Minnesota, J986.

6-324

ARTICLE
REPRINT

Many applications have throughput time
requirements on the order of a few hundred
milliseconds, and don't require real-time image
analysis.

A Single-Chip
Image Processor

AR·515

A.L. Pai and S.H. Lin, Arizona State University, and David P. Ryan, Intel Corporation

MOst of the research efforts on
image processing focus on ex·

panding the complexity and dimension of
image analysis. Unfortunately, this em·
phasis results in algorithms that are so
computationally intensive that expensive
special-purpose vector and pipeline proc­
essors are required to evaluate an image
fast enough to be considered "real-time."
Not all applications, however, have the
burdensome requirements of true real-life
image analysis. Specifically, applications
that have image throughput time require­
ments of greater than a few hundred milli­
seconds can use a lower cost, general-pur­
pose microprocessor-based system. Appli­
cations that have even slower frame rates
are candidates for not only the use oflower
cost CPUs, but also allow for replacement
of video-rate flash AID converters with
slower, less expensive converters.

Addressing the most cost-sensitive ap­
plications, the design described herein
uses Intel's 16-bit microcontroller to im­
plement a single-chip image processor.
The on-chip 10·bit AID converter of the
controller digitizes the image of a charge
injection device (CID) camera, while the
chip's 16-bit CPU executes a library of
standard vision algorithms and reports the
results by passing a few tokens over an on­
chip universal asynchronous receiver·
transmitter (UART).

SYSTEM OVERVIEW
A block diagram of the single-chip im-

SENSORS June 1987

TERMINAL OR
COMMUNICATION LINK

DRIVERS
SerialUO

inte l®

8096
(12 MHz)

::; Cl ::;::;
a:~ ~:i We
~8 tift ~a: ~w ::Ja:

a.

Figure 1. System block diagram.

age processor is shown in Figure I. The
image is acquired by the CID camera and
input as an analog voltage to the 8096
where it is digitized and stored in one of
two image buffers. The digital image is
stored 'as an N x N matrix of 8-bit values
corresponding to the gray level intensity
at each picture element (pixel) as shown
in Figure 2.

After an image resides in an image buf­
fer, the 8096 can execlite a number of
standard image processing algorithms
available as system monitor commands.
These programs perform thresholding and
fJltering functions on the digital image,
and can analyze objects found within the
image. If the 8096 were attached to a host
system instead of a terminal, custom pro-

6-325

- wa: wa: Clw ::;w a: <u. ~tl: w ::;u. ..J -::J u.::J ..J
III III e a: ... z

e
0

'" '" ...
wa: wa: a:

~~
::;w 0 <u. a:u. -::J u.::J

III III

grams could be downloaded to the user
program RAM and executed.

To view the raw and processed images,
a CRT controller is used to keep a video
monitor updated with the images stored
in the two frame buffer memories of
Figure I. The 8096 updates the frame buf­
fers with the data in its image buffers
depending upon commands given to the
system.

.. Hardware. The system is composed of
a 128 x 128 CID camera and Intel's 8096
(with on-chip AID) for image acquisition
and analysis. A standard CRT controller
was added for displaying raw and proc­
essed images as directed by the 8096. Driv·
ing the decision to use a 128 by 128 digital

intJ
rCOlumn of Samples

~

~
~ II~ 'l:: 0. ~ ~0 ~ ~

Line
~

~

N ~
~

~

-~ Diglta Image-f-

~
• N

Spacing

I
Line Spacing

Picture Element
(Pixel)

White 255

Gray

Grayscale

Figure 2. Representation of an N x'N di&i141
ima,e.

image was the desire to store and operate
upon two images simultaneously while
minimizing memory requirements.

The image processing and communica­
tions software takes 5K of the 8K bytes
allocated to the system monitor space, and
would fit in the on-chip ROM space of an

AR·515

8397 with 3K left. Two 32K x 8 SRAMs
are used to provide space for two 16K byte
image buffers, a 16K section of working
RAM, and space for user·downloadable
programs that are invoked by the monitor.

Two 16K byte frame·buffer memories
are mapped to the same addresses as the
corresponding image buffer used by the
8096. Normally, the frame buffers are
mapped to the CRT controller to keep the
video monitor updated. However, when
the image stored in the image buffer is
changed, the 8096 performs a frame·

, synchronized flyby block move to refresh
the frame buffer (50 to 290 ms depending
on whether frame synchronization is off
or on).

To digitize an image, the 8096 monitors
the end-of·line and end·of-frame signals
from the CID camera and synchronizes
the AID conversion of the pixel data to
a pixel valid signal from the camera. The
analog output signal of the camera ranges
from 0 to IV, corresponding to the gray
level intensity at each pixel. This I V range
is amplified to a 5 V range before being
input to one of the eight AID inputs of
the 8096.

• Spatial Filtering
• Histoyramming
• Thresholding

• Edge oataction
• Chain Coding

Figure 3. Object idenli(iCdtion.

Known Object ...-.

The 8096 converts the input voltage to
a lO-bit digital representation in 22 jlS.

Another 18 jlS are needed to store the pixel
in the image buffer, update pointers, up­
dilte a counter, and start another conver­
sion. Therefore, the camera is clocked at
a rate which results in a new pixel being
output every 50 jlS.

Although the 8096 converts its analog
input to '10 bits, the externally generated
analog errors (such as buffer error and
'noise) led to the decision to use only 8 bits

6-326

of the result. This provides 256 gray levels,
and greatly simplifies memory require·
ments.
~ Software. In addition to the code

necessary to digitize images, the system'
EPROM contains an extensive set of al·
gorithms for digital image acquisition and
analysis. Video operations are used to ac· ,
quire a digitized image. Point and arith·
metic operations involve the pixel·by.pixel
manipulation of a digital image. Neighbor·
hood operations produce an output image
that is the result of a combination of the
gray level intensities around a specified
neighborhood of each p.ixel. Measurement
operations include the computation of
desired parameters of objects located in an
image for pattern recognition and other
applications. Finally, utility operations are
necessary for system operation.

The algorithms present in the system
monitor can be used to identify desired ob­
jects in a digital image by following the ap·
proach shown in Figure 3. Once an image
is digitized, it can be enhanced by the ap·
plication of various image processing tech·
niques including histogramming, thresh·
olding, and spatial filtering to delineate the
desired objects. The 8·directional chain
code (Figure 4) can then be used to trace

, the boundaries of objects, and relevant ob·
ject parameters can be determined and
compared with those of a known object
database to identify the unknown object.

, OBJECT CLASSIFICATION
In the following example, the 8096 per·

forms a binary thresholding operation as
described earlier to set the image back·
ground to pure white and the objects in
the image to pure black. Then the 8096
searches the image for objects. Wnen an
object is found, the object boundary is
traced and shape analysis is performed.
Descriptive information about the object
(or objects) is output over the on-chip
UART of the 8096 to a terminal, or host
computer. The controller, without con·
suiting a host computer, can also be pro·
grammed to make. the decision to accept
or reject an object on a set of prescribed
rules.

The sequence of processing for this ex­
ample, from serial communication recep·
tion and interpretation to the reporting of
the shape analysis results, takes approx­
imately 1500 ms with an 8096 running at
12 MHz. The time will vary with the size·
and number of objects in the field of view.

SENSORS June 1987

3 2

4

5 6

(a) A 3x3 Neighborhood

3 2

5
6

(b) a-Directional Chain-Code

6

6

AR·515

o

7

1

o

7

Chain COd6 = 0,7,6,6,5.4,3,3,1,2,1

(c) Example Chain-Code of an Object
Fiaure 4. 8-directio,uJ/ bounrlllry c""in code.

SENSORS June 1987 6-327

Photos I through 4 show the original
256 gray level digitized image and resul­
tant binary (two-level) image of a circular
object and a square object. (The circle
looks like an oval when displayed due to
the aspect ratio of the video monitor).

Table I 'summarizes the output of the
systems shape analysis program. The ob­
jects' perimeter (P), area (A), center of mass
coordinates (cx, cy), and the coordinates
of the endpoints of each minimum enclos­
ing rectangle are listed.

The rectangularity and circularity of the
objects were also calculated and appear in
Table I. The rectangularity of the circle
and the square using the actual data were
ideal. Although the circularity of the digi­
tized circle is slightly different from ideal
(12.416 vs. 12.56), the digitized circle can
be distinguished from the digitized square
since the circularity of the square is very
differe~t from a perfect circle (15.44 vs.
12.56).

From these typical results, it is clear that
this image processor can be used to dis­
tinguish between and identify objects
placed in its field of view.

CONCLUSIONS
If the stringent requirements of "real­

time" image processing can be relaxed in
favor of substantially reduced sytem cost,
a standard l6-bit microcontroller can per­
form as a stand-alone image processor.

Not only does the design described here
demonstrate that a microcontroller can
undertake two-dimensional image process­
ing, but the surprising speed with which
it accomplishes the processing should lead .
to the reevaluation of current microproc­
essor applications for possible cost reduc­
tion via microcontrollers.

REFERENCES
I. Embedded Controller Handbook, Qatest edition).

Intel Corporation, Santa Clara, CA.
Z. Lin, S.H., A.L. Pai, and D.P. Ryan. A Microcon·

troller &sed Dillital Imace Processor, Proceeding
of the Second World Conference on Robotics
Research, MS86-766, Society of Manufacturing
Engineers, Dearborn, MI.

3. Cunningham, R "Segmenting Binary Images,"
Robotics Age, Vol. 5, No. Z, July/August 1981.

4. Wilf, J.M. "Chain Code," Robotics Age, Vol. 3,
No. Z, March/April 1981.

5. Gonzalez, R. and P. Wintz. Digital Imace Proc­
essing, Second Edition, Addison-Wesley
Publishing Company, NY, 1987.

6. Fu, S.U., R.C. Gonzalez, and C.S.C. Lee.
Robotics: Control, Sensing, Vision and Intelli­
gence, McCraw-Hill Book Company, NY 1987.

inter

Photo l. A digitized image of a circle.

Photo 2. A thresllOlded binary (two·level) image of
the same circle. The circle appears oval because of
the aspect ratio of the video monitor.

Photo 4. A thresholded binary ima&e of the same
square.

7. Castleman, K.R Di&i14l lma&e Prooessin&, Pren­
tice Hall International, Englewood Cliffs, NJ,
1985.

8. Baxes, G_A. Digif41 lma&e Processin&-A Prac­
tical Primer, Prentice Hall International,

AR·515

Image Processing Techniques

A histogram gives the distribution of all the gray levels in a digital image. The image histogram
is used to select a desired threshold intensity level for separating an object from the background
in the digital image. .

A digital image can be thresholded using various threshold functions (three of which are shown
in the figure) to yield an output image that contains a better definition of an object. For ex­
ample, a binary (black and· white) image is obtained by applying the two-level threshold func­
tion shown in (c).

255

i5 :

~

~
t!l

~
~
t!l

~ : =>
.9-b

~b
c5

00 ~ 25 X
Input Gray Level

i:lL'········
6 0 ;

o a 255 X
Input Gray Level

~~ytc-------
c5 0 : X

o a 255
Input Gray Level

(a) Y = {~ ~Is~!~ere (b) y ={~ ~~;h~re (e) Y • {~ ~s~;;";e

In spatial filtering, the pixels adjacent to pixel (x,y) of image plane f are operated upon by
the filter mask operation h. The resulting value of this spatial convolution is used to compute
a replacement gray level intensity value at location (x,y) in the output image g. The following
formula is used:

g(x,y) = h[f(x,y)] = [WI f(x -I, y'-I) + Wz f(x -l,y)
+ W3 f(x-l,y+l) + W4 f(x,y-I) + W5 f(x,y) + W6 f(x,y+l)
+ w7f(x+I,y-l) + wsf(x+l,y).+ w9f(x+I,y+I)]

Various types of filter masks can be used to perform different digital image enhancement
operations. A low-pass filter uses neighborhood averaging to "smooth" the digital image to
remove noisy pixels_ A high-pass filter accentuates noisy pixels. A high-pass filter accentuates
the higher frequencies present in an image, thus "sharpening" its edges. Operators such as
the Sobel masks can be used to compute the gradient at each point in an image, thus produc­
ing a gradient edge-detected image.

Using such filtering methods, the boundaries of objects in an image can be isolated, thus per­
mitting the computation of useful object parameters for object identification and c1assification_

W, W,
(x-l,y-l) (x-l,y) (x-l,y+l)

w. W. w.
(x,y-l) (X,Y) (x,y+l)

~ w" W.
(x+l,y-l) Cx+l,y) Cx+l,y+l)

Ca) A 3 x 3 Pixel Window with
Spatial Mask coefficients Wi and
Conesponding Irliage Pixel Locations

[
/16 1/8 l/1J

. 1/8 114 1/8

1/16 1/8 1/16
[

1

-1

-1

-1

9

-1

X

(x,y)

Digital Image f(x,y)

Cb) A 3 x 3 Neighborhood
Around Pixel Cx,y)

Y

-J ~1-2]1 ~1 o'~ -1 0 0 0 -2 0 2
1 2 1 -1 2 1

-1
Ce) Sobel Gnadlent Masks

Ce) A Low-Pass Filter Mask Cd) A High-Pas$ Filter Mask
Englewood Cliffs, NJ, 1984. L-__________________________I

6-328 SENSORS June 1987

AR·515

EXAMPLE SHAPE ANALYSIS OUTPUT

OBJECT PERIMETER AREA C.O.M. COORDINATES ENCLOSING RECTANGLE RECTANGULARITY CIRCULARITY

P A CX,CY XMA> XMIN YMAX YMIN R=AO/A R C=p2/A

CIRCLE 301 m7 (62,68) 111 15 116

SQUARE 328 fJ3fil (55,73) 97 14 115

Table I. Example shape analysis output.

Size Parameters
The horizontal and vertical extent of an object and its minimum enclosing rectangle are easily
computed by using the minimum and maximum line and sample numbers.

The perimeter (circumferential distance) around an object boundary is obtainable from the
boundary chain code by using the formula:

P = NE + VZ No
where NE and No are the number of even and odd steps in the object boundary chain code.

The area of an object, which is a convenient measure of object size, is equal to the number
of picture elements inside and including its boundary, multiplied by the area of a single pixel.

Shape Parameters
In addition to size parameters, shape parameters can be used to distinguish objects. Some
shape parameters that are easily computed are described below.

The formula for computing the rectangularity R of an object is:
R = AO I AR

where Ao is the object area and AR is the area of its minimum enclosing rectangle. R ranges
from 0 to I, with a value of 1.0 for rectangular objects, n/4 (0.785) for circular objects, and
smaller values for slender, curved objects.

The aspect ratio, A, which is the ratio of width to length of the minimum enclosing rectangle
of an object, is used to distinguish slender objects from roughly square or circular objects.

One of the commonly used circularity measures is:
C = p2 I A

the ratio of the square of the object perimeter to its area, which reflects the complexity of
the object boundary. C has a minimum value of 4 n (lZ.56) for a circular object, while more
complex shapes have higher values.

21

32

Reprinted from Sensors, June 19117
Copyrlght© 1987 by Helmers Publishing, Inc.

174 Concord St., Peterborough N H 03458
All Rights ReselVed

SENSORS June 1987

6-329

0.785 12.416

1.0 15440

A.L. Pai is an Associate Professor and S.H. Lin IS a
Ph. f). candidate in the Computer SCience Dept., Col·
lege of Engineering, AnzonJ State University, Tempe.
AZ 85281. David P. Ryan IS a Semor .·\pplicatlom
Engmeer for Intel Corp., 5000 W. Chandler Blvd.,
Chandler, AZ 85226.

MCS®.-96 Diagnostic Library 7

THE MCS®-96 DIAGNOSTICS
LIBRARY

© Intel Corporation, 1987

Version X1.1

David Ryan
INTEL Corporation

October 1987

7-1

October 1987
Order Number: 270083-002

1.0 INTRODUCTION

In the real time world of microcontroller applications, system failures can be dangerous,
and expensive. Preventing them, and understanding them when they occur, is very im­
portant to the reliability of any design~

The sources of a system upset are varied. But in general, the failure of a well designed
application occurs as a result of either some form of noise, or a hardware failure. The
8096 hardware provides methods of detecting and recovering from the transient noise
failures, while the MCS®-96 Diagnostics Library supplies software routines that can help
diagnose or detect a failure in system hardware.

Graceful recovery from noise induced failures is possible using the WATCHDOG TIMER.
While the 8096-based system is functioning as desired, the executing software periodically
resets the WATCHDOG with a special two-byte code. If the WATCHDOG is not reset,
at least every 16 ms (12 MHz system), a system reset occurs. The two-byte code is a
unique password which appears nowhere in the opcode map. This reduces the chance
that an erroneous WATCHDOG reset would occur after a system upset.

The 8096 RESET instruction provides another form of protection. Since the opcode for
a RESET is OffH, protection against the 8096 executing unimplemented external memory
is obtained by placing pull-ups on the system bus. The RESET opcode is also the value
in erased EPROMs. Therefore, any attempt to execute non-existent memory or an erased
EPROM location causes the 8096 to execute the RESET instruction. RESET causes the
8096 to reinitialize itself and provide an external pulse on the RESET pin to reinitialize
the system.

Even with the protection afforded by the 8096, a system is rarely complete without checks
for hardware failures, both internal and external to the microcontroller. These checks are
usually software routines that execute on power-up or periodically to verify that all parts
of the system are present and function correctly. The tests generally execute standard
check algorithms which are simply re-written in the host's assembiy language.

To eliminate the need for every designer of an 8096-based system to write such tests,
a collection of modular routines has been developed that any designer could easily
use in his system (General Diagnostics). In addition, a set of 8096 interrupt service
routines was developed for testing 8096 I/O units in a dedicated environment (The
Dynamic Stability Test). Both scts of programs are contained in the MCS-96
Diagnostics Library (DIAG96.LIB).

This libI1!IY is a collection of software modules that provide a number of ready-made
General Diagnostics and a specialized MCS-96 diagnostic known as the Dynamic Sta­
bility Test. The General Diagnostics implement frequently used standard test algorithms,
while the Dynamic Stability Test exercises ~ardware specific to the 8096.

The library can be considered a software "tool box" from which modules are selected
for a variety of run-time diagnostics or laboratory tasks, for example:

• Include a few modules in other programs as a power-up test

• Use a memory module to create a map of external memory

• Use a few modules as a periodic system check
• Develop a simple stand-alone tester
• Build a custom test bed for bum-in, il!spection or reliability tests

• Test new background code in an interrupt intensive environment

7-2

MCS®-96 Diagnostics Library

In addition to easing the development of a program that must perform standard diagnostics
or system checks, the library can be a learning tool. Using the proven source code in the
library, methods of interrupt management and on-chip peripheral handling can be reviewed
to further understand how to use the 8096.

These tests were developed by the 8096 Applications group for experimental use with
the 8096. With the programs in this library, the chip has been studied for its functional
and asygchronous characteristics.

The General Diagnostics should be useful to almost anyone designing an 8096 applica­
tion. The Dynamic Stability Test will be useful to those experimenting with the 8096
in a test environment. Figure 1 shows the modules in the MCS-96 Diganostics Library.

1. 1 General Diagnostics
The General Purpose Diagnostics consist of 24 programs providing System, ALU and
Memory tests. Each of the tests can be called independently, and none require special
hardware or impose application limiting constraints.

Two Collected Test programs are also provided so that all tests may be called at once.
A third Collected Test program executes a selection of General Diagnostics that might
be reasonable to include in a typical system power-up.

Section 3 provides a detailed description of the General Diagnostics.

1.2 Dynamic Stability Test
The Dynamic Stability Test is an integrated set of II programs that provide the interrupt
service routines necessary to run all forms of MCS-96 110 concurrently while a user
written main task is executing. Virtually all of the chip is made to run simultaneously,
with the 110 units responding to asynchronous external events.

Unlike the General Diagnostics, the Dynamic Stability Test modules must all be linked
together, and must run in a specific external environment.

Section 4 provides a detailed description of the Dynamic Stability Test.

System
Tests

ALU Memory
Tests Tests

rsYsii1"\
\~ ~~ rALii02\ I"""i.iEMo2\

~ '-~ VMtri03"\
'-rALuo.i"\ \~
\~ (MEMOS')

(D56A96)

'-----" C MEM06 '\
I"""""MEMo7\
'-("i.IEMoB\ (D96FST) Collected

(D96P96) Tesls

GENERAL DIAGNOSTIC
TESTS

Figure 1. The MCS®-96 Diagnostic Library

7-3

C MEM09)
(MEMOA '\
I'"MEMoB"\
\~

(MEMOD)

MCS@-96 Diagnostics Library

1.3 How To Use This Manual

This publication is meant to be a guide for those using any of the programs in the
MCS-96 Diagnostics Library. On a first pass the entire manual should be skimmed,
with more attention paid to Section 2 and the overview sections of Sections 3 & 4. For
the casual reader, the overview sections of each chapter should suffice.

'J
Section 2 contains an overview of the general calling conventions to use any test in
DIAG96.LIB. The section also describes DIAG96.LIB error reporting conventions and
presents some warnings to heed when using this library.

Section 3 describes the classes of General Diagnostics and each test in detail.

Section 4 describes the concept of Dynamic Stability and its implementation on the
8096. The section also contains an overview of the tests performed, a description of the
constraints placed upon the user-written background task, and detailed descriptions of
each interrupt service routine.

The Appendices contain error code and command file descriptions, and of demonstration
program listings. Source for the MCS-96 Diagnostics Library can be obtained from
Insite User's Program Library at the address below. The Insite Catalog order number is
AE-!7.

Insite User's Program Library
INTEL Corporation DV2-24
2402 W. Beardsley Road
Phoenix, Arizona 85027

With the first-hand knowledge that many problems result from not being able to uncover
information lodged in some dark comer of the user manual, information is repeated in
the sections where it is pertinent.

7-4

2.0 USING THE LIBRARY

To simplify use of the diagnostics, the tests were developed in a modular fashion and
collected in one linkable object file library (DIAG96.LIB). A modular program relies
upon only the parameters sent at its invocation and employs standard parameter passing
conventions to allow flexibility and uniformity of use. Collecting the modules into a
library eliminates the tedium of listing twenty or thirty file names when performing a
relocate/link on user developed code. When a program is linked to DIAG96.LIB, only
those modules referenced in the user program are drawn from the library for inclusion
in the output module.

Since PLM96 conventions were the ones chosen for this set of programs, the General
Diagnostics are invoked by following the conventions for a PLM96 typed procedure.
Parameters are placed on the STACK and the procedure activated via a function reference
or explicit CALL. When the test is complete, test data is returned in the special register
PLM$REG. The Dynamic Stability Test is not PLM96 compatible.

The next section describes the format of the test data that is returned by the diagnostics.
Following sections give an overview of how to use a General Diagnostics test, how to
use The Dynamic Stability Test, and what restrictions to keep in mind while using the
library.

2. 1 Reporting ConventiC?n
All DIAG96.LIB tests use the PLM$REG word locations ICH and IEH for returning
condition codes to the calling program. Within DIAG96.LIB, these locations are the
PUBLIC words EREG 1 and EREG2. When a test concludes without finding an error,
a zero is placed in the high byte of EREG 1. If the high byte of EREG I is non-zero,
then some unexpected condition occurred. The low byte of EREG 1 always contains the
module number of the returning test, and EREG2 contains a detail code if an error was
found. The complete listing of EREG 1 code meanings and EREG2 meanings is in
Appendices A & B.

All modules cease execution upon detection of the first error. The code describing which
error was detected CEREGI) follows the format described in Table 1.

Table 1. Error Reporting Format

EREG1 = nnrnx Hex

where; nn = 00 if no error was found
= 01, ... ,08H if an error was found, nn is the error code

and; rnx = OxH for Test = SYSOx; 1.;; x.;; 03H
= 1xH ALUOx; 1.;;x.;;05H
= 2xH MEMOx; 1.;; x.;; ODH
= 3xH D96A96; x = 0
= 4xH DSTISR; x = 0
= 6xH DSTHSI; x = 1
= 7xH DSTHSO; x = 0
= 8xH DSTHIO; x = 0
= 9xH DSTTOV; 0.;; x ... 1
=OAxH DSTEXI; x = 0
= OBxH DSTSER; x = 0
= OCxH DSTA2D; x = 0
= ODxH DSTSWT; 0.;; x.;; 1
= OExH D96FST; x = 0
= OFxH D96P96; x = 0

7-5

MCS®-96 Diagnostics Library

2.2 Using the General Diag'nostics
The General Diagnostics provide a large set of system, ALU and memory tests that can
be used in any combination, independent of system configuration or external circuitry ..
In addition to allowing for a wide flexibility in how a user's system is externally configured,
the tests place minimal requirements on memory maps and interrupt environment.

Except where noted, all tests are interruptible, and maintain Program Status Word and
Interrupt Mask integrity. The tests conform to PLM96 conventions, and require only run­
time parameters to be passed for such specifics as memory test bounds and ALU test
duration. To obtain access to the general diagnostics, the user should declare the needed
module names EXTERNAL code segment symbols, and link to:

DIAG9S.LlB

The tests are invoked in assembly language by placing the proper parameters on the
STACK and CALLing the procedure. In PLM, the tests are run after a function reference
is made with the appropriate parameters. The following is an example of an ASM96 call
to a memory test:

PUSH
PUSH
CALL
CMPB
BNE

#4000h
#5000h
MEMOS
EAEG1 +1,0
Error_Found

The diagnostic module called performs a complementary address test on the byte
locations between 4000H and SOOOH inclusive. If an error. is found, the value returned
in the word EREG I will have a non-zero value as its high byte. Also in the case of an
error, the MEM06 memory test will place the address of the error in location EREG2.
The program D96A96, shown in Appendix D is a working ASM96 example that calls
every General Diagnostic Test.

The same memory test could be called in a PLM96 program as folJ~ws:

Response = MEMOS(4000h,5000h);
IF Error$Codes.Number > 255 THEN CALL Error$Found;

Since the diagnostics return two words in the PLM$REG locations ICH and lEH, the
function MEM06 would be a PROCEDURE of type LONG. Error$Codes would have
to be declared a STRUCTURE AT Response; with the word elements Number and
Detail so that the error messages returned by the diagnostic can be stored. Number
would contain the EREG 1 value returned by the test, and Detail would contain EREG2.
Response would have to be DECLARED a double word. The program D96P96, shown
in Appendix D is a working PLM96 example that calls every General Diagnostic.

The action taken when an error is detected will depend upon the application. For example,
the following Error_Found (or Error$Found) routine would output the error codes to a
printer or terminal:

Error_Found:
PUSHF
PUSH #Message_Ptr_A
CALL Send_String

PUSH
CALL
CALL

PUSH
CALL

EAEG1
Send_Hex_Word
Send_CR_LF

#Message_Ptr _B
Send_String

(Display continues on next page)

Error$Found: PROCEDURE;
DISABLE

CALL output (.MessagePtrA,
Error$Codes.Number);

CALL output (.MessagePtrB,
Error$Codes.Detail);

Self: GOTO Self;

7-6

PUSH
CALL
CALL

BR $

Message_Ptr _A:

MCS®-96 Diagnostics Library

EREG2
Send_Hex_ Word
Send_CR_LF

DCB 27,'ERROR FOUND. Error Number = '

Message_Ptr _B:

DCB 22,'Error Detail Code is = '

In the Error_Found routine, it is assumed that the subroutines Send_String, Send_Hex
_Word, and Send_CR_LF transmit appropriate ASCII codes given the parameters
passed to them. Send_String is sent a pointer to a byte string in memory, the first byte
of which is the character count. Send_Hex_ Word converts the word put on the STACK
into the correct four ASCII code bytes and appends the ASCII code for H. Send_CR_
LF outputs the ASCII codes to cause a carriage return, followed by a line feed. The PLM
routine output would perform similar operations.

7-7

MCS@-96 Diagnostics Library

2.3 Using the Dynamic Stability Test
The Dynamic Stability Test consists of a set of 8096 interrupt service routines that
are designed to run while a user-supplied background task executes. The routines are
located in the object file library DST96.LIB, which is contained in the master library
DIAG96.LIB. To obtain access to the test, the user should invoke the batch file
DSTRL.BAT with the background task file name and directory parameters. For
example type:

DSTRL\SOURCE\BACK

Since the interrupt service routines test 8096 on-chip I/O devices, the part under test
must reside in a specified hardware environment. Two such environments are available
for use with the Dynamic Stability Test. The test may run in either a single chip mode,
or a cross-coupled two chip mode. Figures 2 and 3 show the connections required for
each configuration. In the single chip mode, output pins are connected to input pins on
the same 8096. In the dual chip mode, output pins of one 8096 are connected to the
input pins of the other (and vice versa).

To run the test, the user must supply a background task that CALLs an initialization
routine (DSTISR) with the specified parameters. After DSTISR returns, the interrupt
service routines will begin running. The background task can then perform any function
that conforms to the constraints discussed in Section 4. If the user does not wish to
write a special background task, one is provided in the module DSTUSR.

The following is an example CALL and a description of the parameters that must be
passed to the initialization module (DSTlSR).

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL

<RAM segment1 starting address> I

<RAM segment1 ending address>
<RAM segment2 starting address>
<RAM segment2 ending address>
<random seed>
<random test length>
<argument1 for Multiply/Divide Core test>
<argument2 for Multiply/Divide Core test>
<bit pattern for memory test>
DSTISR

The RAM starting and ending addresses form a memory map for the memory tests that
DSTISR runs. The internal RAM is always tested. The random seed is the starting point
for ALU tests that execute for as many number pairs as is specified in the random test
length parameter. Argument! and argument2 are the operands for a Multiply/Divide test.
The bit pattern parameter is used during a memory test of the internal RAM and the
xpemory segments specified.

Section 4 contains more detailed information on using the Dynamic Stability Test, while
the next section lists some general restrictions and assumptions that need to be under­
stood to properly use any MC8-96 Diagnostic Library module.

7-8

MCS®-96 Diagnostics Library

2.4 Restrictions and Assumptions

Some general restrictions and assumptions need to be understoO<,l before any DIAG96.LIB
programs can be successfully used.

• Pay close attention to the warnings about STACK location in the test modules you
use. If you use any of the specialized internal register tests, make sure that the STACK
is located externally. Do not partition a region of memory that contains your STACK
in any memory test, unless you first move the STACK to an area you already tested.

• All General Diagnostics assume that the WATCHDOG TIMER is either being RESET
by an interrupt service routine created by the user, or that it was never enabled. Only
SYS02 ever locks out interrupts for a significant period of time. The amount of time
they are locked out depends upon the parameters passed.

• The Dynamic Stability Test takes care of the WATCHDOG TIMER within its interrupt
service routines. But, do not write to the WATCHDOG before CALLing the initial­
ization subroutine.

• In any Dynamic Stability application, the user's Main Task should .not lock out in­
terrupts for more than a' few instructions, as the CPU can get quite loaded down with
interrupt requests that are very time dependent.

7-9

3.0 . GENERAL DIAGNOSTICS

The 24 General Diagnostics included in DIAG96.LJB provide a good set of basic memory
and ALU confidence tests that can be easily linked to application programs.

The General Diagnostil;S allow for a wide flexibility in how a user's system is configured
with respect to memory maps and interrupt environment. Except where noted, all tests
are interruptible,. and maintain Program Status Word and interrupt mask integrity. The
tests conform to PLM96 conventions, and require only run-time par!\meters to be passed
for such specifics as memory test bounds and ALU test duration.

The tests are independent to allow specialized diagnostics to be developed as desired.
Use just the quick power-up test (SYS02) to verify operation, or use the module that
calls all General Diagnostics (D96A96) and let it rup continuously for months. A module
that performs th~ most common set of tests is lliso provided (D96FST).

The tests provided are of four classes: System Tests (SYSnn), ALU Tests (ALUnn),
Memory Tests (MEMnn), and Collected Tests (D96xxx). To use any of the modules,
from zero to ten parameters are PUSHed onto $e STACK and the test is CALLed. Results
are returned in the two word registers beginning at #lCH. The symbolic names for these
locations (EREG 1 and EREG2) are made PUBLIC if any DIAG9p.LIB module is linked.
They also may be referenced in PLM$REG for PLM96 programs ..

To obtain access to library modules, the user should declare the needed module names
EXTERNAL code segment symbols, and link to:

DIAG96.LlB

The next few pages contain a brief overview of each of the four classes of tests. Then,
tfIe actions of each test are described in more detail.

$ystem Tests

SYSnn

Common symbol definitions, storage reservations and two common routines are located
in SYSOL A reference to any DiAG96.LIB module will cause SYSOI to be linked.
SYS02 is meant to be called immediately after a RESET. It checks the special function
register status and stack pointer, program sta~s word and timer functionality. SYS03 is
a simple program counter test. It does not test the complete range of the counter, Ill1d
requires external RAM to execute.

SYS01: Common module
SYS02: RESET test
SYS03: Program counter exercise

ALU Tests

AL!Jnn

Five ALU modules are provided for checking ALU functionality. All report errors with
a code in EREGlIEREG2.

Addition and subtraction are exercised in ALUOL A special eight-word add and subtract

7-10

MCS®-96 Diagnostics Library

is executed to test each adder bit with all possible combinations of a bit operation with
and without carry-in.

Unsigned byte multiplication is verified by ALU02. This module simply executes all
possible unsigned byte multiplications. Although not elegant, the test is effective. It takes
six seconds.

A general test of the multiplication and division functions can be made with ALV03.
The module executes all possible combinations of signed and unsigned, byte and word,
two and three operand Multiplies and Divides using a specially selected table of numbers
as operands.

ALU04 extends the ALU03 test by generating pseudo-random test pairs. The user program
simply specifies a seed value for the random number generator, and the number of pairs
to generate.

ALUOS is the core module for multiply/divide tests. Both ALU03 and ALU04 call ALUOS.
The user can also call ALUOS by passing a pair of test arguments. The module executes
all possible combinations of signed and unsigned, byte and word, two and three operand
Multiplies and Divides using the arguments passed as operands.

ALU01: Table-driven Addition/Subtraction
ALU02: MULUB (all possible arguments)
ALU03: Table-driven Multiply/Divide
AL!J04: Pseudo-random Multiply/Divide
ALU05: Multiply/Divide core module

Memory Tests

MEMnn

The DIAG96.LIB MEMnn modules provide tests for register space, external RAM, and
ROM. The algorithms used include: walking and galloping ones; walking and galloping
zeros; checkerboard patterns; complementary addressing; and checksum verification.

The register tests are in MEMO I-MEMOS , and MEMOC. With the exception ofMEM04,
the register tests save the contents of all internal registers except PLM$REG on the
STACK before testing, and restore the data when done. If a faulty location is found, its
address is reported. MEM04 is a utility which returns the number of bits set in a specified
operand.

The external RAM tests are located in MEM06-MEMOA, and MEMOD. They all return
a two-word code upon completion. The calling program must partition the RAM to be
tested before calling an external RAM test.

Table 2. Memory Tests

Algorithm Internal Registers External RAM ROM

Complementary Address MEM01 MEM06
Walking Ones MEMO?
Walking OneS/Zeros MEM02 MEM09
Galloping Ones MEMOS
Galloping Ones/Zeros MEM03 MEMOA
Bit Counter MEM04
Checkerboard Pattern MEM05
User Specified Pattern MEMOC MEMOD
Checksum MEMOB MEMOB MEMOS

7-11

MCS@·96 Diagnostics Library

Collected Tests

D96xxx

The D96xxx set of modules collects together all, or several, of the General Diagnostics
and performs them according to the parameters passed. D96A96 is an ASM96 module
that calls all tests. D96P96 is a PLM96 module that calls all tests. D96FST is an ASM96
module that calls a logical selection of tests.

D96A96: All tests I ASM96
D96P96: All tests / PLM96
D96FST: Selection of tests I ASM96

7-12

MCS®-96 Diagnostics Library

3.1 System Tests

Common Symbols (SYS01)

Brief Description:

This module contains the global symbol declarations and five utilities used by the General
Diagnostics.

Assembly Language Calling Sequence:

CALL Get_Psw
or

CALL Put_Psw
or

CALL Get_Parms
or

CALL Stack_Ram
or

CALL Restore_Ram

Get_Psw Action:

USER_PSW : = PSW
EREGI := 0
EREG2 : = Offffu

Get_Parms Action:

PARM2 : = Last Parameter
put on the STACK

PARMI: = Next to last parameter
put on the STACK

USER_PSW : = PSW
EREG I : = Offfu
EREG2 : = OOOOh

Stack_Ram Action:

PUSH laH;
Ptr:= 20H
Do While Ptr< 100h;

PUSH [Ptr) +
End While;

Detailed Description:

Put_Psw Action:

PSW : = USER_PSW

Restore_Ram Action:

Ptr: = Ofeh;
Do While Ptr> leh;

POP [Ptr);
Ptr: = Ptr-2;

End While;
POP laH;

A call to any General Diagnostic module will cause SYSOI to be linked. This module
contains the definition of 4 words of memory used by every module to report errors and
store temporary parameters. The STACK routioes are used by the internal register tests
to save and restore the data in the registers when called. It also INCLUDES an expanded
8096.1NC file to provide the PUBLIC declarations of commonly used symbols for the
special function registers and constants such as CR and LF.

Nearly all General Diagnostic modules use the routines in SYSOI to save the PSW when
called, restore the PSW when returning control to the calling routine, save parameters
from the STACK, and initialize the error registers.

7-13

MCS@·96 Diagnostics Library

System Power-up (SYS02)

Brief Description:

This test is a quick check of the Program Status Word, TIMERI, 10SO,IOSI and the
Interrupt Pending Register. It is meant to be called just after a RESET.

Assembly Language Calling Sequence:

CALL SYS02

When Test Passes:

EREGI : = 0OO2h EREG2 : = OOOOh

IT Test Fails:

EREGI : = 0102h on unexpected 10SO or 10SI - EREG2 : = 10SO in low byte
10S1 in high byte

EREGI : = 0202h if TIMER 1 does not change - EREG2 : = TIMERI
EREGI : = 0302h if Zero register failed - EREG2 : = PSW at Failure
EREGI : = 0402h if PUSHFIPOPF failed - EREG2 : = erroneous value

found
EREGI : = 0502h if Sticky bit failed - EREG2 : = 3fffh if bit did not

EREGI : = 0602h if Carry Flag failed
EREGI : = 0702h on an overflow flag error

set
: = OOOOh if bit did not

clear
- EREG2 : = xxxxh
- EREG2 : = 0002h if flags set

wrong
: = xxxxh flags cleared
. wrong

EREGI : = 0802h if Int. Pending byte failed - EREG2 : = offending Int. Pend.
value

Detailed Description:

This module verifies that TIMER I is changing, then attempts to change the value in the
ZERO register. Then, a set of PUSHFs and POPFs is done with test values to verify
correct action of these instructions. The carry, sticky and overflow bits in the program
status word are then tested. Finally, the Interrupt Pending register bits are tested for their
ability to be set and cleared. Any unexpected result is reported.

Any error found having to do with the PUSHF/POPF instructions or the PSW, ipcluding
Interrupt Pending, will cause interrupts to be disabled before, returning to the calling
module.

7-14

MCS®-96 Diagnostics Library

Program Counter (SYS03)

Brief Description:

This test writes code into a user selected partition of RAM and executes the code. Elapsed
time and special registers are checked for correctness.

Assembly Language Calling Sequence:

PUSH
PUSH
CALL

<start address>
<end address>
SYS03

When Test Passes:

EREG 1 : = 0003h
EREG2 : = OOOOh

Detailed Description:

If Test Fails:

EREGI : = O103h if test code returned early
EREG2 : = Early time

EREGI : = 0203h if test code returned late
EREG2 : = Late time

EREGI : = 0303h if count register is incorrect
EREG2 : = erroneous counter value

This module accepts starting and ending addresses for an external RAM partition, adjusts
the boundaries to be double word aligned, and writes three lines of code repeatedly into
the partition. The code that is written increments a counter then executes two NOPs every
12 state times. The last byte written into the RAM partition is a RET opcode.

After the RAM partition is adjusted and the code written into the RAM, the test puts a
return address on the STACK, stores TIMER I and CALLs the first byte of the RAM.
When the last byte of RAM is executed, program control returns to SYS03. TIMER! is
again stored. The test then compares the elapse,d time to the expected elapsed time. The
value remaining in the counter is also checked for correctness. Any deviations from
expected are reported.

Caution: Since interrupts are locked-out while the code in RAM is executing, partitioning
more than 4000h bytes of RAM for this test could cause a WATCHDOG TIMER overflow
if the watchdog was started before SYS03 is called.

7-15

MCS®-96 Diagnostics Library

3.2 ALU Tests

Add/Subtract (ALU01)

Brief DescriIJtion:

This routine adds then subtracts two carefully selected eight-word variables and verifies
the results. '

Assembly Language Calling Sequence:

CALL ALU01

When Test Passes:

EREGI := OOllh
EREG2 : = OOOOh

Detailed Description:

If Test Fails:

EREGI : = Ollih on an addition error
: = 0211h on a subtraction error
: = 03l1h on a flag error

EREG2 : = offending argument on error

Two eight~word operands are added together and the results verified. Then, the operands
are subtracted and verified. The operands were chosen to exercise every possible com­
bination of two bits and a carry into each bit of the adder. Correctness of the result and
the resultant flags is verified.

The operands are:

05555AAAA5555AAAAFFFFOOOOAAAA5555H
+05555AAAAAAAA5555FFFFOO005555AAAAH

OAAAB555500000000FFFEOOOOFFFFFFFFH

05555AAAAAAAA5555FFFFOOOO5555AAAAH
- OAAAA5555AAAA55550000FFFF5555AAAAH

OAAAB 555500000000FFFEOOOOFFFFFFFFH

Some versions of SIM96 do not pass this test.

7-16-

MCS®-96 Diagnostics Library

MULUB (ALU02)

Brief Description:

This module simply tests the MULUB instruction for all possible combinations of byte
multipliers and multiplicands.

Assembly Language Calling Sequence:

CALL ALU02

When Test Passes:

EREGI : = OOl2h
EREG2 : = OOOOh

Detailed Description:

If Test Fails:

EREG 1 : = 0112h on an error
EREG2 : = multiplier/multiplicand

This test executes all possible combinations of operands into the MULUB instruction.
Results are verified through a method of addition and subtraction as operands cycle. The
status of PSW flags is not verified in this routine.

Multiply/Divide Table (ALU03)

Brief Description:

This module sends a specially constructed table of operands through the general Multiply/
Divide Core test (ALU05).

Assembly Language Calling Sequence:

CALL ALU03

When Test Passes:

EREGI := 0013h
EREG2 : = OOOOh

Detailed Description:

If Test Fails:

EREGI : = 0115h on a signed error
: = 0215h on an unsigned error
: = 0315h on a flag error

EREG2 : = offending argument on error

This test sends a table of operands through the Multiply/Divide Core test. The 18 operands
were selected to exercise all of the hardware multiply and divide control signals.

The operands are:

Arg.1,Arg.2

1 D99H, OFFFFH
9D99H, 5555H
OE266H, OAAAAH
1 D99H, 5555H
9D99H, OAAAAH
OE266H, OFFFFH
0063H, 0055H
0066H, OOAAH
0063H, OOFFH

Some versions of SIM96 wi\1 not pass this test.

7-17

Arg.1,Arg.2

OFFFH, 9D99H
5555H, OE266H
OAAAAH, 1 D99H
5555H, 9D99H
OAAAAH, OE266H
OFFFFH, 0063H
0055H, 0066H
OOAAH, 0063H

MCS®-96 Diagnostics Library

Multiply/Divide Random (ALU04)

Brief Description:

This module is a pseudo-random number generator that sends pairs of arguments to the
Multiply/Divide Core test (ALU05).

Assembly Language Calling Sequence:

PUSH
PUSH
CALL

<seed>
<count>
ALU04

When Test Passes:

EREGI : = OOl4h
EREG2 : = OOOOh

Detailed Description:

If Test Fails:

EREG 1 : = Oll5h on a signed error
: = 0215h on an unsigned error
: = 0315h on a flag error

EREG2 : = offending argument on error

This module first executes the table driven Multiply/Divide test (ALU03). Then, if passed,
pseudo-random argument pairs are generated and fed into the generalized Multiply/Divide
Test (ALU05). The parameters passed to ALU04 set the random number seed, and the
duration of the test.

There is no restriction on the values passed to the test. However, it must be noted that
all possible combinations of signed and unsigned, byte and word, two and three operand
Multiply/Divides are done at least twice for each pair of arguments sent to ALU05. Each
such test takes from 1 to 5 milliseconds depending upon the arguments. Therefore, if
large values for the count parameter are selected, the test will be long. For example,
lOOOh as a count will take about 12 seconds, depending upon the seed. NOTE: Some
versions of SIM96 will not pass this test.

The formula used to generate the number pairs is as follows:

X(n+1)= [(0101h + 0001 h) * X(n) + 0001 h) MOD Offffh
where X(O) = seed

7-18

MCS®-96 Diagnostics Library

Multiply/Divide Core (ALU05)

Brief Description:

This test perfonns a Divide/re-Multiply sequence for all possible combinations of two or
three operand, signed or unsigned, byte or word operations using the arguments passed
to it as operands. The results are verified.

Assembly Language Calling Sequence:

PUSH
PUSH
CALL

<argument1 >
<argument2>
ALU05

When Test Passes:

EREGI : = OOl5h
EREG2 : = OOOOh

Detailed Description:

If Test Fails:

EREGI : = O1l5h on a signed error
: = 02l5h on an unsigned error
: = 03l5h on a flag error

EREG2 : = offending argument on error

This module takes arguments from a calling program and perfonns upon them all possible
combinations of byte or word, two or three operand, signed or unsigned multiplication
and division. Argument2 is used to create the high and low words for a word Divide,
and the low byte of Argumentl is used as the divisor in a byte Divide.

The test checks multiplication and division by first dividing one operand by the other,
then multiplying the quotient by the divisor and adding the remainder. If the result is the
original dividend, the operations were correct. However, the possibility of legitimate
division overflows must also be considered.

The test first perfonns a division and checks,flag status for correct indication of overflow
conditions. If there has been an overflow, the dividend is right shifted by one, the expected
result is updated, and the division is perfonned over. If a division by zero occurred, just
the expected result is corrected and the test is continued.

After a division and overflow checklfixup is complete, a re-multiplication occurs and the
result verified. Flag status is also verified. If the results are correct, the original operands
are reloaded into the test operand registers and the next Divide/re-Multiply combination
is begun.

All Divide/Multiply combinations are perfonned twice. Once with flags set upon entry,
and once with flags clear upon entry.

CALLing ALU03 will run a specially selected table of operands through this test. CALL­
ing ALU04 will run a pseudo-random string of operands through this test.

7-19

MCS®-96 Diagnostics Library

3.3 Memory Tests

Complementary Address (MEM01)
(for registers)

Brief Description:

This module performs a complementary address test on the registers locations lab to
Offh.

Assembly Language Calling Sequence:

CALL MEM01

When Test Passes:

EREGI : = 0021h
EREG2 : = OOOOh

Detailed Description:

If Test Fails:

EREGI : = Ol2lh
EREG2 : = address of the error

This module performs a simple address and integrity test on register locations lab-Offh.
The algorithm stores the value NOT(ADDRESS) in the location pointed to by ADDRESS
for the range, then loops through memory again to verify the contents.

Caution: If the STACK is partially internal, the STACK POINTER must be pointing at
least 260 bytes into external RAM at the time MEMOI is called. The STACK cannot be
entirely internal. The arithmetic flags in the PSW are undefined after execution of MEMO I.

7-20

MCS®-96 Diagnostics Library

Walking Ones/Zeros (MEM02)
(for registers)

Brief Description:

This module performs a Walking Ones and Zeros test on the internal registers lah-Offh.

Assembly Language Calling Sequence:

CALL MEM02

When Test Passes:

EREG 1 : = 0022h
EREG 1 : = OOOOh

Detailed Description:

If Test Fails:

EREGI : = 0122h
EREG2 : = address of the error

This module performs a Walking Ones and Zeros test on the internal registers.

The Walking Ones memory test first loads zero in all locations to be tested. Then, ones
are placed in the first byte of memory, followed by a verification of all locations. Next,
the first location is zeroed and ones are loaded into the second location. All memory is
again verified. This process continues until all locations have been loaded with ones.

The Walking Zeros memory test works exactly like Walking Ones, except that a zero is
"walked" through memory filled with ones, instead of ones being walked through a
memory filled with zeros .

. Caution: If the STACK is partially internal, the STACK POINTER must be pointing at
lest 260 bytes into external RAM at the time MEM02 is called. The STACK cannot be
entirely internal. The arithmetic flags in the PSW are undefined after execution of MEM02.

7-21

MCS®-96 Diagnostics Library

Galloping Ones/Zeros (MEM03)
(for registers)

Brief Description:

This modul~ performs a Galloping Ones and Zeros test on the internal registers lah-Offh.

Assembly Language Calling Sequence:

'CALL MEM03

When Test Passes:

EREG 1 : = 0023h
EREG2 : = OOOOh

Detailed Description:

If Test Fails:

EREGI : = 0l23h
EREG2: = address of the error

This module performs a Galloping Ones and Zeros test on internal registers.

The Galloping Onys algorithm tests memory by first loading zeros into alliocati,ons. Then
ones are loaded into the first byte and all memory is verified. The verification is done
by alternating reads to the first location and locations through all memory. Next, ones
are placed in the second location without altering the first. Verification is again performed
by alternating reads to the second location and the rest of memory. This process continues
until all locations contain ones.

The Galloping Zeros test is similar to Galloping Ones, except that zeros slowly fill a
memory filled with ones. In Galloping Ones, ones slowly fill a memory filled with zeros.

Caution: If the STACK is partially internal, the STACK POINTER must be pointing at
least 260 bytes into external RAM at the time MEM03 is callyd. The STACK cannot be
entirely internal. The arithmetic flags in the PSW are undefined after execution of MEM03.

Bits Set (MEM04)

Brief Description:

This module returns the number of bits set in the parameter passed to the routine.

Assembly La..,guage Calling Sequence:

PUSH test_value
CALL MEM04

When All Bits Zero:

EREGI : = 0024h
EREG2 : = OOOOh

Detailed Description:

When One or More Bits Set:

EREGI := 0124h
EREG2 : = number of bits set

This module returns the number of bits that are set in the low byte of the parameter
passed to the test. Any addressing mode may be used to put a value on the STACK, but
the parameter on the STACK is treated as an immediate value.

7-22

MCS®-96 Diagnostics Library

Checkerboard Pattern (MEMOS)
(for registers)

Brief Description:

This module performs a Checkerboard Pattern test on the internal registers lah-Oftb.

Assembly Language Calling Sequence:

CALL MEM05

When Test Passes:

EREGl : = 0025h
EREG2 : = OOOOh

Detailed Description:

If Test Fails:

EREGI : = 0125h
EREG2 : = address of the error

This module performs a checkerboard test on the internal registers. A checkerboard pattern
of ones and zeros is written into the physical rows and columns of the 8096 register
space. As the pattern is being written, it is repeatedly verified. After the entire pattern
is in place, the memory is verified again, complemented, and re-verified.

Caution: If the STACK is partially internal, the STACK POINTER must be pointing at
least 260 bytes into external RAM at the time MEM05 is called. The STACK cannot be
entirely internal. The arithmetic flags in the PSW are undefined after execution of MEM05.

Complementary Address (MEMOS)

Brief Description:

This module performs a complementary address test on the memory partitioned by user
supplied pointers. .

Assembly Language Calling Sequence:

PUSH <start address>
PUSH <end address>
CALL MEM06

When Test Passes:

EREG 1 : = 0026h
EREG2 : = OOOOh

Detailed Description:

If Test Fails:

EREGI : = 0126h
EREG2 : = offending address

This module performs a simple address and integrity test on RAM locations partitioned
by the parameters passed. The algorithm stores the value NOT(ADDRESS) in the location
pointed to by ADDRESS for the range, then loops through memory again to verify the
contents.

Caution: Do not partition RAM that contains valid STACK elements.

7-23

MCS@-96 Diagnostics Library

Walking Ones (MEM07)

Brief Description:

This module performs a Walking Ones Test on the memory partitioned by the user.

Assembly Language Calling Sequence:

PUSH
PUSH
CALL

<start address>
<end address>
MEM07

When Test Passes:

EREGI
EREG2 .-

0027h
OOOOh

Detailed Description:

If Test Fails:

EREGI .­
EREG2

Ol27h
offending address

This module performs a Walking Ones test on the memory partitioned by the calling
program. The Walking Ones memory test first loads zero in all locations to be tested.
Then, ones are placed in the first byte of memory, followed by a verification of all
locations. Next, the first location is zeroed and ones are loaded into the second location.

, All memory is again verified. This process continues until all locations have been loaded
with ones.

Caution: Do not partition RAM that holds valid elements of the STACK. And, execution
time increases non"linearly with memory partition widths.

Galloping Ones (MEMOS)

Brief Description:

This module performs a Galloping Ones test on memory partitioned by the calling
program.

Assembly Language Calling Sequence:

PUSH
PUSH
CALL

<start address>
<end address>
MEMOS

When Test Passes:

EREGI .­
EREG2

0028h
OOOOh

Detailed Description:

If Test Fails:

EREGI
EREG2 .-

Ol28h
offending address

This module performs a Galloping Ones test on memory locations partitioned by the
calling program. '

The Galloping Ones algorithm tests memory by first loading zeros into all locations. Then
ones are loaded into the first byte and all memory is verified. The verification is done
by alternating reads to, the first location and locations through all memory. Next, ones
are placed in the second location without altering the first. Verification is again performed.
by alternating reads to the second location and the rest of memory. This process continues
until all locations contain ones.

Caution: Do not partition locations that contain valid elements of the STACK. And,
execution time increases non-linearly with memory partition widths.

7-24

MCS®-96 Diagnostics Library

Walking Ones/Zeros (MEM09)

Brief Description:

This module performs a Walking Ones and Zeros test on the memory locations partitioned
by the calling program.

Assembly Language Calling Sequence:

PUSH
PUSH
CALL

<start address>
<end address>
MEM09

When Test Passes:

EREGl
·EREG2

.- 0029h
OOOOh

Detailed Description:

If Test Fails:

EREGl
EREG2

.- Ol29h
offending address

This module performs a Walking Ones and Zeros test on the memory partitioned by the
calling program.

The Walking Ones memory test first loads zero in all locations to be tested. Then, ones
are placed in the first byte of memory, followed by a verification of all locations. Next,
the first location is zeroed and ones are loaded into the second location. All memory is
again verified. This process continues until all locations have been loaded with ones.

The Walking Zeros memory test works exactly like Walking Ones, except that a zero is
"walked" through memory filled with ones, instead of ones being walked through a
memory filled with zeros.

Caution: Do not partition RAM that contains valid elements of the STACK. And,
execution time increases non-linearly with memory partition widths.

7-25

MCS®-96 Diagnostics Library

Galloping Ones/Zeros (MEMOA)

Brief Description:

This module performs a Galloping Ones and Zeros test on the memory locations partitioned
by the calling program.

Assembly Language Calling Sequence:

PUSH
PUSH
CALL

<starting address>
<ending address>
MEMOA

When Test Passes:

EREGI
EREG2 .-

002Ah
OOOOh

Detailed Description:

If Test Fails:

EREGI := 012Ah
EREG2 : = offending address

This module performs a Galloping Ones and Zeros test on memQry partitioned by the
calling program.

The Galloping Ones algorithm tests memory by first loading zeros into all locations. Then
ones are loaded into the first byte and all memory is verified. The verification is done
by alternl!ting reads to the first location and locations through all memory. Next, ones

. are placed in the second location without altering the first. Verification is again performed
by alternating reads to ~he second location and the rest of memory. This process continues
until all locations contain ones.

The Galloping Zeros test is similar to Galloping Ones, except that zeros slowly fill a
memory filled with ones. In Galloping Ones, ones slowly fill a memory filled with zeros.

Caution: Do not partition RAM that contains valid elements of the STACK. And,
execution time incr~ases non-linearly with memory partition widths.

Checksum (MEMOB)

Brief Description:

This module calculates a i 6 bit checksum for the memory partition specified by the calling
program.

Assembly Language Calling Sequence:

PUSH
PUSH
CALL

. <starting address>
<ending address>
MEMOB

Test Returns:

EREGI 012bh
EREG2 . - 16-bit checksum

Detailed Description:

This module performs a 16-bit checksum on the region of memory partitioned by the
calling program. RAM or ROM may be partitioned. The module is non-destructive to
RAM.

7-26

MCS®-96 Diagnostics Library

User Pattern (MEMOC)
(for registers)

Brief Description:

This module performs a Checkerboard Pattern test on the internal registers lah-Offh with
a user specified bit pattern.

Assembly Language Calling Sequence:

PUSH
CALL

<desired bit pattern>
MEMOC

When Test Passes:

EREG 1 . - 002Ch
EREG2 . - OOOOh

Detailed Description:

If Test Fails:'

EREGI
EREG2

012Ch
address of the error

This module performs a checkerboard test on the internal registers with the bit pattern
specified by the calling program. The pattern is written into the physical rows and columns
of the 8096 register space. As the pattern is being written, it is repeatedly verified. After
the entire pattern is in place, the memory is verified again, complemented, and re-verified.

Caution: If the STACK is partially internal, the STACK POINTER must be pointing at
least 260 bytes into external RAM at the time MEMOC is called. The STACK cannot be
entirely internal. The arithmetic flags in the PSW are undefined after execution of
MEMOC.

User Pattern (MEMOD)

Brief Description:

This module performs a Checkerboard Pattern test on a specified region of memory with
a specified pattern of bits.

Assembly Language Calling Sequence:

PUSH
PUSH
PUSH
CALL

<starting address>
<ending address>
<bit pattern>
MEMOD

When Test Passes:

EREG 1 . - 002dh
EREG2 . - OOOOh

Detailed Description:

If Test Fails:

EREGI : = 012dh
EREG2 : = offending address

This module performs a checkerboard test on a region of memory that is specified by the
calling program using a bit pattern which is also specified. First, the pattern is written
into memory. As the pattern is being written, it is repeatedly verified. After the entire
pattern is in place, the memory is verified again, complemented, and re-verified.

Caution: Do not partition RAM that contains valid elements of the STACK.

7-27

MCS@·96 Diagnostics Library

3.4 Collected Tests Modules

ALL Tests in ASM96 (D96A96)

Brief Description:

This ~odule causes every General Diagnostics test to execute.

Assembly Language Calling Sequence:

PUSH <RAM segmentl starting address>
PUSH <RAM segmentl ending address>
PUSH <RAM segment2 starting address>
PUSH <RAM segment2 ending address>
PUSH <random seed>
PUSH <random test length>
PUSH <top of code address>
PUSH <argumentl for Multiply/Divide Core test>
PUSH <argument2 for Multiply/Divide Core test>
PUSH <bit pattern for memory test>
CALL D96A96

When Tests All Pass:

EREGI : = 0030h
EREG2 : = code checksum

Detailed Description:

When a Test Fails:

EREG 1 : = test module error code
EREG2 : = test module detail code

This module calls all General Diagnostics using the parameters passed by the calling
program. The parameters needed by the test for proper execution specify two areas of
external RAM for memory tests, the ending address of code to be checksummed, the
seed and length of the random ALU test, two specific arguments to do the Multiply/
Divide Core test, and a bit pattern for memory tests.

Execution speed of this test is highly· dependent upon the memory partitions and the
length requested for the random ALU test. For example, partitioning lk and 8k regions
of memory, and calling for lOOOh random ALU tests, the test takes 3 hours to complete.
Testing smaller regions of memory (i.e. lk and lk) can reduce test time to a few minutes.

Caution: An external STACK must be used with this test, and it must be in a part of
memory outside that partitioned during the CALL.

7-28

MCS®-96 Diagnostics Library

ALL Tests in PLM96 (D96P96)

Brief Description:

This module causes every General Diagnostics test module to execute.

PLM96 Calling Sequence:

D96P96(RAM segment1 starting address,
RAM segment1 ending address,
RAM segment2 starting address,
RAM segment2 ending address,
random seed, random test length,
top of code address,
argument1 for Multiply/Divide Core test,
argument2 for Multiply/Divide Core test,
bit pattern for memory tests);

When All Tests Pass:

PLMREG . - OOFOh
PLMREG+2 := 16-bit checksum

Detailed Description:

When a Test Fails:

PLMREG . - module error code
PLMREG + 2 : = module detail code

This module calls all General Diagnostics using the parameters passed during invocation.
The parameters needed by the test for proper execution specify two areas of external
RAM for memory tests, the ending address of code to be checksummed, the seed and
length of the random ALU test, two specific arguments to do the Multiply/Divide Core
test, and a bit pattern for memory tests.

Execution speed of this test is highly dependent upon the memory partitions and the
length requested for the random ALU test. For example, partitioning lk and 8k regions
of memory, and calling for lOOOh random ALU tests, the test takes 3 hours to complete.
Testing smaller regions of memory (Le. lk and lk) can reduce test time to a few minutes.

In his program, the user will have to DECLARE D96P96 an external procedure of the
LONG type, with its parameters declared SLOW. The EREG 1 and EREG2 values reported
by library modules are placed in the long-word location at PLM$REG.

The DECLARations in D96P96 show how anyone General Diagnostic Module could be
called from a PLM96 program. Each needed module needs to be DECLAREd an external
procedure of the LONG type.

Caution: An external STACK must be used with this test, and it must be in a part of
memory outside that partitioned during the CALL.

7-29

MCS®-96 Diagnostics Library

Selected Tests in ASM (D96FST)

Brief Description:

This is an ASM module that invokes a selected set of General Diagnostic tests.

Assembly Language Calling Sequence:

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL

,<RAM segment1 starting address>
<RAM segment1 ending address>
<RAM segment2 starting address>
<RAM segment2 ending address>
<random seed>
<random test length>
<top of code address>
<argument1 for Multiply/Divide Core test>
<argument2 for Multiply/Divide Core test>
<bit pattern for memory test>
D96FST

When Tests All Pass: When a Test Fails:

EREGI OOEOh
EREG2 . - code checksum

Detailed Desc,":iption:

EREGI : = test module error code
EREG2 : = test module detail code

This module calls the Power-up and Program Counter tests then all ALU tests. Then,
Complementary Address, Galloping Ones/Zeros and Checkerboard tests are run on the
internal registers. Finally, Complementary Address and specified pattern tests are done
on external memory and the program is checksummed.

The parameters needed by the test for proper execution specify two areas of external
RAM for memory tests, the ending address of code to be checksummed, the seed and
length of the random ALU test, two specific arguments to do the MultiplylDivide Core
test, and a bit pattern for memory tests.

Execution speed of this test is highly dependent upon the memory partitions and the
length requested for the random ALU test. For example, partitioning lk and 8k regions
of memory, and calling for lOOOh random ALU tests, the test takes about 20 seconds to
complete. Testing smaller regions of memory (i.e. lk and lk) can reduce test.time further.

Caution: An external STACK must be used with this test, and it must be in a.part of
memory outside that partitioned during the CALL.

7-30

4.0 THE DYNAMIC STABILITY TEST

The Dynamic Stability Test is a set of interrupt service routines designed to run over a
user's background task in either one stand alone 8097, or two 8097s that are cross­
coupled. In the stand alone mode, the chip's output pins are hooked to its input pins.
In the dual chip mode, each controller's output pins are tied to the input pins of the
other. The minimum configuration for each mode are shown in Figures 2 and 3. See
Figure 11 for the circuit diagram of a board that can be jumpered for either
configuration.

What is Dynamic Stability?

A '~Dynamic Stability" test was developed to enable testing of the 8097 in an asyn­
chronous environment. In the one chip mode, HSO events are synchronized with the HSI

.1,..

+5 Vdc

10k

10k

10k

10k

10k

VREF

ACH.O

ACH.l

t-;::I:::t=::1 ACH.2
ACH.3
ACH.4
ACH.5

.... +---lACH.6
ACH.7

AGND

PORT 1.0 1---...

PORT 1.1

PORT 1.2
PORT 1.3
PORT 1.4
PORT 1.6
PORT 1.51--+-..1

PORT 1.7

TXO
RXD

HSI.O
HSI.l

HSI.2 I--t-t-,
HSI.3 1---+--+-1--,

PWM

EXTINT

8097 HSO.O

HSO.l
HSO.2 1---.......
HSO.31----.......

T2CLK I--------f
T2RST

PORT 2.7 t-+--lXl--,

+SVdc

OPTIONAL

Figure 2. 8097 Strapback Configuration Single Chip Mode

7-31

MCS@-96 Diagnostics Library

event capture logic. However, in the cross-coupled mode, HSO events generated by one
chip are captured in the HSI unit of another. As long as separate, non-syncronized clock
sources are used for each chip, the HSI line events will occur asynchronously to the chip.

To implement a test that could be either stand alone or co-resident without modifica­
tion, the creation and verification of I/O events needed to be decoupled .. Thus the basic
structure of the Dynamic Stability Test takes the form of a set of I/O Producers causing
events that I/O Consumers verify. Figure 4 gives a macro vieW of the Producer/
Consumer relationship.

PORT 1.7

PORT 1.0 PORT 1.5
PORT 1.1

I
PORT 1.6

PORT 1.2
PORT 1.3 PORT 1.4

PORT 1.4 PORT 1.3

PORT 1.5

PORT 1.6 PORT 1.1

PORT 1.7 I PORT 1.2

TXD I PORT 1.0
RXD

I
TXD

RXD
HSI.O r-
HSI.1 r-h r-- HSI.O

HSI.2
I J:: I- HSI.1

HSI.3

1-1 L
HSI.2

PWM r- t- HSI.3

t- PWM

HSO.O r-
HSO.1 p

EXTINT '-- HSO.O

HSO.2
C HSO.1

HSO.3 EXTINT
HSO.2

HSO.3
8097 ___ OPTIONAL _

8097

T2CLK {Jlr Jlr1 T2CLK

~ 537.6 Khz 537.6 Khz J
T2RST

~D
,,1/ ~/ ~

T2RST

PORT 2.7
"L..;..:. +5 Vdc

PORT 2.7

ACH.O
I

ACH.O

ACH.1 ACH.1
ACH.2 ACH.2

ACH.3 ACH.3

ACH.4 ACH.4
ACH.5 ACH.5
ACH.6 ACH.6
ACH.7 ACH.7

AGND VREF VREF AGND

.11"_*

+5Vde
10k 10k 10k 10k 10k

ri7

Figure 3. 8097 Strapback Configuration Dual Chip Mode

7-32

MCS®-96 Diagnostics Library

Figure 4. Producer/Consumer Relationship

What Does the Test Do?

Producer/Consumer exchanges were defined to test nearly all of the 8097 I/O capabilities
concurrently. Following initialization, the transactions described are carried out by the
set of interrupt service routines that make up the Dynamic Stability Test. The following
section describes the test initialization. Then the tests performed are briefly described in
the Producer/Consumer framework.

Initialization

To get the ball rolling, the background task must first CALL an initialization routine
(DSTISR). This routine clears memory, executes the Selected Tests program (D96FST)
from the General Diagnostics, and checks for the presence of an external clock on
T2CLK. The serial port is then initialized for internal or external baud rate generation
based on the presence of an external clock, and sign on messages are sent over the serial
channel.

After initial tests are complete, and just prior to initiation of the interrupt service routines,
a pulse is sent out on PORT1.3 that is used to synchronize controllers in the two chip
mode. (See Figure 5.) Remember that the objective of the Dynamic Stability Test is to
test the controllers asynchronously. Therefore, the synchronization is only done to insure
that neither controller starts testing before both are ready to begin.

When a controller is ready to synchronize, it places a 0 on the PORTl.3 pin and looks
for a 0 on its PORTI.4 pin. When a 0 is seen, the chip delays 600 microseconds, and
then PORTl.3 is set high. The chip then loops until PORTI.4 also goes high. Another
delay is inserted, and the tests begin. The worst skew between two controllers that can

Pl.3A
Pl.4B

Pl.4A
Pl.3B

SYNCHRONIZATION SEQUENCE IN THE DUAL CHIP MODE

Figure 5. Dual Chip Synchronization

7-33

MCS®-96 Diagnostics Library

occur using this method is 9 state times (2.25 JLS in a 12 Mhz system). However, the
skew should average between four and five state times. In any case, the parts will be far
from synchronized shortly after the tests begin. This is fine, as long as the tests begin
together.

In a one chip system, this process appears as a 600 microsecond pulse on PORT!.3.
(See Figure 6.) The tests begin 600 microseconds after the rising edge.

When synchronization is complete, the interrupt service routines are initialized, interrupts
are enabled, and control is returned to the background task. At this point, the testing
really begins.

Producers and Consumers

The Producer/Consumer exchanges on the 8097 are executed by the interrupt service
routines of the Dynamimc Stability Test. While some interrupt routines contain an
entire Producer or Consumer, some are spread through many routines. Figure 7 shows
on a broad level the transactions that occur during test execution. Short descriptions of
each Producer and Consumer follow, along with an indication of which interrupt routines
contain them.

Serial Producer eDSTSERe The Serial Producer constantly transmits a table of alpha­
betic and special characters, and test data which includes the current status of the test
and the REAL TIME since reset. .

Serial Consumer eDSTSERe The Serial Consumer monitors the data coming over the
serial link to see if all the expected characters are transmitted correctly and in the correct
order. Transmission of the test data and the REAL TIME is checked by counting characters
between carriage returns.

Pilrtl Producer eDSTSWTe The Portl Producer outputs a series of values on Portl
that are contained in a table constructed to test all possible combinations of input and
output of ones and zeros. The test producer executes every 5000h TIMERI counts via
the expiration of Software Timer I.

Portl Consumer eDSTSWTe The Portl Consumer verifies the patterns appearing on
Portl using a table which contains the expected values. The check executes every 1000h
TIMERI counts via the expiration of Software Timer 2.

AID Producer eDSTSWTe The ND Producer continually starts ND conversions by
loading an HSO command to initiate an AID. The ND Producer executes every time
Software Timer 0 expires.

AID Consumer eDSTA2De The NO Consumer verifies the result of conversions initiated
by the ND Producer. It then changes the channel set for conversion and loads an HSO
command to cause a Software Timer 0 expiration.

SYNCHRONIZATION PULSE IN THE SINGLE CHIP MODE

:~~-------tr h~
Figure 6. Single Chip Sync Pulse

7-34

MCS®-96 Diagnostics Library

External Interrupt Producer oDSTHSOo The External Interrupt Producer causes rising
edges on HSO.l, which is tied to EXTINT. This Producer executes every time there has
been a falling edge on HSO.1.

External Interrupt Consumer oDSTEXIo The External Interrupt Consumer responds
to rising edges on EXTINT. It resets the WATCHDOG TIMER every execution and tests
the Test Status Words every 30h executions to see that all tests are running. This Consumer
also loads an HSO command to cause a falling edge on HSO.l

PWM Producer oDSTTOVo The PWM Producer executes every time there is a timer
overflow. In addition to changing the PWM period, it toggles an LED and checks for
unexpected T2CLK overflows. There is no PWM Consumer per se, but the PWM output
is tied to HSI.l which is configured to clock T2CLK. In this way T2CLK counts at a
known average rate, and is used by the test in a modulo count fashion to generate a real

• TRANSMITS
ALPHABET &
TEST DATA

• PUTS TEST
VALUES ONTO
PORT 1

• STARTS AID
CONVERSIONS
ON A RESISTOR
LADDER

• SCHEDULES
EXINT EVENTS

• CONTROLS THE
PULSE WIDTH
ONTHEPWM
PIN

• CREATES A
STREAM OF
EVENTS ON
HSO.2AND
HSO.3

• SETS UPA
STORM OF
INTERRUPTS
(HSO, HSI, HSIO,
AID, SOFTWARE TIMER) THAT OCCUR
AT NEARLY THE SAME TIME

J HSO, HSI,HSIO, SWT}
\ INTERRUPTS

Figure 7. Producer/Consumer Overview

7-35

• VERIFIES ORDER AND
ACCURACY OF TRANSMISSIONS

• VERIFIES STABILITY, ORDER
AND ACCURACY OF VALUES
ON PORT 1

• VERIFIES ACCURACY AND
ORDER OF CONVERSION
RESULTS. CHANGES THE
CHANNEL OF CONVERSION

• RESETS THE WATCHDOG
TIMER, AND MONITORS
CORRECT EXECUTION OF
ALL OTHER TESTS

• INCREMENTS T2CLK ON
EVERY EDGE

• VERIFIES THAT EVENTS
OCCUR AT RIGHT TIME
INTERVALS ON HSI.2
AND HSI.3

• VERIFIES THAT THE
REQUESTS WERE SERVED,
AND THAT THEY WERE
SERVED IN A TIMELY
MATTER

MCS@·96 Diagnostics Library

time clock. This module is also expandable to include tests that a user might want to
execute only periodically.

HSO Producer eDSTHSOe The High Speed Output Producer executes every time an
HSO event on HSO.2 or HSO.3 occurs. Varying pulse widths are created on the pins
using predetennined tables of values. The minimum pulse width is lOOOH; the maximum
is OCOOOH TIMERI counts.

HSI Consumer eDSTHSIe The high speed inputs are monitored by the High Speed
Input Consumer. The check executes every time an event occurs on HSI.2 or HSI.3. The
HSI Consumer verifies that the proper pulse widths appear on the pins, and that the series
of pulse widths is in the right order.

Interrupt BURST Producer eDSTSWT,DSTHIO,DSTHSO,DSTHSOe The previous
Producer/Consumer transactions either go between controllers in the dual-chip mode, or
stay within the same controller in the single-chip mode. However, there is one Dynamic
Stability Test that executes invisibly to a co-controller in the dual-chip mode. This test,
the Interrupt BURST Test, causes a flood of interrupts that almost fully load the 8097
with interrupt response requests.

I

The Interrupt BURST Producer causes a complex chain of events that eventually lead to
the updating of the REAL TIME Clock. Since the succession of events involves half of
the interrupt service routines, the whole process is described here for understanding.

The Big Picture - Each time the REAL TIME Clock is ready to be updated, a BURST
of interrupts is setup to occur as close together as possible. Figure 8 shows the sequence
of events that occur, their dependency on T2CLK and the commands written into the
HSO CAM. If you don't need any more detail, skip "The nitty-gritty".

