Embedded Applications

®

el

n

]

Order Number 270648-002

intel@'f

Intel the Microcomputer Company:

When Intel invented the microcomputer in 1971, it created the era of microcomputers. Whether
used in embedded applications such as automobiles or microwave ovens, or as the CPU in
personal computers or supercomputers, Intel’s microcomputers have always offered leading-edge
technology. Intel continues to strive for the highest standards in memory, microcomputer
components, modules and systems to give its customers the best possible competitive advantages.

EMBEDDED APPLICATIONS
HANDBOOK

1990

- Intel Corporation n'iakes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at ariy time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel proQucté:

376, 386, 387,486, 4-SITE, Above, ACE51, ACE96, ACE186, ACE196, ACE960,
BITBUS, COMMputer, CREDIT, Data Pipeline, DVI, ETOX, FaxBACK, Genius, i, ?,
i486, i750, 860, ICE, iCEL, ICEVIEW, iCS, iDBP, iDIS, I2ICE, iLBX, iMDDX, iMMX,
Inboard, Insite, Intel, intgl, Intel386, intglBOS, Intel Certified, Intelevision, intgligent
Identifier, intgligent Programming, Intellec, Intellink, iOSP, iPAT, iPDS, iPSC, iRMK,
iRMX, iSBC, iSBX, iSDM, iSXM, Library Manager, MAPNET, MCS, Megachassis,
MICROMAINFRAME, MULTIBUS, MULTICHANNEL, MULTIMODULE, MultiSERVER,
ONCE, OpenNET, OTP, PRO750, PROMPT, Promware, QUEST, QueX, Quick-Erase,
Quick-Pulse Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD,
SugarCube, ToolTALK, UPI, Visual Edge, VLSIiCEL, and ZapCode, and the combina-
tion of ICE, iCS, iRMX, iSBC, iSBX, iSXM, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

MULTIBUS is a patented Intel bus.
CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporatibn and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trade-
mark or products.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641 ,

Mt. Prospect, IL 60056-7641

©INTEL CORPORATION 1989 CG-101789

intel®

- CUSTOMER SUPPORT

INTEL’S COMPLETE SUPPORT SOLUTION WORLDWIDE |

Customer Support is Intel’s complete support service that provides Intel customers with hardware support,
software support, customer training, consulting services and network management services. For detailed infor-
mation contact your local sales offices.

After a customer purchases any system hardware or software product, service and support become major
factors in determining whether that product will continue to meet a customer’s expectations. Such support
requires an international support organization and a breadth of programs to meet a variety of customer needs.
As you might expect, Intel’s customer support is quite extensive. It can start with assistance during your
development effort to network management. 100 Intel sales and service offices are located worldwide—in the
U.S., Canada, Europe and the Far East. So wherever you're using Intel technology, our professional staff is
within close reach.

HARDWARE SUPPORT SERVICES

Intel’s hardware maintenance service, starting with complete on-site installation will boost your productivity
from the start and keep you running at maximum efficiency. Support for system or board level products can be
tailored to match your needs, from complete on-site repair and maintenance support to economical carry-in or
mail-in factory service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in
your development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as
well as work-arounds, patches and other solutions.

Intel’s software support consists of two levels of contracts. Standard support includes TIPS (Technical Infor-
mation Phone Service), updates and subscription service (product-specific troubleshooting guides and;
COMMENTS Magazine). Basic supé)ort consists of updates and the subscription service. Contracts are sold in
environments which represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application
effort. You can use our system engineers in a variety of ways ranging from assistance in using a new product,
developing an application, personalizing training and customizing an Intel product to providing technical and
management consulting. Systems Engineers are well versed in technical areas such as microcommunications,
real-time applications, embedded microcontrollers, and network services. You know your application needs;
we know our products. Working together we can help you get a successful product to market in the least
possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementa-
tion. In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of
self-study. For optimum convenience; workshops are scheduled regularly at Training Centers worldwide or we
can take our workshops to you for on-site instruction. Covering a wide variety of topics, Intel’s major course
categories include: architecture and assembly language, programming and operating systems, BITBUS™ and
LAN applications.

NETWORK MANAGEMENT SERVICES

Today’s networking products are powerful and extremely flexible. The return they can provide on your invest-
ment via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network’s physical and functional design, to
implementation, installation and maintenance. Whether installing your first network or adding to an existing
one, Intel’s Networking Specialists can optimize network performance for you.

CG/CUSTSUPP/100389

Table of Contents

MCS®-48 FAMILY

Chapter 1

MCS®-48 APPLICATION NOTES
AP-24 Application Techniques for the MCS®-48 Familyccccooeeincerncieiniccnnne 1-1
AP-40 Keyboard/Display Scanning with Intel's MCS®-48 Microcomputers 1-25
AP-49 Serial /O and Math Utilities for the 8049 Microcomputercccceveeeeuenee. 1-50
AP-55A A High-Speed Emulator for the Intel MCS®-48 Microcomputers 1-73
AP-91 Using the 8049 as an 80 Column Printer Controllercccccercnviininnnennns 1-173

MCS®-51 FAMILY

Chapter 2

MCS®-51 APPLICATION NOTES & ARTICLE REPRINTS
AP-69 An Introduction to the Intel MCS®-51 Single-Chip Microcomputer 24
AP-70 Using the Intel MCS®-51 Boolean Processing Capablhtnes 2-31
AP-223 8051 Based CRT Terminal Controllercoccvererereslennenenreniecenneneeseennenee 2-76
AB-38 Interfacing the 82786 Graphic Coprocessor to the 8051ccccceeviireneenne 2-153
AB-39 Interfacing the Densitron LCD to the 8051c.cccecceecenne e 2-159
AB-40 32-Bit Math Routines for the 80571ccooiiiiiiiierieereee e 2-166
AB-12 Designing a Mailbox Memory for Two 80C31 Microcontrollers Using EPLDs 2-175
AP-252 Designing with the 80C51BHcccceoiiiiiii e 2-189
AP-410 Enhanced Serial Port on the 83C51FAccciiuniiinicecc e 2-213
AB-41 Software Serial Port Implemented with the PCAccoiiiiiniicinenene 2-221
AP-415 83C51FA/FB PCA COOKDOOKccrviueriieniiiiecieieeeiee e eerernens 2-244
AP-425 Small DC Motor CONrolcouiiiieiieetiicicccc et 2-287
AP-429 Application Techniques for the 83C152 Global Serial Channel in.

CSMA/CD MOGEcveevenieieerenee ettt sttt see s eeeees 2-301

AR-517 Using the 8051 Microcontroller with Resonant Transducersccceveun.e. 2-369
AR-526 Analog/Digital Processing with Microcontrollersccccoecviiniinieincnnene. 2-374

Chapter 3

ASIC FAMILY APPLICATION NOTE & ARTICLE REPRINT
AP-413 Using Intel’'s ASIC Core Cell to Expand the Capabilities of an 80C51

Based SYSIEmcooiiiee e 3-1
AR-537 A Fast-Turnaround, Easily Testable ASIC Chip for Serial Bus Control 3-11
THE RUPI™ FAMILY
Chapter 4
RUPI™ APPLICATION NOTES »
AP-281 UPI-452 Accelerates 80286 Bus Performance.............ccccoevveinvinciincncccnne 4-1
) AP-283 RUPI™/Flexibility in Frame Size with the 8044ccccoevineiinennicnenenne 4-21
80186/80188 FAMILY
Chapter 5
80186/188 APPLICATION NOTES .
AP-186 Using the 80186/188/C186/C188 MiICroprocessorcecouueveieveunerinainnns 5-1
AP-258 High Speed Numerics with the 80186/80188 and 8087 e 5-83
AP-286 80186/188 Interface to Intel Microcontrollerscoeevernereecrenecnenenens 5-99
AB-36 80186/80188 DMA LAENCYcvveerviuiieereecnreseseeeree e senesee e eseeeeenen 5-129
AB-37 80186/80188 EFI Drive and Oscillator Operatlon ... 5-132
AB-31 The 80C186/80C188 Integrated Refresh Control Unitcccccvevenienenncnne 5-134
AB-35 DRAM Refresh/Control with the 80186/188cccceereevererercercenereae 5-147

vii

Table of Contents (Continued)

MCS®-96 FAMILY

Chapter 6

MCS®-96 APPLICATION NOTES & ARTICLE REPRINT :
AP-248 USING the 8096c..ccuereeieere et bt re s ees 6-1
AP-275 An FFT Algorithm with the MCS®-96 Products

Including Supporting Routines and EXamplescccocevveenercreneeneesennianenns 6-103
AB-32 Upgrade Path from 8096-90 to 8096BH to 80C196 6-178
AB-33 Memory Expansion for the 8096c......... ... 6-181
AB-34 Integer Square Root Routine for the 8096ccccveeeienrieciennne e feee, 6-193
AP-406 MCS®-96 Analog AcquiSIion PHMETcccecvvreverenienieire e 6-197
AP-428 Distributed Motor Control Using the 80C196KBcccoverieecreennrninrcenn, 6-296
AR-515 A Single-Chip Image ProCeSSOrciireeieiereieie e eee et 6-325

Chapter 7 ‘

MCS®-96 Diagnostic lerary ... 71

Chapter 8 : ‘

80960 ARTICLE REPRINTS B :
AB-42 B09B0KX SEIf-TESEcurueurremereririeesere sttt sene 8-1
AR-541 Intel's 80960: An Architecture Optimized for Embedded Control R - 8-4
AR-551 Embedded Controllers Push Printer Performanceccccceeervenicrcincaeenne. 8-18
AR-557 A Programmer’s View of the 80960 Architectureccccvrivineeveencenneenn 8-24

GENERAL MICROCONTROLLER

Chapter 9

APPLICATION NOTES
AP-125 Designing Microcontroller Systems for Electrically N0|sy Environments 9-1
AP-155 Oscillators for Microcontrollerscceveeirrenrmniee e 9-23
AP-318 Intel's 87C75PF Port Expander Reduces System Size & Design Time.......... 9-55
AP-315 Latched EPROMs Simplify Microcontroller Designsc.cccevvevveveeceeneesivnene 9-80

viii

MCS®-48 Application Notes 1

intel

APPLICATION | AP-24
NOTE

" February 1977

98-413A

intel

AP-24

INTRODUCTION

‘The INTEL® MCS-48™ family consists of a series
of seven parts, including three processors, which take
advantage of the latest advances in silicon techno-
logy to provide the system designer with an effec-
tive solution to a wide variety of design problems.
The significant contribution of the MCS-48 family
is that instead of consisting of integrated micro-
computer components it consists of integrated
microcomputer systems. A single integrated circuit
contains the processor, RAM, ROM (or PROM), a
timer, and /0.

This application note suggests a variéty of applica-
tion-techniques which are useful with the MCS48.
Rather than presenting the design of a complete
system it describes the implementation of “‘sub-
systems” which are common to many micropro-

cessor based systems. The subsystems described are
analog input and output, the use of tables for
function evaluation, receiving serial code, transmit-
ting serial code, and parity generation. After an
overview of the MCS-48 family these areas are dis-
cussed in a more -or less independent manner.

