

LITERATURE
To order Intel Literature or obtain literature pricing information in the U.S. and Canada call or write Intel
Literature Sales. In Europe and other international locations, please contact your local sales office or
distributor.

INTEL LITERATURE SALES
P.O. BOX 58130
SANTA CLARA, CA 95052-8130

CURRENT HANDBOOKS

In the U.S. and Canada
call toll free
(800) 548-4725

Product line handbooks contain data sheets, application notes, article reprints and other design information.

TITLE

COMPLETE SET OF HANDBOOKS
(Available in U.S. and Canada only)

AUTOMOTIVE PRODUCTS HANDBOOK
(Not included in handbook set)

COMPONENTS QUALITY IRELIABILITY HANDBOOK

EMBEDDED CONTROL APPLICATIONS HANDBOOK

8-BIT EMBEDDED CONTROLLER HANDBOOK

16-BIT EMBEDDED CONTROLLER HANDBOOK

32-BIT EMBEDDED CONTROLLER HANDBOOK

MEMORY COMPONENTS HANDBOOK
MICROCOMMUNICATIONS HANDBOOK

MICROCOMPUTER PROGRAMMABLE LOGIC HANDBOOK

MICROPROCESSOR AND PERIPHERAL HANDBOOK
(2 volume set)

MILITARY PRODUCTS HANDBOOK
(2 volume set. Not included in handbook set)

OEM BOARDS AND SYSTEMS HANDBOOK

PRODUCT GUIDE
(Overview of Inters complete product lines)

SYSTEMS QUALITY IRELIABILITY HANDBOOK

INTEL PACKAGING OUTLINES AND DIMENSIONS
(Packaging types, number of leads, etc.)

LITERATURE PRICE LIST (U.S. and Canada)
(Comprehensive list of current Intel Literature)

INTERNATIONAL LITERATURE GUIDE

CG/L1T/100188

LITERATURE
ORDER NUMBER

231003

231792

210997

270648

270645

270646

270647

210830

231658

296083

230843

210461

280407

210846

231762

231369

210620

E00029

About Our Cover:

Being the leader in 32-bit embedded controller architecture means providing the most versatile, the most
reliable high performance family of products. With our support of such applications as robotics and laser printers,

we plan on remaining an innovative leader in the embedded control market.

inter
Intel the Microcomputer Company:

When Intel invented the microprocessor in 1971, it created the era of
microcomputers. Whether used as microcontro/lers in automobiles or microwave

ovens, or as personal computers or supercomputers, Intel's microcomputers
have always offered leading-edge technology. In the second half of the 1980s, Intel

architectures have held at least a 75% market share of microprocessors at 16 bits and above.
Intel continues to strive for the highest standards in memory, microcomputer components,

modules, and systems to give its customers the best possible competitive advantages.

32-BIT
EMBEDDED CONTROLLER

HANDBOOK

1989

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors
which may appear in this document nor does it make a commitment to update the information c'Jntained
herein.

Intel retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

Above, BITBUS, COMMputer, CREDIT, Data Pipeline, ETOX,
FASTPATH, Genius, i, t. ICE, iCEL, iCS, iDBP, iDIS, 121CE, iLBX,
im, iMDDX, iMMX, Inboard, Insite, Intel, intel, Intel376, Intel386, Intel486,

'intelBOS, Intel Certified, Intelevision, inteligent Identifier, inteligent
Programming, Intellec, Intellink, iOSP, iPDS, iPSC, iRMK, iRMX, iSBC,
iSBX, iSDM, iSXM, KEPROM, Library Manager, MAPNET, MCS,
Megachassis, MICROMAINFRAME, MUL TIBUS, MULTICHANNEL,
MUL TIMODULE, ONCE, OpenNET, OTP, PC BUBBLE, Plug-A-Bubble,
PROMPT, Promware, QUEST, QueX, Quick-Erase" Quick-Pulse
Programming, Ripplemode, RMX/80, RUPI, Seamless, SLD, SugarCube,
UPI, and VLSiCEL, and the combination of ICE, iCS, iRMX, iSBC, iSBX,
iSXM, MCS, or UPI and a numerical suffix, 4-SITE, 376, 386, 486.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered
trademark of Mohawk Data Sciences Corporation.

*MUL TIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Sales
P.O. Box 58130
Santa Clara, CA 95052-8130

@INTELCORPORATION 1988

CUSTOMER SUPPORT

INTEL'S COMPLETE SUPPORT SOLUTION WORLDWIDE

Customer Support is Intel's complete support service that provides Intel customers with hardware support, software
support, customer training, consulting services and network management services. For detailed information contact
your local sales offices.

After a customer purchases any system hardware or software product, service and support become major factors in
determining whether that product will continue to meet a customer's expectations. Such support requires an inter­
national support organization and a breadth of programs to meet a variety of customer needs. As you might expect,
Intel's customer support is quite extensive. It can start with assistance during your development effort to network
management. 100 Intel sales and service offices are located worldwide - in the·U.S., Canada, Europe and the Far
East. So wherever you're using Intel technology, our professional staff is within close reach.

HARDW ARE SUPPORT SERVICES

Intel's hardware maintenance service, starting with complete on-site installation will boost your productivity from
the start and keep you running at maximum efficiency. Support for system or board level products can be tailored
to match your needs, from complete on-site repair and maintenance support economical carry-in or mail-in factory
service.

Intel can provide support service for not only Intel systems and emulators, but also support for equipment in your
development lab or provide service on your product to your end-user/customer.

SOFTWARE SUPPORT SERVICES

Software products are supported by our Technical Information Phone Service (TIPS) that has a special toll free
number to provide you with direct, ready information on known, documented problems and deficiencies, as well as
work-arounds, patches and other solutions.

Intel's software support consists of two levels of contracts. Standard support includes TIPS (Technical Information
Phone Service), updates and subscription service (product-specific troubleshooting guides and; COMMENTS
Magazine). Basic support consists of updates and the subscription service. Contracts are sold in environments which
represent product groupings (e.g., iRMX® environment).

CONSULTING SERVICES

Intel provides field system engineering consulting services for any phase of your development or application effort.
You can use our system engineers in a variety of ways ranging from assistance in using a new product, developing
an application, personalizing training and customizing an Intel product to providing technical and management
consulting. Systems Engineers are well versed in technical areas such as microcommunications, real-time applica­
tions, embedded microcontrollers, and network services. You know your application needs; we know our products.
Working together we can help you get a successful product to market in the least possible time.

CUSTOMER TRAINING

Intel offers a wide range of instructional programs covering various aspects of system design and implementation.
In just three to ten days a limited number of individuals learn more in a single workshop than in weeks of self-study.
For optimum convenience, workshops are scheduled regularly at Training Centers worldwide or we can take our
workshops to you for on-site instruction. Covering a wide variety of topics, Intel's major course categories include:
architecture and assembly language, programming and operating systems, BITBUSTM and LAN applications.

NETWORK MANAGEMENT SERVICES

Today's networking products are powerful and extremely flexible. The return they can provide on your investment
via increased productivity and reduced costs can be very substantial.

Intel offers complete network support, from definition of your network's physical and functional design, to imple­
mentation, installation and maintenance. Whether installing your first network or adding to an existing one, Intel's
Networking Specialists can optimize network performance for you.

CG/CUST 1100188

Table of Contents

Chapter 1
Introduction to the 80960KB ... 1-1

Chapter 2
80960KB Hardware Reference .. 2-1

Chapter 3
80960KB Programmer's Reference ... 3-1

Chapter 4
DATA SHEETS

80960KB Embedded 32-Bit Microprocessor .. 4-1
376™ High Performance 32-Bit Embedded Processor .. .4-35
82370 Integrated Syst~m Peripheral .. 4-126

Chapter 5
DEVELOPMENT SUPPORT TOOLS

80960 Development Tools Fact Sheet .. , 5-1
ADA-960 Compiler Fact Sheet ... 5-4
ICE-960 Fact Sheet .. 5-8

vii

Any of the following products may appear iIi this publication. If so, it must be noted that
such products have counterparts manufactured by Intel Puerto Rico, Inc., Intel Puerto
Rico II, Inc., and/or Intel Singapore, Ltd. The product codes/part numbers of these
counterpart products are listed below next to the corresponding Intel Corporation product
codes/part numbers.

Intel Corporation
Intel Puerto Rico, I.c. Intel Singapore, Ltd. Intel Corporation Intel Puerto Rico, Inc. Intel Singapore, Ltd.
Intel Puerto Rico II, Inc. Intel Puerto lUoo n, Inc.

Product Codes' Product Codes'
Product Codes' Product Codes' Product Codes' Product Codes'

Part Numbers
Part Numbers

Part Numbers Part Numbers
Part Numbers

Part Numbers

376SKIT p376SKIT KM2 pKM2
903 p903 KM4 p!'M4
904 p904 KM8 pKM8
913 p913 KNLAN pKNLAN
914 p914 KT60 pKT60
923 p923 KW140 pKWI40
924 p924 KW40 pKW40
952 p952 KW80 pKW80
953 p953 M1 pM1
954 p954 M2 pM2
ADAICE pADAICE M4 pM4
B386M1 pB386M1 M8 pM8
B386M2 pB386M2 MDS610 pMDS610
B386M4 pB386M4 MDX3015 pMDX3015
B386M8 pB386M8 MDX3015 pMDX3015
C044KIT pC044KIT MDX3016 pMDX3016
C252KIT pC252KIT MDX3016 pMDX3016
C28 pC28 MDX457 pMDX457
cn pC32 MDX457 pMDX457
C452KIT pC452KIT MDX458 pMDX458
D86ASM pD86ASM MDX458 pMDX458
D86C86 pD86C86 MSA96 pMSA96
D86EDI pD86EDI NLAN pNLAN
DCM9111 pDCM9111 PCLlNK sPCLlNK
DOSNET pDOSNET - PCX344A pPCX344A
F1 pFI R286ASM pR286ASM
GUPILOGICIID pGUPILOGICIID R286EDI pR286EDI
H4 pH4 R286PLM pR286PLM
1044 pl044 R286SSC pR286SSC
1252KIT pl252KIT R86FOR pR86FOR
1452KIT· pl452KIT RCB4410 sRCB4410
186ASM pl86ASM RCX920 pRCX920
ICE386 plCE386 RMX286 pRMX286
111010 plllOIO RMXNET pRMXNET
111086 plll086 S301 pS301
111086 TIII086 S386 pS386
111111 plll111 SBC010 pSBC010
111186 pili 186 SBC012 pSBC012 sSBC012
111186 TIII186 SBC020 pSBC020
111198 plll198 SBC028 pSBC028
111212 plll212 SBC040 pSBC040
111286 plll286 SBC056 pSBC056
111286 TIII286 SBCI08 pSBC108
111515 plll515 SBC116 pSBC1l6
111520 TIII520 SBCI8603 pSBC18603 sSBCI8603
111520 plll520 SBC186410 pSBC186410
111531 plll531 SBC18651 pSBC18651 sSBC18651
111532 plllS32 SBC186S30 pSBC186S30
111533 plllS33 SBC18678 pSBC18678
111621 plll621 SBC18848 pSBC18848 sSBC18848
111707 plll707 SBC188S6 pSBC188S6 sSBC188S6
111707 TIII707 SBC208 pSBC208 sSBC208
111815 plll81 5 SBC214 pSBC214
INA961 plNA961 SBC21S pSBC21S
1PAT86 plPAT86 SBC220 pSBC220 ~BC220
KAS pKAS SBC221 pSBC221
KC pKC SBC28610 pSBC28610 sSBC28610
KH pKH SBC28612 pSBC28612
KM1 pKMI SBC28614 pSBC28614

Intel Corporation Intel Puerto Rico, Inc. Intel Singapore, Ltd. Intel Corporation
Intel Puerto Rico, Inc. Intel Singapore, Ltd.