The nitty-gritty - Every time an the AID Consumer finishes executing it sets up a
Software Timer 0 expiration for TIMERl = TIMERl + 2. While T2CLK is between
lOOh and 600h, the AID Producer (Software Timer 0) causes a new conversion with an
HSO command. If T2CLK is greater than 600h, then an HSO command is loaded to
cause a falling edge on HSO.O instead of causing an AID conversion to start. This begins
the BURST sequence.

The falling edge on HSO.O causes an HSO interrupt and an HSI interrupt, since HSO.O
is tied to HSI.O. The HSO interrupt loads commands to raise HSO.O at T2CLK= 1900h
and start an AID at T2CLK= 18ffh. The HSI interrupt loads no HSO commands.

When T2CLK= l8ffh an AID conversion is begun. When T2CLK= 1900h a rising edge
occurs on HSO.O causing T2CLK to be reset and HSO,HST and HSLO interrupt requests
to be made. At approximately the same time an AID conversion completes and the AID
Done interrupt request is made.

The HSO interrupt service causes no further events. The HSI interrupt service routing
loads an HSO command to cause a Software Timer 3 interrupt at T2CLK = Offh. The
AID Consumer loads an HSO command to cause a Software Timer 0 interrupt at
TIMERl = TIMER 1 + 2. When the AID Producer executes it loads a command to start
an AID conversion at T2CLK= lOOh. And the HSI.O interrupt service routine updates
the REAL TIME Clock (the real output from this whole mess).

The last interrupt that is serviced from this BURST is a Software Timer 3 expiration.
This is the BURST Checker. It verifies that all interrupts occurred within a reasonable
time ',Vindow, but causes no further events if all tests passed. .

All these activities keep the HSO CAM almost fully loaded. So, to ensure that CAM
overwrites never occur, two precautions were taken. First, one CAM slot was allocated' .
to four of the tests that use the HSO unit, and two slots were allocated for shared use
by the Interrupt BURST process and the AID conversion process.

7-36

MCS®-96 Diagnostics Library

The second precaution was to confirm that either the CAM was not full or the HOLDING
REGISTER was empty (depending upon the test) before allowing any write to the CAM.

Figure 9 shows the HSO CAM loading over time, with T2CLK as the time base. Exter­
nal Interrupt, Portl, HSO.2 and HSO.3 events each are allocated the use of one CAM
slot all the time. While T2CLK is below 600h, but above IOOh, another CAM slot is
used by the AjD Done - Start AjD sequence. When T2CLK goes above 600h, two
slots are used by the Interrupt BURST process. The BURST events conclude when
T2CLK is reset and climbs to IOOh. At lOOh, the AjD Done - Start AjD sequence
being again.

SWTO INTERRUPT BURST
EXPIRE SEQUENCING

{ START AID }
CONVERSION

IF T2CLK <600h T1 = Tl + 200h
THEN

{ HSO.O

~
ELSE T2=T2+1

HSI
(HSI.O EVENl)

HSO
(HSO.O EVENl)

HSO

{
HSO.O (HSO.O EVENl)

....r
HSI.O

(HSI.O EVENl) T2 = 1900 H

{ START AID }
CONVERSION

T2 = 18H H

HSI
(HSI.O EVENl)

INITIALIZE

Figure 8. Interrupt BURST Sequencing

7-37

MCS®-96 Diagnostics Library

HSOCAM

EXTERNAL INTERRUPT EVENTS

PORT' PRODUCER EVENTS

.. PORT' CONSUMER EVENTS

... HSO.2 EVENTS

.. HSO.3 EVENTS

SOFlWARE I START AID HSO.O '"'- HSO.O JI SOFlWARE TIMER 3

1 ~~!::ND COMMAND
... COMMAND COMMAND COMMAND

START AID I ~=ARe J START AID
COMMAND COMMAND COMMAND

WHILE
WHILE T2CLK < 'OOH -,00H '" T2CLK < 600H OR

T2CLK" 600H

Figure 9. HSO CAM Loading

4.1 How to Use DST96

All program modules that are needed to run the Dynamic Stability Test are contained
in the DST96 Library (DST96.LIB). This Library is also a part of DIAG96.LIB. To use
the test, one or two 8097s must be configured as preyiously shown. A background task
for the Dynamic Stability interrupt service routines must also be provided and linked to
DIAG96.LIB. For those who don't wish to write a background task, one is provided
(DSTUSR). But, any code may be written which follows some simple rules.

The Software

The software constraints are relatively minor, but they do create incompatibility with
PLM96. All background tasks should be written in ASM96.

Minimally, the background task must load the, STACK POINTER, PUSH parameters,
CALL DSTISR, and go into a loop. Any other code may come after the CALL to DSTISR,
as long as:

., Interrupts are never disabled for more than a few instructions;

• No operations to or from special function registers occur (with the exception of reading
TIMER! or T2CLK), and

Other less grave limitations on the main task are that it:

• Be CSEGed at 2080h;

7-38

MCS®-96 Diagnostics Library

• Write only to EREG I, EREG2, OSEG registers from 40h to 5Cn, or external RAM,
(the OSEG is an RL96 technicality, once DSTISR returns control to the MAIN TASK,
locations 40h to 5Ch are not touched by the Tests); other registers can be read, but
not written to;

• Communicate to the outside world through Port3 and Port4, (these Ports are untouched
by the tests), or memory mapped I/O registers;

To provide the Dynamic Stability Test modules for linkage to your program, modify
the batch file DSTRL.BAT to suit your system with respect to memory mapping and
invoke the batch file with the appropriate background task filename. For example,
type:

DSTRL DSTUSR

The Hardware

The Dynamic Stability Test has been designed to allow flexibility in the way output
from the tests is used.

Minimally, no output device (printer, terminal) or function generators need to be attached
to the test. If the LED attached to Port 2.7 is not flashing, the test failed. However, no
other information may be gained.

To support a greater level of debugging (of the test code initially), the test was designed
to output status and error information to one 4800 and one 300 baud device. The baud
rates are derived from the function generators if present. Figure \0 shows how both
devices can be attached to the test.

With this configuration, the test outputs an initialization message to both devices, then
selects just the 4800 baud line for monitoring the Serial Port Producer/Consumer trans­
actions. If an error is detected, the 300 baud line is selected for an error information
dump.

A diagram of the circuit used in developing the Dynamic StabiIty Test appears in Figure
11. It is sufficiently general purpose for use in either the single or double chip modes,
with or without printers or terminals attacht;d.

The circuit requires that the 8097 I/O signals be present on an SBE-96 compatible 50
pin connector. The circuit also assumes that the analog voltage reference is provided
through the cable. Therefore, if you are using the SBE-96, the jumpers to do this need
to be in place (jumper numbers vary with the SBE-96 version).

Figure 12 describes how to jumber the Dynamic Stability Test board for one or two
chip tests. Figure l3 shows the SBE-96 50 pin connector pinout. The following sections
describe in detail the actions of each interrupt service routine in implementing the
Producer/Consumer transactions.

DEVICE SELECT
1141488

P2.6 ---4~--i :)0----1
~----_~ TO 4800 BAUD DEVICE

DATA OUT
nD-----ir----~~-~

L----......jL~:>-_, ---- TO 300 BAUD DEVICE

1141489

DATA IN
RXD -------<DC. 1-------'

Figure 10. Output Device Selection Circuit

7-39

~ J2 J1
J2 J1

= 28-0 0- 34
PORT 1 :::: ~:, ~~~~~ 1'- 1~1 : ~~::: 34-0 0- 28 HSIO.o ...

16-0 0-35
38--0 0-23 ... 23-0 0-38

35-0 0-16 EX11NT

:: 31-0 0-42
+l2YDC 39-0 0-24

42-0 0-31 H$IO.2 FUNCTION
24-0 0-39

("l GENERATOR AID 26--0 0-25 rn 32-0 0-43

@) 43 --0 0- 32 KSIO.3 :::::::: CHANNELS 25--0 0-26 E5

~
01 20 - 01 20 :: o, 40 O. 40 8 .. ~

8 ..
os BO 29--0 .. :::::, O. BO ("l

t:::I 07 Bo .. 0-29 PWI' -- 10K 07 Bo I~ rn
'< i'" 01 100 01 100 !lrn @

::I ~~ 120 120 20 ,
011 011 0:0 \C

10 01. 140 41 01' 140 :0 ~ a :0 POI\T2.8 FUNCTION 10K
;;. 01. 1BO T2ClK GENERATOR 015 160

J3 t:::I
017 1BO 017 1BO 5·

-..I ~
01. 200 10K

+12VDC
01. 200 ... IJQ

I 021 220 48 45 PORT2.1 -12VDC 021 220 ::I
.j>. S 023 240 .5 48 T2R$T 023 2'0 C

'" 0 025 260 10K 025 260 a.
~ 027 280 027 2.0 ,.,

029 300 15-0 0-15 ,.;;. .11'1 029 300 '" o-l h 0', 320 18-0 0-1.
10K

...,.40
0., 320 ~a t: ..

[!l. 033 340 21-0 0-21 ;:; J2-2O 033 340 .".
;0: .. O.S "0 27 --0 0-21 035 "0

;0:" ..
~I ~~ 10 rn 037 .. 0 30 --0 0-30 037 300 ..

::;- :0'- 0 •• 400 33 -0 0-33 1--0 0-1 0 .. 400 :0'- '<
10 0., .20 31-0 0-38 +12VDC 4-0 0-4 0., 420 20 ...
.". 0 0 41 --0 0-41 00
10 J5 045 480 44 -0 0-44 ANALOG 7-0 0-7 0 .. 480 J. ,.,

047 .. 0 47 --0 0--47 GROUNDS 10-0 0-10 047 ,,0
~ DIGITAL

Q
0 •• 50 0 50 --0 0-50 GROUNDS 13--0 ~13 0 .. soo

J2 J1

::I :n
IJQ I Note: Connect Jl of this board to J3 of an 58E-96. For dual = ..
10

chip operation, also connect J3 of a second SBE-96

a. to J2 on this bOard. Use the ju~r list In FlQure 4-11

C for the mode used. The functJon generators are

::I optional One, two, or none may be used.

MCS®-96 Diagnostics Library

Jumper Connections for Single Chip Mode

J1
;22-37 34 -28
23-38 35 -16
24-39 42-31 Also
25 - 26 43 - 32 E1 - E2
45 - 48 46 - 29 E3 - E4

1-4-7-10-13
15 -18 -21-27-30 -33 -36 - 41-44 -47- 50

Jumper Connections for Dual Chip Mode

J1-J2 J1-J2 J1-J2 J1
22-37 33-33 14 -14 34-28
23-38 36-36 4-4 45-48
24-39 41 - 41 5-5 46-29
25-26 44-44 7-7 35-16
42-31 47-47 10 -10

J2 43-32 50-50 13 -13
15 -15 1 -1 34-28
18 -18 9-9 45 -48
21 -21 2-2 46-29
27-27 8-8 35 -16

30-30 6-6
11 -11 Also
3-3 E2-E5

12-12 E1-E4

Figure 12. Dynamic Stability Board Jumper List

ANALOG GROUND 01 20 ANALOG CHANNEL 3
ANALOG CHANNEL 1 03 40 ANALOG GROUND
ANALOG CHANNEL 0 05 &0 ANALOG CHANNEL 2

ANALOG GROUND 07 So ANALOG CHANNEL 6
ANALOG CHANNEL 7 09 100 ANALOG GROUND
ANALOG CHANNEL 5 011 120 ANALOG CHANNEL 4

ANALOG GROUND 013 140 ANALOG VREF

J2-J1
22-37
23-38
24-39
25-26
42-31
43-32

DIGITAL GROUND 015 160 EXTERNAL INTERRUPT
RESET 017 lSo DIGITAL GROUND

RXD 019 200 TXD
DIGITAL GROUND 021 220 PORT 1.0

PORT 1.1 023 240 PORT 1.2
PORT 1.3 025 2&0 PORT 1.4

DIGITAL GROUND 027 2So HSI.O
HSl.l 029 300 DIGITAL GROUND

HSO.4/HSI.2 031 320 HSO.5/HSI.3
DIGITAL GROUND 033 340 HSO.O

HSO.l 035 360 DIGITAL GROUND
PORT 1.5 037 3So PORT 1.6
PORT 1.7 039 400 PORT 2.6

DIGITAL GROUND 041 420 HSO.2
HSO.3 043 440 DIGITAL GROUND

PORT 2.7 045 460 PWMlPORT 2.5
DIGITAL GROUND 047 480 T2RST

T2CLK 049 500 DIGITAL GROUND
J3

Figure 13. SBE-96 J3 Pinout

7-41

MCS®-96 Diagnostics Library

4.2 Test Module Descriptions

DST Initialization (DSTISR)

Brief Description:

This module is the invocation and initialization code for the Dynamic Stability Test.

Assembly Language Calling Sequence:

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL

<RAM segment1 starting address>
<RAM segment1 ending address>
<RAM segment2 starting address>
<RAM segment2 ending address>
<random seed>
<random test length>
<top of code address>
<argument1 for Multiply/Divide Core test>

, <argument2 for Multiply/Divide Core test>
<bit pattern 'for memory test>
DSTISR

When All Tests Pass:

EREG 1 : = 0040h
EREG2 : = OOOOh

When a Test Fails:

EREGI
EREGI
EREGI
EREGI

.-

.-

.-

Ol40h on abnormal RESET
0240h if T2CLK won't change
0340h if T2RST did not work
0440h if lOCO. I did not work

Detailed Description:

EREG2 := TIMER I
EREG2 : = xxxxh
EREG2 : = xxxxh
'EREG2 : = xxxxh

This module initializes the registers used by Dynamic Stability Test Modules, checks
to see if there is an external clock present, tests TICLK counting and reset functionality,
and outputs initialization messages to the two output devices. The selected tests module
(D96FST) from the General Diagnostics is also executed using the parameters specified.

When all initialization tests are passed, then a synchronization is performed to place the
two processors in a dual-chip mode test in close sync. The PORT! pins are used as to
perform the handshaking synchronization. After synchronization, all Dynamic Stability
Tests are activated and control is returned to the user program.

7-42

EREG2
81T#

EREG2
81T#

I
I

MCS®-96 Diagnostics Library

External Interrupts (DSTEXI)

Brief Description:

This module executes every time there is a rising edge on the EXTINT pin. The test
resets the WATCHDOG TIMER and verifies execution of all Dynamic Stability routines.

If Test Fails:

EREGI
EREG2

. = OlAOh if a test did not execute
Number of Shifts done

Detailed Description:

This routine executes every time there is a rising edge on the EXTINT pin, causing an
external interrupt. Each execution, the WATCHDOG TIMER is reset and an HSO com­
mand to clear the HSO.! pin in lOOOh TIMER! counts is loaded into the CAM. The
HSO routine that responds to that event will cause HSO.! to go high, thus causing another
vector to DSTEXI.

Every 30h executions of this module, the Test Status Words are NOTed and then
NORMaLized to see if any test did not execute. If any bit in the Test Status Words is
left set after being complemented, the NORML instruction will leave the most significant
bit set, indicating an error. If there was no error, the TSWORDs are cleared. The user
can change a mask in DSTEXI to enable checking of any of the currently spare bits in
TSWORD. The TSWORD bit map is as follows:

TSWORD2

TSWORD1

lDh llh 12h 13h 14h 15h 16h 17h lBh 19h lAh lBh lCh lDh lEh

DFh DEh ODh OCh OBh OAh 9 B 7 6 5 4 3 2 1

HJO.3 HS~.2 HS~.l HS~.O HJI.3 HJI.2
I SW

HSI.O TIMERS

SOFTWARE TIMER 3IINTERRUPT BURST CONSUMER I J SOFTWARE TIMER 21PORTl CONSUMER

SOFTWARE TIMER l/PORTl PRODUCER

SOFTWARE TIMER DlAiD PRODUCER/BURST PRODUCER

AID CONSUMER

SERIAL PORT CONSUMER

SERIAL PORT PRODUCER

REAL TIME CLOCK

Figure 14. Test Status Word Bit Map

7-43

lFh .

0 -

MCS®-96 Diagnostics Library

Serial Port (DSTSER)

Brief Description:

This module contains the Serial Port Consumer and Producer routines for the Dynamic
Stability Tests. It is executed on every Serial Interrupt.

If Test Fails:

EREGI .- OlBOh if a bad character was received
EREG2 actual received character

EREGI .- 02BOh if an incorrect number of characters
came between carriage returns

EREG2 .- actual count

Detailed Description:

This interrupt service routine executes every time there is a Serial Interrupt. The data
that is transmitted and checked by the test consists of first, the alphabet and some special
characters; second, the current REAL TIME; and finally, the bit representation of the
Test Status Words. The receiver verifies the alphabet and funny characters and counts
characters until a carriage return. The following is an example of what the output looks
like.

ABCDEFGHIJKLMNOPQRSTUVWXYZ*#%&[)@001 :23:59.61 111111011101111110001111

The code first checks for a Receive Done flag. If a receive just completed, the receive
buffer is emptied and checked for validity. If the received character is a carriage return,
then the count since the last c,arriage return is checked for correctness.

After the receive service has finished, or if there was no receive, DSTSER then checks
for the Transmit Done flag. If more transmits can be made, the'next data byte is loaded
into the transmit buffer. If the data is exhausted, a carriage return is sent, and the routine
is set to transmit the first data byte again.

7-44

MCS@-96 Diagnostics Library

Software Timers (DSTSWT)

Brief Description:

This module is executed every time a Software Timer Interrupt expires. The routine
includes the Portl Producer and Consumer, the AID producer, and the Interrupt Burst
control and verification code.

If a Test Fails:

EREGI OIDOh If an unexpected value is found on Port I
EREG2 expected value in high byte, actual value in low byte

EREGI 02DOh AID Done interrupt did not occur within BURST window
EREG2 .- Time between AID done and Software Timer 0

EREGI 03DOH REAL TIME update did not occur within BURST window
EREG2 Time between REAL TIME update and Software Timer 0
EREGI 04DOH HSO.O response did not occur within BURST window
EREG2 Time between HSO.O interrupt and Software Timer 0

EREGI 05DOH HSI(.O) response did not occur within BURST window
EREG2 Time between HSI(.O) service and Software Timer 0

EREGI OlDlH Invalid T2CLK value reached
EREG2 .- T2CLK found
EREGI 02DIH Test reached an illegal Software Timer 0 state
EREG2 .- the illegal case jump that was made

Detailed Description:

This module is called every time a Software Timer expires and causes and interrupt.
Software timers are used by the AID Done - AID Trigger Sequence, the Interrupt Burst
Sequence, and the Portl Producer and Portl Consumer.

When Software Timer 0 expires, a case jump is done on the BURST_STATE variable
to sequence the AID and interrupt BURST process to the appropriate state. Depending
upon the value of T2CLK and the state of the AID converter, either an AID conversion
is initiated or HSO.O is set to go low to begin the interrupt BURST events.

When Software Timer! expires, a new value is written to Portl from a table constructed
to test all combinations of input/output states on the quasi-bidirectional port pins. The
HSO CAM is also loaded with a command to cause Software Timerl to overflow again
in 5000h TIMER I counts.

When Software Timer 2 expires, Portl is read and compared to a table of expected entries.
If the value is correct, then an HSO command is loaded into the CAM to cause another
Software Timer 2 expiration in 1000h TIMERI counts. If the value is not correct, the
next entry in the Table is checked. If there is still no match, an error is reported. If there
is a match, the CAM loading occurs and Software Timer 3 is checked for expiration.

If Software Timer 3 has expired, then the flurry of BURST interrupts should have just
occurred. The routine checks to see that each event happened within a reasonable time
window. If the checks pass, then the routine exists with no further action.

7 A5

MCS@-96 Diagnostics Library

Real Time Clock (HSIO) (DSTHIO)

Brief Description:

This routine executes every time there is a rising edge on HSI.O and updates the real
time clock value.

When Module Executes:

REAL_TIME : = REAL_TIME + .204 seconds

Detailed Description:

This module is the HSI.O interrupt service routine. On each rising edge of HSI.O, the
value in the REAL TIME clock buffer is updated to reflect the passing of 1900h T2CLK
counts. Since the PWM output is tied to T2CLK, and the average time between edges
is 31.875 f.LS in a 12 MHz system, then 1900h T2CLK counts represents .204 seconds.

Execution of this module occurs during the interrupt BURST events. No action other
than updating the REAL TIME clock is taken in this routine.

High Speed Outputs (DSTHSO)

Brief Description:

This module manages the pulse width outputs on HSO.2 and HSO.3, and causes the
Manager test to execute.

Detailed Description:

Every time an HSO command is executed that has the Interrupt bit set, this program
executes. The routine manages the pulse widths on HSO lines two and three, and causes
the Manager module to execute at the right time.

When a falling edge has been caused on either HSO.2 or HSO.3, DSTHSO loads a
command into the CAM to cause" a rising edge on the same line at a time that gives the
line a low pulse width equal to a predetermined table value. Rising edges cause analogous
responses. The tables used cause low and high pulse widths that vary from 1000h and
OCOOOh. The length of the tables differ by one so that all combinations of low and high
table times occur.

When a falling edge was caused on HSO.I, the routine loads a command into the CAM
to cause a rising edge on the same line two TIMERI counts later. Since HSO.I is tied
to the EXTINT pin, rising edges cause the Manager Routine to execute.

7-46

MCS®-96 Diagnostics Library

High Speed Inputs (DSTHSI)

Brief Description:

This module does the verification of events on the HSI lines and initiates some interrupt
BURST events when appropriate.

If a Test Fails:

EREGI .- 016lh if a high pulse on HSl.2 had an unexpected width
EREG2 difference between actual and expected pulse width

EREGI 0261h if a low pulse on HSl.2 had an unexpected width
EREG2 difference between actual and expected pulse width

EREGI 0361h if a high pulse on HS1.3 had an unexpected width
EREG2 .- difference between actual and expected pulse width

EREGI 0461h if a low pulse on HSI.3 had an unexpected width
EREG2 difference between actual and expected pulse width

EREGI 0561h if the HSI unit indicated that an HSl.l event occurred
EREG2 .- the time recorded in the FIFO

Detailed Description:

This module executes every time an event is loaded into the HSI Holding Register.
Verification of pulse widths on HSl.2 and HSl.3 is done from tables of expected values.
Any deviation is reported as an error.

If the test detects a negative transition on HSI.O, then commands are loaded into the
HSO CAM to start an ND at T2CLK = 18ffh and to set HSO.O high at T2CLK =
1900h. This results in an HSO, HSI, HSI.O and ND Done interrupt requests to occur at
approximately the same time - approaching a full demand on interrupt service.

When a rising edge on HSI.O is detected, an HSO command is loaded into the CAM to
cause a Software Timer 3 interrupt when T2CLK = lOOh. The Software Timer 3 interrupt
service will check to see that all burst events happened fast enough.

HSl.l events are disabled from the FIFO. Any event detected on this line is reported as
an error.

7-47

MCS®-96 Diagnostics Library

AID Conversion Complete (DSTA2D)

Brief Description:

This module executes every time an AID conv.:rsion is complete. The conversion result
is checked for correctness, the AID converter is setup to convert on the next channel
when initiated by an HSO command, and an HSO command to cause a Software Timer
o expiration is loaded.

If Test Fails:

EREGI
EREG2

. - OlCOh on a conversion error
channel on which error occurred

Detailed Description:

This module executes every time an AID conversion is complete. The conversion result
is checked against a test table for correctness, and the AID converter is setup to convert
on the next channel when initiated by an HSO command. An HSO command to cause a
Software Timer O. expiration in 0002h TIMER I counts is loaded just prior to exiting the
module.

While T2CLK has a value between JOOh and 600h, AID conversions are initiated by the
Software Timer 0 Interrupt service routine. When T2CLK goes above 600h, an AID
conversion is initiated by the HSO.O interrupt service routine.

Given the possibility of additive error in 5% resistors, the conversion is tested to only
six bits of accuracy.

Timer Overflows (DSTTOV)

Brief Description:

This module toggles a port pin tied to an LED, manages the PWM output, performs some
simple tests, and is expandable to allow inclusion of user written tests.

If Test Fails:

EREGI
EREG2

. - 0190h if T2CLK had an overflow indication
T2CLK a the time the error was found

Detailed Description:

This module executes every time TIMER I or T2CLK overflow. Only TIMER I overflows
are valid however, so T2CLK overflows are flagged as an error.· Each overflow, a new
period is loaded into the PWMCONTROL register from a table of pulse periods. If an
LED is connected, it will appear to slowly change in intensity. Port2.7 is also toggled
in this routine to light another LED.

This interrupt routine can be expanded with special tests that are to execute on a periodic
basis. Any of the spare bits in the Test Status Words can also be used by specialized
tests. They will be checked by the External Interrupt service routine with a simple change
in a bit mask.

7-48

MCS®-96 Diagnostics Library

Macro Module (DSTMAC)

Brief Description:

This module contains four macros used by the Dynamic Stability Test.

Assembly Language Invocation:

SPSTATUS
or

SPWAIT
or

SR_ON_ERROR
or

RESET_WATCHDOG

Detailed Description:

Temp_Register

(RI,TI)

Label

The SPSTATUS Macro is used to ORB the Serial Port Status Register to a temp register.
The Macro needs to be used to work around a bug in the 809x-90.

The SPW AIT Macro is used to cause program execution to halt and wait for an RI or
TI flag, depending upon which is specified.

The BR_ON_ERROR Macro tests the high byte of EREGl and jumps to the label if
the byte is not zero. This can be used every time a General Diagnostic completes since
the detection of any error will cause the high byte of EREG I to be non-zero.

The RESET_WATCHDOG Macro does just what it says. The WATCHDOG TIMER
is reset by writing the correct sequence to location OAh.

To access a DSTMAC macro, this module must be $INCLUDEd.

7-49

MCS®-96 Diagnostics Library

Error Procedure (DSTERR)

Brief Description:

This module is called if any error is detected in the Dynamic Stability Test. Information
about the error is output over the serial port, and the test is restarted.

Assembly Language Calling Sequence:

CALL Error _Proc

Detailed Description:

This module is CALLed on detection of any error in the Dynamic Stability Test. When
CALLed, the procedure:

• disables interrupts,
• saves any rapidly changing values (TIMERI,T2CLK,HSO_STATUS, ...),

• waits for a serial transmit in progress to complete,

• waits for the current serial receive to complete,

• empties eight entries from the HSI_FIFO,
• transmits an open loop sync sequence in case a co-controller is stuck in the sync

routine, and

• waits a few hundred milliseconds to ensure that a co-controller has also detected a
failure.

After these steps have been taken, the DSTERR de-selects the 4800 baud line, selects
the 300 baud line, and outputs error messages. These messages include the Error Code
(EREGI), the Detail Code (EREG2), the address of the line in the test which found the
error, and the REAL TIME since reset.

Following the error messages, the procedure dumps' the data contained in the registers
and the external error buffer out over the serial port to the 300 baud device.

Finally, a RST instruction followed by a branch to the RST instruction is executed. If
the WATCHDOG TIMER is externally disabled, the test will stay in this loop. If the
WATCHDOG TIMER is not disabled, the test chip will reset, and the Dynamic Stability
Test will reinitialize.

DST Example User Code (DSTUSR)

Brief Description:

This is an example program that initiates the Dynamic Stability Test and then executes
some General Diagnostics as a background task.

Detailed Description:

DSTUSR sends parameters defined at assembly time to the DST initialization routine
(DSTISR). When control returns to DSTUSR, the example repeatedly executes ALUO 1,
ALU02, ALU04, ALU05 and MEMOA. It takes two minutes (with the given memory
parameters) for the DSTUSR background task to cycle once while interrupts are running.

When creating a custom background task, using this example program as a template will
speed development.

7-50

APPENDICES

APPENDIX A • DIAG96.LlB Error Messages by EREG1 Code

APPENDIX B • DIAG96.LlB Error Messages by Module Name

APPENDIX C • Description of DIAG96.LlB Batch Files

APPENDIX D • Example Program Listings
- D96A96
- D96P96
- D96FST
- DSTUSR

7-51

APPENDIX A
DIAG96.LIB Error Messages by EREG1 Code

0000 No Message
EREG2 = Offffh
MODULE = SYS01 /Common Symbols

0002 All Tests Passed
EREG2 = 0000
MODULE = SYS02lSystem Power-up

0003 All Tests Passed
EREG2=0000
MODULE = SYS03/Program Counter

0011 All Tests Passed
EREG2=0000
MODULE = ALU01 /Add/Subtract

0012 All Tests Passed
EREG2=0000
MODULE = ALU02lMULUB

0013 All Tests Passed
EREG2=0000
MODULE = ALU03/Multiply/Divide Table

0014 All Tests Passed
EREG2=0000
MODULE = ALU04/Multiply/Divide Random

0015 All Tests Passed
EREG2 = 0000
MODULE = ALU05/Multiply/Divide Core

0021 All Tests Passed
EREG2=0000
MODULE = MEM01/Complementary Address (Registers)

0022 All Tests Passed
EREG2=0000
MODULE = MEM02lWaiking Ones/Zeros (Registers)

0023 All Tests Passed
EREG2 = 0000
MODULE = MEM03/Galloping Ones/Zeros (Registers)

0024 No bits were set i!l the byte tested
EREG2=0000
MODULE = MEM04/Bits Set

0025 All Tests Passed
EREG2=0000
MODULE =MEM05/Checkerboard Pattern (Registers)

0026 All Tests Passed
EREG2=0000
MODULE = MEM06/Complementary Address

7-52

MCS@-96 Diagnostics Library

0027 All Tests Passed
EREG2=0000
MODULE = MEM07IWaiking Ones

0028 All Tests Passed
EREG2=0000
MODULE = MEM08/Galloping Ones

0029 All Tests Passed
EREG2=0000
MODULE = MEM09IWaiking Ones/Zeros

002A All Tests Passed
EREG2=0000
MODULE = MEMOAIGalioping Ones/Zeros

002C All Tests Passed
EREG2 = 0000
MODULE = MEMOC/User Pattern (Registers)

002D All Tests Passed
EREG2=0000
MODULE = MEMOD/User Pattern

0030 All Tests Passed, checksum is ready
EREG2 = 16-bit checksum
MODULE = D96A96/ALL Tests in ASM96

0040 Initialization completed satisfactorily
EREG2 = 0000
MODULE = DSTISR/DST Initialization

OOEO All Tests Passed, checksum is over range specified
EREG = 16-bit checksum
MODULE = D96FST/Selected Tests in ASM

OOFO All Tests Passed, checksum is ready
EREG2 = 16-bit checksum
MODULE = D96P96/ALL Tests in PLM96

0102 I/O Status Registers were unexpected
EREG2 = 10SO in low byte, IOS1 in high byte
MODULE = SYS02/System Power-up

0103 Test Code Returned Early
EREG2 = Early Time
MODULE = SYS03/Program Counter

0111 An Addition error occurred
EREG2=offending argument when the error occurred
MODULE=ALU01/Add/Subtract

0112 Incorrect multiplication result was detected
EREG2 = Multiplier/Multiplicand
MODULE = ALU02lMULUB

0115 A signed operation failed
EREG2=offending argument on error
MODULE = ALU03/Multiply/Divide Table

7-53

MCS®-96 Diagnostics Library

0115 A signed operation failed
EREG2 = offending argument on error
MODULE = ALU04/Multiply/Divide Random

0115 A signed operation failed
EREG2 = offending argument on error
MODULE = ALU05/Multiply/Divide Core

0121 A memory location failed
EREG2 = address of the error
MODULE=MEM01/Complementary Address (Registers)

0122 A memory location failed
EREG2 = address of the error
MODULE = MEM02lWaiking Ones/Zeros (Registers)

0123 A memory location failed
EREG2 = address of the error
MODULE = MEM03/Galloping Ones/Zeros (Registers)

0124 At least one bit was set in the byte tested
EREG2 = number of bits set
MODULE = MEM04/Bits Set

0125 A memory location failed
EREG2"" address of the error
MODULE = MEM05/Checkerboard Pattern (Registers)

0126 A memory location failed
EREG2 = address of error
MODULE = MEM06/Complementary' Address

0127 A memory location failed
EREG2 = address of the error
MODULE = MEM07/Walking Ones

0128 A memory location failed
EREG2 = address of the error
MODULE = MEM08/Galloping Ones

0129. A memory location failed
EREG2 = address of the error
MODULE = MEM09/Walking Ones/Zero

012A A memory location failed
EREG2 = address of the error
MODULE = MEMOA/Galloping Ones/Zeros

012B 16-bit Checksum is ready
EREG2 = 16-bit Checksum
MODULE = MEMOB/Checksum

012C A memory location failed
EREG2 = address of the error
MODULE = MEMOC/User Pattern (Registers)

0120 A memory location failed
EREG2 = address of the error
MODULE = MEMOD/User Pattern

7-54

MCS®-96 Diagnostics Library

0140 An abnormal RESET occurred
EREG2 = TIMER1
MODULE = DSTISR/DST Initialization

0161 A high pulse on HSI.2 had an unexpected width
EREG2=difference between actual and expected pulse width
MODULE = DSTHSI/High Speed Inputs

0190 An overflow of T2CLK was indicated
EREG2=TIMER1
MODULE = DSTTOVlTimer Overflows

01 AO One or more DST Module did not execute on time
EREG2=Number of SHIFTs done
MODULE = DSTEXI/External Interrupt (Supervisor)

01 BO An unexpected serial character was received
EREG2 = Bad character received
MODULE = DSTSERISerial Port

01CO An unexpected AID conversion result was found
EREG2 = Channel number of unexpected result
MODULE = DSTA2D/AID Conversion Complete

01 DO Found unexpected value on PORT1
EREG2 = expected value in high byte, actual in low byte
MODULE = DSTSWT/Sof!ware Timers

01 D1 Invalid T2CLK value reached
EREG2=T2CLK
MODULE = DSTSWT/Sof!ware Timers

0202 TIMER1 did not change over time
EREG2=TIMER1
MODULE = SYS02/System Power-up

0203 Test Code Returned Late
EREG2=Late Time
MODULE = SYS03/Program Counter

0211 A Subtraction error occurred
EREG2=offending argument when the error occurred
MODULE = ALU01 IAdd/Subtract

0215 An unsigned operation failed
EREG2=offending argument on error
MODULE = ALU03/Muitiply/Divide Table

0215 An unsigned operation failed
EREG2=offending argument on error
MODULE = ALU04/~ultiply/Divide Random

0215 An unsigned operation failed
EREG2=offending argument on error
MODULE = ALU05/Muitiply/Divide Core

0240 T2CLK will not change
EREG2=xxxx
MODULE = DSTISR/DST Initialization

7-55

MCS®-96 Diagnostics Library

0261 A low pulse on HSI.2 had an unexpected width
EREG2 = difference between actual and expected pulse width
MODULE = DSTHSl/High Speed Inputs

02BO A carriage return was received out of sequence
EREG2 = number of characters since a carriage return
MODULE = DSTSERISerial Port

02DO AID Done did not occur within BURST window
EREG2 = Time between AID done and Software Timer 0
MODULE = DSTSWT/Software Timers

02D1 Test reached an illegal Software Timer 0 state
EREG2 = Illegal case jump made
MODULE = DSTSWT/Software rimers

0302 Zero Register was found to change
EREG2 = Program Status Word At Failure
MODULE = SYS02/System Power-up

0303 Counter Register contained unexpected value
EREG2 = Erroneous Counter Value
MODULE = SYS03/Program Counter

0311 A flag error occurred
EREG2 = offending argument when the error occurred
MODULE = ALU01/Add/Subtract

0315 A flag error occurred
EREG2=offending argument on error
MODULE = ALU03/Muitiply/Divide Table

{)315 A flag error occurred
EREG2 = offending argument on error
MODULE = ALU04/Muitiply/Divide Random

0315 A flag error occurred
EREG2 = offending argument on error
MODULE = ALU05/Muitiply/Divide Core

0340 T2RST pin would not RESET T2CLK .
EREG2=xxxx
MODULE = DSTISR/DST Initialization

0361 A high pulse on HSI.3 had an unexpected width
EREG2 = difference between actual and expected pulse width
MODULE = DSTHSl/High Speed Inputs

0391 Illegal Opcode

03DO REAL TIME update did not occur within BURST window
EREG2 = Time between REAL TIME update and Software Timer 0
MODULE = DSTSWT/Software Timers

0402 PUSHF or POPF failed
EREG2 = Erroneous PUSHed or POPed value found
MODULE = SYS02lSystem Power-up

7-56

MCS®-96 Diagnostics Library

0440 IOCO.1 would not RESET T2CLK
EREG2=xxxx
MODULE = DSTISR/DST Initialization

0461 A low pulse on HSI.3 had an unexpected width
EREG2 = difference between actual and expected pulse width
MODULE = DSTHSIlHigh Speed Inputs

0400 HSO.O response did not occur within BURST window
EREG2 = Time between HSO.O update and Software Timer 0
MODULE = DSTSWT/Software Timers

0502 Sticky Bit would not set
EREG2=3fffh
MODULE = SYS02/System Power-up

0502 Sticky Bit would not clear
EREG2=0000
MODULE = SYS02/System Power-up

0561 HSI unit indicated an HSI.1 event occurred
EREG2=Time recorded in HSI FIFO
MODULE = DSTHSl/High Speed Inputs

0500 HSI(.O) response did not occur within BURST window
EREG2=Time between HSI(.O) service and Software Timer 0
MODULE = DSTSWT/Software Timers

0602 Carry Flag Test Failed
EREG2=xxxx
MODULE = SYS02/System Power-up

0702 Overflow flags would not set correctly
EREG2=0002h
MODULE = SYS02/System Power-up

0702 Overflow flags would not clear correctly
EREG2=xxxx
MODULE = SYS02/System Power-up

0802 Interrupt Pending Register failed read/write test
EREG2 = offending Interrupt Pending by1e
MODULE = SYS02lSystem Power-up

xx91 (user defined}
EREG2 = (user defined}
MODULE = DSTTOVlTimer Overflows

7-57

·. APPENDix B
DIAG96.LIB Error Messages by Module Name

ALUOl

ALU02

ALU03

ALU04

ALU05

Add/Subtract
0011 All Tests Passed

EREG2 = 0000

0111 An Addition error occurred
EREG2 = offending argument when the error occurred

0211 A Subtraction error occurred
EREG2 = offending argument when the error occurred

0311 A flag error occurred
EREG2 = offending argument when the error occurred

MULUB .
0012 All Tests Passed

EREG2= 0000

0112 Incorrect multiplication result was detected
. EREG2 = Multiplier/Multiplicand

Multiply/Divide Table
0013 All Tests Passed

EREG2 = 0000

0115 A signed operation failed
EREG2 = offending argument on error

0215 An unsigned operation failed
EREG2 = offending argument on error

0315 A flag error occurred
EREG2 = offending argument on error

Multiply/Divide Random
0014 All Tests Passed

EREG2 = 0000

0115 A signed operation failed
EREG2 = offending argument on error

0215 An unsigned operation failed
EREG2 = offending argument on error

0315 A flag error occurred
EREG2 = offending argument on error

Multiply/Divide Core
0015 All Tests Passed

EREG2 = 0000

0115 A signed operation failed
EREG2 = offending argument on error

0215 An unsigned operation failed
EREG2 = offending argument on error

0315 A flag error occurred
EREG2 = offending argument on error

7-58

D96A96

D96FST

D96P96

DSTA2D

DSTEX1

DSTHSI

DSTISR

DSTSER

MCS®-96 Diagnostics Library

All Tests in ASM96
0030 All Tests Passed, checksum is ready

EREG2 = 16-bit checksum

Selected Tests in ASM
OOEO All Tests Passed, checksum is over range specified

EREG2 = 16-bit checksum

ALL Tests in PLM96
OOFO All Tests Passed, checksum is ready

EREG2 = 16-bit checksum

AID Conversion Complete
01 CO An unexpected AID conversion result was found

EREG2 = Channel number of unexpected result

External Interrupt (Supervisor)
01AO One or more DST Module did not execute on time

EREG2 = Number of SHIFTs done

High Speed Inputs
0161 A high pulse on HSI.2 had an unexpected width

EREG2 = difference between actual and expected pulse width

0261 A low pulse on HSI.2 had an unexpected width
EREG2 = difference between actual and expected pulse width

0361 A high pulse on HSI.3 had an unexpected width
EREG2 = difference between actual and expected pulse width

0461 A low pulse on HSI.3 had an unexpected width
EREG2 = difference between actual and expected pulse width

0561 HSI unit indicated an HSI.1 event occurred
EREG2 = Time recorded in HSI FIFO

DST Initialization
0040 Initialization completed satisfactorily

EREG2 = 0000

0140 An abnormal RESET occurred
EREG2 = TIMER1

0240 T2CLK will not change
EREG2 = xxxx

0340 T2RST pin would not RESET T2CLK
EREG2 = xxxx

0440 IOCO.1 would not RESET T2CLK
EREG2 = xxxx

Serial Port
0180 An unexpected serial character was received

EREG2 = 8ad character received

0280 A carriage return was received out of sequence
EREG2 = number of characters since a carriage return

7-59

~CS®-96 Diagnostics Library,

OSTSWT Software Timers
01 DO Found unexpected value on PORT1

EREG2 = expected value in high byte, actual in low byte

01 01 Invalid T2CLK value reached
EREG2 = T2CLK

0200 'NO Done did not occur within BURST window
EREG2 = Time between NO done and Software Timer 0

, 0201 Test reached an illegal Software Timer 0 state
EREG2 = Illegal case jump made

0300 REAL TIME update did not occur within BURST window
EREG2 = Time between REAL TIME update and Software Timer 0

0400 HSO.O response did not occur within BURST window
EREG2 = Time between HSO.O update and Software Timer 0

0500 HSI(.O) response did not occur within BURST window
EREG2 = Time between HSI(.O) service and Software Timer 0

OSTTOV' Timer Overflows

MEM01

MEM02

MEM03

MEM04

0190 An overflow of T2CLK was indicated
EREG2 = TIMER1

xx91 (user defined)
EREG2 = (user defined)

Complementary Address (Registers)
0021 All Tests Passed

EREG2 = 0000

0121 A memory location failed
EREG2 = address of the error

Walking OneslZeros (Registers)
0022 All Tests Passed

EREG2 = 0000

0122 A memory location failed
EREG2 = address of the error

Galloping Ones/Zeros (Registers)
0023 All Tests Passed

EREG2 = 0000

0123 A memory location failed
EREG2 = address of the error

Bits Set
0024 No bits were set in the byte tested

EREG2 = 0000

0124 At least one bit was set in the byte tested
EREG2 = number of bits set

7-60

MEM05

MEM06

MEM07

MEM08

MEM09

MEMOA

MEMOB

MEMOC

MEMOO

MCS®-96 Diagnostics Library

Checkerboard Pattern (Registers)
0025 All Tests Passed

EREG2 = 0000

0125 A memory location failed
EREG2 = address of the error

Complementary Address
0026 All Tests Passed

EREG2 = 0000

0126 A memory location failed
EREG2 = address of error

Walking Ones
0027 All Tests Passed

EREG2 = 0000

0127 A memory location failed
EREG2 = address of the error

Galloping Ones
0028 All Tests Passed

EREG2 = 0000

0128 A memory location failed
EREG2 = address of the error

Walking Ones/Zeros
0029 All Tests Passed

EREG2 = 0000

0129 A memory location failed
EREG2 = address of the error

Galloping Ones/Zeros
002A All Tests Passed

EREG2 = 0000

012A A memory location failed
EREG2 = address of the error

Checksum
012B 16-bit Checksum is ready

. EREG2 = 16-bit Checksum

User Pattern (Registers)
002C All Tests Passed

EREG2 = 0000

012C A memory location failed
EREG2 = address of the error

User Pattern
0020 All Tests Passed

EREG2 = 0000

0120 A memory location failed
EREG2 = address of the error

7-61

SYS01

SYS02

SYS03

MCS®-96 Diagnostics Library

Common Symbols
0000 No Message

EREG2 = Offffh

System Power-up
0002 All Tests Passed

EREG2 = OOOOh

0102 I/O Status Registers were unexpected
EREG2 = 10SO in low byte, IOS1 in high' byte

0202 TIMER1 did not change over time
EREG2 = TIMER1

0302 Zero Register was found to change
EREG2 = Program Status Word At Failure

0402 PUSHF or POPF failed
EREG2 = Erroneous PUSHed or POPed value found

0502 Sticky Bit would not set
EREG2 = 3fffh

0502 Sticky Bit would not clear
EREG2 = 0000

0602 Carry Flag Test Failed
EREG2 = xxxx

0702 Overflow flags would not set correctly
EREG2 = 0002h

0702 Overflow flags would not clear correctly
EREG2 = xxxx

0802 Interrupt Pending Register failed read/write test
EREG2 = offending Interrupt Pending byte

Program Counter
0003 All Tests Passed

EREG2 = 0000

0103 Test Code Returned Early
EREG2 = Early Time

0203 Test Code Returned Late
EREG2 = Late Time

0303 Counter Register contained unexpected value
EREG2 = Erroneous Counter Value

7-62

APPENDIX C
DESCRIPTION OF DIAG96.LlB BATCH FILES

The batch files that come with the library will help speed the process of either linking
to the library as is, or revising library programs to suit custom purposes.

Some batch files require a parameter that provides the extension less name of a user
definable variable file to be included in the action of the batch file.

All DIAG96.LIB batch files assume that both the source and destination files reside in
the same directory. Given the size of the library, and the fact that all of the files will
not fit on one floppy disk, the command files will need to be edited if the user's system
is not equipped with a hard disk.

INSTAL. BAT - Used to install the library on a hard disk system. To install the library,
create a directory called \ DIAG96 under the main directory, insert disk I into drive
a: and type:

a:Instal

DST360K .BAT & DSTl2MEG.BAT- CAUTION: THEE BATCH FILES WILL
FORMAT AND DESTROY ALL INFORMATION ON THE FLOPPIES USED.
These command files were created to make the DIAG96.LIB disk set. DST360K was
created for use with 360K floppy disks and requires three diskettes. DSTl2MEG was
created for use with 1.2M disks and only needs two diskettes. The batch files will prompt
you to change disks. MAKE SURE TO ENTER THE CORRECT DISK DRIVE
WHEN INVOKING THESE BATCH FILES. ALSO MAKE SURE TO INCLUDE
THE DRIVE ID IN THE COMMAND LINE. THESE BATCH FILES FIRST
FORMAT THE DISK, AND WE ALL KNOW WHAT WHEN DOS DEFAULTS
TO THE HARD DISK!!!!!!!!!!
For example:

DSTI2MEG a:

SCRUB.BAT- CAUTION: THIS FILE DELETES FILES USING WILDCARDS.
All Diagnostic Library related files are delected for the \ DIAG96 directory. SYS??
and MEM?? wildcards are used, so be forewarned. This batch file does not delete itself!!!!
To invoke this batch file, type:

Scrub

D96ASM.BAT - Assembles all General Diagnostic modules including the PLM
compilation of D96P96.P96. To invoke the batch file, get in the \ DIAG96 directory
and type:

D96ASM

DSTASM. BAT - Assembles all Dynamic Stability Test modules. To invoke the batch
file, get in \ DIAG96 directory and type:

DSTASM

D96LP • BAT - Copies all General Diagnostic list files to a printer. Invocation must
include a device where the printer resides. For example:

D96LP lptl

DSTLP . BAT - Copies all Dynamic Stability Test modules to a printer. Invocation
must include a device where the printer resides. For example:

DSTLP.BAT Iptl

LPONLY • BAT - Executes D96LP.BAT and DSTLP.BAT. Invocation must include
a device where the printer resides. For example:

LPONLY lptl

7-63

MCS®-96 Diagnostics Library

D96LIB.BAT - Deletes the current DIAG96.LIB collection. Also creates a new library
of the same name using the files resident in the \ DIAG96 directory bearing the General
Diagnostics names. The DST96.LIB is not altered, and is included in the new
DIAG96.LIB. To invoke the batch file, get in the \ DIAG96 directory and type:

D96LIB

DSTLIB.BAT- Deletes the current DST96.LIB collection. Also creates a new library
of the same name using the files resident in the \ DIAG96 directory bearing the
Dynamic Stability Test names. Since DST96.LIB is included in DIAG96.LIB,
DIAG96.LIB is recreated by an invocation of D96LIB.BAT. To invoke this batch file,
get in the \ DIAG96 directory and type:

DSTLIB

DSTRL.BAT - This batch file is of most interest to Dynamic Stability Test users. It
links a specified main task to the library. This file makes assumptions about the hardware
memory implementation that may not be correct. Therefore minor changes may need
to be made to the DSTRL.BAT RL96 invocation statement. A file name without exten­
sion must be provided and that file must reside in the \ DIAG96 directory. The batch
file assumes that the extension of the object file to be linked to the library is .OBJ. For
example:

DSTRL Example_task

BLASTP • BAT - This batch file assembles the specified input file, then executes
D96ASM.BAT, DSTASM.BAT, LPONLY.BAT, DSTLIB.BAT, and DSTRL.BAT.
Then, the listfile output of the user's assembly and the print file of the linkage are
copied to the printer specified. The batch file assumes that the input .file is in the
\ DIAG96 directory and has a .A96 extension. For example:

BLASTP Example_ lptl

BLASTN . BAT - This batch file executes all assemblies, compliations, and linkages
executed in BLASTP.BAT, but no copies are sent to the printer. The batch file assumes
that the input file is in the \ DIAG96 directory and has a .A96 extension. For example:

BLASTN Example_task

REGEN • BAT - Used to regenerate the library when only one module has changed.
Specify the module that has changed when invoking this batch file. For example:

REGEN ALU03

MAKPLM.BAT - Used to make an impostor PLM96.LIB. The library created in not
a real PLM96.LIB, and will not work with PLM programs. However, it is what is needed
to use DIAG96.LIB. To invoke this batch file, get in the \ DIAG96 director and type:

MAKPLM

MAKBH.BAT - Used to modify the library to run in an 8X9XBH. The 8X9XBH
fails a flag test because of the - 90 bug relating to the Z flag on add and subtract with
carry is inadvertantly verified by a library test. To invoke this batch file, get in the
.\ DIAG96 directory and type:

MAKBH

D96RL.BAT - A generalized command that links target modules to DIAG96.LIB. It
is intended for used when only' the General Diagnostics are being used. Provide the
target object file name and the directory in which it resides. For example:

D96RL \ SOURCE \ Example_

7-64

""I
I

0)
0'1

SERIES-III MCS-96 MACRO ASSEMBLER. Vl.9

SOURCE FILE: :F5:D96A96.A96
OBJECT FILE: :F5:D96A96.0BJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOGEN DEBUG

ERR LOC OBJECT LINE
1
2
3
4
5
6
7
8
9

H'
11
12
13
14
15
16
17
18
19
2121
21
22
23
24
25
26
27
28
29
3121
31
32
33

9999 34
35
36
37
38

3121121121 39
4121
41
42
43
44
45
46
41

=1 48
=1 49
=1 5121
=1 ~l

SOURCE STATEMENT

;**~*******
ALL TESTS ASM96 MODULE STACKSIZE(2121)
;*** 0030

in order to run this module. the STACK must be ALL external. and the
data ram partitioned for memory test must not include ANY of the STACK

To call this module

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
PUSH
CALL

#<RAM seqrnentl start address>
#<RAM segmentl ending address>
#<RAM segment2 start address>
#<RAM seament2 ending address>
i<random seed>
i<number of cycles desired for random test>
#<address of the last byte of rom>
#<an argument for mUl/div tests>
#<a second argument for mUl/div tests>
#<a bit pattern for memory tests>
D96A96

Remember. this test will take a long time if large memory reqions are
partitioned. or if a large number of cycles of random test numbers is
requested. For example. with 8Kbytes of Ram in each reqion the test
executes in 3 hours.

It is suggested that for large memory tests. that the complimentary
address test be done on the whole region at once. Then. the more

: ,exhaustive tests done on each memory' chip in the system.
;**~**.*

rseg

extrn sp,ereql.ereq2

cseg at 3999h
extrn sysI2l1.sys92.sys93.alu91.alu92.alu93.alu94.alu95
extrn mem01.mem92.mem03.mem94.mem95.mem96.mem07.mem08
extrn mem99.meml2la.mem9b.mem9c.mem9d

PUBLIC D96A96
$eject

$inc1ude (:f3:dstmac.inc) :provides the macro BR ON Error
:***
:DST Macros INCLUDE FILE :**
:***

m
><
D)

3
"0
i"
."
(3
ca ...
D)

3
r
~
::J
ca
(I)

c
CO en »
CO en

»
"tJ
"tJ m
Z
C
><
C

ERR LOC OBJECT LINE SOURCE STATEMENT
104
105

0000 106 D96A96.
107

0000 EF0000 E 11218 CALIJ sys02 rCAI.L the System Power Up Test-
109
110 BR_ON_ERR Error Found
114

000A EF0000 E 115 CALL alu01 rCALL the Add/Subtract test
116
11'1 BR ON ERR Error Found
121

0014 EF0000 E 122 CALL alu02 rCALL the MULUB test
123
124 BR ON ERR Error Found
128

001E EF0000 E 129 CALL a-lu03 rCALL the Multiply/Divide Table
130 rdriven test
131 BR_ON_ERR Error Found
135

~ 0028 CB000C E 136 PUSH 0ch[sp] r-PUSH a random seed
002B CB000C E 137 PUSH- 0ch[sp] rPUSH the number of tests desired n

\Il 002E EF0000 E 138 CALL alu04 rCALL the Multiply/Divide Random test @)

139 ~ 140 BR-ON ERR Error Found
\:! 144

~ 0038 CB0006 E 145 PUSH 06h[sp] rPUSH an argument = (IQ
I 003B CB0006 E 146 PUSH 06h[sp] rPUSH another argument = 0) 0

0) 003E EF0000 E 147 CALL alu05 rCALL the Multiply/Divide Core Test '" g. 148
'" 149 BR ON ERR

153
Error_Found

~
0048 EF0000 E 154 CALL memlH rCALL a Complementary Address test

.,
= 155 ron the internal reaisters
.,
'<

156 BR ON ERR Error Found
160

0052 EF0000 E 161 CALL mem02 rCALL a Walking Is/0s test on
162 rthe internal registers
163 BR ON ERR Error Found
167

005C EF0000 E 168 CALL mem03 rCALL a Galloping Is/0s test on
169 rthe internal re9isters
170 BR ON ERR
174

Error_Found

0066 C800 E 175 PUSH zero rPUSH a zero
0068 EF0000 E 176 CALL mem04 :CALL the Bits Set Test

177
178
182

BR ON ERR Error_Found

0072 EF0000 E 183 CALL mem05 rCALL a Checkerboard Pattern test
184 :for internal registers
185 BR ON ERR Error Found
189

007C CB0014 F: 190 PUSH 14h[sp] PUSH the start address
007F CB0014 E 191 PUSH 14h[sp] and the end address of a RAM area
0082 FoF0"'00 E 192 CALL mem06 and CALL a Complementary Address tesl

193

ERR LaC OBJECT LINE SOURCE STATEMENT
194 BR ON ERR Error Found
198

l!Jil8C CBI!J1!J11!J E 199 PUSH 1i1h[sp] PUSH a second start and end address '
ilI!J8F CB01!J1i1 E 2i1I!J PUSH 1l!Jh[sp] and repeat the
1!J1!J92 EFI!JI!JI!JI!J E 21!J1 CALL memI!J6 Complementary Address test

202
21!J3 BR ON ERR, Error Found
21!J7

01!J9C CBI!JI!J14 E 21!J8 PUSH 14h[sp] PUSH a start address
1!J1!J9F CBilI!J14 E 21!J9 PUSH 14h[sp] PUSH an endinq address
£)I!JA2 EF00I!JiI E 2Hl CALL mem07 CALL a lla1king Ones test

211
212 BR ON ERR Error Found
216

00AC CBI!JI!J10 E 217 PUSH 1l!Jh[sp] PUSH the start and end address
I!JI!JM' CB0011!J E 218 PUSH Hlh[sp] for another section of RAM
I!JI!JB2 EFill!Jl!J1iI E 219 CALL memI!J7 and repeat the lla1king Ones test

221!J
221 BR ON ERR Error Found
225

is: I!JIlBC CB01i114 E 226 PUSH 14h[sp] PUSH a start address I"l 01i1BF CBilI!J14 E 227 PUSH 14h[sp] PUSH an endinq address rIl
0I!JC2 EFI!J001!J E 228 CALL memI!J8 CALL a Gallopinq Ones test @

I

229 '-C>
~

2311 BR ON ERR Error 'Found t::1 234 ;.
....... 235 IJQ
I = 0i1CC CB0010 E 236 PUSH 1l!Jh[sp] PUSH a second start and end address 0 (J)

'" il0CF CBI!JI!J10 E 237 PUSH 10h[sp] for another region of RAM and g.
0I!JD2 EFI!J001!J E 238 CALL mem08 CALL the Galloping Ones test again '" 239 t:

241!J BR ON ERR Error Found - -244 0> ...
I!J.0DC CBI!J014 E 245 PUSH 14h[sp] PUSH the start and end address of '<!!

1!J0DF CB01!J14 E 246 PUSH 14h[sp] a region of RAM
0I!JE2 EFI!J1!J01!J E 247 CALL memI!J9 CALL the Ilalking Is/l!Js test

248
249 BR ON ERR Error Found
253
254

l!JilEC CBI!JI!J10 E 255 PUSH 1l!Jh[sp] PUSH the start and end address of
0I!JEF CB0010 E 256 PUSH 10h[sp] another region of RAM
I!JI!JF2 EF001!J1!J E 257 CALL memI!J9 CALL the waiking IS/0s test again

258
259 BR-ON ERR Error" Found
263

I!JI!JFC CB01!J14 E 264 PUSH 14h[sp] PUSH the start and end address of
I!JI!JFF CB0014 E 265 PUSH 14h[sp] a reqion of RAM
I!JlI!J2 EFI!J01!J0 E 266 CALL meml!Ja CALL a Galloping Is/l!Js test

267
268 BR ON ERR Error Found
272
273

1!J10C CB0011!J E 274 PUSH 10h[sp] PUSH the start and end address of
I!Jll!JF CBI!J011!J E 275 PUSH lI'Ih[sp] another rea ion of RAM
0112 EF01!J1!J1!J E 276 CAI"L mem0a CALI" the Galloping Is/l!Js test again

277

......
I

O'l
00

ERR LOC OBJECT

III 11 A CBI111l1ll2
011D EF0000

11125 CBIIl014
0128 CB0lH4
1112B CBIIl0116
1Il12E EF0011l0

1Il136 CB0010
0139 CB0"10
I/ll3C CB0006
~13F EF00f1l0

11147 CB0014
014A CB0014
1114D EF000f1l

0155 CB0010
0158 CBfIl01f1l
015B EF0011f1l

fIl163 C98020
fIl166 CB000A
1d169 EF0011l0

016C Al3011l011l0

01711l CF0f1l14
1Il173 65120000
0177 F0

0178

11178 CF0014
017B 65120000
017F F0

11180

E
E

E
E
E
E

E
E
E
E

E
E
E

E
E
E

E
E

E

E
E

E
E

LINE
278
282
283
284
285
286
287
291
292
293
294
295
296
297
301
302
303
304
305
306
3 III 7
311
312
313
314
315
316
320
321
322
323
324
325
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

SOURCE STATE!1ENT
BR ON ERR Error Found

PUSH
CALL mem0c

BR ON ERR

PUSH
PUSH
PUSH

CALL mem0d

BR ON ERR

PUSH
PUSH
PUSH

CALL mem0d

BR-ON ERR

PUSH
PUSH

CALL sys03

BR ON ERR

PUSH
PUSH

CALL sys03

BR ON ERR

PUSH
PUSH

CALL mem0b

LD

0.2h[sp]

Error Found

l4h[sp]
14h[sp]
06h[sp]

Error Found

10h[sp]
10h[sp]
06h[sp]

Error Found

14h[sp] .
14h[sp]

Error Found

10h[sp]
10h[sp]

Error Found

#20811lh
0ah[sp]

EREGl.#0030h

POP 14h[sp]
ADD sp. #l2h
RET

Error Found:

PUSH a bit pattern to use and
CALL the Checkerboard Pattern test

for internal registers

:PUSH the start and end address­
: of a region of RAM. then
:PUSH a bit pattern to use. then
:CALL the Checkerboard Pattern test
: for external memory

:PUSH the start and end address
: of another region of RAM. then
:PUSH a bit pattern to use. then
:CALL the Checkerboard Pattern test
: for external memory

:PUSH a startinq address. and
:PUSH an ending-address for
: the Program Counter Module

:PUSH the start and end addresses
:for a second test region for
: for the Program Counter Module

:PUSH the code starting address
:PUSH the endinq code address
:CALL the Checksum routine

:ALL DIAG96 TESTS PASSED
: load th~ appropriate error code

clean off the stack

return to the calling program

POP 14h[sp] clean off the stack
ADD sp.#12h
RET : return to the calling program

:***
end

~
~
-Q
Q\

;1
= "" = ~
::;

" '" t"'
;;: ... =
Q

SYMBOL TABLE LISTING

N A M E VALUE ATTRIBUTES

ALL.TESTS ASM96 MODULE STACKSIZE(20)
ALU~h CODE EXTERNAL
ALU02 CODE EXTERNAL
ALU03 CODE EXTERNAL
ALU04 CODE EXTERNAL
ALU05 CODE EXTERNAL
BR ON ERR MACRO
D96A96. 0000H CODE REL PUBLIC ENTRY
EREGI REG EXTERNAL
EREG2 REG EXTERNAL
ERROR FOUND 0178H CODE REL ENTRY :::: MACRO-TEMP. 0000H REG REL BYTE

!"l MEM01 CODE EXTERNAL 1Jl
MEM02 CODE EXTERNAL 'f
MEM03 CODE EXTERNAL It:>

=--MEM04 CODE EXTERNAL
0 MEM05 CODE EXTERNAL 5' .-...J MEM06 CODE EXTERNAL "" I = MEM07 CODE EXTERNAL 0 Ol
'" CO MEM08 CODE EXTERNAL ~

i'r MEM09 CODE EXTERNAL '" MEM0A CODE EXTERNAL
~ MEM0B CODE EXTERNAL .. MEM0C CODE EXTERNAL = .. MEM0D CODE EXTERNAL '<

RESET IIATCHDOG. MACRO
RI. 0006H NULL ABS
SP. REG EXTERNAL
SP STAT . REG EXTERNAL
SPS'l'ATUS. MACRO
SPIIAIT. MACRO
SYS01 CODE EXTERNAL
SYS02 CODE EXTERNAL
SYS03 CODE EXTERNAL
TI. 0005H NULL ABS
ZERO. REG EXTERNAL

ASSEMBLY COMPLETED, NO ERROR(S) FOUND.

-...j
I

-...j
0

SERIES-III PL!M-96 VI.0 COMPILATION OF MODULE ALLDIAG96TESTS
OBJECT MODULE PLACED IN :F2:D96P96.0BJ
COMPILER INVOKED BY: PLM96.86 :F2:D96P96.P96 CODE DEBUG

I AIl$Diaq96$Tests:
DO~

2 1 SYS02: PROCEDURE mlORD EXTERNAL~
3 2 END SYS02~

4 1 SYS03: PROCEDURE (parmI. parm2) D.IORD EXTERNAL ~
5 2 DECI,ARE (parmI. parm2) ~lORD~
£> 2 END SYS03~

7 I ALU0I: PROCEDURE DHORD EXTERNAL;-
8 2 END ALU0I~

9 I ALU02: PROCEDURE mmRD EXTERNAL~
10 2 END ALU02~

11 1 ALU03: PROCEDURE ml0RD EXTERNAL:
12 2 END ALU03~

13 I ALU04: PROCEDURE (parmI.parm2) DWORD EXTERNAL:
14 2 DECLARE (parmI. parm2) ~lORD:
15 2 END ALU04:

16 1 ALU05: PROCEDURE (parmI.parm2) DWORD EXTERNAL:
17 2 DECLARE (parmI.parm2) WORD:
18 2 END ALU05:

19 1 MEM0l: PROCEDURE DWORD EXTERNAL:
20 2 END MEI~0I:

21 1 MEM02: PROCEDURE DWORD EXTERNAL:
22 2 END MEM02~

23 I MEM03: PROCEDURE DWORD EXTERNAL:
24 2 END MEM03:

25 1 MEM04: PROCEDURE (parml) mlORD EXTERNAL:
26 2 DECLARE (parmI) HORD:
27 2 END MEM04~

28 I MEM05: PROCEDURE DWORD EXTERNAL:
29 2 END MEM05~

30 1 MEM06: PROCEDURE (parm!.parm2) Dl/ORD EXTERNAL:
31 2 DECLARE (parml.parm2) HORD:
32 2 END MEM06:

33 1 MEMI17: PROCEDURE (parml.parm2) DWORD EXTERNAL:
34 2 DECLARE (parmI.parm2) WORD~
35 2 END ~IEM07~

~
I":l r.n
\"'
\Q
~

~
(JQ

= 0
~
n'
'" t:
t:I" ..
10 ..

'<!!