THE MCS48™ FAMILY

The processors in the MCS48 family all share an
identical architecture. The only significant differ-
ence is the type of on board program storage which
is provided. The 8748 (see Figure 1) includes 1024
bytes of erasable, programmable, ROM (EPROM),
the 8048 replaces the EPROM with an equivalent
amount of mask programmed ROM, nd the 8035
provides the CPU function with no on board
program storage. All three of these processors

]

EXPANSION TO MORE
1’0 AND MEMORY

PORT 2 PORT 0
BUS BUFFER BUS BUFFER
PORT 2 LATCH HIGH Lo Ol PorT 0 LATCH| 47 >
(LOW 4) AND [PORT 2 LATCH eroGRAM [3 EPROM/A0M Omg towc Voo
EXPANDER (HIGH 4) COUNTER KX - PC TEMP REG ——— PROGRAM SUPPLY
PORT 1/0 @) POWER Vee
SUPPLY | ———#» +5V (LOW POWER
STANDBY)
4 N USS _p onD
DECODE
i
0sC
FREQ —] x480 TIMER'EVENT LOWER PROGRAM
COUNTER PROGRAM STATUS
COUNTER WORD
TEST) ———————] (8) (8
@ @ < L j E ~_ PORT 1
8US
8 BUFFER
- AND
U l l ﬁ LATCH
ACCUMULATOR| | TEMP REG RAM ADDRESS
FLAGS REGISTER
(8) (8), MULTIPLEXER
REGISTER 0
TEST O
INSTRUCTION " REGISTER 1
ARITHMETIC REGISTER REGISTER 2
LOGIC AND DECODER TESTH
UNIT REGISTER 3
INT REGISTER 4
-~
FLAGO o | RecisTER
o REGISTER 6
FLAGT S [Recistern 7
CONDITIONAL E
BRANCH TIMER FLAG 8 LEVEL STACK
LOGIC (VARIABLE LENGTH)
DECIMAL CARRY
OPTIONAL SECOND
REGISTER BANK
. Acc
-
7| Al Timi
CONTROL AND TIMING CZCC 8iT TEST DATA STORE
w
INT___RESET __PROG S xrau xtaL2 2 PSEN SS__RD___WR
[¢] RESIDENT
RAM ARRAY

EXAAN

CPU ADDRESS PROGRAM SINGLE READ WRITE
EXPANDER MEMORY LATCH MEMORY STEP STROBES
STROBE SEPARATE STROBE ENABLE

ko }

INTERRUPT

64x8

MCS-48™ Internal Structure

1-2

AP-24

INSTRUCTION SET

Mnemonic Description Bytes Cycle Mnemonic Description Bytes Cycles
ADD AR Add register to A 1 1 § CALL Jump to subroutine 2 2
ADD A, @R Add data memory to A 1 1 2 RET Return 1 2
ADD A, =data Add immediate to A 2 2 é RETR Return and restore status 1 2
ADDC A, R Add register with carry 1 1 %]
ADDC A, @R Add data memory with carry 1 1 CLRC Clear Carry 1 1
ADDC A, =data Add immediate with carry 2 2 CPLC Complement Carry 1 1
ANL A, R And register to A 1 1 & CcLRFO Clear Flag 0 1 1
ANL A, @R And data memory to A 1 1 T CPLFO Complement Flag 0 1 1
ANL A, =data And immediate to A 2 2 CLR F1 Clear Flag 1 1 1
5 ORLAR Or register to A 1 1 CPL F1 Complement Flag 1 1 1
._‘; ORL A, @R Or data memory to A 1 1
E ORL A, =data Or lmr‘r.\edla!e IO.A ‘ 2 2 MOV A, R Move register to A 1]
§ igt 2 R Exclustve Or register to A 1 1 MOV A, @R Move data memory to A 1 1
& , @R Exclus!ve or Fiata mgmory toA 1 1 MOV A, =data Move immediate to A 2 2
I>('\IF§CL)‘\A, =data :Er‘)::crLur:::to;nmmedxate to A 3 f MOV R, A Move A to register 1 1
DEC A Decrement A 4 1 0 MOV @R, A Move A to data memory 1 1
CLR A Clear A 1 1 é’ MOV R, =data Move immediate to register 2 2
CPL A Complement A) 1 s MOV @R, =data Move immediate to data memory 2 2
A . 8 MOV A, PSW Move PSW to A 1 1
DA A Decimal Adjust A 1 1 o
a MOV PsSw, A Move A to PSW 1 1
SWAP A Swap nibbles of A ! ! XCHA,R Exchange A and register 1 1
StCAA FF:E:::E ﬁ :::: through carry : : XCH A, @R Exchange A and data memorY ! !
BR A Rotate A right 1 1 XCHD A, @R Exchange nibble of A and register 1 »1
RAC A Rotate A right through carry 1 1 MOVX A, @R Move external data memory to A 1 2
MOVX @R, A Move A to external data memory 1 2
INA,P Input port to A 1 2 MOVP A, @A Move to A from current page 1. 2
OUTLP, A Output A to port 1 2 MOVP3 A, @A Move to A from Page 3 1 2
ANL P, =data And immediate to port 2 2
5 ORL P, =data Or immediate to port 2 2
.:i-" INS A, BUS Input BUS to A 1 2 5 MOV A, T Read Timer/Counter 1 1
<] OQUTL BUS, A Output A to BUS 1 2 € MOVT, A Load Timer/Counter 1 1
S ANL BUS, =data And immediate to BUS 2 2 3 STRTT Start Timer 1 1
_% ORL BUS, =data Or immediate to BUS 2 2 ' % STRT CNT Start Counter 1 1
MOVD A, P Input Expander port to A 1 2 E STOP TCNT Stop Timer/Counter 1 1
MOVDP, A Output A to Expander port 1 2 - ENTCNTI Enable Timer/Counter ‘Interrupt 1 1
ANLDP, A And A to Expander port 1 2 DIS TCNTI Disable ijer/Counter Interrupt 1 1
ORLDP, A Or A to Expander port 1 2
g INCR Increment register 1 1 ENI Enable external interrupt 1 1
2 INC@eR Increment data memory 1 1 DiIs | Disable external interrupt 1 1
¢ DECR Decrement register 1 © SELRBO Select register bank 0 1 1
£ SELRB1 Select register bank 1 1 1
JMP addr Jump unconditional 2 2 8 SEL MBO Select memory bank 0 1 1
JVMPP @A Jump indirect 7 2 SEL MB1 Select memory bank 1 1 1
DJINZ R, addr Decrement register and skip 2 2 ENTO CLK Enable Clock output on TO 1 1
JC addr Jump on Carry = 1 2 2
JNC addr Jump on Carry =0 2 2
J Z addr Jump on A Zero 2 2 NoP No Operation 1 1
~ JNZ addr Jump on A not Zero 2 2
§ JTO addr Jumpon TO =1 2 2
§ INTO addr Jump on TO =0 2 2
@)T1 addr Jumpon T1 =1 2 2
JNT1 addr JumponT1 =0 2 2.
JFO addr Jumpon FO=1 2 2 X .
JF1 addr Jumpon F1 =1 2 2 Mnemonics copyright Intel Corporation 1976
JTF addr Jump on timer flag 2 2
JNI addr Jump on INT =0 2 2
JBb addr Jump on Accumulator Bit 2 2

Figure 2. 8048/8748/8035 Instruction Set

1-3

intel

AP-24

operate from a single S-volt power supply. The
8748 requires an additional 25-volt supply only
while the on board EPROM is.being programmed.
When installed in a system only the 5-volt supply is
needed. Aside from program storage, these chips
include 64 bytes of data storage (RAM), an eight
bit timer which can also be used to count external
events, 27 programmable I/O pins and the processor
itself. The processor offers a wide range of instruc-
tion capability including many designed for bit,
nibble, and byte manipulation. The instruction set
is summarized in Figure 2.

Aside from the processors, the MCS48 family
includes 4 devices: one pure I/O device and 3 com-
bination memory and I/O devices. The pure I/O
device is the 8243, a device which is connected to a
special 4 bit bus provided by the MCS48 processors
and which provides 16 I/O pins which can be pro-
grammatically controlled.

The combination memory and I/O devices consist
of the 8355, the 8755, and the 8155. The 8355
and the 8755 both provide 2,048 bytes of program
storage and two eight bit data ports. The only
difference between these devices is that the 8355
contains masked program ROM and the 8755 con-
tains EPROM. The 8155 combines 256 bytes of
data storage (RAM), two eight bit data ports, a six
bit control port, and a 14 bit programmable timer.

Figure 3 shows the various system configurations
which can be achieved using the MCS48 family of
parts. It should also be noted that eight of the pro-
cessors’ 1/O lines have been configured as a bidirec-
tional bus which can be used to interface to stan-
dard Intel peripheral parts such as the 8251 USART
(for serial 1/O), the 8255A PPI (provides 24 1/O
lines) and the complete range of memory compo-
‘nents.

More detailed information concerning the MCS-48.

family can be obtained from the “MCS-48 Micro-
computer User’s Manual” which provides a com-
plete description of the MCS48 family and its
members. A general familiarity with this document
will make the application techniques which follow
easier to understand.

ANALOG I/0

If analog 1/O is required for a MCS48™ system
there are many alternatives available from the
makers of analog I/O modules. By searching through
their catalogs it is possible to find almost any combi-
nation of features which is technically feasible. Per-
haps the best example of such modules are the MP-
10 and MP-20 hybrid modules recently introduced
by Burr-Brown Research Corporation. The MP-10
provides two analog outputs and the MP-20 pro-
vides 16 analog inputs. Both of these units were

[] Number of Available Timers
() Number of Available 1/0 Lines

1088 T
1K
- 8035 8048 8035
8048 8355 8355 2-8355
4-8155 4-8155 4-8155 4-8155
[B] (101)|[5] (116){[5] (116){[5] (131)
832
768 —
8035 8048 8035
- 8048 83556 8355 2-8355
b= 3-8155 . 3-8155 3-8155 3-8155
g (4 ol (95)|1a] (95|41 (110)
;578
512
g 8035 8048 8035
w’ 8048 8355 8355 2-8355
= 2-8155 2-8155 2-8155 2-8155
= [31 (s9)| (3] (74)|[3] (74)[3] (89)
5320
- 256 |—
8035 8048 8035
8048 8355 8355 2-8355
8155 8155 8155 8155
. [2] (38) {[2] (53) {[2] (53) |[2] (68)
6
8035 8048 8035
8048 8355 8355 2-8355
Ml el @8 |1 @8] 43)
1K 2K 3K 4K

PROGRAM MEMORY (ROM)

Figure 3. The Expanded MCS-48 TM System

specifically designed to interface with micro-
Processors.

A block diagram of the MP-10 is shown in Figure 4.
It consists of two eight bit digital to analog conver-
ters, two eight bit latches which are loaded from
the data bus, and address decoding logic to deter-
mine when the latches should be loaded. The D/A
converters each generate an analog output in the
range of 10 volts with an output impedance of 182.
Accuracy is £0.4% of full scale and the output is
stable 25usec after the eight bit binary data is
loaded into the appropriate latch. The latches are
loaded by the write pulse (WR) whenever the
proper address is presented to the MP-10. The
lower two addresses (AQ and A1) are used inter-
nally by the device. Addresses A2 & A3 are com-
pared with the address determination inputs B)
and B3. If their signals are found to be equal, and
if addresses A4-A13 are all high, then the device
is selected and one of the latches will be loaded.
Address bit A1 selects between output 1 and out-
put 2. If address bit A is set then the initializa-
tion channel of the DIA is selected. In order to
prepare for operation a data pattern of 804 must

AP-24

— A3
[a2
— A2
— A3

ADDRESS
LOGIC

LDADJ

REG1 DA

—

LOAD 2

ANALOG OUT
1

REG 2 DA

ANALOG OuT
2

'

Figure 4. MP-10 Block Diagram

be output to this channel following the reset of the
device.

A block diagram of the MP-20 analog to digital
converter is shown in figure 5. This unit consists
of a 16 input analog multiplexer, an instrumenta-
tion amplifier, an eight bit successive approxima-
tion analog to digital converter, and control logic.
The 16 input multiplexer can be used to input
either 16 single ended or 8 differential inputs.
The output from the multiplexer is fed into the
instrumentation amplifier which is configured so
that it can easily be strapped for single ended 0-5
volt inputs, single ended +5 volt inputs, or differen-
tial 0-5 volt signals. Provisions are made for an
external gain control resistor on the amplifier. The
gain control equation is:

_ 50k
G=2+ Rext

EXTERNAL
GAIN CONTROL

il

As| RESISTER
A « I
AN L T3

13—
Ap— S3
A 3= —> D8,
Ao— 3 —> DBy

s 2 — D85
A 5] ANALOG |~ pg;
A g4 TO — 08.

3

A OIGITAL |
A 3] INSTRUMENTATION | cONVERTER 082
- L AMPLIFIER _’Daa
A3} Ao - > o
A 2 Ay START CONVERSION
A A
Al a2

[3 T

ADDRESS ADDRESS CONTROL

LATCH ROY

T 1.5]

A3A2A140 Ay Ay RD

EXTERNAL
DELAY CONTROL
CAPACITOR

I

Figure 5. MP-20 Analog Subsystem

1-5

With no Rext (Rext = °°) the gain is two and the
input is 0-5 or 5 volts full scale. Adding an exter-
nal resistor results in higher gain so that low level
(£50mV) signals from thermocouples and strain
gauges can be accommodated. The output from
the amplifier is applied to the actual A/D con-
verter which provides an eight bit output with
guaranteed monotonicity and an accuracy of +04%
of full scale. Note that this accuracy is specified
for the entire module, not just for the converter
itself. The control logic monitors address lines
A5 through A4 to determine when the address of
the unit has been selected. An address that the unit
will respond to is determined by 11 address control
pins, labeled A4 through A14.If one of these pins
is tied to a logic O then the corresponding address
pin must be high in order for the unit to be selected.
If the pin is tied to a logic | then the corresponding
address pin must be low. If the address of the
module is selected when MEMR pulse occurs, the
lower four addresses (A3-AQ) are stored in a latch
which addresses the multiplexer. The coincidence
of the proper address and MEMR also initiates a
conversion and gates the output of the converter
on to the eight bit data bus.