Intel Puerto Rico II, Inc. Intel Puerto Rico II, Inc.
Product Codes!

Product Codes!
Product Codes! Product Codes!

Product Codes!
Product Codes!

Part Numbers Part Numbers Part Numbers Part Numbers Part Numbers Part Numbers

SBC286l6 pSBC286l6 SBCMEM310 pSBCMEM310
SBC300 pSBC300 SBCMEM312 pSBCMEM312
SBC30l pSBC30l SBCMEM320 pSBCMEM320
SBC302 pSBC302 SBCMEM340 pSBCMEM340
SBC304 pSBC304 SBE96 pSBE96
SBC307 pSBC307 SBX217 pSBX217
SBC314 pSBC314 SBX218 pSBX218
SBC322 pSBC322 SBX270 pSBX270
SBC324 pSBC324 SBX311 pSBX311
SBC337 pSBC337 SBX328 pSBX328
SBC34l pSBC341 SBX33l pSBX331
SBC386 pSBC386 sSBC386 SBX344 pSBX344
SBC386l16 pSBC386116 SBX350 pSBX350
SBC386l20 pSBC386l20 SBX351 pSBX351
SBC38621 pSBC3862l SBX354 pSBX354
SBC38622 pSBC38622 SBX488 pSBX488
SBC38624 pSBC38624 SBX586 sSBX586
SBC38628 pSBC38628 SCHEMAIIPLD pSCHEMAIIPLD
SBC38631 pSBC3863l SCOM pSCOM
SBC38632 pSBC38632 SDK5l pSDK51
SBC38634 pSBC38634 SDK85 pSDK85
SBC38638 pSBC38638 SDK86 pSDK86
SBC428 pSBC428 sSBC428 SXM217 pSXM217
SBC464 pSBC464 SXM28612 pSXM28612
SBC517 pSBC5l7 SXM386 pSXM386
SBC519 pSBC5l9 sSBC519 SXM544 pSXM544
SBC534 pSBC534 sSBC534 SXM552 pSXM552
SBC548 pSBC548 SXM95l pSXM95l
SBC550 TSBC550 SXM955 pSXM955
SBC550 pSBC550 SYPl20 pSYP120
SBC550 pSBC550 SYP301 pSYP301
SBC552 pSBC552 SYP302 pSYP302
SBC556 pSBC556 sSBC556 SYP3l090 pSYP31090
SBC569 pSBC569 SYP311 pSYP311
SBC589 pSBC589 SYP3847 pSYP3847
SBC604 pSBC604 SYR286 pSYR286
SBC608 pSBC608 SYR86 pSYR86
SBC6l4 pSBC614 SYS120 pSYS120
SBC6l8 pSBC618 SYS310 pSYS310
SBC655 pSBC655 SYS3ll pSYS311
SBC66ll pSBC66ll T60 pT60
SBC8010 pSBC8010 TA096 pTA096
SBC80204 pSBC80204 TA252 pTA252
SBC8024 pSBC8024 sSBC8024 TA452 pTA452
SBC8030 pSBC8030 Wl40 pWl40
SBC8605 pSBC8605 sSBC8605 W280 pW280
SBC86l2 pSBC86l2 W40 pW40
SBC8614 pSBC86l4 W80 pW80
SBC8630 pSBC8630 sSBC8630 XNX286DOC pXNX286DOC
SBC8635 pSBC8635 sSBC8635 XNX286DOCB pXNX286DOCB
SBC86C38 sSBC86C38 XNXIBASE pXNXIBASE
SBC8825 pSBC8825 sSBC8825 XNXIDB pXNXIDB
SBC8840 pSBC8840 XNXIDESK pXNXIDESK
SBC8845 pSBC8845 sSBC8845 XNXIPLAN pXNXIPLAN
SBC905 pSBC905 XNXIWORD pXNXIWORD
SBCLNKOOl pSBCLNKOOl

CG/PCPN;1Q2488

Introduction to the 80960KB 1

INTRODUCTION

This handbook provides detailed programming information and hardware system design informa­
tion for the Intel 80960KB processor (which is part of the 80960K series of embedded-processor
products) as well as information on other 32-bit microprocessors, peripherals and development
support tools.

Hardware designers can use this information as a guideline for developing microprocessor systems.
Applications programmers, compiler designers, and designers of operating-system kernels will also
find needed information on the software architecture, instruction set, and programming of the
80960KB processor.

All of the processors in the 80960K series of products are based on the Intel 80960 architecture. Most
of the information in this handbook also applies to the 80960KA processor. The only difference
between the 80960KB and 80960KA processors is that the 80960KA does not provide on-chip
support for floating-point operations or operations on decimal numbers.

Wherever appropriate, design examples are included. These designs are based upon functional
80960KB boards and systems, and are simplified for ease of understanding. These simplified designs
have not been tested except for examples that include part numbers.

The Programmer's Reference provides programmers and system designers with detailed informa­
tion about the processor's programming environment and kernel (or executive) support facilities. It
also provides detailed reference information on the 80960 architecture, beyond that found in the
architecture overview.

OVERVIEW OF THE PROGRAMMER'S REFERENCE

The following is a brief overview of the contents of each section of the Programmer's Reference
portion of the manual:

Section 7 - Execution Environment. Describes the environment in which instructions are executed.
The topics discussed include the address space, registers, instruction pointer, and arithmetic calls.

Section 8 - Procedure Calls. Describes the various mechanisms available for making procedure
calls. The topics discussed include the local call/return'mechanism, procedure stack, branch-and-link
procedure calls, procedure table calls, and supervisor call mechanism.

Section 9 -Data Types and Addressing Modes. Describes non-floating-point data types arid how
bits and bytes are addressed. The addressing modes provided for addressing data in memory are also
described in this section.

Section 10 - Instruction Set Summary. OverView of all non-floating-point instructions in the
80960KB instruction set, arranged by functional groups. The assembly language instruction format
is also described.

1-1

INTRODUCTION

Section 11 - Processor Management and Initialization. Describes the processor management
facilities. Included is a discussion of the system data structures required to operate the processor, the
software requirements for processor management, and the requirements for physical memory.
Processor Initialization concludes the section.

Section 12 - Interrupts. Description of the interrupt mechanism, interrupt priority, interrupt table,
interrupt handling procedures, and the software requirements for handling interrupts.

Section 13 - Fault Handling. Describes the processor's fault-handling mechanism, including the
fault-table structure, fault han'dling procedures, and the software requirements for handling faults.
Each fault is detailed in a reference section at the end of the section.

Section 14 - Debugging. Describes the debugging and monitoring support facilities, including the
trace control register.

Section 15 - Instruction Set Reference. Alphabetical listing of the complete 80960KB instruction
set, with detailed descriptions of each instruction, assembly-language syntax, examples, and
algorithms.

Section 16 - Floating Point Operation. Description of the floating-point processing facilities of the
processor. This section includes an overview of floating-point numbers as well as a description of
the 80960KB floating-point data types and their relationship to the IEEE floating-point standard.
Floating-point instructions, exceptions, and faults are also described.

Section 17 - Interagent Communication. Describes the interprocessor communication (lAC)
mechanism, which allows several processors to communicate with one another over the bus. The
topics discussed include the lAC mechanism and software requirements' for using internal lACs.
Each lAC is described in detail in a reference section at the end of the section.

Appendix A- Instruction and Data Structure Quick Reference. Provides two lists of the 80960KB
instructions - one alphabetical by assembly-language mnemonic and one by machine language
opcode. .

Appendix B - Machine-Level Instruction Formats.

Appendix C-Instruction Timing. Describes the 80960KB processor's instruction pipeline and its
effect on instruction timing. Includes each instruction's clock cycle requirement.

Appendix D - Initialization Code. A listing of the code to initialize the 80960KB processor.

Appendix E - Considerations for Portable Software. Discusses the 8096QKB architecture aspects
that should be considered if code written for the 80960KB processor is intended to be ported later
to other.implementations of the 80960 architecture.

1·2

inter INTRODUCTION

NOTATION AND TERMINOLOGY CONVENTIONS

The following paragraphs describe the notation style conventions used in the architectural overview
and programmer's reference chapters, as well as terminology that has special meaning as used in this
handbook.

Integer numbers are presented in decimal format unless otherwise indicated by the SUbscript "H" for
hexadecimal or "B" for binary.

An active low signal is represented by a solid line over the signal name.

Reserved and Preserved

Certain fields in the processor's system data struct~res are described as being either reserved fields
or preserved fields.

A reserved field is one that other implementations of the 80960 architecture can use. To help ensure
that a current software design will be compatible with future processors based on the 80960
architecture, the bits in the reserved fields should be set to 0 when the structure is initially created.
Thereafter, software should not access these fileds.

Some fields in system data structures are shown as being required to be set to either I or O. These fields
should be treated as if they were reserved fields. They should be set to the specified value when the
data structure is created, and should not be accessed by software after that.

A preserved field is one that the processor does not use. Software may use preserved fields for any
function.

Set and Clear

The terms set and clear are used in this manual to refer to the value of a bit field in a system data
structure. If a bit is set, its value is I; if the bit is clear, its value is O. Likewise, setting a bit means
giving it a value of I and clearing a bit means giving it a value of O.

OVERVIEW OF THE 80960KB ARCHITECTURE

The 80960KB processor introduces the 80960 architecture - anew 32-bitarchitecture from Intel. This
architecture has been designed to meet the needs of embedded applications such as machine control,
robotics, process control, avionics, and instrumentation.

The 80960 architecture can best be characterized as a high-performance computing engine. It
features high-speed instruction execution and ease of programming. It is also easily extensible,
allowing processors and controllers based on this architecture to be conveniently customized to meet
the needs of specific processing and control applications.

1-3

intJ INTRODUCTION

The following are some of the important attributes of the 80960 architecture:

• Full 32-bit registers

High-speed, pipelined instruction execution

A convenient program execution environment with 32 general-purpose registers and a versatile
set of special-function registers

A highly optimized procedure call mechanism that features on-chip caching of local variables
and parameters

Extensive facilities for handling interrupts and faults

• Extensive tracing facilities to support efficient program debugging and monitoring

• Register scoreboarding and write bu~fering to permit efficient operation when used with lower
performance memory subsystems.

OVERVIEW OF THE SINGLE PROCESSOR SYSTEM ARCHITECTURE

The central processing module, memory module, and I/O module form the natural boundaries for the
hardware system architecture. The modules are connected together by the high bandwidth 32-bit
multiplexed L-bus, which can transfer data at a maximum sustained rate of 53M bytes per second for
an 80960 processor operating at 20 MHz.