C
CD en
"U
CD en

36 1 MEM08, PROCEDURE (parmI, parm2) DlIORD EXTERNAl,:
37 2 DECLARE (parml,parm2) WORD:
38 2 END MEM08:

39 1 MEM09, PROCEDURE (parrnl,parm2) DWORD EXTERNAL:
411 2 DECLARE (parml,parm2) WORD:
41 2 END MEM09:

42 1 MEM0A, PROCEDURE (parmI, parm2) DWORD EXTERNAl,:
43 2 DECLARE (parmI, parm2) \IORD:
44 2 END NEM0A:

45 1 MEM0B, PROCEDURE (parmI,parm2) DHORD EXTERNAL:
46 2 DECLARE (parmI,parm2) WORD;
47 2 END MEM0B:

48 1 MEMIlC, PROCEDURE (parmI) mlORD EXTERNAL:
49 2 DECLARE (parmI) WORD:
50 2 END MEM0C:

51 1 MEM0D, PROCEDURE (parmI. parm2, parm3) DHORD. EXTERNAL: s: 52 2 DECLARE (parml,parm2,parm3) WORD: @ 53 2 END MEM0D:
\">
\C 54 1 DECLARE result DWORD: CI\

55 1 DECLARE error$codes STRUCTURE (number \IORD,detaii \/ORD) AT (.result); I:'
-...s .r

<JQ I = -...s 56 1 D96P96, PROCEDURE (:ramI$start,raml$stop, C> ~ ram2$start,ram2$stop, ;;.
random$seed,random$len~th, '"
topofcode, !: ... argumentl,ar9ument2, ., .,
bit$pattern) DWORD PUBLIC; .,

'<

57 2 DECLARE (ramI$start,raml$stop,
ram2$start,ram2$stop,
random$seed,random$length,
topofcode,
argllmentl,argument2,

.bit$pattern) WORD SLm/:

58 2 resuIt=SYS02:
59 2 IF error$codes.number. > 255 THEN GOTO end$tests:

61 2 reslllt=AI,UlH:
62 2 IF error$codes. number > 255 THEN Go'ro end$tests:

£.4 2 reslllt=ALU02:
65 2 IF error$codes.nllmber > 255 THEN GOTO end$tests:

67 2 resllIt=AI.U03:
68 2 IF error$codes.number > 255 THEN GOTO end$tests:

711 2 reslllt=AI.U04 (4 7efH,100011):

71 2 IF error$codes.nurnber > 255 THEN GOTO-end$tests:

73 2 resu1t=ALU~5(argument1,argument2):

74 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

76 2 resu1t=MEM~1:
77 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

79 2 resu1t=MEM~2:
8~ 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

82 2 resu1t=MEM~3:

83 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

85 2 resu1t=MEM~4(~):
86 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

88 2 resu1t=MEM~5:
89 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

91 2 resu1t=MEM~6(ram1$start,rarn1$stop): ~ 92 2 IF error$codes.nurnber > 255 THEN GOTO end$tests: ~
00

94 2 resu1t=MEM~6(ram2$start,rarn2$stop): @
~ 95 2 IF -error$codes.nurnber > 255 THEN GOTO end$tests: ~

resu1t=MEM~7(rarn1$start,rarn1$stop):
0

97 2 ~
~- 98 2 IF error$codes.nurnber > 255 THEN GOTO end$tests: ~
I =
~ =
~ 1~~ 2 resu1t=MEM~7(rarn2$start,rarn2$stop): ~

~
101 2 IF error$codes.nurnber > 255 THEN GOTO end$tests: ~

~
103 2 resu1t=MEM~8(rarn1$start,rarn1$stop): ~

~

104 2 IF error$codes.nurnber > 255 THEN GOTO end$tests: ~
~
~

106 2 resu1t=MEM08(rarn2$start,rarn2$stop):
107 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

109 2 resu1t=MEM09(rarn1$start,raM1$stop):
110 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

112 2 resu1t=MEM09(rarn2$start,rarn2$stop):
113 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

115 2 resu1t=MEM~A(rarn1$start,rarn1$stop):
]16 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

118 2 resu1t=MEM0A(rarn2$start,rarn2$stop):
119 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

121 2 resu1t=MEM0C(bit$pattern):
122 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

124 2 resu1t=MEM00(rarn1$start,rarn1$stop,bit$pattern):
125 2 IF error$codes.nurnber > 255 THEN GOTO end$tests:

127 2 resu1t=MEM00(rarn2$start.rarn2$stop.bit$pattern):

128 2 IF error$codes.number > 255 THEN GOTO end$tests;

130 2 resu1t=SYS03(ram1$start.ram1$stop);
131 2 IF error$cooes.number > 255 THEN GOTO eno$tests;

~
133 2 resu1t=SYS03(ram2$start.ram2$stop); I"l
134 2 IF error$codes.number > 255 THEN GOTO end$tests; fFJ

@ ,
resu1t=MEM0B(20S0h.topofcode);