The control logic of the MP-20 was designed to
operate directly with an MCS-80™ system. When a
MEMR occurs and a conversion is initiated the MP-
20 generates a READY signal which is used to
extend the cycle of the 8080A for the duration of
the conversion. READY is brought high after the
conversion is complete which allows the 8080A
to initiate a conversion and read the resulting data
in a single, albeit long, memory or I/O cycle. The
conversion time of the MP-20 depends on the gain
selected for the amplifier. With no external resistor
(R = o0) the gain is two and the conversion time is
35 usec. For R = 51082 the gain is:

SOK2 400

G=2+30q =

and the conversion time becomes 100usec. These
settling times are specified in the MP-20 data sheet
and range from 35 to 175 microseconds. The
READY timing is controlled by an external capa-
citor. For a gain of 2 no external capacitor is
required but if higher gains are selected a capacitor
is needed to extend the timing.

A schematic showing both the MP-10 D/A and the
MP-20 A/D connected to the 8748 is shown in
Figure 6. This configuration, which consists of
only four major components, gives an excellent
example of what modern technology can do for

AP-24

UNCOMMITTED 1'0 PINS

1K
5V
HE SIS EEEEEE
>»>» > > > P >
FITTT T2
. 46
|||——— @2
5
1KS2 52 DBIN
+5V OUTPUT SELECT .
Ls__s COMP IN
5 aro
8 MP-20
1A OUT
20pF 6MHz 20pF 79
1 |‘———— 1A IN LO
}‘—_L ! 2
— " 1A IN HI
2 3 77 MUX OUT HI
" XTALI XTAL2 1] Muxout Lo
1] Mux ENaB2 INg ANALOG
: SIN/DIFF Ny : INPUTS
116)
|8 PPN [— INg f—
RD 2 of mewr ms 7
N rom
60
Dy INg 8
59 5
o, INg
s8] ! 10
0; IN.
57 2 I
1 D3 INg
To S ‘ e 112
—] A 55 D‘ 0
. Y
—iNT I 54 DZ o
B s3], o
B0 7 nEzrrrre
37
Y R RR
3| 2 KO .
P24 +5V .
24 1 . .
Pl M
P22 MO R
22 2 P_,
P Dig DOg
— 2, 2], 19
20 MCS 48" 81°7 007 177
. 1% 005 |-
1o _ pog 5
9 Dly 8212 00, 10
?Lon ooy |2
2ew >t o, 00, |2
Pig ol 00, |-
a2f, ,
u] aLe |1 13 bs2
30] pROG 22— 557
Pz .
o | T
%a] 712
P = [N
N 2], BN
° 6 - » » P> P > >
0, RS2SR
5 a 18
L b ouT 1 |——
3]%
+5V D4 ANALOG
7 MP 10
Dy ouTPUTS
8o @
312
0]° 17
Do out.2
olifp e ZITEET2Z2Z2
5V —AAA~ il 3238
IS slefele]-Telele
1 14 ' 5V

9602

9602

MCS-48™™ Based Analog Processor

16

intel

AP-24

the system designer. The four components provide:

An eight bit microprocessor

64 bytes of RAM .
1024 bytes of UV erasable PRO
A timer/event counter

16 digital I/O pins

2 testable input pins

An interrupt capability

16 eight bit analog inputs

2 eight bit analog outputs

Smome a0 o

-

The MCS-48 communicates with the D/A and A/D
converters in a memory mapped mode (i.e., it treats
the devices as if they were external RAM). By set-
ting an address in either Rg or R{ and then execut-
ing a MOVX the software can transfer data between
the accumulator "and the analog I/O. When the
MCS-48 executes the MOVX instruction it first
sends the eight bit address out on the bus and
strobes it into the 8212 latch with the ALE (Address
.Latch Enable) signal. After the address is latched,
the MCS-48 uses the same bus to transfer data to
or from the accumulator. If data is being sent out
(MOVX 0Rj, A) the WR strobe is used; if the data
is being moved into the accumulator (MOVX A,
0Rj) the RD strobe is used. The one shots on the
WR line are used to delay the write strobe of the
MCS-48 to meet the data set up specifications of
the MP-10.

In order to provide reset capability for the analog
devices without dedicating an I/O pin from the
MCS-48, special addresses are used as reset channels.
Executing any MOVX with anaddressof OXXXXXXX
will reset the A/D module;a similar operation with
an address of XI1XXXXXX will reset the D/A; a
MOVX with an address of 01 XXXXXX will reset
both devices. All data transfers are accomplished
with the upper two bits of the address field equal
to 10. A summary of the addressing of the analog
devices is shown in Table 1. Notice that except for

an initialization channel for the D/A (which must -

Table 1. Analog Interface Addresses

INPUT OR OUTPUT

OX XX XXXX Reset A/D

XTXX XXXX Reset D/A
INPUT

0011 nnnn Read A/D Channel n n n n
OUTPUT

1011 0001 Initialize D/A

1011 0000 Write Channel 1

1011 0010 Write Channel 2

be written to following a reset to initialize its
internal logic) all channels involve some form of
data transfer.

As was mentioned previously, the MP-20 was
designed to use the READY line of the 8080A.
Obviously this presents a problem since the MCS-
48 does not support a READY line (with its
attendant requirement of entering WAIT state).
The necessity of a READY input can be overcome
by performing a read operation to set the channel
address, waiting the required delay (35 usec for a
gain of two) and then performing a second read to
actually obtain the data. The second read will read
in the data from the channel selected by the first
read irrespective of the channel selected for the
second read. Thus it is possible to use the second
read to set up the channel for the third read. Each
read can read in the current channel and select the
next channel for conversion.

The MP-20 is shown in Figure 6 strapped to input
16 single ended *5 volts signals. Programs which
were used to test this configuration are shown in
Figure 7. The first of these programs uses the D/A
converter to generate sawtooth waveforms by
outputting an incrementing value to the D/A
converters. The second program scans the analog
inputs and stores their digital values in a table
located in RAM.

Loc 0BJ SEQ SOURCE STATEMENT

3

4 THIS PROGRAM DUTPUTS A SAW-
s TOOTH WAVEFORM BY OUTPUTING
6 ;AN INCREMENTING PATTERN.

7§ emememmmmmmmmmeemmmmameaaen
8

2083 13 INITCH EQU 8B3H ; D/A INITIALIZATION CHANNEL
0888 14 INITDT EQU 80H 3 D/A INITIALIZATION DATA
. 2980 15 DATCH " EQU 8BBH ; D/A DATA CHANNEL
16
17 5 mmmemeeemoen
18 ; START OF TEST
19§ semmmmmmeeees
9180 28 0RG 188H
21 : INITIALIZE D/A
€108 2389 22 START: MOV A, #INITDT
8182 BSB3 23 MOV RB, 3 INITCH
2104 99 24 MOVX @ROLA
25 ; TEST LOOP-OUTPUT SAWTOOTH
9105 BABO 26 LOOP: MOV RO, #DATCH
8187 17 27 IN A
8188 90 28 MOVX @RO,A
8189 2485 29 aP LOOP
39 i END OF PROGRAM
31 END

Figure 7a. D/A Exercise Program

All mnemonics copyrighted © Intel Corporation 1976.

AP-24

Loc 0By seQ SOURCE STATEMENT
[)
1
2;
3 ; TEST PROGRAM FOR ANALOG INPUT
4 ; THIS PROGRAM SCANS THE INPUT CHANNELS
S ; AND STORES THE READINGS IN A TABLE
6 ; STARTING AT BUFF.
7
]
9
AL
"
12
0820 13 BUFF EQU 20H i START OF BUFFER
oonr 14 MAXCH EQU 15 + NO OF ANALDG INPUTS
() 15 AINCH EQU 8BS ; BASE ADDRESS OF ANALOG INPUTS
oS 16 TICK EQU B i EXECUTION TIME OF DUNZ
17
18 § meeeemmceeenn
19 ; START DF TEST
28§ ceeememmannn
8100 21 ORG 1004
22 i SETUP T SCAN ANALOG INPUTS
8180 BI2F - 23 START: MOV R1, #BUFF sMAXCH
9192 BBOF 24 MoV R3, BMAXCH
9184 BB 25 MoV RB, # CAINCHIMAXCH)
) 26 3 SELECT CHANNEL 1S
8106 88 27 MOVX A, Q@RS
28 ; WAIT >48 MICROSECONDS
2187 BCOS 29 Y R4, #40/TICK
8189 E£CO9 38 DNZ R4S
31 i NOW SCAN ANALOGS
2188 C8 32 LOOP: DEC R .
33 i GET DATA
918C 08 34 MOVX A,@RD
. 35 3 MOVE INTO BUFFER
818D A1 36 MoV @R1,A
37 ; DECREMENT BUFFER POINT
816 C3 38 . DEC Rt)
39 . ; PAD 28 MICROSEC
B18F BCA4 48 mov R4, #28/TICK :
9111 EC11 a1 DNZ R4,S
42 3 LOOP UNTIL DONE
0113 £B0B 43 DUNZ R3,L00P
. 44 ; REPEAT TEST FOREVER
2115 2400 45 P START
% + END OF PROGRAM
47 END

Figure 7b. A/D Exercise Program

TABLE LOOKUP TECHNIQUES

In the previous section the interface between analog
1/0 devices and the MCS-48™ was discussed. In
many applications involving analog I/O one quickly
finds that nature is inherently nonlinear, and the
mathematics involved in ‘linearizing it’ can tax the
computational power of the microprocessor, partic-
ularly if it has other tasks to perform. Problems
of this nature are good candidates for the use of
tables. ’

As an example of how tables can be used as part of
an analog output scheme, consider a system which
requires an MCS-48 to output a variable frequency
sinusoidal waveform. One method of performing
this function would be to use the timer to generate
an interrupt at a fixed rate of 256 times the desired
output frequency. At each interrupt the appropriate
value.of the sine function could be calculated from
the MacLaurin series:

3 5 7

. _ 1Ky 2k +1
Sinx=x—’3(—! +_)5L!—L’;T -D%x

QK+ D!

Where K is chosen to be large enough to provide
the required accuracy.
All mnemonics copyrighted © Intel Corporation 1976.

The above calculation, although conceptually
simple, would be time consuming and would
severely limit the possible output frequencies which
could be obtained. As an alternative to calculating
these values in real time, the values could be precal-

 culated off line and stored in a table. Upon each

interrupt the MCS-48 would merely have to retrieve
the appropriate value from the table and output
it to the D/A converter. the MCS-48 provides a
special instruction which can be used to access
data in a table. If the table is stored in the last 256
bytes of the first kilobyte of MCS48 memory
then the table lookup can be performed by loading
the independent variable (time in this case) into
the accumulator and executing the instruction.

MOVP3 A, @ A

This instruction uses the initial contents of the
accumulator to index into page 3 of program
storage. The location pointed to §s read and the
contents placed in the accumulator. If (as is often
the case) a table of fewer than 256 entries is
required, then the table can be located in any page
of program memory and the instruction:

MOVP A, @A

can be used to retrieve data from the table. This
instruction operates in the same manner as does
the previous instruction except that the current
page of program storage is assumed to contain
the table.

If it is possible to devote slightly more of the
microprocessor’s time to the table look up process,
then a much smaller table can often be utilized by
taking advantage of interpolation to determine
values of the function between values which are
actual entries in the table. As an example of this

FLOW METER

-—

j——

FLOW METER

CONTROL

AD PANEL

MCS 48

-—

— FLOWMETER

Figure 8. Flow Monitoring System

intel

AP-24

process consider the hypothetical system shown in
Figure 8. The purpose of this system is to measure
the flow through the three pipes, add them, and
display the total flow on the control panel. The
system consists of three flow meters which generate
a différential voltage which is some function of
flow, an A/D system with at least three differential
inputs, an MCS48, and a control panel. The
schematic shown in Figure 6 could easily become
part of this system, with the spare digital 1/O of
the MCS48 used as an interface to the control
panel. The simplicity of this system is clouded by
the flow transducers, which are assumed to be not
only nonlinear but also to require individual cali-
bration (this is not an unreasonable assumption for
a flow transducer). By usinga table look up process
and an 8748 the flow transducers can be calibrated
and the results of the calibration tests stored
directly in tables in the 8748. (The 8748 has a
PROM in place of the ROM of the 8048 and thus
makes such ‘one off” programmin~ nractical.)