Figure I shows a simplified block diagram of one possible system configuration. The heart of this
system is the 80960B processor, which fetches instructions, executes· code, manipulates stored
information, and interacts with I/O devices. The high bandwidth L-bus connects the 80960KB
processor to memory and I/O modules. The 80960KB processor stores system data, instructions, and
programs in the memory module. By accessing various peripheral devices in the I/O module, the
80960KB processor supports communication to terminals, modems, printers, disks, and other I/O
devices.

80960KB Processor and the L-Bus

The 80960KB processor performs bus operations using multiplexed address and data signals, and
provides all the necessary control signals. For example, standard control signals, such as Address
Latch Enable (ALE), AddresslData Status (ADS), WritelRead Command (wiR), Data Transmit/
Receive (DTiR), and Data Enable (DEN), are provided by the 80960KB processor. The 80960
processor also generates byte enable signals that specify which bytes on the 32-bit data lines are valid
for the transfer.

The L-bus supports burst transactions, which access up to four data words at a maximum rate of one
word per clock cycle. The 80960KB processor uses the two low-order address lines to indicate how
many words are to be transferred. The 80960KB processor performs burst transactions to load the
on-chip 5 I 2-byte instruction cache to minimize memory accesses for instruction fetches. Burst
transactions can also be used for data access.

1-4

inter INTRODUCTION

Figure 1. Basic 80960MC System Configuration

To transfer control of the bus to an external bus master, the 80960KB provides two arbitration signals:
hold request (HOLD) and hold acknowledge (HLDA). After receiving HOLD, the processor grants
control of the bus to an external master by asserting HLDA.

The 80960KB processor provides a flexible interrupt structure by using an on-chip interrupt
controller, an external interrupt controller, or both. The type of interrupt structure is specified by an
internal interrupt vector register. For a system with multiple processors, another method is available,
called inter-agent communication (lAC) where a processor can interrupt another processor by
sending an lAC message.

Memory Module

A memory module can consist of a memory controller, Erasable Programmable Read Only Memory
(EPROM), and static or dynamic Random Access Memory (RAM). The memory controller first

1-5

INTRODUCTION

conditions the L-bus signals for memory operation. It demultiplexes the address and data lines,
generates the chip. select signals from the address, detects the start of the cycle for burst mode
operation, and latches the byte enable signals.

The memory controller generates the control signals for EPROM, SRAM, and DRAM. Specifically,
it provides the control signals, multiplexed row/column address, and refresh control for dynamic
RAMs. The controller can be designed to accomodate the burst transaction of the 80960KB processor
by using the static column mode or nibble mode features of the dynamic RAM. In addition to
supplying the operational signals, the controller generates the READY signal to indicate that data can
be transferred to or from the 80960KB processor.

The 80960KB processor directly addresses up to 4G bytes of physical memory. The processor does
not allow burst accesses to cross a 16-byte boundary, to ease the design of the controller. Each address
specifies a four-byte data word within the block. Individual data bytes can be accessed by using the
four byte-enable signals from the 80960KB processor. Chapter 5 provides design guidelines for the
memory controller.

110 Module

The I/O module consists of the I/O components and the interface circuit. I/O components can be used
to allow the 80960KB processor to use most of its clock cycles for computational and system
management activities. Time consuming tasks can be off-loaded to specialized slave-type compo­
nents, such as the 8259A Programmable Interrupt Controller or the 82530 Serial Communication
Controller. Some tasks may require a master-type component, such as the 82586 Local Area Network
Control.

The interface circuit performs several functions. It demultiplexes the address and data lines,
generates the chip select signals from the address, produces the I/O read or I/O write command from
the processor's W!R signal, latches the byte enable signals, and generates the READY signals. Since
some of these functions are identical to those of the memory controller, the same logic can be used
for both interfaces. For master-type peripherals that operate on a 16-bit data bus, the interface circuit
translates the 32-bit data bus to a 16-bit data bus.

The 80960KB processor uses memory-mapped addresses to access I/O devices. This allows the CPU
to use may of the same instructions to exchange information for both memory and peripheral devices.
Thus, the powerful memory-type instructions can be used to perform 8-, 16-, and 32-bit data
transfers.

HIGH PERFORMANCE PROGRAM EXECUTION

Much of the design of the 80960 architecture has been aimed at maximizing the processor's
computational and data processing speed through the use of increased parallelism. The following ,
paragraphs describe several of the mechanisms and techniques used to accomplish this goal.

1-6

INTRODUCTION

Load and Store Model

One of the more important features of the 80960 architecture is its performance of most operations
on operands in registers, rather than in memory. For example, all arithmetic, logic, comparison,
branching and bit operations are performed with registers and literals.

This feature provides two benefits. First, it increases program execution speed by minimizing the
number of memory accesses necessary to execute a program. Second, it reduces the memory latency
encountered when using slower, lower-cost memory parts.

To support this concept, the architecture provides a generous supply of general-purpose registers. For
each procedure, 32 registers are available, 28 of which are available for general use .. Thse registers
are divided into two types: global and local. Both types of registers can be used for general storage
of operands. The only difference is that global registers retain their contents across procedure
boundaries, whereas the processor allocates a new set of local registers each time a new procedure
is called.

The architecture also provides a set of fast, versatile load and store instructions. These instructions
allow burst transfers of 1, 2, 4,8,12, or 16 bytes of information between memory and the registers.

On-Chip Caching of Code and Data

To further reduce memory accesses, the architecture offers two mechanisms for caching code and
data on chip: an instruction cache and multiple sets of local registers. The instruction cache allows
prefetching of blocks of instruction from memory. This helps ensure that the instruction execution
pipeline is supplied with a steady stream of instructions. It also reduces the number of memory
accesses required when performing iterative operations such as loops. The architecture allows the
size of the instruction cache to vary. For the 80960KB processor, it is 512 bytes.

To optimize the architecture's procedure call mechanism, the processor provides multiple sets of
local registers. This allows the processor to perform procedure calls without having to write the local
registers out to the stack in memory. The number of register sets depends on the processor
implementation. The 80960KB processor provides four sets of local registers.

Overlapped Instruction Execution

The 80960 architecture also enhances program execution speed by overlapping the execution of
some instructions. In the 80960K series of processors, this is accomplished through register
scoreboarding.

Register scoreboarding permits instruction execution to continue while data is being fetched from
memory. When a load instruction is executed, the processor sets one or more scoreboard bi~s to
indicate the target registers to be loaded. After the target registers are loaded, the scoreboard bits are
cleared. While the target registers are being loaded, the processor is allowed to execute other
instructions that do not use these registers.

1-7

INTRODUCTION

The processor uses the scoreboard bits to ensure that the target registers are not used until the loads
complete. (Scoreboard bits are checked transparently from software.) This technique allows code to
bt;! executed such that some instructions can be executed in zero clock cycles (that is, executed for
free).

Single-Clock Instructions

The 80960 architecture is designed to let a processor execute commonly used instructions, such as
moves, adds, subtracts, logical operations, and branches, in a minimum number of clock cycles
(preferably one cycle). The architecture supports this concept in several ways. For example, the load
and store model described earlier eliminates the clock cycles required to perform memory-to­
memory operations, by concentrating on register-to-register operations.

In addition, all df the instructions in the 80960 architecture are 32 bits long and aligned on 32-bit
boundaries. This lets instructions be decoded in one clock cycle, and eliminates the need for an
instruction-alignment stage in the pipeline.

The 80960KB processor takes full advantage of these features of the architecture, resulting in more
than 50 instructions that can be executed in a single clock cycle.

Efficient Interrupt Model

The 80960 architecture provides an efficient mechanism for servicing- interrupts from external
sources. To handle interrupts, the processor maintains an interrupt table of 248 interrupt vectors, 240
of which are available for general use. When an interrupt is signaled, the processor uses a pointer to
the interrupt table to perform an implicit call to an interrupt handler procedure. In performing this
call, the processor automatically saves the state of the processor prior to receiving the interrupt,
performs the interrupt routine, then restores the state of the processor. A separate interrupt stack is
also provided to segregate interrupt handling from application programs.

The interrupt handling facilities also all()w interrupts to be evaluated by priority. The processor is then
able to store interrupt vectors that are lower in priority than the current processor task in a pending
interrupt section of the interrupt table. The processor checks and services the pending interrupts at
defined times.

SIMPLIFIED PROGRAMMING ENVIRONMENT

Because of its streamlined execution environment, processors based on the 80960 architecture are
particularly easy to program. The following paragraphs describe some of the architecture features
that simplify programming.

Highly Efficient Procedure Call Mechanism

The procedure call mechanism makes procedure calls and parameter passing between procedures
simple and compact. Each time a call instruction is issued, the processor automatically automatically

1-8

inter INTRODUCTION

saves the current set of local registers and allocates a new set for the called procedure. Likewise, on
a return from a procedure, the current set of local registers is deallocated and the local registers for
the procedure being returned to are restored. This means a program never has to explicitly save and
restore those local variables that are stored in local registers.

Versatile Instruction Set and Addressing

The selection of instructions and addressing modes also simplifies programming. A full set of load,
store, move, arithmetic, comparison, and branch instructions are provided, with operations on both
integer and ordinal data types. Operations on bits and bit strings are simplified by a complete set of
Boolean and bit-field instructions.

The addressing modes are efficient and straighforward, while at the same time providing the
necessary indexing and scaling modes required to address complex arrays and record structures. The
large 4-gigabyte address space provides ample room to store programs and data. The availabilty of
32 addressing lines allows some address lines to be memory-mapped to control hardware functions.

Extensive Fault Handling Capability

To aid in program development, the 80960 architecture defines a wide range of faults that the
processor detects, including arithmetic faults, invalid operations, invalid operands, and machine
faults. Whan a fault is detected, the processor makes an implicit call call to a fault handler routine,
in a way similar to the interrupt mechanism descrbed previously. The information collected for each
fault allows program developers to quickly correct faulting code, and allows automatic recovery
from some faults.

Debugging and Monitoring

To support debugging systems, the 80960 architecture provides a mechanism for monitoring
processor activity by means of trace events. When the processor detects a trace event, it signals a trace
fault and calls a fault handler. Intel provides several tools that use this feature, including an in-circuit
emulator (rCE) device.

SUPPORT FOR ARCHITECTURAL EXTENSIONS

The 80960 architecture provides several features that enable processors based on this architecture to
be easily customized to meet the needs of specific embedded applications, such as signal processing,
array processing, or graphics processing.

The most important of these features is the set of3 2 special function registers. These registers provide
a convenient interface to circuitry in the processor or pins that can be connected to external hardware.
They can be used to control timers, to perform operations on special data types, or to perform I/O
functions. The special function registers are similar to the global registers. They can be addressed by
all of the register access instructions.

1-9

inter INTRODUCTION

EXTENSIONS INCLUDED IN THE 80960K SERIES PROCESSORS

The 80960K series of processors provides a complete implementation of the 80960 architecture, plus
several extensions to that architecture. These extensions fall into two categories: floating-point
processing and interagent communication.

On-Chip Floating Point

The 80960KB processor provides a complete implementation of the IEEE standard for binary
floating-point arithmetic (IEEE 754-185). This implementation includes a full set of floating point
operations, including add, subtract, multiply, divide, trigonometric functions, and logarithmic
functions. These operations are performed on single precision (32-bit), double precision (64-bit), and
extended precision (80-bit) real numbers.