\C
136 2 =--

~

-...I 137 2 error$codes.number=00f0h; 0;-
IJQ

I = -...I 138 end$tests: RETURN result:
Q

(.,) '" Q;
n

139 2 END D96P96; '"
~

140 END Al1$Diag96$Tests; or ..
~ ..
'<

STATEMENT 56
~~~9 D96P96: 
1111119 C809 E PUSH ?FRAMEIl1 
11902 A91890 E LD ?FRAMEIH • SP 

STATEMENT 58 
9005 EF9009 E CALL SYS92 
0098 AI!I1E02 R LD RESULT+2H.TMP2 
9~"1B A01C90 R LD RESULT.TMP9 

STATEMENT 59 
090E 89FF0090 R CMP ERRORCODES.#0FFH 
9912 D102 BNH @9991 

STATEMENT 60 
0914 2226 BR ENDTESTS 

STATEHENT 61 
9016 @0001: 
0916 EF9099 E CALL ALU91 
0919 A91E02 R LD RESULT+2H.TMP2 
991C A91C99 R LD RESULT.TMP9 

STATEMENT 62 
091F 89FF9990 R CMP ERRORCODE_S. #OFFH 
0023 D102 BNH @9992 :: 

STATEMENT 63 ("'l 

0925 2215 BR ENDTESTS 1Jl 
@) 

STATt:MENT 64 ,c 
9927 @9002: ~ 

0027 EF0999 E CALL AI,U02 Si! 
~ 002A A01E02 R LD RESULT+2H.TMP2 DO 

IIQ 
I 992D AIHC09 R LD RESULT.TMP0 = 
"'" STATEMENT 65 0 

"'" 
., 

0930 89FF0000 R CMP ERRORCODES.t0FFH g. 
9034 D102 BNH @9093 

., 
STATEMENT 66 ~ 0936 2294 BR ENDTESTS .. 
STATEMENT 67 DO .. 

0038 @0003: '< 

0938 EF0900 E CALL ALU93 
093B A91E92 R LD RESULT+2H.TMP2 
003E A91C99 R LD RESULT.TMP9 

STATEMENT 68 
0941 89FF9900 R CMP ERRORCODES.t0FFH 
0945 D102 BNH @9904 

STATEMENT 69 
0947 21F3 BR ENDTESTS 

STATEMENT 70 
0949 @9994, 
9949 C9EF47 PUSH #47EFH 
094C C99010 PUSH #1000H 
004F EFI:J900 E- CALL ALU04 
0952 A01E92 R LD RESULT+2H.TMP2 
9055 AIHC09 R LD RESllLT.TMP0 

STATEMENT 71 
0958 89FF0009 R C'IP ERRORCODES.#0FFH 
"05C D102 IlNII @0005 

STATt:MENT 72 
005E 21DC BR END1'ESTR 

STATt:MENT 73 



0060 @0005: 
0060 CB0008 E PUSH ARGUMENT1[?FRAME01] 
0063 C80006 E PUSH ARGUMENT2[?FRAME01] 
00(;6 EF0000 E CALL ALU05 
0069 A01E02 R LD RESULT+2H.TMP2 
006C A01C00 R LD RESULT.TMP0 

r STATEMENT 74 
006F 89FF0000 R CMP ERRORCODES.i0FFH 
0073 D102 8NH @0006 

STATEMENT 75 
0075 21C5 8R ENDTESTS 

STATEMENT 76 
0077 @0006: 
0077 Er'0000 E CALL MEM01 
01<17A A01E02 R LD RESULT+2H.TMP2 
007D A01C0e R LD RESULT.TMPe 

STATEMENT 77 
0080 89Fr'0000 R CMP ERRORCODEs.#eFFH 
0084 D1e2 BNH @0007 

STATEMENT 78 
0!l86 21B4 BR ENDTESTS a: STATEMENT 79 ("'l 
0088 @ee97: rJl 
91388 EF00ee E CALL MEM92 €I 

I 
0e8B A01Ee2 R LD RESULT+2H.TMP2 IC 
0e8E A91C01:l R LD RESULT.TMP9 =-

STATEMENT 813 ~ 
-...J 91391 89FFe9ge II> 

R CMP ERRORCODES.ieFFH "" I = -...J 9095 D192 BNH @e008 0 
CJ1 '" STATEMENT 81 0". 

01397 21A3 BR ENDTESTS t> 

'" STATEMENT 82 t: 0099 @ee98: r::r 01399 Er'eeee .. 
E CALL MEM03 II> .. 

e09C MIlE02 R LD RESULT+2H.TMP2 '< 
009F A01cee R LD RESULT.TMPe 

STATEMENT 83 
00A2 89FF0e00 R CMP ERRORCODEs.#eFFH 
00A6 D102 BNH @e0e9 

STATEMENT 84 
e0A8 2192 BR ENDTESTS 

STATEMENT 85 
eeAA @ee09: 
eeM C80i:1 PUSH Re 
ei:lAC Er'00ee E CALL MEH04 
00AF A01E02 R LD RESULT+2H.TMP2 
i:li:lB2 MHC00 R LD RESULT.TMP0 

STATEMENT 86 
01385 89FFe000 R CMP ERRORCODES.i0FFH 
00B9 D102 BNH @00eA 

STATEMENT 87 
l1i:1B8 217F BR ENDTESTS 

STATEMENT 88 
00BD @i:l00A: 
00BD EFoe00 E CAr.L MEM05 
00C0 A0H:02 R I.D IlESULT+2H.TMP2 



01lC3 AIlICfl0 R LO RESULT.TMPIl 
STATEMENT 89 

00C6 89FF01l00 R CMP ERRORCOOES.#0FFH 
IlIlCA 0102 BNH @1l01lB 

STATEMENT 91l 
01lCC 216E BR ENOTESTS 

STATEMENT 91 
00CE @00IlB: 
00CE CB01l16 E PUSH RAMlSTART[?FRAME01] 
01101 CB0014 E PUSH RAMlSTOP[?FRAME01] 
01104 EFfiJ01l1l E CALL MEMIl6 
11007 AIlIEIl2 R LO RESULT+2H.TMP2 
01l0A AIlICIlIl R LO RESULT.TMPIl 

STATEMENT 92 
11000 89FFIlllllll R CMP ERRORCOOES.#IlFFH 
01lEI 01112 llNH @IlIlIlC 

STATEMENT 93 
IlllE3 2157 BR ENOTESTS 

STATEMENT 94 
1l0E5 @IlIlIlC: 
01lE5 CBIlll12 E PUSH RAM2START[?FRAMElll] =: 1l0E8 CBIllllll E PUSH RAM2STOP[?FRAMElll] t"'l IlIlEB EFIlllflll E CALL MEM06 rn 
00EE AIlIEfl2 R LO RESULT+2H.TMP2 @I 

I 

IlflFl All 1 CIlIl R LO RESULT.TMPIl' IC 
0\ 

STATt:MENT 95 t;; 
IlllF4 89FFIlllllll R CMP ERRORCOOES.#IlFFH ;. 

....... fiJ1lE'8 0102 BNH @001l0 (JQ 
I = ....... STATEMENT 96 Q 

(J) 01lFA 2140 BR ENOTESTS ~ ;:;. 
STATEMENT 97 '" 

01lFC @01l1l0: t:: 
fl0FC CB0016 E PUSH RAmSTART[?FRAME01] CI" .. 
01WF CBIlll14 E PUSH RAM1STOP[?FRAME01] .. .. 
11102 EF01l00 E CALL MEM07 '< 

01115 A01E02 R LO RESULT+2H.TMP2 
01118 AIlIC00 R LO RESULT.TMP0 

STATEMENT 98 
011lB 89FFflllllfl R CMP ERRORCOOES.#0FFH 
!llflF' 0102 BNH @000E 

STATEMENT 99 
0111 2129 BR ENOTESTS 

STATEMENT 100 
Illi3 @000E: 
0113 CB01l12 E PUSH RAM2START[?FRAMElll] 
11116 CB0010 E PUSH RAM2STOP[?FRAME01] 
0119 EF0000 E CALL ME~107 

IlllC A01EIl2 R LO RESULT+2H.TMP2 
01H' A01C00 R LO RESULT.TMP0 

STATEMENT 101 
0122 89FF0001l R CMP ERRORCOOES.#0FFH 
0126 0102 BNH @fl01lF 

STATEMENT Hl2 
fl128 2112 BR ENnTESTS 

STATt:MENT 103 
012A @IHlIJF: 



012A CB0016 E PUSH RAMlSTART[?FRAME01] 
'H2D CB0014 E PUSH RAMlSTOP[?FRAME01] 
0130 EF0000 E CALL ~IEM08 
0133 A01E02 R I.D RESULT+2H. nlP2 
0136 A01C00 R LD RESULT. T~IP0 

STATEMENT 104 
0139 89FF0000 R CMP ERRORCODES.#OFFH 
013D DI02 BNH @0010 

STATEMENT 105 
013F 20FB BR ENDTESTS 

STATEIIENT 106 
0141 @0010: 
0141 CB0012 E PUSH RAM2START[?FRAMEOl] 
0144 CB0010 E PUSH RAM2STOP[ ?FRAHEOl] 
0147 EF0000 E CALL ~IEM08 
014A AOIE02 R LD RESULT+2H.TMP2 
014D AOIC00 R LD RESUL'r. TMPO 

STATEMENT 107 
0150 89~'FOOOO R CMP ERRORCODES.#OFFH 
0154 D102 BNH @0011 

STATEMENT 108 
3: 0156 20E4 BR ENDTESTS 
("'l STATEMP.NT 109 'JJ 

0158 @O'lJll: \"l 0158 CB0016 E PUSH RAMlSTART[?FRAMEOl] ~ 
0, 015B CB0014 E PUSH, RAMlSTOP[?FRAMEOl] 
t::I 015E EF0000 E CALL MEM09 S" -...j 0161 A01E02 R LD RESULT+2H.TMP2 IJC I = -...j 0164 AOIC00 R LD RESULT.TMPO 0 
Ul -...j STATEMENT 110 -0167 89FF0000 R CMP P.RRORCODES.#0FFH ;:;" 
Ul 

016B D102 BNH @0012 t: STATEMENT 111 ... .. 016D 20CD BR ENDTESTS ~ .. STATEMENT 11-2 '< 
016F @0012: 
016F CB0012 E PUSH RAM2START[?FRAME01] 
0172 CB00HJ E PUSH RAM2STOP[?FRAME01] 
0175 EF0000 E CALL MEM09 
0178 A01E02 R I.D RESULT+2H.TMP2 
017B A01C00 R LD RESULT.TMPO 

STATEMENT 113 
017E 89FF0000 R CMP ERRORCODES.#OFFH 
0182 D102 BNH @0013 

STATEMENT 114 
0184 20B6 BR ENDTESTS 

STATEMENT 115 
0186 @0013: 
101B6 CBOO16 E PUSH RAIIlSTART[ ?FRAMEl11] 
0189 CB0014 E PUSH RAM1STOP[?FRAMEOl] 
l118C EFl1000 E CALL MEMOA 
l11BF' A01E02 R LD RESULT+211.TMP2 
0192 A01C00 R LD Rl:~SULT. nlPo 

STATEllENT 116 
0195 89FFI0000 H CMP ERRORCODES.#OFF'H 
0199 DHI2 RNH @0014 



STATEMENT 117 
lH9H 21l9F BR ENOTESTS 

STATEMENT 118 
0190 @1l014: 
lH90 CBIlll12 E PUSH RAM2START[?FRAMElll] 
IHA0 CHIllllll E PUSH RAM2STOP[?FRAMElll] 
IllA3 EFIl01l1l E CALL ME MilA 
IllA6 A0lEIl2 R LO RESULT+2H.TMP2 
0lA9 AillCIl0 R I.D RESULT.TMPliI 

STATEMENT 119 
ilIAC 89FF01l1l1l R CMP ERRORCOOES.#IlFFH 
IllB0 011112 BNH @01H5 

STATEMENT 12111 
IllB2 211188 BR ENOTESTS 

STATEMENT 121 
01B4 @1l1l15: 
0lB4 CH01l1l4 E PUSH BITPATTERN[?FRAMElll] 
1l1B7 EFIlIlIlIl E CALL MEMIlC 
!llBA AlHEIl2 R LO RESULT+2H.TMP2 
1l1HO A!llCIl0 R LO RESULT.TMPIl 

STATEMENT 122 :: 0lC0 89~'F001l!l R CMP ERRORCOOES.#IlFFH ("'l 
(llC4 01!l2 BNH @1l1l16 rn 

STATEMENT 123 @J 
I 

1l1C6 2074 BR ENOTESTS ~ 
C\ 

STATEMENT 124 
~ -..j 0lCS @1l016: 

1l1CS CBIl016 E PUSH RAM1START[?FRAME01] (JQ 
I = -..j 01CB CBIl014 E PUSH RAMISTOP[?FRAMEIl1] Q 

00 til 

1l1CE CB!l1l04 E PUSH BITPATTERN[?FRAMElll] C; 

0101 EFIl01l1l E CALL MEM00 
n 
til 

111104 AIl1EIl2 R LO RESULT+2H'. TMP2 !:: 
!l107 A0lCIl0 R LO RESULT.TMP0 ... ... 

STATEMENT 125 10 ... 
o lOA 89FF1l0!l0 R CMP ERRORCOOES.#IlFFH .... 
Ill0E 011112 'HNII @1l017 

STATEMENT 126 
0lE0 21l5A BR ENOTESTS 

STATEMENT 127 
IcHE2 @1l0l7: 
IllE2 CBIl0l2 E PUSH RAM2START[?FRAMElll] 
IllE5 CBIl1l11l E PUSH RAM2STOP[?FRAME0l] 
illES . CBIl01l4 E PUSH BITPATTERN[?FRAME0l] 
(llEH EF000111 E CALL MEM00 
!llEE AIl1EIl2 R LO RESULT+2H.TMP2 
01Fl AIl1CIl0 R LO RESULT.TMPIl 

STATEMENT, 12S 
0lF4 S9FF0!l1l0 R CMP ERRORCOOES.#IlFFII 
!llFS 011112 BNH @lllllS 

STATEMENT 129 
0lFA 2040 BR ENOTESTS 

STATEMENT 13111 
0H'C @1l1l1S: 
!llFC CBIlll16 E PUSH RAM1START[?FRAMElll] 
IHFF CB0014 E PUSH RAM1STOP[?FRAME0l] 
11121112 EF01l00 E CALL SYSIl3 



"'235 A31E32 R LD RESULT+2H,TMP2 
"'208 MJlC33 R LD RESULT,TMP3 

STATEMENT 131 
32"'B 89FF'331'W R CMP ERRORCODES.#3FFH 
"'23F' D132 BNH @3319 

STATEMENT 132 
3211 2329 BR ENDTESTS 

STATEMENT 133 
0213 @3319. 
3213 CB3012 E PUSH RA/12START[?FRAME31] 
3216 CB33Hl E PUSH RAM2STOP[?FRAME31] 
3219 EF3333 E CALL SYS03 
321C A31E32 R LD RESULT+2t1.TMP2 
321F A31C33 R LD RESULT,TMP3 

STATEMENT 134 
3222 89FF3033 R CMP F.RRORCODES,#3FFH 
3226 D132 _ BNH @331A 

STATEMENT 135 
0228 2312 BR ENDTESTS 

STATEMENT 136 :: 
1!122A @331A. I"l 

[JJ 
"'22A C98323 PUSH #2380H ~ 022D CB030A E PUSH TOPOFCODE[?FRAME31] \C 

"'233 EF0033 E CALL MEM3B '" 
0233 A31E32 R LD RESULT+2H,TMP2 t:I ;. 

--oJ 3236 A"'lC03 R LD RESULT,TMP3 (IQ 
I : STATEMENT 137 = --oJ c:> 

CD 3239 ADF333 R LDBZE ERRORCODES,#3F3t1 ~ 
STATEMENT 138 (;' 

fIl 
323C ENDTESTS. t: 023C A3321E R LD TMP2.RESULT+2H .,. 
023F A3031C R LD TMP3,RESULT .. = 3242 CC30 E POP ?FRAME31 .. 

'< 
3244 A21822 LD TMP6,[SP] 
3247 65163318 ADD SP, U6H 
324B E322 BR [TMP6] 

STATEMENT 139 
STATEMENT 140 

END 

MODULE INFORMATION. 

CODE AREA SIZE 024DH 589D 
CONSTANT AREA SIZE 0333H 3D 
DATA AREA SIZE 3033H 3D 
STATIC REGS AREA SIZE 3"'34H 4D 
OVERLAYA8LE REGS ARF.A SIZE 0033H' 3D 
MAXIMUM STACK SIZE 3"'3AH 10D 
183 LINES READ 

PL/M-96 CmlPILATION CmIPLETE. o ~IARNINGS. '" ERRORfi 



--..j 
I 

<XI 
o 

MCS-96 MACRO ASSEMBLER SELECTED TESTS ASM96 

SERIES-III MCS-96 MACRO ASSEMBLER, Vl.0 

SOURCE FILE: :F5:D96FST.A96 
OBJECT FILE: :F5:D96FST.OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOGEN DEBUG 

ERR LOC OBJECT 

0000 

0000 

LINE 
1 
2 
3 
4 
5 
6 
7 
13 
LJ 

Hl 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
213 
29 
30 
31 
32 
33 
34 
35 
36 
37 

SOURCE STATEMENT 

:************************************************************************ 
Selected Tests ASM96 MODULE STACKSIZE(20) 
:******************************************************************* 0031 

In order to run this module, the STACK must be ALL external, and the 
data ram partitioned for memory test must not include ANY of the .STACK 

To call this module 

PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
CALL 

#<RAM seamentl 
#<RAM segmentl 
#<RAM seqment2 
#<RAM seqment2 
#<random seed> 

start 
ending 
start 
ending 

address> 
address> 
address> 
address> 

#<number of cycles desired for random test> 
#<address of the last byte of rom> 
#<an argument for mUl/div tests> 
#<a second argument for mul/div tests> 
#<a bit pattern for memory tests> 
D96FST 

:*********************************************************************** 

rseg 

extrn sp,eregl,ereg2 

cseq 
extrn sys01;sys02,sys03,aluOl,alu02,alu03,alu04,alu05 
extrn memOl,mem02,mem03,mem04,mem05. mem06.mem07.mem08 
extrn mem09.memOa.mem0b.mem0c,memOd 

PUBLIC D96FST 
$eject c 

CD en 
"TI en 
-4 

3: 
t;5 
~ 
'" '=' 
o '.r <Kl = e 
~ 
n' 
til 

t'"' s: ... ., ... 
'< 



-...J 
I 

CO ...... 

ERR LaC OBJECT 

0\:100 

0000 

00\:10 
0005 
0006 

=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 
=1 

LINE 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

SOURCE STATEMENT 

~include (:f3:dstmac.inc) 
;************************************************************************* 
:DST Haeros INCLUDE FILE :******************************************** 
:************************************************************************* 

rseq 

macro temp: DSB 
extrn-zero,sp_stat 

cseg 
ti equ 5 
ri equ 6 

;************************************************************************* 
RESET HATCH DOG MACRO 

LDB 
LDB 

ENDM 

0ah, #leh 
0ah,#0elh 

:macro to reset the watchdo9 

;************************************************************************* 

;************************************************************************* 
SPSTATUS 

Sp_read: 

ENDM 

MACRO 
LOCAL 

LDB 
ORB 
ANDB 
JNE 

vI 
Sp_read 

macro temp,sp stat 
vl~macro temp-

macro to read sp stat to 
work around the ri/ti bug 
on the 8x9x-90. 

macro temp,#01100000B 
Sp_read 

;************************************************************************ 

;************************************************************************ 
SPHAIT 

ENDM 

MACRO 

JBC 
LDB 

v2 

sp stat,v2,$ 
zero.sP _stat 

macro to wait for ri/ti set 
and avoid 8x9x-90 buq. 
NOTRll this macro wo~'t work 
with a full duplex line. 

:*********************************************************************** 

;********************************************************************** 
BR ON ERR 

RNm! 

CMPB 
BNE 

MACRO Label 

ereq1+1h,zero 
Label 

macro to test hiah byte of 
EREGI and branch away if 
the byte is non-zero (which 
means there was an error). 

~***************************************************** ***************** 

~ 
g 
~ 
\C 
Q\ 

I:i OJ. 
(JQ 

= ., 
~ ;;. 
'" t"' 

~ ., ., ...., 



...... 
I 

00 
I\J 

ERR LaC OBJECT 

e000 

00i10 EFil000 

il00A EF0i100 

e014 EF0000 

001E EF0000 

0028 CB000C 
002B CBfil00C 
il02E EF0000 

0038 CBe0fil6 
0i13B CB0006 
1'Ji<l3E EF0000 

0048 EF0000 

0052 EFI'J0e0 

005C EF0000 

0066 CB0014 
0069 CB0014 
006C EF0000 

0074 CB0010 
0077 CB0010 
007A EFIl000 

0082 CBfil014 
00!l5 CB0014 

,E 

E 

E. 

E 

E 
E 
E 

E 
E 
E 

E 

E 

E 

E 
E 
E 

E 
E 
E 

E 
E 

LINE 
96 
97 
9B 
99 

100 
lIIJl 
11115 
106 
1"07 
HI8 
112 
113 
114 
115 
119 
120 
121 
122 
1215 
127 
128 
129 
130 
131 
135 
136 
137 
138 
139 
140 
144 
145 
146 
147 
151 
152 
153 
154 
158 
159 
160 
161 
165 
166 
167 
168 
169 
170 
174 

, 175 
176 
177 
178 
179 
183 
184 
185 

SOURCE STATEMENT 

D96FST: 

CALL sys02 ° A S 6 

BR ON ERR 

CALL alu01 

BR ON'ERR 

CALL alu02 

BR ON ERR 

CALL alu03 

BR ON ERR 

PUSH 
PUSH 

CALL alu04 

BR ON ERR 

PUSH 
PUSH 

CALL alu05 

BR ON ERR 

CALL mem01 

BR_ON_ERR 

CALL mem03 

BR ON ERR 

CALL mem05 

BR ON ERR 

PUSH 
PUSH 

CALL mem06 

BR ON ERR 

PUSH 
PUSH 

CALL mem06 

BR_ON_ERR 

PUSH 
PUSH 

Error_Found 

Error Found 

Error Found 

Error Found 

0ch[sp) 
0ch[sp) 

Error Found 

06h[sp) 
06h[sp) 

Error Found 

Error Found 

Error Found 

Error Found 

14h[sp) 
,14h[sp) 

Error Found 

10h[sp) 
l0h[sp] 

Error Found 

14h[sp) 
14h[sp) 

;CALL the Power Up Test 

;CALL the Add/Subtract test 

;CALL the MULUB test 

;CALL the Multiply/Divide Tahle 
; driven test 

;PUSH a seed and test length 
; for the random number based 
; Multiply/Divide Random test 

;PUSH an arqument 
;PUSH another arqument 
;CALL the Multipiy /Divide Core test 

;CALL the Complementary Address test 
~ for internal registers 

;CALL the Gallopin9 Is/0s test 
: for internal re~isters 

;CALL the Chekerhoard Pattern test 
; for internal reqisters 

;PUSH a start and end,address 
for a re9ion of RAM to conduct 
the Complementary Address test for 
external RAM 

PUSH a start and end address 
for another region of RAM to conduct 
the Complementary Address test for 
external RAI1 

;PUSH a start and end address 
; for a reqion of RAM, and PUSH 

:: 
~ 
~, 
t;; 
5° 
~ 
~ ;:;0 
'" 
~ .. 
= .. 
'< 



ERR LOC OBJECT LINE SOURCE STATEMENT 
0088 CB00"6 E 186 PUSH 06h[sp] a bit pattern to use in the 
008B EF0000 E 187 CALL mem0d Checkerboard Pattern test for 

188 external RAM 
189 BR ON ERR Error Found 
193 

0093 CB0010 E 194 PUSH 10h[sp] :PUSH a start and end address for 
0096 CB0010 E 195 PUSH 10h[sp] another region of RAM. and PUSH 
0099 CB0006 E 196 PUSH 06h[sp] a bit pattern to use in the 
1l09C EF0000 E 197 CALL mem0d Checkerboard Pattern test for 

198 external RAM 
199 BR ON ERR Error Found 
203 

00A4 CB0014 E 204 PUSH 14h[sp] :PUSH a start and end address 
00A7 CB0014 E 205 PUSH l4h[sp] : for a reqion of RAM to' conduct 

a::: 00AA EF0000 E 206 CALL sys03 : the Program Counter test 
207 ~ 

III 
208 BR ON ERR Error Found @ 

212 .:c 
00B2 CB0010 E 213 PUSH 10h[sp] :PUSH a start and end address CI\ 

IlllB5 CB0010 E 214 PUSH l0h[sp] for another region of RAM to conduct ~ 
-...J 00B8 EF'0000 E 215 CALL sys03 : the Program Counter test IJQ 

, I 216 = Q 
00 217 BR ON ERR Error Found ~ UJ ;:;' 221 fIl 

00C0 C981l20 222 PUSH #2080h :PUSH the code starting address t: IlllC3 CB000A E 223 PUSH 0ah[sp] :PUSH the code ending address ... 
1l0C6 EF0000 E 224 CALL mem0b : CALL the checksum routine ... 

II> ... 225 .., 
00C9 A1310000 E 226 'LD ereql.#0031h :ALL DIAG96 TESTS PASSED 

227 load appropriate error code 
228 

1l0CD CF0014 E 229 POP 14h[sp] clean off the stack 
00DIl 651200110 E 230 'ADD sp.#l2h 
00D4 F0 231 RET return to the calling program 

232 
00D5 233 Error Found: 

234 
00D5 CF0014 E 235 POP 14h[sp] clean off the stack 
00D8 651200110 E 236 ADD sp.U2h 
'''''IDC F0 237 RET return to the calling proqram 

238 
239 :************************************************************************+ 

00DD 240 end 



SYMBOL TABLE LISTING 
--------------------

N A M E VALUE ATTRIBUTES 

ALUUl CODE EXTERNAL 
ALUU2 CODE EXTERNAL 
ALUU3 CODE EXTERNAL 
ALU04 CODE EXTERNAL 
ALUU5 CODE EXTERNAL 
BR ON ERR MACRO 
D96FST. "U0UH CODE REL PUBLIC ENTRY 
EREGl REG EXTERNAL 
EREG2 REG EXTERNAL 
ERROR FOUND "0D5H CODE REL ENTRY 
~IACRO-TEMP . mJ00H REG REL BYTE 
MEMUl CODE EXTERNAL a::: MEMU2 CODE EXTERNAL ('"l 

[Jl MEMU3 CODE EXTERNAJJ 
~ MEM04 CODE EXTERNAL \0 MEMU5 CODE EXTERNAL C\ 

r1EMU6 CODE EXTERNAL 1:1 
MEM07 CODE EXTERNAL ;. 

--.I 
"" I MEMU8 CODE EXTERNAL = 0 CO 

~lEM09 CODE EXTERNAL '" ./:>- . :-. MEMUA CODE EXTERNAL r:> 

'" MEM0B CODE EXTERNAL 
t; MEMUC CODE EXTERNAL 
<:3" MEM0D CODE EXTERNAL ... 
~ RESET HATCHDOG. MACRO ... 
'< RI. 0006H NULJJ ABS 

SELECTED_JESTS_ASM96. MODULE STACKSIZE(20) 
SP. REG EXTERNAL 
SP STAT REG EXTERNAL 
SPSTATUS. MACRO 
SPIIAIT. MACRO 
SYSUl CODE EXTERNAL 
SYS02 CODE EXTERNAL 
SYSU3 CODE EXTERNAL 
TI. 0005H NULL ABS 
ZERO. REG EXTERNAL 

ASSEMBLY COMPLETED, NO ERROR(S) FOUND. 



-...J 
I 

(Xl 
U1 

MCS-96 MACRO ASSEMBLER DSTUSR 

SERIES-III MCS-96 MACRO ASSEMBLER. Vl.0 

SOURCE FILE: :F2:DSTUSR.A96 
OBJECT FILE: :F2:DSTUSR.OBJ 
CONTROLS SPECIFIED IN INVOCATION COMMAND: GEN DEBUG 

ERR LOC OBJECT 

0040 
0040 

0040 

0000 

0100 

0100 

4200 

4200 

~080 

~080 AIFFliJ040 
2084 E040FD 

2087 A1000000 

208B C90001 
208E C9FF07 
2091 C90042 
2094 C9FF5F 
2097 C9EF47 
209A C90010 
2090 C9FF3F 
20M C9429D 
20A3 C98C77 
20A6 C95A5A 
20A9 EF0000 

20AC 

20AC C98080 
20AF C90080 
2082 EF0000 

E 

E 

E 

LINE 
1 
2 
3 
4 
~ 

6 
-, 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
n 
~j 

~4 

25 
~6 

27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

SOURCE STATEMENT 
;*********************************************************************** 
DSTUSR MODULE main.stacksize{2) 
~***************************************************** ****************** 

oseg at 40h 
User Registers: DSB lch 

- 'temp set User Reqisters:1I0RD 

rseq 
EXTRN sp.zero.timerl.eregl 

dseg at 100h 

DSEGI: DSB 700h 

dseg at 4200h 

DSEG2: DSB le00h 

cseg,at 2080h 

;to ensure that the STACK does not qet 
located in an area of RAM that wiil be 
memory tested. reserve those regions 
as data segments. 

extrn ~lu04.alu01.alu02.mem0~.mem0a.error-proc.alu05 
EXTRN DSTISR -

LD 
DJNZ 

temp. #0ffh 
temp.$ 

LD sp.#STACK 

PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
PUSH 
CALL 

Main Task: 

push 
push 
call 

#l00h 
#7ffh 
#4200h 
#5fffh 
#47efh 
#HHl0h 
t3fffh 
#9d42h 
t77Bch 
#5a5ah 
DSTISR 

#8080h 
#8000h 
alu05 

wait for sbe96 NMls to stop 

;RAM segmentl start address 
;RAM seamentl end a~dress 

;RAM seqment2 start address 
;RAM segment2 end address 
;random seed 
;random test lenath 
;top of code address 
;an argument for mul/div test 
;anoth~r aroument for mul/div test 
:bit pattern for memory test 
;CALL the Dynamic Stability Test 
; initialization routine 

use the multiply/divide core 
test on the arauments 

c 
(J) 
....j 
c: 
(J) 
JJ 

:: n 
[JJ 

\'l 
~ 
a-, 

1::1 
S· 
ao = <> 
~ 
ri' 
'" t"" ::;: ... e: ...., 



ERR LOC OBJECT LINE SOURCE STATEMENT 
20B5 980001 E 52 cmpb eregl+l.zero . 18080h and 18000h in all 
20BB OF022074 53 bne error found ; combinations 

IJE ~+4 

ISJMP error found combinations 
54 

20BC C90080 55 push IB000h 
20BF C98080 56 push t8080h 
20C2 EF£I£l00 E 57 call alu05 
20C5 98£1£101 E 58 cmpb ereql+l,zero 
2£1C8 OF£l22064 59 I bne error found 

IJE $+4 
ISJMP error found 

60 
20CC C90080 61 push #8000h 
20CF C90080 62 push 18000h 
2002 EF0000 E 63 call alu05 
2005 980001 E 64 cmpb eregl+l.zero 
2008 0756 65 bne error_found 

66 
200A C9B080 67 push i8£180h 
2000 C90080 68 push #8000h ::: 20E0 EF0000 E 69 call alu05 @ 20E3 980£101 E 70 cmpb eregl+l.zero 

l" 20E6 0748 71 bne error found 
\C 

72 CI\ 

20E8 C900'1Jl 73 push #l00h perform a ~alloping Is/0s test ~ 
20EB C9FF07 74 push #7ffh on a small section of RAM ;. 

...... 
~ I 20EE EF00£10 E 75 Call mem0a 
0 ClO 20Fl 980001 E 76 cmpb eregl+l.zero '" Ol 

201:'4 073A 77 bne error found g. 
78 '" t"' 20F6 C800 E 79 push timerl ;send a timerl based seed to the 6l 20FB C90020 80 push I 200£1h ;'random number based multiply/divide .. 

~ 20FB EF0000 E 81 call alu04 ; test and let it run for a string .. 
'<!! 20FE 980001 E 82 cmpb eregl+lh,zero ; of 2000h argument pairs -

2101 0720 83 bne error found 
84 

2103 EF0000 E 85 call alu01 ;perform the add/subtract test 
2106 980001 E 86 cmpb eregl+1h.zero 
2109 0725 87 bne error found 

88 
21"'B C90042 89 push #4200h perform a Comple.mentary address test 
210E C9FF5F 90 push 15fffh on a larg~ section of RAM 
2111 EF0000 E 91 Call Mem06 
2114 980001 E 92 cmpb eregl+l.zero 
2117 0717 93 bne error found 

94 
2119 EF0000 E 95 call alu02 perform the MULUB test 
211C 980001 E 96 cmpb eregl+lh.zero 
211F 070F 97 bne error found 

98 
2121 C800 E 99 push timerl send another timer1 based seed to 
2123 C90020 100 push t2£100h the random number based mu1tip1y/ 
2126 EF0000 E 101 call alu04 divide ,test 
2129 980001 E 102 cmpb eregl+1h.zero 
212C 0702 103 bne error found 

104 



MCS-96 ~lACRO ASSEMBLER 

ERR LOC OBJECT 
2l2E 277C 

2130 
2130 FA 
2131 EFeJeJ0eJ 

2134 27FE 

2136 

M S-96 MACRO ASSEMBLER 

SYMBOL TABLE LISTING 
--------------------

N A M E 

ALU0l 
ALU02 
ALU04 
ALU0S 
DSEGI 
DSEG2 
DSTISR. 
DSTUSR. 
EREGI 
ERROR FOUND 
ERROR-PROC. 
[1AIN TASK 
MEM06 
MEM0A 
SP. 
TE~lP . 
TIMERI. 
USER REGISTERS. 
ZERO. 

ASSEMBLY COMPLETED, 

DSTUSR 

LINE 
HIS 
106 
un 
108 

E 109 
1113 
111 
112 
113 
114 
115 

SOURCE STATEMENT 
BR Main task 

Error found: 
- di 

CALL 

BR $ 

Error Proc 

start the main task tests over 

if an error is found. disable 
interrupts and call the error 
procedure in the DST96.LIB. 
the test that found an error will 
have placed the appropriate 
error codes in locations EREGI and 
EREG2 for .output through Error Proc 

116 :********************************************************************** 
117 
118 end 

DSTUSR 

VALUE 

0l00H 
4200H 

2130H 

20ACH 

eJ040H 

eJ040H 

NO ERROR(S) FOUND. 

ATTRIBUTES 

CODE EXTERNAL 
CODE EXTERNAL 
CODE EXTERNAL 
CODE EXTERNAL 
DATA ABS BYTE 
DATA ABS BYTE 
CODE EXTERNAL 
MODULE MAIN STACKSIZE(2) 
REG EXTERNAL 
CODE ABSENTRY 
CODE EXTERNAT" 
CODE ABS ENTRY 
CODE EXTERNAL 
CODE EXTERNAL 
REG EXTERNAL 
OVERLAYABS WORD 
REG EXTERNAL 
OVERLAY ABS BYTE 
REG EXTERNAL 

;s: 
g 
~ 
~ 
0\ 

o 
5' 

IJQ 

= Q 

~ 
;;' 

.'" .t"" 
;: ... 
~ 

"'" 





80960 Application Brief & 8 
Article Reprints 





APPLICATION 
BRIEF 

80960kx Self-Test 

AB-42 

December 1988 

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent 
licenses are implied. Information contained herein supersedes previously published specifications on these devices from Intel. 
@ Intel Corporation, 1988 Order Number: 2707CJ3.001 

8-1 



80960kx SELF-TEST 

INTRODUCTION 

How do you know that your product still works? Are 
there diagnostics in the machine? If so how do you 
know the embedded controller itself works properly? 
These questions point up a very important area in em­
bedded control-diagnostics-the task that can help 
avoid damaging situations or expensive down time. Of­
ten the embedded control designer includes diagnostics 
in the boot-up routines. The diagnostic test is written to 

, verify system functionality but cannot test much, if any 
of the embedded processor.' This leaves a gap in the 
diagnostic effort, and as processors become more com­
plex the gap becomes more critical. The 80960Kx and 
809?OMC. embedded processors attempt to fill this gap 
by IncludIng a self-test that executes upon power-up 
and reset. This self-test checks out basic processor func­
tionality and bus activity. After the self-test has com­
pleted successfully system diagnostics may be done 
with the knowledge that the processor is working prop­
erly. 

GOALS OF SELF-TEST 

The self-test was designed to guarantee that each "fail­
ure check" is within known boundaries. The self-test is 
executed in two phases: the first phase tristates all lo­
cal-bus pins denying any bris accesses. Self-test can then 
proceed to test the internals of the part. The last phase 
of the self-test reads the first eight words in memory 
and performs a checksum. Failure of the test is indicat­
ed on the FAILURE pin. 

Self-test also had to be very efficient in order to fit in 
microcode. 86 microinstructions were allocated for self- ' 
test. Carefully chosen values are written to and read 
from internal functional units in software loops allow­
ing complete arrays to be tested. These 86 microin­
structions execute test loops that run in 46,500 cycles. 

The coverage of the self-test is about 50%. The first 
goal of not allowing bus accesses during self-test means 
the bus interface and certain internal paths cannot be 
tested. It also means that no indication of the test result 
is presented to the outside world until the first phase of 
the self-test is completed 46,500 cycles later. What this 
means is that fault grading of the self-test requires mas­
sive compute and memory resources and is simply not 
~et practical. Test coverage was approximated by tak­
In? t.he percentage of the tested die size area. Although 
thiS IS a crude measurement the regular arrays are easi­
ly measured for size and tested, and since their total 
area is a significant portion of the die area it is felt the 
50% value is a reasonable approximation at this time. 

MAJOR BLOCKS OF THE 80960 

The 80960KB, 80960KA, and 80960MC all share a 
core of internal functional blocks. The core functional 

8-2 

blocks are: Bus Control Logic (BCL), Instruction Fetch 
Unit (IFU), Instruction Decoder (lD), MicroInstruc­
tion Sequencer (MIS), and Integer Execution Unit 
(lEU). The 80960KB adds a Floating Point Unit and 
the 80960MC adds both a Floating Point Unit and a 
Memory Management Unit (MMU). 

Each of the functional blocks within the processors are 
listed below with transistor cpunt percentages. 

80960KA 80960KB 80960MC Function Unit 

7% 6% 5% Bus Control Logic 
(Interupt Controller) 

24% 21% 18% Instruction Fetch Unit 

6% 5% 5% Instruction Decoder 

41% 35% 30% Microinstruction 
Sequencer 

22% 19% 16% Integer Execution 
Unit 

14% 12% Floating Point Unit 

14% Memory 
Management Unit 

The self-test tests all of the major regular structures in 
the processor. These include the MIS ROM, IFU 
Cache (instruction cache), MMU Cache (80960MC 
only), and the lEU RAM array which includes the lo­
cal and global registers and register cache. In addition 
the MIS control, logic and the lEU literals are directly 
tested. 

There are several functions and paths in the processors 
that are not directly tested but are tested by indirection. 
The microinstruction bus; data bus; and the lEU, TLB, 
and IFU controls and internal buses are tested indirect­
ly when the major blocks are tested. 

Several functional blocks are simply not tested by the 
self-test due to the no outside bus activity restriction. 
These are the BCL, IFU instruction pointer and fetch 
control, ID, and the FPU. The BCL, IFU, and ID are 
not tested because it would require instructions fetched 
from external memory to be run through the fetch and 
decode stages of the pipeline violating the first goal of 
the self-test. The FPU is not tested because a compre­
hensive test would simply be too large for the size limit 
of self-test. 

Generally, any functions due to the fetch and decode 
stages of the pipeline can be tested in a diagnostic test 
after self-test by simply executing instructions from 
each of the five instruction formats using various oper­
and types. It should be noted that each of the parts are 
comprehensively "fault graded" to a 97% level before 
they are shipped to customers. This "fault grading" has 
a 99.9% level of confidence. 



infef 80960kx SELF-TEST 

SELF-TEST ALGORITHM 

The self-test algorithm consists of writing then reading 
values from the arrayed structures in the S0960Kx. The 
values chosen test the logic for "stuck-ats". These faults 
manifest themselves by being fixed at a certain value, 
for example a node that "opens" by electromigration 
and is subsequently pulled low by capacitive coupling 
to a nearby VSS node is "stuck at" Vss. The values 
written to the arrays are read back out at a later time 
and a check-sum is performed. The results of the check­
sum are cumulative and shown to the outside world 
through the FAILURE pin. 

The algorithm is as follows: 

# Initialization 
Disable all interrupts 
Tristate the external Bus 

# Self-Test 
Assert the FAILURE pin 

Loop: 
WrIte the lEU RAM array 
Write the IFU CACHE 
Write the TLB CACHE (B0960MC only) 
Read the lEU RAM array and Literals 
Perform a checksum update 
Read the IFU CACHE 
Read the TLB Cache (B0960MC only) 
Perform a checksum Update 
Repeat the loop until all locations 
have been tested 

Read the MIS ROM until done 

Perform a checksum update 
Check Results 

IF checksum is wrong Assert the 
FAILURE pin and stop 
ELSE Deassert the FAILURE pin 

Assert the FAILURE pin 

Read the first 8 words from memory 
Perform a checksum update 
Check Results 

IF checksum is wrong Assert the 
FAILURE pin and stop 
ELSE Deassert the FAILURE pin 

# End Self-Test 

# Finish Initialization 
Fetch first instructions from 
initialization IP 
Enable Instruction Decoding 

8-3 

Notice in the above algorithm that the FAILURE pin 
is actually asserted, then deasserted upon successful 
completion of the self-test. 

This algorithm does not trace out the entire initializa­
tion procedure followed upon power-up and reset. Re­
fer to the chapter "Processor Management and Initiali­
zation" in the "80960KB Programmer's Reference 
Manuaf' for more complete information on the initiali­
zation sequence and the "S0960KB Data Sheet" for the 
proper reset sequence. 

CONCLUSION 

The automatic self-test integrated into the 80960Kx 
and 80960MC greatly enhance the diagnostic effort in 
an embedded system by ensuring the embedded proces­
sor is working properly before any system diagnostics 
are carried out. This extra step in diagnostics along 
with the comprehensive testing performed on each and 
every part shipped significantly reduces the possibility 
of a defective part being allowed to operate in an em­
bedded system. 



·~ 
Intel's 80960: 
An Architecture Optimized 
for Embedded Control 

ntel's internally developed 80960 architecture allows embedded sys-­
tern designers to take advantage of silicon technology advancements 
without architectural Ilmits. The 80960, developed from scratch for 

embedded control applications, eliminates architectural obstacles to state­
of-the-art implementation techniques that allow parallel and out-of-order 
instruction execution. 

In introducing the 80960 architecture, I distinguish between the architec­
ture and the microarchitecture of an implementation. A microarchitecture . 
is an actual implementation of the architecture's instruction set and pro­
gramming resources. Different microarchitectures may have different 
pipeline construction, internal bus widths, register set porting, cache pa­
rameterization (two-way, four-way, and so on), and degrees of parallelism, 
or may not execute instructions out of order. The architecture is specified in 
such a way that wide latitude is available for future microarchitectural ad­
vancements. In this way both very high performance and highly integrated 
controllers can be built using the 80960 a~chitecture. 

Principally, the 80960 architecture allows, for at least the next decade, 
silicon technology and microarchitectural advances to translate directly 
into increased performance without architectural limitations. While the 
common performance target of typical RISe architectures is an execution 
speed of one instruction per processor clock cycle, the 80960 architecture 
targets the execution of multiple instructions per clock cycle (fractional 
clock cycles per instruction). By defining an architecture that supports par­
allel instruction execution and out-of-order instruction execution, we do 
not constrain performance advances to the system clock cycle. 

Additionally, the 80960 has been optimized for the wide range of applica­
tions that are unencumbered by a need to be compatible with an existing 
embedded control architecture. These applications are often very cost sen­
sitive, require a different mix of instructions than reprogrammable applica­
tions, have demanding interrupt response requirements, and use real-time 
executives rather than full-blown operating systems. With these factors in 
mind, we developed the 80960 while avoiding architectural constructs that 
would restrict an implementation's capability to execute multiple instruc­
tions in one clock cycle. 

072-1732188/()6(){)..006J$OI.OO © 1988 IEEE 

8-4 

AR-541 

Executing 
instructions in 
one clock cyCle is 
not fast enough 
for this standard­
core architecture. 
Its parallelism 
and oiit-of-(iider 
execution promise 

. fractional clock 
rates in future 
implementations. 

David P. Ryan 
Intel Corporation 

June 1988 

270671-001 



inter AR-541 

80960 architecture 
The architecture also allows application-specific 

extensions such as: 

• instruction set extensions (floating-point opera-
tions), 

• special registers, 
• larger caches, 
• multiple caches, 
• on-chip program and data memory, 
• a memory management and protection unit, 
• fault-tolerance support, 
• multiprocessing support, and 
• real-time peripherals (DMA, analog/digital, serial 

ports). 

The 80960's instruction set has also been optimized 
for embedded control applications. It offers Boolean 
operations more. powerful than those of the 8051 family. 
Single instructions access frequently executed func­
tions for increased code density and performance. 
They include CALL, RET, Compare_and_Bran\=h, 
Conditional_Compare, Compare_and_Increment 
or Decrement, and Bit Field Extract. 

A priority interrupt structure simplifies the manage­
ment of real-time events, and, along with a user /super­
visor model, supports fast, safe, real-time kernel 
operation. A generalized fault-handling mechanism 
simplifies the task of detecting errant arithmetic 
calculations or other conditions that typically require a 
significant amount of user code runtime support. The 
80960 does not require sophisticated, optimizing high-

00000000 H 

level-language compilers to achieve high performance. 
However, no obstacles to performance enhancements 
via a good optimizing compiler exist. 

Since products based on the 80960 have high perfor­
mance levels, even without code optimization, many 
users will attain their required system performance 
with 80960 products without having to understand the 
parallelism of the implementation they are using. 

Architecture overview 
The 80960 can best be described as a register-rich, 

load/store architecture with an instruction set designed 
to let implementations exploit pipelining and parallel 
execution strategies. Direct embedded control support 
includes: 

• an optimized instruction set, 
• a flexible interrupt structure, 
• a user-supervisor model, 
• a powerful fault-handling structure, and 
• mUltiprocessing hooks and debug support. 

The architecture extends easily. 
Figure 1 shows a logical block diagram of the ar­

chitecture's programming resources. The 32-bit 
memory space is flat. Data moves between memory 
and registers via load and store instructions. Process­
ing elements surrounding the registers manipulate par­
allel data; they receive their instructions from the 

OFFFFFFFFH 

MEMORY 

Instruction 
scheduler 

Processing 
element 

Registers 

Processing 
element 

Registers 

• 
• 

Figure 1. Block diagram of the 80960 architecture. 

• 

8-5 

Processing 
element 

Registers 

Processing 
element 

Registers 

Register 
cache 



intJ AR-541 

instruction sequencer. 
The instruction sequencer reads multiple instruc­

tions simultaneously from an instruction cache. and 
presents the instructions in parallel to the processing 
elements as appropriate. When the instruction stream 
or an asynchronous event requires a context switch, the 
local variables from the suspended procedure move to 
the register cache. Memory accesses to save previously 
suspended register sets occur only when the register 
cache is filled. The implementation determines the 
number of architecturally transparent register sets that 
can be cached. 

We expect different implementations of the process­
ing elements in an 80960-based controller-optimized 
for specific applications-will evolve. We defined a 
standard core architecture to maintain binary-compati­
ble instruction sets across all implementations for 
leveraging compiler and real-time kernel development. 
Subsequent references to the 80960, without an alpha 
suffix, refer to the architecture. References to an 
80960XY pertain to actual implementations of the core 
architecture, which may contain architectural exten­
sions and/or on-chip peripherals. (See the accompany­
ing box for a discussion of three implementations.) 

·Implementations of the 80960 
As an example of an actual implementation ofthe 

core architecture, consider the first 80960 im­
plementation, the 80960KB controller. The KB pro­
vides architectural extensions such as floating-point 
operations (Figure A). Its on-chip floating-point 
unit implements the IEEE floating-point standard, 
including transcendental support. Floating-point 
performance exceeds 4 million Whetstone opera­
tions per second at 20 MHz. The 80960KB integrates 
a 512-byte instruction cache and an interrupt con­
troller on chip. 

Instruction Instruction 
I 

fetch 
cache 

I unit 
I ~. 
I 
I 

Bus I 

control I 
~ Address I 

, 
I. ___ 

" unit calculation i I \?I 

.. 

1 
I Register Integer 

scoreboard execution 
Interrupt p unit unit 

controller 

Figure A. Block diagram of the 80960KB controller. 

Another member of the family, the 80960KA 
controller, fits the KB socket but lacks the on-chip 
floating-point unit. The 80960MC controller, a 
military-qualified version similar to the KB, adds 
Ada tasking support and a memory management 
and protection unit. 

The 80960KA, KB, and MC microarchitecture 
sustains execution of up to one instruction per clock 
cycle at 20 MHz (20 native MIPS). It performs a 
variety of benchmark programs seven to 10 times 
faster than a VAX 11/780 (7 to 10 VAX MIPS). 

Instruction Micro· 

decode 
instruction ~ 
sequencer 

I ~ I 
Micro-

instruction 

~ ROM 

I , 
i 
i 
11 

Floating-
Registers point 

unit 

I I 

8-6 



AR-541 

:wgpl 

80960 architecture 
Register model 

The user directly accesses thirty-two 32-bit general­
purpose registers and 32 special-function registers 
(SFRs). (Refer to Figure I.) Of the 32 general registers, 
16 are global registers and 16 are local registers. Data in 
the 16 global registers remain visible and unchanged 
when crossing procedure boundaries, characteristics 
exhibited by "normal" registers in other architectures. 
The CALL instruction caches the local registers and 
the RET instruction restores them. The SFRs provide a 
real-time register interface to on-chip peripherals. The 
SFRs, the contents of which are not defined by the ar­
chitecture, control implementation-specific hardware. 

When a procedure call occurs, data in the local regis­
ters automatically move to a register cache. Thus, the 
called procedure is not required to explicitly save the 
local registers. When the called procedure executes a 
return instruction, the data in the local registers prior 
to the call are restored. The call/return sequence does 
not affect the global registers, which can be used to 
pass parameters and results between procedures. 

A large, general-purpose register set greatly reduces 
the number of memory requests required to perform a 
task. Various optimization techniques can use large­
register sets to remove data dependencies that would 
otherwise prohibit parallel instruction execution. For 

Format 

31 

REG opcode 

31 2423 1918 

COBR I opcode I srcldst I 
31 2423 

CTRL I opcode I 
31 2423 1918 

MEMA I opcode I srcldst I 
31 2423 1918 

MEMB 
I opcode I srcldst I , , , 

example, a hypothetical implementation of the archi­
tecture could provide parallel execution of two ADD 
instructions. Having many general-purpose registers 
with which to work simplifies code optimization so 
that neither ADD instruction references a source that 
was the destination of the other ADD instruction. 
Under such circumstances, two ADD instructions per 
cycle could be sustained. 

Note that such program optimizations are not re­
quired. Any program using the architecture's core 
instruction set and not referencing the SFR address 
space or external 110, whether optimized or not, will 
·function correctly on any implementation without 
modification. Even if the optimization rules are 
radically different between implementations, code that 
is optimized for one implementation will run correctly 
on another implementation without modification or 
recompilation. 

The architecture also guarantees that data dependen­
cies will be correctly handled without programmer in­
tervention. For example, execution of an arithmetic 
instruction will be delayed if it uses a register that is 
waiting for data to be loaded from memory. However, 
other instructions that do not use the register in question 
could be executed immediately with all data dependen­
cies automatically maintained. This capability is only 
beneficial when a large register set is present to remove 
avoidable data dependencies. 

141312 21 a 
src2 I~I displacement 

100 1 

21 a 
displacement 

100 1 

141312 76 54 0 

abase I~H opcode I 0 a I srcl I 
1413 109 76 54 0 

abase I mode I scale I 00 I src1 I 
\ 

optional displacement \ 
\ --------------------------------------------

Figure 2. Opcode encodings. 
8-7 



AR-S41 

Core instruction set 
The 80960 instruction set is similar in design to 

engines in reduced instruction set computers. Because 
the 80960 was designed to avoid performance bottle­
necks resulting from instruction decoding times, all op­
codes are 32 bits (one word) in length and must be 
aligned on word boundaries. The only two-word 
(64-bit) instruction format loads 32-bit immediate con- . 
stants and assists effective address calculations. 
Generally, load, store, and control instructions access 
memory. All other instructions access only registers. 

Thirty-two-bit opcodes provide tremendous flexibil­
ity in instruction encoding. However, performance 
penalties associated with code size can occur when 
often-used complex instruction sequences are not 
available in a one-word format. Large code size not 
only increases system cost due to larger memory re­
quirements but also results in penalties in cache utiliza­
tion and bus-bandwidth requirements. 

The 80960 includes one-word multifunction instruc­
tions to avoid such code density problems that increase 
memory requirements and to allow complex functions 
to be parallelized. For example, the CALL and RET 
instructions provide one-word encodings for sequences 
that otherwise require several instructions. Implemen­
tations of the architecture could perform the CALL/ 
RET operations in parallel with other instruction exe­
cution. Or, the processor could execute from an on- ' 
chip ROM a similar sequence of simple 80960 instruc-­
tions that the user would have to write if CALL/RET 
instructions were not in the architecture. Executing the 
code from permanent on-chip storage results in higher 
performance than does requiring the instructions to be 
fetched and cached every time they are used. In addi­
tion to ensuring higher performance, or possibly paral­
lel performance, implementations of such functions as 
ROMed assembly code sequences-triggered by a one­
word opcode-are more silicon efficient than are in­
creases of on-chip cache sizes to deal with poor code 
density. For example, a ROM cell is typically one 
fourth the size of a RAM cell. 

The availability of complex instructions in the ar­
chitecture does not prohibit the programmer from by­
passing them if simpler functions are desired. For ex~ 
ample, a BAL (Branch_and_Link) instruction can 
be used to call a procedure that does not require a I).ew 
set of local registers. The BAL instruction saves the 
next instruction pointer in a register and branches to 
the specified destination. When the procedure is ready 
to return, it executes an indirect branch to the return iIi­
struction pointer that was saved. It is likely that BAL 
will always be faster than CALL since no local registers 
are being saved. The programmer can use whichever 
method best suits the circumstances. 

Figure 2 shows the 80960 instruction encodings. 
Most instructions appear in the REG format, which 
specifies an opcode and three registers/literals (one of 
32 registers, or a constant value in the range 0 to 31). 

8-8 

The COBR format specifies a set of compare and 
branch instructions. The CRTL format covers branch 
and call instructions. The MEM formats support load 
and store instructions. 

Much of the instruction set is what one would expect 
to encounter in all processors (ADD, MUL, SHIFT, 
BRANCH); however, some instructions deserve 
special mention. 

• The register-register move instructions transfer 
one, two, three, or four register values. The same is 
true for the load and store instructions (for example, 
LDQ loads four words into four registers). 

• In addition to the normal shift instructions, the 
SHRDI instruction provides an adjustment to the re­
sult so the instruction can be used to divide a value by a 
power of two. (Normal right-shift instructions do not 
divide correctly when the value is negative and odd.) 

• Alllogica1 operations of two operands are provided 
(AND, NOTAND, ANDNOT, NOR). 

• An extensive set of bit instructions exists (SET 
BIT, CLEAR BIT, NOT BIT, SCAN a register for the 
first 0, or I, BRANCH on bits set or clear), as well as 
instructions for accessing bit fields (MODIFY, 
EXTRACT). 

• Single-instruction COMPARE~ND_ 
BRANCH encodings optimize code density for these 
frequently executed operations. 

• Conditional compare (CONCOMP) instructions 
speed bounds checking. 

Table I on the next page summarizes the 80960 core ar­
chitecture instruction set. 

The architecture directly supports integer (signed) 
and ordinal (unsigned) data types. Bits, bit fields, 
bytes, short words, words, and double words can be 
manipulated in registers and transferred to and from. 
memory. Triple words and quad words can also move 
between the registers and memory. 

Register operations 
Most 80960 instructions operate on registers. The ar­

chitecture provides arithmetic, logical, bit and fit field, 
data movement,. and comparison operations. To take 
full advantage of the large register set, three-operand 
instructions specify any register as one or both sources 
and/or the destination of an operation. 

Arithmetic and logical. The architecture supports 
both standard and extended arithmetic operations. 
Add, subtract, multiply, and divide operations are 
available on 32-bit integers and ordinals. Extended 
multiply operates on two 32-bit ordinals and generates 
a 64-bit result. Extended divide divides a 64-bit ordinal 
by a 32-bit ordinal, producing a 32-bit quotient and 
32-bit remainder. Addition and 'subtraction with carry 
allow 32-bit ordinals to provide extended precision 
adds and subtracts. 



AR-541 

80960 architecture 

Table 1. 
80960 instruction summary. 

REGISTER OPERATIONS 
ARITHMETICS 
add[i I 0) Add 
addc Add with Carry 
sub[ i I 0 ) Subtract 
subc Subtract with Borrow 
muI[ II 0) Multiply 
ernul Extended Multiply 
dh.1 i I 0 ) Divide 
ediv Extended Divide 
rem! i I 0) Remainder 
modi Modulo Integer 
sh[lo I ro Iii I ri I eli) Shift 

MOVEMENT 
mov111liq) 
Ida 

COMPARISON 
cmp[ilo) 
cmpdec[ i I 0 ) 
cmpinc[ i I 0 ) 
concmp [i 10) 
test[') 
scan byte 

LOGICAL 
'and 
andnot 
notand 
nand 
or 
nor 
ornot 
notor 
xnor 
xor 
not 
rotate 

Move registers to registers 
Load Address 

Compare 
Compare and Decrement 
Compare and Increment 
Conditional Compare 
Test for condition 
Scan for matching byte 

dst := srcl & sre2 
,dst := sro2 & (-srcl) 
dst := (-src2) & srel 
dst := -(sro2 & sre 1) 
dst := srel I sre2 
dst := -(sro2l srel) 
dst := sro2l (-srcl) 
dsl:= (-src2) I srel 
dsl:= (sre21 srel) & -(sro2 & srel) 
dst:= -(src21 srel) I (sro2 & srel) 
dst:= -sre 
Rotate Bits 

BIT AND BIT FIELD 
setbit 
clrbit 
notbit 
chkbit 
alterbit 
scanbit 
spanbit 
extract 
modify 

Seta Bit 
Clear a Bit 
Toggle (Invert) a Bit 
Check a Bit and set condition code 
Change a Bit according to an operand 
Search src for most significant set bit 
Search sre for most significant cleared bit 
Extract specified bit pattern from a word 
Modify selected bits in dst with sre 

CONTROL OPERATIONS 
BRANCH 
b 
bx 
bal[x) 
b[') 
cmplb[') 
cmpob[') 

FAULT 
faull[1 
syncf 

PROCEDURE 
cali 
caUx 
caUs 
ret 

Branch (t 2 MByte relative offset) 
Branch Exte,1ded (32-Bit Indirect Branch) 
Branch and Unk ("RiSC Branch") 
Branch on Condition 
Compare Integer and Branch on Condition 
Compare Ordinal and Branch on Condition 

Fault on Condition 
Synchronize Faults 

Procedure Call (± 2 MByte relative offset) 
Call Extended (32-Bit Indirect Call) 
System Procedure Call 
Return 

ENVIRONMENT 
modpc 
modac 
modtc 
flushregs 

DEBUG 
mark 
fmark 

Modify Process Controls 
Modify Arithmetic Controls 
Modify Trace Controls 
Rush LocaJ Register Cache to Memol)' 

Conditionally generate Trace Fault 
Unconditionally generate Trace Fault 

MEMORY OPERATIONS 
LOAD/STORE 
Id [bl s Ilitl q) Load 
st[b I sill tl q) Store 

READIMODIFYIWRIITE 
atadd Atomic Add (Locked RMW Cycles) 
almod Atomic Modify (Locked RMW Cycles) 

I = integer, 0 = ordinal, b = byte, s = short, w '" word (32-bits), I = long, t = triple. q = quad, 
10 = left ordinal, Ii = left integer. ro = right ordinal, ri = right Integer, di = right dividing integer 
dst = destination, sre = source, x = extended. 
, = Conditions: If [equal I not equal I less I less or equal I greater I greater or equal I ordered I unordered) 

8-9 



inter AR-541 

Arithmetic shift operations support 32-bit ordinals. 
Logical shift instructions operate on 32-bit integers, 
and a 32-bit register value can also be rotated. In addi­
tion, all possible two-operand, bitwise Boolean opera­
tions exist: AND, NOTAND, ANDNOT, XOR, OR 
NOR, XNOR, NOT, NOTOR, ORNOT, and NAND. 

Bit and bit field. Bit operations allow bits in the reg­
isters to be set, cleared, toggled, and moved to or from 
the condition codes. SCAN and SPAN operations pro­
vide ways to find the most significant set or cleared bit 
in a register. 

The 80960 contains two bit field instructions, EX­
TRACT and MODIFY. The EXTRACT instruction 
shifts a bit field in a register to the right and fills in the 
bits to the left of the bit field with zeros. The MODIFY 
instruction moves a specified bit field from one register 
to another when no adjustment change in bit position is 
required. 

Data movement. A set of data movement (MOY) in­
structions allows register values to be copied to other 
registers. The MOY instructions can move from one to 
four registers at once. The load and store operations 
described later move data to and from memory. 

Comparison. These instructions compare operands 
and.set the resulting condition codes in the arithmetic 
controls register (Figure 3). The 80960's condition 
codes listed in Table 2 provide the arithmetic flag func­
tion of other architectures, in a way that allows max­
imum parallel execution. 

In general, only compare instructions set the 80960's 
condition codes and conditional instructions use them. 
To perform an ADD followed by a conditional branch 
when the result is zero, a Compare_and_Branch in­
struction must be executed after the ADD because 
arithmetic instructions do not alter the condition 
codes. 

3322222222221111111111 

Table 2. 
Condition code encodings. 

Condition code Condition 

000 Unordered" 
001 Greater Than 
010 Equal (True) 
all Greater Than or Equal 
100 Less Than 
101 Not E~aI (False) 
110 Less an or Equal 
111 Ordered 

" Used with floating-point data types. 

Although not generally noticed in a sequential exe­
cution environment, a parallel environment mandates 
the decoupling of the condition codes from the in­
struction set. The 80960 allows multiple instructions 
to execute simultaneously, thus giving ambiguous 
meaning to a set of condition codes that are altered by 
multiple arithmetic instructions in the same clock 
cycle. The 80960 approach separates condition check­
ing and decision making from all other instructions to 
provide flexibility in reordering instructions for paral­
lel execution. 

The 80960 compare instructions compare both 
integers and ordinals. A subset of the compare in­
structions increments or decrements an operand after 
the comparison. 

Memory operations 
The load/store nature of the architecture decouples 

memory references from instruction execution. Regis­
ter set and memory instructions can be executed simul~ 
taneously. Since the load data may take some time to 

t1k ,:.,,"'''" ,"", 
1-________ Integer overflow flag 

'------------- Inleger overflow mask 
rn:rt Reserved 
t@J (Sello 0) 

1..-______________ No imprecise faults 

Figure 3. Arithmetic controls register. 

8-10 



inter AR-541 

80960 architecture 
arrive at the CPU, the load requests can be advanced in 
the instruction stream to overlap memory access time 
with other data-independent CPU operations. 

Load/store. The load and store instructions copy 
bytes, short words, words, or multiple words to or 
from memory and registers. When a load integer is 
specified for an 8-bit or l6-bit quantity, the CPU ex­
tends the data's sign to fill 32 bits before writing the 
destination register. When a load ordinal is specified 
for an 8-bit or l6-bit quantity, the CPU attaches lead­
ing zeros to the data to fill 32 bits before writing the 
destination register. The store instructions allow the 
destination data width to be a byte, short word, word, 
or multiple words. When a store byte, or short word is 
performed, the CPU automatically formats the data 
being written according to the data type (integer or 
ordinal). 

Addressing modes. The architecture suppons 11 ad­
dressing modes for memory operations, as summarized 
in Table 3. The addressing modes selected for suppon 
provide a broad range of most-often-used simple 
modes. We chose a rich set of addressing modes to 
allow optimization for code density as well as speed. 

Literals are immediate 5-bit numbers that can range 
from 0 to 31. Literals may be used as operands in any 
register operation. 

The Register address mode is used when an operand 
specifies a register number (gO, r5). 

The Absolute Offset address mode specifies the ab­
solute address of the target as an offset from the cur­
rent instruction pointer. The offset is encoded in the 
memory instruction opcode. If the offset is outside the 
range of 0 to 2048, the assembler generates a two-word 

instruction in which the second word is a 32-bit 
displacement. 

Register Indirect addressing allows the address of the 
target to be specified by the contents of a register. An 
immediate offset or displacement can be added to the 
register to form the effective address. An index (scaled 
by 2, 4, 8, or 16) may also be added. 

Memory operations can also specify target addresses 
relative to the instruction pointer, a capability useful in 
creating relocatable data and code. 

Atomic memory operations. Two atomic memory 
operations support multiprocessing environments with 
more than one processor accessing the same memory, 
atomic add (ATADD) and atomic modify (ATMOD). 
The ATADD instruction causes an operand to be add­
ed to the value in the specified memory location. The 
ATMOD causes bits in the specified memory location 
to be modified under control of a mask. These instruc­
tions perform their memory-to-memory, read-modify­
write operations with a locked bus to prevent data 
corruption. 

Control operations 
Control operations include those instructions that 

could result in the redirection of program flow. CALL, 
RET, BRANCH, and COMPARE_AND_ 
BRANCH instructions fall into this category. 

Procedure calls. The CALL instruction causes the 
local registers to be preserved and redirects program 
flow to a point indicated by an offset encoded in the in­
struction. The Call Extended (CALLX) instruction dif-

Table 3. Addressing modes. 

Mode Description Assembler Example 

Literal value Ox12 
Register register r6 
Absolute offset offset label + 3 
Register Indirect abase (r6) 

Register Indirect 
abase + offset label + 3 (r6) 

with offset 

Register Indirect 
abase + (index • scale) (r6) [r7' 4) with index 

Register Indirect 
abase + (index • scale) with index and label + 3 (r6) [r7' 4) 

displacement + displacement 

Index with 
displacement (index· scale) + displacement label [r6 • 4) 

IPwith 
IP ,+ displacement + 8 label (IP) displacement 

8-11 



AR-541 

rlS 

15 

Figure 4. Procedure stack structure. 

fers in that it allows a 32-bit value to provide the CALL 
destination. The destination can either be encoded in 
the instruction or specified by a register value (for ex­
ample, indirect call). The Call System (CALLS) in­
struction gets its target address from a table of system 
procedure addresses explained later. The Return (RET) 
instruction returns control to the calling procedure and 
restores the local registers of the calling procedure. 

The semantics of the CALL/RET allow an optimi­
zation known as register caching. A register cache 
keeps the context (local registers) of the most recently 
executing subroutines on chip so that CALL/RET in­
structions do not have to access memory to save or 
restore the local registers. 

When a CALL instruction executes, the 80960 allo­
cates a new set of I 6 local registers from a pool of regis­
ter sets for the called procedure. If the pool is depleted, 
a new register set is allocated by taking one associated 
with an earlier procedure and saving it in memory. A 
RET instruction causes the most recently cached local 
register set to be restored, freeing a register cache 
location. 

The register cache contributes to performance in 
four ways: 

• It significantly reduces the saving and restoring of 
registers that are usually performed when crossing 
subroutine boundaries. 

• 'Since the local register sets are mapped into the 
stack frames, the linkage information that normally 
appears in stack frames (pointer to previous frame, 
saved instruction pointer) is contained in the local reg-

1 The 
stack 

Slack growth 

Stack frame reserved 
forthe 

active procedure' 

isters. Most call and return instructions execute 
without causing any references to off-chip memory. 

• It allows compilers to map most or all of a pro­
cedure's local variables directly into registers. 

• It provides a large number of registers (16 local 
and 16 glolJal), which can be exploited by optimizing 
compilers. 

The procedure stack (see Figure 4) reserves space for 
the cached registers of suspended procedures. When a 
register set must be flushed from the register cache to 
memory, it moves to the reserved stack frame space. 

When a new procedure is entered, the 80960 allo­
cates space for the procedure's register set as the only 
conlenls of its stack frame, although no memory ac­
cesses will occur unless the register cache is full. If the 
procedure desires more space on the stack for autovari­
abies or parameter passing, it adjusts the stack pointer 
to reserve as much space as it needs. The procedure can 
then access this space using stack pointer relative ad­
dressing so long as the procedure is active. When the 
procedure returns, its stack is automatically reclaimed. 

Branch_and_Link (BAL) performs a procedure 
call without saving the local registers. The 80960 saves 
the return instruction pointer in a global register and 
redirects program flow. To return from a routine that 
is invoked by a BAL, a BX (Branch Extended) is per­
formed. BAL allows fast subroutine calls to leaf pro­
cedures without allocating (and possibly displacing) a 
new register set. Since a leaf procedure calls no other 
procedure, its registers can be allocated out of those 
remaining in the current set. ' 

8-12 



AR-S41 

80960 architecture 

Branching. Advanced architectures have yet to deal 
cleanly with the dreaded branch, although some ex­
isting methods try and minimize the instruction 
pipeline breaks caused by branches and conditional 
branches. One method used by other architectures is a 
delayed branch. This method requires that a valid in­
struction a/ways be placed after every branch. The 
delayed branch mechanism exposes the pipeline to the 
programmer and makes it easy to write code that 
"breaks." Compilers also have a difficult time finding 
useful instructions to a/ways fill the blank pipeline slots 
following a branch and insert Naps about 30 percent 
of the' time. Furthermore, in architectures with a 
delayed branch mechanism, microarchitectures will be 
constrained in their enhancement choices. 

The 80960 alternative to a delayed branch hides the 
pipeline and microarchitecture implementation from 
the programmer and allows transparent performance 
enhancements. For example, an 80960 microarchitec­
ture that detects branches ahead of the executing code 
could fetch the branch destination to keep the pipeline 
full. In essence, "branch lookahead" allows branches 
to be executed in zero clock cycles. 

Branches can be unconditional or conditional. The 
Branch and Branch Extended instructions perform un­
conditional redirection of program flow without link­
age. Branch and Branch Extended differ in the width 
of the target address offset provided. The Branch in­
struction includes an encoded offset in the one-word 
instruction (MEMA format), whereas Branch Extended 
branches to the location pointed to by a register or an 
encoded 32-bit displacement (MEMB format). 

The conditional branches use the condition codes in 
the arithmetic controls register to determine whether or 
not to take the branch. The 80960 provides all combi­
nations of branch conditions. 

Branch lookahead works well with unconditional 
branches but would be of marginal benefit on condi­
tional branches since the branch target, or the instruc­
tion after the branch, cannot be executed until after 
evaluation of the branch condition. Pipeline breaks 
would, therefore, be inevitable even if the micro­
architecture implemented some sort of hardware predic­
tion mechanism. To reduce the effect of the conditional 
branch on performance, the 80960 defines two types of 
conditional branches; those that are usually taken and 
those that aren't usually taken. The implementation can 
then guess which way the branch is going to go, based 
upon an excellent resource capable of prediction-the 
programmer. Only in the case of a programmer's wrong 
prediction would a pipeline stall occur. Furthermore, 
compilers will take advantage of branch prediction 
when they detect loops. 

It is either obvious, or uncertain, at the time the pro­
gram is written which way the branches will branch 
most often during execution. If the likely branch out­
come is obvious, the type of branch to use will be 
obvious. In the cases where runtime factors determine 

the branch path, the branch types can be selected to 
reduce the time through the longest 'path or to reduce 
the average path time. 

Compare and branch. The compare and branch in­
structions support integers and ordinals. The CPU 
compares two operands; the result determines the 
branch taken. This frequently used operation is one in­
struction that increases performance and improves 
code density. The 80960 provides all combinations of 
branch conditions, in addition to branch-on-bit in­
structions. 

Instruction cache 
As processors increase in speed, the traffic between 

processor and memory becomes a significant perfor­
mance bottleneck. To effectively reduce this bottle­
neck, we incorporated an instruction cache within the 
processor. 

An on-chip instruction cache is highly desirable for 
two reasons. Caching instructions on chip greatly 
reduces system bus loading and the criticality of the 
system's memory access speed in a parallel execution 
environment. However, an instruction cache plays an 
additional role. The only way to cause mUltiple instruc­
tions to execute simultaneously is to decode multiple 
instructions simultaneously. An on-chip instruction 
cache gives instruction decode the capability of looking 
downstream and decoding and dispatching multiple in­
structions simultaneously for parallel execution. 

The advantage of an instruction cache over a pre­
fetch queue, a technique used in most high-perfor­
mance microprocessors to dilte, is that a queue does 
not reduce the memory traffic for instructions. It only 
attempts to' distribute the traffic more efficiently. A 
cache's most obvious effect occurs with execution 
loops, common in embedded control applications. 
After a loop is first executed, successive iterations of 
the loop generate no memory references for instruction 
fetches. Likewise, when a small, low-level procedure 
concludes and executes a RET instruction, the code for 
the high-level routine to which it is returning likely still 
resides in the cache. Thus, we reduce the sensitivity of 
instruction execution speed to slow memory and free 
valuable bus bandwidth for other operations. 

Having an instruction cache requires special consid­
erations in applications that employ self-modifying 
code or uploadable programs. In general, embedded 
applications are unaffected. However, for 80960 chips 
targeted at embedded applications in which volatile 
code exists, we will provide implementation-specific 
cache features. For example, implementations could 
provide a bus input pin that prohibits the data being 
read from being cached, a method for flushing the 
cache, a transparent instruction cache, a cache disable 
bit, or some other feature tuned to the application. 

8-13 



AR·541 

To allow implementations of the 80960 latitude in 
the amount and type of cache provided, the architecture 
does not specify the instruction cache parameterization. 

User -supervisor protection 
The architecture provides a mode and stack switch­

ing mechanism called the user-supervisor protection 
model. This protection model allows a system design in 
which the kernel code and data reside in the same ad­
dress space as the user code and data. However, the 
access to the kernel procedures (called supervisor pro­
cedures) occurs through a specified interface. A data 
structure called the System Procedure Table provides 
this interface (Figure 5). 

(s) 

(b) 

31 2 1 0 

I Procedure address I x I x I 
00 - Local procedure J 
10- System procedure 

The 80960 references the System Procedure Table 
when a System Call (CALLS) instruction executes. 
This call is similar to a local call, except that the pro­
cessor gets the location of the called procedure from 
the System Procedure Table. Figure 6 illustrates the use 
of the CALLS instruction. CALLS requires a proce­
dure-number operand that is used as an index into the 
table. 

The System Procedure Table entry referenced by 
CALLS specifies an entry pointer and an entry type for 
the called procedure. The 80960 invokes two types of 
system procedures, local and supervisor. A procedure 
that is specified as a local procedure is invoked as if it 
were called by the CALL or CALLX instructions, ex­
cept that the processor gets the entry point of the called 
procedure from the System Procedure Table. Refer­
encing a supervisor procedure, on the other hand, 
switches the processor to the supervisor execution 
mode and to the supervisor stack. 

Figure 5. Structure of the System Procedure Table (a) and a pro­
t~dure entry (b). 

Real-time kernel procedures in the supervisor mode 
execute using a different stack than the one used to . 
execute application programs procedures. Special, 
supervisor-only instructions also execute in supervisor 
mode. The MODPC instruction (used to change the 
processor priority) is always a supervisor instruction. 
Instruction set extensions that control on-chip hard­
ware are also likely to be restricted to the supervisor 
mode. 

The System Procedure Table entry 
contains the instruction pointer to the 

I .... I----_~ called procedure. 

F;;li,li,i ........... .;;;;;;;.~1f The calling procedure issues 
a system call instruction (CALLS). 
which contains an index that selects 
a System Procedure Table entry. 

Figure 6. Example of a system procedure cail. 

8-14 

System Procedure Table 

Header 

IP 
IP 
IP 
IP 

· · · IP 

Entry 1 
Entry 2 
Entry 3 
Entry 4 

I Entry 255 



intel' AR-S41 

80960 architecture 
r-__ -----....,Bytes 

Pending priorities 0 - 3 

_ _ Pending interrupts _ r- 4 - 35 

Entry 8 36 - 39 
1---En-try-=----9---t40 - 43 

Entry 10 44 

Entry 252 
• • • 

1012 

..... _....;E;.;ntr~y.2;;;5;.;5;....._ .... 1027 

Figure 7. Structure of the interrupt table. 

The processor remains in the supervisor mode until ' 
the procedure that caused the original mode switch per­
forms a return. Switching stacks and protecting against 
stack corruption help maintain the integrity of the 
kernel. For example, the mechanism allows access to 
system debugging software or a system monitor even if 
the application crashes. 

Interrupts 
The 80960 contains a priority interrupt model and a 

mechanism for queueing pending interrupt requests 
without user program intervention. When an interrupt 
is signaled and its priority is higher than the current 
processor priority, the CPU invokes an interrupt 
handler and the processor priority changes to that of 
the interrupt. Otherwise, the 80960 saves the interrupt 
for service until it becomes the highest priority request 
pending. 

The interrupt table seen in Figure 7 holds the 32-bit 
pending priorities field, the 256-bit pending interrupt 
field, and the 248 interrupt vectors. Within each pro­
cessor priority the 80960 contains eight vectors, eight 
associated pending interrupt bits, and one pending 
priority bit. The pending priorities field indicates the 
priorities at which pending interrupts await. The pen­
ding interrupt field indicates exactly which requested 
interrupts have not yet been serviced. 

A pending priority bit is simply the OR of all eight 
pending interrupt bits at a particular priority. This field 
optimizes checking for pending interrupts by the pro­
cessor. When an interrupt request will not be serviced 

8-15 

immediately, the 80960 sets the bit in the pending inter­
rupt field associated with the request. It also sets the 
pending priorities bit associated with the priority of the 
request. When the running priority of the processor 
drops below that of the pending interrupt, the 80960 
services the interrupt and clears the associated pending 
bit. The CPU also clears the associated pending priori­
ty bit if appropriate. 

Faults 
Processors use fault mechanisms to handle excep­

tions or errant conditions that a program mayor may 
not be capable of correcting. We defined the 8096O's 
fault mechanism for an environment in which parallel 
or out-of-order execution occurs. When a fault is 
generated, the processor calls the appropriate fault 
handler. The 80960 automatically provides the handler 
with an extensive set of information about the faulting 
condition for correction or analysis. 

It is possible that when a fault is detected not enough 
information would exist to determine the exact instruc­
tion that faulted. For example, when multiple instruc­
tions execute in one clock cycle, multiple faults could 
occur ina single clock cycle.This"imprecise" condition 
could generate a fault that we call imprecise. A tightly 
coupled fault handler may be able to recover proper 
program execution when an imprecise fault occurs. 
Precise faults are those from which recovery is easy. 

The 80960 provides two controls over the generation 
of imprecise conditions and faults. The first fault con­
trol method, a global control bit, puts the processor in 
a mode where no imprecise conditions are created (No 
Imprecise Faults, or NIF mode). In this mode, the 
80960 restricts parallel execution. All faults are precise. 
The NIF bit can be used to create a critical region in 
which all faults are precise. The second fault control 
mechanism is the Synchronize_Faults (SYNCF) in­
struction. This instruction halts execution until all 
pending operations complete, and all faults up to that 
point have been signaled. It is useful on Ada block 
boundaries where different blocks can have different 
fault handlers. 

An 80960 implementation detects various conditions 
in code or in its internal state (called fault conditions) 
that could cause the processor to deliver incorrect or in­
appropriate results, or that could cause it to take an 
undesirable control path. For example, the 80960 can 
recognize (if enabled by the user) divide-by-zero and 
overflow conditions on integer calculations as a fault. 
The architecture also recognizes inappropriate operand 
values and attempts to execute unimplemented op­
codes, among other conditions, as faults. 

When a fault is detected, the system processes it im­
mediately and independently of the program or han­
dler that is executing at the time. The fault mechanism 
is similar to that used by the interrupts. Several fault 



AR-S41 

types exist, in which the fault type determines which 
entry in the Fault Table (Figure 8) is invoked for a par­
ticular fault. The Fault Table contains one entry for 
each fault type. The entry defines a particular fault 
handler routine as a local procedure or a system pro­
cedure. When the fault handler is a local procedure, the 
Fault Table entry contains the address of the procedure 
entry point. When the fault handler is a system pro­
cedure, the Fault Table entry contains the system pro­
cedure number, which selects the correct entry point 
from the System Procedure Table described earlier. 

Figure 9 describes the fault record, which is the in­
formation provided to a fault handler when a fault oc­
curs. Table 4 on page 76 summarizes the fault types 

(b) 

31 

and subtypes that are currently defined in the 80960 ar­
chitecture. As extensions to the architecture that con­
sume additional fault types become available, the en­
coding of fault types and subtypes will occur in such a 
way that every implementation capable of recognizing 
similar faulting conditions encodes them identically. 
For example, the 80960KB adds the floating-point 
faults (fault type 4). Any other 80960 implementations 
that also recognize floating-point faults also encode 
them as fault type 4. 

Debug support 
Another objective of the architecture is to support 

software debugging and tracing. A trace-controls regis­
ter enables most of this support. The trace controls 
detect any combination of the following'events: 

• Instruction execution (single step), 
• Execution of a Taken Branch instruction, 
• Execution of a Call instruction, 
• Execution of a Return instruction, 

2 

I-_F_a_u_lt_-h_a_n_d_le_r~p:....r_o_c_ed_u_r_e_n_u_m_b_e_r_.....J.....JI.-j n to (n + 3) 
Ox0000027F (n +4)to(n + 7) I.-_______________ --..l Bytes 

(8) (c) 

Figure 8. Structure of the fault table (al; an entry to reference a local procedure (bl; and an entry to reference a system procedure (cl. 

Bytes 

___ IIIIIEt5 
16 

Fau~data ' 

~±±&MTIill8~~~IT2±QElli~~ITEl;~-31 

Figure 9. Fault record information. The return pointer r2 is also provided. 

8-16 

-35 

-39 

41,42,43 
-47 



AR-S41 

80960 architecture 
Table 4. Fault types and subtypes. 

Fault type Fault Subtypes Comments 

Arithmetic Overflow, underflow Integer overflowsl divide by zero 
Constraint Range If FAULT IF taken 
Protection Length Procedure # in CALLS out of range 
Machine Bad access Memory access failed to complete 
Type Mismatch Tried to execute supervisor instruction 

in nonsupervisor mode 
Operation Invalid opcode, Tried to execute invalid opcode, or 

Invalid operand an operand in a valid opcode 
was invalid 

Trace Instruction, branch, caU, retum, Trace event occurred 
pre return, supervisor, breakpoint 

• Detection that the next instruction is a Return 
instruction, 

• Execution of a supervisor or system call, and 
• Breakpoint (hardware breakpoint or execution of 

a breakpoint instruction). 

When a trace event is detected, the processor 
generates a trace fault to give control to a software 
debugger or monitor. Since all 80960 implementations 
are likely to have an on-chip cache, external hardware 
cannot trace the flow of instruction execution by moni­
toring the external bus. Therefore, to trace instruction 
execution, a debugger could enable the BRANCH, 
CALL, and RET trace faults and reconstruct the 
instruction-by-instruction flow of a program. This 
method, however, will not provide transparent, or real­
time tracing. When noninv~ive emulation is desirable, 
the user should employ an in-circuit emulator. 

The 80960, an extensible embedded control ar­
chitecture, maximizes' computational and data 
processing speed through parallel execution. The 

first implementation of the architecture (8096OKB) 
achieves single-clock execution of instructions, while 
fractional clock instruction rates are architecturally un­
hindered and will be available in future implementations. 

Acknowledgments 
Too many people contributed to the 80960 effort to 

list them here. However, I relied upon the following, 
either in person or through their writings, in developing 
this article: Dave-Budde, Glen Hinton, Mike Imel, 
Konrad Lai, Glenford J. Myers, Lew Pacely, Fred 
Pollack, Rob Riches, Frank Smith, and Randy Steck. 

Bibliography 
80960KB programmer's Reference Manual, No. 210567-001, 
Intel Corporation, S;mta Clara, Calif., 1988 . 

Embedded Controller Handbook, Vol. I, No. 210918-006, 
Intel Corporation, 1988. 

ANSI!IEEE Standard 754-1985 for Binary Floating-Point 
Arithmetic, IEEE Compo Soc., Los Alamitos, Calif., 1985. 

David P. Ryan, a senior applications engineer in Intel's 
embedded controUer operation, supervises the Arizona-based 
32-bit applications tearn. He began work on 32-bit embedded 
controUer requirements in early 1985 and full-time work on 
32-bit products in early 1987. Before this, he supported the 
MCS-96 family of l6-bit microcontroUers. 

Ryan holds a BSEE from Arizona State University and an 
MBA from Pennsylvania State University. 

8-17 

©1988 IEEE. Reprinted, with permis­
sion from IEEE Micro, Vol. 8, No.3, pp. 
63-76, June 1988. 



ADVANCED ICs 

Embedded 
Controllers 
Push 
Printer 
Performance 

by Phillip Bride, 
Intel Corp., 
Hillsboro,OR 

Touting speed and the 
ability to address large 
amounts of inexpensive 
memory, on-board 
floating-point 
calculations, a large 
register set, and an 
on-board interrupt 
controller, the 80960KB 
32-bit processor promise$ 
to pump up laser printers. 

ORDER NO. 270766-001 

8-18 

AR-551 

Breaking the performance bottleneck in laser printers 
cal1s for a control1er with plenty of muscle. To see how 
much muscle, look at what a high-range laser printer 

must do: mix text and graphics; resolve at least 300 pixels, or 
dots, per inch; deliver at least 30 pages per minute; run a high­
level page-description language (POL); and prove cost-effective' 
for the end user. Thai set of performance specification~ caIls for 
a 32-bit processor-such as Intel's 80960KB-intended express­
ly for embedded applications. with good speed and the ability to 
address large amounts of inexpensive memory (DRAM), on­
board floating-point calculations, a large register set, and an on­
board interrupt control1er. 

Speed, of course; translates to fast data movement. In the case 
of the 80960KB, the burst bus aIlows speedy interpretation of the 
PDL, construction of print fonts on-the-fly, and production of 
printed pages at the maximum rate. The 80960KB yields a high­
density, high-performance BITBLT routine at 59 Mbits/sec, 
using only 80 bytes of memory, and fitting completely in the 
instruction cache. A single 32- x 4O-bit map character BITBLT 
executes in 472 clocks,-or about 6.4% of the 80960KB's process­
ing time for one page. There is 4 Gbytes of memory space for 
print fonts and designing in display buffers, I/O, and font caches. 

Using slower DRAMs holds down the overaIl system cost. 
A large register set, along with register caching, also results in 
higher performance in moving and rasterizing data. The floating­
point processor, with its extensive instruction set, takes care 
of operations such as font sizing and rotation. FinaIly, the on-chip 
interrupt control1er provides more efficient communications with 
both the host computer and the print engine itself. 

Page Language Considerations 
Placing the PDL and the font descriptions on the control1er pc 
board makes downloading unnecessary. The board and host can 
communicate via an RS-232 serial port; the interface between 
the board and the print engine need not be complicated. Page 
buffering will help to meet the page-rate goal. While the print 
engine works on one page, the controller can process the next. To . 
do that, the print engine interface must be buffered, and the soft­
ware driving the interfuce must be ablc to access the page bit-map 
buffer to feed raster data to the interface. This cal1s for extensive 
memory. 

To begin with, at least 4 Mbytes of main memory (lOO-nsec 
DRAMs) is necessary. To achieve 300 dots/inch, each page takes 
I Mbyte. Therefore, the page bit-map buffer holds 2 Mbytes; font 
caching and a scratchpad occupy the other two. To hold a lan­
guage like PostScript on board requires 512 Kbytes of EPROM , 
which can be implemented with four ofIntel's 27010 I-Mbit 
(128K x 8) chips. 

To handle the approximately 8.5 million data bits on each page, 
as weIl as interpret the PDL commands, the InteI80960KB has a 
clock of20 MHz (7.5 MIPS) and burst-bus data rates of53.3 
Mbytes/sec. The overal1 controIler (Figure 1) contains only six 
logical blocks: CPU, clock generator and reset, bus control, 
memory, I/O ports, and the print engine. The CPU and control 
logic consist of the 80960KB, pull-ups for the open-dniin signals, 
address latches, and data transceivers. The 80960KB directly 



ADVANCED ICs 

<- DB [0. 31[ 

I PECTl 

AFE 08[0 71 HF 
PACAEN# PRCREN" 

OE2" 
~ WAil DElli 

~ RD" DRl 
DR2 

SO 

- t WAITu 
PSYNtt 
lSYNII 

PERDYII 
PCRDYII 

r- .. VCLK PENGCSII • 
ve 
M 

MOLY 

eLK ..- eLK WAITt! I---
LSYNu 

RESE '..- RESET 

Figure 6: The print-engine interface for the 80960KB­
based design consists of several logical blocks: MDLY 
(margin delay), PEal (print-engine control), PRNCR (print-

words deep l. and a shift register. The print controller is interrupt­
driven. When a page is ready to be printed, the 80960KB ex­
ecutes 16-quad store instructions, filling the FIFO, When the 
FIFO. goes below eight words, the interrupt handler must fill the 
FIFO. again. o.nce printing is enabled and the page and line ~;yncs 
have been asserted, a 16-bit short word loads into the shift register 
and printing begins. 

The interface to the print engine carries six signals: YO (video 
data), PSYN (page sync), LSYN (line sync), PEROY (print 
engine ready), PCROY (print controller ready), and YCLK 
(video clock). The print-engine controller supplies YO and 
PCROY, and the print engine it,elf, the PSYN, LSYN, PERDY, 
and YCLK signals. Note that signal definition varies with print 
engines. Some engines, the Canon SX for one, require an exter­
nal controller to drive the vertical sync. o.thers, like the Ricoh 
engine, supply not only the vertical and horizontal syncs but 
the video clock. If a print engine does not supply these signals, 
they can be generated with relative ease using PALs and counters. 

A video clockof 4.21 MHz achieves 30-page/min perfor­
mance. This, however, is much slower than the 80960KB system 
clock, so that the shift register can be loaded during a shift-out 
cycle without slowing the printing. An interrupt occurs every 
7600 cycles of the 80960KB (200 printed bytes). Since it takes 
about 176 clocks for the interrupt routine (85 clocks for interrupt 
latency, 67 clocks for 14 quad stores and one store, and a buffer of 
24 clocks in case of cache miss), less than 3% of the 80960KB's 
time is spent feeding the video port. . 

A print engine requires an external controller for stepper­
motor commands, vertical and horizontal synchronization, and 
data. The engine receives the rasterized video data from the con­
troller and places a line of charge on the printing cylinder in the 
raster image of that line from the document. The controllerthen 
signals the stepper motorto rotate the cylinder one line, and the 
next line is charged. This continues for the rest of the page or sec­
tion of page that is handled in one rotation. The cylinder passes 

FIFO 

DBIO 311 00(0 15J 

~ SI 
SI SO f::::""" DRI 

CillIC: AESET 
RESET DRl 

~ AFE DEl" 
HF OE2" 

[IIIIIIIIIIIII[ 
1 es 7H676 

I 
, 

CP 
5 M rSi SO 

16 
VD vss 

PSYN# 
LSYNII 
PEADY# 
PAPG# 
VCLK 

engine control register), FIFO (64 words deep), and a shift 
register. When a page is to be printed, the part eltecutes 
16-quad store instructions, filling the FIFO. 

over the toner; the locations that are charged attract toner to the 
cylinder, which then passes over the highly charged (about 
2000Y) paper. The charge on the paper attracts the toner from the 
cylinder. The paper then passes through heated rollers, which 
fuse the toner. . 

Describing a Page in Software 
Adobe Systems' popular Postscript is a stack-oriented language 
that uses Postfix notation. Since its introduction, there has been 
a plethora of similar page description languages introduced to the 
marketplace. And about 40 companies have announced com­
patibility with Postscript. 

Some page description languages take advantage of the 
4-MWhetstone floating-point capabilities of the 80960KB, which 
significantly adds to performance. About 20 % to 30% of pro­
cessing time is spent executing 64-bit precision floating-point 
instructions for rotation and translation algorithms and the like. 
However, for lower-cost designs, the 80960KA, a pin-compatible 
version without floating point, is perfectly adequate. ESD: 

8-19 



ADVANCED ICs 

CPUPULWPS 

INT3H nNTA# 
lAC/INTO 

ADS# 
WlR# 
DTfR# 
DENI# 

FAIWREIt 

'E#(U.3J 

rcLi(2"") COO ALE 
~ ~ READY ADS 

~ 
HOLD W/R_ ~ BAOAC DTIA 

1 
RESET DEN DEN# 

LOCK := IAC/INTO HLOA 
INTI CACHE 

~ INT2IINTR FAlWRE 

~ 
FAIWRE# 

IN13/INTA .E3 
!......../ 8096DKB .E2 

.El E .EO 
LADO LAD31 
LADI LAD30 BE# [0 .• 3] 
LAD2 LA029 BE# (0..3] 
LAD3 LAD28 
LAD4 LAD27 
LAD5 LA026 
LA06 LAD25 
LADT $!;:~~:tS~E~$!!25 LAD24 
LAO. LAD23 , 
LA09 !l!l!l!l!l:s!l:s!l!l!l:s LAD22 

AD [0 • .31] 
AO(D .. 31( 

l!:JA::
U 

l AND LATCHES 

Ol/R# 
'--- CPUDEN. 

AD [O.31J 

Figure 2: Available In a 132-pln PGA, the 80960KB sparts 
32 address/data lines and 6 signals that directly contral the 
bus, resulting in a simple Interface. Several pins handle 

and the other counter from the word address bits, LAD(2:3), 
which must be incremented for each subsystem word access (ex­
cept DRAMs with internal counters). These2-bit counters can fit 
easily into one 16R6D PAL. 

The address word up-counter generates the word-addressing 
bits, A(2:3), forthe address bus. Loaded with LAD(2:3), this 
counter can start on any word address boundary, counting up un­
til the burst access is finished or until it reaches a 16-byte boun­
dary. Because bursts cannot cross 16-byte boundaries, the up­

. counter does not wrap around. If a burst is a two-word access that 
starts at word address 1, then the word address counter initializes 
at I, counts to 2, then stops. 

If a burst is four words and starts on a word address other than 
on a 16-byte boundary, the 80960Iq3 will issue an access with the 
size bits set so that the access cannot cross 16-byte boundaries. 
Then it will issue another access, with appropriate size bits to 
finish the original burst request. The system clock aM READY 
signals enable the word address and burst size counters. By issu­
ing the appropriate size bits to maintain the 16-byte boundary 
condition, the 80960KB intelligent bus interface helps simplify 
the burst control design. 

Where memory subsystems (Figure 4) are concerned, a 

DB [0 •• 31] 
D'[O.31J 

A (0 . .31] 
DB [0..31] > 

Ala31J A (0 . .31] 

8-20 

reset, bus master arbitration, bad system access, and 
clocking. This processor's ability to address large amounts 
of Inexpensive memory proves to be a major plus. 

language like PostScript requires 350 to 450 Kbytes; 512 Kbytes, 
plus some initialization code, will be sufficient, and four 27010s 
will do the job. Because these have a 200-nsec access time, it's 
necessary to use 2-2-2-2 wah-state timing-two being the 
number of wait states necessary lOr each data cycle in a lOur-word 
burst access. 

Holding Fonts in Flash . 
By holding font information in flash memory devices (e.g., the 
28F25632K x 8), fonts can be modified or updated very quick­
ly. The nonvolatile flash is similar to EPROM except that to up­
date the memory, the 80960KB simply writes a command to the 
control register, then starts writing new data. The 8F256's 
170-nsec access translates into 3-3-3-3 wait-state timing. The 
fonts are accessed, then cached in faster memory by the PDL 
driver. Three signals control this device: FSHSELU, RDU, and 
WRU. 

Because two font descriptions fit into 128 Kbytes, 32-bit 
memory s·ubsystems can be configured from only four flash 
devices. The most common fonts require about 50 Kbytesl 
typeface. Software can simply add new fonts by writing the new 
font descriptions to flash. 



ADVANCED les 

The 80960KB's bus performs well with 100-nsec DRAMs, 
and taking advantage of nibble-mode DRAMs is quite easy 
because the bus accommodates a four-word burst. The first word 
takes up the J()()-nsec access time; however, subsequent words 
only take 25 nsec. Two wait states on the first access allow the 
DRAM row and column decoders to be set up. Subsequent ac­
cesses require only the cycling of CAS, which increments the in­
ternal column address counter and enables the output drivers. 
The result: accesses with 2-0-0-0 wait states. 

Ifan access occurs during a refresh sequence, the READY 
generator simply inserts wait states until the refresh is completed. 
The DRAM control generates the DRAM READY signal, 
DRAMRDYH, which is then ORed into the 80960KB's READY 
signal. 

Eight-bit peripherals connect easily to the 80960KB (Figure 
5). Although they are slow in comparison, wait states can be in­
serted to allow for the long access times. The 80960KB's byte­
load and byte-store instructions make it quite easy to write 8-bit 
device drivers. A store byte to the 82510 serial port controller will 
place the 8-bit value on the 80960KB's AD bus during the data 
cycle. Data is then held on the bus until the READY H signal 
returns, indicating the end of the access. The 82510 simply re­
quires that the lower 8 bits of the data bus be tied directly to its 
data pins. The 82510 uses the same read and write signals as the 
rest ofthe system. The READY generation logic controls the 
number of wait states inserted, and the decode logic generates the 

< OB[0 .. 31) 
OB[O .31) 

~ RESET 
10SEl# CS 

A2 

~.ro 
AO 
Al 

M A2 

I, A [0 .. 31) RO 
A [0 .. 31) 

III 
WR 

~ 
elK/Xl 

,.:= Rl/SClK 
WR# RXO 

~ .------ CIS 

Some POLs take advantage 
of the 4-MWhetstone 

floating-point capabilities 
of the 80960KB, which 
adds to performance. 

82510 chip select, IOSELH. 
The 80960KB initiates serial communication with the 82510. 

When the 82510 receives data, an interrupt is generated. The 
80960KB reads the data and places it into memory. To work with 
other kinds of ports (e.g., Centronics), the port should be as­
signed a location in memory, the chip select and data lines sup­
plied, and the appropriate number of wait states generated. 

Controlling a 3D-page/min Print Engine 
The print-engine interface (Figure 6) for the 80960KB-based 
design interrnce box is also straightforward. It consists of several 
logical blocks: MDLY (margin delay), PECTL (print-engine 
control), PRNCR (print-engine control register), FIFO (64 

DO 
01 
02 
03 
04 
05 
06 
07 

QIT] rNT 
DUT2fX2 r-

TXD 
RTS 

DTRITB 
DSRlTA/DUro I 

DCDJIClKlOUT1 r-

OSA# 
OTR# 
RTS# 
TXD 

~ lA 
2A - 2B 
3A -== 3B 
4A - 4B 

RXD 
1Y 

crs. 
2Y' 

OSA# 
3Y 

--< 4Y 

Figure 5: Using an 82510 serial controller, eight-bit 
peripherals readily connect to the 80960KB. The 

12V 

~ 1Y 

2Y P--- 3.3K 

3Y~ 
4Y p---- DTR -~ 

CIS 
TXD# 
RTS 
R)fOIl' 

lA~ 
DSR 

lRC I-- t:;/ 
2Ar--

2RC I-- CONNECTOR OB9 
3A GND 

3RC I--
4~~ 

80960KB's byte-load and byte-store instructions make it 
quite easy to write 8-bit device drivers. 

8-21 



ADVANCED les 

NO 

RUN ONE CYCLE 
INCREMENT LAD (2:3) 
DECREMENT LAD (0:1) 

RUN ONE CYCLE 

Figure 3: Burst buses need not complicate system design. 
Two tasks are required to control a burst bus. One tracks 
words remaining in the burst access; the second increments 
the address for each word accessed in the burst. 

To update flash, it must be erased, then written, a word at a 
time. To accomplish this, one command erases the memory, then 
another indicates that a data write will follow; data is then writ­
ten. Since the flash is accessed in 4-byte-wide words, data can be 
updated each write cycle. Flash memory adds the simplicity of 
downloading new fonts to the convenience of non volatility at 
power-down. 

Because the controller board handles standard 300-dotiinch 
8'h" x II" pages, a one-page bit-map requires no more than I 
Mbyte of memory. With memory for two buffers, the 80960KB 
can continue processing the next page while the print engine 
works on the first. Font caching also places demands on memory, 
requiring about 128 Kbytes. This amount allows the PDL inter­
preter to cache previously constructed fonts in the faster memory. 
Font caching and bit-map buffering help improve perfurrnance by 
reducing the delays caused by slow memory and the print-engine 
interface. 

As far as the DRAMs are concerned, a standard control 
scheme is appropriate. A DRAM controller takes care of three 
functions: RASiCAS cycling, address multiplexing, and refresh 
timing. A 22VIOB PAL can perform the RASiCAS cycling for 
single and mUltiple reads and writes. It also supplies the control 
signals for the address multiplexer. The refresh logic, a counter 
implemented in a PAL, signals the 22VIOB that a refresh cycle is 
needed; at the end of the current access the control logic starts the 
refresh sequence. 

Main memory consists of 4 Mbytes ofl-Mbit x I-bit DRAMs. 
Since no banking is required, only one set of control signals 
needs to be generated. To provide 1 Mword of memory, 32 parts 
are needed. Bytes or short words are accessed when the four 
CAS signals are asserted by the byte enables, LBE# (0:3). One 
CAS signal can be assigned to each byte in the 32-bit word. 

EPROM 

A(0 . .31) 
A (0 • .31) AI~31J 

EPRSEL# EPASEL# 
DB 10. 31J 

RON 

FLASH EPROM 

WR# 
AID.31J 

I 
DBID .. 31J 

~ WRN 
RD. 

FSHSEL# FSHSELN 

ORAM CONTROL DRAM 

AI2 .. 22] 

LBE#(D..3) 
L.....--

LBE#ID .. 3J 
~ WR. 

RAMSEL# 
RD. 
RAMSELN 

CLK2 CLK2 
CLK.25 CLK.2S 

< ORAMRDY# DRAMRDY# 

< DB (0 •. 31) 

Figure 4: The cost of fonts. A language like PostScript reo 
quires 350 to 450 Kbytes; 512 Kbytes, plussome initializa· 

DRADRI~.91 DRADRID.9J 
DBID.31J 

RAS# RAS# 
WE. WE# 

CAS#(0 .. 3) CAS#(D .. 3) 

tion code, is adequate for this design. Holding font data in 
flash memory allows quick updates. 

8-22 



ADVANCED les 

generates control signals for the address latches and data 
transceivers. With the exception of an inverter for ALE, no glue 
logic is needed for these signals. 

The bus control block implements the chip-select logic and 
generates the READY signal as well as controlling the 
80960KB's burst bus. Bus logic increments the address during a 
burst access and keeps track of the number of words in the current 
burst access. It can be implemented in PALs. 

Enough EPROM to hold a PDL is contained in the memory 
block. The block also includes DRAM for page buffering and 
font caching, as well as flash EPROM to hold the fonts; DRAM 
control is another part of this logic. The I/O port logic block con­
sists of an RS-232 serial port and an 82510 serial controller. The 
port drives one DB9 serial connector. 

The print engine interface is generic, specified at 30 
pages/min; it is relatively straightforward to change the design to 
fit a specific print engine. An 80960KB interrupt controls the 
print-engine interface. The logic shown for the interrupt control 
is a simple 32-bit, 64-word-deep I/O buffer, and could just as well 
be a 16- or 8-bit printer port with a simple change of80960KB 
code. A single-chip printer controller, such as the WD65CIO, can 
also be designed into an 80960KB or 80960KA system as 
memory-mapped I/o. 

Currently, the 80960KB comes in a PGA package with 132 
pins. Thirty-two address/data lines and six signals directly con­
trol the bus, resulting in a simple interface. Four byte enables in­
dicate valid bytes in the 32-bit data word; interrupts are signaled 

CPU 

DB[0 .. 31) 
DB[0 .. 31) 

A[2 .. 31) 
A[2 .. 31) 

BUS CONTROL J 
A(2:3) 

AD[0 .. 3) AD[0 .. 3) 10SEl# f-
W'R# W'R# RRCREN# 
ADS# ADS# SI 
DEN# DEN# 

BE#[0 .. 3) BE#[0 .. 3) RD# f---< 
WR# r--

The 80960KB yields a 
high-density, ultrafast 

BITBlT routine at 
59 Mbits/sec. 

via four pins on the 80960KB. Several miscellaneous pins 
(Figure 2) handle reset, bus master arbitration, bad s}stem ac­
cess, and clocking. All of the control signals for the address/data 
bus are open-drain signals and require external pull-ups. 

Burst buses often complicate a system design. However, by 
reducing burst accesses to a maximum of four words per access 
and supplying the control signals necessary for burst control, the 
80960KB holds down the amount of external control. 

The Burst Bus 
Two tasks are necessary to control a burst bus, as shown by the 
flowchart in Figure 3. One keeps track of the words remaining in 
the burst access; the second increments the address for each word 
accessed in the burst. All that's needed for each of these tasks is a 
single 2-bit counter. Load one counter from the size bits, 
LAD(O:I), which indicate how many words are to be accessed, 

10 
, 

SClK 
RESET 
10SEl# INTI r-+ RD# 
WR# lr DB[0 .. 7) r A[2 .. 4) 

1 I 

L PRINT ENGINE 

DB[0 .. 31) 
WR# INT2 ~ RD# . 
PRCREN# 
SI 

A[2:31) 
RD# ~ CLK2 
WR# ;- RESET 

READV# READV# lBE#[0 .. 3) r---- LBE#[0 .. 3) ClK 

: INTl EPRSEl# r---- EPRSEl# RESET 
INT2 

ClK2 
ClK RAMSEL# I-- RAMSEl# 

FSHSEl# r---- FSHSEl# 

DRAMRDV # I-- DRAMRDV# 

ClK2 

ClK.2S 

CLOCK MEMORV 

ClK2 
RESET 

ClK 

SClK 
ClK 25 

Figure 1: The print engine controller contains CPU, clock 
generator and reset, bus control, memory, 110 ports, and 
the print engine. The CPU and control logic consist of the 

a0960KB, pull-ups for the open-drain signals, address 
latches, and data transceivers. The a0960KB has a 2O-MHz 
clock and 53.3-Mbyte/sec burst-bus data rates. 

8-23 



AR557 

A Programmer's View of the 80960 Architecture 

S. McGeady 

Intel Corporation, Hillsboro, OR 

ABSTRACT 

Intel Corporation's new' 80960 processor 
Integrates many archHectural features normally found 
in RISC processors with others found in more tradi­
tional archHectures. The resuH is a processor provid­
ing high performance while presenting few difficulties 
for either applications or compiler writers. This paper 
discusses the programming model of the 960. includ­
ing aspects of the instruction set and the register 
architecture. Techniques for effective use of the 960 
from both assembly language and high-level 
languages are discussed, including the subroutine cal­
ling sequence designed for the architecture. 

1. Introduction 

Software engineers interested in the programming model of 
a processor include application developers, who are primarily 
interested in the high-level language (HLL) programming model; 
operating system or kernel developers. who must concern them­
selves with both the assembly-language programming model and 
the' fault, interrupt, and system-control aspects of the processor; 
and compiler-writers, who concem themselves with code genera­
tion, optimization, and runtime system issues. Compiler and OS 
developers attempt to insulate the application developer from as 

, many of the details of the architecture as possible. This paper 
will be of principle interest to those writing assembly-language 
programs and compiler code-generations or run-time systems for 
the 960, though a knowledge of the underlying architecture will 
also be useful for those programming only in a high-level 
language. 

2. The 960 Archltectuie 

This section provides an overview oi the 960 architecture. 
More detail may be found in [Myers88] and a reference manual is 
available [PRM88]. 

2.1. Flat Address Space. An engineer developing code in Pas­
cal, C, Ada, or most other Algol-like HLLs will see an extremely 
simple and straightforward programming model, much like other 
32-bit archHectures of long standing. The 960 provides a large (4 
gigabyte) flat physical address space, with no segments or other 
limHations on memory addressing. All addresses used by the 
archHecture are 32 bHs wide. In implementations that include 
memory management hardware (currently the 80960MC) stan­
dard virtual-memory paging support is supplied. and the virtual 
address space for each process is also a full 32 bHs wide. 

The 960 stack may begin at any address in memory, and 
grows toward higher addresses. 

CH2686-4/89/0000/00Q4$Ol.OO © 1989 IEEE 

8-24 

2.2. Fundamental Data Types. Accesses to memory on the 960 
can be 8, f6, 32.64,96, or 128 bits wide, representing the byte, 
short, word, longword, tripleword, and quadword types, respec­
tively. 

The byte, short, and word data types come in integer 
(Signed) and ordinal varieties, The Id (load) and st (store) 
operations for bytes and shorts come in each variety, where 
integer loads Sign-extend the most significant bit of the source 
memory location and ordinal loads do not. Word and wider loads 
and stores merely copy the sign bit in the normal way, since no 
sign-extension is required. 

Byte ordering within words is little-endian, meaning that the 
least significant bytes of a word are stored at the lowest­
numbered address. This is like the DEC VAX' and Intel 386' pro­
cessors, but unlike the IBM 360 and Motorola 68000 processors. 
Future implementations will allow either little-endian or big­
endian external memory references. 

All current and planned future implementations on the 960 
support non-alig~ed memory a,ccesses, though memory access 
is fastest when accesses are aligned to nalural boundaries, i.e. 
words to 32-bit boundaries, doubles to 64-bit boundaries, and tri­
ples and quads to 128-bH boundaries. 

2.3. Register Set. The 960 has a thirty-two general registers 
and four floating-point registers available to the compiler wrHer 
(Fig. 1). The general registers are each 32 bits wide. Twenty­
eight of these registers have no predefined function, allowing the 
compiler great freedom in allocating user procedure-local vari­
ables and temporaries into these registers. The remaining four of 
the 960's 32 general registers are used by the call and rei 
instructions lor stack-pointer, Irame-pointer. previous-frame 
pointer, and return-instruction pointer. 

The 960 general registers are divided into two sections: glo­
bal registers, gO .. g15, and local registers, 1O .. r15. The global 
registers act like processor registers on any machine, and are 
affected by instructions only when explicit)' used as operands. 
The local registers are accessible to instructions in exactly the 
same way as the global registers, but the call instruction pro­
vides the called procedure a new set of these registers that, 
unlike Berkeley RISC [PatSeqB1]. do not overlap with the previ­
ous set. The rei instruction recovers the previous register set lor 
the calling procedure, 

The 960 implements a special cache (64 registers in the 
KA, KB. and MC implementations, up to 192 in a future imple­
mentation) for registers containing procedure-local variables, 
allowing last procedure call and return. A call instruction causes 
a new set of 16 local registers to be provided for the called pro­
cedure, while the previous procedure's registers are retained in 
the register cache. Only when the cache is full are registers 

• V AX is a trademark. of Digital Equipment Corporation. 386 is a trademark of In­
tel Corporation. 

Order Number: 270808-001 



:~f,'~~~: ?g:~~~~~L V:E l GLOBAL 
I 
I 

CONTEHTSOF 
GLOBAL ANO 

flOAT NG·POINT 

REGISTERS 

REGISTERS 
PRfSERVED 

ACIIOSS 
PROCEOl"RE 
BOUNDARIES . ' 

f, 
• 
0 

• 
, 

L,P 
I'" 

I 
, 

I 
NEWSETO~ 

I 
I 

I 
FRAME POINTER IfP} ~ 

AVAILABLE FOR GENERAL USE 

PRE .... IOUS FUME POINTER tPFPl l STACIC POINTER (S'I 
RETURN INSTRUCTION POINTER (RIP) 

I 
! 

LOCAL 

J FLOATING· POINT 
, REGISTERS 

---' 

lOCAL 
REGISTERS REGISTERS 

A. .. LOC.A'''EO 
fOA.EA'''' 

PI:tOCEOUR[ 

I 
L-' " 

REGISTERS r4 TtlRQUGH ,1 S 

J AVAILABLE FOR GENERAL USE 

Fig 1. The 960 Register Set 

spilled to memory, to locations previously allocated on the stack. 
This reduces stack accesses due to register spilling during pro­
cedure calls to a minimum. Our research (as well as [Ditz82]) 
shows that most HLL programs tend to OSCillate. in a small range 
of call depths. The register cacheing allows these procedures to 
execute with far fewer accesses to externat memory. This 
dramatically improves processor performance. especially with 
moderate·speed memory systems typically found in embedded 
systems. 

The 960 instruction set atso allows access to an additionat 
32 special function regi5ter5. In future implementations, these 
registers will provide access to on·chip peripherals and other 
special execution units. 

2.4. RISC Core Instruction Set. Other than the load (Id). store 
(st). and a few special-purpose instructions, all instructions in the 
960 operate on the general register set. The core inslructions of 
the 960 are: 

Arithmetic 
Control 

Data 
and Logical Movement 

add cmp branch move 
subtract test branch-link load 
multiply shift call store 
divide rotate return 
modulo boolean-op 

Boolean Operations 
and notand andnot 
or notor ornot 
xor nor xnor 
not nand alterbit 
setbit clrbit notbit 

8-25 

960 instructions are formed from four basic formats (Fig. 2): 
REG (register) instructions, that form all basic computational 
instructions, CTRL (control) instructions, including branches and 
calls, MEM (memory) instructions, the load and store instruc­
tions, and COBR (compare-and-branch instructions), a high­
density instruction mentioned below. 

I' 

I 
, 

o ~ \ 

Fig 2. 960 Instruction FormalS. 

REG instructions typically take three operands: two source 
registers and a destination register. Either of the source 
operands may alternatively be a literalin the range 0 .. 31. 

ArithmetiC instructions come in ordinal (unsigned) and 
integer (signed) varieties. These differ in treatment of the most 
significant bit of the operands, and in the generation of integer 
overflow faults. Languages such as C that do not define program 
behaviour on integer overflow typically disable integer overflow 
fault detection. Languages such as Ada that require integer over· 
flow detection may enable it and do not require additional instruc­
tions to check for overflow. 

2.5. fnteger Artthmetic Cant rots. The 960 allows detection of 
overflow during integer arithmetic operations. The integer ver­
sions of the arithmetic instructions (addt, subl, mUll, dlvl, etc) 
may trigger this fault, while the ordinal instructions (addo, subo, 
mula, diva, etc) never .trigger the fault. The integer overflow trap 
may be prevented by seHing the integer overflow mask in the 
Arithmetic Controls register. An Integer Zero-Divide Fault is also 
provided. 

2.6. Condttion Codes. Most 960 instruction do not set or use 
fhe condiiion codes. In general, only the cmp instructions (and 
the extended compare instructions discussed betow) set the con· 
dition codes. The condition codes are conlained in Ihe arithmetic 
controls registers (accessible via the special modac instruction), 
and are encoded into three bits. Thus, eight masks provide the 
standard conditions: 

Branch, Test, and Fault Conditions 

CC Condition CC Condition 
000 never 100 src1 < src2 
001 src1 > src2 101 src1 != src2 
010 src1 == src2 110 src1 <= src2 
011 src1 >= src2 111 always 

The conditional fault instructions also rely on these bits, 
and the test instructions set their operand register to 1 H the 
requested condition is true, and 0 if it is false. 

The 960 differs from many processors in that the floating­
point unit uses the same condition codes (and conditional branch 
instructions) as the integer unit. The floating-point compare 
instructions (cmpr, cmprl) set the condition bits in the manner 



described above, except that the never condition indicates that 
the operands of the compare are unordered, i.e., either operand 
is an invalid floating-point number such as a NaN. The always 
condition indicates the ordered.condition. 

2.7. Extended Instructions. In addition to the core instructions, 
the 960 implements a set of extended instructions to increase 
code density, exploit fine-grain parallelism in the' microarchitec­
ture, and provide needed functions for embedded applications 

Extended Instructions 
compare-and-branch extract bits scanbit 
compare-and-increment modify bits spanbit 
compare-and-decrement atomic add synchronous move 
conditional-compare atomic modify synchronous load 

The compare-and-branch and compare-and-increment or 
-decrement instructions exist to improve instruction densily by 
combining typically adjacent instructions when the delay Slot 
between them cannot be filled. This brings the average code 
density of 960 programs to within 15-25% of that of a VAX, com­
pared to 40% or worse for other RISC processors JDitzS7J. In 
addition, the conditional-compare instructions are used by the 
960 Ada compiler for range checks, e.g: 

cmpi 
concmpi 
faullne 

rO,14 # see if rO is in the range 14 .. 30 
rO,30 

# fault if it is 

The concmpl instruction acts as a no-op If the result of the previ­
ous cmp was "less than". This allows Simple range checks 
without conditional branch instructions (and the concomitant 
pipeline breaks). The atomic and synchronous instruclions are 
important additions for multiprocessor systems. 

2.S. Addressing Modes. The 960's load and store instructions 
provide both the simple, high-pertormance addreSsing modes 
(Fig. 3) normally found in RISC processors, and more complex 
addressing modes fo.' improved code density and to beller exploit 
fine-grained parallelism in the microarchitecture. 

HLL Code Assembler Code Addressing Mode 
x = global; Id -9lobal,gO 12 or 32-bit address 
x = 'p; Id (r6),gO register-indirect 
x = local; Id 80(fp),gO register-indirect + offset 
x = s->mos; Id 12(rB),gO register-indirect + offset 
x = p[i]; Id (r6)[r4'4].gO Indexed indirect 
x = as[i]->mos; Id 12(r9)[r4'16],gO indexed indirect + offset 

Fig. 3. 950 Memory Addressing Modes' 

Sophisticaled addressing modes on the 960 not only 
improve code density, but they allow the implementation to com­
pute tM effective address of the instruction in parallel with the 
execution of subsequent instructions. In addition, in each of the. 
above examples, the instruction could have been Idl (load long), 
Idt (load triple), or Idq (load quad), to burst 2, ~, or 4 four words 
from memory. The instruction 'Idq 12(r9)[r4'16]' would take 6to 
11 inslructions to implement on most other RISC processors. 

1 The lable assumes the follOWing data declarabons. 
Int global, Int array[101. 
100(1 I 

Inllocal, Int i, In!·p = &array, 
slrucl ( 

char 
float 

I' .•• [5). 

a,b,c,d, shan B,f, 
g. Int mos, 

8-26 

2.9. IEEE-754 Floating-Point. The 960KB implementation 
includes an on-chip lIoating-point unit. The FPU is fully IEEE 
754-1985 compatible, and supports 32-bit (rea~, 54-bit (long 
rea~, and SO-bit (extended rea~ precisions. The on-board FPU 
supports NaN (Not-a-Number), Infinities, Signed Zero. and 
Denormalized representations, and appropriate (maskable) faults 
when operations generate NaNs, Infinities, or Denormalized. 

The FPU also implements four additional BO-bit wide floating­
point registers, though lIoating-point instructions may .also 
operate on the general registers in groups of 1 (real), 2 (long 
real), or 3 (extended)'. 

Floating-Point Instructions 
add binary log compare 
subtract natural log copysign 
multiply square root classify 
divide sine scale 
move cosine round 
modulo tangent truncate 
remainder arctangent exponent 

Each 01 these instructions can operation on real, long real. 
or extended preCision numbers. The classify instruction deter­
mines whether a value is a valid lIoating·point number. or a NaN. 
Infinity, and/or denormalized, and the sign of the number. The 
copyslgn operation can be used to provide an absolute value. A 
full set of conversion instruction are provided that convert 
between integer and floating-point formats, either using the 
rounding-mode in effect or truncating. 

The 960 FPU can be programmed to fault when it detects 
de normalized operands, so full IEEE·754 denormalized-number 
support can be implemented. If normalizing mode is on, denor­
malized numbers are normalized and the operation proceeds 
without a fault. 

2.10. Floating-point Arithmetic Controls. If the HLL or its run­
time library supports them, the 960 FPU can provide the following 
(maskable) flags: lIoating underflow, overflow, zero-divide, and 
inexact. The FPU may be set t6 round up, down, to zero, or to 
nearest. and milY be set in normalizing mode, where denormal­
ized numbers are valid. or non-normalizing mode, where denor­
malized operands cause a reserved-encoding fault. 

The runtime system for C programs typically disables 
integer overflow, floating underflow, overflow, and inexact faults. 
and sets the FPU to·round-to-nearest and into normalizing mode. 
The runtime system for Ada programs typically enables all faults 
and translates them into NUMERIC_ERROR. 

3. Subroutine Calling Sequence 

No specific calling sequence is mandated or enforced by 
the 960 architecture. While the call and ret instructions perform 
pre-delined operations on the stack and Irame-pointers, 
language designers are free to use the bal branch-and-link 
instruction to implement,any desired subroutine linkage or calling 
sequence. A sophisticated compiler might dispense with a stan­
dard calling sequence altogether, tuning each call to the needs of 
the calling and called procedures. 

However, Intel has defined a common calling sequence for 
its C and Ada compilers for the 960. This allows implementation 
of less sophisticated compilers. assemblers, and debugging 
tools. Nevertheless, the calling sequence was designed to place 
an absolute minimum overhead on simple. commonly-called pro­
cedures with few paramete(s, and only slightly more overhead on 
rarely-used variable-argument-list procedures and procedures 

2 The load and store Irlpleword functions are provided lor feadlng and stonng 
extended-precIsion "aatlng-polnl values to and from memory 



with large numbers 01 parameters. Intel's 960 software support 
tools, as well as those supplied lor the 960 by most third parties, 
expect and support Ihis calling sequence. 

Reg Primary Use Secondary Use P? 
gO parameter 0 return word 0 

g1 parameler 1 return word 1 
g2 return word 2 

g3 return word 3 
g4 Imp 

gS Imp 

g6 parameter 6 Imp 

g7 parameter 7 Imp 

g8 unasslgnod parameler8 P 
g9 unassigned parameter 9 P 
g10 unassigned parameter 10 P 
g11 unassigned parameter 11 P 
g12 unassigned P 
g13 structure return ptr 
g14 argument blk ptr leal return addr 
Ip Irame pointer 

P - preserved across calls 
p' - preS8fV'Bd If nor usod as parameter 

Fig, 4, Global Register Usage Conventions 

3,1, Parameters In Global Registers, The global registers 
gO .. g14 are used lor passing parameters and olher values 
between procedures As shown in Fig. 4, registers gO through 
g7 are used lor the lirst eight words 01 parameters to a pro­
cedure. Values are placed into increasing-numbered registers 
left-to-nght, and are aligned within the register set according to 
their size, possibly leaving holes A parameter shorter than one 
word is placed in a single register, two-woro parameters (e.g. 
double-precision Iloats) are placed in an even-numbered register 
and the following register, and three and four-word parameters 
(e g. extended-precision floats) are placed in gO, g4, or g8. 
Thus, Instructions may use parameters directly Irom their regis­
ters withoul extracting and aligning them. 

Fig 5 shows a C code fragment, and the calling 
procedure's interface code_ 

Int a, b[10];. 

a = loo(a, 1, Y, &b[O]); mov r3,gO # local "a" 
Idconst 1,g1 #1 
Idconst 120,g2 #'x' 
Ida Ox40(fp),g3 # base ol"b" 
call _faa 
mov gO,r3 

Fig, 5, Standard Subroutine Linkage Example 

3,2, Return Values In Global Registers, The calling procedure 
receives any return value shorter than lour words in gO .. g3 when 
the called routine returns, allowing integral values, single, double, 
or extended-precision floating-point values, or small structures to 
be returned without wntlng to memory. The calling procedure 
must assume that the values in gO .. g7 are losl across a pro­
cedure call (except lor those that contain the lunction return 
value, rt any). though global registers g8 .. g11 are preserved 

8-27 

across the call (the called routine must not modily them, or must 
save and restore them if they are to be used)_ Register g12 is 
always preserved across calls, A globally-optimizing compiler for 
the 960 could use these registers to hold global constants and 
pointers to global data structures, 

If more than lour words ollunction return value is required, 
(as in a C function returning a structure) the calling routine must 
supply a pointer to an area (presumably on the stack) in which 
the return value is written, II a structure return is needed, a 
pointer is supplied in register g13, otherwise that register may be 
used as a temporary, 

This linkage convention allows very fast calls with little or 
no memory traffic to both leal and non-leaf procedures. A typical 
non-leaf procedure prologue is: 

_faa: Ida 96(sp),sp # adjust stack 
movq gO,r4 # save parameters 
r remainder of procedure " 
ret 

The lirst instruction (Ida - load effective address) adjusts the 
stack pointer to make room for local (non-register) variables such 
as arrays and structures. The second instruction copies the 
incoming lour parameters from global registers gO .. g3 to local 
registers r4 .. r7. Here they will be preserved by the register 
cache across calls within the procedure. Any procedure can 
return without adjusting the stack or incurring other overhead by 
using the ret inslruction. 

3,3, Support for Argument Blocks, In our examination of many 
of C and Ada programs, we discovered that over 98% 01 all pro­
cedures were called with 6 or lewer parameters [Weic84] 
([Pat8S] also reports this). However, if more than eight words of 

parameters are required, four additional words may be placed in 
g8 .. g11, and their vatues, like g4 .. g7 are indeterminate upon 
return of the called procedure. II more than 12 words of parame­
ters are required, register g14 is used to point to an argument 
block on the calling procedure'S stack. Registers gO .. g11 contain 
the first twelve words of parameters, and the argument block 
contains any remaining parameters, following an empty area 01 
twelve words into which the called procedure may copy the 
parameters passed in the registers. If no argument block is allo­
cated lor a procedure, g14 must be set to zero. In practice, pro­
cedures with more than 12 words 01 parameters are so rare that 
g14 is set in a program's initialization code and seldom changed. 
Existing'compilers typically use the register as a constant zero. 

3,4, Variable Length Argument Lists, The C programming 
language allows procedures to be called with a variable number 
of arguments. In versions of C before the ANSI X3J11 standardi­
zation effort, the calling procedure typically did not know whether 
a called procedure was a variable-argument-list (varargs). pro­
cedure. The 960 calling sequence supports this model, allowing 
properly-written C programs to be ported without change. The 
calling procedure lollows the rules outlined above, placing 
parameters in registers until they are eXhausted, and then allo­
cating an argument block. The called procedure, however, does 
not know how many arguments where passed to it and ot what 
type these arguments might be. We rejected the notion of pro­
viding an argument count to every procedure, as that would 
involve undue overhead, and would not solve the type problem. 

Register g14 inlorms the called procedure whether the 
caller allocated an argument block. II it did, the varargs pro­
cedure can simply copy gO .. g11 to the stack with three stq (store 
quad-word) instructions, leaving user code to increment through 
them. If g14 is set to zero, the caller did not allocate an argu­
ment block, and the varargs routine allocates one for itsell and 
copies the parameters into it in the same way. The compiler gen­
erates special code in the prologue to varargs routines to do this: 



-printl: cmpobne g14,O,.W123 
Idconst 64,r15 
addo sp,r15,sp 
Ida 32(sp),g14 

'w123: slq g8,32(fp) 
sfq g4,16(g14) 
stq gO,(g14) 
r must save g8 .. g11 separately in case ., 
r they were used as parameters ., 
stq g8,48(g14) 

r remainder of procedure·' 

. The overhead imposed on varargs routines is minor, and 
linkage to the preponderance of procedures consists only of a 
few mov instructions and a call. 

3.5. Branch·and·Llnk Optimizations. Procedures that do not 
require a stack frame or a set of local registers may be optimized 

to avoid the allocation of the frame or use of the register cache. 
Such procedures typically call no other procedures and are called 
leaf procedures, since they reside at the "leaves' of the call-tree. 
Entering leaf procedures wHhout creating a new frame makes 
beller use of the 960 register cache and can improve perfor· 
mance in call-intensive programs. 

The 960 archHecture provides the bal instruction, which 
branches to the operand address, leaving the address of the sub­
sequent instruction (the return instruction pointer) in a named 
register. Such a subroutine would return by branching to the 
address contained in this register. 

The 960 compilers generate the callI (caIVjump) pseudo-op 
in place of the standard call instruction, which allows the linker to 
determine if separately-compiled modules contain leaf­
procedures and promote the call instruction at the call-site to a 
bal instruction. Fig. 6 shows the entry to a leaf procedure that 
can also be called in the standard way. 

.Ieafproc 

Ida rell,g14 # call entry 
mov g14,g13 # bal entry 
mov O,g14 
r remainder of procedure·' 
bx (g13) 

rell: ret 

Fig. 6 Leaf Procedure Definition 

3.6. Linkage Conventions for other Languages. The 960 cal­
ling convention can be used for C, Ada, Pascal, Fortran, and 
most other HLLs. Languages with more complex scoping rules 
than C are sometimes required to pass a static link as an invisi­
ble first (or last) parameter to procedures in enclQsed scopes that 
reterence variables in an enclosing scope. The 960 Ada com­
piler recognizes these cases and passes the static link only to 
those procedures that require H. 

Fortran compilers that implement copy-in/copy-out parame­
ter passing (as opposed to the more common pass-by-reference 
model) have no problem with SUBROUTINE calls, but FUNC­
TION calls will require eHher reference parameters or use of the 
structure' return facility. In Ada, functions do not have Inlout 
parameters, so this is not an issue. Handling unconstrained 
results in Ada is not contemplated by this linkage convention, but 
is managed by the 960 Ada compiler in a way that does not 
violate the convention. 

Languages that need not use a standard control stack, or 
wish to implement a dramatically different calling convention may 
use branch-and-link exclusively, with a vestigial runtime stack for 
interrupt and fault handling. 

8-28 

3.7. Trace Controls and Debugging 

Many prccessors are implemented for workstations or end­
user compuler systems with native operaling systems and pro­
gramming environments. The 960 adds to its architecture a stan­
dard set of debugging features that allow simple debugging 
without a native operating system. 

3.8. Trace Controls The 960 implements a series of trace con­
trols (Fig. 7) that allow the user to implement a full runtime 
debugger as part of a simple monitor implementing the trace fault 
handler. 

III "l '~!'!'!!{E(/L,,~~~"~: 
~L..:=.u."'CHnACl""CO( I OUT1tA(EMODI 

. _nUl .. TltA(l MODI 

---'lunUIN TUCI MODE 

--.--su,nVISOIlTA.AUMOOI 

UIA"I'OI,.TTU,UMOO( 

i' 1:1~~~:~:-;:~I",:"INT 

l~~~~~~~~~~UTVINr .... crEV(NT 'llunUIN rliAU EV,PoI' 

SU""VlSOIUACEIVIt4r 
•• L .... 'OIHT' ... UEII(NT 

Flg.7. 960 Debug Trace Controls 

The call and return traces allow monitoring of procedure 
entry and exH, while branch tracing may be used to monitor 
branch-and-link procedure entries and other branches. The pre­
return trace is useful for capturing cOhtrol immediately before the 
return from a procedure in order to examine its stack trame. The 
instruction trace mode faults on the execution of every instruc­
tion, allowing single-stepping. Monitors provided by Intel support 
each of these modes, offering single-stepping, dynamiC instruc­
tion trace with disassembly. Current implementations of the 960 
also include two instruction address breakpoint registers that 
allow the setting of breakpoints in ROM. 

3.9. System Programming 

Implementors of operating systems must also concern 
themselves with the behaviour Of interrupts and faults. 

3.10. Interrupts. The 960 incorporates a 32-priority, 248-vector 
interrupt controller on-chip, eliminating the need for off-chip circu­
itry to handle interrupts. The interrupt table, the location of which 
is defined at power-up or reinitialization, cOntains the addresses 
of the handlers for various interrupts. Also, the first 36 bytes of 
the interrupt table record the status of all pending interrupts: and 
all priorities that have pending interrupts. 

When an interrupt is received, if it is of a higher priority than 
other executing or pending interrupts (if any), the processor 
switches to an independent interrupt stack, saves the arithmelic 
controls register (containing the condition codes), the process 
controls register (containing the previously current priority), and 
the interrupt procedure is called as though from a call instruction, 
using the handler address in the interrupt table. Since the call 
instruction automatically allocates a new set of local registers 
from the register cache, the interrupted procedure's local vari­
ables need not be explicitly saved. Other than the need to save 
the global registers if they are used, the interrupt service routine 
is like any other routine, and return from interrupt is effected with 
the standard ret instruction. The state of the processor, including 
the previously active priority, is restored when the interrupt 
returns. 

Operating system routines may post software-generated 
interrupts by using the atomic modify (atmod) instruction to 



cnange values In Ihe pendlng-inlerrupls field 01 Ihe inlerrupt 
table. 

3.11. Faults. When the processor detects an exceptional condi­
tion (including "planned" exceptional conditions like trace/debug 
faults), a fault is raised. Faults are categorized into trace laults, 
Invalid operation faults, aflthmetic faults, floating-point laults, bad 
(memory) access laults, and several processor consistency 
faults. Most faults have one or more sub-t,pes thai are indicated 
when the lault is signaled. 

A system-wide fault table contains addresses of fault 
handlers lor each type of lault. As with inlerrupts, a tault handler 
IS entered as though it had been calted by Ihe normal call 
Instruction Unlike interrupts, however, lault handlers execute on 
the user stack, rather than on a separale inlerrupt stack, allowing 
the fault handler simple access to process state information 
there When a fault occurs, a fault record is saved in Ihe fault 
handle(s stack frame, recording the type and subtype of Ihe 
laull the address 01 the faulting Instruction, the saved arithmetic 
and process controls, and sufficient data to restart the instruction 
(a resumption record). 

For faults that are fatal errors, a fault handler need merely 
modify the return Instruction pointer In the previous stack frame 
(that of the faulting procedure) and return. II it is desired that the 
operands of tM faulting Instruction be modified and the instruc­
tion re-executed, the handler must examine the faulting instruc­
tion, determine the precise cause of the fault, and modify the 
operands accordingly. 

3.12, PreCise, Imprecise, and parallet Faults Because the 960 
architecture altows instructions to execute in parallel, multiple 
faults can occur simultaneously, possibly one or more cycles 
after the dispatch of the faulting instruction. II this behaviour 
must be aVOided, the 960 provides the NIF (No Imprecise Faults) 
flag, that prevents parallel execution of instructions that might 
generate impreCise faults. However, under normal Clf­
cumstances, if multiple faults occur simultaneously, the 960 
writes a record for each fault into the stack frame, and calls a 
sper.ial parallel fault handler (fault type 0). The parallel fault 
handler may then dispatch individual fault handlers as appropn­
ate. 

For languages such as Ada that require that all potential 
faults be signaled at certain places in a procedure (i.e. when an 
exception handler is being changed), the syncf (synchronize 
faults) Instruction is provided ThiS instruction stalls until all 
parallel instruction execution units have completed and reported 
any faulls. The 960 Ada compiler emits this instruction at the end 
of an exception frame. 

4. Parallel Instruction Optimizations 

The 960, like other modern processors, supports pipelined 
Instruction execution. This allows decode and dispatch opera­
tions for current instructions to be overlapped with execution of 
previous instructions. However, the 960 has a fully interlocked 

pipeline, ensuring object-code compatibility between current and 
future implementations. Unlike many other RISC processor~, 
there is no need to insert null operations before or after certain 
operations such as loads or branches. The 960 also implements 
register scoreboarding, ensuring that adjacent Instructions that 
might be executed in parallel or overlapped do not attempt to use 
a Single resource at the same time or out of order. 

Because of the instruction pipeline careful ordering of 
instructions can improve code pertormance. The result of a Id 
Instruction may not be avaIlable for several cycles after the 
instructIon is issued, depending on the speed of the memory sys­
tem. By scoreboarding the destination register of the load, the 
960 is able to safely continue to execute instructIons follOWing the 
load, effectIvely overlapping· these instructions with the data fetch 
(FIg. 8) 

8-29 

Id 
muli 
addo 
subo 

Ox400(rO),gO 
g4,g5,g6 
rO,16,rO 
gO,rO,r1 

# these 
# execute 
# concurrently 
# waits for load 

Ftg. B. CPU/Bus Parallelism 

Because the 960 hardware detects resource conflicts, 
software WIll always operate as expected without the insertion of 
null operations, and without software tools to detect and remove 
these conflicts. 

Future implementations of the 960 will exploit even more 
parallelism - a memory operation, an integer operation, and a 
branch may be dIspatched simultaneously and executed in paral­
lel. Careful balancing of memory operations (including tda 
instructions, that can pertorm a limited set of arithmetic opera­
tions) with integer operations can enhance the pertormance of 
future implementations, allowing average 2 instrucfion per clock 
execution rates from on-chip instruction cache. 

5. Conclusion 

The 960 processor was designed with more than one 
implementatIon in mind. Many features of the 960 are present to 
support implementations that provide fine-grained parallelism at 
the instruction level, allowing aggregate native instruction rates in 
excess of twice the processor clock rate. At the same time, the 
960 provides an architecture that is easy to.learn and to use, and 
that does not require sophisticated software tools to exploit. The 
960 combines the practical aspects of RISC techniques 
developed in recent years with more traditional mainframe tech­
niques such as register scoreboarding and parallel instruction 
execution. The calling sequence designed for the 960 allows 
enough flexibility to make fast calls to simple non-leaf and leaf 
procedures, and yet does not cause undue complication in 
development tools. ProviSIons have been made to. support 
sophisticated optimizing compilers and other tools as that tech­
nology becomes more mature. 

6. References 

[Ditz82] 

[Ditz87] 

D. Ditzel & H. McLellan, "The C Machine Stack 
Cache: RegIster Allocation for Free", Proceedings 
Symposium on Architectural Support for Program­
ming Languages and Operaling Systems, March 
1982. 

D. Ditzel & H. McLellan, "Design Tradeoffs to Support 
the C Programming Language in the CRISP 
Microprocessor", Proceedings 2nd International 
Conference on Architectural Support for Program­
ming Languages and Operating Systems, October 
1987. 

[IEEE754] IEEE, ANSI/IEEE Std. 754-1985: IEEE Standard for 
Btnary Floallng-Polnt Arithmetic", 1985. 

[Myers88] G. Myers & D. Budde, The 60960 Microprocessor 
Architecture, WIley Interscience, New York, NY, 
1988. 

[PRM960] 60960KB Programmer's Reference Manuat, Intel 
Corporation, Santa Clara, CA, 1988. 

[Patl85] D. Patlerson, "Reduced Instruction Set Computers," 
CACM, v28n1, January 1985. 

[PatSeq81] D. Patterson & C. Sequin, "RISC I: A Reduced 
Instruction Set VLSI Computer." Proceedings 8th 
Internafional Symposium on Computer Architecture, 
May 1981. 

[Weic84] R. Weicker, "Dhrystone: A Synthetic Systems Pro­
gramming Benchmark", CACM, v27n10, October 
1984. 





General Microcontroller 
Application Notes 

9 





intJ APPLICATION 
NOTE 

AP-125 

February 1982 

Designing Microcontroller 
Systems for Electrically 

Noisy Environments 

TOM WILLIAMSON 
MCO APPLICATIONS ENGINEER 

© Intel Corporation, 1989 Order Number: 210313-002 

9-1 



intJ AP-125 

Digital circuits are often thought of as being immune to 
noise problems, but really they're not. Noises in digital 
systems produce software upsets: program jumps to ap­
parently random locations in memory. Noise-induced 
glitches in the signal lines can cause such problems, but 
the supply voltage is more sensitive to glitches than the 
signal lines. 

Severe noise conditions, those involving electrostatic 
discharges, or as found in automotive environments, 
can do permanent damage to the hardware: Electrostat­
ic discharges can blow a crater in the silicon. In the 
,automotive environment, in ordinary operation, the 
"12V" power line can shown + and -400V transients. 

This Application Note describes some electrical noises 
and noise environments. Design considerations, along 
the lines of PCB layout, power supply distribution and 
decoupling, and shielding and grounding techniques, 
that may help minimize noise susceptibility are re­
viewed. Special attention is given to the automotive and 
ESD environments. 

Symptoms of Noise Problems 

Noise problems are not usually encountered during the 
development phase of a microcontroller system. This is 
because benches rarely simulate the system's intended 
environment. Noise problems tend not to show up until 
the system is installed and operating in its intended en-

, vironment. Then, after a few minutes or hours of nor­
mal operation the system finds itself someplace out in 
left field. Inputs are ignored and outputs are gibberish. 
The system may respond to a reset, or it may have to be 
turned off physically and then back on again, at which 
point it commences operating as though nothing had 
happened. There may be an obvious cause, such as an 
electrostatic discharge from somebody's finger to a key­
board or the upset occurs every time a copier machine 
is turned on or off. Or there may be no obvious cause, 
and nothing the operator can do will make the upset 
repeat itself. But a few minutes, or a few hours, or a few 
days later it happens again. 

One symptom of electrical noise problems is random-' 
ness, both in the occurrence of the problem and in what 
,the system does in its failure. All operational upsets 
that occur at seemingly random intervals are not neces­
sarily caused by noise in the system. Marginal VCC, 
inadequate decoupling, rarely encountered software 
conditions, or timing coincidences can produce upsets 
that seem to occur randomly. On the other hand, some 
noise sources can produce upsets downright periodical­
ly. Nevertheless, the more difficult it is to characterize 
an upset as to cause and effect, the more likely it is to 
be a noise problem. 

9-2 

Types and Sources of Electrical Noise 

The name given to electrical noises other than those 
that are inherent in the circuit components (such as 
thermal noise) is EMI: electromagnetic interference. 
Motors, power switches, fluorescent lights, electrostatic 
discharges,' etc., are sources of EMI. There is a veritable 
alphabet soup of EMI types, and these are briefly de­
scribed below. 

SUPPLY LINE TRANSIENTS 

Anything that switches heavy current loads onto or off 
of AC or DC power lines will cause large transients in 
these power lines. Switching an electric typewriter on 
or off, for example, can put a lOOOV spike onto the AC 
power lines. 

The basic mechanism behind supply li"e transients is 
shown in Figure 1. The battery represents any power 
source, AC or DC. The coils represent the line induc­
tance between the power source and the switchable 
loads Rl and R2. Ifboth loads are drawing current, the 
line current flowing through the line inductance, estab­
lishes a magnetic field of some value. Then, when one 
of the loads is switched off, the field due to that compo­
nent of the line current collapses, generating transient 
voltages, v = L(di/dt), which try to maintain the cur­
rent at its original level. That's called an "inductive 
kick." Because of contact bounce, transients are gener­
ated whether the switch is being opened or closed, but 
they're worse when the switch is being opened. 

An inductive kick of one type or another is involved in 
most line transients, including those found in the auto­
motive environment. Other mechanisms for line tran­
sients exist, involving noise pickup on the lines. The 
noise voltages are then conducted to a susceptible cir­
cuit right along with the power. 

EMP AND RFI 

Anything that produces arcs or sparks will radiate elec­
tromagnetic pulses (EMP) or radio-frequency interfer­
ence (RFI). 

v -

R1 R2 

210313-1 

Figure 1. Supply Line Transients 



AP-125 

Spark discharges have probably caused more software 
upsets in digital equipment than any other single noise 
source. The upsetting mechanism is the EMP produced 
by the spark. The EMP induces transients in the cir­
cuit, which are what actually cause the upset. 

Arcs and sparks occur in automotive ignition systems, 
electric motors, switches, static discharges, etc. Electric 
motors that have commutator bars produce an arc as 
the brushes pass from one bar to the next. DC motors 
and the "universal" (AC/DC) motors that are used to 
power hand tools are the kinds that have commutator 
bars. In switches, the same inductive kick that puts 
transients on the supply lines will cause an opening or 
closing switch to throw a spark. 

ESD 

Electrostatic discharge (ESD) is the spark that occurs 
when a person picks up a static charge from walking 
across a carpet, and then discharges it into a keyboard, 
or whatever else can be touched. Walking across a car­
pet in a dry climate, a person can accumulate a static 
voltage of 35kV. The current pulse from an electrostat­
ic discharge has an extremely fast risetime - typically, 
4A/ns. Figure 2 shows ESD waveforms that have been 
observed by some investigators of ESD phenomena. 

It is enlightening to calculate the L(dildt) voltage re­
quired to drive an ESD current pulse through a couple 
of inches of straight wire. Two inches of straight wire 
has about 50 nH of inductance. That's not very much, 
but using 50 nH for L and 4A/ns for dildt gives an 
L(dildt) drop of about 200V. Recent observations by 
W.M. King suggest even faster risetimes (Figure 2b) 
and the occurrence of multiple discharges during a sin­
gle discharge event. 

Obviously, ESD-sensitivity needs to be considered in 
the design of equipment that is going to be subjected to 
it, such as office equipment. 

GROUND NOISE 

Currents in ground lines are another source of noise. 
These can be 60 Hz currents from the power lines, or 
RF hash, or crosstalk from other signals that are shar­
ing this particular wire as a signal return line. Noise in 
the ground lines is often referred to as a "ground loop" 
problem. The basic concept of the ground loop is 
shown in Figure 3. The problem is that true 
earth-ground is not really at the same potential in all 
locations. If the two ends of a wire are earth-grounded, 
at different locations, the voltage difference between the 
two "ground" points can drive significant currents (sev­
eral amperes) through the wire. Consider the wire to be 
part of a loop which contains, in addition to the wire, a 
voltage source that represents the difference in poten­
tial between the two ground points, and you have 

9-3 

the classical "ground loop." By extension, the term is 
used to refer to any unwanted (and often unexpected) 
currents in a ground line. ' 

"Radiated" and "Conducted" Noise 

Radiated noise is noise that arrives at the victim circuit 
in the form of electromagnetic radiation, such as EMP 
and RFI. It causes trouble by inducing extraneous volt­
ages in the circuit. Conducted noise is noise that arrives 
at the victim circuit already in the form of an extrane­
ous voltage, typically via the AC or DC power lines. 

One defends against radiated noise by care in designing 
layouts and the use of effective shielding techniques. 
One defends against conducted noise with filters and 

Ul 
"-
~ 
z 

80 

60 

;:: 40 
z 
w 
a: 
a: 
::l 
U 

20 

--EXPERIMENTAL 
- - - - CALCULATED 

o 10 20 30 40 50 60 70 80 90 100 110 120 
TIME IN NANOSECONDS 

Vert: 5 AmpS/Div 
Time: 5 nSec:/Div 

Displayed: 
Ip: 40 Amps 
Tr.1 nSec 
500V 

210313-2 

(a) 

210313-3 

(b) 

Figure 2. Waveforms of Electrostatic 
Discharge Currents From a 
Hand-Held Metallic Object 



inter AP-125 

suppressors, although layouts and grounding tech­
niques are important here, too. 

Simulating the Environment 

Addressing noise problems after the design of a system 
has been completed is an expensive proposition. The ill 
will generated by failures in the field is not cheap either. 
It's cheaper in the long run to invest a little time and 
money in learning about noise and noise simulation 
equipment, so that controlled tests can be made on the 
bench as the design is developing. 

Simulating the intended noise environment is a two­
step process: First you have to recognize what the noise 
environment is, that is, you have to know what kinds of 
electrical noises are present, and which of them are go­
ing to cause trouble. Don't ignore this first step, be­
cause it's important. If you invest in an induction coil 
spark generator just because your application is auto­
motive, you'll be straining at the gnat and swallowing 
the camel. Spark plug noise is the least of your worries 
in that environment. 

The second step is to generate the electrical noise in a 
controlled manner. This is usually more difficult than 
first imagined; one first imagines the simulation in 
terms of a waveform generator and a few spare parts, 
and then finds that a wideband power amplifier with a 
200V dynamic range is also required. A good source of 
information on who supplies what noise-simulating 
equipment is the 1981 "ITEM" Directory and Design 
Guide (Reference 6). 

Types of Failures and Failure 
Mechanisms 

A major problem that EMI can cause in digital systems 
is intermittent operational malfunction. These software 
upsets occur when the system is in operation at the time I 

an EMI source is activated, and are usually character­
ized by a loss of information or a jump in the execution 

-GROUND LOOP-

of the program to some random location in memory. 
The person who has to iron out such problems is tempt­
ed to say the program counter went crazy. There is 
usually no damage to the hardware, and normal opera­
tion can resume as soon as the EMI has passed or the 
source is de-activated. Resuming normal operation usu­
ally requires manual or automatic reset, and possibly 
re-entering of lost information. 

Electrostatic discharges from operating personnel can 
cause not only software upsets, but also permanent 
("hard") damage to the system. For this to happen the 
system doesn't even have to be in operation. Sometimes 
the permanent damage is latent, meaning the initial 
damage 'may be marginal and require further aggrava­
tion through operating stress and time before perma­
nent failure takes place. Sometimes too the damage is 
hidden. 

One ESD-related failure mechanism that has been iden­
tified has to do with the bias voltage on the substrate of 
the chip. On some CPU chips the substrate is held at 
- 2.5V by a phase-shift oscillator working into a capac­
itor/diode clamping circuit. This is called a "charge 
pump" in chip-design circles. If the substrate wanders 
too far in either direction, program read errors are not­
ed. Some designs have been known to allow electrostat­
ic discharge currents to flow directly into port pins of 
an 8048. The resulting damage to the oxide causes an 
increase in leakage current, which loads down the 
charge pump, reducing the substrate voltage to a mar­
ginal or unacceptable level. The system is then unreli­
able or completely inoperative until the CPU chip is 
replaced. But if the CPU chip was subjected to a dis­
charge spark once, it will eventually happen again. 

Chips that have a grounded substrate, such as the 8748, 
can sometimes sustain some oxide damage without ac­
tually becoming inoperative. In this case the damage is 
present, and the increased leakage current is noted; 
however, since the substrate voltage retains its design 
value, the damage is largely hidden. 

ATB 

'..POTENTIAL DIFFERENCE 
BETWEEN A AND B 

210313-4 

Figure 3_ What a Ground Loop Is 

9-4 



infef AP-125 

It must therefore be recognized that connecting port 
pins unprotected to a keyboard or to anything else that 
is subject to electrostatic discharges, makes an extreme­
ly dangerous configuration. It doesn't make any differ­
ence what CPU chip is being used, or who makes it. If 
it connects unprotected to a keyboard, it will eventually 
be destroyed. Designing for an ESD-environment will 
be discussed further on. 

We might note here that MOS chips are not the only 
components that are susceptible to permanent ESD 
damage. Bipolar and linear chips can also be damaged 
in this way. PN junctions are subject to a hard failure 
mechanism called thermal secondary breakdown, in 
which a current spike, such as from an electrostatic 
discharge, causes microscopically localized spots in the 
junction to approach melt temperatures. Low power 
TTL chips are subject to this type of damage, as are 
op-amps. Op-amps, in addition, often carryon-chip 
MOS capacitors which are -directly across an external 
pin combination, and these are susceptible to dielectric 
breakdown. 

We return now to the subject of software upsets. Noise 
transients can upset the chip through any pin, even an 
output pin, because every pin on the chip connects to 
the substrate through a pn junction. However, the most 
vulnerable pin is probably the VCC line, since it has 
direct access to all parts of the chip: every register, gate, 
flip-flop and buffer. 

The menu of possible upset mechanisms is quite 
lengthy. A transient on the substrate at the wrong time 
will generally cause a program read error. A false level 
at a control input can cause an extraneous or misdirect­
ed opcode fetch. A disturbance on the supply line can 
flip a bit in the program counter or instruction register. 
A short interruption or reversal of polarity on the sup­
ply line can actually turn the processor off, but not long 
enough for the power-up reset capacitor to discharge. 
Thus when the transient ends, the chip starts up again 
without a reset. 

A common failure mode is for the processor to lock 
itself into a tight loop .. Here it may be executing the 
data in a table, or the program counter may have 
jumped a notch, so that the processor is now executing 
operands instead of opcodes, or it may be trying to 
fetch opcodes from a nonexistent external program 
memory. 

It should be emphasized that mechanisms for upsets 
have to do with the arrival of noise-induced transients 
at the pins of the chips, rather than with the generation 
of noise pulses within the chip itself, that is, it's not the 
chip that is picking up noise, it's the circuit. 

The Game Plan 

Prevention is usually cheaper than suppression, so first 
we'll consider some preventive methods that might help 

9-5 

to minimize the generation of noise voltages in the cir­
cuit. These methods involve grounding, shielding, and 
wiring techniques that are directed toward the mecha­
nisms by which noise voltages are generated in the cir­
cuit. We'll also discuss methods of decoupling. Then 
we'll look at some schemes for making a graceful recov­
ery from upsets that occur in spite of preventive mea­
sures. Lastly, we'll take another look at two special 
problem areas: electrostatic discharges and the automo­
tive environment. 

Current Loops 

The first thing most people learn about electricity is 
that current won't flow unless it can flow in a closed 
loop. This simple fact is sometimes temporarily forgot­
ten by the overworked engineer who has spent the past 
several years mastering the intricacies of the DO loop, 
the timing loop, the feedback loop, and maybe even the 
ground loop. The simple current loop probably owes its 
apparent demise to the invention of the ground symbol. 
By a stroke of the pen one avoids having to draw the 
return paths of most of the current loops in the circuit. 
Then "ground" turns into an infinite current sink, so 
that any current that flows into it is gone and forgotten. 
Forgotten it may be, but it's not gone. It must return to 
its source, so that its path will by all the laws of nature 
form a closed loop. 

The physical geometry of a given current loop is the 
key to why it generates EMI, why it's susceptible to 
EMI, and,how to shield it. Specifically, it's the area of 
the loop that matters. 

Any flow of current generates a magnetic field whose 
intensity varies inversely to the distance from the wire 
that carries the current. Two parallel wires conducting 
currents + I and - I (as in signal feed and return lines) 
would generate a nonzero magnetic field near the wires, 
where the distance from a given point to one wire is 
noticeably different from the distance to the other wire, 
but farther away (relative to the wire spacing), where 
the distances from a given point to either wire are about 
the same, the fields from both wires tend to cancel out. 
Thus, maintaining proximity between feed and return 
paths is an important way to minimize their interfer­
ence with other signals. The way to maintain their 
proximity is essentially to minimize their loop area. 
And, because the mutual inductance .from current loop 
A to current loop B is the same as the mutual induc­
tance from current loop B to current loop A, a circuit 
that doesn't radiate interference doesn't receive it ei­
ther. 

Thus, from the standpoint of reducing both generation 
of EMI and susceptibility to EMI, the hard rule is to 
keep loop areas small. To say that loop areas should be 
minimized is the same as saying the circuit inductance 



inter AP-125 

should be minimized. Inductance is by definition the 
constant of proportionality between current and the 
magnetic field it produces: </> = LI. Holding the feed 
and return wires close together so as to promote field 
cancellation can be described either as minimizing the 
loop area or as minimizing L. It's the same thing. 

Shielding 

There are three basic kinds of shields: shielding against 
capacitive coupling, shielding against inductive cou­
pling, and RF shielding. Capacitive coupling is electric 
field coupling, so shielding against it amounts to shield­
ing against electric fields. As will be seen, this is rela­
tively easy. Inductive coupling is magnetic field cou­
pling, so shielding against it is shielding against mag­
netic fields. This is a little more difficult. Strangely 
enough, this type of shielding does not in general in­
volve the use of magnetic materials. RF shielding, the 
classical "metallic barrier" against all sorts of electro­
magnetic fields, is what most people picture when they 
think about shielding. Its effectiveness depends partly 
on the selection of the shielding material, but mostly, as 
it turns out, on the treatment of its seams and the ge­
ometry of its openings. 

SHIELDING AGAINST CAPACITIVE COUPLING 

Capacitive coupling involves the passage of interfering 
signals through mutual or stray capacitances that aren't 
shown on the circuit diagram, but which the experi­
enced engineer knows are there. Capacitive coupling to 
one's body is what would cause an unstable oscillator to 
change its frequency when the person reaches his hand 
over the circuit, for example. More importantly, in a 
digital system it causes crosstalk in multi-wire cables. 

The way to block capacitive coupling is to enclose the 
circuit or conductor you want to protect in a metal 
shield. That's called an electrostatic or Faraday shield. 
If coverage is 100%, the shield does not have to be 
grounded, but it usually is, to ensure that circuit-to­
shield capacitances go to signal reference ground rather 
than act as feedback and crosstalk elements. Besides, 
from a mechanical point of view, grounding it is almost 
inevitable. 

A grounded Faraday shield can be used to break capac­
itive coupling between a noisy circuit and a victim cir-' 
cuit, as shown in Figure 4. Figure 4a shows two circuits 
capacitively coupled through the stray capacitance be­
tween them. In Figure 4b the stray capacitance is inter­
cepted by a grounded Faraday shield, so that interfer­
ence currents are shunted to ground. For example, a 
grounded plane can be inserted between PCBs (printed 
circuit boards) to eliminate most of the capacitive cou­
pling between them. 

9-6 

Another application of the Faraday shield is in the elec­
trostatically shielded transformer. Here, a conducting 
foil is laid between the primary and secondary coils so 
as to intercept the capacitive coupling between them. If 
a system is being upset by AC line transients, this type 
of transformer may provide the fix. To be effective in 
this application, the shield must be connected to the 
greenwire ground. 

SHIELDING AGAINST INDUCTIVE COUPLING 

With inductive coupling, the physical mechanism in­
volved is a magnetic flux density B from some external 
interference source that links with a current loop in the 
victim circuit, and generates a voltage in the loop in 
accordance with Lenz's law: v = - NA(dB/dt), where 
in this case N = 1 and A is the area of the current loop 
in the victim circuit. 

There are two aspects to defending a circuit against 
inductive pickup. One aspect is to try to minimize the 
offensive fields at their source. This is done by minimiz­
ing the area of the current loop at the source so as to 
promote field cancellation, as described in the section 
on current loops. The other aspect is to minimize the 
inductive pickup in the victim circuit by minimizing the 
area of that current loop, since, from Lenz's law, the 
induced voltage is proportional to this area. So the two 
aspects really involve the same corrective action: mini­
mize the areas of the current loops. In other words, 
minimizing the offensiveness of a circuit inherently 
minimizes its susceptibility. 

C. 

NOISE ----11--- VICTIM 
SOURCE CKT 

L. I 
~ 

210313-5 

(a) Capacitive Coupling 

/FARADAY SHIELD 

NOISE -11-- --11- VICTIM 
SOURCE CKT 

I I 
-:;.: 

210313-6 

(b) Electrostatic Shielding 

Figure 4. Use of Faraday Shield 



AP-125 

V. 
~------------------I I _ 

I I -I 

- - - / '" CURRENT LOOP 

210313-7 

Figure 5. External to the Shield, </> = 0 

Shielding against inductive coupling means nothing 
more nor less than controlling the dimensions of the 
current loops in the circuit. We must look at four ex­
amples of this type of "shielding": the coaxial cable, the 
twisted pair, the ground plane, and the gridded-ground 
PCB layout. 

The Coaxial Cable-Figure 5 shows a coaxial cable 
carrying a current I from a signal source to a receiving 
load. The shield carries the same current as the center 
conductor. Outside the shield, the magnetic field pro­
duced by + I flowing in the center conductor is can­
celled by the field produced by - I flowing in the 
shield. To the extent that the cable is ideal in producing 
zero external magnetic field, it is immune to inductive 
pickUp from external sources. The cable adds effective­
ly zero area to the loop. This is true only if the shield 
carries the same current as the center conductor. 

In the real world, both the signal source and the receiv­
ing load are likely to have one end connected to a com­
mon signal ground. In that case, should the cable be 
grounded at one end, both ends, or neither end? The 
answer is that it should be grounded at both ends. Fig­
ure 6a shows the situation when the cable shield is 
grounded at only one end. In that case the current loop 
runs down the center conductor of the cable, then back 
through the common ground connection. The loop area 
is not well defined. The shield not only does not carry 
the same current as the center conductor, but it doesn't 
carry any current at all. There is no field cancellation at 
all. The shield has no effect whatsoever on either the 
generation of EMI or susceptibility to EM!. (It is, how­
ever, still effective as an electrostatic shield, or at least 
it would be if the shield coverage were 100%.) 

Figure 6b shows the situation when the cable is ground­
ed at both ends. Does the shield carryall of the return 
current, or only a portion of it on account of the shunt­
ing effect of the common ground connection? The an­
swer to that question depends on the frequency content 
of the signal. In general, the current loop will follow the 
path of least impedance. At low frequencies, 0 Hz to 
several kHz, where the inductive reactance is insignifi­
cant, the current will follow the path of least resistance. 
Above a few kHz, where inductive reactance predomi­
nates, the current will follow the path of least induc­
tance. The path of least inductance is the path of 

9-7 

Vs 

_L,CURRENTLOOP~~~~~/ -= 
(/ .... ..--' 
\ ~~ ,----

210313-8 

(a) Shield Has No Effect 

I 
I 
I R 
I 

I (-----\-------------1 : 
~ ___ ) HIGH· FREQUENCY L __ _ 

----
CURRENT PATH 

- \ 
/ 

I 
I ~~ 
'- - ~ ~ '-.. LOW·FREQUENCY 

CURRENT PATH 

210313-9 

(b) Two Return Paths 

Figure 6. Use of Coaxial Cable 

minimum loop area. Hence, for higher frequencies the 
shield carries virtually the same current as the center 
conductor, and is therefore effective against both gener­
ation and reception of EMI. 

Note that we have now introduced the famous "ground 
loop" problem, as shown in Figure 7a. Fortunately, a 
digital system has some built-in immunity to moderate 
ground loop noise. In a noisy environment, however, 
one can break the ground loop, and still maintain the 
shielding effectiveness of the coaxial cable, by inserting 
an optical coupler, as shown in Figure 7b. What the 
optical coupler does, basically, is allow us to re-define 
the signal source as being ungrounded, so that that end 
of the cable need not be grounded, and still lets the 
shield carry the same current as the center conductor. 
Obviously, if the signal source weren't grounded in the 
first place, the optical coupler wouldn't be needed. 

The Twisted Pair-A cheaper way to minimize loop 
area is to run the feed and return wires right next to 
each other. This isn't as effective as a coaxial cable in 
minimizing loop area. An ideal coaxial cable adds zero 
area to the loop, whereas merely keeping the feed and 
return wires next to each other is bound to add a finite 
area. 

However, two things work to make this cheaper meth­
od almost as good as a coaxial cable. First, real coaxial 
cables are not ideal. If the shield current isn't evenly 
distributed around the center conductor at every cross-



inter AP-125 

POTENTIAL DIFFERENCE 
BETWEEN THE TWO 
GROUND POINTS 

210313-10 

(a) The Ground Loop 

IOPTICAL COUPLER 

.....--!..-..., 
+5V 

J '--'\ 
v. 

I I _____________________ J I 

I 
------,--------------, I 

'CURRENT LOOP : R I 
l' ___ ) 

210313-11 

(b) Breaking the Ground Loop 

Figure 7. Use of Optical Coupler 

section of the cable· (it isn't), then field cancellation ex­
ternal to the shield is incomplete. If field cancellation is 
incomplete, then the effective area added to the loop by 
the cable isn't zero. Secori9, in the cheaper method the 
feed and return ~ires can be twisted together. This not 
only maintains their proxiinity, but the noise picked up 
in one twist tends to cancel out the noise picked up in 
the next twist down the line. Thus the "twisted pair" 
turns out to be about as good a shield against inductive 
coupling as coaxial cable is .. 

The twisted pair does not, however, provide electrostat­
ic shielding (i.e., shielding against capacitive coupling). 
Another operational difference between them is that 
the coaxial cable works better at higher frequencies. 
This is primarily" because the twisted pair adds more 
capacitive loading to the signal source than the coaxial 
cable does. The twisted pair is normally considered use­
ful up to only abou,t 1 MHz, as opposed to near a GHz 
for the coaxial cable. 

The Ground Plane-The best way to minimize loop 
areas when many curre~t loops are involved is to use a 
ground plane. A ground plane is a conducting surface 
that is to serve as a return conductor for all the current 
loops in the circuit. Normally, it would be one or more 
layers of a multilayer PCB. All ground points in the 
circuit go not to a grounded trace on the PCB, but 
directly to the ground plane. This leaves each current 
loop in the circuit free to complete itself in whatever 
configuration yields minimum loop area (for frequen­
cies wherein the ground path impedance is primarily 
inductive). 

Thus, if the feed path for a given signal zigzags its way 
across the PCB, the return path for this signal is free to 
zigzag right along beneath it on the ground plane, in 
such a configuration as to minimize the energy stored 
in the magnetic fleld produced by this current loop. 
Minimal maglletic flux means minimal effective loop 
area and minimal susceptibility to inductive coupling. 

The Gridded-Ground PCB Layout-The next best 
thing to a ground plane is to layout the ground traces 
on a PCB in the form of a grid structure, as shown in 

. Figure 8. Laying horizontal traces on one side of the 
board and vertical traces on the other side allows the 
passage of signal and power traces. Wherever vertical ' 
and horizontal ground traces cross, they must be con­
nected by a feed-through. 

9-8 

Have we not created here a network of "ground loops"? 
Yes, in the literal sense of the word, but loops in the 
grourid layout on a PCB are not to be feared. Such 
inoffensive little loops have never caused as much noise 
pickup as their avoidance has. Trying 'to avoid innocent 
little loops in the ground layout, PCB designers have 
forced current loops into geometries that could swallow 
a whale. That is exactly the wrong thing to do, 

The gridded ground structure works almost as well as 
the ground plane, as far as minimizing loop area is con­
cerned. For a given current loop, the primary return 
path may have to zig once in a while where its feed path 
zags, but you still get a mathematically optimal dis-



AP-125 

~ DIP 0 DECOUPLING _ GROUND e- ELECTROLYTIC 
l""""".;;l CAPACITOR CAPACITOR 

210313-12 

Figure 8. PCB with Gridded Ground 

tribution of currents in the grid structure, such that the 
current loop produces less magnetic flux than if the 
return path were restrained to follow any single given 
ground trace. The key to attaining minimum loop areas 
for all the current loops together is to let the ground 
currents distribute themselves around the entire area of 
the board as freely as possible. They want to minimize 
their own magnetic field. Just let them. 

RF SHIELDING 

A time-varying electric field generates a time-varying 
magnetic field, and vice versa. Far from the source of a 
time-varying EM field, the ratio of the amplitudes of 
the electric and magnetic fields is always 377fl.. Up 
close to the source of the fields, however, this ratio can 
be quite different, and dependent on the nature of the 
source. Where the ratio is near 377n is called the far 
field, and where the ratio is significantly different from 
377n is called the near field. The ratio itself is called 
the wave impedance, E/H. 

, The near field goes out about 1/6 of a wavelength from 
the source. At 1 MHz this is about 150 feet, and at 10 
MHz it's about 15 feet. That means if an EMI source is 
in the same room with the victim circuit, it's likely to 
be a near field problem. The reason this matters is that 
in the near field an RF interference problem could be 
almost entirely due to E-field coupling or H-field cou­
pling, and that could influence the choice of an RF 
shield or whether an RF shield will help at all. 

In the near field of a whip antenna, the E/H ratio is 
higher than 377n, which means it's mainly an E-field 
generator. A wire-wrap post can be a whip antenna. 
Interference from a whip antenna would be by electric 
field coupling, which is basically capacitive coupling. 
Methods to protect a circuit from capacitive coupling, 
such as a Faraday shield, would be effective 

9-9 

against RF interference from a whip antenna. A grid­
ded-ground structure would be less effective. 

In the near field of a loop antenna, the E/H ratio is 
lower than 377n, which means it's mainly an H-field 
generator. Any current loop is a loop antenna. Interfer­
ence from a loop antenna would be by magnetic field 
coupling, which is basically the same as inductive cou­
pling. Methods to protect a circuit from inductive cou­
pling, such as a gridded-ground structure, would be ef­
fective against RF interference from a loop antenna. A 
Faraday shield would be less effective. 

A more difficult case of RF interference, near field or 
far field, may require a genuine metallic RF shield. The 
idea behind RF shielding is that time-varying EMI 
fields induce currents in the shielding material. The in­
duced currents dissipate energy iii two ways: PR losses 
in the shielding material and radiation losses as they re­
radiate their own EM fields. The energy for both of 
these mechanisms is drawn from the impinging EMI 
fields. Hence the EMI is weakened as it penetrates the 
shield. 

More formally, the PR losses are referred to as absorp­
tion loss, and the re-radiation is called reflection loss. 
As it turns out, absorption loss is the primary shielding 
mechanism for H-fields, and reflection loss is the pri­
mary shielding mechanism for E-fields. Reflection loss, 
being a surface phenomenon, is pretty much indepen­
dent of the thickness of the shielding material. Both 
loss mechanisms, however, are dependent on the fre­
quency (w) of the impinging EM! field, and on the 
permeability (fJ.) and conductivity (0") of the shielding 
material. These loss mechanisms vary approximately as 
follows: 

reflection loss to an E-field (in dB) - log.!!... 
wfJ. 

absorption loss to an H-field (in dB) - t~wO"fJ. 

where t is the thickness of the shielding material. 

The first expression indicates that E-field shielding is 
more effective if the shield material is highly conduc­
tive, and less effective if the shield if ferromagnetic, and 
that low-frequency fields are easier to b,lock than high­
frequency fields. This is shown in Figure 9. 

iii 150 ~ 
II: .. 125 

en 100 0 
oJ 

75 z 
0 50 
~ 25 
"' oJ 
U. 0 
W 
II: 0.01 0,1 1.0 10 100 1000 10.000 

FREQUENCY (KILOHERTZ) 

210313-13, 

Figure 9. E-Field Shielding 



inter AP-125 

In.---------~r_------r_~------~ 

150 

25 

10 10' 103 104 .10' 

FREQUENCY (HERTZ) 

10' 10' 

210313-14 

Figure 10. H·Field Shielding 

Copper and aluminum both have the same permeabili­
ty, but copper is slightly more conductive, and so pro­
vides slightly greater reflection loss to an E-field. Steel' 
is less effective for two reasons. First, it has a somewhat 
elevated permeability due to its iron content, and sec­
ond, as tends to be the case. with magnetic materials, it 
is less conductive. 

On the other hand, according to the expression for ab­
sorption loss to an H-field, H-field shielding is more 
effective at higher frequencies and with shield material 
that has both high conductivity and high permeability. 
In practice, however, selecting steel for its high perme­
ability involves some compromise in conductivity. But 
the increase in permeability more than makes up for the 
decrease in conductivity, as can be seen in Figure 10. 
This figure also shows the effect of shield thickness. 

A composite of E-field and H-field shielding is shown 
in Figure II. However; this type of data is meaningful 
only in the far field. In the near field the EM!. could be 
90% H-field, in which case the reflection loss is irrele­
vant. It would be advisable then to beef up the absorp­
tion loss, at the expense of reflection loss, by choosing 
steel. A better conductor than steel might be less expen­
sive, but quite ineffective. 

, A different shielding mechanism that can be taken ad­
vantage of for low frequency magnetic fields is the abili­
ty of a high permeability material such as mumetal to 
divert the field by presenting a very low reluctance path 
to the magnetic flux. Above a few kHz, however, the 
permeability of such materials is the same as steel. 

In actual fact the selection of a shielding material turns 
out to be less important than the presence of seams, 
joints and holes in the physical structure of the enclo­
sure. The shielding mechanisms are related to the in­
duction of currents in the shield material,but the cur- , 

300~-----------------------------~ 

1250 j .. ' 

i!: 200 
t; 

$ 150 
Cl z 
9,100 .. 
:E 
.. 501 
~ I 
I:! 

PLANE WAVE 

0.01 0.1 1.0 

, , , , , , , 
---- " REFLECTION ----1-­, , 

-------
"", 