The results which might be obtained from calibra-
ting one of the flow meters is shown in Figure 9.
The results are plotted as gals/hour versus the
measured voltage generated by the transducer. The
voltage is shown in hexadecimal form so that it
corresponds directly to the digital output of the
analog to digital converter. The flow required to
generate seventeen evenly spaced voltages (OH-100H
in steps of 10H) has been measured and plotted.
This information is shown in tabular form in
Figure 10. It is necessary to generate a program
which will convert any measured input from 00H
to FFH into the flow in units which can be inter-
preted by a human operator. This can easily be
done by simple interpolation.

FLOW (GAL HOUR)
w
S
T

0 T S 1 1 1 1 | N N T | 1 L1
00 10, 20, 30, 40, 50, 60, 70, 80, 90, A0, BO, CO, DO, EO, FO, 100,

Av

Figure 9. Flow Calibration Curve

TRANSDUCER
VOLTAGE (HEX) {00 |10 |20 |30|40|50|G60| 70{80[90{A0|BO|CO|DOfEO|FO

MEASURED FLOW .
\GAL HOUR) 0 |10f22126]30|34|38[40|41}42]43}45[48|49|5356/(63

Figure 10. Tabulated Flow Data

The eight bits of independent variable (voltage) can
be looked on as two four bit fields. The most signi-
ficant four bits (7-4) will be used to retrieve one of
the table values. The lower four bits (3-0) will be
used to interpolate between this value and the
value retrieved from the next higher location in the
table. If the upper four bits are given the symbol |
and the lower four bits the symbol N, then the
interpolation can be expressed as:

F(x) = F(I) + I—I‘é [F(I+1) - F(D)]

Where x is the measured voltage and F(x) is the
corresponding tlow.
If, as an example, the transducer voltage was

measured as 48H then the flow (ref. Figure 10)
would be:

F=30 + = (34-30)=32
A subroutine which implements this calculation is

shown in Figure 11. Before it is called the indcpen
dent variable (V) is placed in the accumulator and
register R1 is set to point at the first value in the
table. Aside from simple additions and subtractions
the only arithmetic required is to multiply two
values and then divide them by 16. The multiplica-
tion is handled via a subroutine which is also
shown in Figure 11. The division by 16 can be per-
formed by a four place right shift followed by a
rounding operation. The routine shown will handle
a monotonic increasing function of a single inde-
pendent variable. Fairly simple modifications are
required for nonmonotonic functions. Functions
of two variables can be handled by interpolating on
a plane rather than along a straight line. Although
this is more time consuming, requiring an inter-
polation for each of the independent variables and
a third to interpolate the final answer, it still
provides a simple means of quickly calculating the
required function. The use of tables can offer a
powerful technique for function evaluation to the
designer.

RECEIVING SERIAL CODE—BASIC
APPROACHES

Many microprocessor based systems require some
form of serial communication. Serial communica-
tion is extensively used because it allows two or
more pieces of equipment to exchange information
with a minimal number of interconnecting wires.
The minimization of interconnecting wires results
in simpler, cheaper, interconnects because fewer
(or smaller) cables and connectors are required.
Since the required number of drivers and receivers
required is reduced, it can become economically
feasible to provide much higher noise immunity

AP-24
Loc 0BJ SEQ SUURCE\SY“YEI’ENT LoC 0BJ SEQ SOURCE STATEMENT
LI 811C 83 56 RET
15 57
2 APPROX s8
3 AT ENTRY R1 POINTSAT TABLE 59 § ~-------
4 ; A HAS INDEPENDENT VARIABLE 60 ; MULTIPLY
S 81 5 —omemeeo
63 62 7 SET UP COUNT AND AEX
7 211D BBES 63 MULT: MoV COUNT, #8
8 ; 811F BARR - 64 MoV AEX, 20
9 65 ; CLEAR CARRY
18 8121 97 66 LOOPA: CLR c
1" 67 7 IF MULTIPLIER (8) <> 1 THEN SHIFT PRODUCT
12 Rx@ E€aQu Re 3 POINTER @ 8122 122B 68 LOOPB: JBB SSumM ’
13 RX1 £QU R1 1 POINTER? 8124 24 69 XCH A,REX
14 AEX EQu R2 3 EXTENSION OF A REGISTER 8125 67 78 RRC A
15 COUNT EQU R3 3 COUNTER 2126 2A 71 XCH A,AEX
16 TEMP EQU R4 3 TEMP STORAGE 0127 67 72 RRC L}
17 73 ; LOOP UNTIL DONE
18 § ---meeemmmeen 8128 EB22 74 DUN2 COUNT,LOOPB
19 : APPROXIMATION 812A 83 75 RET
20 3 cememeemeneen 7 3 ELSE ADD MULTIPLIER AND SHIFT PRODUCT
21 9128 2A 77 SSUM: XCH A,AEX
21988 22 ORG 108H 812C 69 78 ADD A, @RXD
23 3 POINT RX8 AT TEMP 212D 67 79 RRC A
2188 B384 24 APPROX: MOV RX®, # TEMP N 812€ 2A a8 XCH A,AEX
25 3 TEMP=N AND 8FH 812F 67 81 RRC A .
26 i A=P AND @FH 82 3 LOOP UNTIL DONE
8182 BaOR 27 MoV @RX8,#8 8138 EB21 83 DUNZ COUNT, LOOPA
2184 38 28 XCHD A, @RxD 2132 83 84 RET
8185 47 29 SWAP A
30 3 RX1=BASE+A
8106 69 31 ADD ARX1
8187 A9 32 MOV RX1,A .
33 3 RX1=TABLECP)
34 3 A=TABLEC(P+1) "
2188 E3 35 MOVP3 A,@A 2388 91 ORG 3884
2189 29 36 XCH A,RX1 92
g18a 17 37 INC A 2380 89 93 TABLE: DB 20 i THIS TABLE IS FROM FIG 18
8188 E3 38 MOVP3 A, @A 8381 8A 94 DB 10
39 3 ATABLE (P+1)-TABLE(P) 8382 16 o5 DB 22
818C 37 48 CPL A 8383 1A % DB 26
818D €9 41 ADD ARX1 8384 1E 97 DB 38
218E 37 42 CPL A 8385 22 8 DB 34
43 ; A=N*A/16 8386 26 9 DB 38
818F 341D 44 CALL MULT 8387 28 188 DB 48
8111 B8B2 45 MoV RXB, #AEX 8388 29 181 DB 41
2113 38 46 XCHD A, @RXP 8389 2A 182 DB 42
8114 47 47 SWAP A 8384 2B 183 DB 43
8115 2A 48 XCH A,AEX 838B 2D 184 DB 45
8116 7219 49 JB3 ADJUST 838C 38 185 DB 48
8118 2A 58 XCH ALAEX 838D 31 106 DB 49
8119 2A 51 ADJUST: XCH ALAEX 838E 35 187 DB 53
#11A 17 52 INC A 838F 38 108 DB 56
53 3 A=A+TABLE(P) 8398 3F 189 DB 63
8118 69 54 ADD ARX1 18
S5 3 RETURN 1m END
Figure 11. Table Lookup With Interpolation
with more sophisticated (and expensive) line eighth data bit usually consists of even parity on

terminators. The final, and usually most persua-
sive, argument in favor of serial communication
is that it may be the only method available to
accomplish the job. The obvious example of
this is telecommunications where it is necessary
to encode parallel information into serial format
in order to communicate via the telephone net-
work. The intent of this section is to show how
the facilities of the MCS-48™ can be brought to
bear on the problem of serial communication.

START BIT
{SPACE)
DATA BITS
STOP BITS
(MARK)

—A—
]D2|3141D5IDG‘D7‘DBI i 1
UIDII IDIDI 1 1 1

Figure 12. Serial ASCII Code

Probably the most common form of serial com-
munication is that used by the obiquitous Teletype-
serial ASCII. This format, shown in Figure 12, con-
sists of a START bit (0 or SPACE) followed by
eight data bits which are in turn followed by two
STOP bits (I or MARK). In actual practice the

All mnemonics copyrighted © Intel Corporation 1976.

1-10

the remaining seven data bits; for the purposes of
this discussion the eighth bit will be considered
only as data. A minor variation of this format
deletes one of the STOP bits. An algorithm which
might be used to sample serial data under software
control using a microprocessor is shown in Figure
13. Th: basic intent of this algorithm is to mini-
mize the effects of distortion and transmission rate
variations on the reliability of the communication
by sampling each data bit as close to its center as
possible. Upon entry to this routine the software
first samples the incoming data in a tight loop until
it is sensed as a MARK (logical one). As soon as a
MARK is detected, a second loop is entered during
which the software waits until the received data
goes to a SPACE (logical zero). The purpose of this
construction is to detect as accurately as possible
the leading edge of the START bit. This instant of
time will be used as a reference point for sampling
all of the following bits in the character. After
sensing the leading edge of the START bit a wait
of one half the expected bit time is implemented.
The period of the incoming signal is called P for
convenience. At the end of this wait the serial line
is tested—if it is MARK then the START bit was

AP-24

SHIFT
RxD INTO
BUFFER

Figure 13. Sample Serial Input Routine

invalid and the process is reinitialized. If the line is
still a SPACE, then the START bit is assumed to
be valid and a delay of one bit time is started. At
the completion of the delay the first data bit is
sampled and a new delay of one bit time is initiated.
This process is repeated until all eight data bits
have been sampled. The last bit sampled is checked
to determine if it is a valid STOP bit (a MARK). If
it is, the character is assumed to be valid; if it is
not, the character has a framing error and is pro-
bably invalid. A listing of a program which imple-
ments the above procedure is shown in Figure 14.

A disadvantage of the approach outlined in Figure
13 is that while the processor is inputting data
serially it must totally dedicate itself to this task.
Accurate timing can only be maintained if the
program remains in a tight wait loop without
allowing itself to be diverted to other functions.
During reception of a character from a Teletype

All mnemonics copyrighted © Intel Corporation 1976.

the processor will spend only a 100usecs or so pro-
cessing data and the rest of the 100 millisecs wait-
ing to do the processing at the right time. This lack
of efficiency (approximately 0.1%) in the utilization
of processing power is why devices such as the
8251 USART find broad application in micro-
processor systems.

Loc 08J SEQ SCURCE STATEMENT
B i seestesseristentniessnsirastns
1
2 SIMPLE SERIAL INPUT
3 -THIS CODE ASSUMES RXD 1S
4 CONNECTED TO PIN T8
E3
6 sesessessactresisterasssaenane
7
8
3
19
N n
0002 12 COUNT EQU R2 ; COUNTER
0088 13 BITNO EQU 8 3 NO OF BITS TO RECEIVE
8002 14 DLYHI EQU 2 3 HI DLY COUNT
BBA4 15 DLYLD EQU BA4H 3 LO DLY COUNT
16
8169 17 ORG 188K
18 7 LOOP UNTIL RXD=MARK
8180 2608 19 SERIN: UNT® s :
20 3 NOW LODP UNTIL RXD+SPACE
9102 3602 21 JTe s
22 i WAIT 1/2 BIT TIME
8104 341C 23 CALL HBIT
24 i IF FALSE START REINTIALIZE
8186 3688 25 JTe SERIN
26 5 ELSE SET BIT COUNT
8188 BABY 27 MOV COUNT, #BITNO+1
28 X 3 WAIT 1 BIT TIME
#18A 341C 29 LOOP: CALL HBIT
218C 341C 30 CALL HBIT
31 ; DECREMENT COUNT
32 i -IF 2ERD EXIT WITH CARRY SET ON
33 : -FRAMING ERROR
818E EA1S 34 DUNZ COUNT,LOAD
8110 97 35 R C
8111 3614 £ JTe EXIT
8113 A7 37 L C
8114 83 38 EXIT: RET
33 i LDAD DATA
8115 97 49 LOAD: CLR €
8116 2619 41 JNTR LLLA
8118 A7 42 cPL c
8113 67 43 LLLA: RRC A
44 i AND LODP
B11A 240A 45 P LocP
%
47 5
48
49 ;
58 .
51 3 SET UP LOOP
811C BCOB2 52 HBIT: MOV R4, #DLYH]
53 : LOOP UNTIL TIME DONE
811€ BBA4 54 HLOOP: MOV R3, #DLYLO
8126 EB28 S5 DMNZ R3S
8122 ECIE 56 DUNZ R4,HLOOP
8124 83 57 RET
58 i END OF PROGRAM
53 END