One ofthe benefits of this implementation is that the floating-point handling facilities are integrated
into the normal instruction execution environment. Single and double precision floating-point values
are stored in the same registers as non-floating point values. Four 80-bit floating-point registers are
provided to hold extended-precision values.

Interagent Communication

All of the processors in the 80960K series provide an interagent communication (lAC) mechanism,
allowing agents connected to the processor's bus to communicate with one another. This mechanism
operates similarly to the interrupt mechanism, except that lAC messages are passed through
dedicated sections of memory. The sort of tasks handled with lAC messages are processor
reinitialization, stopping the processor, purging the instruction cache, and forcing the processor to
check pending interrupts.

1-10

80960KB Architectural
Overview

2

HARDWARE REFERENCE

1.0 INTRODUCTION

The 80960KB is the first 32-bit microprocessor designed especially for embedded applications. At
an operating frequency of 20 MHz, this high performance processor can sustain an instruction
execution rate of seven and one-half million instructions per second (MIPS), and burst rates of 20
MIPS. The 80960KB processor enhances embedded system performance by integrating special
features to eliminate the need for additional peripheral devices and the associated software overhead.
For instance, the 80960KB processor offers an on-chip floating-point processing unit, an improved
interrupt handling capability, and support for debugging and tracing. This chapter describes the
architectural attributes and enhancements of the 80960KB processor for embedded computing.

1.1 ARCHITECTURAL ATTRIBUTES FOR EMBEDDED COMPUTING

For over a decade, Intel has designed a large variety of 8- and 16-bit microcontrollers to fit the needs
of embedded applications. Based on this experience, several architectural attributes shared by both
micro controllers and microprocessors can be implemented that benefit embedded applications and
enhance microprocessor performance. Because the 80960KB processor incorporates these attributes
(listed below) in its architecture, embedded applications are easy to design, perform well, and get to
market fast.

Simple load/store design

Large general-purpose register sets

Boolean and bit-field instructions

Small number of operations and addressing modes

Simplified instruction format

Minimum cycle operation

1.1.1 Load/Store Design

In the 80960 family architecture, operations are register-to-register, with only LOAD and STORE
instructions accessing memory. This attribute simplifies the instruction set and shortens cycle time.
The 80960KB processor uses LOAD and STORE instructions to access memory. It further minimizes
accesses to memory by providing a 512-byte, direct-mapped instruction cache. When a memory
access is required, the processor can perform a burst transaction that accesses up to four data words
with one word transferred every clock cycle.

1.1.2 Large General·Purpose Register Sets

Because the instructions operate on operands within registers, the 80960 family uses many registers.
The 80960KB processor features large, versatile register sets. For maximum flexibility, each
processor provides 32 32-bit registers and four 80-bit floating-point registers.

2-1

HARDWARE REFERENCE

There are two types of general-purpose registers: local and global. The processor automatically
accesses the 16 local registers when a procedure call is performed. Multiple sets of local registers are
stored on-chip to further increase the efficiency of this register set, as shown in Figure 1. The register
cache holds up to four local register frames, which means that up three procedure calls can be made
without having to access the procedure stack resident in memory.

rOUR ONE or
LOC

REGISTER
AL

SETS

REGISTER
CACHE

---.......

~
r-----===: LOCAL REGISTER SET

31 o

Figure 1. Local Register Set

The 20 global registers retain their contents across procedure boundaries. The global registers consist
of sixteen 32-bit registers (G 15 through Go) and four 80-bit registers (FP3 through FPo) as shown in
Figure 2. While all registers can be used for floating-point operations, the 80-bit registers are used
for accumulation of extended precision results.

1.1.3 Small Number of Addressing Modes

The 80960 family uses relatively few addressing modes to facilitate a fast, simple interpretation by
the control engine. The 80960KB processor provides simple, fast addressing modes, as well as a few
complex addressing modes to allow optimizations for code density.

1.1.4 Simplified Instruction Format

A simplified instruction format eases the hardwired decoding of instructions, which again speeds
control paths. The 80960KB processor's instruction formats are simple and word aligned; all
instructions are one word long except for one class that uses the subsequent word as a 32-bit
displacement. To further enhance performance, the instructions do not cross word boundaries. This
feature eliminates a pipeline stage (that would have to align instructions) and decreases instruction
execution time.

2-2

HARDWARE REFERENCE

GLOBAL REGISTERS

r--------------. G"

~ ____________________________ ~Go

31 0

FLOATING POINT REGISTER'

1-_______________________ -11'·;
• FPc"

~7~9--~O
NOTE:
'ANY REGISTER CAN BE USED FOR FLOATING-POINT OPERATIONS. THE SO-BIT
REGISTERS ARE PROVIDED FOR EXTENDED PRECISION ACCUMULATION.

Figure 2. Global Register Set

1.1.5 Overlapped Execution

To optimize performance, the 80960KB processor overlaps instruction execution by means of write
buffering and register scoreboarding. Write buffering allows a write instruction to proceed as soon
as it is placed in the buffer. It does not have to wait for the actual write operation to occur on the L-
bus. .

Similarly, register scoreboarding is a design technique that allows the 80960KB to continue
execution of instructions when it encounters a LOAD instruction. When the LOAD instruction
begins, the 80960KB sets a scoreboard bit on the target register. After the target register is loaded with
data, the processor resets the bit. While the data is being retrieved, additional instructions that do not
reference the target register can be executed.

The 80960KB ensures that these additional instructions do not reference the target register by
checking the scoreboard transparently (no software required). Thus, the scoreboard feature reduces
the effect of slow memory speed and provides a useful tool for optimizing procedures.

2-3

HARDWARE REFERENCE

1.1.6 Minimum cycle operation

The 80960KB processor executes most of the core instructions in a single clock cycle. For these
instructions, the 80960KB processor uses hardwired logic rather than microcode to execute the
instruction.

The 80960KB also supports a number of important multicycle instructions, such as 32-bitmultiply
and divide instructions. These auxiliary functions require more than one clock cycle because it is
more efficient to use microcode than hardwired logic. On the other hand, the integration of these
functions on-chip eliminates much software overhead and the negative effects on code density that
would be otherwise required. Thus, the additional functionality of the 80960KB enhances overall
system performance while keeping code size small.

1.2 ADDITIONAL 80960KB ARCHITECTURAL ENHANCEMENTS

The 80960KB incorporates two useful features: an on-chip floating-point processing and debugging
functions. The floating-point unit can be used for applications that require precision such as machine­
control operations. The debugging function significantly decreases development time.

1.2.1 Floating-point Operation

The on-chip floating-point unit of each processor improves the performance of floating-point
calculations by eliminating bus overhead used to transfer operands to a coprocessor. The processor
provides hardware support for both mandatory and recommended portions of IEEE standard 754 for
floating-point arithmetic, exponential, logarithmic, and other transcendental functions. By integrat­
ing the floating-point unit on-chip, the 80960KB processor reduces the overall chip count for a
system, decreases power consumption, and increases overall performance and reliability.

1.2.2 Debug Capabilities

The processor provides extensive system debug capabilities, an important feature for embedded
computing where the ability to instrument an application may be limited. The 80960KB processor
allows breakpoint instructions that stop program execution on variousevents, such as procedure calls,
or certain instructions. Another debug facility traces the activity of the processor while it is executing
a program. Tracing is done by recording the addresses of instructions that cause trace events to occur.
For example, a trace event can occur on the execution of a specific instruction, branch, or procedure
call. To ensure that the 80960KB is operating properly, the processor performs a self-test when it is
reset. If the self-test is successful, the 80960KB begins operation, otherwise it enters the stopped
state.

1.3 STANDARD BUS INTERFACE

The advanced features of the 80960KB processor are implemented using a performance optimized
bus interface. The processor uses a high bandwidth local bus (L-bus) that consists of standard signal

2-4

HARDWARE REFERENCE

groups: a 32-bit multiplexed address/data path and control signals for data transactions. Because of
the large amount of caching, the L-bus supports burst transactions that transfer up to four successive
data words. Transactions on the L-bus can use 8-, 16-, and 32-bit data types and address up to 4G bytes
of physical memory. Bus arbitration can be accomplished by simply using the hold request!hold
acknowledge protocol.

1.4 INTER-AGENT COMMUNICATION/COPROCESSOR CAPABILITIES

The 80960KB processor offers a flexible way to manage interrupts. It accepts interrupts in one of
three ways: by communicating with an external interrupt controller using the standard Interrupt/
Interrupt Acknowledge signals, by activating the on-chip interrupt controller, or by accepting an
inter-agent communication (lAC) message. This allows the 80960KB to act as a coprocessor on a
shared bus with another CPU.

1.5 SUMMARY

The 80960KB processor optimizes embedded system performance by using a new 32-bit architec­
ture. The 80960 family architecture includes a load/store design, large general purpose (register sets,
fast addressing modes, a simplified instruction format, and minimized instruction execution cycles.

To further enhance system performance, the 80960KB processor provides floating-point operation,
interrupt controller capabilities, and debug functions. By intergrating these functions on-chip, the
80960KB reduces the power requirements and overall chip count for a system.

As a result of the 80960 architecture, the 80960KB processor provides unprecedented performance.
For a speed selection of 20 MHz, it can sustain an instruction execution rate of over seven and one­
half MIPS and burst rates of 20 MIPS, speeds comparable to that of super minicomputers. The high
instruction execution rates are made possible through a innovative design that incorporates an on­
chip instruction cache with burst-transfer capability.

2.0 80960KB SYSTEM ARCHITECTURE

This section illustrates the flexibility and power of the 80960KB system architecture using the
advanced 32-bit 80960KB processor. The section examines system configurations from general
perspective to explain the design concepts. Subsequent sections describe the the system design.

2.1 OVERVIEW OF A SINGLE PROCESSOR SYSTEM ARCHITECTURE

The central processing module, memory module, and I/O module form the natural boundaries for the
hardware system architecture. The modules are connected together by the high bandwidth 32-bit
multiplexed L-bus, which can transfer data at a maximum sustained rate of 53M bytes per second for
an 80960KB processor operating at 20 MHz.

2-5

intJ HARDWARE REFERENCE

Figure 3 shows a simplified block diagram of a possible system configuration. The heart of this
system is the 80960KB processor, which fetches program instructions, executes code, manipulates
stored information, and interacts with I/O devices. The high bandwidth L-bus connects the 80960KB
processor to memory and I/O modules. The 80960KB processor stores system data and instructions
and programs in the memory module. By accessing various peripheral devices in the I/O module, the
80960KB processor supports terminals, modems, printers, disks, and other I/O devices.

Figure 3. Basic 80960MC System Configuration

2.1.1 80960KB Processor and the L-Bus

The 80960KB processor performs bus operations using multiplexed address and data signals and
provides all thene~essary control signals. For example, standard control signals, such as Address·
Latch Enable (ALE), Address/Data Status (ADS), WriteIRead command (W!R) Data Transmit/
Receive (DT!R) and Data Enable (DEN) are provided by the 80960KB processor. The 80960KB
processor also generates byte enable signals that specify which bytes on the 32-bit data lines are valid
for the transfer.