~~~~~~ABSORPTION 

10 100 1000 10.000

FREQUENCY (KILOHERTZ)

210313-15

Figure 11. E· and H·Field Shielding

rents must be allowed to flow freely. If they have to
detour around slots and holes, as shown in Figure 12,
the shield loses much of its effectiveness.

As can be seen in Figure 12, the severity of the detour
has less to do with the area of the hole than it does with
the geometry of the hole. Comparing Figure 12c with
12d shows that a long narrow discontinuity such as a
seam can cause more RF leakage than a line of holes
with larger total area. A person who is responsible for
designing or selecting rack or chassis enclosures for an
EMI environment needs to be familiar with the tech­
niques that are available for maintaining electrical con­
tinuity across seams. Information on these techniques is
available in the references.

Grounds

There are two kinds of grounds: earth-ground and sig­
nal ground. The earth is not an equipotential surface, so
earth ground potential varies. That and its other electri­
cal properties are not conducive to its use as a return
conduc,tor in a circuit. However, circuits are often con­
nected to earth ground for protection against shock
hazards. The other kind of ground, signal ground, is an
arbitrarily selected reference node in a circuit--the
node with respect to which other node voltages in the
circuit are measured.

SAFETY GROUND

The standard 3-wire single-phase AC power distribu­
tion system is represented in Figure 13. The white wire
is earth-grounded at the service entrance. If a load cir­
cuit has a metal enclosure or chassis, and if the black
wire develops a short to the enclosure, there will be a
shock hazard to operating personnel, unless the enclo­
sure itself is earth-grounded. If the enclosure is earth-

9-10

inter AP-125

(a)

(e)

__ INDUCED
SHIELD

CURRENTS

- -SECTION OF
SHIELD

(b)

(d)
210313-16

Figure 12. Effect of Shield Discontinuity on Magnetically Induced Shield Current

grounded, a short results in a blown fmle rather than a
"hot" enclosure. The earth-ground connection to the
enclosure is called a safety ground. The advantage of
the 3-wire power system is that it distributes a safety
ground along with the power.

Note that the safety-ground wire carries no current,
except in case of a fault, so that at least for low frequen­
cies it's at earth-ground potential along its entire
length. The white wire, on the other hand, may be sev- .
eral volts off ground, due to the IR drop along its
length.

SERVICE
. (ENTRANCE ,,-------,

I I BLACK
I
I
I
I
I
I
I
I WHITE
I
I
I GREEN
1, ___ -

EARTH-GROUND

(METAL
ENCLOSURE

;'"--------,
I
I
I

LOAD :
CKT I

I
I
I

---)

210313-17

Figure 13. Single-Phase Power Distribution

9-11

SIGNAL GROUND

Signal ground is a single point in a circuit that is desig­
nated to be the reference node for the circuit. Common­
ly, wires that connect to this single point are also re­
ferred to as "signal ground." In some circles "power
supply common" or PSC is the preferred terminology
for these conductors. In any case, the manner in which
these wires connect to the actual reference point is the
basis of distinction among three kinds of signal-ground
wiring methods: series, parallel, and multipoint. These
methods are shown in Figure 14.

The series connection is pretty common because it's
simple and economical. It's the noisiest of the three,
however, due to common ground impedance coupling
between the circuits. When several circuits share a
ground wire, currents from one circuit, flowing through
the finite impedance of the common ground line, cause
variations in the ground potential of the other circuits.
Given that the currents in a digital system tend to be
spiked, and that the common impedance is mainly in­
ductive reactance, the variations could be bad enough
to cause bit errors in high current or particularly noisy
situations.

The parallel connection eliminates common ground im~
pedance problems, but uses a lot of wire. Other disad­
vantages are that the impedance of the individuaJ
ground lines can be very high, and the ground lines
themselves can become sources of EM!.

inter AP-125

In the mUltipoint system, ground impedance is mini­
mized by usiq.g a ground plane with the various circuits
connected to it by very short ground leads. This type of
connection would be used mainly in RF circuits above
10 MHz.

PRACTICAL GROUNDING

A combination of series and parallel ground-wiring
methods can be used to trade off economic and the
various electrical considerations. The idea is to run se­
ries connections for circuits that have similar noise
properties, and connect them at a single reference
point, as in the parallel method, as shown in Figure 15.

In Figure 15, "noisy signal ground" connects to things
like motors and relays. Hardware ground is the safety
ground connection to chassis, racks, and cabinets. It's a
mistake to use the hardware ground as a return path for
signal currents because it's fairly noisy (for example,
it's the hardware. ground that receives an ESD spark)
and tends to have high resistance due to joints and
seams.

\ GROUND LINE

Series Connection

Parallel Connection

Multipoint Connection

REF. POINT

210313-18

210313-.19

REF. POINT

210313-20

Figure 14. Three Ways to Wire the Grounds

NOISY HARDWARE
AND HIGH GROUND
CURRENT

SIGNAL
GROUND

GREEN-WIRE
GROUND 210313-21

Figure 15. Parallel Connection
of Series Grounds

Screws and bolts don't always make good electrical
connections because of galvanic action, corrosion, and
dirt. These kinds of connections may work well at first,
and then cause mysterious maladies as the system ages.

Figure 16 illustrates a grounding system for a 9-track
digital tape recorder, showing.an application of the se­
ries/parallel ground-wiring method.

Figure 17 shows a similar. separation of grounds at the
PCB level. Currents in multiplexed LED displays tend
to put a lot of noise on the ground and supply lines
because of the constant switching and changing in­
volved in the scanning process. The segment driver
ground is relatively quiet, since it doesn't conduct the
LED currents. Tho digit driver ground is noisier, and
should be provided with a separate path to the PCB
ground terminal, even if the PCB ground layout is grid­
ded. The LED feed and return current paths should be
laid out on opposite sides of the board like parallel flat
conductors.

Figure 18 shows right and wrong ways to make ground
connections in racks. Note that the safety ground con­
nections from panel to rack are made through ground
straps, not panel screws. Rack 1 correctly connects sig­
nal ground to rack ground only at the single reference
point. Rack 2 incorrectly connects signal ground to
rack ground at two points, creating a ground loop
around points 1, 2, 3, 4, 1.

Breaking the "electronics ground" connection to point
1 eliminates the ground loop, but leaves signal ground
in rack 2 sharing a ground impedance with the relative­
ly noisy hardware ground to the reference point; in fact,
it may end up using hardware ground as a return path
for signal and power supply currents. This will proba­
bly cause more problems than the ground loop.

BRAIDED CABLE

Ground impedance problems can be virtually eliminat­
ed by using braided cable. The reduction in impedance
is due to skin effect: At higher frequencies the current
tends to flow along the surface of a conductor rather

9-12

inter AP-125

-----------------------,
9 "READ" AMPLIFIERS

9 "WRITE" CIRCUITS

L----!----:i--'--"""l _________________ J

SIGNAL GROUNDS

GREEN-WIRE
GROUND

Figure 16. Ground System in a 9-Track Digital Recorder

CONTROL FUNCTIONS

CONTROLLER

'-------~------~+-~-GROUND

Figure 17. Separate Ground for Multiplexed LED Display

9-13

210313-22

210313-23

infef Ap·125

RACK 1 RACK 2

P:6~~~Y ~=' ____________ -I-ELECTRONICS GROUND

GROUND

GREEN-WIRE GROUND
210313-24

Figure 18. Electronic Circuits Mounted in Equipment Racks Should Have Separate Ground
Connections. Rack 1 Shows Correct Grounding, Rack 2 Shows Incorrect Grounding.

than uniformly through its bulk_ While this effect tends
to increase the impedance of a given conductor, it also
indicates the way to minimize impedance, and that is to
manipulate the shape of the cross-section so as to pro­
vide more surface area. For its bulk, braided cable is
almost pure surface.

Power Supply Distribution and
Decoupling

The main consideration for power supply distribution
lines is, as for signal lines, to minimize the areas of the
current loops. But the power supply lines take on an
importance that no signal line has when one considers
the fact that these lines have access to every PC board
in the system. The very extensiveness of the supply cur­
rent loops makes it difficult to keep loop areas small.
And, a noisc glitch on a supply line is a glitch delivered
to every board in the system.

The power supply provides low-frequency current to
the load, but the inductance of the board-to-board and
chip-to-chip distribution network makes it difficult for
the power supply to maintain VCC specs on the chip
while providing the current spikes that a digital system
requires. In addition, the power supply current loop is a
very large one, which means there will be a lot of noise
pick-Up. Figure 19a shows a load circuit trying to draw
current spikes from a supply voltage through the line
impedance. To the VCC waveform shown in that figure

. should be added the inductive pick-up associated with a
large loop area.

Adding a decoupling capacitor solves two problems:
The capacitor acts as a nearby source of charge to sup­
ply the current spikes through a smaller line imped­
ance, and it defines a much smaller loop area for the

higher frequency components of EM!. This is illustrat­
ed in Figure 19b, which shows the capacitor supplying
the current spike, during which VCC drops from SV by
the amount, indicated in the figure. Between current
spikes the capacitor recovers through the line imped­
ance.

One should resist the temptation to add a resistor or an
inductor to the decoupler so as to form a genuine RC or
LC low-pass filter because that slows down the speed
with which the decoupler cap can be refreshed. Good
filtering and good decoupling are not necessarily the
same thing.

The current loop for the higher frequency currents,
then, is· defined by the decoupling cap and the load
circuit, rather than by the power supply and the load
circuit. For the decoupling cap to be able to provide the
current spikes required by the load, the inductance of
this current loop must be kept small, which is the same
as saying the loop area must be kept small. This is also
the requirement for minimizing inductive pick-up in
the loop ..

There are two kinds of decoupling caps: board decou-'
piers and chip decouplers. A board decoupler will nor­
mally be a io to 100 /A-F electrolytic capacitor placed
near to where the power supply enters the PC board,
but its placement is relatively non-critical. The purpose
of the board decoupler is to refresh the charge on the
chip decouplers. The' chip decouplers are what actually
provide the current spikes to the chips. A chip decou­
pier will normally be a 0.1 to 1 /A-F ceramic capacitor
placed near the chip and connected to the chip by
traces that minimize the area of the loop formed by the
cap and the chip. If a chip decoupler is not properly
placed on the boarel, it will be ineffective as a decoupler

9-14

inter AP-125

• !
!

vc::c

I: -.J\

--------------------------__ 1

210313-25

(a) Drawing Current Spikes
through the Line Impedance

vcc:

~T A
==~~======~====~--. 1 -"-~I

210313-26

(b) Drawing Current Spikes
from a Decoupling Capacitor

Figure 19. What a Decoupling Capacitor Does

and will serve only to increase the cost of the board.
Good and bad placement of decoupling capacitors are
illustrated in Figure 20.

Power distribution traces on the PC board need to be
laid out so as to obtain minimal area (minimal induc­
tance) in the loops formed by each chip and its decou­
pier, and by the chip decouplers and the board decou­
pier. One way to accomplish this goal is to use a power
plane. A power plane is the same as a ground plane, but
at VCC potential. More economically, a power grid
similar to the ground grid previously discussed (Figure
8) can be used. Actually, if the chip decoupling loops
are small, other aspects of the power layout are less
critical. In other words, power planes and power grid­
ding aren't needed, but power traces should be laid in
the closest possible proximity to ground traces, prefer-

There must be a very low induclance between decoupling capacitor
and the IC.

Poo,Plac8menl ~
LOGICIC

C VCC
Better Placement GND

210313-27
The decreased area of loop between capacitor & IC decreases

inductance.

Figure 20. Placement of Decoupling CapaCitors

ably so that each power trace is on the direct opposite
side of the board from a ground trace. .

Special-purpose power supply distribution buses which
mount on the PCB are available. The buses use a paral­
lel flat conductor configuration, one conductor being a
VCC line and the other a ground line. Used in conjunc­
tion with a gridded ground layout, they not only pro­
vide a low-inductance distribution system, but can
themselves form part of the ground grid, thus facilitat­
ing the PCB layout. The buses are available with and
without enhanced bus capacitance, under the names
MinilBus® and Q/PAC® from Rogers Corp. (5750 E.
McKellips, Mesa, AZ 85205).

SELECTING THE VALUE OF THE
DECOUPLING CAP

The effectiveness of the decoupling cap has a lot to do
with the way the power and ground traces connect this
capacitor to the chip. In fact, the area formed by this
loop is more important than the value of the capaci­
tance. Then, given that the area of this loop is indeed
minimal, it can generally be said that the larger the
value of the decoupling cap, the more. effective it is, if
the cap has a mica, ceramic, glass, or polystyrene di­
electric.

It's often said, and not altogether accurately, that the
chip decoupler shouldn't have too large a value. There
are two reasons for this statement. One is that some
capacitors, because of the nature of their dielectrics,
tend to become inductive or lossy at higher frequencies.
This is true of electrolytic capacitors, but mica, glass,

9-15

AP-125

ceramic, and polystyrene dielectrics work well to sever­
al hundred MHz. The other reason cited for not using
too large a capacitance has to do with lead inductance.

The capacitor with its lead inductance forms a series
LC circuit. Below the frequency of series resonance, the
net impedance of the combination is capacitive. Above
that frequency, the net impedance is inductive. Thus a
decoupling capacitor is capacitive only below the fre­
quency of series resonance. The frequency is given by

1
fo = 21T,f[C

where C is the decoupling capacitance and L is the lead
inductance between the capacitor and the chip. On a
PC board this inductance is determined by the layout,
and is the same whether the capacitor dropped into the
PCB holes is O.DOI p.F or I p.F. Thus, increasing the
capacitance lowers the series resonant frequency. In
fact, according to the resonant frequency formula, in­
creasing C by a factor of 100 lowers the resonant fre­
quency by a factor of 10.

Figures quoted on the series resonant frequency of a
0.01 p.F capacitor run from 10 to 15 MHz, depending
on the, lelld length. If thf::se numbers were accurate, a
1 p.F capacitor in the same position on the board would

, have a resonant frequency of 1.0 to 1.5 MHz, and as a
decoupler would do more harm than good. However,
the numbers are based on a presumed inductance of a
given length of wire (the lead length). It should be'not­
ed thl!ot a "length of wire" has no inductance at all,
strictly speaking. Only a complete current loop has in­
ductance, and the inductance 'depends on the geometry
of the loop. Figures quoted on the inductance of a
length of wire are based on a presumably "very large"
loop area, such that the magnetic field produced by the
return current has no cancellation effect on the field
produced by the current in the given length of wire.
Such a loop geometry is not and should not be the case
with the decoupling loop.

Figure 21 shows VCC waveforms, measured between
pins 40 and 20 (VCC and VSS) of an 8751 CPU, for
several conditions of decoupling on a PC board that has
a decoupling loop area slightly larger than necessary.
These photographs show the effects of increasing the
decoupling capacitance and decreasing the area of the
decoupling loop. The indications are that a I p.F capac­
itor is better than a 0.1 p.F capacitor, which in turn is
better than nothing, a~d that the board should have
been laid out with more attention paid to the area of the
decoupling loop.

Figure 21e was obtained using a special-purpose experi­
mental capacitor designed by Rogers Corp. (Q-Pac Di­
vision, Mesa, AZ) for use as a decoupler. It consists of
two parallel plates, the le!lgth of a 4O-pin DIP, separat­
ed by a ceramic dielectric. Sandwiched between the

CPU chip and the PCB (or between the CPU socket
and the PCB), it makes connection to pins 40 and 20,
forming a leadless decoupling capacitor. It is obviously
a configuration of minimal inductance. Unfortunately,
the particular sample tested had only 0.07 p.F of capac­
itance and so was unable to prevent the 1 MHz ripple
as effectively as the configuration of Figure 2Id. It
seems apparent, though, that with more capacitance
this part will alleviate a lot of decoupling problel)1s.

THE CASE FOR ON-BOARD VOLTAGE
REGULATION

To complicate matters, supply line glitches aren't al­
ways picked up in the distribution networks, but can
come from the power supply circuit itself. In that case;
a well-designed distribution network faithfully delivers
the glitch throughout the system. The VCC glitch in
Figure 22 was found to be coming from within a bench
power supply in response to the EMP produced by an
induction coil spark generator that was being used at
Intel during a study of noise sensitivity. The VCC
glitch is about 400 m V high and some 20 p.s in dura­
tion. Normal board decoupling techniques were ineffec­
tive in removing it, but adding an on-board vQltage reg­
ulator chip did the job.

Thus, a good case can be made in favor of using a
voltage regulator chip on each PCB, instead of doing all
the voltage regulation at the supply circuit. This eases
requirements on the heat-sinking at the supply circuit,
and alleviates much of the distribution and board de­
coupling headaches. However, it also brings in the pos­
sibility that different boards would be operating at
slightly different VCC levels due to tolerance in the
regulator chips; this then leads to slightly different logic
levels from board to board. The implications of that
may vary from nothing to latch-up, depending on what
kinds of chips are on the boards, and how they react to
an input "high" that is perhaps OAV higher than local
VCC.

Recovering Gracefully from a Software .
Upset

Even when one follows all the best guidelines for de­
signing for a noisy environment, it's always possible for
a 'noise transient to occur which exceeds the circuit's
immunity level. In that case, one can strive at least for a
graceful recovery.

Graceful recovery schemes involve additional hardware
and/or software which is supposed to return the system
to a normal operating mode after a software upset has
occurred. Two decisions have to be made: How to rec­
ognize when an upset has occurred, and what to do
about it.

9-16

AP-125

PIN 40

PIN 40

ALE ALE

210313-28

(a) No Dec6upling Cap

PIN 40
PIN40

ALE

ALE

I
5~V 5V _~ __ _

210313-30

(c) 0.1 p.F Decoupler Stretched Directly
from Pin 40 to Pin 20, under the Socket.
(The difference between this and 21b is

due only to the change in loop geometry.

210313-31

(d) 1.0 p.F Decoupler Stretched Directly
from Pin 40 to Pin 20, under the Socket.

(This prevents the 1 MHz ripple, but there's
no reduction in higher frequency components.

Also shown is the upward slope of a ripple
in VCC. The ripple frequency is

1 MHz, the same as ALE.)

PIN 40

ALE

soar SV
i

Further increases in capacitance
effected no further improvement.)

210313-32

(e) Special-Purpose Decoupling Cap
under Development by Rogers Corp.

(Further discussion in text.)

Figure 21. Noise on VCC Line

9-17

AP-125

. SPARK PROBE 50mV (TRIGGER)

Vcc' 500mV

210313-33

Figure 22. EMP-Induced Glitch

If the designer· knows what kinds and combin~tions of
outputs can legally be generated by the system, he can
use gates to recognize and flag the occurrence of an
illegal state of affairs. The flag can then trigger a jump
to a recovery routine which then may check or re-ini-.
tialize data, perhaps output an error message, or gener­
ate a simple reset.

The most reliable scheme is to use a so-called watchdog
circuit. Here the CPU is p.rogrammed to generate a
periodic signal as long as the system is executing in­
structions in an expected manner. The periodic signal is
then used to hold off a circuit that will trigger a jump to
a recovery routine. The periodic' signal needs to be AC­
coupled to the trigger circuit so that a "stuck-at" fault
won't continue to hold offtl).e trigger. Then, if the proc­
essor locks up someplace, the periodic signal is lost and
the watchdog triggers a reset.

In practice, it may be convenient to drive the watchdog
circuit with a signal which is being generated anyway
by the systetn. One needs to be careful, however, that
an upset does in fact discontinue that signal. Specifical­
ly, for example, one could use one of the digit drive
signals going to a multiplexed display. But display
scanning is often handled in response to a timer-inter­
rupt, which may continue operating even though the
main program is in a failure mode. Even so, with a little
extra software, the signal can be' used to control the
watchdog (see Reference 8 on this).

Simpler schemes can work weIl for simpler systems.
For example, if a CPU isn't doing anything but scan­
ning and decoding a keyboard, there's little to lose and
much to gain by simply resetting it periodically with an
astable multivibrator. It only takes about 13 j.l.s (at 6
MHz) to reset an 8048 if the clock oscillator is already
running.

A zer~cost measure is simply to fiIl all unused pro­
gram memory with NOPs and JMPs to a recovery rou·
tine. The effectiveness of this method is increased by
writing the program in segments that are separated by

NOPs and JMPs. It's still possible, of course, to get
hung up in a data table or something. But you get a lot
of protection, for the cost.

Further discussion of graceful recovery schemes can be
found in Reference 13.

Special Problem Areas

ESD

MOS chips have some built-in protection against a stat­
ic charge build-up on the pins, as would occur during
normal handling, but there's no protection against the
kinds of current levels and rise times that occur in a
genuine electrostatic spark. These kinds of discharges
can blow a crater in the silicon. .

It must be recognized that connecting CPU pins unpro­
tected to a keyboard or to anything else that is subject
to electrostatic discharges makes an extremely fragile
configuration. Buffering the~ is the very least one can
do. But buffering docsn't completely solve the problem,
because then the buffer chips will sustain the damage
(even TTL); therefore, one might consider mounting
the buffer chips in sockets for ease of replacement:

Transient suppressors, such as the TranZorbs® made
by General Semiconductor Industries (Tempe, AZ),
may in .the long run provide the cheapest protection if
their "zero inductance" structure is used. The structure
and circuit application are shown in Figure 23.

The suppressor element is a pn junction that operates
like a Zener diode. Back-to-back units are available for
AC operation. The element is more or less an open
circuit at normal system voltage (the standoff voltage
rating for the device), and conducts like a Zener diode
at the clamping voltage.

The lead inductance in the conventional transient sup­
pressor package makes the conventional package essen-

9-18

inter AP-125

L ____ I

Palenl Pending 210313-34

(a)

PULSE DIGITAL

A

Hh--;----tB
FUNCTIONAL

1-i-=F:,--;--jC DECODER

1-1-++--,....,..-1 D

COMMON

210313-35

(b)

Figure 23. "Zero-Inductance" Structure and Use in Circuit

tially useless for protection against ESD pulses, owing
to the fast rise of these pulses. The "zero inductance"
units are available singly in a 4-pin DIP, and in arrays
of four to a 16-pin DIP for PCB level protection. In
that application they should 1;>e mounted in close prox­
imity to the chips they protect.

In addition, metal enclosures or frames or parts that
can receive an ESD spark should be connected by
braided cable to the green-wire ground. Because of the
ground impedance, ESD current shouldn't be allowed
to flow through any signal ground, even if the chips are
protected by transient suppressors. A 35 kV ESD spark
can always spare a few hundred volts to drive a fast
current pulse down a signal ground line if it can't find a
braided caple to follow. Think how delighted your 8048
will be to find its VSS pin 250V higher than VCC for a
few lOs of nanoseconds.

THE AUTOMOTIVE ENVIRONMENT

The automobile presents an extremely hostile environ­
ment for electronic systems. There are several parts to
it:

1. Temperature extremes from -40°C to + 125°C (un­
der the hood) or + 85°C (in the passenger compart­
ment)

2. Electromagnetic pulses from the ignition system

3. Supply line transients that will knock your socks off

One needs to take a long, careful look at the tempera­
ture extremes. The allowable storage temperature range
for most Intel MaS chips is -65°C to + 150°C, al­
though some chips have a maximum storage tempera­
ture rating of + 125°C. In operation (or "under bias,"
as the data sheets say) the allowable ambient tempera­
ture range depends on the product grade, as follows:

Grade
Ambient Temperature

Min Max

Commercial 0 70
Industrial -40 +85
Automotive -40 + 110
Military -55 +125

The different product grades are actually the same
chip, but tested according to different standards. Thus,
a given commercial-grade chip might actually pass mil­
itary temperature requirements, but not have been test­
ed for it. (Of course, there are other differences in grad­
ing requirements having to do with packaging, burn-in,
traceability, etc.)

In any case, it's apparent that commercial-grade chips
can't be used safely in automotive applications, not
e)len in the passenger compartment. Industrial-grade
chips can be used in the passenger compartment, and
automotive or military chips are required in under-the­
hood applications.

Ignition noise, CB radios, and that sort of thing are
probably the least of your worries. In a poorly designed
system, or in one that has not been adequately tested
for the automotive environment, this type of EMI
might cause a few software upsets, but not destroy
chips.

The major problem, and the one that seems to come as
the biggest surprise to most people, is the line tran­
sients. Regrettably, the 12V battery is not actually the
source of power when the car is running. The charging
system is, and it's not very clean. The only time the
battery is the real source of power is when the car is
first being started, and in that condition the battery
terminals may be delivering about 5V or 6V. As follows
is a brief description of the major idiosyncracies of the
"12V" automotive power line.

9-19

inter AP-125

60

50

iii
~ 40

ENGINE SPEED 3000 RPM
ALTERNATOR LOAD 55 AMPERES

~
~ 3D

5
~ 20

10

O+---r-~r-~--~---r---r--'---'---.---'
o ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

TIME (MILLISECONDS)
210313-36

Figure 24. Typical Load Dump Transients

• An abrupt reduction in the alternator load causes a
positive voltage transient called "load dump." In a
load dump transient the line voltage rises to 20V or
30V in a few JLs, then decays exponentially with a
time constant of about 100 JLs, as shown in Figure
24. Much higher peak voltages and longer decay
times have also been reported. The worst case load
dump is caused by disconnecting a low battery from
the alternator circuit while the alternator is running.
Normally this would happen intermittently when
the battery terminal connections are defective.

• When the ignition is-turned off, as the field excita­
tion -decays, the line voltage can go to between
-40Vand -100V for 100 JLs or more.

• Miscellaneous solenoid ,switching transients, such as
the one. shown in Figure 25, can drive the line to +
Or - 200V to 400V for several JLs.

o SEC.

1

OVOLTS -

-100 VOLTS/DIV

• Mutual coupling between unshielded wires in long
harnesses can induce l00V and 200V transients in
unprotected circuits.

What all this adds up to is that people in the business of
building systems for automotive applications need a
comprehensive testing program. An SAE guideline
which describes the automotive environment is avail­
able to designers: SAE 11211, "Recommended Envi­
ronmental Practices for Electronic Equipment Design,"
1980 SAE Handbook, Part 1, pp. 22.80-22.96.

Some suggestions for protecting circuitry are shown in
Figure 26. A transient suppressor is placed in front of
the regulator chip to protect it. Since the rise times in
these transients are not like those in ESD pulses, lead
inductance is less critical and conventional devices can
be used. The regulator itself is pretty much of a necessi­
ty, since a load dump transient is simply not going to be
removed by any conventional LC or RC filter.

10p s/OlV ---
210313-37

Figure 25; Transient Created by De-energizing an Air Conditioning Clutch Solenoid

9-20

intJ AP-125

AUTOMOTIVE ON BOARD COMPUTER

ACCESSORY
-12V o---rnl"'---l _-'\NI---I----.~ TO ~ PROCESSOR

"¥ l15V

DISTANCE
MEASURING COIL
,-o-----------~~~~--~TO~PROCESSOR

5V

210313-38

Figure 26. Use of Transient Suppressors in Automotive Applications

Special I/O interfacing is also required, because of the
need for high tolerance to voltage transients, input
noise, input/output isolation, etc. In addition, switches
that are being monitored or driven by these buffers are
usually referenced to chassis ground instead of signal
ground, and in a car there can be many volts difference
between the two. I/O interfacing is discussed in Refer­
ence 2.

Parting Thoughts

The main sources of information for this Application
Note were the references by Ott and by White. Refer­
ence 5 is probably the finest treatment currently avail­
able on the subject. The other references provided spe­
cific information as cited in the text.

Courses and seminars on the subject of electromagnetic
interference are given regularly throughout the year.
Information on these can be obtained from:

IEEE Electromagnetic Compatibility Society
EMC Education Committee
345 East 47th Street
New York, NY 10017

Don White Consultants, Inc.
International Training Centre
P.O. Box p
Gainesville, VA 22065
Phone: (703) 347-0030

9-21

The EMC Education committee has available a video
tape: "Introduction to EMC-A Video Training
Tape," by Henry 'Ott. Don White Consultants offers a
series of training courses on many different aspects of
electromagnetic compatibility. Most organizations that
sponsor EMC courses also offer in-plant presentations.

AP-125

REFERENCES
1. Clark, O.M., "Electrostatic Discharge Protection
Using Silicon Transient Suppressors," Proceedings of
the Electrical Overstress/Electrostatic Discharge Sympo­
sium. Reliability Analysis Center, Rome Air Develop­
ment Center, 1979;

2. Kearney, M; Shreve, J.; and Vincent, W., "Micro­
processor Based Systems in the Automobile: Custom
Integrated Circuits Provide an Effective Interface,"
Electronic Engine Management and Driveline Control
Systems, SAE Publication SP~481, 810160, pp. 93-102.

3. King, W.M. and Reynolds, D., "Personnel Electro­
static Discharge: Impulse Waveforms Resulting From
ESD of Humans Directly and Through Small Hand­
Held Metallic Objects Intervening in the Discharge
Path," Proceedings of the IEEE Symposium on Electro­
magnetic Compatibility. pp. 577-590, Aug. 1981.

4. Ott, H., "Digital Circuit Grounding and Intercon­
nection," Proceedings of the IEEE Symposium on Elec­
tromagnetic Compatibiqty. pp. 292-297, Aug: 1981.

,5. Ott, H., Noise Reduction Techniques in Electronic
Systems. New York: Wiley, 1976.

\

6. 1981 Interfe~ence' Technology Engineers' Master
(ITEM) Directory and Design Guide. R. and B. Enter­
prises, P.O. Box 328, Plymouth Meeting, PA 19426:'

7. SAE 11211, "Recommended Environmental Prac­
tices for Electronic Equipment Design," 1980 SAE
Handbook. Part 1, pp. 22.80-22.96.

8. Smith, L., "A Watchdog Circuit for Microcomput­
er Based Systems," Digital Design. pp. 78, 79, Nov.
1979.

9. TranZorb Quick Reference Guide. General Semi­
conductor Industries, P.O. Box 3078, Tempe, AZ
85281.

10. Tucker, T.J., "Spark Initiation Requirements of a
Secondary Explosive," Annals of the New York Acade­
my of Sciences. Vol 152, Article I, pp. 643-653, 1968.

11. White, D., Electromagnetic Interference and Com­
patibility. VoL 3: EMI Control Methods and Techniques.
Don White Consultants, 1973.

12. White, D., EMI Control in the Design of Printed
Circuit Boards lmd Backplanes. Don White Consul­
tants, 1981.

13. Yarkoni, B. and Wharton, J., "Designing Reliable
Software for Automotive Applications," SAE Transac-
tions, 790237, July)979. .

9-22

inter APPLICATION
NOTE

Oscillators

AP-155

June 1983

for Microcontrollers

@ Intel Corporation, 1988

TOM WILLIAMSON
MICROCONTROLLER

TECHNICAL MARKETING

9-23 Order Number: 230659-001

intJ AP-155

INTRODUCTION

Intel's microcontroller families (MCS®-48, MCS®-51,
and iACX-96) contain a circuit that is commonly re­
ferred to as the "on-chip oscillator". The on-chip cir­
cuitry is not itself an oscillator, of course, but an ampli­
fier that is suitable for use as the' amplifier part of a
feedback oscillator. The data sheets and Microcontoller
Handbook show how the on-chip amplifier and several
off-chip components can be used to design a working
oscillator. With proper selection of off-chip compo­
nents, these oscillator circuits will perform better than
almost any other type of clock oscillator, and by almost
any criterion of excellence. The suggested circuits are
simple, economical, stable, and reliable.

We offer assistance to our customers in selecting suit­
able off-chip components to work with the on-chip os­
cillator circuitry. It should be noted, however, that In­
tel cannot assume the responsibility of writing specifi­
cations for the off-chip components of the complete os­
cillator circuit, nor of guaranteeing the performance of
the finished design in production, anymore than a tran­
sistor manufacturer, whose data sheets show a number
of suggested amplifier circuits, can assume responsibili­
ty for the operation, in production, of any of them.

We are often asked why we don't publish a list of re­
quired crystal or ceramic resonator specifications, and
recommend values for the other off-chip components.
This has been done in the past, but sometimes with
corisequences that were not intended.

Suppose we 'suggest a maximum crystal resistance of 30
ohms for some given frequency. Then your crystal sup­
plier tells you the 30-ohm' crystals are going to cost
twice as much as 50-ohm crystals. Fearing that Intel
will not "guarantee operation" with 50-ohm crsytals,
you order the expensive ones. In fact, Intel guarantees
only what is embodied within an Intel product. Besides,
there is no reason why 50-ohm crystals couldn't be
used, if the other off-chip components are suitably ad­
justed.

Should we recommend values for the other off-chip
components? Should we do it for 50-ohm crystals or 30-
ohm crystals? With respect to what should we optimize
their selection? Should we minimize start-up time or
maximize frequency stability? In many applications,
neither start-up time nor frequency stability are partic­
ularly critical, and our "recommendations" are only re­
stricting your system to unnecessary tolerances. It all
depends on the application.

Although we will neither "specify" nor "recommend"
specific off-chip components, we do offer assistance in
these tasks. Intel application engineers are available to
provide whatever technical assistance may be needed or
desired by our customers in designing with Intel prod­
ucts.

This Application Note is intended to provide such as­
sistance in the design of oscillator circuits for micro­
controller systems. Its purpose is to describe in a practi­
cal manner how oscillators work, how crystals and ce­
ramic resonators work (and thus how to spec them),
and what the on-chip amplifier looks like electronically
and what its operating characteristics are. A BASIC
program is provided in Appendix II to ,assist the de­
signer in determining the effects of changing individual
parameters. Suggestions are provided for establishing a
pre-production test program.

FEEDBACK OSCILLATORS

Loop Gain

Figure 1 shows an amplifier whose output line goes into
some passive network. If the input signal to the amplifi­
er is VI, then the output signal from the amplifer is v2
= AVI and the output signal from the passive network
is v3 = /3v2 = /3Avl. Thus /3A is the overall gain
from terminal 1 to terminal 3.

230659-1

Figure 1. Factors in Loop Gain

Now connect terminal 1 to terminal 3, so that the sig­
nal path forms a loop: 1 to 2 to 3, which is also 1. Now
we have a feedback loop, and the gain factor /3A is
called the loop gain.

Gain factors are complex numbers. That means they
have a magnitude and a phase angle, both of which
vary with frequency. When writing a complex number,
one must specify both quantities, magnitude and angle.
A number whose magnitude is 3, and whose angle is '45
degrees is commonly written this way; 3L45°. The num­
ber 1 is, in complex number notation, lLO°, while -I is
lLI80°.

By closing the feedback loop in Figure 1, we force the
equality

This equation has two solutions:

1) 'lJ1 = 0;

2) ~A = UO'.

9-24

intJ AP-155

In a given circuit, either or both of the solutions may be
in effect. In the first solution the circuit is quiescent (no
output signal). If you're trying to make an oscillator, a
no-signal condition is unacceptable. There are ways to
guarantee that the second solution is the one that will
be in effect, and that the quiescent condition will be
excluded.

How Feedback Oscillators Work

A feedback oscillator amplifies its own noise and feeds
it back to itself in exactly the right phase, at the oscilla­
tion frequency, to build up and reinforce the desired
oscillations. Its ability to do that depends on its loop
gain. First, oscillations can occur only at the frequency
for which the loop gain has a phase angle of 0 degrees.
Second build-up of oscillations will occur only if the
loop gain exceeds 1 at the frequency. Build-up contin­
ues until nonlinearities in the circuit reduce the average
value of the loop gain to exactly 1.

Start-up characteristics depend on the small-signal
properties of the circuit, specifically, the small-signal
loop gain. Steady-state characteristics of the oscillator
depend on the'large-signal properties of the circuit,
such as the transfer curve (output voltage vs. input
voltage) of the amplifier, and the clamping effect of the
input protection devices. These things will be discussed
more fully further on. First we will look at the basic
operation of the particular oscillator circuit, called the
"positive reactance" oscillator.

The Positive Reactance Oscillator

Figure 2 shows the configuration of the positive reac­
tance oscillator. The inverting amplifier, working into
the impedance of the feedback network, produces an
output signal that is nominally 180 degrees out of phase
with its input. The feedback network must provide an
additional 180 degrees phase shift, such that the overall
loop gain has zero (or 360) degrees phase shift at the
oscillation frequency.

z"

ex.
230659-2

Figure 2. Positive Reactance Oscillator

In order for the loop gain to have zero phase angle it is
necessary that the feedback element Zr have a positive
reactance. That is, it must be inductive. Then, the fre­
quency at which the phase angle is zero is approximate­
ly the frequency at which

+1
Xf=­

wC

where Xr is the reactance of Zr (the total Zr being Rr +
jXr, and C is the series combination of CXt and CX2.

C = CXl CX2

CX1'+ CX2

In other words, Zr and C form a parallel resonant cir­
cuit.

If Zr is an inductor, then Xr = wL, and the frequency
at which the loop gain has zero phase is the frequency
at which

or

1
wL=­

wC

1
w = J[C

Normally, Zr is not an inductor, but it must still have a
positive reactance in order for the circuit to oscillate.
There are some piezoelectric devices on the market that
show a positive reactance, and provide a more stable
oscillation frequency than an inductor will. Quartz
crystals can be used where the oscillation frequency is
critical, and lower cost ceramic resonators can be used
where the frequency is less critical.

When the feedback element is a piezoelectric device,
this circuit configuration is called a Pierce oscillator.
The advantage of piezoelectric resonators lies in their
property of providing a wide range of positive reactance
values over a very narrow range of frequencies. The
reactance will equal 1/ wC at some frequency within
this range, so the oscillation frequency will be within
the same range. Typically, the width of this range is

9-25

AP-155

only 0.3% of the nominal frequency of a quartz crystal,
and about 3% of the nominal frequency of a ceramic
resonator. With relatively little design effort, frequency
accuracies of 0.03% or better can be obtained with
quartz crystals, and 0.3% or better with ceramic reso­
nators.

QUARTZ CRYSTALS

The crystal resonator is a thin slice of quartz sand­
wiched between two electrodes. Electrically, the device
looks pretty much like a S' or 6 pF capacitor, except
that over certain ranges of frequencies the crystal has a
positive (i.e., inductive) reactance.

The ranges of positive reactance originate in the piezo­
electric property of quartz: Squeezing the crystal gener­
ates an internal E-field. The effect is reversible: Apply­
ing an AC E-field, causes the crystal to vibrate. At cer­
tain vibrational frequencies there is a mechanical reso­
nance. As the E-field frequency approaches a frequency
of mechanical resonance, the measured reactance of the
crystal becomes positive, as shown in Figure 3.

JX

w
0 z
~o
0

'" W
II:

-JX
XeD

FREQUENCY -
SPURIOUS

RESPONSES

/ \

/
FIFTH MECHANICAL

FUNDAMENTAL OVERTONE

THIRD MECHANICAL
OVERTONE

230659-3

Figure 3. Crystal Reactance vs. Frequency

Typically there are several ranges of frequencies where­
in the reactance of the crystal is positive. Each range
corresponds to a different mode of vibration in the crys­
tal. The main resonsances are the so-called fundamen­
tal response and the third and fifth overtone responses.

The overtone responses shouldn't be confused with the
harmonics of the fundamental. They're not harmonics,
but different vibrational modes. They're not in general
at exact integer mUltiples of the fundamental frequency.
There will also be "spurious" responses, occurring typi­
cally a few hundred KHz above each main response.

To assure that an oscillator starts in the desired mode
on power-up, something must be done to suppress the
loop gain in the undesired frequency ranges. The crys­
tal itself provides some protection against unwanted
modes of oscillation; too much resistance in that mode,
for example. Additionally, junction capacitances in the
amplifying devices tend to reduce the gain at higher
frequencies, and thus may discriminate against unwant­
ed modes. In some cases a circuit fix is necessary, such
as inserting a trap, a phase shifter, or ferrite beads to
kill oscillations in unwanted modes.

Crystal Parameters

Equivalent Circuit

Figure 4 shows an equivalent circuit that is used to
represent the crystal for circuit analysis.

The R,-L,-C, branch is called the motivational arm of
the crystal. The values of these parameters derive from
the mechanical properties of the crystal and are con­
stant for a given mode of vibration. Typical values for
various nominal frequencies are shown in Table 1.

--'-IIO~I --
SYMBOL

-r-b
EQUIVALENT CIRCUIT

230659-4

Figure 4. Quartz Crystal: Symbol and
Equivalent Circuit

Co is called the shunt capacitance of the crystal. This is
the capacitance of the crystal's electrodes and the me­
chanical holder. If one were to measure the reactance of
the crystal at a freuqency far removed from a resonance
frequency, it is the reactance of this capacitance that
'would be measured. It's normally 3 to 7 pF.

Table 1. Typical Crystal Parameters

Frequency R1 L1 C1 ,Co
MHz ohms mH pF pF

2 100 520 0.012 '4

4.608 36 117 0.010 2.9

11.25 19 8.38 0.024 5.4

9-26

intJ AP-155

The series resonant frequency of the crystal is the fre­
quency at which LI and CI are in resonance. This fre-
quency is given by .

1
f =---
5 21T~L1C1

At this frequency the impedance of the crystal is R I in
parallel with the reactance of Co. For most purposes,
this impedance is taken to be just R I, since the reac­
tance of Co is so much larger than RI.

Load Capacitance

A crystal oscillator circuit such as the one shown in
Figure 2 (redrawn in Figure 5) operates at the frequen­
cy for which the crystal is antiresonant (ie, parallel-res­
onant) with the total capacitance across the crystal ter­
minals external to the crystal. This total capacitance
external to the crystal is called the load capacitance.

As shown in Figure 5, the load capacitance is given by

The crystal manufacturer needs to know the value of
CL in order to adjust the crystal to the specified fre­
quency.

cL r--------------------l I
! ----------~);~---------- ~
I C., Cx> I

l 'j :t) i
I "::" I L ____________________ J

CRYSTAL

I---------~~---------~

I R, L, C, I
I I
I "I L ___________________ J

230659-6

Figure 5. Load Capacit.ance

The adjustment involves putting the crystal in series
with the specified CL, and then "trimming" the crystal
to obtain resonance of the series combination of the
crystal and CL at the specified frequency. Because of
the high Q of the crystal, the resonant frequency of the
series combination of the crystal and CL is the same as

the antiresonant frequency of the parallel combination
of the crystal and CL. This frequency is given by

1
fa = ::-21T-~r.L=1 ""C""1 ';;(C""L=+~C~0);=;/~(C<=1=+~C""L =:+=C""o""")

These frequency formulas are derived (in Appendix A)
from the equivalent circuit of the crystal, using the as­
sumptions that the Q of the crystal is extremely high,
and that the circuit external to the crystal has no effect
on the frequency other than to provide the load capaci­
tance CL. The latter assumption is not precisely true,
but it is close enough for present purposes.

"Series" vs. "Parallel" Crystals

There is no such thing as a "series cut" crystal as op­
posed to a "parallel cut" crystal. There are different
cuts of crystal, having to do with the parameters of its
motional arm in various frequency ranges, but there is
no special cut for series or parallel operation.

An oscillator is series resonant if the oscillation fre­
quency is fs of the crystal. To operate the crystal at fs,
the amplifier has to be noninverting. When buying a
crystal for such an oscillator, one does not specify a
load capacitance. Rather, one specifies the loading con­
dition as "series."

If a "series" crystal is put into an oscillator that has an
inverting amplifier, it will oscillate in parallel resonance
with the load capacitance presented to the crystal by
the oscillator circuit, at a frequency slightly above fs. In
fact, at approximately

This frequency would typically be about 0.02% above
fs·

Equivalent Series Resistance

The "series resistance" often listed on quartz crystal
data sheets is the real part of the crystal impedance at
the crystal's calibration frequency. This will be Rl if
the calibration frequency is the series resonant frequen­
cy of the crystal. If the crystal is calibrated for parallel
resonance with a load capacitance CL, the equivalent
series resistance will be

(Co)2
ESR = R1 1 + CL

The crystal manufacturer measures this resistance at
the calibration frequency during the same operation in
which the crystal is adjusted to. the calibration frequen­
cy.

9-27

intJ AP-155

Frequency Tolerance

Frequency tolerance as discussed here is not a require­
ment on the crystal, but on the complete oscillator.
There are two types of frequency tolerances on oscilla­
tors: frequency acccuracy and frequency stability. 'Fre­
quency accuracy refers to the oscillator's ability to run
at an exact specified frequency. Frequency stability re­
fers to the constancy of the oscillation frequency.

Frequency accuracy requires mainly that the osciJIator
circuit present to the crystal the same load capacitance
that it was adjusted for. Frequency stability requires
mainly that the load capacitance be constant.

In most digital applications the accuracy and stability
requirements on the oscillator are so wide that it makes
very little difference what load capacitance the crystal
was adjusted to, or what load capacitance the circuit
actually presents to the crystal. For example, if a crys­
tal was calibrated to a load capacitance of 25 pF, and is
used in a circuit whose actual load capacitance is 50 pF,
the frequency error on,that account would be less than
0.01%.

In a positive reactance oscillator, the crystal only needs
to be in the intended response mode for the oscillator to
satisfy a 0.5% or better frequency tolerance. That's be­
cause for any load capacitance the oscillation frequency
is certain to be between the crystal's resonant and anti-
resonant frequencies. '

Phase shifts that take place within the amplifier part of
the oscillator will also affect frequency accuracy and
stability. These phase shifts can normally be modeled as
an "output capacitance" that, in the positive reactance
oscillator, parallels CX2. The predictability and con­
stancy of this output capacitance over temperature and
device sample will be the limiting factor in determining
the tolerances that the circuit is capable of holding.

Drive Level

Drive level refers to the power dissipation in the crys­
tal. There are two reasons for specifying it. One is that
the parameters in the equivalent circuit are somewhat
dependent on the drive level at which the crystal is
calibrated. The other is that if the application circuit
exceeds the test drive level by too much, the crystal
may be damaged. Note that the terms "test drive level"
and "rated drive level" both refer to the drive level at
which the crystal is calibrated. Normally, in a micro­
controller system, neither the frequency tolerances nor
the power levels justify much concern for this specifica­
tion. Some crystal manufacturers don't even require it
for microprocessor crystals.

In a positive reactance osciJIator, if one assumes the
peak voltage across the crystal to be something in the
neighborhood of Vee, the power dissipation can be ap­
proximated as

This formula is derived in Appendix A. In a 5V system,
P rarely evaluates to more than a milliwatt. Crystals
with a standard 1 or 2 m W drive level rating can be
used in most digital systems.

MT - Sl R3.S8M

100000

10

o 2000 4000 6000 8000 10000

FREQUENCY (KHz)

230659-7

Figure 6. Ceramic Resonator Impedance vs.
Frequency (Test Data Supplied by NTK

Technical Ceramics)

CERAMIC RESONATORS

Ceramic resonators operate on the same basic princi­
pl~s as a quartz crsytal. Like quartz crsytals, they are
piezoelectric, have a reactance versus frequency curve
similar to a crystal's, and an equivalent circuit that
looks just like a crystal's (with different parameter val­
ues, however).

The frequency tolerance of a ceramic resonator is about
two orders of magnitude wider than a crystal's, but the
ceramic is somewhat_cheaper than a crystal. It may be
noted for comparison that quartz crystals with relaxed
tolerances cost about twice as much as ceramic resona­
tors. For purposes of clocking a microcontroller, the
frequency tolerance is often relatively noncritical, and
the economic consideration becomes the dominant fac­
tor.

Figure 6 shows a graph of impedance magnitude versus
frequency for a 3.58 MHz ceramic resonator. (Note
that Figure 6 is a graph of IZrI versus frequency, where

9-28

inter AP-155

as Figure 3 is a graph of Xr versus frequency.) A num­
ber of spurious responses are apparent in Figure 6. The
manufacturers state that spurious responses are more
prevalent in the lower frequency resonators (kHz

. range) than in the higher frequency units (MHz range).
For our purposes only the MHz range ceramics need to
be considered.

----11011----
SYMBOL

EQUIVALENT CIRCUIT

230659-8

Figure 7. Ceramic Resonator: Symbol and
Equivalent Circuit

Figure 7 shows the symbol and equivalent circuit for
the ceramic resonator, both of which are the same as
for the crystal. The parameters have different values,
however, as listed in Table 2.

Table 2. Typical Ceramic Parameters

Frequency R1 L1 C1 Co
MHz ohms mH pF pF

3.58 7 0.113 19.6 140

6.0 8 0.094 8.3 60

8.0 7 0.092 4.6 40

11.0 10 0.057 3.9 30

Note that the motional arm of the ceramic resonator
tends to have less resistance than the quartz crystal and
also a vastly reduced L!fC! ratio. This results in the
motional arm having a Q (given by (l/R!) ~L!fC!) that
is typically two orders of magnitude lower than that of

. a quartz crystal. The lower Q makes for a faster startup
of the oscilaltor and for a less closely controlled fre­
quency (meaning that circuitry external to the resona­
tor will have more influence on the frequency than with
a quartz crystal).

Another major difference is that the shunt capacitance
of the ceramic resonator is an order of magnitude high­
er than Co of the quartz crystal and more dependent on
the frequency of the resonator.

The implications of these differences are not all obvi­
ous, but some will be indicated in the section on Oscil­
lator Calculations.

Specifications for Ceramic Resonators

Ceramic resonators are easier to specify than quartz
crystals. All the vendor wants to know is the desired

frequency and the chip you want it to work with.
They'll supply the resonators, a circuit diagram show­
ing the positions and values of other external compo­
nents that may be required and a guarantee that the
circuit will work properly at the specified frequency .

OSCILLATOR DESIGN
CONSIDERATIONS

Designers of microcontroller systems have a number of
options to choose from for clocking the system. The
main decision is whether to use the "on-chip" oscillator
or an external oscillator. If the choice is to use the on­
chip oscillator, what kinds of external components are
needed to make it operate as advertised? If the choice is
to use an external oscillator, what type of oscillator
should it be?

The decisions have to be based on both economic and
technical requirements. In this section we'll discuss
some of the factors that should be considered.

XTALI

C
l-~-"-'--l------'

cX
• ~ ~

CD T XTAL2 ______ y
230659-9

Figure 8. Using the "On-Chip" Oscillator

On-Chip Oscillators

In most cases, the on-chip amplifier with the appropri­
ate external components provides the most economical
solution to the clocking problem. Exceptions may arise
in severe environments when frequency tolerances are
tighter than about 0.01 %.

The external components that need to be added are a
positive reactance "(normally a crystal or ceramic reso­
nator) and the two capacitors CX! and CX2, as shown
in Figure 8.

Crystal Specifications

Specifications for an appropriate crystal are not very
critical, unless the frequency is. Any fundamental-mode
crystal of medium or better quality can be used.

9-29

inter AP-155

We are often asked what maximum crystal resistance
should be specified. The best answer to this question is
the lower the better, but use what's available. The crys­
tal resistance will have some effect on start-up time and
steady-state amplitude, but not so much that it can't be
compensated for by appropriate selection of the capaci­
tances CX! and CX2.

Similar questions are asked about specifications of load
capacitance and shunt capacitance: The best advice we
can give is to understand what these parameters mean
and how they affect the operation of the circuit (that
being the purpose of this Application Note), and then
decide for yourself if such specifications are meaningful
in your application or not. Normally, they're not, un­
less your frequency tolerances are tighter than about
0.1%.

Part of the problem is that crystal manufacturers are
accustomed to talking "ppm" tolerances with radio en­
gineers and simply won't take your order until you've
filled out their list, of specifications. It will help if you
define your actual frequencY tolerance requirements,
both for yourself and to the crystal manufacturer.
Don't pay for 0.003% crystals if your actual frequency
tolerance is 1%.

Oscillation Frequency

The oscillation frequency is determined 99.S% by the
crystal and up to about O.S% by the circuit external to
the crystal. The on-chip amplifier has little effect on the
frequency, which is as it should be, since the amplifier
parameters are temperature and process dependent.

The influence of the on-chip amplifier on the frequency
is by means of its input and output (pin-to-ground) ca­
pacitances, which parallel CX! and CX2, and the
XTALI-to-XTAL2 (pin-to-pin) capacitance, which
parallcIs thc cristal. Thc input and pin-to-pL"1 capaci­
tances are about 7 pF each. Internal phase deviations
from the nominal 180' can be modeled as an olltput
capacitance of 2S to 30 pF. These deviations from the
ideal have less effect in the positive reactance oscillator
(with ,the inverting amplifer) than in a comparable se­
ries resonant oscillator (with the noninverting amplifi­
er) for two reasons: first, the effect of the output capaci­
tance is lessened, if not swamped, by the off-chip capac­
itor; secondly, the positive reactance oscillator is less
sensitive, frequency-wise, to such phase errors.

Selection of CX1 and CX2
Optimal vallies for the capacitors CX! and CX2 depend
on whether a quartz crystal or ceramic resona-

tor is being used, and also on application-specific re­
quirements on start-up time and frequency tolerance.,

Start-up time is. sometimes more critical in microcon­
troller systems than frequency stability, because of vari­
ous reset and initialization requirements.

Less commonly, accuracy of the oscillator frequency is
also critical, for example, when the oscillator is being
used as a time base. As a general rule, fast start-up and
stable frequency tend to pull the osciJIator design in
opposite directions.

Considerations of both start"up time and frequency sta­
bility over temperature suggest that CX! and CX2
should be about equal and at least 20 pF. (But they
don't have to be either.) Increasing the value of these
capacitances above some 40 or SO pF improves frequen­
cy stability. It also tends to increase the start-up time.
There is a maximum value (several hundred pF, de­
pending on the value of R! of the quartz or ceramic
resonator) above which the oscillator won't start up at
all.

If the on-chip. amplifier is a simple inverter, such as in
the 80SI, the user can select values for Cx! and CX2
between some 20 and 100 pF, depending on whether
start-up time or frequency stability is the more critical
parameter in a specific application. If the on-chip am­
plifier is a Schmitt Trigger, such as in the 8048, smaller
values of CX! must be used (S to 30 pF), in order to
prevent the osciJIator from running in a relaxation
mode.

Later sections in this Application Note will discuss the
effects of varying CX! and CX2 (as well as other par~­
eters), and will have more to say on their selection.

Placement of Components

Noise glitches arriving at XTALI or XTAL2 pins at
the wrong time can cause a miscount in the internal
cIock-generating circuitry. These kinds of glitches can
be produced through capacitive coupling between the
oscillator components and PCB traces carrying digital
signals with fast rise and fall times. For this reason, the
oscillator components should be mounted close to the
chip and have short, direct traces to the XTALI,
XTAL2, and VSS pins.

Clocking Other Chips

There are times when it would be desirable to use the
on-chip oscillator to cIock other chips in the system.