Figure 14. Simple Serial Input

\

The 8251 USART is simple to interface to the
MSC-48. Figure 15 shows such an interface. The
USART requires a high speed clock (CLK), an ini-
tilization signal (RESET), data clocks (TxC and
RxC), and data in order to operate. A circuit
showing the connection of an 8748 to an 8251
USART is shown in Figure 15. In the circuit shown
the high speed clock (which is used for internal
sequencing by the USART) is provided by con-

Inter AP-24 -

59904 MHz

= IT2| 3 =
X1 x2
3|,
24 P"
23
P2) —Bp)
P20 2240
2o
e A et
—= 7 P26 c/b GND
—3 P,: Pos P22 S 1 Reser =
—3Ue, wR P 91FR 55R 02—
0| — =
°y] PN 7o |l.——"0f 76 TR fo-
pl? 29 8748 19 8 — -
0 — 1P ° [. b &S ::’73
—ry D, D, RTS
2], 6 17 6.
— e Og Dgs 8251
1 i 5
s D, 1: s Txole s Yo
i S m 083
+5V Vee D, Dg2
o1 1 o, 2 EL] o s
5)ss o 112 271560 RxD[——0(1489
o
9
_2%. PSEN T :"9 » TxC]
5
7] Vss To CLK RxC
[—
RESET
) 4L 19968
- T MHz

7
10 -1
74161 2 74161 74161
o o o «CLK 0 0 @ « CLK o0 o m < CLkf—
O O O OCLR O O O OCLR O O O OCLR
1mp1213 |4I1 11213 |4|l 111211314 |1
=] +5V +5V 15V
= gl 8|8
HEEE HEHE
o

0000 -O0—-0-O

from the MCS-48. Although this situation could
have been circumvented by the use of an externally
generated reset which drove both the MCS48 and
the 8251, the second reason for program control of
the reset to the USART still stands. The USART
requires the presence of the CLK signal during
reset in order to properly initialize itself. The
ENTO CLK instruction which the MCS-48 must
execute before the 8251 will receive the CLK can

- obviously not be executed until after the system

reset has ended. Reset of the USART can be

_accomplished by the following code segment:

“install Jumper for 110 Baud Operation (-11)

Figure 15. MCS-48™™ to 8251 Interface

necting the CLK signal of the USART to the Tg
pin of the MCS48. The TQ pin of the MCS-48
can either be used as a directly testable input pin
or it can become, under program control, an out-
- put pin which oscillates at one third of the crystal
frequency. (Note that once this pin is designated
by the software to be an output it will remain so
until the system is reset.) In Figure 15 the crystal
frequency is 5.9904 MHz so the clock provided to
the 8251 is 1.9968 MHz, which conforms to its
specifications.

The initialization signal to the USART (RESET) is
provided programmatically by manipulation of bit
-5 of port 2. It was necessary to place the reset of
the 8251 under program control for two reasons.
The first reason is that the MCS-48 does not supply
a reset signal to other devices. The reason for this is
that it was felt to be more useful to provide another
pin of I/O function instead of a RESET OUT signal

ENT0 CLK ; TURN ON CLOCK

ORL P2, #00100000B ; START RESET

MoV R2, #DELAY ;DELAY USART
LOOP: DIJNZ R2,LOOP ; RESET TIME

ANL P2, #11011111B ; END RESET

This code first enables the clock, then asserts the
reset signal of a time period determined by the
constant DELAY. The delay invoked is (10 +
5*DELAY) microseconds for DELAY >0. The
USART requires a reset of approximately 6 CLK
periods so DELAY is chosen to be 1 which ensures
adequate reset timing. Note that for delays this
short, NOP instructions could also be used to time
the pulse.

The data clocks required by the USART are pro-
vided by the modem if the USART is operated in
the synchronous mode. In the more common
asynchronous mode, however, these clocks must
be provided by circuitry associated with the 8251.

The 5.9904 MHz crystal was chosen because the
resulting 1.9968 MHz clock to the USART can be
evenly divided to provide transmit and receive
clocks to the USART. Assuming the USART is in
the x16 mode (i.e. it requires data clocks 16 times
the baud rate) the 1.9968 MHz signal can be divided
by 13 to generate the proper clock rate for 9600
baud operation. This 9600 baud clock can be
further divided to give 4800, 2400, 1200, 600, and
300 baud signals. The 1200 baud signal can be
divided by 11 to give a 109.1 baud signal which is
within 1% of the 110 baud required by Teletypes.

The MCS48 communicates with the 8251 in a
memory mapped mode (i.e. as if the 8251 were
external RAM). The instructions available to do
this are MOVX 9Rj, A which stores the contents of
the accumulator at the external RAM location
addressed by Rj (=0 or 1), and its complement,
the MOVX A, @ Rj instruction which moves data
from the external RAM into the accumulator.
Since the MCS-48 multiplexes addresses and data
on the same eight bit bus an external latch would
be required in order to address the USART with

AP-24

Loc oBJ SOURCE STATEMENT

L]

1 ; SERIAL TEST

2 ; THIS CODE INTIALIZES THE USART

3 : AND TRANSMITS AN INCREMENTING

4 ; PATTERN. HARDWARE SHOWN IF FIG 15.

§ § meemmmmemeeememmeemmeemmmemeee
6
7 memeees
8 ; EQUATES
95 -meeees
10
11 MCLR EQU 28H ; USART RESET ADDRESS
[12DLY EQU 81 ; USART RESET DELAY
8 13 UCON EQU 7FH 5 USART CONTROL ADDRESS
88CE 14 MODE EQU 8CEH ; USART MODE
8021 150D EQU 21H ; USART CMD
807F 16 STAT EQU 7FH ; USART STATUS
2891 17 VAL EQU R1 3 TEST VALUE
(13 18 MASK EQU BBFH ; CHANGES CMD TO DATA CHANNEL
19
8189 28 ORG 186H
21 + TURN ON CLOCK
22 3 AND RESET USART
8108 75 23 TEST: ENTB CLK
8181 8A28 24 ORL P2, #MCLR
8163 BABY 25 mov R2, #DLY
9105 EASS 26 LOOP: DUNZ R2,L00P
8187 9ADF 2 ANL P2, # (NOT MCLR)
28 3 SELECT USART CONTROL
8189 237F 29 MoV A, #UCON
8188 3A 38 ouTL P2,A
31 : SEND MODE AND COMMAND
818C 23CE 32 MoV A, #MODE
910E 99 33 MOVX @R8,A ; (CONTENTS OF R@ UNIMPORTANT)
018F 2321 34 MoV A, #C0MD
8111 98 ©3s MIVX @R8,A
36 ; DO FOREVER
37 i SELECT USART STATUS
38) IF TXRDY=1 THEN
39 H DO;
48 H QUTPUT VALUE;
a1 s INCREMENT VALUE ;
42 3 END;
43 3 END:
8112 237F 44 TLP: MOV A, #STAT
8114 3A 45 ouTL P2,A
8115 89 46 MOVX A,@R® : (CONTENTS OF R8 UNIMPORTANT)
8116 67 47 RRC)
8117 €612 48 JNC e
8119 F9 49 mov A, VAL
811A 9ABF 58 ANL P2, #MASK
811C 98 s1 MOVX @R8,A
811D 19 52 INC VAL
BUIE 2412 s3 P R
54 ; END OF PROGRAM
S5 END

Figure 16. 8251 Test Program

RO or RI1. In order to minimize the circuitry in
Figure 15 an approach utilizing some of the 1/O
pins of the MCS48 to address the 8251 was chosen
instead. By connecting the chip select (CS) input
of the 8251 to bit 7 of port 2 (P27) and similarly
connecting the C/D address line of the 8251 to bit
6 of port 2 (P26) it is possible to address the 8251
without using RO or R1. The instruction sequence
to access the 8251 is to first reset P27 and set P26
to the appropriate state, use a MOVX instruction to
perform the appropriate operation, and then
finally set P27 to deselect the 8251. As a concrete

example of this addressing, Figure 16 shows the

code necessary to initialize the 8251 and output an
incrementing test pattern on a status driven basis.
If more than one 8251 were to be added to the
MCS48, or if other types of peripheral circuitry
would be required (e.g. an 8253 timer to generate
the data clocks) it would probably become desirable

All mnemonics copyrighted © Intel Corporation 1976.

to add the circuitry necessary to use RO or R1 to
address the peripheral devices. The circuitry which
has to be added to Figure 15 in order to make use
of RO or R1 to address the USART is shown in
Figure 17. Note that only the changes to Figure 15
are shown. The additional component required is
the 8212 eight bit latch. This latch is loaded, when-
ever a valid address is on the bus by the Address
Latch Enable (ALE) signal provided by the MCS-
48. During an external read or write cycle this
address is used to address the 8251 in a linear
select mode. In the circuit shown, the 8251 will be

selected by any address with bit 1 a logical zero

(XXXXXX0X) and the selection of control or data
transfer (C/D) will be based on bit zero of the
address obtained from RO or R1. Figure 18 shows
the program of Figure 16 modified to utilize the
addressing inherent in the MOVX instructions.

—] Py WR w
— P25 AD
] o
+5V—AAA— MD

ALe 13 o, 8212

21 i 00g f—

21 o), 007 f—

:: Dig 00g f—

8748 5] o' 00g f— 8251
104 004 }—
51 ° 003 f— |
F DI, 00y [o—{ &

o 00, cib
Dy DBy
g DBg
D - D8g
04 084
D3 D83
D, DB
Dy 084
Doy b8y

Figure 17. Modified MCS-48 to 8251 Interface

RECEIVING SERIAL CODE—A MORE
SOPHISTICATED ALGORITHM

Although the USART does an admirable job of
performing the serial 1/O function for the MCS-
48™ | there are some situations where it can not be
used. These situations may be caused by economic
factors, such as an extremely cost sensitive design,
or because the code which must be utilized cannot
be accommodated by the USART. An example of
of such a code will be discussed later. Recall that
the principal objection to the approach to serial
input shown in Figure 13 was that it consumes
much of the processor’s power by merely spinning
in loops in order to wait preset time delays.

AP-24

LOoC 0BY

SEQ SOURCE STATEMENT

5 THIS CODE INTIALIZES THE USART

L
1
2
3 5 AND TRANSMITS AN INCREMENTING
a
S

1 PATTERN. HARDWARE SHOWN IF FIG 17.

interrupt occurred. If the serial line has returned to
the MARK state, a status flag is set to indicate an
error and a return is made. On subsequent interrupt
detection, the data is sampled, the timer is reiniti-
ated, and control is returned to the program which
was running when the interrupt occurred. When
the last (i.e. STOP) bit is detected a completion
flag is set and a return is made to the program

2820 11 MCLR EQU 28H 3 USART RESET ADDRESS . .
9081 12 D0Y EQU @1 ; USART RESET DELAY running when the timer overflow occurred. By
2083 13 UCON EQU 83H 3 USART CONTROL ADDRESS
ooce 14MODE EQU BCEM ; USART MODE periodically | checking the error and completion
2821 15 CMD EQU 2MH ; USART CMD H H
ooy 16 STAT EQU 63H | USART STATUS flags the running program can determine when the
LI 17 VAL EQu R1 3 TEST VALUE : : H
2008 16 DATA EQU 80 . USART DATA ADDRESS interrupt driven receive program has a character
19 1
o160 . - assembled for it.
21 3 TURN ON CLOCK
22, ; AND RESET USART
8188 75 23 TEST: ENTR CLK
2181 BA2P 24 ORL. P2, #MCLR
2183 BAB1 25 MoV R2,#DLY .
2185 EABS 26 L00P DJNZ R2,L00P
8187 9ADF 27 ANL P2, # (NOT MCLR)
28 3 SELECT USART CONTROL
2189 2383 t29 MV A, #UCON
38 ; SEND MODE AND COMMAND -
818B 23CE 31 mov A, 8 ¢
218D 98 32 MOVX @RB,A ; (CONTENTS DF RE UNIMPORTANT)
B818€ 2321 33 MOV A, #CMD
8110 99 34 MOVX @R8,A
35 3 DO FOREVER
36 SELECT USART STATUS
37 IF TXRDY=1 THEN
38 DO;
39 OUTPUT VALUE;
:: END:NC?EPENT VALUE ; TIMER
42 : END; OVERFLOW
8111 2383 43 TLP: mov A, #STAT
8113 88 44 movx A,@R8 ; (CONTENTS OF R® UNIMPORTANT)
2114 67 45 RRC A
2115 E611 46 JNC TP
8117 F9 47 MoV A, VAL SET TIMER
2118 B8ee 48 mov RO, #DATA FOR P
B11A 99 49 MoVX @R0,A
8118 19 S0 INC VAL
811C 2411 51 TP
52 3 END OF PROGRAM
53 END

Figure 18. Modified 8251 Test Program

The timer resident on the MCS48 provides a solu-
tion to this problem. Instead of spinning in a loop
the program can set the timer for a given interval,

start it, and proceed to other tasks. When the timer

overflows, an interrupt will be generated to notify
the software that the present time period has
elapsed. An extension of the algorithm of Figure
13 which uses the timer in this fashion in shown in
Figure 19. This algorithm is identical to the preced-
ing one up until the detection of the leading edge
of the start bit. At this point the timer is set to one
half of the bit time (P) and a return is made to the
calling program which can start additional process-
ing. At the completion of this time interval a
timer overflow interrupt is generated. When the
first interrupt is detected, the serial line is checked
to ensure that it is in a spacing condition (valid
START bit). If it is, the timer is set to P (to sample
the middle of the first data bit) and a return is

made to the program which was running when the.