2-6

HARDWARE REFERENCE

The L-bus supports burst transactions, which access up to four data words at a maximum rate of one
word per clock cycle. The 80960KB processor uses the two low-order address lines to indicate how
many words are to be transferred. The 80960KB processor performs burst transactions to load the
on-chip 512-byte instruction cache to minimize memory accesses for instruction fetches. Burst
transactions can also be used for data accesses.

To transfer control of the bus to an external bus master, the 80960KB processor provides two
arbitration signals: hold request (HOLD) and hold acknowledge (HLDA). After receiving HOLD,
the processor grants control of the bus to an external bus master by asserting HLDA.

The 80960KB processor provides a flexible interrupt structure by using an on-chip interrupt
controller, an external interrupt controller, or both. The type of interrupt structure is specified by an
internal interrupt vector register. For a system with multiple processors, another method is available,
called inter-agent communication (lAC) where a processor can interrupt another processor by
sending an lAC message.

Complete details of the L-bus and bus operations are discussed in Section 3.

2.1.2 Memory Module

A memory module can consist of the memory controller, Erasable Programmable Read Only
Memory (EPROM), and static or dynamic Random Access Memory (RAM). The memory controller
first conditions the L-bus signals for memory operation. It demultiplexes the address and data lines,
generates the chip select signals from the address, detects the start of the cycle for burst mode
operation, and latches the byte enable signals.

The memory controller generates the control signals for EPROM, SRAM, and DRAM. In particular,
it provides the control signals, multiplexed row/column address, and refresh control for dynamic
RAMs. The controller can be designed to accommodate the burst transaction of the 80960KB
processor by using the static column mode or nibble mode features of the dynamic RAM. In addition
to supplying the operation signals, the controller generates the READY signal to indicate that data
can be transferred to or from the 80960KB processor.

The 80960KB processor directly addresses up to 4G bytes of physical memory. The processor does
not allow burst accesses to cross a 16-byte boundary to ease the design of the controller. Each address
specifies a four-byte data word within the block. Individual data bytes can be accessed by using the
four byte enable signals from the 80960KB processor.

Section 4 provides design guidelines for the memory controller.

2.1.3 1/0 Module

The I/O module consists of the I/O components and the interface circuit. I/O components can be used
to allow the 80960KB processor to use most of its clock cycles for computational and system
management activities. Time consuming tasks can be off-loaded to specialized slave-type compo­
nents, such as the 8259A Programmable Interrupt Controller, or the 82530 Communication

2-7

HARDWARE REFERENCE

Controller. Some tasks may require a) master-type component, such as the 82586 Local Area
Network Control.

The interface circuit performs several functions. It demultiplexes the address and data lines,
generates the chip select signals from the address, produces the 1/0 read or I/O write command from
the processor's w/R signal, latches the byte enable signals, and generates the READY signal.
Because these functions are the same as some of the functions of the memory controller, the same
logic can be used for both interfaces. For master-type peripherals that operate on a 16-bit data bus,
the interface circuit translates the 32-bit data bus to a 16-bit data bus.

The 80960KB processor uses memory-mapped addresses to access 1/0 devices. This allows the CPU
to use many of the same instructions to exchange information for both memory and peripheral
devices. Thus, the powerful memory-type instructions can be used to perform 8-, 16-, and 32-bit data
transfers.

Section 5 describes design guidelines for the 1/0 interface by examining representative design
examples.

2.2 SUMMARY

The basic hardware system configuration is modular and flexible. The processor, memory, and I/O
modules form the natural boundaries in the basic hardware system architecture. The high-bandwidth
L-bus that supports burst transfers is used for the data path between the 80960KB processor and other
modules.

3.0 THE 80960KB PROCESSOR AND THE LOCAL BUS

The 32-bit multiplexed local bus (L-bus) connects the 80960KB processor to memory and I/O and
forms the backbone of any 80960KB processor based system. This high bandwidth bus provides
burst-transfer capability allowing up to four successive 32-bit data word transfers at a maximum rate
of one word every clock cycle. In addition to the L-bus signals, the 80960KB processor uses other
signals to communicate to other bus masters. This section, which describes these signals and the
associated operations, follows the outline shown below: .

L-bus states and their relationship to each other

L-bus signal groups, which consist of addressldata and control

L-bus read, write, and burst transactions

L-bus timing analyses and timing circuit generation

Related L-bus operations such as arbitration, interrupt, and reset operations

2-8

HARDWARE REFERENCE

3.1 OVERVIEW OF THE 80960KB L-BUS

The L-bus fonns the data communication path between the various components in a basic 80960KB
hardware system. The 80960KB processor utilizes the L-bus to fetch instructions, to manipulate
infonnation from both memory and I/O devices, and to respond to interrupts. To perfonn these
functions at a high data rate, the 80960KB processor provides a burst mode, which transfers up to
four data words at a maximum rate of one 32-bit word per clock cycle. The 80960KB L-bus has the
following features:

32-bit multiplexed address/data path

High data bandwidth relative to the speed selection of the 80960KB processor

Four byte enables and a four-word burst capability that allow transfers from 1 to 16 bytes in
length

• Support for TTL latches and buffers.

3.2 BASIC L-BUS STATES

The L-bus has five basic bus states: idle (T), address (Ta), data (Td), recovery (Tr), and wait (Tw).
During system operation, the 80960KB processor continuously enters and exits different bus states
as shown in Figure 4. This state diagram assumes that only one bus master resides on the L-bus.

The processor occupies the T j state when no address/data transfers are in progress. When a new
request is received, the 80960KB processor enters the Ta state to transmit the address.

Followi~g a Ta state, the 80960KB processor enters a Td state to transmit or receive data on the
address/data lines provided that the data is (indicated by the assertion of READY at the input of the
processor). If the data is not ready, the processor enters a Tw state and remains in this state until data
is ready.

,
T w states may be repeated as many times as necessary to allow sufficient time for the memory or
I/O device to respond. .

After a data word is transferred, the 80960KB processor exits the Td or Tw state for a single word
transfer or enters the T d state again to transfer another data word for a burst transaction. If the next
data word is not ready during the next clock cycle for a burst transaction, the processor enters the T w
state again.

When the 80960KB processor completes the data transfer of all the data words (one or up to four),
it enters the recovery (Tr) state to allow sufficient time for devices (such as memories) on the bus to
recover. The processor returns to the T. state if no new request is pending, or enters the T: state if a
new request is pending: I I

2-9

NEW REQUEST

T, - IDLE STATE
T.- ADDRESS STATE
T.- DATA STATE
T, - RECOVERY STATE
T.- WAIT STATE

3.3 L-BUS SIGNAL GROUPS

HARDWARE REFERENCE

READY
·NO BURST

READY
·NO BURST

READY - BEAIlY ASSERTED
NOT READY - READY NOT ASSERTED
BURST - MULTIPLE WORD ACCESS IN PROGRESS
NO BURST '"- MULTIPLE WORD ACCESS DONE, OR A

ONE-WORD ACCESS

Figure 4. Basic L·Bus States

The L-bus states are used to define some of the L-bus signals. As shown in Figure 5, the signals on
the L-bus.consist of two basic groups: address/data, and control.

2-10

HARDWARE REFERENCE

~~==============~> CONTROL (12 LINES)

Figure 5. L-Bus Signal Groups

3.3.1 Address/Data

The address/data signal group consists of 32 bidirectional lines. These signals are multiplexed and
serve a dual purpose depending upon the bus state.

Local Address/Data31 through Local Address/Data2 represent the address
signals on the L-bus during the Ta state. LAD2 is the least significant bit, and
LAD3l is the most significant address bit. LAD3l through LAD2 contain a
physical word address.

LADl and LADo specify the number of data words to transfer for a burst
transaction. The address/data signals float to a high impedance state when
not activated.

SIZE (LADl-LADo) The SIZE signal indicates whether one, two, three, or four words are
transferred during the current transaction. During a Ta state, LADl and
LADo represent the word size signals. The encoding is shown in Table 1.

Table 1. SIZE Signal Decoding

Word Selection LAD. LA Do

1 Word Low Low

2 Words Low High

3 Words High Low

4 Words High High

2-11

3.3.2 Control

HARDWARE REFERENCE

Local Address/Data31 through Local Address/Datao represent the d.ata
signal on the L-bus during the T d and T w states. LAD 0 is the least significant
and LAD}l is the most significant address bit. The address/data signals float
to a high impedance state when not activated.

The control signal group consists of 12 signals that permit the transfer of data. These signals can be
used to control data buffers, address latches, and other standard interface logic.

DT/R

DEN

W/R

BE3-BEO

The Address Latch Enable is an active low signal that can be used to latch
the address from the 80960KB processor. ALE is asserted during the T state
and deasserted before the beginning of the T d state. ALE floats to ; high
impedance level when the processor is not operating on the bus (i.e., it is in
the idle state), or is at the end of any bus access.

AddresslData Status is an active low signal that is driven by the 80960KB
processor to indicate an address state. ADS is asserted during every Ta state
and deasserted during the following T d and T w states. For a burst transaction,
ADS is asserted again every Td (and Tw) state where READY was asserted
in the prior cycle. The signal is an open drain output.

Data Transmit/Receive indicates the direction of data flow to or from the
L-bus. For a read operation or an interrupt acknowledgement, DT/R is low
during the Ta' Tw' and Td states to indicate that data flows into the 80960KB
processor. For a write operation, DT /R is high during the Ta' T w' and T d states
to indicate that data flows from the 80960KB processor. DT/R never
changes states when DEN is asserted. The DT/R line is an open drain output
of the 80960KB processor.

Data Enable is an active-low signal that can be used to enable data trans­
ceivers. DEN is asserted during all Td and Tw states. The DEN line is an open
drain output of the 80960KB processor.

The Write/Read signal instructs memory or I/O device to write or read data
on the L-bus. The 80960KB processor asserts W/R during a Ta state. The
signal remains valid during subsequent Td and Tw states. W/R is an opt:n
drain output of the 80960KB processor.

The Byte Enable output signals of the 80960KB processor specify which
bytes (up to four) on the 32-bit data bus are transferred during the transac­
tion. Table 2 shows the decoding scheme.

The byte enable signals are valid from the 80960KB processor before data
is transferred, as shown in Figure 6 (assumes no wait states). The byte enable
signals that are valid for the first data word are specified during the Ta state.

2-12

inter

T.

ClK2

elK

lAD,,­

HARDWARE REFERENCE

For a four-word burst transaction, the byte enable signals that are valid for
the second word are asserted during the first data state (TdO) for the third word
during the second data state (Tdl) and for the fourth word during the third
data state (Td2). The byte enable signals are undefined during the last data
state (Td3) ofthe last word transferred.

Table 2. Byte Enable Signal Decoding

Byte Enable Signal Address Line Selection

BEo LAD7-LADo

BE, LAD,s-LADB

BE2 LAD23-LAD,.

BE3 LAD3,-LAD24

T,

lADo """"I",I"'.":":::;=='-+"_'\".:;~""-t-'''II''''.":;.;.;,,",,,,-t-''''''''''::'':'';;':'';''':<'-+-'''IiI7'\'''':::::'':'':::y-'''"''''''''''''''''''''''f'"-i

Figure 6. Byte Enable Timing Diagram

Although not shown in the diagram, the byte enable signals of each word are
latched internally by the 80960KB processor and remain valid during every
data or wait state until READY is applied. After READY is applied the byte
enable signals change during the next Td state or become undefined for the
last data transfer.