9-30

inter

CLOCK
OUT

CLOCK
OUT

vcc

lK

11K
::i-...... -'IN""1'-t--I XTAL2

t---il--.... -i XTALI

230659-10
A) DRIVING FROM XTAL2

vcc

n~XTAL2
lK C

':" X2 0

XTALI
CXI

230659-11
B) DRIVING FROM XTAL 1

Figure 9. Using the On-Chip Oscillator
to Drive Other Chips

AP-155

9-31

This can be done if an appropriate buffer is used. A
TTL buffer puts too much load on the on-chip amplifi­
er for reliable start-up. A CMOS buffer (such as the
74HC04) can be used, if it's fast enough and if its VIH
and VIL specs are compatible with the available signal
amplitudes. Circuits such as shown in Figure 9 might
also be considered for these types of applications.

Clock-related signals are available at the TO pin in the
MCS-48 products, at ALE in the MCS-48 and MCS-51
lines, and the iACX-96 controllers provide a CLKOUT
signal.

External Oscillators

When technical requirements dictate the use of an ex­
ternal oscillator, the external drive requirements for the
microcontroller, as published in the data sheet, must be
carefully noted. The logic levels are not in general TTL­
compatible. And each controller has its idiosyncracies
in this regard. The 8048, for example, requires that
both XT ALl and XT AL2 be driven. The 8051 can be
driven that way, but the data sheet suggest the simpler
method of grounding XTALI and driving XTAL2. For
this method, the driving source must be capable of sink­
ing some current when XTAL2 is being driven low.

For the external oscillator itself, there are basically two
choices: ready-made and home-grown.

inter AP-155

TTL Crystal Clock Oscillator Frequency Tolerance: ± 0.1 % Overall O·C-700C

The HS-l00, HS-200, & HS-500 all-metal package se-
Hermetically Sealed Package ries of oscillators are TTL compatible & fit a DIP

layout. Standard electrical specifications are shown Mass spectrometer leak rate max.
below. Variations are available for special applica- 1 X 10-8 atmos. cc/sec. of helium
tions.

Frequency Range: HS-l00--3.5 MHz to 30 MHz Output Waveform '.

HS-200--225 KHz to 3.5 MHz - 'I- -,r.-
HS-500-25 MHz to 60 MHz -F=t

~~
- ---- ---2.4 VDC

- ---- --- ----1,4 vec

::.... ---- ___ _ ___ 0,4 VDC
--VOL

~
,ovec

60% Max

230659-12

INPUT'

HS-100 HS-200 HS-500

3.5 MHz-20 MHz 20 + MHz-30 MHz 225 KHz-4.0 MHz 25 MHz-60 MHz

Supply Voltage
(Vcel 5V ±10% 5V ±10% 5V ±10% 5V ±10%
Supply Current
(Icel max. 30mA 40mA 85mA 50mA

OUTPUT

HS-100 HS-200 HS-500

3.5 MHz-20 MHz 20 + MHz-30 MHz 225 KHz-4.0 MHz 25 MHz-60 MHz

VOH (Logic "1 ") +2.4Vmin.l +2.7Vmin.2 +2.4V min.1 +2.7Vmin.2
VOL (Logic "0") +O.4V max.3 +0.5Vmax.4 +O.4V max.3 +0.5Vmax.4
Symmetry 60/40%5 60/40%5 55/45%5 60/40%5
TR, TF (Rise &

Fall Time) < 10 ns6 < 5.ns6 < 15 ns6 < 5 ns6
Output Short

Circuit Current 18 mA min. 40 mA min. 18 mA min. 40mAmin.
Output Load 1 to 10 TTL Loads7 1 to 10 TTL Loads8 1 to 10 TTL Loads7 1 to 10 TTL Loads8

CONDITIONS
110 source = - 400 /LA max. 410 sink = 20.00 mA max. 71.6 mA per load
210 source = -1.0 mA max. 5Vo = 1.4V 82.0 mA per load
310 sink = 16.0 mA max. 6(0.4V to 2.4V)

Figure 10. Pre-Packaged Oscillator Data"

,"Reprinted with the permission of @Midland·Ross Corporation 1982.

9-32

inter AP-155

Prepackaged oscillators are available from most crystal
manufacturers, and have the advantage that the system
designer can treat the oscillator as a black box whose
performance is guaranteed by people who carry many
years of experience in designing and building oscilla­
tors. Figure 10 shows a typical data sheet for some
prepackaged oscillators. Oscillators are also available
with complementary outputs.

If the oscillator is to drive the microcontroller directly,
one will want to make a careful !!omparison between
the external drive requirements in the microcontroller
data sheet and the oscillator's output logic levels and
test conditions.

If oscillator stability is less critical than cost, the user
may prefer to go with an in-house design. Not without
some precautions, however.

It's easy to design oscillators that work. Almost all of
them do work, even if the designer isn't too clear on
why. The key point here is that almost all of them
work. The problems begin when the system goes into
production, and marginal units commence malfunc­
tioning in the field. Most digital designers, after all, are
not very adept at designing oscillators for production.

Oscillator design is somewhat of a black art, with the
quality of the finished product being very dependent on
the designer's experience and intuition. For that reason
the most important consideration in any design is to
have an adequate preproduction test program. Prepro­
duction tests are discussed later in this Application
Note. Here we will discuss some of the design options
and take a look at some commonly used configurations.

Gate Oscillators versus Discrete
Devices

Digital systems designers are understandably reluctant
to get involved with discrete devices and their peculiari­
ties (biasing techniques, etc.). Besides, the component
count for these circuits tends to be quite a bit higher
than what a digital designer is used to seeing for that
amount of functionality. Nevertheless, if there are un­
usual requirements on the accuracy and'stability of the
clock frequency, it should be noted that discrete device
oscillators can be tailored to suit the exact needs of the
application and perfected to a level that would be diffi­
cult for a gate oscillator to approach.

In most cases, when an external oscillator is needed, the
designer tends to rely on some form of a gate oscillator.
A TTL inverter with a resistor connecting the output to
the input makes a suitable inverting amplifier. The re­
sistor holds the inverter in the transition region be­
tween logical high and low, so that at least for start-up
purposes the inverter is a linear amplifier.

The feedback resistance has to be quite low, however,
since it must conduct current sourced by the input pin
without allowing the DC input voltage to get too far
above the DC output voltage. For biasing purposes, the
feedback resistance should not exceed a few k-ohms.
But shunting the crystal with such a low resistance does
not encourage start-up.

lK lK

1.01 1"
74LS04

OUTPUT

Rx
(SEVERAL kn) o

230659-13
A) TTL OSCILLATOR

lMII

74C04

OUTPUT

Rx
(SEVERAL kn) o

230659-14
B) CMOS OSCILLATOR

Figure 11. Commonly Used Gate Oscillators

Consequently, the configuration in Figure IIA might
be suggested. By breaking Rr into two parts and AC­
grounding the midpoint, one achieves the DC feedback
required to hold the inverter in its active region, but
without the negative signal feedback that is in effect
telling the circuit not to oscillate. However, this biasing
scheme will increase the start-up time, and relaxation­
type oscillations are also possible.

A CMOS inverter, such as the 74HC04, might work
better in this application, since a larger Rr can be used
to hold the inverter in its linear region.

Logic gates tend to have a fairly low output resistance,
which destabilizes the oscillator. For that reason a re­
sistor Rx is often added to the feedback network, as
shown in Figures llA and B. At higher frequencies a
20 or 30 pF capacitor is sometimes used in the Rx posi­
tion, to compensate for some of the internal propaga­
tion delay.

Reference 1 contains an excellent discussion of gate os­
cillators, and a number of design examples.

9-33

inter AP-155

Fundamental versus Overtone Operation

It's easier to design an oscillator circuit to operate in
the resonator's fundamental response mode than to de­
sign one for overtone operation. A quartz crystal whose
fundamental response mode covers the desired frequen­
cy can be obtained up to some 30 MHz. For frequencies
above that, the crystal might be used in an overtone
mode.

Several problems arise in the design of an overtone os­
cillator. One is to stop the circuit from oscillating in the
fundamental mode, which is what it would really rather
do, for a number of reasons, involving both the amplify­
ing device and the crystal. An additional problem with
overtone operation is an increased tendency to spurious
oscillations. That is because the R 1 of various spurious
modes is likely to be about the same as R1 of the in­
tended overtone response. It may be necessary, as sug­
gested in Reference 1, to specify a "spurious-to-main­
response" resistance ratio to avoid the possibility of
trouble.

Overtone oscillators are not to be taken lightly. One
would be well advised to consult with an engineer who
is knowledgeable in the subject during the design phase
of such a circuit.

Series versus Parallel Operation

Series resonant oscillators use noninverting amplifiers.
To make a noninverting amplifier out of logic gates
requires that two inverters be used, as shown in Figure
12. .

This type of circuit tends to be inaccurate and unstable
in frequency over variations in temperature and Vee. It
has a tendency to oscillate at overtones, and to oscillate
throl!gh Co of the crystal or some stray capacitance
rather than as controlled by the mechanical resonance
of the crystal.

The demon in series resonant oscillators is the phase
shift in the amplifier. The series resonant oscillator
wants more than just a "noninverting" amplifier-it
wants a zero phase-shift amplifier. Multistage nonin­
verting amplifiers tend to have a considerably lagging
phase shift, such that the crystal reactance must be ca­
pacitive in order to bring the total phase shift around
the feedback loop back up to O. In this mode, a "12
MHz" crystal may be running at 8 or 9 MHz. One can
put a capacitor in series with the crystal to relieve the
crystal of having to produce all of the required phase
shift, and bring the oscillation frequency closer to fs.
However, to further complicate the situation, the am­
plifier's phase shift is strongly dependent on frequency,
temperature, VCC, and device sample.

1K 1K

B,I-----"
230659-15

Figure 12. "Series Resonant" Gate Oscillator

Positive reactance oscillators ("parallel resonant") use
inverting amplifiers. A single logic inverter can be used
for the amplifier, as in Figure 11. The amplifier's phase
shift is less critical, compared to a series resonant cir­
cuit, and since only one inverter is involved there's less
phase error anyway. The oscillation frequency is effec­
tively bounded by the resonant and antiresonant fre­
quencies of the crystal itself. In addition, the feedback
network includes capacitors that parallel the input and
output terminals of the amplifier, thus reducing the ef­
fect of unpredictable capacitances at these points.

MORE ABOUT USING THE "ON-CHIP"
OSCILLATORS

In this section we will describe the on-chip inverters on
selected microcontrollers in some detail, and discuss
criteria for selecting components to work with them.
Future data sheets will supplement this discussion with
updates and information pertinent to the use of each
chip's oscillator circuitry.

Oscillator Calculations

Oscillator design, though aided by theory, is still largely
an empirical exercise. The circuit is inherently nonlin­
ear, and the normal analysis parameters vary with in­
stantaneous voltage. In addition, when dealing with the
on-chip circuitry, we have FETs being used as resistors,
resistors being used as interconnects, distributed delays,
input protection devices, parasitic junctions, and pro­
cessing variations.

Consequently, oscillator calculations are never very
precise. They can be useful, however, if they will at
least indicate the effects of variations in the circuit pa­
rameters on start-up time, oscillation frequency, and
steady-state amplitude. Start-up time,' for example, can
be taken as an indication of start-up reliability. If pre­
production tests indicate a possible start-up problem, a
relatively inexperienced designer can at least be made
aware of what parameter may be causing the marginali­
ty, and what direction to go in to fix it.

9-34

AP-155

VCC

XTAL1 XTAL2

230659-16
A) BOB1-Type Circuit Configuration during Start-Up.

(Excludes Input Protection Devices.)

~ r------------,
~ r---------, I

I I I z, J l I I
_...,..; II
Ro I I R, I:

I I
I L_
I
I

I c ..
I
I

Z'-......r­
I
I
L._

_J I
I

---t,
CXt I
---;I

I I L. _____________ ..J

B) AC-Equlvalent of (A)

i
1

230659-17

Figure 13. Oscillator Circuit Model Used
in Start-Up Calculations

The analysis used here is mathematically straightfor­
ward but algebraically intractable. That means it's rela­
tively easy to understand and program into a computer,
but it will not yield a neat formula that gives, say,
steady-state amplitude as a function of this or that .list
of parameters. A listing of a BASIC program that Im­
plements the analysis will be found in Appendix II.

When the circuit is first powered up, and before the
oscillations have commenced (and if the oscillations/ail
to commence), the oscillator can be treated as a small
signal linear amplifier with feedback. In that case, stan­
dard small-signal analysis techniques can be used to
determine start-up characteristics. The circuit model
used in this analysis is shown in Figure 13.

The circuit approximates that there are no high-fre­
quency effects within the amplifier itslef, such that. its
high-frequency behavior is dominated by the load Im­
pedance ZL. This is a reasonable app.roximation for s~n­
gle-stage amplifiers of the type used m 805 I-type deVIC­
es: Then the gain of the amplifier as a function of fre­
quency is

PHASE
100·.1:---__

50·

F, MHz

~+------+------~------;-~
4.607 4.609

-50·

MAGNITUDE
20

15

10

F, MHz

O+-____ -+ ______ ~~--~~~
4.606 4.607 4.608 4.609

1-1kHz-J
230659-18

Figure 14. Loop Gain versus Frequency
(4.608 MHz Crystal)

The gain of the feedback network is

Zi
{3=--

Zi + ZI

And the loop gain is

Zi AvZL
{3A=--X---

Zi + ZI ZL + Ro

The impedances ZL, Zr, and Zj are defined in Figure
13B.

Figure 14 shows the way the loop gain thus calculated
(using typical 805 I-type parameters and a 4.60~ MHz
crystal) varies with frequency. The frequency ?f ~nterest
is the one for which the phase of the loop gam IS zero.
The accepted criterion for start-up is that the magni­
tude of the loop gain must exceed unity at this frequen­
cy. This is the frequency at which the circuit is in reso­
nance. It corresponds very closely with the antiresonant
frequency of the motional arm of the crystal in parallel
with CL.

Figure IS shows the way the loop gain varies with fre­
quency when the parameters of a 3.58 MHz cera.mic
resonator are used in place of a crystal (the amphfier
parameters being typical 8051, as in Figure 14). Note
the different frequency scales.

9-35

inter AP·155

PHASE

-50'

230659-19

Figure 15. Loop Gain versus Frequency
(3.58 MHz Ceramic)

Start-Up Characteristics

It is common, in studies of feedback systems, to exam­
ine the behavior of the closed loop gain as a function of
complex frequency s = 0" + jw; specifically, to deter­
mine the location of its poles in the complex. plane. A
pole is a point on the complex plane where the gain
function goes to infinity. Knowledge of its location can
be used to predict the response of the system to an
input disturbance.

The way that the response function depends on the io­
cation of the poles is shown in Figure 16. Poles in the
left-half plane cause the response function to take the
form of a damped sinusoid. Poles in the right-half plane
cause the response function to take the form of an expo­
nentially growing sinusoid.·In general,

v(t) - ea1 sin (wt + 6)

where a is the real part of the pole frequency. Thus if
the pole is in the right-half plane, a is positive and ti).e
sinusoid grows. If the pole is in the left-half plane, a is
negative and the sinusoid is damped.

The same type of analysis can usefuJly be applied to
oscillators. In this case, however, rather than trying to
ensure that the poles are in the .left-half plane, we
would seek to ensure that they're in the right-half plane.
An exponentially growing· sinusoid is exactly what is
wanted from an oscillator that has just been powered
up. .

~
...

X s-pllne
-I "

X

230659-20
A) Poles In Ihe Left-Half Plane: f(l) - e-at sin (",I + 9)

J ...
s-pllne X

+1 "

X

230659-21
B) Poles In Ihe Righi-Half Plane: f(l) - e+at sin (",I + 9)

f\f\f\f\f\~
VV VlJ'

230659-22
C) Poles Ihe J", Axis: f(l) - sin (",I + 9)

Figure 16. Do You Know Where Your
Poles Are Tonight?

The gain function of interest in oscillators is 1/(1 -
{3A). Its poles are at the complex frequencies where {3A
= lLO", because that value of {3A causes the gain func­
tion to go to infinity. The oscillator will start up if the
real part of the pole frequency is positive. More jmpor­
tantly, the rate at which it starts up is indicated by how
much greater than 0 the real part of the pole frequency
is.

The circuit in Figure 13B can be used to find the pole
frcqucncics of the oscillator gain function. All that
needs to be done is evaluate the impedances at complex
frequencies 0" + jw rather than just at w, and find the
value of 0" + jw for which {3A = lLO° .. The larger that
value of 0" is, the faster the oscillator will start up.

Of course, other things besides pole frequencies, things
like the VCC rise time, are at work in determining the
start-up time. But to the extend that the pole frequen­
cies do affect start-up time, we can obtain results like
those in Figures 17 and 18.

To obtain these figures the pole frequencies were com­
puted for various values of capacitance Cx from
XTALl and XTAL2 to ground (thus eX! = CX2 =
Cx). Then a "time constant" for start-up was calculat-

1
ed as Ts = - where 0" is the real part of the pole fre-

0"

quency (rad/sec), and this time constant is plotted ver­
sus Cx.

9-36

AP-155

vcc:

X2:

Ta. MILLISECONDS

.5

.4

. 3

.2

.1
Cx• pF

10 30 50 70 90 110

230659-23

t -- C

~ -III
I

!= ~
\,

1\. •
230659-24

230659-25

Figure 17. Oscillator Start-Up (4.608 MHz Crystal
from Standard Crystal Corp.)

A short time constant means faster start-up. A long
time constant means slow start-up. Observations of ac­
tual start-ups are shown in the figures. Figure 17 is for
a typical 8051 with a 4.608 MHz crystal supplied by
Standard Crystal Corp., and Figure 18 is for a typical
8051 with a 3.58 MHz ceramic resonator supplied by
NTK Technical Ceramics, Ltd.

It can be seen in Figure 17 that, for this crystal, values
of Cx between 30 and 50 pF minimize start-up time,
but that the exact value in this range is not particularly
important, even if the start-up time itself is critical.

As previously mentioned, start-up time can be taken as
an indication of start-up reliability. Start-up problems
are normally associated with Cx I and CX2 being too
small or too large for a given resonator. If the parame­
ters of the resonator are known, curves such as in Fig­
ure 17 or 18 can be generated to define acceptable
ranges of values for these capacitors .

As the oscillations grow in amplitude, they reach a lev­
el at which they undergo severe clipping within the am­
plifier, in effect reducing the amplifier gain. As the am­
plifier gain decreases, the poles move towards the jw
axis. In steady-state, the poles are on the jw axis and
the amplitude of the oscillations is constant.

9-37

X2:

X2:

T •• ,.SEC

50

30

10 Cx-pF

OL--+ __ -+ __ ~ __ +-~ __ -+ __ _
40 60 80 100 120 140 160

230659-26 - -&...; :.I

I /'
I n' . I

, -~ III""""

IIIIIIII

... . -... iI ...

1:') alii -
230659-27

u --- L..;.J
I

!

n' • Ii
I .

~I
I

("I • - --230659-28

Figure 18. Oscillator Start-Up (3.58 MHz Ceramic
Resonator from NTK Technical Ceramics)

inter AP-155

VOLTS

2

-1

-2

VOLTS

1c~. XTAL2

o 8051

XTALI
-= C.

20 40 60 80 100 120 140

•

·160 180 200 220

Ca-pF

230659-29
A) Signal Levels at XTAL 1

• .xperlmenlal
point.

• •
VOL II XTAL2

o~~++-.~~~~~~
20 40 80 80 100 120 140 180 180 200 220

-1

230659-30
S,) Signal Levels at XTAL2

Figure 19. Calculated and Experimental Steady­
State Amplitudes vs. Bulk Capacitance from

XTAL 1 and XTAL2 to Ground

Steady~State Characteristics

Steady-state analysis is greatly complicated by the fact
that we are dealing with large signals and nonlinear
circuit response. The circuit parameters vary with in­
stantaneous voltage, and a number of clamping and
clipping mechanisms come into play. Analyses that
take all these things into account are too complicated to
be of general use, and analyses that don't take them
into account are too inaccurate to justify the effort.

There is a steady-state analysis in Appendix B that
takes some of the complications into account and ig­
nores others. Figure 19 shows the way the steady-state
amplitudes thus calculated (using typical 8051 parame­
ters and a 4.608 'MHz crystal) vary with equal bulk
capacitance placed from XTAL1 and XTAL2 to
ground. Experimental results are shown for compari­
son.

The waveform at XTAL1 is a fairly clean sinusoid. Its
negative peak is normally somewhat below zero, at a
level which is determined mainly by the input protec­
tion circuitry at XT AL 1.

The input protection circuitry consists of an ohmic re­
sistor and an enhancement-mode FET with the gate

and source connected to ground (VSS), as shown in
Figure 20 for the 8051, and in Figure 21 for the 8048.
Its function is to limit the positive voltage at the gate of
the input PET to the avalanche voltage of the drain
junction. If the input pin is driven below VSS, the drain ,
and source of the protection FET interchange roles, so
its gate is connected to what is now the drain. In this
condition the device resembles a diode with the anode
connected to VSS.

There is a parasitic pn junction between the ohmic re­
sistor and the substrate. In the ROM parts (8015,8048,
etc.) the substrate is held at approximately - 3V by the
on-chip back-bias generator. In the EPROM parts
(8751, 8748, etc.) the substrate is connected to VSS.

The effect of the input protection circuitry on the oscil­
lator is that if the XT ALl signal goes negative, its nega~
tive peak is clamped to - VDS of the protection FET in
the ROM parts, and to about -0.5V in the EPROM
parts. These negative voltages on XTAL1 are in this
application self-limiting and nondestructive.

The clamping action does, however, raise the DC level
at XTALI, which in tum tends to reduce the positive
peak at XT AL2. The waveform at XT AL2 resembles a
sinusoid riding on a DC level, and whose negative
peaks are clipped off at zero.

Since it's normally the XT AL2 signal that drives the
internal clocking circuitry, the question naturally arises
as to how large this signal must be to reliably do its job.
In fact, the XT AL2 signal doesn't have, to meet the
same VIH and VIL specifications that an external driv­
er would have to. That's because as long as the oscilla­
tor is working, the on-chip amplifier is driving itself
through its own O-to-I transition region, which is very
nearly the same as the 0-to-1 transition region in the
internal buffer that follows the oscillator. If some pro­
cessing variations move the transition level higher or
lower, the on-chip amplifier tends to compensate for it
by the fact that its own transition level is correspond­
ingly higher or lower: (In the 8096, it's the XTAL1
signal that drives the internal clocking circuitry, but the
same concept applies.)

The main concern about the XT AL2 signal amplitude
is an indication of the general health of tile oscillator.
An amplitude of less than about 2.SV peak-to-peak in­
dicates that start-up problems could develop in some
units (with low gain) with some crystals (with high,RI)'
The remedy is to either adjust the values of CXI and/or
CX2 or use a crystal with a lower R I.

The amplitudes at XTALl and XTAL2 can be adjusted
by changing the ratio of the capacitors from XTALl
and XT AL2 to ground. Increasing the XTAL2 capaci~
tance, for example, decreases the amplitude at XTAL2
and increases the amplitude at XT ALl by about the
same amount. Decreasing both caps increases both am­
plitudes.

9-38

AP-155

Pin Capacitance

Internal pin-to-ground and pin-to-pin capacitances at
XTALl and XTAL2 will have some effect on the oscil­
lator. These capacitances are normally taken to be in
the range of 5 to 10 pF, but they are extremely difficult
to evaluate. Any measurement of one such capacitance
will necessarily include effects from the others. One ad­
vantage of the positive reactance oscillator is that the

. pin-to-ground capacitances are paralleled by external
bulk capacitors, so a precise determination of their val­
ue is unnecessary. We would suggest that there is little
justification for more precision than to assign them a
value of 7 pF (XTALl-to-ground and XTALl-to­
XTAL2). This value is probably not in error by more
than 3 or 4 pF. .

The XT AL2-to-ground capacitance is not entirely "pin
capacitance," but more like an "equivalent output ca­
pacitance" of some 25 to 30 pF, having to include the
effect of internal phase delays. This value will vary to
some extent with temperature, processing, and frequen­
cy.

MCS®-51 Oscillator

The on-chip amplifier on the HMOS MCS-51 family is
shown in Figure 20. The drain load and feedback "re­
sistors" are seen to be field-effect transistors. The drain
load FET, RD, is typically equivalent to about IK to 3
K-ohms. As an amplifier, the low frequency voltage
gain is normally between -10 and - 20, and the out­
put resistance is effectively RD.

vec

TO INTERNAL
CIRCUITRY

XTAL2

230659-31

Figure 20. MCS®-51 Oscillator Amplifier

The 80151 oscillator is normally used with equal bulk
capacitors placed externally from XTALI to ground
and from XTAL2 to ground. To determine a reason­
able value of capacitance to use in these positions, given
a crystal of ceramic resonator of known parameters,
one can use the BASIC analysis in Appendix II to gen­
erate curves such as in Figures 17 and 18. This proce­
dure will define a range of values that will minimize
start-up time. We don't suggest that smaller values be

used than those which minimize start-up time. Larger
values than those can be used in applications where
increased frequency stability is desired, at some sacri­
fice in start-up time.

Standard Crystal Corp. (Reference 8) studied the use of
their crystals with the MCS-51 family using skew sam­
ple supplied by Intel. They suggest putting 30 pF ca­
pacitors from XTALl and XTAL2 to ground, if the
crystal is specified as described in Reference 8. They
noted that in that configuration and with crystals thus
specified, the frequency accuracy was ± 0.01 % and the
frequency stability was ±0.005%, and that a frequency
accuracy of ±0.005% could be obtained by substitut­
ing a 25 pF fixed cap in parallel with a 5-20 pF trim­
mer for one of the 30 pF caps.

MCS-51 skew samples have also been supplied to a
number of ceramic resonator manufacturers for charac­
terization with their products. These companies should
be contacted for application information on their prod­
ucts. In general, however, ceramics tend to want some­
what larger values for CX! and CX2 than quartz crys­
tals do. As shown in Figure 18, they start up a lot faster
that way.

In some application the actual frequency tolerance re­
quired is only I % or so, the user being concerned main­
ly that the circuit will oscillate. In that case, CX! and
CX2 can be selected rather freely in the range of 20 to
80 pF.

As you can see, "best" values for these components and
their tolerances are strongly dependent on the applica­
tion and its requirements. In any case, their suitability
should be verified by environmental testing before the
design is submitted to production.

MCS®-48 Oscillator

The NMOS and HMOS MCS-48 oscillator is shown in
Figure 21. It differs from the 8051 in that its inverting

9-39

VCC

TO INTERNAL
CIRCUITRY

XTAL2

230659-32

Figure 21. MCS®-48 Oscillator Amplifier

inter AP-155

SV

~hY.tere.l.

.2V

L-__ -+ __ -+ ____ v,

LTP UTP

230659-33

Figure 22. Schmitt Trigger Characteristic

amplifier is a Schmitt Trigger. This configuration was
chosen to prevent crosstalk from the TO pin, which is
adjacent to the XT ALl pin.

All Schmitt Trigger circuits exhibit a hysteresis effect,
as shown in Figure 22. The hysteresis is what makes it
less sensitive to noise. The same hysteresis allows any
Schl11itt Trigger to be used as a relaxation oscillator.
All you have to do is connect a resistor from output to
input, and a capacitor from input to ground, and the
circuit oscillates in a relaxation mode as follows.

If the Schmitt Trigger output is at a logic high, the
capacitor commences charging through the feedback
resistor. When the capacitor voltage reaches the upper
trigger point (UTP), the Schmitt Trigger output
switches to a logic low and the capacitor commences
discharging through the same resistor. When the capac­
itor voltage reaches the lower trigger point (L TP), the
Schmitt Trigger output switches to a logic high again,
and the sequence repeats. The oscillation frequency is
determined by the RC time constant and the hysteresis
voltage, UTP-LTP.

The 8048 can oscillate in this mode. It has an internal
feedback resistor. All that's needed is an external ca­
pacitor from XTALI to ground. In fact, if a smaller
external feedback resistor is added, an 8048 system
could be designed to run in this mode. Do it at your own
risk! This mode of operation is not tested, specified,
documented, or encouraged in any way by Intel for the
8048. Future steppings of the device might have a dif­
ferent type of inverting amplifier (one more like the
8051). The CHMOS members of the MCS-48 family do
not use a Schmitt Trigger as the inverting amplifier.

Relaxation oscillations in the 8048 must be avoided,
and this is the major objective in selecting the off-chip
components needed to complete the oscillator circuit.

When an 8048 is powered up, if VCC has a short rise
time, the relaxation mode starts first. The frequency is
normally about 50 KHz. The resonator mode builds

more slowly, but it eventually takes over and dominates
the operation of the cirucit. This is shown in Figure
23A.

Due to processing variations, some units seem to have a
harder time coming out of the relaxation mode, partic­
ularly at low temperatures. In some cases the resonator
oscillations may fail entirely, and leave the device in the
relaxation mode. Most units will stick in the relaxation
mode at any temperature if CX! is larger than about 50
pF. Therefore, Cx! should be chosen with some care,
particularly if the system must operate at lower temper­
atures.

One method that has proven effective in all units to
-40·C is to put 5 pF from XTALl to ground and 20
pF from XTAL2 to ground. Unfortunately, while this
method does discourage the relaxation mode, it is not
an optimal choice for the resonator mode. For one
thing, it does not swamp the pin capacitance. Also, it
makes for a rather high signal level at XTALl (8 or 9
volts peak-to-peak).

The question arises as to whether that level of signal at
XTLAI might damage the chip. Not to worry. The
negative peaks are self-limiting and nondestructive. The
positive peaks could conceivably damage the oxide, but
in fact, NMOS chips (eg, 8048) and HMOS chips (eg,
8048H) are tested. to a much higher \<Qltage than that.
The technology trend, of course, is to thinner oxides, as
the devices shrink in size. For an extra margin of safety,
the HMOS II chips (eg, 8048AH) have an internal di­
ode clamp at XTALI to VCC.

In reality, CXI doesn't have to be quite so small to
avoid relaxation oscillations, if the minimum operating
temperature is not -40·C. For less severe temperature
requirements, values of capacitance selected in much
the same way as for an 8051 can be used. The circuit
should be tested, however, at the system's lowest tem­
perature limit.

Additional security against relaxation oscillations can
be obtained by putting a 1M-ohm (or larger) resistor
from XTALI to VCC. Pulling up the XTALl pin this
way seems to discourage relaxation oscillations as effec­
tively as any other method (Figure 23B).

Another thing that discourages relaxation oscillations is
low VCC. The resonator mode', on the other hand is
much less sensitive to VCe. Thus if VCC comes up
relatively slowly (several milliseconds rise time), the
resonator mode is normally up and running before the
relaxation mode starts (in fact, before VCC has even
reached operating specs). This is shown in Figure 23C.

A secondary effect of the hysteresis is a shift in the
oscillation frequency. At low frequencies, the output
signal from an inverter without hysteresis leads (or
lags) the input by 180 degrees. The hysteresis in a
Schmitt Trigger, however, causes the output to lead the

9-40

infef AP·155

input by less than 180 degrees (or lag by more than 180
degrees), by an amount that depends on the signal am­
plitude, as shown in Figure 24. At higher frequencies,
there are additional phase shifts due to the various reac­
tances in the circuit, but the phase shift due to the hys­
teresis is still present. Since the total phase shift in the
oscillator's loop gain is necessarily 0 or 360 degrees, it
is apparent that as the oscillations build up, the fre­
quency has to change to allow the reactances to com­
pensate for the hysteresis. In normal operation, this ad­
ditional phase shift due to hysteresis does not exceed a
few degrees, and the resulting frequency shift is negligi­
ble.

27pF

r:~
XTALI

0 8048

XTAL2

230659-34
A) When VCC Comes Up Fast, Relaxation Oscillations

Start First. But Then the Crystal Takes Over.

vee

lMIl

27pF h XTALI

o 8048

t--~---t XTAL2

':' 27pF

230659-35
B) Weak Pullup (1 Mil or More) on XTAL 1

Discourages Relaxation Mode.

27pF

~-
XTALI

0 8048

XTAL2

230659-36
C) No Relaxation Oscillations When VCC Comes Up

More Slowly.

Kyocera, a ceramic resonator manufacturer, studied
the use of some of their resonators (at 6.0 MHz, 8.0
MHz, and 11.0 MHz) with the 8049H. Their conclu­
sion as to the value of capacitance to use at XTALI and
XT AL2 was that 33 pF is appropriate at all three fre­
quencies. One should probably follow the manufactur­
er's recommendations in this matter, since they will
guarantee operation.

Whether one should accept these recommendations and
guarantees without further testing is, however, another
matter. Not all users have found the recommendations
to be without occasional problems. If you run into diffi-

VCC:

XTAL2:

230659-37

VCC:

XTAL2:

230659-38

VCC:

XTAL2:

230659-39

Figure 23. Relaxation Oscillations in the 8048

9-41

AP-155

culties using their recommendations, both Intel and the
ceramic resonator manufacturer want to know about it.
It is to their interest, and ours, that such problems be
resolved.

I
I
I

I I I I

"'ll I r
230659-40

A) Inverter Without Hysteresis: Output Leads Input by 180'.

. 230659-41
B) Inverter With Hysteresis: Output Leads

Input by Less than 180'.

Figure 24. Amplitude-Dependent Phase
Shift in Schmitt Trigger

Preproduction Tests

An oscillator design should never be considered ready
for production until it has proven its ability to function
acceptably well under worst-case environmental condi­
tions and with parameters at their worst-case tolerance
limits. Unexpected temperature effects in parts that
may already be near their tolerance limits can prevent
start-up of an oscillator that works perfectly well on the
bench. For example, designers often overlook tempera­
ture effects in ceramic capacitors. (Some ceramics are
down to 50% of their room-temperature values at
- 20·C and + 60·C). The problem here isn't just one of
frequency stability, but also involves start-up time and
steady-state amplitude. There may also be temperature
effects in the resonator and amplifier.

It will be helpful to build a test jig that will allow the
oscillator circuit to be tested independently of the rest
of the system. Both start-up and steady-state character­
istics should be tested. Figure 25 shows the circuit that

9-42

A) Software for Oscillator Test

SOURCE
ORG 0000 H

JMP START
ORG OOOB H ;TIMER 0 INTERRUPT:

; TOGGLE Tl CPL Tl
RETI

ORG OOOlBH ;TlMER 1 INTERRUPT:
CPL Pl;l
DJNZ P2.S
CPL Pl.O
RETI

TOGGLE CRO TRIGGER
DELAY
TOGGLE VCC CONTROL

START: MOV TH1. #OFAH ;TlMER 1 RELOAD VALUE

END

MOV TL1. #OFAH ;START TLl AT RELOAD VAL
MOV TMOD. # 61H ;TIMER 1 TO COUNTER. AUTO

;RELOAD
;TIMER 0 TO TIMER. l6-BIT

MOV IE. # BAH ;ENABLE TIMER INTERRUPTS
;ONLY

MOV TCON. # 50H ;TURN ON BOTH TIMERS
JMP S ;IDLE

PI.O
-t-----i PI.I

vcc

vee P1.0or Pt.t
TO

OSCILLOSCOPE
TRIGGER 8051

Ell
ALE

TOFREQ.
COUNTER

230659-42
B) Oscillator Test Circuit (Shown for 8051 Test)

Figure 25. Oscillator Test Circuit and Software

AP-155

was used to obtain the oscillator start-up photographs
in this Application Note. This circuit or a modified
version of it would make a convenient test vehicle. The
oscillator and its relevant components can be physically
separated from the control circuitry, and placed in a
temperature chamber.

Start-up should be observed under a variety of condi­
tions, including low VCC and using slow and fast VCC
rise times. The oscillator should not be reluctant to
start up even when VCC is below its spec value for the
rest of the chip. (The rest of the chip may not function,
but the oscillator should work.) It should also be veri­
fied that start-up occurs when the resonator has more
than its upper tolerance limit of series resistance. (Put
some resistance in series with the resonator for this
test.) The bulk capacitors from XTALl and XTAL2 to
ground should also be varied to their tolerance limits.

The same circuit, with appropriate changes in the soft­
ware to lengthen the "on" time, can be used to test the
steady-state characteristics of the oscillator, specifically
the frequency, frequency stability, and amplitudes at
XTALl and XTAL2.

As previously noted, the voltage swings at these pins
are not critical, but they should be checked at the sys­
tem's temperature limits to ensure that they are in good
health. Observing these signals necessarily changes
them somewhat. Observing the signal at XT AL2 re­
quires that the capacitor at that pin be reduced to ac­
count for the oscilloscope probe capacitance. Observing
the signal at XTALI requires the same consideration,
plus a blocking capacitor (switch the oscilloscope input
to AC), so as to not disturb the DC level at that pin.
Alternatively, a MOSFET buffer such as the one shown

-in Figure 26 can be used. It should be .verified by direct
measurement that the ground clip on the scope probe is
ohmically connected to the scope chassis (probes are
incredibly fragile in this respect), and the observations
should be made with the ground clip on the VSS pin, or
very close to it. If the probe shield isn't operational and
in use, the observations are worthless.

+12V

MFE3005
XTAL1

or --b---ill,. -5V
XTAL2 .-

I
I

------- \'0---+--. ~~CILLOSCOPE
CJUMPERFOR

GATE PROTECTION
11K

230659-43

Figure 26. MOSFET Buffer for Observing
Oscillator Signals

9-43

Frequency checks should be made with only the oscilla­
tor circuitry connected to XT ALl and XT AL2. The
ALE frequency canbe counted, and the oscillator fre­
quency derived from that. In systems where the fre­
quency tolerance is only "nominal," the frequency
should still be checked to ascertain that the oscillator
isn't running in a spurious resonance or relaxation
mode. Switching VCC off and on again repeatedly will
help reveal a tendency to go into unwanted modes of
oscillation.

The operation of the oscillator should then be verified
under actual system running conditions. By this stage
one will be able to have some confidence that the basic
selection of components for the oscillator itself is suit­
able, so if the oscillator appears to malfunction in the
system the fault is not in the selection of these compo­
nents.

Troubleshooting Oscillator Problems

The first thing to consider in case of difficulty is that
between the test jig and the actual application there
may be significant differences in stray capacitances,
particularly if the actual application is on a multi-layer
board.

Noise glitches, that aren't present in the test jig but are
in the application board, are another possibility. Capac­
itive coupling between the oscillator circuitry and other
signal has already been mentioned as a source of mis­
counts in the internal clocking circuitry. Inductive cou­
pling is also possible, if there are strong currents near­
by. These problems are a function of the PCB layout.

Surrounding the oscillator components with "quiet"
traces (VCC and ground, fpr example) will alleviate ca­
pacitive coupling to signals that have fast transition
times. To minimize inductive coupling, the PCB layout
should minimize the areas of the loops formed by the
oscillator components. These are the loops that should
be checked:

XTALl through the resonator to XT AL2;
XTALl through CX! to the VSS pin;
XTAL2 through CX2 to the VSS pin.

It is not unusual to find that the grounded ends of CX!
and CX2 eventually connect up to the VSS pin only
after looping around the farthest ends of the board. Not
good.

Finally, it should not be overlooked that software prob­
lems sometimes imitate the symptoms of a slow-starting
oscillator or incorrect frequency. Never underestimate
the perversity of a software problem.

AP-155

REFERENCES
1. Frerking, M. E., Crystal Oscillator Design and Tem­
perature Compensation, Van Nostrand Reinhold, 1978.

2. Bottom, V., "The Crystal Unit as a Circuit Compo­
nent," Ch. 7, Introduction to Quartz Crystal Unit De­
sign. Van Nostrand Reinhold, 1982.

3. Parzen, B., Design 0/ Crystal and Other Harmonic
Oscillators, John Wiley & Sons, 1983.

4. Holmbeck, J. D., "Frequency Tolerance Limitations
with Logic Gate Clock Oscillators, 31st Annual Fre­
quency Control Symposium, June, 1977.

5. Roberge, J. K., "Nonlinear Systems," Ch.- 6,
Operational Amplifiers: Theory and Practice, Wiley,
1975.

6. Eaton, S. S. Timekeeping Advances Through
COS/MOS Technology, RCA Application Note ICAN-
6086. -

7. Eaton, S. S., Micropower Crystal-Controlled Oscilla­
tor Design Using RCA COS/MOS Inverters, RCA Ap­
plication Note ICAN-6539.

8. Fisher, J. B., Crystal Specifications for the Intel
8031/B051/B751 Microcontrollers, Standard Crystal
Corp. Design Data Note #2F.

9. Murata Mfg. Co., Ltd., Ceramic Resonator
"Cefalock" Application Manual

10. Kyoto Ceramic Co., Ltd., Adaptability Test Between
Intel 8049H and Kyocera Ceramic Resonators.

11. Kyoto Ceramic Co., Ltd., Technical Data on Ce­
ramic Resonator Model KBR-6.0M, .KBR-B.OM, KBR­
l1.0M Application/or 8051 (Intel).

12. NTK Technical Ceramic Division, NGK Spark
Plug Co., Ltd., NTKK Ceramic Resonator Manual.

9-44

AP-155

APPENDIX A
QUARTZ AND CERAMIC RESONATOR FORMULAS

Based on the equivalent circuit of the crystal, the im­
pedance of the crystal is

Z - (Rl + jwLl + 1/jwCl)(1/jwCO)
XTAL - Rl + jwLl + 1/jwCl + 1/jwCo

After some algebraic manipulation, this calculation can
be written in the form

where CT is the capacitance of C, in series with Co:

The impedance of the crystal in parallel with an exter­
nal load capacitance CL is the same expression, but
with Co + CL substituted for Co:

Z II 1 1 - w2L1Cl + jwR1Cl
XTAL CL = jW(Cl + Co + CLl • 1 - w2L1C'T + jwR1C'T

where C'T is the capacitance of C, in series with (Co +
Cr..):

C'T = Cl (Co + CLl
Cl + Co + CL

The impedance of the crystal in series with the load
capacitance is

1
ZXTAL + CL = ZXTAL + :--C

IW L

= CL + Cl + Co. 1 - w2L1C'T + jwR1C'T

jwCL (Cl + Co) 1 - w2L1CT + jwR1CT

where CT and C'T are as defmed above.

The phase angles of these impedances are readily ob­
tained from the impedance expressions themselves:

WRl Cl
9XTALIICL = arctan 2L C

1 - W 1 1

WR1C'T
9XTAL + CL = arctan 2L C'

1 - W 1 T

The resonant ("series resonant") frequency is the fre­
quency at which the phase angle is zero and the imped­
ance is low. The antiresonant ("p~allel resonant") fre­
quency is the frequency at which the phase angle is zero
and the impedance is high.

Each of the above 8-expressions contains two arctan
functions. Setting the denominator of the argument of
the first arctan function to zero gives (approximately)
the "series resonant" frequency for that configuration.
Setting the denominator of the argument of the second
arctan function to zero gives (approximately) the "par­
allel resonant" frequency for that configuration.

For example, the resonailt frequency of the crystal is
the frequency at which

- w2L1Cl = 0

Thus

or
f ___ 1_
s - 27T~L1Cl

9-45

AP-155

It will be noted that the series resonant frequency of the
"XTAL+ CL" configuration (crystal in series with CL)
is the same as the parallel resonant frequency of the
"XTALllcL" configuration (crystal in parallel with
CL). This is the frequency at which '

Thus

or

- oo2L1C'T = 0

1
OOa = JL1C'T

1
la = 2'ITJL1C'T

This fact is used by crystal manufacturers in the pro­
cess of calibrating a crystal to a specified load capaci­
tance.

By subtracting the resonant frequency of the crystal
from its antiresonant frequency, one can calculate the
range of frequencies over which the crystal reactance is
positive:

I (~) s 2Co

Given typical values for CI and Co, this range can
hardly exceed 0.5% offs. Unless the inverting amplifier
in the positive reactance oscillator is doing something
very strange indeed, the oscillation frequency is bound
to be accurate to that percentage whether the crystal
was calibrated for series operation or to any unspecified
load capacitance.

Equivalent Series Resistance

ESR is the real part of ZXTAL at the oscillation fre­
quency. The oscillation frequency is the parallel reso­
nant frequency of the "XTALllcL" configuration
(which is the same as the series resonant frequency of
the "XTAL + CL" configuration). Substituting this fre­
quency into the ZXTAL expression yields, after some
algebraic manipulation,

(Co + CL)2 R1 ---
ESR = __ ...c.--,C:-:,L,,---,-::--:-::

2C2 (Co + CL)2
1+00 1 CL

Drive Level

The power dissipated by the crystal is I~RIo where II is
the RMS current in the motional arm of the crystal.
This current is given by V x/lz\l, where V x is the RMS
voltage across the crystal, and /zil is the magnitude of
the impedance of the motional arm. At the oscillation
frequency, the motional arm is a' positive (inductive)
reactance in parallel resonance with (Co + CL)' There­
fore IZII is approximately equal to the magnitude of the
reactance of (Co + CL):

1
IZ11 = 2'ITf(Co + CLl

where f is the oscillation frequency. Then,

p = I~ R1 = (I~~I tR1

= [2'ITI (Co + CLl Vx]2 R1

The waveform of the voltage across the crystal
(XTALl to XTAL2) is approximately sinusoidal. If its
peak value is VCC, then V x is VCCI.Ji. Therefore,

P = 2R1 ['lT1 (Co + CLl VCC]2

9-46

AP·155

APPENDIX B
OSCILLATOR ANALYSIS PROGRAM

The program is written in BASIC. BASIC is excruciat­
ingly slow, but it has some advantages. For one thing,
more people know BASIC than FORTRAN. In addi­
tion, a BASIC program is easy to develop, modify, and
"fiddle around" with. Another important advantage is
that a BASIC program can run on practically any small
computer system.

Its slowness is a problem, however. For example, the
routine which calculates the "start-up time constant"
discussed in the text may take several hours to com­
plete. A person who finds this program useful may pre­
fer to convert it to FORTAN, if the facilities are avail­
able.

Limitations of the Program

The program was developed with specific reference to
80S I-type oscillator circuitry. That means the on-chip
amplifier is a simple inverter, and not a Schmitt Trig­
ger. The 8096, the 80CSl, the 80C48 and 80C49 all
have simple inverters. The 8096 oscillator is almost
identical to the 8051, differing mainly in the input pro­
tection circuitry. The CHMOS amplifiers have some­
what different parameters (higher gain, for. example),
and different transition levels than the 80S 1.

The MCS-48 family is specifically included in the pro­
gram only to the extent that the input-output curve
used in the steady-state analysis is that of a Schmitt
Trigger, if the user identifies the device under analysis
as an MCS-48 device. The analysis does not include the
voltage dependent phase shift of the Schmitt Trigger.

The clamping action of the input protection circuitry is
important in determining the steady-state amplitudes.
The steady-state routine accounts for it by setting the
negative peak of the XTALI signal at a level which
depends on the amplitude of the XTALl signal in ac­
cordance with experimental observations. It's an exer­
cise in curve-fitting. A user may find a different type of
curve works better. Later steppings of the chips may
behave differently in this respect, having somewhat dif­
ferent types of input protection circuitry.

It should be noted that the analysis ignores a number of
. important items, such as high-frequency effects in the

on-chip circuitry. These effects are difficult to predict,
and are no doubt dependent on temperature, frequency,
and device sample. However, they can be simulated to a
reasonable degree by adding an "output capacitance" of
about 20 pF to the circuit model (i.e., in parallel with
CX2) as described below.

Notes on Using the Program

The program asks the user to input values for various
circuit 'parameters. First the crystal (or ceramic resona­
tor) parameters are asked for. These are Rl, Ll, Cl,
and CO. The manufacturer can supply these values' for
selected samples. To obtain any kind of correlation be­
tween calculation and experiment, the values of these
parameters must be known for the specific sample in
the test circuit. The value that should be entered for CO
is the CO of the crystal itself plus an estimated 7 pF to
account for the XTALl-to-XTAL2 pin capacitance,
plus any other stray capacitance paralleling the crystal
that the user may feel is significant enough to be includ­
ed.

Then the program asks for the values of the XTALl-to­
ground and XTAL2-to-ground' ~apacitances. For
CXTALl, enter the value of the externally connected
bulk capacitor plus an estimated 7 pF for pin capaci­
tance. For CXTAL2, enter the value of the externally
connected bulk capacitor plus an estimated 7 pF for pin
capacitance plus about 20 pF to simulate high-frequen­
cy roll-off and phase shifts in the on-chip circuitry.

Next the program asks for values for the small-signal
parameters of the on-chip amplifier. Typically, for the
805118751,

Amplifier Gain Magnitude '= 15
Feedback Resistance = 2300 K!l
Output Resistance = 2 K!l

The same values can be used for MCS-48 (NMOS and
HMOS) devices, but they are difficult to verify, because
the Schmitt Trigger does not lend itself to small-signal
measurements.

9-47

inter
100 DEFDBL C.D.F.G.L.P.R.S.X
200 REM

AP-155

APRIL B. 19B3
300 REM ****************~*.**.*********.******** •••• ******.*.* ••••••• *** •••••••
400 REM
500 REM
600 REM
700 REM

FUNCTIONS

800 REM FNZM(R. X) = MAGNITUDE OF A COMPLEX NUMBER. IR+JX:
900 DEF FNZM(R.X) = SQR(R"2+X"2)
1000 REr1
1100 REM FNZP(P.X)
1200 REM

ANGLE OF A COMPLE~ NUMBER
180/P I*ARCTAN(X/R) IF R:'O

1300 REM
1400 REM

180/PI*ARCTAN(X/R) + 180 IF R<O AND x/a
180/PI*ARCTAN(X/R) .. 180 IF R<:O AND X"O

I~OO DEF FNZP(R.X)
1600 REM

= 180/PI*ATN(X/R) - (SGN(R)-I)*SGN(X)*90

1700 REM
1800 REM
1900 REM
2000 DEF
2100 DEF
2200 REM
2300 REM
2400 REM
2500 REM
2600 REM
2700 DEF
2800 DEF
2900 REM

INDUCTIVE IMPEDANCE AT cor1PLE~ FREQUENCY S+ JF (HZ)
z-= 2*Pl*S*L + J2*PI*F*L

FNRL(S.L) + JFNXL(F.L)
FNRL(SL.LL) = 21*PI*SL*LL
FNXL(FL.LL) = 21*PI*FL*LL

CAPACITIVE IMPEDANCE AT COMPLEX FREQUENCY S+JF (HZ)
Z = 1/[2*PI*iS+JF)*Cl

= S/[2*PI*(S'2+F'2)*CJ + Jf-F)/[2*PI*(SA2+F~2)Cl

= FNRC(S.F.C) + JFNXC(S.F.C)
FNRC(SC.FC.CC) = SC/(21*PI*(SC 2+FC"2)*CC)
FNXC (SC. FC. CC) = -FC/ (21*PI*(SC"2+FC"2)*CC)

3000 REM RATIO OF TWO COMPLEX NUMBERS
3100 REM RA+JXA RA*RB+XA*XB XA*RB-RA*XD
3200 REM ----------- + J -----------
3300 REM RB+ J X3 RD~2+XB-·2 RDA2+XB '2
3400 REM = FNRR(RA.XA.RO.~B) + JFNXR(RA.XA.RO.XD)
3500 DEF FNRR(RA.XA.RB.XB) = (RA*RD+XA*XD)/(RD"2+XO A 2)
3600 DEF FNXR(RA. XA. RO. XO) 3 (XA*RO-XB*RA)/(RB'2+XB~'2)

3700 REM
3800 REM
3900 REM
4000 REM

PRODUCT OF TWO COMPLEX
(RA+JXA,*(RO+JXD)

4100 DEF FNRM(RA.XA.RB.XB) RA*RB
4200 DEF FNXM(RA.XA.RD.XB) = RA*XD
4300 REM

PARALLEL I11PEDANCES

(RA+JXA) I I (RB+JXD)

NUMOERS
RA*RO-XA*XB + J(XA*RB+RA*XB)

= FNRM(RA.XA.RB.XB) + JFNXM(RA.XA.RB.xe)
- XA*XB
+ RD*XA

RA+RD +J(XA+XD)

RA* (RB ~+xa 2) +RB* (RA ... ·2+XA ... 2)

- FNRP(RA.XA.RB.XB) + JFNXP(RA.XA.RD.XB)

4400 REM
4500 REM
4600 REM
4700 REM
4BOO REM
4900 REM
5000 REM
5100 REM
5200 REI'i
5300 REM
5400 REM
~~OO DEf
~600 DEF
5700 REM

FNRP(RA. XA. RB. XB) (RA*(RB"2+XB"2) + RB*(RA'2+XAA2»)I((RA+RB)A2 + (XA+XB)A21
FNXP(RA. XA. RB. XB) = (XA*(RO'2+XO-2) + XB*(RA-'2+XAA2»)I((RA+RB)A2 + (XA+XB)A21

~BOO REM ***.*************.******************4**************************.*****.
5900 REM
6000 REM
6100 REM

BEGIN COMPUTATIONS

6200 LET PI
6300 REM
6400 REM

3. 1415926541

6500 GOSUe 14500
6600 REM

DEFINE CIRCUIT PARAMETERS

6700 REM ESTABLISH N0I1INAL RESONANT AND ArHIRESONANT CRYSTAL FREQUENCIES
6800 FS = FIX(I/(2*PI*SQR(Ll*CI»)
6900 FA = FIX(I/(2*PI*SQR(LI*CI*COi(Clt~O»»
7000 PRINT
7100 PRINT "HAL IS SERIES RESONANT AT ".FS." HZ"
7200 PRINT" . PARALLEL RESONANl AT ".FA." HZ"
7300 PRINT
7400 PRINT "S~LECT' I
7500 PR INT " 2
7600 PRINT 3
7700 PRINT" 4.
'BOO PR INT " 5

LIST PAkAMETERS"
'CIRCUIT ANALYSIS"
OSCILLATIOI~ FREQUENCY"
:HART··UP TIME CONSTANT"
STEADY-STATE ANALYSIS"

9-48

230659-44

inter

7900 PRINT
80VO INPUT N
8100 IF N=I THEN PRINT ELSE 8600
8200 REM

AP-155

8300 REM -.------------ ------.- LIST PARAMETERS .--------.---------------------
8400 GOSUB 17100
8500 GOTO 6800
8600 IF N=2 THEN PRINT ELSE 9400
8700 REM
8800 REM -----------.--------- CIRCUIT ANALYSIS ---------------------------
8900 PR I NT " FREOUENc\' '3' .JF TYPE (S l. C F) "
9000 INPUT SO,FO
9100 QOSUB 20200
9200 GOSUB 26600
9300 GOTo 6E100
9400 IF N=3 THEN 10300 ELSE 11000
9500 REM
9600 REM ------------------ OSCILLATION FREOUENCY ------------------------
9700 CL = CX*CY/ICX.C~) + CO
9800 FO = FIXII/(2*PI4SQRILI*CI*CL/(CI'CU»)
9900 SO • 0
10000 DF = FIXIIO~INTILOGIFA-FS)/LOGII0)-2) •. 5)
10100 DS • 0
10200 RETURN
10300 GoSUB 9700
10400 GOSUB 30300
10500 PRINT
10600 PRINT
10700 PRINT "FREOUENCY AT WHICH LOOP GAIN HAS ZERO PHASE ANGLE. "
10800 GOSUS 26600
10900 GOTO 6800
11000 IF N=4 THEN PRINT ELSE 12200
11100 REM
11200 REM ---------------- START-UP TIME CONSTANT -------------------------
11300 PRINT "THIS WILL TAKE SOME TIME
11400 GOSUS 9700
11500 GOSUD 37700
11600 PRINT
11700 PRINT
11800 PRINT "FREOUENCY AT WHICH LOOP GAIN = I AT 0 DEGREES'"
11900 GOSUS 26600
12000 PRINT: PRINT "THIS YIELDS A START-UP TIME CONSTANT OF ",CSNGOOOOOOO!/(2-PI*SO»," MICRoSECS"
12100 GoTO 6800 ~
12200 IF N=5 THEN PRINT ELSE 7300
12300 REM
12400 REM ---------------- STEADY-STATE ANALYSIS -------------~-------------
12500 PRINT "STEADY-STATE ANALVSIS"
12600 PRINT
12700 PRINT "SELECT:
12800 PRINT •

I. 8031/8051"
2. 8751"

12900 PRINT "
13000 PRINT "

3. 8035/8039/8040/8048/8049"
4 8748/8749"

13100 INPUT lell
13200 IF IClI<1 OR IC1C-" THEN 12600
13300 GDSUB 46900
13400 GOTO 7300
13500 REM SUBROUTINE 3ELOW DEFINES INPUT-OUTPUT CURVE OF OSCILLATOR CKT
13600 IF IC7I:>2 AND VO=5 AND VI':2 THEN ~ETURN
13700 vo D -IO-VI + 1~

13800 IF VO:>5 THEN VO = 5
13900 IF VO<.2 THEN VO = .2
14000 IF IC7I:>2 AND VO:>2 THEN VO = 5
14100 RETURN
14200 REM
14300 REM .* •••••••••••••••••••• **** •••••••••••••••••••••••••••••• **** ••
14400 REM
14500 REM
141>00 REM

DEFINE CIRCUIT PARAMETERS

14700 INPUT" RI 10HMS) ", RI
14800 INPUT " Ll IHENRn", LI
14900 INPUT" Cl IPF)", X
15000 C 1 • X-IE-10! 1

15100 INPUT" CO IPF)",X
15200 CO = X*IE-12
15300 INPUT" CXTALI IPF)", X
15400 CX = X-1E-12
15500 INPUT" CXTAL2 (PF)", X
151>00 CV = X*IE-12

9-49

230659-45

inter
1~700

15800
15900
16000
16100
16200
16300
16400
16500
16600
16700
16800
16'100

,17000
17100
17200
17300
17400
17500
17600
17700
17800
17900
18000
18100
18200
18300
18400
18500
18600
18700
18800
18900
19000
19100
19200
19300
19400
19500
19600
19700
19800
19900
20000
20100
20200
20300
20400
20500
20600
20700
20800
20900
21000
21100
21200
21300
21400
21500
21600
21700
21800
21900
22000
22100
22200
22300
22400
22500
22600
22700
22800
22900
23000
23100
23200
23300
23400

Ap·155

INPUT" GAIN FACTOR MAGNITUDE". AVtI
INPUT" AMP F~EDBACK RESISTANCE (K-OHMS)".X
RX = ~*IOOOtl

INPUT" AMP OUTPUT RESISTANCE (K-OHMS)". X
RO = X*IOOOtl
REM
REM
REM LtSt CURRENT PARAMETER VALUES
GOSUB 17100
RETURN
REf1
REf1
REM ***********~ •• ******.*~****~*4*4*.~*****.***.*****************
REf1
RE''i
REM

LIST CURHENT PARAMETER. VALUES

PRINT
PRINT "CURRENT PARAMETER VALUES
PRINT 2

R I ". R I." OHMS"
LI = ".CSNGCLI)." HENRV"

PRINT"
PRINT"
PRINT
PRINT "
PRINT
PRINT"
PRINT "
PRINT

7
8.
'I

3 CI ".CSNG(CI*IE+12)." PF"
CO ". CSNGCCO*IE+12)." PF"
CXTALI '= ". CSNG(CX*IE+12)."

4
5 PF"
6 CXTAL2 = ".CSNG(CY*IE+12)." PF"

AMPLIFIER GAIN MAGNITUDE ".AVtI
FEEDBAC~ RESISTANCE = ". CSNG(RX* 001)." K-OHMS"

OUTPUT RESISTANCE = ".CSNG(RO*.OOI)." K-OHMS"

PRINT "TO CHANGE A PARAMETER VALUE. TYPE CPARAM NO). (NEW VALUE) "
PRINT "OTHERWISE. TVPE 0.0 "
INPUT N'l..X
IF N'l.=O THEN
IF N'l.=1 THEN
IF N'l.=2 THEN
IF N'l.=3 THEN
IF N'l.=4 THEN
IF N'l.=5 THEN
IF N'l.=6 THEN
IF N'l.=7 THEN
IF N'l.=8 THEN
IF N'l.=9 THEN
GOTO 17400
REM
REM

RETURN
Rl X
L1 X
CI X*IE-12
CO X*lE-12
ex X*lE-12
CV X*lE-12
AVtI = X
RX X-1000'
RO = X*IOOO'

REM **
REM
REM
REM
REM
REM
REM
REM
XI =
RE =
XE =
REM
REM
REM
RF =
XF =
REM
REM
REM
RI ,=
XI =
REM
REM
REM
RL =
XL ..
REM
REM
REM
REM
ARtI

CIRCUIT ANALYSIS

This routln. calculate~ the loop gain at compl •• frequency SO+JFB.

Crystal l~pedance RE + JXE

FNXL(FG.LI) + FNXC(SO.FG.CIl
FNRP«Rl+FNRL(SO.LI)+FNRC(SO.FO.CI».XI.FNRC(sO.FO.CO).FNXC(sG.FO.CO»
FNXP«RI+FNRL(sO.LI)+FNRC(sQ.FG.CI».XI.FNRC(sO.FO.CO).FNXC(sO.FO.CO»

2, RF + JXF

FNRP(RX.O.RE.XE)
FNXP(RX.O.RE,XE)

(RE+JXE): :(ampllfler feedback resistance)

3. Input lmpedanc~. II RI + JXI lmpedance of CXTALI

FNRC (SO. FO. C")
FNXC (SO. FO. C ,<)

4 Load Impedance ZL = (Impedance of CX'TAL2): :[(RF+RI)+J(XF+XI))

FNRP((RF+RI), (XF+X I). FNRC (SQ, Ft]. CY>. FNXC (SQ. FO. CY»
FNXP«IlF+RI . (XF+Xll.FNRC(SQ,r·(J,Cy),F'NXC(SO.FO.CY»

5 Ampll'leT gain A = -AV*ZL/IZL~PO)
::: A.reali + JAtlmaglna,.y~

AI_ = -AV_~FNXP(RL,XLJ CPU.RL),'L)
REM
REM 6 Feedbat~ ratIo ~~~ta~ IRJ+J~J)!r(RF.Rll.j(XF+XI)]

REM Birt!'al' ..,. JBClmaqlndry)

9-50

230659-46

intJ

23500 REM
23600 BI'll = FNRRCRI,XI, IRI+RF), (XI+XF)l
23700 Bill = FNXR(RI. XI, IRI+RF1. (X/+XF»
23800 REM

AP-155

23900 REM 7
24000 REM

Ampllfler galn 11, magnItude/phase form

24100 A = FNZMCARII,AIII)
24200 AP = FNZPCARII,AI~)
24300 REM
24400 REM 8 (beta) In magnitude/phase form BP+JBI
24500 REM
24600 a = FNZM(BRII,BI~)
24700 3P = FNZp(aRII,BI~)
24800 REM
24900 REM 9 Loop galn G = (BR+JBI).rAR+JAI)
25000 REM ~ G(real) + JG(lmaglnar~)

25100 REI1
25200 GR = FNRM(ARII,AIII,BRII,BIII)
25300 GI = FNXMCARII, AIII,BRII, Bill)
25400 REM
25500 REM 10
25600 REM

Loop 931n 1n magnitud9/phase form

25700 AL = FNZMtGR,GI)
25800 AO = FNZP(GR"GI)
25900 RETURN
26000 REM
26100 REM

AR+JAI A at AP de-grees

B at BP degrees

AL at AQ degrees

26200 REM *.**********.~* •• ****.***.*.~*********************************
26300 REM
26400 REM
26500 REM
26600 PRINT

PRINT CIRCUIT ANALYSIS RESULTS

26700 PRINT FREOUENCY = ",SO," + J",FCl," HZ"
26800 PRINT" XTAL IMPEDANCE = ",FNZMCRE,XE)," OHMS AT ",FNZPCRE,XE)," DEGREES"
26900 PRINT" (RE = ",CSNGCRE)," OHMS)"
27000 PRINT " C XE = ", CSNG C XE)," OHMS)"
27100 PRINT" LOAD IMPEDANCE ",FNZM(RL, XL!. " OHMS AT ".FNZP(RL.XL)," DEGREES"
27200 PRINT" AMPLIFIER GAIN = ",A." AT ",AP," DEGREES"
27300 PRINT" FEEDBACK "ATIO = ",B," AT ",BP," DEGREES"
27400 PRINT" LOOP GAIN = ".AL," AT ",AQ," DEGREES"
27500 RETURN
27600 REM
27700 REM
27800 REM **
27900 REM
28000 REM
28100 REM
28200 REM
28300 REM
28400 REM
28500 REM
28600 REM
28700 REM
28800 REM
28900 REM
29000 REM
29100 REM
29200 REM
29300 REM
29400' REM
29500 REM
29600 REM
29700 REM
29800 REM
29900 REM
30000 REM
30100 REM
30200 REM

SEARCH FOR FREOUENCY tS+JF)
AT WHICH LOOP GAIN HAS ZERO PHASE ANGLE

Th1S routine searches for the frequency at which the Imagina~y pa~t
of the loop gain IS zero T~e algorithm 15 as follo~s.

1. Calculate the sign of the Imaginary pa~t of the loop gain CGI),
2. Increment the frequency
3. Calculate the sIgn of GI at the Incremented frequency.
4. If the sign of GI has not changed. go back to 2
5. If the sign of GJ has c~anged. and this frequency is ~ithin

1Hz of the prevIous Sign-change. eXlt the routine
6. OtherWise. diVide the frequencl:I increment by -10.
7, Go back to 2

The ~outine 15 entered wIth the starting frequency SQ+JFO and
starting Increment DS+JDF already defined b~ the calling p~og~am.
In actual use either OS or OF IS zero. so the routine searches fo~
a GI=O pOInt by IncrementIng eIther 50 O~ FQ While holdIng the other
constant. It return~ control to t~e calling program ~ith the
incremented part of the frequer.cy being Within 1Hz of the actual
GI=O pOlnt

I. CALCULATE THE SIGN OF THE 1I1AGINARY PART OF THE LOOP GAIN CGI),

30300 GOSUa 20200
30400 GOSUa 26600
30500 IF GI=O THEN RETL'RN
30600 SX7. = INTtSGNCGI»
30700 IF SX7.=+l THEN 05 -DS
30800 REM IREVERSAL OF DS FOR GI:O 15 FOR THE POLE-SEARCH ROUTINE)
30900 REM \
31000 REM 2 INCREMENT THE FREOUENCY
31100 REM
31200 SP = SO

9-51

230659-47

inter
FCl
SQ + DS
FCl + DF

AP·155

31300 FP =
31400 SCl =
31500 FCl ~
31600 REM
31700 REM 3
31800 REM

C.'LCI.'LIITF. THE SIGN OF GI AT THE INCREMENTED FREQUENCY

31900 GOSUe 20200
32000 GOSUe 26600
32100 IF INT(SGN(GIII~0 THEN RETURN
32200 REM
32300 REM 4
32400 REM

IF THE SIGN OF GI HAS Nor CHANGED. GO BACK TO 2

32500 IF SXY.+INT(SGN(GI) 1=0 THEN PRINT ELSE 31400
32600 SX7. = -SXY. .
32700 REM
32800 REM :;
32900 REM
33000 REM
33100 REM
33200 REI1

IF THE SIGN OF GI HAS CHANGED. AND IF THIS FREGUENCY IS WITHIN
1HZ QF 1~E PREVH!t'5 S!GN-CHANGE. AND !F G! !S NEGATIVE; THEN
EXIT TH~. POUTINF. <THE' ADDITIONAL REQUIREMENT FOR NEGATIVE 01
IS FOR THE POLE-SEARCH ROUTINE I

33300 IF AIlS(SP-SGl<:1 ANO ABS(FP-FG)';I ANO SX7.=-1 THEN RETURN
33400 REM
33500 REM
33600 REM

6. DIVIDE THE FREQUENCY INCREI1ENT BY -10

33700 OS = -05/10.
33800 OF = -OF/I0.
33900 REM
34000 REM 7 GO BACK TO 2
34100 REM
34200 GOTO 31200
34300 REM
34400 REI1
34500 REM **
34600 REM
34700 REM
34800 REM
34900 REM
35000 REM
35100 REM
35200 REM
35300 REM
35400 REM
35500 REM
35600 REM
35700 REM
35800 REM
35900 REM
36000 REM
36100 REM
36200 REM'
36300 REM
36400 REM
36500 REM
36600 REM
36700 REM
36800 REM
36900 REM
37000 REM
37100 REM
37200 REM
37300 REM
37400 REM
37500 REM
37600 REM

SEARCH FOR POLE FREQUENCY

This routIne searches for the frequenc~ at which the loop gain - 1
at 0 degrees That frequency 1~ t~e pole frequency of the closed­
loop gain function. The pole frequency is a campIItJl number. SCJ+JFQ
(Hz). OscIllator start-up ensues If 50:'0. The algorithm is based on
the calculated behavlor of the phasp angle of the loop gain in the
region of interest on the complex plane The locus of points of zero
phase angle crosses the J-axls at the oscillation fre~uenc~ and at
some higher Trequenc~. In between these two crossings of the J-axis.
the locus lies In Quadrant I of the campleJ plane. forming an
approximate parabola whIch opens to the left. Th~ basic plan is to
follow the locus from where It crosses the J-axls at the OSCIllation
fre~uenc~. Into Guadrant I. and fInd the pOInt on that locus where
the loop gain has a magnItude of 1. The algorithm is as follows:

1. Find thE" osclilation freq,uency. O+JFG
2. At th1s frequency calculate the s1gn of CAL-I) (AL = magnitude

of loop galn)
3. Increment FO. .. For thIS value of FO. fInd the value of SO for which the loop

galn has lero phase.
5. For th1S value of SG+ JFG, calculate the sIgn of (AL-1)'
o. If the sign of (AL-l) !"las not changed. go back to 3.
7. If the slg" of (AL-1) has changed, and this value of FG IS

WIthIn 1Hz of the prev10us SIgn-change. exit the routine.
OtherWIse. d1vide the FO-lncrement b~ -10 B

9 Go bat rt ta 3

FIND THE OSCILLATION FREQUENCY. O~JF(l

37700 GOSUB 9700
37800 GOSUB 30300
37900 REM
38000 REM
38100 REM

2. AT THIS FPEQUENCY. CAi_CUl.ATE Tf1E SIGN OF (AL--I I

38200 SV7. = INTlSGN(AL"I' I l

38300 IF SVY.=-1 THEN STOP
38400 REM ESTABLISH INITIAL INCPEMEI~TATION VALUE FOP FCl
38500 Fl = FCl
38600 DF = (FA-F11/10~
38700 GOSUB 30300
388000E (FCl-Fll/I08
38900 DF 0
39000 FCl = Fl

9-52

230659-48

inter
39100 REM
39200 REM 3 INCREMENT FO
39300 REM
39400 FQ • FQ' + DE

AP-155

39:100 REM
39600-REM
39700 REM
39800 REM
39900 REM
40000 REM

4. FOR THIS VALUE OF FO, FIND THE VALUE OF SO FOR WHICH THE LOOP
GAIN HAS ZERO PHASE (THE ROUTINE WHICH DOES THAT NEEDS 'DF • 0,
50 THAT IT CAN HOLD FQ CONSTANT. AND NEEDS AN INITIAL VALUE FOR
OS. WHICH 15 ARBITRARILY SET TO OS = 1000 I

40100 OS ~ 100011
40200 SQ • 0
40300 GOSUD 30300
40400 IF AL-I! THEN RETURN
40~00 REM'
40600 REM
40700 REM
40800 REM

5. FOR THIS VALUE OF SQ+JFQ. CALCULATE THE SIGN OF (AL-11.
6. IF THE SIGN OF (AL-Il HAS NOT CHANGED. GO BACK TO 3.

40900 IF SY7.+INT(SGN(AL-I'II=O THEN PRINT ELSE 39400
41000 REM
41100 REM
41200 REM
41300 REM

7. IF THE SIGN OF (AL-Il HAS CHANGED. AND THIS VALUE OF FQ IS WITHIN
1HZ OF THE PREVIOUS SIGN-CHANGE. EXIT THE ROUTINE

41400 IF ABS(FI-FOI<1 THEN RETURN
41:100 REM
41600 REM
41700 REM

8. DIVIDE THE FO-INCREMENT BY -10.

41800 DE • -DE/IOII
41900 FI • FO
42000 SY" • -SY7.
42100 REM
42200 REM 9. GO BACK TO 3.
42300 REM
42400 GOTO 39400
42:100 REM
42600 REM
42700 RE" ••••••••••••••••••••••• *** •••••••••••••••••• ****** •• ***** ••• ***

STEADY-STATE ANALYSIS

The circuit model used in thiS analysis is Similar to the one used
in the small-Signal analysis. but differs from it in t~o respects.
First, . it includes clamping and clipping effects described in the
telt. Second, the voltage source in the Theve"tn equivalent of the
.mplifier is controlled)y t~e input voltage In accordance with an
input-output curve defined elsewhere In the program.

42800 REM
42900 REM
43000 REM
43100 REM
43200 REM
43300 REM
43400 REM
431500 REM
43600 REM
43700 REM
43800 REM
43900 REM
44000 REM
44100 REM
44200 REM
44300 REM
44400 REM
44500 REM
44600 REM
44700 REM
44BOO REM
44900 REM
45000 REM
45100 REM
45200 REM
4~300 REM
45400 REM
45500 REM 4.
45600 REM 5.
45700 REM .6.
45800 REM
45900 REM
46000 REM 7.
46100 REM
46200 REM e
46300 REM
46400 REM
46500 REM 9
46600 REM
46700 REM
46BOO REM

The .n.lysis applies a Sinusoidal input SIgnal ~f arbitrar~

amplitude, at the osc111ation freQ.uenc~, to the XTALl pin, then
calculates the result1ng waveform from the voltage source. Using
standard Fourier techn1~ues, the fundamental freQ.uenc~ component of
this ~aveform is extracted This freQ.uenc~ component is then
multipli.d b~ the factor :ZL/(ZL+RO):, and the result is taken to be
the signal appearing at the XTAL2 p1n. This 51gnal is then
multiplied b~ the feedback ratIo (beta), and the result is taken to
be the signal appearIng at the XTAL1 pin. The algorithm 1S no~
repeated uS1ng th1s computed XTALI 51gnal as the assumed input
slnusoid. Ever~ time the algor1th~ 15 repeated. ne~ values appear at
XTALI and XTAL2. but the values c~ange less and less with each
repetition. Eventually t~ey stop changIng This is the steady-state.