All mnemonics copyrighted © Intel Corporation 1976.

1-14

SHIFT
RxD INTO
BUFFER

SET SET SET
ERROR TIMER ERROR
FLAG ToP FLAG

V VARV,

V4

Figure 19. Improved Serial Input Routine

Using the timer to implement time delays as shown
in Figure 19 results in considerable savings in
processing time; two problems remain, however,
which must be solved before an adequate software
solution to the problem of receiving serial code can
be found. The first problem is that even though the
delays between bit samples are implemented via
the timer rather than program loops the loop con-
struction is still used to detect the leading edge of

Intel AP-24

the START bit. Although this results in the waste
of processing power, the second problem is even
more serious. For longer messages the required
accuracy of the clocks becomes more and more
stringent. Using the sampling technique discussed
a cumulative error of one half a bit time in the
time at which a bit sample is taken will result in
erroneous reception. The maximum timing error
which can be tolerated and yet still allow proper
detection of an 11 bit ASCII character is then:

Emax = 0:3*BIT TIME _0.5P _
CHARACTER TIME ~ 11 P

4.5%

where P is the period of single bit. The correspond-
ing calculation for a 32 bit character yields:

0.5P

Emax = E 1.6%

Since this calculation does not allow for distortion
on the signals, it is obvious that either extremely
stable clocks will be required or a more tolerant
algorithm must be devised. This problem is parti-
cularly serious at relatively high baud rates where
the resolution of the counter (80usecs with a 6 MHz
crystal) becomes a significant percentage of the
. period of the received signal. At the 110 baud rate
of the Teletype the 80usec resolution of the clock
allows a maximum accuracy of 0.33%; at 2400
baud this figure is reduced to 3.8%.

il

e L —— RD
5 ——— WA
Rx PROG p—
T
Pr7 b N
P27 P16 b——o
;26 P15
—1 P25 Pig oo
—1 P P1a > PORT 1
— P P12 b—o
P21 P11 b— o
—1 P20 Pro p—o)
— T D7 ——
. Dg b——
+5v—E‘ Vee Dg b——o
v 04 b——
DD 4
< D3 > BUS
———— PSEN D b—o
Dy b—
Vss O p——
EA
RESET

BH

Figure 20. Detecting RxD Edges

Both efficient detection of the start bit and increas-
ed timing accuracy can be obtained if the MCS-48
can detect edges on the incoming received data
(RxD). A hardware construct which allows this
is shown in Figure 20.

The received data (RxD) is Exclusive NORed with
bit seven of port two and fed into the TEST (T1)
pin of the MCS-48. By manipulating P27 the pro-
gram can now cause T1 to be either RxD or RxD.
(If P27 = 1 then T1 = RxD; if P27 = 0 then T1 =
RxD.) Note that not only can T1 be tested directly
by the software but that it is the input which is
used when the MCS-48 timer is in the event counter
mode. The significance of this will be discussed
later. The relationship between T1, P27, and RxD
is given by the Boolean expression:

T1 = P27 - RxD + P27 - RxD

Figure 21 flowcharts a means of utilizing this hard-
ware construct to avoid the necessity of wasting
time in program loops to detect the leading edge of
the start bit. The receive operation is initialized
when the program desiring to receive serial data
calls the INIT subroutine (Figure 21a). Since INIT
is going to manipulate the timer the first action it
performs is to disable the timer overflow interrupt.
Its next step is to set P27 to a logical 1. Setting
P27 in this manner causes the TEST 1 input to the
MCS48 to follow RxD. By setting up the receive
circuitry in this manner a high to low transition
will occur on TEST 1 when the RxD goes from
the MARKING to SPACING state (i.e. the START

DISABLE TOFLO

TIMER = 1

STRT EVENTCNT

SET BCOUNT

Figure 21a. Interrupt Driven Serial Receive Flowchart

intgl | AP-24

TIMER bit occurs). By setting the timer to OFFH and

OFLO

enabling it in the event count mode, the INIT
routine sets up the. MCS48 to generate a timer
overflow interrupt on the next MARK to SPACE
transition of RxD (the TEST 1 input doubles as
the event counter input). Before returning to the
calling program the INIT routine sets a flag (RDF)
which will be cleared by the receive program when
the requested receive operation is complete. INIT
also sets a value into a register called BCOUNT.
The receive program interprets BCOUNT as follows:

SELECT RB1
ATEMP = A

START

BCOUNTI7|6|SI4|3|2|1I‘0I

Number of bits remaining
| to receive

[1f set indicates that the
START bit has not yet been

| detected
,f EXIT) [1 set indicates that the
" START bit has not yet beei
L verified .

Figure 21b. Interrupt Driven Serial Receive Flowchart

In order to request the reception of the 11 bit
ASCII code INIT would set BCOUNT to 1100101 1B.
The start bit has been neither verified nor detected
and 11 bits (1011B) are required.

After INIT is called the reception of the individual
serial data bits will proceed on an interrupt driven
basis until a complete character has been assembled.
When this occurs the interrupt driven program will
set the RDF (Receive Done Flag) to a zero to indi-
cate that it has completed the requested operation
and then terminate itself. The procedure which is
used to accomplish this is shown in Figures 21b

N — mnw : and 2lc.

Since all operations of this program are the result
< " > of the occurence of a timer overflow interrupt, it
BCOUNT (7] - " is necessary to briefly review the interrupt.structure
l—:'—.J MT o of the MCS-48. There are two sources of interrupt;

an external interrupt which is the result of a logical

zero signal applied to the INT pin of the MCS438,
and an internal interrupt which is caused by a

START .

fi

i

@L

XiT

A - ATEMP timer overflow condition. The timer overflow

/ . occurs whenever the timer is incremented from
v OFFH to zero whether it be in the timer or event
count mode. When one of these events occurs the

hardware in the MCS-48 forces the execution of a
CALL. This CALL has a preset address of location
3 if it is due to the external interrupt and location
7 if it is due to a timer overflow. If both of these

1-16

Figure 21c. Interrupt Driven Serial Receive Flowchart

intel

AP-24

events occur simultaneously the external interrupt
will take precedence. The CALL automatically
saves the contents of the program counter for the
running program and its PSW (program status
word) on a stack the hardware maintains in RAM
locations 8-23. Although the hardware saves the
program counter and PSW, it remains the responsi-
bility of any interrupt driven software to make
absolutely certain that it does not modify any
memory locations or registers which are being
used by the main program. The most convenient
way of ensuring this in the MCS-48 is to dedicate
the second bank of registers (RB1) to the interrupt
driven program. One of these registers has to be
used to save the accumulator (which is not part of
the register bank) but seven registers remain;
including two which can be used as pointers to the
rest of the RAM (RO and R1). Note that if this
approach is taken then these registers have to be
allocated between the program which services the
external interrupt and the one which services the
timer overflow. This problem is somewhat alleviated
by a hardware lockout which prevents the timer
overflow interrupt from interrupting the external
interrupt service routine and vice versa. This is
implemented by locking out new interrupts between
the time an interrupt is recognized and the time a
RETR instruction is executed. The RETR instruc-
tion is like a normal RET (return from subroutine)
except that the PSW as well as the program counter
is restored. The RETR instruction can be very
much thought of as a return from interrupt instruc-
tion in the MCS+48.

The receive program under discussion uses register
bank 1 in the manner described. Whenever a timer
overflow occurs (e.g. on the next MARK to SPACE
transition of RxD after INIT is called), control is
passed (by the hardware generated CALL) to the
point labled TIMER OFLO in Figure 21b. This
program segment immediately selects register bank
I (RB1) and then saves the accumulator (A) in a
location called ATEMP which is actually R7 of
RB1. The program then tests bit seven of BCOUNT
(R6 of RB1) to find out if a START bit has been
verified (i.e. the edge of the START bit has first
been detected and then verified to still be a SPACE
one-half a bit time later. If BCOUNT [7] is a zero
the START has been verified and the program pro-
ceeds to set the timer to P (the period of the serial
bit), get the current serial data into the carry bit,
and then shift the carry bit into a buffer. After
saving the data the program decrements BCOUNT
and tests it for zero. If BCOUNT is zero the receive
operation is complete so the program sets RDF to
a zero and disables timer overflow interrupts.
Whether or not BCOUNT is zero, control is passed
to EXIT where A is loaded with ATEMP and a

RETR is executed. Note that since the state of
the flip flop which selects RBI is saved as part of
the PSW, the execution of RETR automatically
selects the register bank which was active when
the interrupt occurred.

If BCOUNT [7] is still set when it is tested, con-
trol is passed to START (Figure 21c) where bit 6
is tested to determine if the START has been
detected yet. If BCOUNT [6] is set it indicates
that this is the first occurrence of a timer overflow
since the receive process was initialized by the
INIT subroutine. If this is so, the program assumes
that the START bit has just started and therefore
it sets the timer to one-half of a bit time (1/2 P),
starts the timer in the timer mode, and clears
BCOUNT [6] to indicate that the START bit has
been detected. The next overflow will again result
in the execution of the program in Figure 21b and
again BCOUNT [7] will be found to be set. This
time, however, BCOUNT [6] will be reset and the
program will know that it should test the START
bit to ensure that it is still a SPACE. This test is
performed and if successful the timer is set for a
bit period P and BCOUNT [7] is reset so that on
the next occurrence of a timer overflow the pro-
gram will know that it should start assembling
serial bits into a character. If the test is unsuccess-
ful, the subroutine INIT is used to reinitialize the
receive program. In either case control is passed to
EXIT where a return from interrupt mode occurs.

This receive program, listings of which appear in
Figure 22, allows the reception of serial characters
transparently to the main running software. After
INIT is called the main program has only to check
RDF periodically to find out if there is data in the
buffer for it. It would be fairly easy to ‘double
buffer’ this operation by providing a buffer which
the receive program uses to deserialize the incom-
ing code and a second buffer to store the assembled
character. If the program would reinitialize itself
upon completion, the reception of a string of
characters could proceed in much the same way as
it would if a status driven USART were being used.

Although this program solves the first problem of
software controlled reception (lack of efficiency)
the second problem—sensitivity to frequency
variations—remains. An example of a code which
would be susceptible to this problem is the 31,26
BCH code commonly used in supervisory control
systems. (A supervisory control system is, in
essence, a remote control system which allows a
human or computer operator the control of a
system via a serial communications link.) The BCH
codes are used because of their error detection
capabilities and are a class of cyclical redundancy

AP-24

SOURCE STATEMENT

L]

1

2

3 SERIAL INPUT USING.THE MCS-48
4 THIS CODE ASSUMES HARDWARE
S SHOWN [N FI1G 28. TO USE

6 3 THIS ROUTINE .CALL INIT.