The 80960KB processor asserts only adjacent byte enables. For example,
the 80960KB processor does not perform a bus operation with only BEo and
BE2 active.

The Byte Enable lines are open drain outputs.

2-13

READY

LOCK

CACHE

HARDWARE REFERENCE

READY signal indicates that the data on the L-bus can be sampled (read)
or removed (write) by the 80960KB processor. If READY is not asserted
following Ta state or in between T d states, a T w state is generated. The
READY is an active-low input signal to the 80960KB processor.

Bus Lock prevents other bus masters from gaining control of the. L-bus
during a bus operation. It is activated by certain 80960KB processor
operations and instructions.

The 80960KB processor uses the bus LOCK signal when it performs a
RMW memory operation. When the processor performs a RMW-Read
operation, it asserts the LOCK signal during the Ta state and holds LOCK
asserted. If the signal was already asserted, the processor waits until this
signal is deasserted before performing the RMW-Read operation. The
processor deasserts the LOCK signal during the Ta state when it performs
a RMW-Write operation.

The 80960KB processor asserts the LOCK signal during the interrupt
acknowledge sequence. LOCK is an input and an open drain output.

The Cacheable signal specifies whether the data is cacheable. If the
80960KB processor asserts CACHE during the Ta state, then the data is
cacheable. The CACHE signal is undefined during the Td and Tw states. The
CACH,E signal floats to a high impedance state when the L-bus is not
acquired.

Table 3 summarizes the L-bus signals.

2-14

Signal Signal
Group Symbol

Local Address
Address/ (LAD3,·LAD2)

Data

Data
(LAD3,-LADo)

Size
(LAD,·LADo)

Control ALE

ADS

DT/A

DEN

W/A

BE3-BEo

READY

LOCK

Cache

Note: 1 except first Td, Tw
2 except last T d' T w

HARDWARE REFERENCE

Table 3. Summary of L·Bus Signals

Signal Function
Active

Direction
Type of

State Output

32·bit address T. 0 3·state

32-bit data Td, Tw I/O 3-state

Specifies number of
T. 0 3-state words to transfer

Enables address
T. 0 3-state

latch

Identifies an address
T.,Td,Tw 0 Open drain

state

Controls direction of
T., Td, Tw 0 Open drain

data flow

Enables data
Td, Tw 0 Open drain

transceiver/latch

Read/write command T., Td, Tw 0 Open drain

Specifies which data
T., Tl, Tw2 0 Open drain

bytes to transfer

Indicates data is
Td, Tw I ready to transfer -

Locks bus Any I/O Open drain

Indicates cacheable
T. 0 3-state

transaction

Additional pins are used by the 80960KB processor to control the execution of instructions and to
interface to other bus masters. These pins include the arbitration, interrupt, error, and reset signals.
Each of these signal groups are explained in separate sections.

2-15

HARDWARE REFERENCE

3.4 L-BUS TRANSACTIONS

The 80960KB processor uses the L-bus signals to perfonn transactions, which are simply L-bus
operations where data is transferred to (or from) the CPU from (or to) another component. During
a transaction, the 80960KB processor can transfer up to four "words of data for a single address to
enhance system throughput. This is especially useful when loading cache memory.

3.4.1 Clock Signal

The 80960KB hardware system typically uses two clock signals, CLK2 and CLK, to synchronize the
transitions between L-bus states. CLK2 is the clock input to the 80960KB and is double the spec~fied
processor frequency. CLK is the clock input signal to the peripheral devices, and it is the operating
frequency of the 80960KB processor. Figure 7 shows the relationship between the system CLK2 and
CLK.

BUS BUS:j BU:j
- STATE - - STATE --STATE

T... T. _T,'

ClK2

ClK

Figure 7. Clock Relationships

3.4.2 Basic Read

The basic transaction reads or writes one data word. Figure 8 shows a typical timing diagram for a
basic read transaction (for exact timings, see the 80960KB processor data sheet). A read transaction
may be preceded and succeeded by any type of bus transaction. The. following sequence of events
explains the flow of the timing diagram. For simplicity, no wait states are shown.

1. The 80960KB processor generates several signals during the Ta state.

It transmits the address on the address/data lines. LAD] and LADo specifiy a single word
transaction.

It asserts ALE. An ALE signal can be used to latch the address.

It asserts ADS.

It asserts BE3-BEo to specify which bytes are used when reading the data word.

It brings W /R low to denote a read operation.

It brings DT/R signal low. DT/R can be used for the direction input to data transceivers.

2-16

ClK2

ClK

lAD,,­
lADo

w/Fi

HARDWARE REFERENCE

T, T,

Figure S. S0960MC Processor Read Transaction

2. During the Td state, several actions occur.

The 80960KB processor reads the data on the address/data lines.

The 80960KB processor asserts DEN. DEN can be used to enable data transceivers.
READY is asserted by external timing logic and data is transmitted from the storage
devices. If READY is not asserted, the data transfer is delayed generating aT w state. The
Tw state is repeated, until READY is asserted.

3. The Tr state follows the data state. This allows the system components adequate time (one
processor clock cycle) to remove their outputs from the bus before the 80960KB processor
generates the next address on the address/data lines. During the Tr state w/R, DT/R, and DEN
become inactive.

2-17

HARDWARE REFERENCE

3.4.3 Basic Write

Figure 9 shows a typical timing diagram for a basic write transaction with one wait state. Like the
read transaction, a write operation may be preceded and succeeded by any type of bus transaction.
The following sequence of events explains the flow of the timing diagram.

T, T, T,

ClK2

ClK

lAD,,- ,rl='J"~==:-::f\
lADo

Figure 9. 80960MC Processor Write Transaction

1. Similar to the read transaction, the 80960KB processor generates several signals during the Ta
state.

It transmits the address on the address/data lines. LAD\ and LADo specify a single word
transaction.

It asserts ALE. An ALE signal can be used to latch the address.

It asserts ADS.

It asserts BE3-BEo to specify which bytes are used when writing the data word.

It brings W /R high to denote a write operation.

It brings DT/R signal high. DT/R can be used for the direction input to data transceivers.

2-18

HARDWARE REFERENCE

2. During the Td state, several actions occur.

The 80960KB places the data on the address/data lines.

The 80960KB processor asserts DEN. DEN can be used to enable data transceivers.

READY is not asserted by external timing logic. Consequently, data is held on the LAD
lines.

3. During the T w state READY is asserted and the data is written to the storage device. Note that
the W/R, DT/R and DEN remain constant until the bus state after READY is asserted.

4. The Tr state follows the wait state. During the Tr state W /R, DT/R, and DEN become inactive.

3.4.4. Burst

The 80960KB processor supports burst transactions that read or write up to four words at a maximum
rate of one word every processor clock cycle. Burst transactions are always contained within a 16-
byte boundary. If a transaction crosses a 16-byte boundary, the 80960KB processor automatically
splits the transaction into two accesses.

The byte enable signals are valid for each word to allow partial-word write operations for a burst write
transaction. The CACHE output signal during a Ta state applies to all words of a burst transaction.

A burst read or write transaction is similar to a basic read or write operation. It differs primarily in
the number of data words transferred: the basic transaction always transfers one data word, the burst
transaction transfers up to four data words. For a burst transaction, the byte enable signals are applied
during the Ta state, and subsequently during every Td or Tw state before the data word is transferred.
Figure 10 shows the timing for a three-word burst read transaction without wait states. Figure 11
shows the timing for a two-word burst write transaction with a wait state occurring during the transfer
of the first word. Note that the byte enable signals remain constant until the data state after READY
is asserted.

3.5 TIMING GENERATION

In an 80960KB processor-based system, timing signals must be generated for the clock and reset
inputs. To generate these signals, discrete logic should be utilized to minimize skew and maintain the
rise and fall times as short as possible. This section describes a typical circuit that synthesizes the
clock signal. The RESET timing generation is discussed in the "RESET and Initialization" section.)

3.5.1 80960KB Processor Clock Requirements

In order to design a clock generator, the clock input specifications to the 80960KB processor are
examined first. The clock (CLK2) waveform is shown in Figure 12. The clock pulse is specified by
five parameters listed below:

2-19

..

The clock fall time (tf)

The clock low time (tl)

The clock rise time (t,)

The clock period (t)
eye

ClK2

ClK

lAD,,- ::.:.
lADo ...

W/R

DTI R mm;;:;:rm

T.

HARDWARE REFERENCE

. T, . T,

Figure 10. 80960MC Processor Burst Read Transaction

T,

The time required to go from 90% of the difference between the high and low voltage levels to (l 0%
of the difference (or from low to high) is defined as the clock fall (rise) time. The clock low time
specifies the time required for the clock to remain within 10% of the low voltage level. Similarly, the
clock high time specifies the required time for the clock pulse to remain within 10% of the high
voltage level. The clock period is the sum of tf + tl + tr + lb.

The clock generator must have fast enough rise and fall times to comply with the requirements for
high and low time and the overall clock period. For example, consider a clock pulse with a 50% duty
cycle at 40 MHz. The clock period is specified at minimum of 25 ns, low time at minimum of 8 ns,
and high time at minimum of 8 ns. This implies that the sum of the rise and fall time must not be greater
than 9 ns. Thus, the clock generator should be designed to have rise and fall times not greater than
4.5 ns each.

2-20

HARDWARE REFERENCE

Ta Td

ClK2

ClK

lAD3r
lADO

ALE

ADS

BE3-BEo

WiR

DTifi

DEN

READY

270647-29

Figure 11. 80960KB Processor Burst Write Transaction

I-----Tcyc----I

HIGH lEVEL

lOW lEVEL

270647-30

Figure 12. System Clock Pulse

Besides specifying a maximum clock rate, the 80960KB processor requires a minimum CLK2 rate
of 8 MHz to maintain the state of the internal dynamic cells. Due to this minimum frequency
requirement, the 80960KB processor cannot be single-stepped by disabling the clock.

2-21

HARDWARE REFERENCE

3.5.2 Clock Generation

Figure 13 shows an example of a clock generator that produces two clock pulses, one double the
frequency of the other with the skew between the pulses in the range of 1 to 3 ns. This particular circuit
produces a 40-MHz clock at 50% duty cycle with rise and fall times of less than 4 ns. The circuit
design consists of four devices: an oscillator, a pulse shaping network, a synchronous up/down
counter, and a NAND gate driver. The output of the 80-MHz hybrid clock oscillator connects to the
pulse shaping network (two NAND gates in series) which in tum feeds into the clock input of the up/
down counter. This counter produces a 40-MHz CLK2 output signal and a 20-MHz CLK output
signal. Because the outputs of the counter are synchronous, the skew between CLK2 and CLK is
typically less than 2 ns. To provide adequate signal margin and maintain fast rise and fall times, the
two clock signals are conditioned by the NAND gate driver. The timing waveforms of the clock
circuit are shown in Figure 14.

BO-MHz
OSCilLATOR

ClKin

ClK2

ClK

Vee

~~l-O-AD--------~

COUNTER

A

B °A

C

0
°B

74E169

Figure 13. Clock Generation Circuit

Figure 14. Clock Timilig Waveforms

2-22

Vee

10K

40 MHz ClK2

20 MHz ClK

74AS1B04

270647-31

270647-32

HARDWARE REFERENCE

If the opposite phase CLK is preferred, UID pin can be connected to V cc'

The hybrid clock oscillator typically requires 5 ms to stabilize after power is applied. The 80960KB
processor cannot begin to execute instructions until after the clock and VCC have reached their DC
and AC specifications. The RESET signal can be used to control the start of the CPU execution when
power is applied. This is discussed in the "RESET and Initialization" section.