The algorithm is as follows.
1. Compute approximate OSCIllation frequency.
2. Call a cirCUIt anal~sls at this frequency.
3. Find the ~uiescent levels at XTALI and XTAL~ (to .stabli5~ the

beginning DC level at XTAL1L
Assume an init1al amplItude for the XTAL1 signal.
Correct the DC l.vel at ~TALl for clamping effects. if neeessaTV.
USing the approprIate input-output curve, extract a DC level and
the funda~ental frequenc~ component (multiplying the latter b~
: ZLI (ZL +RO I : I.
Clip off the negatIve portIon 0' th1S output slgn~l. 1f the
neqatlve peak fdl1~ below zero.
If th15 sqmaL mult1plled, by (beta), dIffers from the Input
amplItude by less than ImV· Dr If the algorithm has been repeated
10 tImes. eXIt the routlne
Other~lse. multqdlJ the):lAL..2 amplltude- by (beta) and f.ed it
bacl! 'to lCTALl. and go baclr to 5

COMPUTE APPROXIMATE OSCILLATION F~EQUENCY

9-53

230659-49

inter

46900 GOSUB 9700
47000 REM
47100 REM
47200 GOSUB
47300 PRINT
47400 GOSUB
47500 PRINT
47600 REM

2. CALL
20800

PRINT
26600

PRINT

AP-155

A CIRCUIT ANALYSIS AT THIS FREOUENCY

PIIINT "ASSUMED OSCILLATION FREOUENCY:

47700 REM 3 FIND QUIESCENT POINT
47800 REM (At quiescence the voltages at XTALl and XTAL2 aTe e'lu.al. This
47900 REM volt.ge level is found b~ trlal-and-erT'or. based on the input-
48000 REM output CUTve. 50 that a per50n can change the Input-output curve
48100 REM as d •• ired WIthout haVing to rIP-calculate the quiescent point.)
48200 VI = 0
48300 VB = I
48400 KI = I
48500 VI = VI + VB
48600 GOSUB 13600
48700 IF ABS(VO-VI)<.OOI THEN 49200
48800 IF KI+SGN(VO-VI)=O THEN 48900 ELSE 48500
48900 KI • SGN(VO-VI)
49000 VB • -VB/IO
49100 GOTO 48500
49200 VB = VI
49300 PRINT "OUIESCENT POINT = ",VB
49400 REM
49~00 REM 4. ASSUME AN INITIAL AMPLITUDE FOR THE XTALI SIGNAL.
49600 EI •. 01
49700 NRX = 0
49800 REM
49900 REM 5. CORRECT FOR CLAMPING EFFECTS, IF NECESSARY
~OOOO REM (KI and K2 are curve-fitting parameters for the ROM p.rts.
~0100 KI (2.5-VB)/(3-VB)
~0200 K2 = (VB-I 2S)/(J-VB)
~0300 IF ICXa2 OR ICX-4 THEN IF EI«VB+ 5) THEN EO
50400 IF ICX=I OR ICX=3 THEN IF 'EI<:(VB+ 5) THEN EO
50~00 NRX = NRX'+ I
50600 REM
~0700 REM
~0800 VO = 0
50900 VC = 0
51000 VS = 0

6. DERIVE XTAL2 AMPLITUDE

51100 FOR NX -25 TO +24
51200 VI - EO - EI*CoS(PI*NX/25)
51300 GoSUB 13600
51400 VO VO + VO
51500 VC = VC + Vo*CoS(PI*NX/25)
51600 VS = VS + Vo*SIN(PI*NX/25)
~1700 NEXT NX
~1800 VO = VO/50

VB ELSE EO = EI - .5
VB ELSE EO KI*EI+K2

51900 VI = SOR(VC~2+VS~2)/25*FNZM(RL,XL)/FNZM«RL+RO),XL)
52000 REM
52100 REM 7. CLIP ~TAL2 SIGNAL
52200 IF VO-VI<O THEN VL = 0 ELSE VL = VO-VI
52300 PRINT PRINT "XTALI SWING = ",EO-EI," TO ",EO+EI
52400 PRINT "XTAL2 SWING = ",VL," TO ",VO+VI
52500 REM
52600 REM 8 TEST FOR TERMINATION
527QO IF. AIl:HEI-v.l*ln·~. ~C'1 QII NfI'I,=10 TH"", P-ET')PI\!
52800 REM
52900 REM 9. FEED BACK TO XTALI AND REPEAT
53000 EI = VI*B
53100 GOTO 50300

9-54

230659-50

intJ APPLICATION
NOTE

Intel's 87C75PF
Port Expander

Reduces System Size
and Design Time

TERRY KENDALL
MICROCONTROLLER PERIPHERALS

AP-318

September 1988

@ Intel Corporation, 1988 Order Number: 292048·001

9-55

AP-318

INTRODUCTION

What's the driving factor in your embedded control ap­
plication? Board space? Reliability? Power? Design
time? Manufacturing simplicity? Cost?

What if a single component helped you achieve smaller
board size, higher reliability, lower power, faster design
time, simplified manufacturing, and lower cost? Intel's
87C75PF is the first in a family of microcontroller pe­
ripheral port expander products. This application note
will show how the 87C75PF significantly reduces chip
count and greatly simplifies system design. The
87C75PF data sheet has detailed device information.

Intel's early microcontrollers had obvious benefits over
previous alternatives - a high degree of system inte­
gration. The most common microcomputer functions
~ CPU, ROM, RAM, I/O ports, timers/counters, ad­
dress decoding, etc. - were combined onto a single
chip. Upgrades and proliferations have grown signifi­
cantly since those early days. Four-bit and 8-bit con­
trollers are the most widely used, with 16-bit versions,
spearheaded by Intel's 8096 family, beginning their ex­
ponential growth.

The most sought after microcontroller improvement is
additional program memory. 8- and 16-bit controllers
are optionally equipped with 4K or 8K bytes of ROM
or EPROM. This is sufficient memory for about half of
embedded applications.

The remaining applications use off-chip EPROM. One
reason, of course, is to increase system memory; typi­
cally to 16K- or 32K-bytes. Another is to provide flexi­
bility for code that changes frequently. In other appli­
cations, generic boards or multi-use modules can be
manufactured and custom-programmed for special con-

figurations. For example, a single robot control module
can be manufactured. Identical robots can be config­
ured to perform various factory tasks.

8- and 16-bit microcontrollers accommodate external­
memory expansion. Controllers sacrifice two 8-bit I/O
ports to supply address and data lines to peripheral
components. Unfortunately, expanded-memory modes
violate two embedded-control objectives: maximizing
I/O capability and reducing chip count (or board size).
Usually, systems that need more memory are also I/O
intensive. Traditional memory-expansion/port-recov­
ery schemes use multiple chips. Memory, address latch­
es, port latches, transceivers, address decoders, and
glue chips tum a single-chip uC system into a multiple­
chip conglomeration.

THE MULTIPLEXED BUS

To achieve small board size, embedded control systems
require minimum chip count and chips that occupy
small footprints. Embedded controllers use multiplexed
address/data buses to achieve both. An 8051 controller,
for example, shares its lower eight address pins with its
8-bit data.

Every memory access requires two cycles - one for
address, one for data (see Figure I). The controller's
first cycle places a 16-bit address on the bus. It holds
the upper eight bits constant throughout the access. It
presents the low-address byte just long enough for an
external latch to capture it. The latch and controller's
upper bus then supply the 16-bit address to external
devices for the remainder of the memory access. The
controller's data cycle transmits or receives data on its
multiplexed lower address/data pins. The multiplexed
bus minimizes the controller's pin count and the sys­
tem's board traces.

---1+-- DATA CYCLE

ALE

A8-A15

ADO-AD7

ADDRESS VALID

I>------{ DATA IN
-.----~

292048-1

Figure 1. Every microcontroller memory acccess requires two cycles.

9-56

AP·318

WHY A PORT EXPANDER?

Single-chip microcontroller solutions are quickly giving
way to multiple-chip, high-end solutions. Embedded
control applications often require more program mem­
ory than the microcontroller's on-chip memory. Some­
times, code flexibility is needed. The 87C75PF's 32K
byte EPROM dwarfs any microcontroller's on-chip
memory.

In the near future, microcontroller chip-sets - control­
ler and peripheral - will make up most embedded con­
trol applications. The controller will contain features
that must be coupled closely to its CPU. The peripheral
chip will provide memory and I/O functions.

Controller and peripheral-chip costs will be more bal­
anced. The chips will share complexity, which equates
to cost. Two smaller, less complex chips will cost less
than one huge controller chip, resulting in lower total
system cost.

Typically, adding external functions to microcontrol­
lers requires many chips and substantial board space.
Address latches, memory, port recovery, and glue chips
require far more space than a single-chip microcontrol-

ler. System reliability and performance are degraded.
Design and manufacturing are more complicated.

Intel's high-performance 87C75PF Port Expander
doesn't compromise designers' goals to create reliable,
minimum chip systems. Its single chip, no-glue inter­
face simplifies design and manufacturing while increas­
ing performance and reliability - in the smallest possi­
ble board space.

A TYPICAL SYSTEM

Intel's 8051 microcontroller architecture is the most
widely used. Many variations are available with en­
hanced I/O features and various amounts of memory.
Intel's 80C3l is a nOll-ROM, CHMOS version of the
8051. It will help illustrate the 87C75PF's benefits over
typical multiple-chip uC solutions.

Figure 2 shows a typical expanded microcontroller sys­
tem. Whenever memory-mapped devices are connected
to a microcontrolIer, two 8-bit ports lose their I/O
functions to become address and data pins. Figure 2
shows port-reconstruction devices, a 256K-bit
EPROM, and glue chips that make up an embedded
control system. Nineteen chips are required!

,
RSTI

~--P~S~EN~'------C>~----o,rr
PSEN~~~~-----------------,

BOC31
PORT 2 ~==~~[L~

ALE t----'=+--------+

P3.4

P3.5 PORT 0 K===:j]~ill~
P3.6/WR

P3.7/Rii

Figure 2. Many discrete chips provide EPROM and port expansion.

9-57

Pl.D-Pt.?

Pl.0-Pl.?

292048-2

AP-318

SYSTEM PERFORMANCE

Every system component influences performance. Per­
formance encompasses" speed, system noise, and power
consumption. A typical expanded-mode controller ap­
plication uses many chips to increase memory and re­
cover 10st'I/O. Figure 3 shows an improved, but more
expensive, alternative to the system in Figure 2. "Glue"
chips between the controller and peripherals delay ad­
dress signals. To optimize system speed, fast, expensive
glue chips, memory, and peripheral devices are re-
quired. .

Multiple-chip solutions consume significant power and
inject noise into a system. A beefed-up, well regulated
power supply will relieve symptoms; but adds signifi­
cantly to cost, board size, and weight.

THE 87C75PF SOLUTION

Figure 4 shows the same system using the 87C75PF -
a two chip solution!

The 87C75PF furnishes a no-glue interface to 8051-
based systems and all other Intel-architecture embed­
ded controllers. The Port Expander's flexible, user-pro­
grammable memory map and alterable control signals
simplify 8051, 8096, and 80188 connections.

Examples in this application- note show how the
87C75PF works with various microcontrollers. An
805l/87C75PF system that takes advantage of high­
level compiled languages and an in-system programma­
ble example will also be shown.

SYSTEM INTEGRATION

Intuitively we all recognize the benefit of system inte­
gration - chip-count is reduced.

Just as important are:

• small board size with few layers
• increased performance
• decreased design time
• optimized software development
• reduced inventory
• less incoming inspection
• increased system reliability
• simplified manufacturing.

Cost is a prime consideration. The itemized cost of dis­
crete components is only one parameter. Until the ben­
efits listed above are quantified, realistic system costs
can't be determined. Hardware design and software de­
velopment time are significant up-front expenses. Mul­
tiple-chip systems incur substantial inventory, incom- .
ing inspection, testing, manufacturing, board size, and
rework costs.

CONTROL BUS

PORT1

PORT2

80C31

PORTO
PORT3

(f)a::
(f)W
WO
0:::0
00
Ow
«0

A8-A15

(f)
(/):1: Wu
0:::1-
0«
0-1
«

82C55A

292048 -3

Figure 3. A simplified multiple-chip system.

9-58

inter AP-318

80C31

292048-4

Figure 4. A "no-glue", two chip 87C75PF system.

Reliability also has significant value - to you and your
customers. Customers demand products that work
properly - forever. Reworked products waste time and
money, increase the cost of every unit you ship, and
ruin your company's reputation. The best way to in­
crease reliability is to eliminate system components.

Simplified manufacturing saves time and money while
increasing reliability. One factory-tested, integrated­
function chip is much easier to place on a circuit board
and is far more reliable than myriad discrete chips. Ev­
ery solder joint is a possible failure point. A single chip
reduces potential failure points from hundreds to a few.

87C75PF ARCHITECTURE

The 87C75PF Port Expander's features include:

• Two 8-bit I/O ports
• 32K X 8 EPROM
• Two 64K-byte memory planes
• Special Function Registers
• Device-configuration registers
• "No-glue" controller interface
• Low-power, Low-noise CHMOSII-E
• Quick-Pulse Programming™ Algorithm
• In-system programmability
• 40-Pin CERDIP, 44-Lead PLCC packages

Two'Ports

The 87C75PF has two 8-bit bi-directional 1/0 ports.
Port 1 has open-drain outputs and port 2 has quasi-bi­
directional (resistor pull-up) outputs. Each port is indi­
vidually addressable with separate port-latch and port­
pin addresses. Typical of quasi-bi-directional ports,
they are always in output mode but can be used as
inputs by simply writing logic "Is" to their latches.

Relocatable EPROM

The EPROM has 262,144 bits organized as 32K 8-bit
words. Its access time determines the device's speed
rating. The 32K-byte EPROM occupies half of the pro­
gram memory (or EPROM) plane. The EPROM block
can be located in either the lower or upper half of the
EPROM plane to accommodate various microcontrol­
ler architectures.

Dual or Single Memory Planes

8051-family microcOli.trollers have two external memo­
ry planes - program and data. 8096-, 80188-, and
68xx-family microcontrollers have only one programl
data plane. The 87C75PF's user-configurable double­
and single-plane modes work with any 8-bit microcon­
troller architecture.

Relocatable SFRs

The 87C75PF has five special function registers:

• Port 1 latch
• Port 2 latch
• Port 1 Pin
• Port 2 pin
• Plane select.

Port-latch registers allow the microcontroller to change
port-pin output levels. The microcontroller can read
the port latches to recall the last value written. A mi­
crocontroller can determine external pin levels by read­
ing the port-pin locations.

During programming, the plane select register deter­
mines whether the EPROM array or the configuration
registers are being programmed. More special function
register details are dess;ribed later in this application
note.

Device Reconfiguration

Non-volatile (EPROM cell) device-configuration regis­
ters configure the 87C75PF for microcontroller com­
patibility. Programmable configuration registers can:

• relocate the EPROM array in the memory map
• relocate the SFRs in the memory map
• combine the EPROM and SFR planes
• change the reset pin's active polarity
• insert transistor pull-ups'on port pins.

9-59

inter AP-318

In its default configuration', the 87C75PF is compatible
with the 8051 's two-plane architecture. It is easily re­
configured for single-plane 8096 architecture. Remap­
ping the memory planes makes the device compatible
with 80188 and 68xx architectures.

Various microcontrollers have different reset input lev­
els. The 8051 's reset is active-high while the 8096's is
active-low. The 80188 has an active-low reset input and
active-high synchronous reset output. The Port Expan­
der's configurable reset polarity can work with active­
high or active-low microcontrollers.

If the I/O ports are used only as outputs, a "push-pull"
drive is desirable. Port 1 and/or port 2 can be config­
ured to have active pull-up transistors rather than
open-drain or quasi-bi-directional outputs.

"No-glue" Microcontroller Interface

The 87C75PF's internal address latches, address decod­
ers, reconfigurable memory planes, and alterable con­
trol inputs allow no-glue interfacing to any Intel micro­
controller. The 87C75PF makes expanded-mode, two­
chip microcontroller systems a reality.

, Quick·Pulse Programming

Intel's microcontroller, peripheral, and EPROM prod­
ucts employ the industry's fastest, most reliable Quick­
Pulse Pr<?gramming™ algorithm. Optimized Quick­
Pulse Programming equipment can program the
87C75PF in four seconds.

In-circuit Programming

With its integrated features, the 87C75PF is easily pro­
grammed in-system. Built-in address latches, address
decoders, and flexible control inputs enable the sys­
tem's microcontroller to program the Port Expander.
The section "80C51 In-system programming" describes
this technique.

Packaging

For systems requiring periodic reprogramming, proto­
typing, or hermetic packages, the 87C75PF is available
in a 4O-pin ceramic DIP (CERDIP) package. PLCC
packaging is available to further reduce board size and
provide for surface mount and automated manufactur­
ing.

p--- --------~----I

Vee -..;-----f

GND _!-__ -=:::::r,;;.;...-'

AS-AIS PORT 1

ADO-AD7 PORT 2

292048-5

Figure 5. 87C75PF Block Diagram.

9-60

inter AP-318

87C75PF FUNCTIONAL BLOCKS

Figure 5 shows the 87C75PF's block diagram. The de­
vice has three main functional blocks, or memory
planes: EPROM, special function registers, and config­
uration registers.

The block diagram shows device inputs on the left and
outputs on the right. Sixteen address lines enter the
device and their states are latched by ALE. The lower
eight address pins are multiplexed with data. PSEN
(Program-Store ENable) gates the device's EPROM
data. RD gates SFR data. WR/PGM controls SFR
data writes. CE is the master chip enable input. Vpp
(the programming voltage input) is multiplexed with
RST (reset), Vpp is required only during programming.
Asserting RST sets port latches to "Is" during operat­
ing mode.

Port 1 is an 8-bit open-drain port with optional
"CMOS" drive capability. Port 2 has 8 quasi-bi-direc­
tional pins, also with optional "CMOS" drive.

Vpp/RST Vee

CE WR/PGM

A15 PL7

A14 Pl.6

A13 PL5

A12 Pl.4

All P1.3

A1D P1.2

A9 P1.l

AS Pl.D

GND RD
AD7 ALE

AD6 P2.7

AD5 P2.6

AD4 P2.5

AD3 P2.4

AD2 P2.3

ADl P2.2

ADD P2.l

PSEN P2.D

292048-6

Figure 6_ DIP Pinout.

9-61

DEVICE PINOUTS

The 87C75PF is available in two package styles - 40-
pin CERDIP and 44-lead PLCC. Both pinouts are sim­
ilar to Intel's 27210 megabit EPROM. The device's
pinouts are compatible with most programming equip­
ment capable of programming 27210 EPROMs.

Figure 6 shows the CERDIP pinout. The left side has
sequential address and data inputs. The ground pin
(GND) separates lower and upper address lines for bet­
ter noise immunity. Ports are logically placed on the
device's right side. Port 1, which is open-drain, is near
Vee. SIP-pack resistor pull-ups added externally to
port 1 have easy access to Vee.

Figure 7 shows the PLCC pinout. PLCC leads are in
the same sequence as the CERDIP pinout. No-connect
(NC) and don't-use (DU) leads are inserted at strategic
locations. Future enhancements will use these leads for
expanded features. DU leads should be left unconnect­
ed.

>-
I~ Vl

"" ,., -t III
.......

ul~ ": "! II"! 0.. •

:;(:;(:;(It! a.. ~, >u 3: a: a: a: > 0

A12 Pl.4

All PL3

A1D P1.2

A9 P1.l

AS PloD

GND GND

N.C. RD
AD7 ALE

AD6 P2.7

AD5 P2.6

AD4 P2.5

,., N 0 o IZ ::;; 0
N

N ,., -t
0 0 o '" N N N N <C <C <C <C Vl ci 0..

0.. 0.. 0.. 0.. 0..

292048-7

Figure 7_ PLCC Pinout.

intJ AP-318

3 PLANE MEMORY MAP

The S7C75PF' has three memory planes: EPROM,
SFR, and configuration. Two planes, EPROM and
SFR, are available during operating mode. The configu­
ration plane is present under special programming con­
ditions. Figure S shows the three memory planes, con­
ditions when they are present, control signals that ac­
cess them, and memory locations they occupy.

EPROM Plane

The 32K-byte EPROM fills the lower half (OOOOh-
7FFFh default) of the 64K-byte EPROM plane. This
conforms' to S051- and S096-family microcontrollers
that have reset and interrupt addresses in the bottom
half of the memory map. The EPROM array can adapt
to SOISS- and 6Sxx-family microcontrollers by moving
it to high memory (SOOOh-FFFFh). PSEN is the
EPROM arra~operating- and programming-mode
read control. WR/PGM strobes data into the array
only during programming mode.

Vpp = TLL
&:

SFR Plane

Special function registers are located in the SFR plane.
They occupy low-addresses in a relocatable 2K-byte
block (default addresses FSOOh-FFFFh). The 2K SFR
block can ,be placed' on any 2K-byte address boundary
to match microcontroller architecture requirements.
RD and WR/PGM control reads and writes from/to
this plane. '

Configuration Plane

The configuration plane contains non-volatile EPROM
registers that determine the device's configuration. This
plane is available only when high voltages are applied
to special pins. PROM programming equipment can
use this plane to identify the device, read its present
configuration, and program new configurations. Mem­
ory-mapped registers can be programmed to:

Vpp = TTL
OR

P1.0 = 12V &' Vpp=TTL
OR

PI.O = TIL PSR=Xlh &: Vpp= 12.75V PSR = X2h &: Vpp = 12.7SV
FFFFh ,...-----,
F800h I-__ ~"

========= ~

SFR
DEFAULT
LOCATION

--------.- 2K-BYTE
- - - - - - - -- BOUNDARY

FFFFh

EPROM
(DEFAULT'
LOCATION) ,

FFFFh

8000h
7FFFh

NON~
VOLATILE
REGISTERS

INTELIGENT
IDENTIFIER

°i°-1_
h

___ ... r OOOOh L-r-.....,,""'"

'---PGM -_

PSEN----------------------~----------------------~

SFR PLANE EPROM PLANE CONFIGURATION
PLANE

292048-8

Figure 8. The 87C75PF has three internal memory planes - SFR, EPROM, and Configuration.

9-62

AP-318

• move the EPROM array
• move the SFR block
• combine the EPROM and SFR planes
• combine PSEN and RD
• change RST's polarity
• insert pull-up transistors on port output drivers.

Device reconfiguration will be covered further in the
"Architecture compatibility" section.

Plane Select Register

The plane select register (PSR) occupies address F810h
in the SFR plane (Figure 9). This register's value deter­
mines which plane, EPROM or configuration, is in pro­
gramming mode. The following plane is programmed
when Vpp is raised to its programming voltage if PSR
contains:
• xxxxxxOO = programming prohibited
• xxxxxxOI = EPROM plane
• xxxxxx 10 = configuration plane
• xxxxxxll = programming prohibited.

Note that both PSR bits must toggle to change planes.
Spurious programming noise is unlikely to alter both
bits simultaneously. This safeguard prevents erroneous
programming of the wrong plane.

I/O PORTS

The 87C75PF has two 8-bit, bi-directional I/O ports.
Each port has two addresses in the SFR plane - port
latch and port pin. The port latch register drives port
pins; it's the port outpu~ister. Byte-wide data writ­
ten to it is strobed by WR/PGM's rising edge. This
allows individual register bits to be changed without
"glitching" unchanged bits. Port latches can be read to
determine previously stored values. Redundant RAM
locations that contain port values are not required. As­
serting RST sets port latches to "I s".

Each port has a pin register. This input register allows
a microcontroller to monitor pin status. Although a
port latch register rnay drive a port pin to "I", an exter­
nal switch can pull it to "0". A software exclusive-OR
of latch and pin values will discover the switch closure.

Figure 9 shows the 2K-byte SFR block (default loca­
tion shown) containing port addresses. Locations
F800h-F807h are reserved for port latch addresses; the
87C75PF uses only two of these addresses. Locations
F808h-F80Fh are reserved for POFt pin addresses;
again, the 87C75PF uses only two addresses. Each port
latch and port pin register contains eight bits; each cor­
responding to a port pin. Locations F810h-F81Fh are
reserved for SFR registers.

01 =PROGRAM EPROM PLANE
,....----,

x I x x I x x I x 0/11 0/ 1

/ L--...J
10=PROGRAM CONFIGURATION

PLANE

F"F"Bh I F"F"F"F"h

F"F"Oh V F"F"F"7h

f- 1+ + + + + + + -l

Plane
Blah Select F"B17h

~eglster

BOBh Port 1 t;(Pins F"BOF"h

BOOh Port 1 Port 2 -.........
~ Latch Latch F"B07h

", ~
Ip1.7jPt.6jPt.sjP1.41 Pt.31 Pt.21 Pt.t I Pt.D I IPt.7plpt·6plpt.splpt.~t.3~t.2~t.t&t.~

292048-9

Figure 9. The 2K-byte SFR block contains port latch and pin addresses and Plan Select Register.

9-63

inter AP-318

Port 1

Port l's default latch address is F800h; its pin address
is F808h. Its default configuration is open drain. Other
open-drain devices can be "wire-ORed" to port 1 pins.

Pull-up resistors can be added externally to provide
IOH drive.

Port l's outputs can be reconfigured to supply CMOS
drive. Programming the control level register's PIC bit
(CLR.6) inserts active pull-up transistors. This switches
port I pins faster from VOL to V OH and simplifies in­
terfaces to external CMOS devices. Figure 10 shows
port l's block diagram.

Port 2
Port 2 is similar to port 1. Its latch address is F80 I h
and its pin address is F809h. Its default configuration is
quasi-bi-directional. This means that each pin has a
weak pull-up resistor. External pull-up resistors can be
added to increase the port's IOH drive.

READ
PIN

READ
LATCH

INTERNAL
DATA BUS

WRITE TO
LATCH

RESET

CONTROL

P1.x
LATCH

Port 2's outputs can be reconfigured to supply CMOS
drive. Programming the control level register's P2C bit
(CLR.5) inserts active pull-up transistors. Figure 11
shows port 2's block diagram. Note the difference be­
tween port 2's and port I's output stages. In addition to
the weak pull-up resistor, the feedback network senses
the pin's VOH level and switches a stronger pull-up re­
sistor into the circuit. A.v OL level turns the resistor off.
Another addition is the pulsed pull-up. When a port
latch value changes from "0" to "1", the CMOS tran­
sistor is pulsed to quickly supply current to the pin.

ARCHITECTURE COMPATIBILITY

Every microcontroller family has its own architecture.
Each has unique boot-up, interrupt, "and vectoring ad­
dresses. Some support dual external memory planes
while others communicate with only one. External ad­
dressing capacity varies from 64K- to 1M-bytes.

The 8051's control signals and software instructions
manipulate 5 memory planes. Three planes are internal
- on-chip ROM/EPROM, RAM/SFR, and bit-ad-

CLR.6

PIN
OUTPUT

CONTROL

0..
C/I=>
0 1
::IE-'
U-' =>

0..

P1.x
PIN

292048-10

Figure 10. Port 1 is Open-Drain (default) or programmable for active (CMOS) pull-ups.

9-64

inter AP-318

READ
PIN

READ
LATCH

INTERNAL
DATA BUS

WRITE TO
LATCH

RESET

CONTROL

PULSED
PULL-UP.

P2.x
LATCH

CLR.S

PIN
OUTPUT

CONTROL
P2.x
PIN

292048-11

Figure 11. Port 2 is Quasi-bi-dlrectional (default) or programmable for active (CMOS) pull-ups.

dressable registers. Two planes are external - program
(EPROM) and data (RAM) memory. The instruction
type drives internal and external read, write, and bus
signals that select individual planes. An 8051 controller
requires non-volatile boot-up memory, internal or ex-

003B
0033
0028
0023
0018

0013
0008
0003
0000

~ !""OTHER INT. VECTORS '"I""
h

h
PCA

h TF2 Be EXF2

\ h RI &: TI

h
TFI

IEl
h
h TFO

h lEO

h RESET

RESET Be

ternal, at the bottom of its program memory plane. The
87C75PF's two-plane external-memory architecture
(see Figure 12) matches the 8051's architecture.
EPROM defaults to the EPROM plane's low-memory
and SFRs default to the SFR plane's high-memory.

PROGRAM
MEMORY

64K BYTES

FFFFh ,...-____ -,

DATA
MEMORY

64K BYTES

INTERRUPT -j..J VECTORS

OOOOh -r-""""I~

iUi-1 LWR PSEN
292048-12

Figure 12. The 8051's two-plane memory has reset and vector addresses in low program-memory.

9-65

AP-318

8096-family controllers 'are typically used with a single
64K-byte external memory plane (Figure 13). Like the
8051, reset and vector addresses are in low memory.
The 87C75PF has an optional single-plane configura­
tion that complements 8096 architecture. The
EPROM, located in low memory, is combined with the
SFR plane.

Intel's 80188 microprocessor is used primarily in high­
end embedded-control applications. Adding ports and
memory makes the 80188 one of the most powerful
microcontrollers available. The 87C75PF provides
much of this hardware in a single package. The 80188

FFFFh

4000h

2080h

2030h

2020h

201Ch

201Ah

2019h

2018h

2012h

2000h

lFFFh

lFFEh

0100h

OOOOh

EXTERNAL MEMORY
OR I/O

INTERNAL PROGRAM
STORAGE ROM/EPROM

OR
EXTERNAL MEMORY

RESERVED

SECURITY KEY

RESERVED

SELF JUMP OPCODE

RESERVED

CHIP CONFIGURATION BYTE

RESERVED

INTERRUPT VECTORS

PORT 4

PORT 3

EXTERNAL MEMORY
OR I/O

INTERNAL RAM
REGISTER FILE

STACK POINTER
SPECIAL FUNCTION REGISTERS

(WHEN ACCESSED AS DATA MEMORY)

-
RD L-WR

292048-13

Figure 13. The 8096 has a single memory plane.

has a single memory plane. Unlike 8051 and 8096 con­
trollers, its boot-up address is at the top of its 1M-byte
address space (Figure 14). The 87C75PF can be config­
ured for a no-glue 80188 interface.

The 87C75PF's flexibility simplifies hardware interfac­
ing with many other microcontrollers. A 68xx control­
ler, for example, has boot-up vectors at the top of its
64K-byte single-plane memory space. The Port Expan­
der's memory map can be configured, much like that
used by the 80188 (Figure 14), to accommodate 68xx
controllers.

FFFFFh r------.,
RESET ADDRESS

FFFFOh 1------....

OOOOOh '-_____

292048-14

Figure 14. The 80188 boots up at the top of its
,1M-byte address space.

Default Configuration

Ultraviolet light exposure will erase the 87C75PF's
EPROM array and non-volatile configuration registers.
The EPROM, SFRs, and other user-configurable op-
tions' default to: .
• two memory planes - EPROM and SFR
• EPROM at OOOOh-7FFFh
• SFR block at F800h-FFFFh
• reset (RST) active-high
• port 1 open drain
• port 2 quasi-bi-directional.

9-66

inter AP-318

Changing the Reset Polarity

8051-family microcontrollers have active high reset in­
puts. 8096, 68xx, 80188, and special 8051-architecture
controllers have active-low resets. The 80188 also has
an active-high synchronous reset output.

gramming CLR.6, PIC, and/or CLR.5, P2C (see Fig­
ure 15), inserts active pull-up transistors in port output
buffers. These transistors supply higher current and
faster switching than open drain or quasi-bi-directional
outputs.

Moving the EPROM The Port 'Expander's alterable reset input (RST) can
match any microcontroller. When erased, the
87C75PF's RST is active-high. Programming the con­
figuration plane's control level register bit CLR.7
changes RST to active-low (see Figure 15).

Changing Port Output Drive

The 87C75PF's EPROM can be relocated to the upper
half of its 64K-byte memory map. When erased, the
EPROM is correctly positioned in low memory for
8051- and 8096-family controllers. Programining the
configuration plane's EPROM Location bit, ELR.7
(Figure 16), moves the EPROM to high memory for
80188 and 68xx compatibility.

If port 1 and/or port 2 are used only as outputs, it may
be preferable to have CMOS-type output levels. Pro-

r-------- CLR.7 = RESET LEVEL
o = Active-Low
1 = Active-High (Default)

I, CLRo6==c~g:T 1 CMOS DRIVE

1 = Open Drain (Default)

CLR.S = PORT 2 CMOS DRIVE
0= CMOS I 1 = QUQsl-bl-dlrectiono! (Default)

I RESET I Port 1 I Port 2 I -j I -I -I 1 THESE BITS ARE DON'T CARE

L~EL I CMSOS I CMSOS 4 3 2 1 °
CLR I RSTL I PIC I P2C I X I X I X I X 17ffDh

--- --- ---

1 1 1
----1--1 1 ", I I Non-volalile -: '" : a. '''CO ::---_~\:

+ + + + + + + + +

I I I I I
292048-15

Figure 15. The Control Level Register (CLR) determines the reset pin's polarity and CMOS port drive.

9-67

intJ AP-318

Double- and Single-plane
Configurations

The 87C75PF has two operating-mode memory-planes
- EPROM and SFR. These planes share identical
memory addresses. The EPROM plane is selected when
PSEN ~ TTL-low. The SFR plane is selected when
either RD or WR is TTL-low. 8051 microcontrollers
use PSEN, RD, and WR to select two external memory
planes. 8096 controllers have only RD and WR; some
versions have an "INST" output that allows external
circuitry to determine when instructions are being is­
sued. Most other microcontrollers provide read and
write signals that control only one memory plane.

Programming the 87C75PF's overlap bit, OVLP
(ELR.6), converts the device from dual-plane to single­
~e (see Figure 16). When ELR.6 = "0", PSEN and
RD are internally combined. Both memory planes are
active if either is TTL-low.

8051 applications that use code compiled from high­
level languages find this especially useful. Some high­
level languages canlt distinguish between data-plane

and program-plane addresses. For example, look-up ta­
bles stored in the same EPROM as program instruc­
tions require PSEN to be asserted. However, a compiler
interprets look-up table instructions as data fetches. It
assigns code that asserts RD instead of PSEN. A typi­
cal hardwa~olution uses an AND gate to combine
PSEN and RD. This forms one memory plane that is
accessed by either signal. Programming the 87C75PF's
OVLP bit provides this "AND" function.

This bit also permits the SFRs to overlap the EPROM
array. This allows multiple Port Expanders to be used
in single-plane applications. For example, two Port Ex­
panders can be used in an 8096 system (see Figure 22).
Normally, two 87C75PFs' 64K EPROM bytes con­
sume the entire address space leaving no room for'port
addresses or external RAM. When ELR.6 = "0" and
the device's 2K-byte SFR block overlaps its EPROM
array, 2K EPROM bytes are sacrificed to make room
for the SFRs and external RAM. Under these condi­
tions, the 87C75PF remains in a high impedance state
during any access to the 2K-byte SFR-block except for
the five valid SFR addresses (see Figure 9).

I
ELR.7 = EPROM LOCATION

o = HIgh Memory
1 = Low Memory '(Default)

ELR.6 = SFR/EPROM OVERLAP

! o = Overlap
1 = No Overlap (Default)

I LOCATE I Overlap I
THESE B,ITS ARE DON'T CARE ~ I EP:OM I

6 I 5 4 3 2 1 0

ELR I EL I OVLP I X I X I X I X I X I X 17FFEh

--- --- , --- --- ,

rr~1
,

"re'l I I I
!~t"'---

Non-volatile
Reglstor (ELR)

ELR -- .\ ---
"LLL 7FFOh 7FF7h

, ,

+ + + + + + + + + -

:::I,~,I~.ul I I I I I I~~ . Intellgent
0OO7h Wr/flors,

-- --- 292046-16

Figure 16. The EPROM Location, Register determines the EPROM's memory-map location

9-68

AP·318

Moving the SFR Block

The 2K-byte SFR block's default location is F800h­
FFFFh in the SFR plane. This location is fine for 8051
and 8096 applications. However, 80188 and 68xx-fami­
ly controllers have boot-up and vector addresses in this
address range; EPROM should be located here.

The SFR block can be moved to any 2K-byte device­
address boundary. The SFR location register's
(SFRLR) five bits determine the SFR-block's most-sig­
. nificant address bits. When erased, these bits are all
"Is", placing the SFRs at lllllxxx xxxxxxxxb or
F800h-FFFFh. Programming the SFRLR to OIIllxxx,
for example, relocates the SFR-block to 7800h-7FFFh
Gust below the EPROM array when it's at the top of

memory, 8000h-FFFFh). Programming SFRLR to
OOOOOxxx moves the SFRs to the bottom of memory,
OOOOh-07FFh. Figure 17 shows the SFRLR and its bit
definitions.

Programming the Configuratio,n Plane

The 87C75PF data sheet describes detailed program­
ming requirements. PROM programming equipment
makes device reconfiguration easy. Down-loading
EPROM code (from OOOOh to 7FFFh) to the program­
mer is the same as for any 256K PROM device. The
programmer allows editing of CLR, ELR, and SFRLR
codes to reconfigure the device. Once programming
commences, the EPROM array and the configuration
registers are programmed automatically.

I,- Defines SFR --j- THESE BITS ARE 1
2K - byte Boundary DON'T CARE

76543210

SFRLRI A~ -'_ A14 I A13 I A12 I All I X X X 17FFFh

------ ' ------ '

"''' 1 7FFOh 1 1 1 I
f ---1- -""I I' Non-volatile ~ :" : ill ,~" : :~: - - - ~~~ :~.)

+ + + + + + + + + ..
..

II I I I I'''~ 0007h
.. :'I~t~lIg~~t::

. :.: Identifiers ...

292048-17

Figure 17. The SFRLR determines the 2K·byte SFR block's base address.

9-69

inter Ap·318

87C75PF APPLICATIONS

Now that you're familiar with how the Port Expander
is organized and reconfigured, this section highlights
some application examples. You'll see how the
87C75PF connects to 8051, 8096, 80188, and 68xx mi­
crocontrollers. Also shown are more sophisticated ap­
plications that use multiple Port Expanders and one'
that allows the microcon~roller to program its own Port
Expander. All of the applications illustrated show mi­
crocontrollerlPort Expander interfaces, memory maps,
and configuration register (CLR, ELR, SFRLR) val­
ues.

P2.7

Pl.7 P2.6 A14

Pl.6 P2.S A13

Pl.S P2.4 A12

Pl.4 P2.3 All

Pl.3 P2.2 Al0

Pl.2 P2.1 A9

P2.0 A8

PO.7 AD7

PO.6 AD6

80C31 + 87C75PF

8051-family controllers usually operate in two-plane
mode. To use external program memory (EPROML ex­
clusively, the controller's external access pin, EA, is
tied to ground. Port 2 supplies upper addresses, Ag­
A15. Port 0 becomes the multiplexed lower-address/
data bus, AD..JL..AD7' PSEN is the program memory
read strobe. WR and RD (port pins P3.6 and P3.7)
control external RAM and other read/write devices.
RST is active-high on most 80S1-family microcontrol­
lers. Some special-purpose '51-based controllers have
active-low resets.

Figure 18 shows a typical 80C31 + 87C75PF no-glue
application. The 87C75PF's EPROM, SFR, and con­
trol-signal default-settings are already configured. Pro­
gramming the large XX place holders shown in the
CLR register enables CMOS port drive .

...... ---.., ffffh,·-::S~fR::-s-..,
f800h 1-""';;;';';';;;""-1

8000h

80C31 po.s ADS 87C75PF

PO.4 AD4

PO.3 AD3

PO.2 AD2

PO.l ADI

PO.O ADO

P3.S ALE

P3.6jWR

P3.7/RO

.: EPROM
(default) :

L...;, _____ OOOOh L... ___

EPROM
PLANE

CLR = 1 XXxxxxxb
ELR = 11 xxxxxxb
SFRLR = 11111xxxb

SFR
PLANE

292048-18

Figure 18. The ~7C75PF's no-glue interface takes advantage of the 80C31's two-plane memory map.'

9-70

intJ AP-318

80C31 + Two 87C75PFs

High-end applications, such as telecommunications, re­
quire sizable program memories and numerous I/O
ports. Many of these applications use 80S I-family mi­
crocontroIIers. Two 87C7SPF Port Expanders supply
added I/O while furnishing EPROM - without using
"glue" devices!

Figure 19 shows two Port Expanders in an 80C31 sys­
tem. Port Expander 1 's EPROM is in its default low­
memory location (OOOOh-7FFFh). Its SFR block is
moved to FOOOh, out of Port Expander 2's SFR range
(F800h). Port Expander 2's EPROM is moved to high­
memory (8000h-FFFFh). Each device's configuration
register values are shown below the memory map. This
configuration provides 16 additional I/O pins, 64K
EPROM bytes, and leaves 60K for RAM and other
memory-mapped devices .

..... ---.., FFFFh SFR 2

~~gg~ SFR 1

EPROM

o

I----oool 8000h

EPROM

CD

L-___ .J OOOOh L-___ .J

EPROM
PLANE

SFR
PLANE

CLR2 = 1XXxxxxxb
ELR2 = 01 xxxxxxb
SFRLR2 = 11111xxxb

CLR1 = 1XXxxxxxb
ELR1 = 11xxxxxxb
SFRLR1 = 11110xxxb

292048-19

Figure 19. Two 87C75PFs provide 16 1/0 pins, 64K EPROM bytes, and room for 6DK of RAM.

9-71

inter AP-318

High-level Language 80C31 +
87C75PF

The 80S l's two-plane flexibility challenges hardware
and software engineers' creativity. Its two planes logi­
cally separate program and data planes to create l28K­
bytes of memory in a 64K address space. However,
many applications have' look-up tables in non-volatile
memory, usually in the same EPROM that contains
program code. Unique assembly-language instructions
drive hardware signals, PSEN, RD, and WR, to deter­
mine which plane is active.

Some compiled, high-level programming languages,
however, have a hard time dealing with two-plane
memories. They can't determine which 8051 instruc­
tion to use when look-up tables occupy the program
~e. They usually assign an instruction that activates
RD, rather than PSEN.

1

P2.7

P1.7 P2.6 A14

P2.S A13

P2.4 A12

P2.3 All

P2.2 Al0

P2.1 A9

P2.0 AS

PO.7 AD7

PO.6 AD6
80C31 PO.S ADS

PO.4 ~ AD4

PO.3 AD3

PO.2 AD2

PO.l

PO.O

P3.S ALE

P3.6/WR

P3.7/RO

The typical solution forces the system to o~te in sin­
gle-plane mode by combining PSEN and RD with an
AND gate. If either signal is TTL-low, the AND gate's
output drives a common external-memory read signal.
A compiler can now assign its typical "read from data
memory" instruction.

The Port Expander has this "AND" function built in.
Programming the configuration plane~verlap bit,
ELR.6" internally combines PSEN and RD; if either is
at TTL-low EPROM or SFR data, depending on the
address, is read. Figure 20 shows a typical high-level­
language application.

Programming this bit also allows the SFR-block to
overlap the EPROM in single-plane applications. If,
and only if, these blocks overlap, 2K EPROM bytes are
sacrificed to make room for the SFR block. The "8096
+ two 87C7SPFs" section illustrates this.

87C75PF

·.srRs

- -
--
- -
--
--
--
--
--
--
--
--
--;-
- -
- -

EPROM
(default)

rrrrh
raOOh

aOOOh

..... ___ -'" OOOOh

Tr-ir-l-'>',- PSENi EPROM/
SFR

PLANE
\. L-t>==~'-- Riii CLR = 1 XXxxxxxb

ELR = 10xxxxxxb
SFRLR = 11111xxxb 292048-20

Figure 20. Programming ELR.6 combines PSEN and RD to form a single memory plane.

9-72

intJ AP-318

8096 + 87C75PF

8096-family 16-bit microcontrollers can also operate in
8-bit mode. These high performance controllers man­
age applications that are 1/0 intensive and, as a result,
require large EPROM arrays. The 87C7SPF expands
the I/O 'Yhile providing the EPROM.

The 8096 accesses a 64K-byte single-plane memory. Its
memory map is similar to the 80SI's. External EPROM
is required at its low-memory boot-up location (2080h).
The 87C7SPF's EPROM and SFRs are appropriately
located.

PD.7

PO.6

HSll

HSOS/HSI3

HS04/HSI2

P4.7 AIS

P4.6 A14

P4.S A13

P4.4 A12

80C196 P4.3 A11

80968H P4.2 Al0
8098

a-BIT MODE
P4.1 A9

P4.0 AS

P3.7 AD7

P3.6 ADS

P3.S ADS

P3.4 AD.

P3.3 AD3

P3.2 AD2

P3.1 ADI

P3.D ADO

ALE

INST

iffi
ViR

CLKOUT iiHE

ANGND vss vss EA

The 8096's reset input (RES) is active-low. Program­
ming the Port Expander's reset level configuration bit,
RSTL (CLR.7), makes RST's polarity active-low.

The 87C7SPF is converted to single-plane mode by ei­
ther tying PSEN and RD to the 8096's RD pin or by
programming ELR.6, the overlap bit. If the latter op­
tion is chosen, the unused input, PSEN or RD, should
be tied to Vee. Figure 21 shows a "no-glue" 8096 +
87C75PF application.

rrrfh SFRs faOOh

- -
- -
--
- -
--
- -
--
- -
- -
--
- -
--
--
--BOOOh

EPROM
(default)

87C75Pf

OOOOh

EPROM/
SFR

PLANE
GND 292048-22

CLR = OXXxxxxxb
ELR = 1o/,xxxxxxb
SFRLR = 11111xxxb

292048-21

Figure 21. The 87C75PF is also the no-glue Port Expander for 8096 systems.

9-73

AP-318

8096 + Two 87C75PFs

Single-plane 8096 applications can use two Port Expan­
ders. Figure 22 shows this no-glue, three-chip system.

Port Expander I has its EPROM in default low-memo­
ry. Its SFR block is mapped over its EPROM; location
7800h is arbitrarily chosen. Programming Ollllxxxb
into SFRLR moves the SFR block. Programming
ELR.6 (to "0") overlaps the EPROM and SFR planes;
one plane is formed. This bit also tells the Port Expan­
der that its SFRs are intentionally mapped over its

, EPROM. The device sacrifices 2K EPROM bytes to
make room for the SFR block. Any ac\!ess to this 2K-

CLKOUT

80C196
8096BH

8098
8-BIT MODE

ANGND vss vss EA

byte block, except v~id port and PSR addresses, places
the external data bus in a high impedance state. Exter­
nal RAM can occupy the 2K-byte space.

Port Expander 2 is also reconfigured. Its EPROM is
moved to high-memory by programming ELR.7. Its
SFR block must overlap its EPROM array; 8000h is
arbitrarily chosen. Port Expander 2's overlap bit,
ELR.6, is programmed to form a single plane and to
tell the device that its SFRs are intentionally mapped
over its EPROM, like Port Expander 1. This configura­
tion supplies four additional 8-bit ports, 60K EPROM
bytes, and sti11leaves 4K bytes free for RAM.

292048-23

BBOOh

BDOOh

7800h

0000"

EPROM

CD

SFR 2

SF'R 1

. EPROM

CD

EPROM/
SFR

PLANE
292048-24

CLR2 = OXXxxxxxb
ELR2 = OOxxxxxxb
SFRLR2 = 10000xxxb

CLR1 = OXXxxxxxb
ELR1 = 10xxxxxxb
SFRLR1 = 01111xxxb

Figure 22: Two 87C75PFs add 161/0 pins, 60K EPROM bytes, and leave room for 4K of RAM.

9-74

AP-318

80C188 + 87C75PF

The 80CI88 found its niche in high-end embedded con­
trol applications. This CPU, when combined with
RAM and the Port Expander, becomes a powerful em­
bedded controller. Its 1M-byte address range accom­
modates several Port Expanders and large amounts of
RAM. Although the 80CI88 has two planes, memory
and I/O, the Port Expander works best in the memory
plane. Pigure 23 shows a simple 80CI88 + 87C75PP
system.

The 80CI88 boots up at address PPPPOh. The
87C75PP's EPROM array is moved to its high memory
(8000h-PPPPh) by programming ELR.7. The SPR
block must be moved to lower memory outside of

OCS3

"CS2
t.4CSI

"CSO

PCS4

PCS3

PCS2

pes!
peso
Tt.4R OUT I

+-- Tt.cROUTO

TI.4R IN 1

TMR IN 0

ORQI

OROO

S7

S2

so
LOCK

HlOA

CLKOUT

usc

ill RESET

80C188

CE
'15

AI.
A13

A12

A11

AlO

AS

A8

A07

ADS

ADS

AD.

A03

AD2

A01

ADO

ALE

EPROM-block addresses, (P7800h is shown). Pro-ram­
ming the over1~it, ELR.6, or tying PSEN and RD to
the 80CI88's RD combines the EPROM and SPR
planes. The processor's UCS, connected to the
87C75PP's CE, selects the Port Expander in the upper
address range. The 80CI88's reset input, RES, is active
low. Programming the 87C75PP's RSTL bit, CLR.7,
converts RST to active-low. the 80Cl88 also has an
active-high synchronous reset output. This output can
be connected to the 87C75PP's RST without reconfig­
uring RST's polarity.

80Cl88 systems usually have larger RAM arrays than
typical microcontroller applications. Pigure 23 shows
the simple RAM interface. The RAM does not contain
its own address latches, so an 8-bit latch must be used
to capture addresses Ao-A7.

Vpp/ Vee
RST

87C75PF

FFFFFh ,.....----

EPROM

FBOOOh I--"'SF"'.,--l
F780ah I-~=-I

--
--
--
--

PSEN

iffi
WR/PGt;i

LCS
CE
A15

A14

All

A12

A11

AlO

AS

A8

A7

A6

AS

A.

A3

A2

Al

AD

Vee

SRAM

--
"-­
--
--
--
--
--
--
--

FOOOOh I----l
,.~ ,.~

292048-26

"EPROM
SFR

PLANE

CLR = o/iXXxxxxxb
ELR = OOAxxxxxxb
SFRLR = 01111xxxb

LATCH

292048-25

Figure 23. The Port Expander and SRAM make the 80C188 a powerful embedded controller.

9-75"

AP-318

68xx + 87C75PF

The microcomputer industry's peripheral- and memo­
ry-interface standard dictates chip-enable, output-en­
able, and write-enable polarities. All' are active-low.
The 87C75PF conforms to .this industry standard.

Like Intel controllers, 68xx-family microcontrollers use
multiplexed address/data pins. However, they differ in
two significant ways. First, 68xx controllers have high­
memory reset- and interrupt-vector addresses. Address

P9.7 AIS

P9.6 A14

P9.S A13

P9.4 A12

P9.3 All

P9.2 Al0
68xx P9.1 A9

P9.0 AS

PC.7 AD7

PC.6 ADS

PC.S ADS

PC.4 AD4

PC.3 AD3

PC.2 AD2

PC.l ADI

CE

A15 is logic-high during vector accesses. Second, read
and write controls are functions of R/W and E (clock
output). Combinational logic must convert R/W and E
to industry-standard RD and WR signals.

The 87C75PF's memory map can be reconfigured and
its two memory planes combined to simplify 68xx inter­
faces. Its RST polarity can match a 68xx's active-low
reset. All that's required to complete the interface is to
condition R/W and E to RD and WR. Figure 24 shows
a 68xx + 87C75PF system and its memory map.

Vppl
RST

87C75PF

292048-27

FFFFh

EPROM "

8DOOh
SFRs

7800h
- -
--
--
--
--
--
--
--
- -
- -
- -
--
--
--

OOOOh I I
EPROM/

SFR
PLANE
292048-28

CLR = OXXxxxxxb
ELR = Oo/1xxxxxxb
SFRLR = 01111xxxb ,

Figure 24. One NAND-gate package interfaces the 87C75PF to 68xx controllers.

9-76

inter AP-318

PROGRAMMING

EPROM and Configuration Registers

PROM programming equipment makes the 87C75PF
as easy to program as EPROM-version microcontrol­
lers and standard EPROMs. Optimized programming
equipment that utilizes the Quick-Pulse Program­
mingTM algorithm can program the 87C75PF in less
than four seconds.

Data I/O's model 29B (version Y06), with Unipak-2B
module (version 16, family/pin code = 112/107) and
87C75PF cartridge, supports the 87C75PF. It has a
straightforward programming procedure. Assembled
code is transferred to programmer RAM addresses
OOOOh-7FFFh. Configuration registers (CLR = 7FFDh,
ELR = 7FFEh, and SFRLR = 7FFFh) are loaded into
programmer RAM addresses 8oo0H, 8oolh, and
8002h. Configuration register contents can be entered
manually using the programmer's edit command.

RESET

4 +12V
+5V L
~+12V Vpp

+5V

PGMON Vee ~
ALEc

rOl y r ALEp ALEXh

With EPROM and configuration register contents
loaded, the programmer automatically programs the
EPROM array and non-volatile registers. The pro­
grammer can also read a programmed master device's
EPROM array and configuration registers and pro­
gram duplicates without further editing. Contact Data
I/O or your programmer vendor for further details.

80C51 In-system Programming

Factory programmed and field updated applications
use in-system and board-programming techniques.
Board programming equipment supplies voltages, ad­
dresses, data, and pertinent control signals to the
board's edge-card connector.

In-system programming, on the other hand, allows a
resident ROM- or EPROM-type microcontroller to
program the system's off-chip non-volatile memory. A
small amount of the microcontroller's ROM or
EPROM contains code that controls its serial commu­
nications channel and knows how to program external
EPROM.

FFFFh SFRs
FBOOh

- --r - --
- --
- --
- --
- --
- --
- --
- --chl ALE --~ ALE I 2 RST Vee Vee Vppl - --

XTAL RST - --
Pl.7 P2.7 A15 Pl.7

~ ---
P1.6 P2.6 A14 P1.6 - --
Pl.5 P2.5 A13 P1.5 I+- BOOOh - --
P1.4 P2.4 A12 P1.4 I+- - --
Pl.3 P2.3 All Pl.3

~ - --
P1.2 P2.2 Al0 P1.2 - --
Pl.l P2.1 A9 Pl.l I+- - --
Pl.0 P2.0 AB P1.0 I+- - --

PO.7 A07 - --
EA 80C51 PO.6 AD6

- - -
. 87C51

PO.5 ADS 87C75PF EPROM - --
RxD (default) - --

P3.0 PO.4 AD4
TxD I+-

- --
P3.1 PO.3 AD3 P2.7 --EACONT -
P3.2 PO.2 AD2 P2.6

~ - --
P3.3 PO.l ADI P2.5 - - -ALECONT
P3.4 PO.O ADO P2.4 I+- - --PGMON
P3.5 ALE ALE P2.3 I+- - --
P3.6!WR PSEN PSEN P2.2

~
- --

P3.7/Rii r---' Rii P2.1 ODODh

Vss Wii/PGM GND P2.0 I+- EPROM SFR

V V
PLANE PLANE

292048-30
CLR = 1XXxxxxxb
ELR = 11xXxxxxb

292048-29 SFRLR = 11111xxxb
NOTE: Port 0 requires pull-ups when used as an 1/0 port.

Figure 25. A simple circuit allows the microcontroller to program the 87C75PF in-system.

9-77

inter AP-318

Multiple-application modules can be customized using
in-system programming. For'example, a generic control.
module can be built, installed in a variety of end prod­
ucts, and customized for different tasks at the end of
the production sequence.

Figure 25 shows a simple 80C51-based in-system-pro­
grammable module. The microcontroller's on-chip
ROM or EPROM contains the communication and
programming algorithms. Port pins P3.0 and P3.1 pro­
vide the serial communication link. P3.2 (EACONT)
controls the EA pin. When high (which occurs at reset
or when "I" is written to it), internal program memory
supplies code. When low, external EPROM supplies
code. P3.4 (ALECONT) controls the ALE latching sig­
nal during programming. P3.5 (PGMON) controls pro­
gramming and operating-mode Vpp and Vee voltages.
P3.6, which is the WR signal during normal operation,
serves as th~ogram pulse strobe, PGM, during pro­
gramming. RD, P3.7, or PSEN can be used to verify
programmed data whenever Vpp is at its programming
voltage.

Figure 26 shows the program and latch control circuit.
5 volt and 12 volt supplies are connected to this circuit
at all times. Inverter 74'06a allows 12 volts to pass into
the DC/DC converter and the LM317 voltage regula­
tors only when system power is on. PGMON is high
after reset or when P3.5 contains a "I." PGMON con­
trols inverter 74'06b which turns Vpp on or off. Invert­
er 74'06c keeps V cc at 5 volts until programming com­
mences. When PGMON goes low, these inverters turn
off allowing V pp and Vee voltages to attain their pro­
gramming levels. The variable resistors adjust Vpp and
Vee read- and program-voltages. Vee read voltage is
5.0V and its program voltage is 6.25V. Vpp read volt­
age is off, so it doesn't interfere with the 87C75PF's
reset, and its program voltage is 12.75V.

PGMON also controls the ALE circuit.' When
PGMON is high, the microcontroller's ALE value
passes to the 87C75PF's ALE pin. When PGMON is
low, the microcontroller's ALECONT controls ALE.

p----------------------------------.
+12V .-.... --.-....

DC/DC
IN OUT

CONV.

Vex:, READ
ADJUST

I-~,..-._~,..-. __ • Vpp TO EPROM

220

0.1 p.F

READ MODE = OFF
PROGRAM = 12.7SV

......... - --......... --9 GND

PGMON tr---I-----........ -I.c;:>o-~f lK

i..-__ ...-":::::"'-....

ALECONT .--------+-------1

ALEp .---------------1

1--4 --4 --e Vee TO EPROM
READ MODE = S.OV
PROGRAM = 6.2SV

10----' ALEx

----------------------------------. 292048-31

Figure 26. A mic~ocontroller can use this circuit to control programming voltages and ALE.

9-78

AP-318

The microcontroller's ADO-7 and AS-15 (ports 0 and
2) connect to the 87C75PF's ADo-7 and AS-15 pins.
The controller's program-memory read signal, PSEN,
controls the 87C75PF's output-enable, PSEN.

During programming, the controller brings EACONT
high and PGMON low. This allows it to operate from
internal code, enables programming voltages on the
87C75PF's Vpp and Vee pins, and switches ALE con­
trol from the controller's ALE to its ALECONT. It
then inputs data over its serial channel. With ALE­
CONT high, an address is placed' on ports 0 and 2.
When ALECONT is brought low, the 87C75PF inter­
nally latches the address. Data read from the serial port
is written to port O. Port 0 must have pull-up resistors
when used in its I/O port mode. The Port Expander
now has both address and data information. The con­
troller needs only to bring its WR pin low to program
data into the addressed location.

The in-system programming sequence is summarized
below.

I) Set EACONT="I". Code is now supplied from the
controller's internal program memory.

2) Assert PGMON. This switches Vpp and Vee to
their program voltages and allows the controller to
manually control ALE via ALECONT. ALECONT
and WR are high.

3) Down-load address and data information via Port
3's serial channel. Ports 0 and 2 serve as I/O ports,
so place the 16-bit address on them. Bring ALE­
CONT low to latch the address into the 87C75PF.

4) Write data information to port O.

5) Bring WR low to program data into the 87C75PF.
See the 87C75PF data sheet for the programming
algorithm and timing requirements.

6) Verify the programmed data. When the 87C75PF's
Vpp is at 12.75V, its PSEN and RD pins are inter­
nally combined. The "MOVC A,@A+ DPTR" in­
struction uses the PSEN pin to read EPROM data
(or the "MOVX A,@DPTR" instruction uses the
RD pin).

7) Repeat this sequence until all EPROM data is pro­
grammed and verified.

8) When programming is complete, de-assert PGMON
and ALECONT. When EACONT="O", code exe­
cution commences from the 87C75PF. Code dupli­
cation at identical internal and external memory lo­
cations allows uninterrupted paging between these
two memory spaces.

When 6.25V is applied to the 87C75PF's Vee during
programming, its port outputs, when "I", will be close
to 6.25V. Careful system design should ensure that mi­
crocontroller and other device inputs can handle this
elevated voltage. Writing "Os" to all port pins before
Vee receives 6.25V will prevent damage to external
devices.

SUMMARY

System demands push single-chip microcontroller de­
signs to their limits. Complex applications are I/O in­
tensive and use lots of EPROM. Traditional solutions
use discrete chips - EPROM, address latches, address
decoders, I/O port chips, and "glue" logic - to get
more memory and expand, or recover, I/O.

Intel's 87C75PF Port Expander puts port functions,
EPROM, and "glue" into a single package. Chip count
and board size are dramatically reduced. System per­
formance is optimized. Reliability is assured. Design
time is shortened. Manufacturing is simplified. Device
inventory is reduced.

Miniaturized system designs that weren't possible be­
fore, can now come to life, thanks to the 87C75PF.

9-79

inter APPLICATION
NOTE

AP-315

July.1988

Latched EPROMs Simplify
MicrocQntrolier Designs

@ Intel Corporation. 1988

TERRY KENDALL
MICROCONTROLLER PERIPHERALS

. Order Number: 292045·001
9·80

inter AP-315

INTRODUCTION

Board Space. Simplified design. Reliability. Manufac­
turability. Performance. Cost. Designers balance these
requirements in every project, especially in microcon­
troller applications.

This application note will show how Intel's latched
EPROMs minimize board space ~nd cost, simplify de­
sign and manufacturing, and increase performance and
reliability in microcontroller systems.

A few years ago an embedded control system consisted
of many discrete components. A general purpose mi­
croprocessor was combined with memories, timers,
counters, I/O expanders, address decoders, latches, and
assorted glue chips to make a basic control system.
Then came the microcontroller. These functions, and
many more, are now combined into a single chip.

Today, engineers are stretching the limits of microcon­
troller features. Controller manufacturers are stuffing
as many functions and as much memory as die and
package can accommodate. Microcontrollers typically
have EPROM (or ROM) densities of 4K or 8K bytes;
some advanced controllers even have 16K. Still, more is
required.

Microcontroller applications are now moving back to
multiple chip solutions. 32K-byte EPROMs are com­
mon in many medium and high-end systems. It is not

~ADDRESS CYCLE

ALE \

A8-A15)(

ADO-AD7)(ADDRESS VALID

\

practical to put this much memory on the microcon­
troller die; chip price becomes prohibitive. Most con­
trollers have an expansion mode that allows external
memory to be added.

Higher density is not the only reason to go "off-chip"
for memory. Many systems are designed to be generic
modules. For example, one engine control module can
be designed for an entire line of car models. During a
final manufacturing step the module can be custom
programmed for any particular vehicle. ROM-version
controllers don't lend themselves to this application.
EPROM memory allows any application to be custom­
ized - at any step in the manufacturing process.

But, using off-chip memory shouldn't detract from the
designer's goal to achieve a minimum-chip system.
Latched EPROMs provide microcontroller memory ex­
pansion without adding "glue" chips.

THE MULTIPLEXED BUS

To achieve small board space, embedded control sys­
tems require not only minimum chip count but chips
that occupy small footprints. Embedded controllers
achieve this by using multiplexed address/data buses.
An 8051 controller, for example, shares its lower eight
address pins with its 8-bit data.

EV,ery memory access requires two cycles - one for
address, one for data (see Figure 1). The controller

DATA CYCLE

/

i--
ADDRESS VALID)(

~

""'-mm DATA IN
~

292045-1

Figure 1. Every microcontroller memory access requires two cycles.

9-81

AP·315

places a 16-bit address on the bus during the first cycle.
It holds the upper eight bits constant throughout the
access. It presents the lower address byte just long
enough for an external latch to capture it. The latch
and controller's upper bus supply the address to exter­
nal devices for the remainder of the memory access.
The controller uses its multiplexed lower address/data
pins to transmit or receive data during the data cycle.
As well as minimizing the controller's pin count, the
multiplexed bus requires fewer board traces.

Before latched EPROMs, adding external memory to
microcontrollers consumed excess board space. Ad­
dress latches plus EPROM required more space than
the controller itself. The address latch consumes signifi­
cant board space and system power, degrades system
reliability and EPROM performance, and complicates
design and manufacturing.

Intel's high-performance latched EPROMs don't com­
promise designers' goals to produce minimum chip sys­
tems. The address latching function is built into the
EPROM chip. The no-glue controller-EPROM inter­
face simplifies design and manufacturing while increas­
ing performance and reliability - in the smallest possi­
ble board space.

A8-A15

MICROCONTROLLER MEMORY
INTERFACE

A typical microcontroller/memory interface is shown
in Figure 2. Eight-bit controllers require at least one 8-
bit address latch; Sixteen-bit controllers require two. In
an 8-bit system, the controller's A8-IS address pins are
connected directly to the EPROM's upper address pins.
Address/data pins ADO-7 are connected to the
EPROM's DO-7 data pins and to the address latch's
inputs. The latch's outputs drive the EPROM's AO-7
address inputs. The controller's address-latch-enable,
ALE, controls the latch. Figure 2a shows this memory
interface.

Figure 2b shows a simplified system that uses a latched
EPROM. All of the controller's bus signals connect di­
rectly to the latched EPROM. It's easy to see that de­
sign time (and manufacturing) are simplified. Perform­
ance is improved because latch propagation delay is
non-existent. System reliability is assured - one facto­
ry-tested, integrated memory device is inherently more
reliable than several discrete components.

ALE:t-....,..----t

"c
A7 Standard . l EPROM

AD

L--OO-_O- 7----I r
L----.::.:....::.:...---Ioo

Riil----------+l. OE

292045-2
a) A minimum·chip system using a standard EPROM.

RiiI----+lOE

292045-3
b) A latched EPROM simplifies the system.

Figure 2. Typical microcontroller/memory systems are improved with latched EPROMs.

9-82

inter AP-315

Discrete latch chips, like the 74HCT573, have large
output drivers. This allows them to drive many devices
on a system's address bus. Unfortunately, large output
drivers consume considerable power. Typical micro­
controller applications are minimum-chip systems. Dis­
crete address latches unnecessarily waste system power
with their large drive capability. Intel's latched
EPROMs use very little power because their built-in
latches drive only internal address lines. Integrated ad­
dress latches allow "no-glue" interfacing to 8-bit and
l6-bit microcontrollers.

SYSTEM INTEGRITY

An address latch and associated board traces require
about .75 inches2. This doesn't sound like much, but
compared to the EPROM's 1.2 in2 and the controller's
1.5 in2 it amounts to 22% of a system's board space.

Not only does a latched EPROM produce a more "ele­
gant" design, but system reliability is improved. Every

<.:>
z
':i
;::

"" ~
o
~
o
"" '-'
':i

ALE

AB-A15

ADO-AD7

I--- ADDRESS CYCLE

"-

)

) ADDRESS VALID

,

board component is subject to failure. A discrete latch
requires twenty additional PC-board solder joints -
each a potential failure point. Failures decrease as part
count (elimination of latches) goes down.

Every board trace and component node is a source (or
receptor) of system noise. Noise can degrade perform­
ance and compromise data integrity. EPROM perform­
ance requires rock-steady address inputs. When
EPROM output buffers turn on, address input buffers
are affected. A small ground reference fluctuation
changes the threshold voltage of input buffer transis­
tors. This can effectively change the EPROM's address
in mid-access; data integrity is compromised.

Latched EPROMs are virtually immune to ground-ref­
erence shifts. Current surge caused by switching output
buffers may affect the EPROM's address inputs, but
the internally latched address remains steady; noise
isn't transferred to address decoders. Access time and
data integrity are optimized.

DATA CYCLE

f

j

'--y-ADDRESS VALID --
DATA IN ~

I-tOE -
tLatch
Delay J tACC I -tOF--

tOecoder Delay tCE

...... , rLatch &: tOe coder are 0 I
i\." \ \ \ for Latched EPROMs jlff \ \ \

<.:>
z cr ':i
;::
::Ii -~ LATCHED ADDRESS VALID

0

'" "- AO-A7 '" 0 - -
"" "" 0

)(DATA PINS SEE VALID ADDRESS DATA OUT ~
z
;! 00-07
C/)

292045-4

Figure 3. Propagation delays can be significant when standard EPROMs are used in uC systems.
Latched EPROMs eliminate these delays.

9-83

inter AP-315

SYSTEM PERFORMANCE

Latched EPROMs improve system performance. Dis­
crete latches have inherent propagation delays. In a
pure CMOS system, this delay is significant; a
74HCT373 latch delay is 45ns at automotive and mili­
tary temperatures. A 16MHz 80C31 microcontr~ller,
for example, provides 207ns for EPROM access time.
A 45ns latch delay degrades this access time to 162ns.
An EPROM rated at 160ns or faster must be used.
Figure 3 shows the timing delays inherent in discrete
component solutions.

If a latched EPROM is used, no external latch delay
occurs. A 200ns latched EPROM can be used. Access
time parameters include internal latch propagation de­
lays. Slower, less expensive latched EPROMs do the
same job as fast EPROMs and discrete latches.

ARCHITECTURE COMPATIBILITY

Intel's latched EPROMs have separate address and
data pins. All address inputs contain latches. This sim­
plifies 16-bit microcontroller interfacing. Pin layout is
virtually identical to standard EPROMs. Upgrade­
compatible circuit board designs are simplified. In 8-bit
multiplexed address/data systems, EPROM pins AO-7
are connected directly to corresponding DO-7 pins. In
16-bit multiplexed systems, low-byte EPROM data pins
DO-7 are connected to address lines AO-7 while high­
byte EPROM data pins DO-7 are connected to address
lines AS-IS. See Figures 7 and 9 for typical 8-bit and
16-bit system examples.

THE LATCHED EPROM FAMILY

Intel's growing family of latched EPROMs includes the
87C64, 87C257, and 68C257. Ceramic DIP and PLCC
package pinouts are shown in Figures 4 and 5. This
application note shows how latched EPROMs simplify
microcontroller system designs.

//
87C64

~~ 87C257

/ 68C257

"" \....,/
Vpp ALE/Vpp ALE/Vpp [1 28 J Vcc Vee Vee

A12 ,1.12 A12 [2 27 J A14 A14 PGM

A7 A7 A7 [3 26 J A13 A13 N.C.

A6 A6 A6 [4 25 P A8 A8 A8

A5 A5 A5 [5 24 P A9 A9 A9

A4 A4 A4 [6. 23 P All All All

A3 A3 A3 [7 22 P OE OE OE

A2 A2 A2 [8 21 P Al0 Al0 Al0

AI AI AI [9 20 P CE CE ALE/CE

AO AO AO [10 19 P 07 07 07

00 00 00 [11 18 P 06 06 06

01 01 01 [12 17 P 05 05 05

02 02 02 [13 16 P 04 04 04

GND GND GND [14 15 P 03 03 03

292045-5

Figure 4_ 28-pin ceramic DIP latched-EPROM pinouj:s

9-84

intJ AP-315

87C64 A7 A12 Vpp DU vee PGM NC

87C257 A7 A12 ALE/
Vpp DU vee A14 A13

68C257 A7 A12 ALE/
Vpp DU vee A14 A13

nnnnnnn
4 3 2 1 32 31 30

A6 A6 A6 E 5 0 29 J A8 A8 A8

A5 A5 A5 6 28 0 A9 A9 A9

A4 A4 A4 [7 27 0 A11 A11 A11

A3 A3 A3 [8 26 0 NC NC NC

A2 A2 A2 [9 25 0 OE OE OE

A1 A1 A1 [10 24 J A10 A10 A10

AD AD AD [11 23

:5
CE CE ALE/

CE

NC NC NC [12 22 07 07 07

00 00 00 [13 21 0 06 06 06

14 15 16 17 18 19 20

UUUUUUU
01 02 GND DU 03 04 05

01 02 GND DU 03 04 05

01 02 GND DU 03 04 05

292045-6

Figure 5. 32-Lead PLCC latched-EPROM pinouts.

9-85

intJ AP·315

87C64

The 87C64 is a 64K-bit EPROM organized as '81928-
bit words. Integrated address latches make the 87C64
EPROM unique. This device is functionally identical to
two 74HCT573 latches and a 27C64 EPROM (see Fig­
ure 6). However, with latches included, the 87C64 con­
serves:

• chip count

• system performance

• board space

• power consumption

• system cost

• inventory

• design time

• incoming inspection

All
AIO

A9
A8

ALE/CE

Ai
A6
AS
A4
A3
A2
AI
AO

87C64
Vpp +5V

+5V

Vee PGM vPP Vee

:I:
u

N.C. ~3
13", AI2

~~ All

<> AIO
c(A9

G
A8

CE 27C64
EPROM

G

In discrete component solutions, separate latches are
used with a 27C64 EPROM. Even when the EPROM
is in standby mode, the latches are always active, con­
suming full power. The 87C64 achieves low standby
power in a novel way. It has a combined ALE/CE sig­
nal. When this signal is TTL-high, both the EPROM
and the internal latches are placed in low-power stand­
by mode. Whim ALE/CE is TTL-low, the latches acti­
vate, address information is latched, address decoding
begins, and the EPROM is ready to present data at its
outputs.

~-+------------~

The 87C64 easily connects to an 80C31 microcontrol­
ler. EPROM data pins are connected to its Ao-7 ad-

9-86

._------------ -
s::g ~_~:g S £5 g

292045-7

Figure 6. 87C64 Functional Diagram.

inter AP-315

dress pins, which in turn connect to the controller's
ADo-7 pins. ALE/CE must be generated by the proc­
essor's ALE signal, as shown in Figure 7. When ALE is
high, a new address can flow into the device's latch.
The address is latched when ALE goes low. EPROM
data is present on ADo_7 when OE goes low.

Using Multiple 87C64s

If mUltiple chips are used in a low power system, ad­
dress lines and the ALE signal are combined via an
address decoder as shown in Figure 8. Connecting the

+5V

i
vee ALE

ALE

:==: -
~EN

PSEN

P2.7 ~

+---to P2.6 !..!..!...
+---to - N

P2.5 ~
I>: I-....-. '" P2.4

AI2
0 0
"- "- AIl +---to P2.3

~ P2.2
AIO

~ P2.1 A9

- SOC31 AS
- JJ,C ~.O

:==: A07 PO.7

PO.6
A06

:==: PO.5
A05

'" 0
l- I- PO.4

A04

'" '" A03 :==: 0 0 PO.3 "- "-
PO.2 A02

:==: PO.l AOI

PO.O
ADO

- '--

RST 1 XTAL 2 Vss EA

1-/01-:

T T
5Ve>-j(

~7
+

ALE signal to the address decoder is important because
the 87C64's ALE/CE input must toggle high-to-low
each time the address changes.