7 WHEN RDF=§ THE ASSEMBLED

8 CHARACTER WILL BE IN SERBUF
9

L]

1

1
1
12 5 =-ee--n
13 EuuMEs
‘5
0807 16 ATEMP EQU R7 ; STORAGE FOR A DURING INTERUPT
3 17 BCOUNT EQU R6 3 CONTAINS NUMBER OF BITS IN MSG
18 COUNT EQU R2 3 UTILITY COUNTER
19 RX8 EQU R 3 POINTER
28 BITNO EQU 8 i NUMBER OF BITS
21 £Qu a1 : SAWPLE PERIOD
22 SERBUF EQU 20H ; SERIAL BUFFER
23 RDF EQU 24H ; RECEIVE DONE FLAG
24
25
26 ; CONTROL PASSED HERE WHEN TIMER OFLO OCCURS
27 ;
28
29 ORG #7H
30 5. /%ENTER INTERRUPT MODE®/
31 IMVEC: SEL RB1
32 mav ATEMP,A
33 i IF BCOUNT(7)=8 THEN
8899 FE 34 mov A, BCOUNT
o80A F223 35 JB? START
3% ~
37 H TIMER=P;
o88C 2307 38 nav A 8-P
80E 62 39 mov T.A
4 START TIMER
090F S5 41 SLLB: STRT T
a2 1 /%CARRY=RXD®/
a3 5 CARRY=P27 XNOR TEST1;
0018 94 44 N A,P2 ,
011 F7 45 RLC A
812 5615 a6 3l TISRD
814 A7 47 cPL c
. 48 i /*SHIFT CARRY INTO BUFFER®/
49 3 RX@=SERBUF :
58 i RSHFT MEMCRXD);
2815 BB28 S1 TISRD: MOV RXS, # SERBUF
0817 20 52 SLOOP: XCH A, @RXS
0818 67 s3 RRC A
8019 28 54 XCH A,@RX8
i 5§ N i BCOUNT=BCOUNT-1;
56 1F BCOUNT=@ THEN
881A EEIF 57 DUNZ acuuwr SEXIT
58 DO
59 RDF=8;
€8 DISABLE EX INT;
81 H END;
081C B824 62 mov RXS, #RDF
081E 27 63 CLR A
881F AP 64 mov @RX8,A
8820 35 €5 DIS TCNT1
66 + END;
0021 043F 67 P SEXIT
68 ELSE
=) 3 DO;
70 3 1F BCOUNT(61=8 THEN

'

Figure 22,

0023 FE 71 START: MOV A, BCOUNT
8824 D237 72 JB6 sLLe
73 i Da;
74 : IF TEST1+0 THEN
2026 5635 75 JTt SLLD
7% i Do;
77 5 TIMER=P;
78 f START TIMER;
79 i P27-0;
o8 s EN I
81 . i BCOUNT(7)=8;
82 f END;
2828 2307 83 Moy A #-P
0624 62 84 Moy T.A
802B S5 85 SRT T
202C 9A7F 3 ANL P2, #7FH
862E 95 87 EN
082F FE ‘88 MOV A, BCOUNT
2038 S537F 89 ANL A, #IFH
9832 AB 28 mov BCOUNT , A
2033 943F 9t ae SEXIT)
92 ' ELSE
93 f D0:
94 B cALL, INIT;
95 : END;
8035 1441 96 SLLD: CALL INIT
97 i ELSE
%8 3 DO
99 ' TIMER=P/2}
198 START TIMER;
181 t BCOUNTI6]=8;
182 i i END;
8637 236C 183 SLLC: MOV A, 2-(P/2)
2039 62 104 mov 1.4
8634 S5 105 STRT T
8038 FE 106 Moy A, BCOUNT
863C S3BF 187 ANL A, 5 8BFH
903E AE 168 Moy BCOUNT A
R 189 3 END;
118 3 /*EXIT INTERUPT MODE®/
BR3F FF 111 SEXIT: MOV A, ATEMP
' ee4p 93 12 RETR
113
114 | =-eiemmececm e
115 ; INTIALIZE ROUTINE-
116 STAf
117 5 mmmmmmeeee e
RRL:]
119 i INIT:
120 PROCEDURE ;
121 Do;
122 DISABLE lNTERﬁUPYS
123 P27=1;
124 TIMER=-1;
125 START EVENT COUNT;
126 RDF=1;
127 B BCOUNT=8CBH OR BITNO
128 i END;
129 END INIT;
8041 35 138 INIT: DIS TONTT
8042 BAGE 131 oRL P2, #80H
8044 23FF 132 Moy A1
8046 62 133 MoV T.A
8047 45 134 STRT CNT
0848 B824 135 oV RX8, #RDF
804A BOB1 136 MOV @RXB, 3B 1H
#24C BSIE 137 MoV RX®, # 1EH 3 POINT AT BCOUNT
804E BACB 138 MoV @RXB, # (BCOH OR BITND)
8050 25 139 N TCNTT
8051 83 149 RET
141 1END OF PROGRAM
142
143 END

Interrupt Driven Serial Receive Program

codes such as those used in synchronous data com-
munications (e.g. BISYNC or SDLC). BCH codes,
named for their originators Bose, Chaudhuri, and
Hocquenghem, are characterized by having a length
of n=2M-1, The number of redundant check bits
can be mt where t is a positive integer (clearly mt
<n). The 31,26 code fits this format with m=5 and
and t=1. The length of each message is n=25-1=31
with 5*1 redundant bits, leaving 26 bits available
for. data transmission. With an appropriate poly-

All mnemonics copyrighted © Intel Corporation 1976.

1-18

nominal BCH codes can detect all errors consisting
of 2t error bits and all burst errors of mt or fewer
bits. The 31,26 BCH code will therefore detect any
erroneous messages with 1 or 2 errors or bursts of
errors of less than 5 bits. The 31,26 format (shown
in Figure 23) requires the reception of a start bit
followed by 31 information bits, clearly beyond
the capability of the USART but perhaps within
reach of a program controlled approach using the
MCS-438 itself.

intel

AP-24

START BIT
{SPACE)

DATA BITS

STOP BITS

CHECK BITS (MARK)

*r

N

N

{' T T T T T T T T T T T T T T
0 0‘102I 1 1 1 1 1 1 1 I 1 1 1 1

'026 CIICZICJIC‘1ICSI
1 I 1 L |

Figure 23. 31,26 BCH Code

A concept which reduces sensitivity to frequency
deviations and thus allows the reception of longer
codes is shown pictorially in Figure 24. The first
line of this timing chart shows an alternative ones
and zeros pattern on the RxD with a period of 5
milliseconds. The second line shows that by
sampling at a period of exactly 5 milliseconds the
data can be properly interpreted. The third and
fourth lines show the effects of sampling with a

period of six and four milliseconds respectively. In

either case, an error occurs at the third sample
where both periods result in sampling on an edge
of the RxD signal. The third line of Figure 24
shows a hybrid sampling scheme which, based on
some additional information, switches sampling
periods between the two values. As can be seen in
Figure 24, the data is sampled with a 4 millisecond
period until the sampling begins to fall behind the
data; at this point the sampling period is increased
to six milliseconds and the sampling first catches
up and then passes the center point of the data. As
soon as this happens, the sampling period reverts
to the 4 millisecond period and the cycle repeats.
It can be seen that this scheme sets up a pattern
which repeats indefinitely and the data can be
successfully sampled. Note that the sampling pattern
established is alternating periods of four and six
milliseconds. The average period of this pattern, as
might be expected, is Smsec. Line 5 of Figure 24
shows the effect of a change in transmission speed
to a period of 5.5 msec with no change in the
sampling time. The sampling is again successful but
the new sampling pattern is 4-6-6-6; 4-6-6-6, etc.
Note that the average sample is again equal to the
period of the received data (5.5). While this scheme

Smsec PERIOD
Smsec SAMPLE

2. 5msec PERIOD
6msec SAMPLE | | |

3 5msec PERIOD
4msec SAMPLE L1

—_rrreruefreroer

141 6 16 j4) 6 14) 6141 6]4) 6)

4 Smsec PERIOD
HYBRID SAMPLE

5. 55msec PERIOD
HYBRID SAMPLE

145 6 1 616,664,666 ;4

Figure 24. Various Sampling Alternatives

does seem to work, the question of what additional
information is needed remains.

The MSC-48 must somehow decide when it is drift-
ing out of synchronization and take corrective
action. By referring back to Figure 24 it can be
seen that if the MCS-48 could determine where the
edges of RxD occurred with respect to its sampling
times then the additional information would be
available. As can be seen in the figure the choice of
sampling period can be based on the following rule:

If an edge on the RxD line occurs during the
first half of the current sampling period, then
use the short period for the next sample. If an
edge occurs during the second half of the period,
then use the long sampling period for the next
sample.

If the data on the RxD line does not change, of
course, the MCS-48 will drift out of synchronization
just as the original algorithum did. As long as edges
occur on TxD, however, synchronization can be
maintained. To maximize the allowable time
between edges, the following addition could be
made to the above rule:

If no edge occurs on the RxD line during a
sample, then change sampling period from short
to long or vice versa.

Note that this addition to the rule will result in
using an average of the two sampling periods when
no edge occurs for several bit times.

The edges of RxD can be easily detected by the use
of the same structure (the Exclusive — NOR gate)
which was added to the MCS-48 in Figure 20. This
gate, which .is used to detect the edge on RxD
which begins the START bit, can naturally be used
to detect any edge. Since the timer is being used to
time the bit period, however, the event count input
(T1) is not useful during the receive itself. By con-
necting the output of this gate, however, to the
INT input to the MCS48 (see Figure 25) it is
possible to detect edges on RxD with the event

. counter when the program is trying to detect the

1-19

START bit and by the external interrupt when the
program is using the timer to control the sampling
times.

|nte| AP-24 \

0 Because of this edge detection it is important to
[_| *_} condition RxD with hardware filters to ensure that
B = the edges of RxD are clean. Any ringing will cause
INT WR

repeated CALLs to XISR and probable erroneous
operation. The changes to the START process
N (Figure 26¢) are two-fold; first the TIMER is set to
~ one half the average of the two sample periods
when the START bit is first detected (BCOUNT
[6] = 1), and second the processing of the edge
information is initialized by presetting SNAP and
clearing P27.

SNAP is preset so that when the reception of data
~actually begins (Figure 26b BCOUNT [7] = 0), the
\ 8us decision block which tests SNAP against LIMIT
will be initialized. This block actually compares the
value in SNAP with a LIMIT value which is used to
determine if the sampling point is ahead or behind
the actual midpoint of the serial data. If the
sampling is ahead then the timer is set for TMIN;
if the sampling is behind then the timer is set for

P27 P16

PORT 1

P20 P10

PSEN b

T IHTIH!]

Vss Do

Ed
m
»
m
I

1B

Figure 25. Modified Edge Detection

A modification to the program of Figure 21 which oFlo ‘ el

INT
implements this new sampling algorithm is shown

in Figure 26. The first deviation from the original

program is the addition of a routine (XISR, Figure
26a which is called when an external interrupt
occurs (i.e. when an edge occurs on RxD). This
routine saves the status of the running program and
then stores the current value of the timer register
in a location called SNAP (R5 of RBI1). After
doing these operations th\e program complements
bit 7 of port 2. Manipulating P27 in this manner
will cause the Exclusive NOR gate to turn off the
‘external interrupt and will set it up to generate
another interrupt when the RxD line changes again vEs
(has another edge). [TuMER:TE F\MER:TMAX I
] |

SELECT RB1

I SNAP = LIMIT + LI I SNAP = LIMIT - 1 l

START TIMER

BUFFER - C
DECR BCOUNT

BCOU!
0

SEL RB1

I

L DIS EXT INT I
]

I P27=1 I ATEMP = A
I]

| TIMER = 1 —| [SNAP = TIMER I

I

P27 = P27

- A= ATEMP

|START EVENT CNT] .