3.6 ARBITRATION

When multiple bus masters exist, an arbitration protocol is used to exchange control of the bus. The
protocol assumes that there are two bus masters: one that controls the bus by default, and the other
that requests control of the bus when it performs an operation, such as a DMA controller. More than
two bus masters may exist on the L-bus, but this requires external arbitration logic. There should be
no more than two 80960KB processors, however, on an L-bus.

Assuming that there are only two bus masters, this section examines the bus arbitration, bus states,
and timing diagrams for different combinations of bus masters, as shown in Table 4.

Table 4. Combination of Bus Masters

Bus Master Combination

Bus Master that Controls the Bus Bus Master that Requests
by Default Canto I of the Bus

CASE 1 80960KB PROCESSOR 110 DEVICE

CASE2 80960KB PROCESSOR 80960KB PROCESSOR

CASE 3 I/O DEVICE 80960KB PROCESSOR

3.6.1 Single 80960KB Processor on the L-Bus

For the first case, the 80960KB processor controls the L-bus, and a master I/O peripheral, suchas a
DMA controller, requests control of the bus for operations. The 80960KB processor and the I/O
peripheral exchange control of the bus with two signals: the hold request (HOLD) and hold
acknowledge (HLDA) signals.

HOLD is an input signal of the 80960KB processor, which indicates that the master I/O peripheral
is requesting control of the L-bus. When HOLD is asserted, the 80960KB processor surrenders
control of the bus after it completes the current bus transaction. The processor acknowledges transfer
of control of the L-bus to the other bus master by asserting the HLDA.

3.6.2 State Diagram

Figure 15 shows the state diagram for a L-bus with an I/O peripheral bus master. This state diagram
consists of the hold state (Th) addition to the five basic states described in the "Basic L-Bus State"

2-23

HAROWARE REFERENCE

section. The 80960KB processor enters the T h state when it surrenders the control of the bus.' It can
enter the T h state from the Tj or Tr state. When the 80960KB processor regains control of the L-bus,

-it enters the Ta state if a new request is pending or a T j state if no new request is pending.

~
• REQUEST PENDING
NO HOLD

T, - IDLE STATE

HOLD

READY - READY ASSERTED
NOT READY - READY NOT ASSERTED

READY
• NO BURST
·HOLD

T.- ADDRESS STATE
T.- DATA STATE
T, - RECOVERY STATE
T w- WAIT STATE

BURST - MULTIPLE WORD ACCESS IN PROGRESS
NO BURST - MULTIPLE WORD ACCESS DONE, OR A

T,- HOLD STATE ONE-WORD ACCESS

Figure 3·15. L·Bus States with Arbitration

2-24

HARDWARE REFERENCE

T T. T. T

CLK2

CLK

HOLD

HLDA

Figure 16. Arbitration Timing Diagram For A Bus Master

3.6.3 Arbitration Timing

Figure 16 shows the arbitration timing diagram. The "T" state represents the last cycle of a transaction
in which the READY signal was asserted or a T. state. The 80960KB processor receives a request

. 1

to relinquish control of the bus when HOLD is asserted. After the 80960KB processor completes the
current transaction, it responds to this request by floating the three-state output signals and
deasserting the open drain output signals. The HLDA output signal, however, remains active and is
asserted as the 80960KB processor enters a Th state. During the Th state, the CPU ignores all input
signals except HOLD and RESET. When the HOLD input signal is deasserted, the 80960KB
processor exits the Th state and deasserts HLDA.

HOLD DELAY
HLDAR
(HOLDA)

PRIMARY BUS SECONDARY BUS
MASTER MASTER

HLDA DELAY HOLDR
(HOLD)

Figure 17. Arbitration Connection Between Two 80960MC Processors

2-25

inter HARDWARE REFERENCE

3.6.4 Two 80960KB Processors on the L-Bus

For the next case, two 80960KB processors reside on the L-bus. During initialization, one is
designated as the Primary Bus Master (PBM), the other as the Secondary Bus Master (SBM).

The exchange protocol that is used guarantees that neither device is kept off the bus indefinitely. The
80960KB processors use two pins for bus arbitration: the HOLD input pin, and the HLDA output
p,ins. These input and output pins for the SBM are interpreted differently, however.

When the SBM is initialized, the pin normally used for HOLD input signal is interpreted as the hold
acknowledge request (HLDAR) input signal. The assertion of 45 HLDAR indicates that the PBM
relinquished control of the L-bus. Similarly, the HLDA output signal of the SBM is interpreted as
the hold request (HOLDR) output signal. The SBM asserts HOLDR to request acquisition of the L~
bus. Thus, bus arbitration between two 80960KB processors can be accomplished by connecting
HOLD of the PBM to HOLDR of the SBM, and HLDA of the PBM to the HLDAR of the SBM, as
shown in Figure 17.

When using the connection shown in Figure 17, a delay must be inserted between the input and output
signals because the minimum clock-to-output delay is less than the maximum hold time of the input
signals. The delay time must be greater than 5 ns, but less than the clock period minus the setup time
minus the maximum clock-to-output delay (5ns ~ Delay ~ Tperiod Tsetup-Tclock-To-Output)'

3.6.5 Bus states for Two 80960KB Processors

The state diagram for the SBM is shown in Figure 18. Because there are two 80960KB processors,
the LOCK signal is included in the state diagram. The SBM requests control of the L-bus by asserting
HOLDR and subsequently enters the hold request (Th,) state provided that the bus is not locked
(locked means that LOCK is asserted by the PBM and the SBM has a RMW operation pending). The
SBM remains in the Thr state until it acquires control of the L-bus by receiving HLDAR. The SBM
returns to the Ti state by deasserting HOLDR provided that the following two conditions exist:

A RMW operation is pending

The PBM asserted LOCK while the SBM was in the Thr state.

The SBM gains control of the bus when HLDAR is asserted provided that the bus is not locked. After
gaining control of the L-bus, the SBM performs the operations, and enters a T state if necessary. At
the end of a transaction, the SBM goes to the Trstate and deasserts HOLDR forwat least one processor
clock cycle to allow another peripheral bus master to gain access if needed. If another request is
pending, the SBM enters the Thr state and asserts HOLDR provided the bus is not locked. The PBM
never forces the SBM off the bus.

3.6;6 Arbitration Timing for Two 80960KB Processors on the L-Bus

Figure 19 shows the timing diagram for acquiring and relinquishing the L-bus by an SBM. The SBM
enters into the Hold Request (Thr) state and asserts the HOLDR) signal. It remains in the Thr state until
HLDAR is asserted, which indicates that the SBM can utilize the L-bus during the next state. When

2-26

HARDWARE REFERENCE

the bus is no longer required, HOLDR is de asserted during the state following the last READY signal.
Except for HOLDR, the output signals of the SBM go into a high impedance state or are deasserted
for the case of open-drain outputs.

HLDAR
• NOT LOCKED

LOCKED

READY
·NO BURST

NO
REQUEST
+ LOCKED

NOT READY

NO REQUEST
+ LOCKED

T, - IDLE STATE
T.- ADDRESS STATE
T.- DATA STATE
T, - RECOVERY STATE
T .. - HOLD REQUEST STATE

READY - READY ASSERTED
NOT READY - READY NOT ASSERTED
LOCKED - LOCK ASSERTED BY ANOTHER BUS MASTER AND

RMW OPERATION PENDING FOR SECONDARY BUS MASTER
HLDAR - HOLD ACKNOWL£DGE REQUESTED (REQUEST FOR BUS

GRANTED)
BURST - MULTIPLE WORD ACCESS IN PROGRESS
NO BURST - MULTIPLE WORD ACCESS DONE, OR A

ONE-WORD ACCESS

Figure 18. L-Bus States For Secondary Bus Master

HARDWARE REFERENCE

ClK2

ClK

HOlDR

HlDAR

270647-33

Figure 19. Arbitration Timing Diagram for an SBM

3.6.7 Bus Exchange Example Between Two 80960KB Processors

Figure 20 shows an example of bus arbitration between a PBM and an SBM using the arbitration
signals. Each bus master performs a one-word read and a two-word write transaction to demonstrate
the fastest possible bus exchanges.

While the PBM is performing a read transaction, the SBM requests control of the L-bus by asserting
HOLDR and entering the T ~r state. It remains in this state until the PBM grants the request by asserting
HLDA after the read transaction is completed. After granting the request,the PBM enters the Th state
and remains in this state until its HOLD signal is deasserted. When the SBM completes the read
transaction, it deasserts HOLDR and gives ·control back to the PBM .

. The PBM now performs a two word write transaction after deasserting the HLDA. The SBM requests
control of the bus again by asserting the HOLDR signal arid enters the Thr state. When the PBM
completes the two-word write transaction, it grants the request by asserting HLDA and enters the T h
state. The SBM receives the signal on the HLDAR input and performs a two-word write transaction.
When the SBM completes the transaction, the control of the L-bus is transferred to the PBM, and both
the PBM and the SBM enter theT. state.

I

2-28

inter HARDWARE REFERENCE

PBM BUS
STATE T, T, Th Th Th Th T, T, T, Th Th Th Th Th T,

SBM BUS T T T T T T T T T T T" T" STATE ,,, hr hr .. d r hr hr T hr h' " u u Tr T,