The EPROM contains system operating code. The mi­
crocontroller typically accesses sequential addresses as
it executes instructions. Upper address lines are used to
decode memory blocks, but they usually don't change
when sequential addresses are generated. This'means
that the outputs of an address decoder connected to
these lines will not toggle as sequential addresses
change. The address decoder shown in Figure 8 is gated
by ALE to provide the latching signal at the 87C64's
ALE/CE input.

+5V

?
I T I

ALE/Vpp
PGM Vpp Vee

DE

- N.C.

AI2

All

AID
A9

AS

A7
A6

A5 S7C64
A4 EPROM

A3

A2

Al

AO
L DO

- 01

02
03

04

05

06

07
GNO

V
292045-8

Figure 7. The 87C64 easily connects to the 80C31.

9-87

intJ AP-315

292045-9

Figure 8. Multiple latched-EPROMs are controlled by the address decoder.

87C64s in 16-bit Systems

The 87C64 is an ideal memory for word-wide systems.
Two devices provide low-byte and high-byte data. Fig­
ure 9 shows an 8096 system that uses two 87C64s.

Microcontroller address/data lines ADI_13 are con­
nected to address inputs Ao-12 on both EPROMs. Ad­
dress/data line ADo is normally used to select low-byte
data in read/write memories; This line need not,be con­
nected to read-only (EPROM) memories. In order to
operate from external EPROM mapped at low-memo­
ry, the 8096's EA pin must be tied to ground.

The low-byte EPROM's DO_7'outputs are connected to
the controller's ADO_ 7 lines. The high-byte EPROM's
DO-7 ou!E!!!s are connected to lines ADS-Is. The con­
troller's RD and ALE lines ar~onnected directly to
both EPROMs' OE and ALE/CE inputs.

In-System Programming

EPROMs are not just read-only memories, they're
user-programmable. That's the reason EPROMs are
the preferred non-volatile memory. EPROMs are usu­
ally programmed in PROM programming equipment.
In-system programming, however, is becoming popular
in applications that require factory programming or
field updates.

In-system programming allows the resident microcon­
troller to program the system's EPROM. A small
amount of the microcontroller's ROM or EPROM can
contain code that knows how to down-load data over
its serial channel and program an 87C64.

In-system programming allows a multi-use module to
be customized for different applications. For example, a
generic robot-control module can be built, installed in
several locations, and customized for any particular job
on an assembly line.

9-88

infef AP-315

ADI5~~-------------------------------------,

CONTROL

B096
BOC196

S'c

+5V

+5V

292045-10

Figure 9. Two 87C64s provide a no-glue EPROM solution for word-wide systems .

BOC51
or

B7C51
S'C

o
I;;
o ..

.-----.vpp
1-'-'---,

PROGRAM
I< LATCH VCC
CONTROL
CIRCUIT

Figure 10. A simple in-system programmable module.

9-89

292045-11

AP-315

Figure 10 shows a simple 80CSI-based in-system pro­
grammable module. The microcontroller's on-board
ROM or EPROM memory contains the communica­
tion and programming algorithms. Port pins P3.0 and
P3.l provide the serial ~mmunication link. P3.2
(EACONT) controls the EA pin. When high (which
occurs at reset and when "I" is written to P3.2), code
operates from internal memory. When low, external
EPROM supplies code. P3.3 (ALECONT) controls the
ALE latching signal during programming. P3.4
(PGMCONT) controls the 87C64's PGM (program
pulse) pin. P3.S (VPPON) controls the Vpp and Vee
programming and operating voltages.

Figure II shows the program and latch control circuit.
The 5 volt and 12 volt supplies are connected to this
circuit at all times. Inverter 74'06a allows 12 volts to
pass into the DC/DC converter and the LM317 voltage
regulators only when 5 volts is applied. VPPON is high
at reset or when P3.S contains a "I." Inverters 74'06b

2N2907

+12Vo--~h.
I

147K
I

+5Vo-...... ~O ...

and 74'06c keep Vpp an~t 5 volts until program­
ming is initiated. When VPPON goes low, these invert­
ers turn off allowing V pp and Vee voltages to go to
their programming levels. Vpp and Vee read- and pro­
gram-voltages are adjusted by the variable resistors
shown. Vee read voltage should be S.OV and its pro­
gram voltage should be 6.2SV. VPP read voltage should
be S.OV and its program voltage should be 12.7SV.

VPPON also controls the ALE circuit. When VPPON
is high, the microcontroller's ALE value passes
through to the 87C64's ALE/CE pin. When VPPON is
low, ALE/CE can be controlled by the microcontrol­
ler's ALECONT signal during programming.

The microcontroller's Ao-12 outputs are connected to
the 87C64's Ao-12 pins. The EPROM's 00-7 are con­
nected to the controller's ADo_ 7 pins. The controller's
program-memory read signal, PSEN, controls the
87C64's output-enable, OE.

1--..... - --0 vpp TO EPROM
"'----' Read Mode = 5.0V

Program Mode = 12.7SV

t-+-.... --t-..-00 GND

1----<1_-..... --0 Vee TO EPROM
1----' Read Mode = 5.0V

Program Mode = 6.25V
ALECONTo--------+---~~-~r_~

I,

JC>--¢ ALE/CE

ALE 0---------------1
292045-12

Figure 11. Program- and latch-control circuit for in-system programming.

9-90

AP-315

During programming, the controller brings EACONT
high and VPPON low. This allows it to operate from
internal code, enables programming voltages on the
87C64's Vpp and Vee pins, and switches ALE/CE
control from the controller's ALE to its ALECONT.
It then inputs data over its serial channel. With
ALECONT high, an address is placed on ports 0 and 2.
When ALECONT is brought low, the 87C64 internally
latches the address. Data read from the serial port is
then written to port O. The 87C64 now has both ad­
dress and data information. The controller needs only
to bring PGMCONT low to program data into the ad­
dressed location.

The in-system programming sequence is summarized
below.

I) Assert EACONT. Code is now supplied from the
uController's internal program memory.

2) Assert VPPON. This switches Vpp and Vee to their
program voltages and allows the controller to manu­
ally control ALE via ALECONT. PGMCONT and
ALECONT are high.

3) Input address and data information from Port 3's
serial channel. Ports 0 and 2 serve as I/O ports.
Place the address on ports 0 and 2. Bring
ALECONT low to latch the address into the 87C64.

4) Write data information to port O.

5) Bring PGMCONT low to program data into the
87C64. See the 87C64 data sheet for the proper pro­
gramming algorithm and timing requirements.

6) Verify the programmed data. Use the "MOVC
A,@A+DPTR" instruction to read EPROM data.
The configuration shown in Figure 10 allows the
87C64 to be read at any 8K-byte boundary. This
allows the controller to operate using its internal
low-memory code and still verify external EPROM
mapped at the same locations.

7) Repeat this sequence until all EPROM data bytes
are programmed and verified.

8) When programming is complete, VPPON,
PGMCONT, and ALECONT should be de-asserted.
When EACONT = "0", code execution will com­
mence from the 87C64. Duplication of code at iden­
tical internal and external memory locations will al­
low uninterrupted paging between these two memo­
ry spaces (see application note AP-284 "Using Page­
Addressed EPROMs" for further details).

Care should be taken during system design to ensure
that microcontroller and other device inputs can handle
elevated voltages supplied by the EPROM during pro­
gramming. When 6.25V is applied to the 87C64's Veo
its outputs, when "1", will be close to 6.25V.

9-91

87C257

The 87C257 is a 256K-bit EPROM organized as 32768
8-bit words. It also contains the equivalent of two
74HCT573 address latches. All address inputs are
latched. Figure 12 shows the 87C257's block diagram.
To serve high-performance 8-bit microcontrollers, the
87C257 has separate ALE and CE inputs. The 87C257
is pin compatible with the 27C256 (see Figure 4).

The ALE/VPP input serves as the latch enable during
read mode and as the high voltage input during pro­
gramming. When ALE is high, address information on
pins AO_l4....!!OWS through -.!!!.e latches to the input de­
coders. If CE is asserted (CE = Vrd, the EPROM is
in its active mode which allows address decoding to
begin immediately. If CE is high, the 87C257 is in
stand-by mode, but addresses can still be latched. The
address latches retain present address-pin values when
ALE goes low (ALE = Vrd.

+5V

S7C257 r-----------------------crl

A14
A13
A12
All
A10

A9
AS

ALE/Vpp-t'---.----t

A7
A6
A5
A4
A3
A2

'Al
AO

G

Or GND

Vee

A14
A13
A12
All
A10
A9
AS

Vpp 27C256
EPROM

A7

A6
A5
A4
A3
A2
Al
AD

Or.....L-------'

...... 1D.n...,.....,N_O
OQOCQQQC

292045-13

Figure 12. 87C257 functional diagram.

AP-315

87C257 + 80C31

The 87C2S7 interfaces to 805 I-family microcontrollers
without "glue" chips. Figure 13 shows a simple
80C31/87C257 system. Note that all 8051-family con­
trollers have similar interfaces. The 80C31's port 0
serves as the multiplexed low-order address/data bus
when used in expanded memory mode; port 2 is the
high-address bus.

Port 0 pins connect directly to the 87C2S7's Ao-7 and
DO-7 pins. Port' 2 pins are connected to the 87C2S7's
AS-14 and CE pins. Since the 87C2S7 fills the lower
half of the 80C31's program-memory map (OOOOh -
7FFFh), address line A15 (P2.7) can be connj!cted to
the 87C257's CE input. The EPROM is selected when­
ever A15 is low.

+5V

r
Vee

ALE
ALE

:::: - PSEN
~EN

A15
P2.7

:::: P2.S
A14

~ N
P2.S

A13
0- 0-

+---+ '" '" P2.4
A12

0 0

+---+
Q. Q. All

P2.3

+---+ P2.2
Al0

+---+ P2.1
A9

- SOC3l
~.O

AS

li
J-'C

+---+ A07
PO.7

+---+ PO.S
AOS

+---+ PO.5
AOS

0

:::: 0- PO.4
A04

'" 0 PO.3
A03

Q.

+--+ PO.2
A02

:::: J PO.l
AOl

~.O
AOO

RST 1 XTAL 2 VSS EA

H[]t-.

T T.
SvO-/f

~7
+

.

The controller's PSEN output is the program (or in­
struction) memory read-strobe. This pin is connected to
the 87C2S7's output enable pin, OE.

The 80C31's ALE controls an external address latch.
When ALE is high, the controller's port 0 and port 2
pins present address information. When low, addresses
AO-7 are externally latched. The external latch then
supplies the low-address to external memory devices.
Since the 87C257 has its own latch, the 80C3l 's ALE is
connected to the 87C2S7's ALE/VPP (the 87C257's
Vpp function is internally disabled in read mode.

The 80C31's EA (External Access) pin must be con­
nected to ground when accessing external program
memory between addresses OOOOh and OFFFh (the up­
per address boundary may vary depending on the 8051 .
version used).

+5V

'j
ALE/Vpp

Vee

OE
cr
A14

A13

A12

All

Al0

A9

AS

A7

AS

A5 S7C257
A4 EPROM

A3

A2

Al

AO
L 00

'---:' 01

02

03

04

05

OS

07
GNO

.~
292045-14

Figure 13. A "no-glue" 80C31/87C257 system.

9-92

intJ AP-315

Two 87C257s + 80C31

8051-family controllers are unique in that two 64K­
byte memory spaces can be addressed. These control­
lers have separate PSEN and RD signals that access
program memory (ROM or EPROM) and data memo­
ry (RAM and peripheral devices). All system devices
see the controller's !6-bit address. Depending on the
instruction type, either PSEN or RD is asserted. Al­
though two devices can be memory mapped at identical
locations, PSEN and RD determine which will present
data.

+5V

Vee

BOC31
~C

+5V o-f f-+-wIr-4-...... -+..J

Figure !4 shows two 87C257s in an 80C3! system.
Each 87C257 connects to the 80C3! just as it did in the
87C257 + 80C3! example shown in Figure 13. The
only difference is the inverter between A IS and the sec­
ond 87C257's CEo This inverter allows the second
87C257 to be selected when AI5 is high - addresses
8000h - FFFFh.

B7C257
EPROM

(OOOOh -7FFFh)

B7C257
EPROM

(BOOOh - FFFFh)

292045-15

Figure 14. A maximum function, but minimum chip, 80C31 system.

9-93

inter AP-315

Two 87C257s completely fill the 80C3l's program
memory space. 64K bytes are still available in the data
memory space. A system that requires 64K-bytes of
EPROM is probably performing complex 1/0 tasks.
These tasks usually require more RAM than the micro­
controller contains. Also, since the 80C31 loses two 8-
bit 1/0 ports when accessing external memory, port
reconstruction is desirable.

The 8155 shown in Figure 14 recovers the lost ports
(plus 6 additional port pins) and supplies 256 bytes of
RAM. In addition, it provides a 14-bit counter/timer.
Connected as shown, the 8155's RAM is mapped at
locations OOOOh - OOFFh. Ports and timer addresses
are mapped at 0100h - 0IFFh. Since the 8155 is not
fully decoded, shadow addresses occur at 512-byte
boundaries.

The system shown in Figure 14 consists of a high per­
formance microcontroller, 64K-bytes of EPROM: 256
bytes of RAM (in addition to the uC's RAM), 36 1/0
port pins, and an additional timer/counter. The only
"glue" device in this system is the inverter, which can
be made from one transistor and a resistor.

11111111111

I I' .1--

J
ALE I--

CONTROL ALE

:i RO
RO

:~ ~:7 A15

'1-- P4.6
A14

I-- A13

:~
P4.5 ... A12

... P4.4 I-- J '" A11

:~ Ii: ~ P4.3

~ P4.2
A10

'1-- 8098 A9
:~ 90C196 P4.1

8096BH ~.O
A8

:1=) lAC A07
P3.7

:~ (8-BIT MODE)
P3.6

A06

:~ P3.5
A05

'" :1= Ii: P3.4
A04

0 P3.3
A03

;= Il-

) P3.2
A02

+--
P3.1

A01 :-
~.O

ADO

~
+--

Vee RST 1 XTAL 2 Vss BW EA

"t1 +5V
1\ , 7

87C257 + 8096

Intel's 8096-family microcontrollers contain six 8-bit
1/0 ports; a powerful CPU, and many other high-per­
formance features. 8096BH, 8098, and 80C196 versions
also have 8-bit external bus modes that simplify inter­
faces to 8-bit memories and peripherals. When used in
expanded mode, ports 3 and 4 supply the multiplexed
addressl data bus.

Figure 15 shows a no-glue 8096/87C257 interface. The
8096's EA (External Access) and Buswidth pins are
tied to ground. This tells the controller that program­
memory accesses are from external EPROM and that
the external data bus is 8 bits wide.

Port 3 supplies multiplexed address/data information.
Its pins are connected to the 87C257's AO-7 and DO-7
pins. Port 4 supplies addresses AS-15. Its pins are con­
nected to AS-14 and CEo The EPROM is selected
whenever AI5 is low (addresses OOOOh - 7FFFh),
which encompasses the 8096's boot-up and vector loca­
tions. RD and ALE are connected to the 87C257's OE
and ALE/VPP pins.

+5V

I
ALE/Vpp

Vee

OE
CE
A14 ,
A13

A12

A11

A10

A9

A8

A7

A6

A5 87C257
A4 EPROM

A3

A2

A1

AO
L- DO

'-- 01

02

03

04 -
05

06

07
GNO

V
292045-16

Figure 15. An 87C257 enhances the powerful 8096.

9-94

AP-315

68C257

The microcomputer industry has a standard for memo­
ry and peripheral interfaces which dictates chip-enable
and output-enable polarities. Customers using non­
standard-bus controllers asked Intel to provide a "no­
glue" EPROM for their applications - the 68C257.

CE-;------1 """""=

A14
A13
A12
All
Al0

A9
AS

Like Intel controllers, 68xx-family uCs use multiplexed
address/data pins. However, they differ in two signifi­
cant ways. First, 68xx controllers use high-memory ad­
dresses for reset- and interrupt-vectors. Since A 15 is
high during vector accesses, it can't be connected di­
rectly to a standard EPROM's CE - an inverter is
required. Second, read and write controls are functions
of R/W and E (clock output). Fortunately, EPROMs
don't require combinational logic to decode R/W and
E. The active-high E output can sim...£!y be inverted be­
fore connecting it to an EPROM's OE input.

AlE/Vpp~-----1~---I

The 32K-byte 68C257 EPROM's inputs contain latch­
es, just like the 87C257. The 68C257 also internally
inverts CE and OE. Figure 16 shows the 68C257's
block diagram. Figure 17 shows a no-glue 68C257/
68xx interface.

A7
AS
AS
A4
A3
A2
Al
AO

OE~--~-:-:-I

27C2S6
EPROM

+SV

----.

Vee

292045-17

Figure 16. 68C257 functional diagram.

9-95

AP-315

+sV +sV

r r
VCC AS ALE/Vpp

VCC
-+--+ E OE

+--+ PC.7 Als
CE

+--+ PC.6
A14

A14

+--+ 0 u
PC.S

A13
A13 l- I-

+--+ '" '" PC.4
A12

A12 0 0
0.. 0.. All ..-..... PC.3 All ..-..... PC.2

Al0
Al0

~ PC.l
A9

A9 - 6BXX
~.O

AB
AB

:::: - }JoC A07
PB.7 A7
PB.6 A06

A6

~ PB.s
ADS

AS « II> 6BC2s7

:::: l- I- PB.4
A04

A4 EPROM
'" '" A03 0 0 PB.3 A3 0.. 0..

:::: PB.2 A02
A2

PB.l
AOl Al

+--+ ~.O
ADO

AO - L
RESET EXTAL XTAL VSS

DO

- 01

HilI-< 02
03

T T
04

II 05
+SV h 06

V 07
GNO

V
292045-18

Figure 17. The 68C257 is the "no-glue" EPROM for alternate-architecture micrcontrollers.

SUMMARY

The best system design is small in size, easy to manu­
facture, highly reliable, and cost effective. Components
that simplify the design process add even more value to
the system.

Intel's latched EPROMs reduce chip count and board
space, enhance performance, increase reliability, mini­
mize design time, and simplify microcontroJler systems.
Latched EPROMs are available in popular 64K- and
256K-bit densities, and a version is available that will
provide a "no-glue" interface to virtually any micro­
controller architecture.

9-96

inter
ALABAMA

~~;I.r~~ord Dr., #2
Huntsville 35805
Tel: (205) 830-4010
FAX: (205) 837-2640

ARIZONA

tlntal Corp.
11225 N. 28th Dr.
Suite 0·214
Phoenix 85029
Tel: (602) 869-4980
FAX: (602) 869-4294

Intel Corp.
1161 N. EI Dorado Place
Suite 301
Tucson 85715
Tel: (602) 299-8815
FAX: (602) 296-8234

CALIFORNIA

tlntel Corp.
21515 Vanowan Street
Suite 116
Canoga Park 91303
Tel: (818) 704-8500
FAX: (818) 340-1144

tlntel Corp.
2250 E. Imperial Highway
Suite 218
EI Segundo 90245
Tel: (213) 640-6040
FAX: (213) 640-7133

~nJ~6 <i°~en Way
Suite 101
Sacramento 95815
Tel: (916) 920-8096
FAX: (916) 920-8253

tlntel Corp.
9665 Chesapeake Dr.
Suite 325
San Diego 95123

~;;X:(~J~~)2~~2s.g~~8
tlntel Corp.·
400 N. Tustin Avenue
Suite 450
Santa Ana 92705
Tel: (714) 835-9642
1WX: 910-595-1114
FAX: (714) 541-9157

tlntel Corp.·
San Tomas 4
2700 San Tomas Expressway
2nd Floor
Santa Clara 95051
Tel: (408) 986-8086'
1WX: 910-338-0255
FAX: (408) 727-2620

COLORADO

Intel Corp.
4445 Northpark Drive
Suite 100
Colorado Springs 80907
Tel: (719) 594-6622
FAX: (303) 594-0720

tlntel Corp.'"
650 S. Cherry St.
Suite 915
Denver 80222
Tel: (303) 321-8086
1WX: 910-931-2289
FAX: (303) 322-8670

tSales and Service OffIce
"'Field Ap~llcat[on Location

DOMESTIC SALES
CONNECTICUT MASSACHUSETTS

~~ie~°ffa'rm Corporate Park
tlnlal Corp. *
Westford Corp. Center

83 Wooster Heights Rd. 3 Carlisle Road
Danbury 06810 2nd Floor
Tel: (203) 748-3130 Westford 01886
FAX: (203) 794-0339 Tel: (508) 692-3222

1WX: 710-343-6333
FLORIDA FAX: (508) 692-7867

~~~I ~.w.6th Way 
MICHIGAN 

Suite 100 tlntal Corp. 
Ft. Lauderdale 33309 7071 Orchard Lake Road 
Tel: (305) 771-0600 Suite 100 
1WX: 510-956-9407 West Bloomfield 48322 
FAX: (305) 772-8193 Tel: (313) 851-8096 

FAX: (313) 851-8770 
tlnlal Corp. 
5850 T.G. Lee Blvd. MINNESOTA 
SUite 340 
OMando 32822 tlntel Corp. 
Tel: (407) 240-8000 3500 W. 80th 51. 
FAX: (407) 240-8097 Suite 360 

B,oom,niton 55431 
Intel Corp. Tel: (612 83!;-6722 
11300 4th Street North 1WX: 91 -576-2867 
Suite 170 FAX: (612) 831-6497 
51. Petersburg 33716 
Tel: (813) 577-2413 MISSOURI 
FAX: (813) 578-1607 

1~~1 ~~~. City Expressway 
GEORGIA Suite 131 
Intel Corp. 
20 Technology Parkway, N.W. 
Suite 150 

Earth Ci~ 63045 
Tel: (314 291-1990 
FAX: (314) 291-4341 

Norcross 30092 
Tel: (404) 449-0541 NEW JERSEY 
FAX: (404) 605-9762 tlntel Corp. * 

Parkway 109 Office Center 
ILLINOIS 328 Newman Springs Road 
tlntel Corp. * Red Bank 07701 

300 N. Martingale Road Tel: (201) 747-2233 

Suite 400 FAX: (201) 747-0983 

Schaumburg 60173 
Tel: (312) 605-8031 
FAX: (312) 706-9762 

tlntel Corp. 
280 Corporate Center 
75 Uvingston Avenue 
First Floor 

INDIANA Roseland 07068 

~~~I ~~~ue Road 

Tel: (201) 740-0111
FAX: (201) 740-0626

Suite 125 NEW YORK
Indianapolis 46268

Intel Corp.·' Tel: (317) 875-0623
FAX: (317) 87!;-8938 850 Cross Keys Office Park

Fairport 14450
IOWA Tel: (716) 425-2750

1WX: 510-253-7391
Intel Corp. FAX: (7t6) 223-2561
1930 St. Andrews Drive N.E.

tlntel Corp.'" 2nd Floor
Cedar Rapids 52402 2950 ExpresswaV Dr., South

Suite 130 Tel: (319) 393-1294
Islandia 11722
Tel: (516) 231-3300 KANSAS 1WX: 510-227-6236

tlntel Corp. FAX: (516) 348-7939

~~~51~8,~1~~. D tlntel Corp. 
Westage Business Center OveMand Park 66210 Bldg. 300. Route 9 Tel: (913) 345-2727 Fishkill 12524 FAX: (913) 345-2076 Tel: (914) 897-3860 
FAX: (914) 897-3125 

MARYLANO 

tlntel Corp.'" NORTH CAROLINA 

10010 Junction Dr. tlntel Corp. 
SuIte 200 5800 Executive Center Dr. 
Annapolis Junction 20701 Suite 105 
Tel: (301) 206-2860 Charlotte 28212 
FAX: (301) 206-3677 Tel: (704) 568-8966 

(301) 206-3678 FAX: (704) 535-2236 

OFFICES 
Intel Corp. tlntal Corp. "" 
5540 Centerview Or. 7322 S.W. Freeway 
Suite 2t5 Suite 1490 
Raleigh 27606 Houston 77074 
Tel: (9t9) 851-9537 Tel: (713) 988-8086 
FAX: (919) 851-8974 1WX: 910-881-2490 

FAX: (713) 988-3660 
OHIO UTAH 

tlntal Corp."" 
3401 Park Center Drive 

tlntel Corp. 
428 East 6400 South 

Suite 220 Suite 104 
Oayton 45414 Murray 84107 
Tel: (513) 890-5350 Tel: (801) 263-8051 
1WX: 810-450-2528 FAX: (801) 268-1457 
FAX: (513) 890-8658 

VIRGINIA 
tlntal Corp."" tlntel Corp. 25700 Science Park Dr. 1504 Santa Rosa Road Suite 100 Suite 108 Beachwood 44122 Richmond 23288 
Tel: (216) 464-2736 Tel: (804) 282-5688 
1WX: 810-427-9298 
FAX: (804) 282-0673 

FAX: (216) 484-2270 

WASHINGTON 
OKLAHOMA tlntel Corp. 
Intel Corp. 155 loath Avenue N.E. 

6801 N. Broadway Suite 386 

Suite 115 Bellevue 98004 
Oklahoma City 73162 Tel: (206) 453-8086 

1WX: 910-443-3002 Tel: (405) 848-8086 FAX: (206) 451-9556 FAX: (405) 840-9819 

~nJ~1 ~O:ullan Road 
OREGON Suite 102 

~~J~ ~~: Greenbrier Parkway 
Spokane 99206 
Tel: (509) 928-8086 

Building B FAX: (509) 928-9467 
Beaverton 97005 WISCONSIN 
Tel: (503) 645-8051 
1WX: 910-467-8741 Intel Corp. 
FAX: (503) 64!;-8181 330 S. Executive Dr. 

Suite 102 

PENNSYLVANIA 
Brookfield 53005 
Tel: (414) 784-8087 

tlntel Corp.· FAX: (414) 796-2115 
455 Pennsylvania Avenue 
Suite 230 CANADA 
Fort Washington 19034 
Tel: (215) 641-1000 BRITISH COLUMBIA 
1WX: 510-661-2077 Intel Semiconductor of FAX: (215) 641-0785 Canada, Ltd. 
tlntel Corp. '" 4585 Canada Way 
400 Penn Center Blvd. Suite 202 
Suite 610 Bumaby V5G 4L6 
Pittsburgh 15235 Tel: (604) 298-0387 
Tel: (412) 823-4970 FAX: (604) 298-8234 
FAX: (412) 829-7578 ONTARIO 

tlntel Semiconductor of PUERTO RICO Canada, Ltd. 
tlntel Corp. 2650 Queensview Drive 
South Industrial Park SUite 250 
P.O. Box 910 OttawaK2B 8H6 

Las Piedras 00671 Tel: (613) 829-9714 

Tel: (809) 733-8616 FAX: (613) 820-5936 

tlntel Semiconductor of 
TEXAS Canada, Ltd. 

190 Attwell Drive 
Intel Corp. Suite 500 
8911 Capital of Texas Hwy. Rexdale M9W 6H8 
Austin 78759 Tel: (416) 675-2105 
Tel: (512) 794-8086 FAX: (416) 67!;-2438 
FAX: (512) 338'9335 QUEBEC 

tlntel Corp.· Intel Semiconductor of 
12000 Ford Road Canada, Ltd. 
Suite 400 620 st. Jean Boulevard 
Dallas 75234 Pointe Claire H9R 3K2 
Tel: (214) 241-8087 
FAX: (214) 484-1180 

Tel: (514) 694-9130 
FAX: 5t4-694-oo64 



DOMESTIC DISTRIBUTORS 
ALABAMA tHamiiton Electro Sales CONNECTICUT tHamilton/Avnet Electronics Arrow Electronics, Inc. 

10950 W. Washington Blvd. 1130 Thorndale Avenue 7524 Standish Place 
Arrow Electronics. Inc. Culver City 20230 tArrow Electronics, Inc. Bensenville 60106 Rockville 20855 
1015 Henderson Road Tel: (213) 558-2458 12 Beaumont Road Tel: (312) 860-7780 Tel: 301-424-0244 
Huntsville 35805 TWX: 910-340-6364 Wallingford 06492 TWX: 910-227-0060 
Tel: (205) 837-6955 Tel: (203) 265-7741 MASSACHUSETTS 

tHamilton/Avnet Electronics Hamilton Electro Sales TWX: 710-476-0162 MTI Systems Sales Arrow Electronics, Inc. 
1361 B West 190th Street 1100 W, Thorndale 25 Upton Dr. 4940 Research Drive Gardena 90248 Hamiiton/Avnet Electronics Itasca 60143 Wilmington 01887 Huntsville 35805 Tel: (213) 217-6700 Commerce Industrial Park Tel: (312) 773-2300 Tel: (617) 935-5134 Tel: (205) 837-7210 Commerce Drive 

TWX: 810-726-2162 
tHamilton/Avnet Electronics Danbury 06810 ' tPioneer Electronics tHamiiton/Avnet Electronics 

Tel: (203) 797-2800 1551 Carmen Drive 100 Centennial Drive 
Pioneerrrechnologies Group, Inc. 3002 'G' Street 

TWX: 710-456-9974 Elk Grove Village 60007 Peabody 01960 
4825 University Square Ontario 91761 Tel: (312) 437-9680 Tel: (617) 531-7430 
Huntsville 35805 Tel: (714) 989-9411 tPloneer Electronics TWX: 910-222-1834 TWX: 710-393-0382 Tel: (205) 837-9300 

tAvnet Electronics 
112 Matn Street MTI Systems Sales TWX: 810-726-2197 Norwalk 06851 INDIANA 20501 Plummer Tel: (203) 853-1515 83 Cambridge St. 

ARIZONA Chatsworth 91351 TWX: 710-468-3373 tArrow Electronics, Inc. Buriinwo" 01813 
Tel: (213) 700-6271 2495 Directors Row. Suite H Pioneer Electronics 

tHamiiton/Avnet Electronics TWX: 910-494-2207 Indianapolis 46241 44 Hartwell Avenue 
505 S. Madison Drive FLORIDA 

t~;PJi6]:t~~~; 
Lexington 02173 

Tempe 85281 tHamilton Electro Sales 
tArrow Electronics. Inc. Tel: (617) 861-9200 

Tel: (602) 231-5140 3170 Pullman Street 
400 Fairway Drive TWX: 710-326-6617 

TWX: 910-950'()077 Costa Mesa 92626 Hamllton/Avnet Electronics 

t~lJi6-~~1~g 
Suite 102 485 Gradle Drive MICHIGAN 

Hamilton/Avnet ElectronIcs Deerfield Beach 33441 Carmel 46032 Arrow Electronics, Inc. 30 South McKiemy Tel: (305) 429-8200 Tel: (317) 844-9333 755 Phoenix Drive Chandler 85226 tHamiiton/Avnet Electronics TWX: 510-955-9456 TWX: 810-260-3966 Ann Arbor 48104 Tel: (602) 961-6669 4103 Northgate Blvd. Arrow ElectroniCS. Inc. Tel: (313) 971-8220 TWX: 910-950-0077 Sacramento 95834 tPloneer Electronics 
Tel: (916) 920-3150 37 Skyline Drive 6408 Castleplace Drive TWX: 810-223-6020 

Arrow Electronics. Inc. Su~e 3101 Indianapolis 46250 Hamllton/Avnst Electronics 
4134 E. Wood Street Wyle Distribution Group Lake Marv 32746 

~x\3~i~~~~~~~~ 
2215 29th Street S.E. 

Phoenix 85040 124 Maryland Street Tel: (407) 323-0252 Space Nj 
Tel: (602) 437-0750 EI Segundo 90254 TWX: 510-959-6337 Grand Rapids 49508 
TWX: 910-951-1550 

~\6Jf6_~~~:~~g~ Tel: (213) 322-8100 tHamilton/Avnet Electronics IOWA 

~~s"~r~~'C~~~~~ Hwy. 
6801 N.w. 15th Way 

Wyle Distribution Group Ft. Lauderdale 33309 Hamilton/Avnet Electronics Pioneer ElectronIcs 
Phoenix 85023 7382 Lampson Ave. 

~P~f6-~~~: 915 33rd Avenue. S.W. 4504 Broadmoor S.E. 
Tel: (602) 249-2232 Garden Grove 92641 Cedar Rapids 52404 Grand Rapids 49508 
TWX: 910-951-4282 Tel: (714) 891-1717 Tel: (319) 362-4757 FAX: 616-698-1831 

1WX: 910-348·7140 or 7111 tHamilton/Avnet Electronics tHamiiton/Avnet Electronics 
CALIFORNIA 3197 Tech Drive North KANSAS 32487 Schoolcraft Road Wyle Distribution Group St. Petersburg 33702 livonia 48150 Arrow Electronics. Inc. 11151 Sun Center Drive Tel: (813) 576-3930 Arrow ElectroniCS Tel: (313) 522-4700 10824 Hope Street Rancho Cordova 95670 TWX: 810-863-0374 8208 Melrose Dr .• Suite 210 TWX: 810-282-8775 

~~~r~63oo Tel: (916) 638-5282 
tHamilton/Avnet ElectronIcs Lenexa 66214

1~°e"5e~~~:san Tel: (913) 541-9542
twyIe Distribution Group 6947 University Boulevard

Arrow Electronics, Inc. 9525 Chesapeake Drive Winter Park 32792 tHamiltonfAvnet Electronics livonia 48150
19748 Dearborn Street

~:I~ feif£o ~~~r71 ~\3gf6~~~g~ 9219 Quivera Road Tel: (313) 525-1800
Chatsworth 91311 Overtand Park 66215 TWX: 810-242-3271
Tel: (213) 701-7500 TWX: 910-335-1590 tPioneerfTechnologies Group, Inc. Tel: (913) 888-8900 MINNESOTA TWX: 910-493-2086 TWX: 910-743'()005

twyle Distribution Group
337 S. Lake Blvd. tArrow ElectroniCS. Inc. tArow ElectroniCS, Inc.

3000 Bowers Avenue
Alta Monte Springs 32701 PioneerfTec Gr. 5230 W. 73rd Street 521 Weddell Drive

Santa Clara 95051
Tel: (407) 834-9090 10551 Lockman Rd. Edina 55435 Sunnyvale 94086

Tel: (408) 727-2500
TWX: 810-853-0284 Lenexa 66215 Tel: (612) 830-1800

~\4g~6~~~~ TWX: 910-338-0296 PioneerfTechnolOQles Group. Inc. Tel: (913) 492-0500 TWX: 910-576-3125
674 S. Mllnary Trail tHamilton/Avnet Electronics

Arrow Electronics. Inc. twyIe Distribution Group Deerfield Beach 33442 KENTUCKY 12400 Whitewater Drive
9511 Rldgehaven Court 17872 Cowan Avenue Tel: (305) 428-8877

Hamilton/Avnet Electronics
Minnetonka 55434

San Dle~o 92123 Irvine 92714 TWX: 510-955-9653 Tel: (612) 932-0600
Tel: (619 565-4800

~\7Ji6~~t~~~
1051 D. Newton Park

tPioneer Electronics TWX: 88 -064 Lexington 40511
GEORGIA Tel: (606) 259-1475 7625 Golden Triange Dr.

tArrow Electronics, Inc. SuiteG
2961 Dow Avenue Wyle Distribution Group tArrow ElectroniCS, Inc. Eden Prairi 55343
Tustin 92680 26677 W. Agoura Rd. 3155 Northwoods Parkway MARYLAND Tel: (612) 944-3355
Tel: (714) 838-5422 Calabasas 91302 Suite A

~\8~:~_g~29OO0 Norcross 30071 Arrow Electronics. Inc. MISSOURI TWX: 910-595-2860 8300 Guilford Drive
tAvnet Electronics· ~\4g;'~~~t~~ Suite H. River Center tArrow Electronics. Inc.

2380 Schuetz
350 McCormick Avenue Columbia 21046 St. Louis 63141
Costa Mesa 92626 COLORADO tHamllton/Avnet Electronics Tel: (301) 995-0003 Tel: (314) 567-6888
Tel: (714) 754-6071 5825 0 Peachtree Corners TWX: 710-236-9005 TWX: 910-764-0882
TWX: 910-595-1928 Arrow ElectroniCS. Inc. Norcross 30092

Hamilton/Avnet Electronics tHamilton/Avnet Electronics 7060 South Tucson Way ~\4g;'~~~~gg tHamilton/Avnet Electronics Englewood 80112 6822 Oak Hall Lane. 13743 Shoreline Court
1175 Bordeaux Drive Tel: (303) 790-4444 Columbia 21045 Earth Ci~ 63045
Sunnyvale 94086 ~~~e~r~~~~~~e~I~~~uP. Inc.

Tel: (301) 995-3500 Tel: (314 344-1200
Tel: (408) 743-3300 tHamliton/Avnet Electronics TWX: 710-862-1861 TWX: 910-762-0684
TWX: 910-339-9332 8765 E. Orchard Road Norcross 30071

~~:~~~~~~'~Wo~~r8r . NEW HAMPSHIRE
tHamllton/Avnet Electronics Suite 708 ... 1: (404) 448-1711

Englewood 80111 TWX: 810-766-4515 tArrow Electronics. Inc.
4545 Ridgeview Avenue Columbia 21046 3 Perimeter Road
San Diego 92123 Tel: (303) 740-1017 Tel: (301) 290-8150 Manchester 03103 Tel: (619) 571-7500 TWX: 910-935-0787 ILLINOIS TWX: 710-828-9702 Tel: (603) 668-6968
TWX: 910-595-2638

tWyle Distribution Group Arrow Electronics. Inc. tPioneerfTechnologles Group. Inc. TWX: 710-220-1684
tHamilton/Avnet Electronics 451 E. 124th Avenue 1140 W. Thorndale 9100 Gaither Road tHamilton/Avnet Electronics
9650 Desoto Avenue Thornton 80241 Itasca 60143 Gaithersburg 208n 444 E. Industrial Drive
Chatsworth 91311 Tel: (303) 457-9953 Tel: (312) 250'()500 Tel: (301) 921'()660 Manchester 03103
Tel: (818) 700-1161 TWX: 910-936-0770 TWX: 312-250-0916 TWX: 710-828-0545 Tel: (603) 624-9400

tMicrocomputer System Technical Distributor Center

intel~
DOMESTIC DISTRIBUTORS (Contd.)

NEW JERSEY tPioneer Electronics tHamllton/Avnet Electronics tPioneer Electronics Zenlronics
68 Corporate Drive 12121 E. 51.1 S1., Suile 102A 18260 Kramer Bay No.1

tArrow Electronics, Inc. Binghamton 13904 Tulsa 74146 Austin 78758 3300 14th Avenue N.E.
Four East Stow Road Tel: (607) 722-9300 Tel: (918) 252-7297 Tel: (512) 835-4000 Calgary T2A 6J4
Unit 11 'TWX: 510-252-0893 TWX: 910-874-1323 Tel: (403) 272-1021
Marlton 08053

Pioneer Electronics OREGON tPloneer Electronics BRITISH COLUMBIA Tel: (609) 596-8000
'TWX: 710-897-0829 40 Cser Avenue

tAlmac Electronics Corp.
13710 Omega Road tHamiiton/Avnet Electronics Hauppauge 11787 Dallas 75234 105·2550 Boundary

tArrow Electronics Tel: (516) 231-9200 1885 N.W. 169th Place Tel: (214) 386-7300 BurmaJay V5M 3Z3 Beaverton 97005 'TWX: 910-850-5563 Tel: (604) 437-6667 6 Century Drive tPioneer Electronics Tel: (503) 629-8090

~:r:S~~7)~J_~1>o ~o~~~~s;~~:n~~s~~~t 11797
'TWX: 910-467-8746 tPioneer Electronics Zentronics

5853 Point West Drive 108-11400 Bridgeport Road
Tel: (516) 921-8700 tHamilton/Avnet ElectroniCS Houston 77036 Richmond V6X 1 T2 tHamiitonJAvnet Electronics 'TWX: 510-221-2184 6024 S.W. Jean Road Tel: (713) 988-5555 Tel: (604) 273-5575 1 Keystone Ave., Bldg. 36 Bldg. C, Surte 10 'TWX: 910-881-1606 'TWX: 04-5077-89 Cherry Hill 08003 tPioneer Electronics Lake Oswego 97034

Wyle Distribution Group MANITOBA Tel: (609) 424-0110 840 Fairport Park Tel: (503) 635-7848 'TWX: 710-940-0262 Fairport 14450 'TWX: 910-455-8179 1810 GreenVIlle Avenue Zentronics Tel: (716) 381-7070 Richardson 75081 60-1313 Border Unit 60 tHamiiton/Avnet Electronics 'TWX: 510-253-7001 Wyle Distribution Group Tel: (214) 235-9953
¥{!r(~~4~ ~g~_10:5~ 10 Industrial 5250 N.E. Elam Young Parkway

Fairfield 07006
NORTH CAROLINA Suite 600

UTAH Tel: (201) 575-5300 Hrllsboro 97124 ONTARIO 'TWX: 710-734-4388 tArrow ElectroniCS, Inc. Tel: (503) 640-6000 Arrow ElectroniCS Arrow Electronics, Inc.
tMTI Systems Sales 5240 Greensdairy Road 'f1IVX: 910-460-2203 1946 Parkway Blvd. 36 Antares Dr. Raleigh 27604 Salt Lake City 84119 Nepean K2E 7W5 37 Kulick Rd. Tel: (919) 876-3132 PENNSYLVANIA Tel: (801) 973-6913 Tel: (613) 226-6903 Fairfield 07006 'TWX: 510-928-1856
Tel: (201) 227-5552

Arrow Electronics, Inc. tHamiltonJAvnet Electronics Arrow Electronics, Inc.
tHamiiton/Avnet Electronics 650 Seco Road 1585 West 2100 South 1093 Meyerside

tPioneer Electronics 3510 Spring Forest Drive Monroevrlle 15146 Salt Lake City 84119 Mississauga LST 1 M4
45 Route 46 Raleigh 27604 Tel: (412) 856-7000 Tel: (801) 972-2800 Tel: (416) 673-7769
Pinebrook 07058 Tel: (919) 878-0819 'TWX: 910-925-4018 'TWX: 06-218213
Tel: (201) 575-3510 'TWX: 510-928-1836 Hamilton/Avnet Electronics tHamilton/Avnet Electronics 'TWX: 710-734-4382

~k~~e:~[;~t~~~~O~\~~ ~f~~.P. Inc.
2800 Liberty Ave. Wyle Distributron Group 6845 Rexwood Road
Pittsburgh 15238 1325 West 2200 South Units 3-4-5
Tel: (412) 281-4150 Suite E Mississauga L4T lR2 NEW MEXICO Charlotte 28210 West Valley 84119 Tel: (416) 677-7432 Tel: (919) 527-8188 Pioneer Electronics Tel: (801) 974-9953 'TWX: 610-492-8867 Alliance Electronics Inc. 'TWX: 810-621-0366 259 Kappa Drive

11030 Cochlli S.E. Prttsburgh 15238
WASHINGTON

Hamilton/Avnet Electronics
Albuquerque 87123 OHIO Tel: (412) 782-2300 6845 Rexwood Rd., Unit 6
Tel: (505) 292-3360 'TWX: 710-795-3122 tAl mac Electronics Corp. Mississauga L4T 1 R2
'TWX: 910-989-1151 Arrow Electronics, Inc. 14360 S.E. Eastgate Way Tel: (416) 277-0484

7620 McEwen Road tPioneer{Technologies Group, Inc.
Bellevue 98007 tHamiiton/Avnet Electronics Hamilton/Avnet Electronics Centerville 45459 Delaware Valley
Tel: (206) 643-9992 190 Colonnade Road South 2524 Baylor Drive S.E. Tel: (513) 435-5563 261 Gibralter Road 'TWX: 910-444-2067 Nepean K2E 715 Albuquerque 87106 'TWX: 810-459-161 I Horsham 19044

Tel: (613) 226-1700 Tel: (505) 765-1500
tArrow Electronics, Inc.

Tel: (215) 674-4000 Arrow Electronics, Inc. 'TWX: 05-349-71 'TWX: 910-989-0614 'TWX: 510-665-6778 19540 68th Ave. South tZentronlcs 6238 Cochran Road
Ken198032 Solon 44139

TEXAS Tel: (206) 575-4420 8 Tilbury Court
NEW YORK Tel: (216) 248-3990 Brampton L6T 3T 4

'TWX: 810-427-9409
tArrow Electronics, Inc. tHamiltonJAvnet Electronics Tel: (416) 451-9600

tArrow ElectroniCS, Inc. 14212 N.E. 21st Street 'TWX: 06-976-78
3375 Brighton Henrietta tHamiiton/Avnet Electronics 3220 Commander Drive

Bellevue 98005 tZentronics Townline Rd. 954 Senate Drive Carrollton 75006
Tel: (206) 643-3950 155 Colonnade Road Rochester 14623 ~:r(5~ ~:~~-6733 Tel: (214) 380-6464 'TWX: 910-443-2469 Unit 17

~;t~~~-~~~
'TWX: 910-860-5377

Nepean K2E 7K1 'TWX: 810-450-2531
tArrow ElectronIcs, Inc. Wyle Distribution Group Tel: (6'13) 226-8840

15385 N.E. 90th Sireet
Arrow Electronics, Inc. Hamilton/Avnet Electronics 10899 Kmghurst

Redmond 98052 Zentronics 4588 Emery Industrial Pkwy. Suite 100 60-1313 Border SI. 20 Oser Avenue Warrensville Heights 44128 Houston 77099 Tel: (206) 881-1150
Winnipeg R3H 0/4 Hauppauge 11788 Tel: (216) 349-5100 Tel: (713) 530-4700 Tel: (204) 694-7957 Tel: (516) 231-1000 'TWX: 810-427-9452 'TWX: 910-880-4439 WISCONSIN 'TWX: 510-227-6623
QUEBEC

tHamiiton/Avnet Electronics tArrow Electronics, Inc. Arrow ElectroniCS, Inc. tArrow Electronics Inc. Hamilton/Avnet 777 Brooksedge Blvd. 2227 W. Braker Lane 200 N. Patrick Blvd., Ste. 100 4050 Jean Talon Quest 933 Motor Parkway Westerville 43081 Austin 78758 Brookileld 53005 Montreal H4P 1 W1 Hauppauge 11788 Tel: (614) 882-7004 Tel: (512) 835-4180 Tel: (414) 767-6600
Tel: (514) 735-5511 ~\5Jf~~t~~~ TWX: 910-874-1348 lWX: 910·262-1193 'TWX: 05-25590 tPioneer Electronics

4433 Interpolnt Boulevard tHamilton/Avnet Electronics Hamilton/Avnet Electronics Arrow Electronics, Inc. tHamiiton/Avnet Electronics ~:r(5~ ~f~~t9900 1807 W. Braker Lane 2975 Moorfand Road 500 Avenue St-Jean Baptiste
333 Metro Park Austin 78758 New Berlin 53151 Suite 280 .
Rochester 14623 'TWX: 810-459-1622 Tel: (512) 837-8911 Tel: (414) 784-4510 Quebec G2E 5R9
Tel: (716) 475-9130 'TWX: 910-874-1319 'TWX: 910-262-1182 Tel: (418) 871-7500 'TWX: 510-253-5470 tPioneer ElectroniCS FAX: 418-871-6816 4800 E. 131st Street tHamiiton/Avnet Electronics Hamilton/Avnet Electronics tHamilton/Avnet Electronics Cleveland 44105 2111 W. Walnut Hill Lane CANADA 2795 Halpern 103 Twin Oaks Drive Tel: (216) 587-3600

~~I~~2~~~~O-6111 St. Laurent H2E 7K1 Syracuse 13206 'TWX: 810-422-2211
Tel: (514) 335-1000 Tel: (315) 437-0288 'TWX: 910-860-5929 ALBERTA 'TWX: 610-421-3731 'TWX: 710-541- I 560 OKLAHOMA

tHamilton/Avnet ElectroniCS HamiitonJAvnet Electronics Zentronics
tMTI Systems Sales Arrow Electronics, Inc. 4850 Wright Rd., Suite 190 2816 21s1 Streel N.E. B17McCaffrey
38 Harbor Park Drive 1211 E. 51st SI., Suile 101 Stafford 77477 Calgary T2E 6Z3 St. Laurent H4T 1 M3
Port Washington 11050 Tulsa 74146 Tel: (713) 240-7733 Tel: (403) 230-3586 Tel: (514) 737-9700
Tel: (516) 621-6200 Tel: (918) 252-7537 'TWX: 910-881-5523 'TWX: 03-827-642 'TWX: 05-827-535

tMicrocomputer System Technical Distributor Center

DENMARK

Intel Denmark AlS
Glentevej 61, 3rc:! Floor
2400 Copenhagen NV
m~:(t~5~~1) 19 80 33

FINLAND

Intel Finland QY
Ruosilantie 2
00390 Helsinki
Tel: (358) 0 544 644
Tl.X: 123332

FRANCE

Intel Corporation S.A.R.L.
1. Rue Edison-B? 303
78054 St. Quentin-en-Yvelines
Cedex
Tel: (33) (1) 30 57 70 00
TLX: 699016

EUROPEAN SALES OFFICES
WEST GERMANY ISRAEL NDRWAY

Intel Semiconductor GmbH* Intel Semiconductor Ltd.1II: Intel Norway NS
Dornacher Strasse 1 Atidim Industrial Park-Neve Sharet Hvamveien 4-PO Box 92
8016 Feldkirchen bel MUenchen P.O. Box 43202 2013 SkJetten
Tel: (49) 089190992·0 Tel·AvIv 61430 Tel: (47) (6) 842420
TLX: 5·23177 Tel: (972) 03-498080 TLX: 78018

TLX: 371215
Intel Semiconductor GmbH
Hohenzollern Strasse 5
3000 Hannover 1

ITALY SPAIN

Tel: (49) 0511/344081 Intel Corporation ltalia S.p.A.1II: Intel Iberia SA
TLX: 9-23625 Mllanofiori Palazzo E Zurbaran,28

20090 Assago 28010 Madrid
Intel Semiconductor GmbH Milano Tel: (34) (1) 308.25.52
Abraham Uncaln Strasse 16-18 +~: (~~1 ~~ 89200950 TLX: 46880
6200 Wiesbaden
Tel: (49) 06121/7605.()
TLX: 4·186183 NETHERLANDS SWEDEN

Intel Semiconductor GmbH Intel Semiconductor B.V,· Intel Sweden A.B.'"
Zetlachring 10A
7000 Stuttgart 80

Postbus 84130
3099 CC Rotterdam

Dalvagen 24
17136 Solna

Tel: (49) 0711/7287-280
TLX: 7-254826

Tel: (31) 10.407.11.11
TLX: 22283

Tel: (46) 8 734 01 00
TLX: 12261

SWITZERLAND

Intel Semiconductor A.G.
ZUerichstrasse
8185 Winkel-RueH bei Zuerich
Tel: (41) 01/860 62 62
TLX: 825977

UNITED KINGDOM

~~~~~,ff.0ratlon (UK) Ltd. * 
SWindon, ~iltshire SN3 1 RJ 
Tel: (44) (0793) 696000 
TLX: 444447/8 

EUROPEAN DISTRIBUTORS/REPRESENTATIVES 
AUSTRIA Tekelec-Airtronic ITALY Dttram ~~~~~e~:b:~~:ms 
Bacher Electronics G.m.b.H. 

Cite des Bruyeres 
Intest 

Avenlda Miguel Bombarda, 133 
Rue Carle Vemet - BP 2 1000 Usboa • Western Road 

Rotenmuehlgasse 26 92310 Sevres Divislone m Industries GmbH Tel: (35) (1) 54 53 13 Bracknell RG121RW 
1120Wien Tel: (33) (1) 45 34 75 35 Vlale Mtlanofiori TLX: 14182 Tel: (44) (0344) 55333 
Tel: (43) (0222) 83 56 46 TLX: 204552 Palazzo E/5 Tl.X: 847201 
TLX: 31532 ~~g~~~j~31 SPAIN 

WEST GERMANY Jermyn 
BELGIUM TLX: 311351 ATD Electronica, S.A. Vestry Estate 

Inelco Belgium S.A. Electronic 2000 AG Lasl Elettronica S.pA Plaza Ciudad de Viena, 6 OHord Road 

Av. des Croix de Guerra 94 Stahlgruberring 12 V. Ie Fulvlo Testl, 126 28040 Madrid Sevenoaks 
1120 Bruxelles 8000 Muenchen 82 20092 Cinlsello Balsamo (MI) • Tel: (34) (1) 23440 00 Kent TN14 5EU 

?lo~ga~~~:rnlaan, 94 
Tel: (49) 089/42001-0 Tel: (39) 02/2440012 TLX: 42477 Tel: (44) (0732) 450144 
TLX: 522561 Tl.X: 352040 ITT-SESA TLX: 95142' 

Tel: (32) (02) 216 01 60 ITT Multikomponent GmbH Telcom S.r.l. ~~roMJla~e~t"gel. 21-3 MMD TLX: 64475 or 22090 PosHach 1265 Via M. Civilali 75 Unit 8 SouthvIew Park 
Bahnhofstrasse 44 20148 Milano Tel: (34) (1) 419 09 57 Caversham 

DENMARK 7141 Moegllngen Tel: (39) 02/4049046 TLX: 2746t Readln~ . 
ITT-Multikomponent 

Tel: (49) 07141/4879 TLX: 335654 . Metrologla Iberica. SA. Berkshire RG4 OAF 
TLX: 7264472 Tel: (44) (0734) 481666 Naverland 29 ITT Multicomponents etra. de Fuencarral, n.80 

2600 Glostrup Jermyn GmbH Viale Milanofiorl E/5 28100 Alcobendas (Madrid) TLX: 846669 
Tel: (45) (0) 245 66 45 1m Dachsstueck 9 ~~~~~8~~j~31 

Tel: (34) (1) 653 8611 
Rapid Silicon TLX: 33355 6250 limburg Rapid House Tel: (49) 06431/508·0 TLX: 311351 SWEDEN Denmark Street 

-FINLAND TLX: 415257-0 
Silverstar Nordlsk Elektronlk AB High Wycombe 

OV Flntronic AS Metrologle GmbH Via Dei Gracchi 20 Torshamnsgatan 39 . BuckinijhamShlre HP11 2ER 
Melkonkatu 24A Meglingerstrasse 49 20146 Milano Box 36 +~: (~~7~~94) 442266 
00210 Helsinki 8000 Muenchen 71 Tel: (39) 02/49961. 164 93 Kista 
Tel: (358) (0) 6926022 Tel: (49) 089/78042.() TLX: 332189 Tel: (46) 08·03 46 30 

Rapid Systems TLX: 124224 TLX: 5213189 TLX: 10547 
NETHERLANDS Rapid House 

FRANCE 
Proelectton Vertrlebs GmbH SWITZERLAND Denmark Street 
Max Planck Strasse 1-3 Koning en Hartman Elektrotechniek High Wycombe 

Almex 6072 Dreieich B.V. Industrade A.G. Buckinghamshire HP11 2ER 
Zone industrielle d'Antony Tel: (49) 06103/30434·3 Energieweg 1 Hertislrasse 31 Tel: (44) (0494) 450244 
48, rue de l'Aubeplne TLX: 417903 2627 AP Delft 8304 Wallisellen TLX: 837931 
BP 102 Tel: (31) (0) 151609906 Tel: (41) (01) 8328111 
92164 Antony cedex IRELAND TLX: 38250 TLX: 56788 

YUGOSLAVIA 
:::~i~gbbU7 46 66 21 12 ~I;~ag~~~c~t~ark NORWAY TURKEY 

Nordisk Elektronikk (Norge) NS H.R. Microelectronics Corp. 
Jermyn-Generim Glenageary Postboks 123 EMPA Electronic 2005 de la Cruz Blvd., Ste. 223 
60, rue des Gemeaux Co. Dublin Smedsvingen 4 Lindwurmstrasse 9SA Santa Clara. CA 95050 
SIIIc580 Tel: (21) (353) (Ot) 85 63 25 1364 Hvalstad 8000 Muenchen 2 U.S.A. 
94653 Rungis cedex TLX: 31584 Tel: (47) (02) 84 62 10 Tel: (49) 089/53 SO 570 Tel: (1) (408) 988·0286 
Tel: (33) (1) 49 78 49 78 Tl.X: 77546 TLX: 528573 TLX: 387452 
TLX: 261585 ISRAEL 

Rapido Electronic Components 
Metrologle Eastronlcs Ltd. PORTUGAL UNITED KINGDOM 

S.p.a. 
Tour d'Asnleres 11 Rozanis Street ATD Portugal LDA Accent Electronic Components Ltd. Via C. Beccaria. 8 
4, avo Laurenl~Cely P.O.B.39300 Rua Dos Lusiados, 5 Sala B Jubilee House, Jubilee Road 34133 Trieste 
92606 Asnieres Cedex Tel-Aviv 61392 1300 Usboa Letchworth. Herts SG6 HL . ltalla 
Tel: (33) (1) 47 90 62 40 Tel: (972) 03-475151 Tel: (35) (1) 64 80 91 Tel: (44) (0462) 686666 Tel: (39) 040/360555 
TLX: 611448 TLX:33638 Tl.X: 61562 TLX: 826293 TLX: 480461 

*Field Application Location 



AUSTRALIA 

Intel Australia Pty. Ltd.'" 
Spectrum BUlIdint 

~~~:sa~:;t~EI 200~ 6 
Tel: 612-957-2744
FAX: 612-923-2632

BRAZIL

Intel Semicondutores do Brazil LTDA
Av. Paulista. 1159-CJS 404/405
01311 - Sao Paulo· 5.P.
Tel: 55·11-287-5899
TLX: 39111531461SDB
FAX: 55-11-287-5119

• CHINA/HONG KONG

Intel PRC Corporation
15/F, Office 1, Citic Bldg.
Jlan Guo Men Wal Street
Beijing, PRC
Tel: (1) 500-4850
TLX: 22947 INTEL CN
FAX: (1) 500-2953

Intel Semiconductor Ud.'"
1 OIF East Tower
Bond Center
Queensway, Central
Hong Kong
Tel: (5) 8444-555
TLX: 63869 ISHLHK HX
FAX: (5) 8681-989

INTERNATIONAL SALES OFFICES
INDIA

Intel Asia Electronics, Inc.
4/2, Samrah Plaza
8t. Mark's Road
Bangalore 560001
Tel: 011-91·8t2·215065
TLX: 9538452875 DCBV
FAX: 091-812-215067

JAPAN

Intel Japan K.K
5-6 Takodai, Tsukuba·shi
Ibara!<i, 300-26
Tel: 0298-47-8511
TLX: 3656-160
FAX: 029747-8450

Intel Japan K.K.*
Bldg. Kumagaya
2-69 Hon-cho
Kumagaya·shl, Saitama 360
Tel: 0485-24·6871
FAX: 0485-24-7518

Intel J~an K.K. *

~~~~hi~:~~O~sr:~~~~~~ Bldg. 
Kawasaki-shi. Kanagawa 211 
Tel: 044-733-7011 
FAX: 044-733-7010 

~i~~~aG~~~~tsU9i Bldg. 
1-2-1 Asahi-machl 
Atsugl-shl, Kanagawa 243 
Tel: 0462-29·3731 
FAX: 0462-29-3781 

Intel Japan K.K.'" 
Ryokuchi-Ekl Bldg. 
2-4-1 Terauchl 
~~r:O~::-6i-~io~saka 560 
FAX: 06-863-1084 

Intel Japan K.K. 
Shlnmaru Bldg. 
1-5-1 Marunouchi 
Chiyoda·ku, Tokyo 100 
Tel: 03-201-3621 
FAX: 03·201-6850 

Intel Japan K.K. 
Green Bldg. 
1-16-20 Nishikl . 
Naka-ku, Nagoya-shl 
Aichl450 
Tel: 052-204-1261 
FAX: 052-204-1285 

KOREA 

Inlel Technology Asia, Ltd. 
16th Fleer, Life Bldg. 
61 Voido-dong, Voungdeungpo-Ku 
Seoul 150-010 
Tel: (2) 784-8186, 8286, 8386 
TLX: K29312INTELKO 
FAX: (2) 784-8096 

SINGAPORE 

Intel Singapore Technology, Ltd. 
101 Thomson Road #21-05{06 
United Square 
Singapore 1130 
Tel: 250-7811 
TLX: 39921 INTEL 
FAX: 250-9256 

TAIWAN . 

Intel Technology Far East Ltd. 
8th Floor, No. 205 
Bank Tower Bldg. 
Tung Hua N. Road 
Taipei 
Tel: 886-2-716·9660 
FAX: 886-2-717·2455 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 
ARGENTINA 

DAFSVS S.R.L. 
Chacabucc, 90.£ PISO 
106g-Buenos Aires 
Tel: 54-1-334-7726 
FAX: 54-1-334·1871 

AUSTRALIA 

Email Electronics 
15-17 Hume Street 
Hunllngdale, 3166 
Tel: 011.£1-3-544-8244 
TLX: M30895 
FAX: 011·61-3-543-8179 

NSD-AustraJia 
205 Middleborough Rd. 
Box Hill, Victoria 3128 
Tel: 03 8900870 
FAX: 03 8990819 

BRAZIL 

Elebra Microelectronica S.A. 
Rua GeraIdo Flausina Gomes, 78 
10th Floor 
04575 - Sao Paulo· S.P. 
Tel: 55-11·534-9641 
TLX: 55·11-54593/54591 
FAX: 55-11-534-9424 

CHILE 

DIN Instruments 
Suecia 2323 
Casilla 6055, Correo 22 
Santiago 
Tel: 56-2-225·8139 
TLX: 240.846 RUD 

CHINA/HONG KONG 

Novel Precision Machinery Co., Ltd. 

~~~·f,02~~':~~elin~ir:!~g· 
N.T., Kowloon
Hong Kong
Tel: 852.Q-4223222
1WX: 39114 JINMI HX
FAX: 852-0-4261602

*Field Application Location

INDIA

Micronic Devices
Arun Complex
No. 65 D.V.G. Road
Basavanagudi
Bangalore 560 004
Tel: 011-91-812-600-631

011·91-812·611·365
TLX: 9538458332 MDBG

Mlcronic Devices
No. 516 5th Floor
Swastik Chambers
Sion, Trombay Road
Chembur
Bombay 400 071 "
TLX: 9531 171447 MDEV

MlcronlC Devices
25{8, 1 st Roor
Bada Bazaar Marg
Old RaJlnder Nagar
New Delhi 110 060
Tel: 011·91-11-5723509

011-91-11-589771
TLX: 031-63253 MDNO IN

Micronlc Devices
6-3..a48/12A Dwarakapuri Colony
Hyderabad SOO 482
Tel: 011-91-842-226748

S&S Corporation
1587 Kooser Road
San Jose, CA 95118
Tel: (408) 978-6216
TLX: 820281
FAX: (408) 978-8635

JAPAN

Asahl Electronics Co. Ltd.
KMM Bldg. 2-14-1 Asano
Kokurakita-ku
Kitakyushu-shl 802
Tel: 093-511·6471
FAX: 093-551-7861

C. Itoh Techno-Science Co., Ltd.
4-8-1 Dobashi, Miyamae-ku
Kawasaki-shi, Kanagawa 213
Tel: 044-852-5121
FAX: 044-877-4268

Dia Semicon Systems, Inc.
Flower Hill Shlnmachi Higashl-kan
1-23-9 Shinmachl, Setagaya-ku
Tokyo 154
Tel: 03-439·1600
FAX: 03-439-1601

Okaya Kokl
2-4-18 Sakae
Naka-ku, Nagoya-shl 460
Tel: 052-204-2916
FAX: 052-204-2901

Ryoyo Electro Corp.
Kcnwa Bldg.
1-12-22 Tsukiji
Chuo-ku, Tokyo 104
Tel: 03-546-5011
FAX: 03-546-5044

KOREA

J-Tek Corporation
6th Floor, Government Pension Bldg.
24-3 Voido-dong
Voungdeungpo-ku
Seoul 150·010
Tel: 82-2-780-8039
TLX: 25299 KODIGIT
FAX: 82-2-784-8391

Samsung Electronics
150 Taepyungro-2 KA
Chungku, Seoul 100-102
Tel: 82·2·751-3985
TLX: 27970 KORSST
FAX: 82-2'753-0967

MEXICO

SSB Electronics, Inc.
675 Palomar Street, Bldg. 4, Suite A
Chula Vista, CA 92011
Tel: (619) 585·3253
TLX: 287751 CBALL UR
FAX: (619) 585-8322

Dicopel S.A.
TochtJl368 Frace. Ind. San Antonio
Azcapolzalcc
C.P. 02760·Mexico, D.F.
Tel: 52-5-561-3211
TLX: 177 3790 Dicome
FAX: 52-5-561·1279

PSI de Mexico
Francisco Villas Esq. AJusto
Cuemavaca-Morelos-CEP 62130
Tel: 52-73-13-9412
FAX: 52-73-17-5333

NEW ZEALAND
Email Electronics
36 Olive Road
Penrose, Auckland
Tel: 011·64·9-591-155
FAX: 011-64·9-592-681

SINGAPORE
Electronic Resources Pte, Ltd.
17 Harvey Road #04.Ql
Singapore 1336
Tel: 283.QBB8
1WX: 56541 ERS
FAX: 2895327

SOUTH AFRICA
ElectronIc Building Elements
178 Erasmus Street (off Watermeyet Street)
Meyerspark, Pretoria, 0184
Tel: 011-2712-803-7680
FAX: 011-2712-803-8294

TAIWAN
Micro Electronics Co~oration
f;p~~,7 R~~ Shen ast Rd.

Tel: 886-2-501-8231
FAX: 886-2-505-6609
Sertek
15/F 135, SeClion 2
Chien Juo North Rd.
Taipei 10479, R.O.C.
Tel: (02) 5010055
FAX: (02) 5012521

(02) 5058414

VENEZUELA
P. Benavides S.A.
Avllanes a Rio
Residencia Kamarata
Lccales 4 AL 7
La Candelaria, Caracas
Tel: 58-2-574-8338
TLX: 28450
FAX: 58·2·572-3321

intel~

ALABAMA

"'Intel Corp.
5015 Bradford Dr .. Suite 2
Huntsville 35805
Tel: (205) 830·4010

ALASKA

Intel Corp.
c/o TransAJaska Data Systems
300 Old Steese Hwy.
Fairbanks 99701-3120
Tel: (907) 452-4401

Intel Corp.
c/o TransAlaska Data Systems
1551 Lore Road

~~~~~~~e5~~N76 

ARIZONA 

*Intel Corp. 
11225 N. 28th Dr. 
Suite 0-214 
Phoenix 65029 
Tel: (602) 869-4980 

*Intel Corp. 
500 E. Fry Blvd .• Suito M-15 
Sierra Vista 85635 
Tel: (602) 459-5010 

CALIFORNIA 

tlnlal Corp. 
21515 Vanowen St.. Ste. 116 

¥:r:(8f8j"{~~~gg 
"'Intel Corp. 
2250 E. Imperial Hwy .. Ste. 218 
EI Sogundo 90245 
Tel: (213) 640-6040 

"'Intel Corp. 
1900 Prairie City Rd. 
Folsom 95630-9597 
Tel: (916) 351-6143 

1-800-468-3548 

Intel Corp. 
9665 Cheasapeake Dr., Suite 325 
San Diego 92123-1326 
Tel: (619) 292-8086 

"""Intel Corp. 
400 N. Tustin Avenue 
Su~e 450 
Santa Ana 92705 
Tel: (714) 635-9642 

CALIFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 97(}t7oo 

1-800-421-0386 

DOMESTIC SERVICE OFFICES 
~*tlntel Corp. 
San Tomas 4 

KANSAS NEW YORK 

2700 San Tomas Exp., 2nd Floor *Intel Corp. *tlntel Corp. 
Santa Clara 95051 10985 Cody. Sune 140 2950 Expressway Dr. South 
Tel: (408) 986·8086 Overland Park 66210 Islandia 11722 

Tel: (913) 345-2727 Tel: (516) 231-3300 

COLORADO 
~:~~~rguslness Center MARYLAND 

*Intel Corp. 
~1~t\l(I~~5~~ute 9 650 S. Cherry St •• Suite 915 "'·tlntal Corp. 

Denver 80222 10010 Junction Dr., Suite 200 Tel: (914) 897-3860 
Tel: (303) 321-8086 Annapolis Junction 20701 

Tel: (301) 206-2860 

CONNECTICUT 
FAX: 301-206-36n NORTH CAROLINA 

*'ntel Corp. I 

;~e~°fPa:rm Corporate Park MASSACHUSETTS 5800 Executive Dr., Ste. 105 
Charlotte 28212 83 Wooster Heights Rd. ... tlntel Corp. Tel: (704) 568-l1966 Danbury 06810 3 Carlisle Rd •• 2nd Floor 

Tel: (203) 748-3130 Westford 01886 **Intel Corp. 
Tel: (508) 692-1060 2700 Wycliff Road 

FLORIDA Suite 102 

MICHIGAN 
Raleigh 27607 

**Intel Corp. Tel: (919) 781-8022 
6363 N.W. 6th,Way. Ste. 100 *tlntel Corp. 
Ft. Lauderdale 33309 7071 Orchard Lske Rd .. Ste. 1 DO OHIO Tel: (305) 771-0600 West Bloomfield 48322 

*Intel Corp. 
Tel: (313) 651-8905 

~rt~~~O~nter Dr., Ste. 220 5850 T.G. Lse Blvd •• Sto. 340 
OManda 32822 MINNESOTA ~:r(s~~:~5350 Tel: (407) 240-8000 

"'tlntel Corp. 
*tlntel Corp. 

GEORGIA 3500 W. 80th St.. Subo 360 
25700 Scienco Park Dr .. Ste. 100 

~~f(s~2~t~~~~~~ Beachwood 44122 
"'Intel Corp. Tel: (216) 464-2736 
3280 Pointa Pkwy •• Ste. 200 
Norcross 30092 MISSOURI 
Tel: (404) 449-0541 OREGON 

;~I~~·CilYEXP .• Ste. 131 HAWAII 
Intel Corp. 

Earth CiW 63045 15254 N.W. Greenbrier Parkway 

"'Intel Corp. Tel: (314 291-1990 Building B 
Beaverton 97005 

U.S.I.S.C. Signal Batt. Tel: (503) 645.aD51 
Building T-1521 

NEW JERSEY Shafter Plats "'Intel Corp. Shafter 96856 
··Intel Corp. 5200 N.E. Elam Young Parkway 
300 Sylvan Avenue Hillsboro 97123 

ILLINOIS Englewood Cliffs 07632 Tel: (503) 681-8080 
Tel: (201) 567-0821 

·"'tlntel Co~. 
"'Intel Corp. PENNSYLVANIA 

~~~~'m~~~~n~~le7~d., Ste. 400 Parkway 109 OffIce Center 
Tol: (312) 605-8031 328 Newman Springs Road "'tlntel Corp.

Red Bank 07701 455 Pennsylvania Ave .. Ste. 230
Tel: (201) 747-2233 Fort Washington 19034

INDIANA Tol: (215) 641-1000
"'Intel Corp.

"'Intel Corp. 280 Corporate Center tlntel Corp.
87n Purdue Rd., Ste. 125 75 Uvlngston Ave., 1 st Floor 400 Penn Center Blvd .• Ste. 610
Indianapolis 46268 Roseland 07068 Pittsburgh 15235
Tel: (317) 875-0823 Tel: (201) 740-0111 Tel: (412) 823-4970

CUSTOMER TRAINING CENTERS
ILLINOIS

300 N. Martingale Road
Suite 300
Schaumburg;0173

Tel: \~gg~21~~

MASSACHUSETTS

3 Carlisle Road, First Floor
Wesflord 01886
Tel: (301) 220-3380

l-l100-328-D386

MARYLAND

10010 Junction Dr.
Su~e200
Annapolis Junction 20701
Tel: (301) 206-2860

1-800-328-0386

Intel Corp.
1513 Cedar Cliff Dr.

¥.r~r~1 ~mko
PUERTO RICO

Intel Corp.
South Industrial Park
P.O. Box 910
Las Piedras 00671
Tel: (809) 733-8616

TEXAS

Inial Corp.
8815 Dyer St .. Su~e 225
EI Paso 79904
Tel: (915) 751-0186

"'Intel Corp.
313 E. Anderson lane, Suite 314
Austin 78752
Tel: (512) 454-3628

**tlntel Corp.
12000 Ford Rd .. Suite 401
Dallas 75234
Tel: (214) 241-8087

;~~I ~wr:Freeway. Ste. 1490
Houston n074
Tel: (713) 988-8086

UTAH

Intel Corp.
428 East 6400 South. Ste. 104
Murray 84107 -
Tel: (801) 263-8051

·VIRGINIA

;\l:1 ~.:e.: Rose Rd •• Sto. 108
Richmond 23288
Tel: (804) 282-5668

WASHINGTON

"'Intel Corp. .
155 loath Avenue N.E., Ste. 386
Bellevue 9SD04
Tel: (206) 453-8086

CANADA
ONTARIO

Intel Semiconductor of
canada. Ud.
2650 Queensvlew Dr., Ste. 250
Ottawa K2B SH6
Tol: (613) 829-9714
FAX: 613·82(}5936

Intel Semiconductor of
Canada, Ud.
190 Attwell Dr .• Sto. 102
Rexdalo Maw 6HS
Tel: (416) 675-2105
FAX: 416-675-2438

SYSTEMS ENGINEERING MANAGERS OFFICES
MINNESOTA

3500 W. 80th Street
Suite 360
Bloomington 55431
Tel: (612) 835-6722

tSystem Engineering locations
·Carry-in locations

"''''carry-In/mall-In locations

NEW YORK

2950 Expressway Dr •• South
Islandia 11722
Tel: (506) 231-3300