T
I RDF = 1 |

SET BCOUNT

V RET
{ EXIT - '

Hybrid Sampling Flowchart . Hybrid Sampling Flowchart

N
NI

0

DISABLE El

1-20

Iﬂte' AP-24

Loc 0BJ SEQ SOURCE STATEMENT

, seeessssseccnttetsorratsrresaee
5 i

BCOUNT
(6]

<>

NO
TIMER =TMIN
START TIMER
SNAP = LIMIT -t

SERIAL INPUT USING MCS-48
THIS CODE ASSUMES HARDWARE
SHOWN IN FIG 25. PROGRAM
1S SIMILAR TO PREVIOUS
ONE. A MORE SOPHISTICATED
SAMPLING ALGORITHM IS USED

NOTE: A PL/M LIKE LANGUAGE WAS USED
TO COMMENT THIS LISTING AND
SEVERAL OTHERS IN THIS NOTE. NO
COMPILER EXISTS FOR THE MCS-48.
THE COMMENTS WERE ‘HAND
COMPILED’ INTO ASSEMBLY CODE

TIMER = TAVE 2

INIT

23 ATEW EQU R7 ; STORAGE FOR A DURING INTERUPT
BCOUNT (6] =0 24 BCOUNT EQU R 3 CONTAINS NUMBER OF BiTS IN MSG
25 SNAP EQU RS 3 TAKES TIMER SNAP SHOT ON RXD EDGE
26 COUNT £QU R2 3 UTILITY COUNTER
27RX0 EQU e 3 POINTER
28 BITNG EQU 32 i NUMBER OF BITS
29 LIMIT EQU 28 + TEST VALUE FOR MIN/MAX SAMPLING
38 X EQU -43 i MAX SAMPLE PERIOD
31 TMIN EQU -39 MINIMUM SAMPLE PERIOD
32 HALF EQU -20 ; HALF NOMINAL PERIOD
33 SERBUF EQU 28H ; START OF SERIAL BUFFER
. 34 RDF EQU 24 ; RECEIVE DONE FLAG

A = ATEMP

‘{ EXIT ’
2803
a
2003 1466 42 EIVEC: CALL XISR
#e8s 93 43 RETR
44

3 CALL SERVICE ROUTINE

:: : ONTROL PASSED HERE WHEN TIMER OFLO OCCURS
SO
Hybrid Sampling Flowchart - . /ENTER INTERUPT MODE®/
89086 DS 58 TMVEC: SEL RB1
8007 AF S1 MoV ATEMP A
. . 52 5 IF BCOUNT{71=B THEN
TMAX. By presetting SNAP in the manner shown swoo re = rov. aBcoT
in the flowcharts the second rule of the algorithm, s R0 T
(if no edge appears on the RxD line during a 7 rov :.i:m”'
sample, then change the sampling periods short to 5 w sl -
long or vice versa) is automatically met. If an edge 61 D TimeReTING
occurs theri XISR will modify SNAP, if XISR is e P ST
not invoked between two samples then the choice . bl Yo A
of timer periods will alternate. The only other e pare & oy e, LT
significant change to the algorithm is that the INIT . o Lo
routine must now lock out all interrupts, not just » ; s
the timer overflow interrupt, while it is operating. 72 i
. 2817 23D5 73 SLLA: my A, #TMAX

A program which uses this algorithm to receive a
32 bit message is shown in Figure 27.

Figure 27. Hybrid Sampling Program

1-21

© AP-24

Loc 0BJ

2019 62
881A BD13

e81C 5SS

801D 8A
1E F7
BB1F 4622
8821 A7

802E BB24
8038 27
8031 AP
9832 35

. 2933 15

8834 8454

8036 FE
8837 D24C

8833 564A

2848 9454

SLLB:

TISRD:

sSLaoP

START:

SOURCE STATEMENT

MOV
mav

STRT

XCH
RRC
XCH
INC
DJNZ

DJNZ

mov
CLR

DIS
DIS

g3

WA
SNAP, #LIMIT-1

START TIMER;
T
i /°CARRY=RXD*/
i CARRY=P27 XOR TESTY;
A,P2
A
TISRD
4
/*SHIFT CARRY INTO BUFFER®/
RX@=SERBUF ;
. i COUNT=4;
DO WHILE COUNT<>8:
RSHFT MEM(RXD) ;
RXB=RXD+1:
COUNT=COUNT- 1
; END:
RXD, # SERBUF
COUNT, #4
A,RXD
A
A, @RX8

RX8
COUNT, SLOOP
i BCOUNT=BCOUNT-1;
3 1F BCOUNT=8 THEN
BCOUNT, SEXIT
i DO
H RDF=8; .
DISABLE EX INT;

RXS, #RDF
A
@RXD,A
TCNTI
1
END;
SEXIT
3 ELSE
i DO !
3 IF BCOUNTIE)=B THEN
A,BCOUNT
sLLC
s Do;
s IF TEST1=8 THEN
SLLD -
i TIMER=TMIN;
: START TIMER;
5 SNAP=LIMIT+1;
: EN I
i BCOUNT(71=0;
: END;
A, 8 TMIN
T,
T
SNAP, #LIMIT+1
P2, #7FH
1 .
A, BCOUNT
A, #7FH
BCOUNT,A
SEXIT .
ELSE

DO N
CALL INIT;
END;

Figure 27. Hybrid Sampling Program

Loc

2p4A

884C
084E
804F
2858
2est
8853

8854
8855

8863
2065

886D

8086F

‘SOURCE STATEMENT

SLLD: CALL INIT
3 ELSE
i DO;
; TIMER=C(TMINGTMAX)/2;
: START TIMER;
: BCOUNT(E1-8;
3 END; .
SLLC: MV A, HHALF
MV T,A
STRT T
MOV A,BCOUNT
ANL A, #8BFH
MOV BCOUNT,A
3 END;
5 /*EXIT INTERUPT MODE®/
SEXIT: MOV A,ATEMP .
RETR

INTIALIZE ROUTINE-
STARTS RECEIVE PROCESS

164 § mmmmmmmmmemeossecceeoooion

165
166
167
168
169
178

7

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
198

191

192
193
194
195
196

INIT:

3 INIT:
H PROCEDURE ;
i DISABLE INTERUPTS;
H P27=1;
H TIMER=-1;
H START EVENT COUNT;
i RDF=1;
H BCOUNT=8CBH OR BITNO
i END;
H END INIT;
DIS 1
DIS TCNTI
ORL P2, #80H
MoV A, 8-1
MoV T.A
STRT CNT
mMav RX@, #RDF
MoV A8
mov @RX8,A
EN TCNTT
mMov BCOUNT, #8C8H OR BITNO
RET

INTERUPT SERVICE ROUTINE

3 XISR:
PROCEDURE ;|
i . /*ENTER INTERUPT MODE*/
i SNAP=TIMER;
i P27=NOT P27;
H END XISR:
XISR: SEL RBI
MV ATEMP,A
MoV AT
MoV SNAP, A
N A,P2
XRL A, #80H
ot P2,A
MoV A,ATEMP
RET
: END OF PROGRAM
END

All mnemonics copyrighted © Intel Corporation 1976.

1-22

intel

AP-24

TRANSMITTING SERIAL CODE

Serial transmission is conceptually far simpler than
serial reception since no synchronization is required.
All that is required is to use the timer to generate
‘interrupts at the bit rate and present the character
to be transmitted serially at an I/O pin. A program
which does this is shown in Figure 28. The trans-
mission of serial data becomes much more compli-
cated if it must occur simultaneously with reception.

If both reception and transmission are to occur
simultaneously then obviously contention will
exist for the use of the timer. It is possible to allow
the simultaneous reception and transmission of
serial data using the timer as a general clock which
controls software maintained timers. The attainable
baud rates using such techniques are, however,
limited and the use of a 8251 USART is probably

indicated in all but the most cost sensitive applica-
tions. An exception to this rule occurs when the
system, although full duplex in nature, actually
transmits the same data as it receives. An example
of this is a microprocessor driving a terminal such
as a Teletype. Although the circuit to the terminal
is full duplex, the data that is transmitted is generally
the same as that received. A minor modification to
the program shown in Figure 26 would implement
this mode of operation. The modification would be
to the XISR routine and it would add the code
necessary to place the TxD I/O pin in the same
state as the RxD line. Since any change in RxD
results in a call to XISR, this modification would
cause the retransmission of any received data.
Whenever it becomes necessary to transmit data
which is not being received, the program of Figure
28 could be used in a half duplex manner.

Loc 0By sta SOURCE STATEMENT

2 . SERIAL TRANSMIT ON THE MCS48

3 T0 USE PUT A CHAR IN BUFF AND

4 SET CHARAV TD BFFH. WHEN THE

S TRANSMITTER 1S READY FOR ANOTHER
6 3 CHAR IT WILL CLEAR CHARAV, THE
7 TRANSMISSION 1S DQUBLE BUFFERED.
8

9

®

11 EQUATES

R

13
8897 14 ATEMP EQU R7 1 STORAGE FOR A DURING INT.
2806 1S PTOS EQU RE + PARALLEL TO SERIAL CONVERTER
A0S 16 BUFF EQU RS i CHARACTER BUFFER
8804 17 CHARAV EQU R4 i CHARACTER AVAILABLE FLAG
eee3 18 COUNT EQU R3 i BIT COUNTER
88EF 19 CBIT EQU BEFH { MASK TO CLEAR TXD IN P24
8818 28 SBIT EGU 8184 ; MASK TO SET TXD IN P24
FFD? 21p €au -41 ; PERIOD OF TXD

22

23 5 --ecceemeemcccemeeeceeccacceeaes

24, CONTROL PASSED HERE ON TIMER QVERFLOW
8ee7 26 ORG B7H

27 : ENTER INTERUPT MODE
8887 DS 28 TOFLD: SEL RB1Y
8008 AF 29 mov ATEMP, A

38 1+ SET TIMER FOR P
9899 2307 31 MoV A, 8P
2888 62 32 MoV T.A
808C S5 33 STRT T .

34 3 GET BIT INTO CARRY
288D 141D 35 CALL BIT

36 3 SET TXD TO CARRY

Loc 0By SEQ SOURCE STATEMENT
800F BA 37 IN A, P2
8819 D388 38 XRL A, #B8H
8812 3a 39 ouTL P2,A
28813 F619 48 JC BITON
2815 SAEF 41 ANL P2,mCBIT
2917 8418 a2 P EXIT
2819 8A10 43 BITON: ORL P2, 8SBIT
201B FF 44 EXIT: MOV ALATEMP
201C 93 as, RETR

46

48 ; BIT ROUTINE
49 ; -PICKS THE NEXT BIT TO TRANSMIT

BB § ceemremmmmemeceseeneeeoeenes
s1
801D FB 52 BIT: MoV A,COUNT
201E C627 S3 Jz 1DLE
8920 FE 54 MoV, A,PTOS
8021 67 SS RRC A
8822 4388 56 ORL. A, #88H
9024 AL 57 MoV PTOS,A
8825 CB 58 DEC COUNT
8026 83 59 RET
60
8827 97 61 IDLE: CLR c
8828 FC 62 Moy A, CHARAV
2829 962D 63 INZ GOTONE
6928 A7 64 cpL c
#e2C 83 ‘65 RET
66
882D FD 67 GOTONE: MOV A, BUFF
802E AE 68 mav PT0S,A
882F BBEA 63 MoV COUNT, # 18
8831 BCRB 70 MOV CHARAV, # 8
9833 83 n RET
72 3 END OF PROGRAM
73 END

Figure 28. Serial Transmission

All mnemonics cop'yrighted © Intel Corporation 1976.

1-23

intel

AP-24

GENERATING PARITY

Many communications schemes require the genera-
tion and checking of parity. If a USART is used
it can be programmed to automatically generate
and check- parity. If the communications is handled
by software within the MCS-48™ then the program
must perform parity calculations. Calculating
parity is easy if one remembers what parity really
means. A character has even parity if the number
of one bits in it is even. A character has odd parity
if it has an odd number of ones. The program seg-
ment shown in Figure 29 can be caused to calculate
parity. It starts by setting a loop count to eight and

Loc 0BJ SOURCE STATEMENT

; aesessesccsenn

3

4 ; PARITY

s THIS PROGRAM GENERATES PARITY

6 3 ON THE ACCUMULATOR

? CARRY WILL BE SET IF A HAS ODD PARITY
8

9 ; seesereesas “es

2982 R2

@100 1884

8188 BABS 19 MoV COUNT, #8 3 SET LOOP COUNT
8182 97- 28 CLR c 3 INITIALIZE CARRY
21 : FOR EACH ZERO BIT IN A
22 i COMPLEMENT THE CARRY FLAG
81083 77 23 LOOP: RR A
8184 1207 24 JBe OVER
2196 A7 25 CPL c

3 END OF PROGRAM

Figure 29. Parity Generation

clearing the CARRY flag. After this initialization a
loop is executed eight times. During each execution
the accumulator is rotated and the least significant
bit is tested. If the bit is a zero the CARRY flag is
complemented, if the bit is a one no further action
is taken. Since an even number of zeros implies an
even number of ones for an eight bit character,
after all eight loops have been accomplished the
CARRY bit will be set if an odd number of ones
were encountered; it will be reset if the number
were even. Since the RR instruction does not
involve CARRY the net result of executing this
program loop is to set CARRY if parity is odd
without effecting the character in t