~~_~C:tt;~~~r o _____ _

PBM ALE [Ih../

SBM
HOLDR -v

\../

"-/ ,'---+----1-
PBM

HOLD _LJ-r> ~J-) If''--f---+-
~~~ 1~7r-~-r-~~~~~~~~i=~V'~---r--~--r'-~~~ 
SBM 

HLDAR / 'y--t--r/ 

Figure 20. Example of a Bus Exchange Transaction 

3.6.8 A Peripheral Device As the Default Bus Master 

Another case exists where a peripheral device controls the L-bus, and the 80960KB processor 
requests control of the bus to perform operations. This alternative is not advisable because it hinders 
system performance. The exchange protocol is identical to the one described in the previous section. 
The 80960KB processor is an SBM and uses two pins for bus arbitration: the HOLDR input pin and 
the HLDAR output pin. The state diagram is similar to the one shown in Figure 18. The lock 
conditions are not used for this case, however. 

The peripheral device grants control of the L-bus bus asserting HLDAR when the SBM requests use 
of the L-bus. The peripheral device can obtain control of the L-bus again by deasserting HLDAR. 
If this occurs, the 80960KB processor surrenders control of the bus after it completes the current 
transaction, as shown in Figure 21. At that time, the 80960KB processor deasserts the HOLDR signal 
and places the other output signals into a high impedance state or a deasserted open drain level. The 
80960KB processor may request access to the L-bus by asserting HOLDR again. 

3.7 INTER-AGENT COMMUNICATION (lAC) 

The lAC mechanism gives 80960KB processors the capability to send and receive messages to one 
another and to other bus agents. The lAC mechanism is essentiall y a non-maskable interrupt with pre­
defined service routines. These routines are implemented in the 80960KB processor and are used to 

2-29 



HARDWARE REFERENCE 

perform control functions such as purging the instruction cache, setting breakpoint registers, or 
stopping and starting the processor. By using lAC messages, external agents can remotely control 
the 80960KB. This allows easy integration of the 80960KB into system environments. 

lAC messages can also be used to generate interrupts that behave exactly the same as hardwired 
interrupts. Since the interrupt vector is encoded in the lAC message, any of the possible interrupt 
service routines can be invoked. 

ClK2 

ClK 

HlDAR 

HOlDR 

. Figure 21. Forced Relinquishment Timing Diagram for an 5MB 

3.7.1 Overview of lAC Operation 

Figure 22 shows a typical example of an lAC operation. In this case, an external processor gains 
control of the 80960KB by using an lAC operation. The external processor performs two functions: 
it writes the message in a buffer, called the message buffer; and it asserts the lAC pin of the 80960KB 
processor. Upon receipt of the lAC signal, the 80960KB processor stops executing its current process 
and performs a four-word read of the message buffer. After completing the read operation, the 
80960KB processor automatically performs a one-word write operation to a pre-defined address to 
acknowledge the receipt of the message. The 80960KB processor then proceeds to perform the 
required action. 

3.7.2 lAC Messages 

The lAC messages are specifically defined and behave much like machine instructions. The 
80960KB processor reserves the upper 16M bytes (FFOOOOOOH to FFFFFFFFH) of the 4M-byte 
address range for lAC message operations. 

2-30 



HARDWARE REFERENCE 

NO 

READ MESSAGE BUFFER 
WITH FOUR-WORD BURST 

WRITE TO A PRE-DEFINED ADDRESS 
TO ACKNOWLEDGE RECEIPT OF MESSAGE 

PERFORM REQUEST 

Figure 22_ Example Flow Chart for an lAC Operation 

270647-34 

There are two types of lAC messages: internal and external. Internal lAC messages allow a program 
to send a command to its own processor_ An internal lAC message is sent by writing to address 
FFOOOOlOH• Internal lAC messages cause no L-bus activity. 

External lAC messages can be used to send a command to another processor on the L-bus or to a 
remote processor. A processor sends an external lAC message by writing to a buffer area and causing 
the lAC pin of the receiving 80960KB to be asserted. 

When the lAC pin is asserted, the recipient processor reads the reserved address to fetch the data from 
its lAC message buffer. After reading the lAC message buffer, the recipient does a write operation 
to another reserved address to acknowledge receipt of the lAC message. The lAC pin is deasserted 
as a result of this write operation, and the processor is ready to receive another lAC. 

3.7.3 Hardware Requirements for External lAC Messages 

To use the external lAC feature of the 80960KB, the following items are needed: a four-word 
message buffer RAM mapped to a reserved address to store the message, logic to assert the lAC pin 
of the 80960KB, and decoding logic to deassert the lAC pin on command from the 80960KB. 

3.7.4 Message Buffers 

Each 80960KB processor that receives an lAC message must have four 32-bit words of message 
buffer. This buffer can use special hardware or a reserved area in RAM. For proper operation of the 

, 

2-31 



in1er HARDWARE REFERENCE 

buffer, two requirements must be met: the receiving 80960KB must be able to read this buffer at 
FFOOOOlOH if the receiving80960KB's Local Processor Number (LPN) is equal to zero (see the 
"RESET and Initialization" section for details of the LPN), or at FF000030H if the LPN is equal to 
one; and the sending processor must be able to write this buffer. 

3.7.5 lAC Pin Logic 

When the lAC message buffer receives a message, logic asserts the lAC pin and keeps it asserted. 
After the 80960KB processor reads the lAC message, it performs a one-word write to address 
FFOOOOOO if its LPN is zero, or FF000020 if its LPN is one. This reserved address serves two 
functions: it causes external logic to deassert the lAC pin, and it maps to a register that contains the 
current processor priority. If the low order three bits of the data word have a value of 100B (see Figure 
23), the external logic should deassert the lAC pin on completion of the write operation. 

31 21 20 16 15 4 3 2 1 0 

_:1:1:1:1 
Figure 23. Data Settings 

3.8 EXTERNAL PRIORITY REGISTER 

ACKNOWLEDGE 
lAC MESSAGE 

SET PRIORITY 

SET PRIORITY AND 
ACKNOWLEDGE lAC 
MESSAGE 

270647·35 

The 80960KB contains an internal register that keeps track of the current priority (a value between 
o and 31) at which it is executing. This priority is used to decide whether or not to service interrupts 
- higher priority interrupts are serviced, others are posted for later servicing. In some system 
designs it may be desirable to have this priority visible outside of the processor. To allow this, the 
80960KB provides support for an external priority register. Whenever the priority of the 80960KB 
changes, the contents of this register are automatically updated. 

This feature maybe enabled in two steps. If the Write External Priority bit is set in the PRCB (see 
the 80960KB CPU Programmer's Reference Manual), then the external priority register is updated 
as a result of a MODPC instruction or whenever an interrupt occurs. If external lAC messages are 
enabled, then external priority is also updated whenever a result of an lAC is to change processor 
priority. 

3.8.1 Hardware Requirements 

The 80960KB expects to write its priority into a 5-bit register mapped to address FFOOOOOO if its 
LPN is zero, or FF000020 if its LPN is one. To set the priority, the processor performs a one-word 
write operation in the form shown in Figure 23. The priority is contained in bit2o-bit I6, and bit3 is 

2-32 



HARDWARE REFERENCE 

asserted to indicate that the priority is changed. It is necessary to use bit] as a qualifier to distinguish 
priority write operations from lAC message acknowledgments, which use the same reserved 
address. 

3.8.2 External Priority and lAC Messages 

The external priority register can be used to filter lAC messages. Since the processor always services 
the lAC pin (i.e., it is non-maskable), a low priority lAC message can interrupt a high lAC priority 
task. To prevent this, a system can associate a priority with each lAC message. This priority can then 
be compared to the priority stored in the external priority register and used to decide whether or not 
to accept the lAC message. One way to associate a priority with an lAC message is to encode the 
message priority into the lAC message destination address as shown in Figure 24. The range of 
reserved addresses shown in Figure 24 have been set aside for this purpose. 

31 2423 14 13 9 8 4 3 2 1 0 

H 1 11 11 11 1111111 xix I x I x I x I x I x I xl xl xl 0 1 0 1 1 1 1 1 0 I xl xl xl xl xl 0 l 0 1 0 I 0 I 
I I I I 

f iL ___ PRIORITY 

L_ -------------ADDRESS OF RECEPIENT 

270647-36 

Figure 24. Physical Address Interpretation for lAC Messages 

3.9 INTERRUPTS 

The 80960KB processor responds to external events occurring at arbitrary times by means of an 
interrupt signal. Various sources, which include hardware components and special software 
instructions, generate an interrupt signal that can suspend execution of the 80960KB processor's 
current instruction stream. The hardware-generated interrupts are discussed in this section. For 
complete information on software-generated interrupts, see the Programmer's Reference Chapter of 
this handbook. 

The 80960KB is unusual in that the interrupt controller automatically does the processor housekeep­
ing tasks that are normally left for the programmer to deal with in the interrupt handling routine. The 
local registers are pushed onto the stack, state is saved, arithmetic controls are saved, priority of the 
processor is changed to the interrupt priority, and stack pointers are managed. All this is done 
automatically before entering the user written interrupt routine. The bottom line of this is that the 
programmer can simply worry about the function of the interrupt handling routine and not processor 
housekeeping, thus greatly. simplifying the programming and debugging effort. 

The 80960KB processor provides a flexible interrupt structure. The 80960KB processor can be 
interrupted using any of three methods below: 

2-33 



inter HARDWARE REFERENCE 

Receipt of a signal on any or all of the four direct interrupt input signals (INTo' INT l' INT 2' and 
INT3) 

Receipt of a signal on the interrupt request (INTR) line to obtain an external interrupt vector 

Receipt of an lAC message from a processor program or external source. 

The choice of the method is determined by the setting in the on-chip Interrupt Control register. 
Interrupt signals can occur during any bus state regardless of which method is implemented. 

This section provides details on the multiplexed interrupt pins, the three interrupt methods, the 
Interrupt Control register, synchronization, and interrupt latency. 

3.9.1 Interrupt Signals 

The interrupt signals are multiplexed on four pins of the 80960KB processor: INT flAC, INT l' INT / 
INTR, and INT/INTA. The on-chip Interrupt Control register determines how these pins are used 
(see "Interrupt Control Register" section). 

INT/INTR 

This pin multiplexes the Interrupto and Inter-Agent Communication re­
quest input signals. The 80960KB processor interprets this input signal as 
either INTo or lAC. The lAC signal indicates a request for interrupt service 
when itis asserted. The lAC signal denotes that a message is waiting when 
it is asserted. 

The InterruptI input signal indicates a request for interrupt service when it 
is asserted. 

This pin multiplexes the Interrupt2 and Interrupt Request input signals. 
The 80960KB processor interprets this input signal as either INT 2 or INTR. 
The INT2 signal indicates a request for interrupt service when it is asserted. 
The INTR signal indicates an interrupt request from an external interrupt 
controller. The 80960KB processor responds with an interrupt-acknowl­
edge sequence. To ensure an interrupt, the INTR signal. must remain 
asserted until the first cycle of the interrupt-acknowledge transaction. 

This pin multiplexes the Interrupt3 input signal and Interrupt Acknowl­
edge output signal. The 80960KB processor uses this pin as the INT3 input 
signal or as the INT A output signal. The Interrupt Control register setting 
selects either the combination of INTR/INT A or INT /INT 3. The INT 3 input 
signal indicates a request for interrupt service when it is asserted. INT A ac­
knowledges the interrupt request from an external interrupt controller. The 
INT A signal is latched by the 80960KB processor and remains valid during 
the Td state. This signal is open drain output. 

2-34 



HARDWARE REFERENCE 

3.9.2 Interrupt Control Register 

The 80960KB processor uses a 32-bit, on-chip Interrupt Control register to define the function of the 
multiplexed interrupt pins. This 32-bit Interrupt Control register allocates eight bits for each of the 
four direct interrupt signals (INTo' INTI' INT2, and INT3). The eight bits contain the vector number 
for each interrupt signal, as shown in Figure 25. The vector number is automatically read when one 
of the interrupt signals (INTo' INTI' INT2, and INT3) is activated. For example, when an interrupt 
is signaled on INTo' the 80960KB processor uses bi17-bit9 of the Interrupt Control register as the 
vector number. 

31 24 23 16 15 8 7 0 BIT NUMBER 

I11111 11I11 III 11I11111 11I11I11111 

I INT. liNT, liNT, I INT. I 
r.-VECTOR • 0( VECTOR-.J~VECTOR~VECTOR-.j 

Figure 25. Interrupt Control Register 

The 80960KB processor uses the data field corresponding to INTo to determine identification of the 
INT JIAC input pin; a value ofOOH signifies the lAC function. If the data field corresponding to INT 2 

has a value of OOw the 80960KB processor interprets the INT /INTR pin as the INTR input signal, 
and the INT/INTA pin as the INTA output signal. In other words, this setting specifies that the 
80960KB processor should use these two pins for communication with an external interrupt 
controller. If the functions of INTR and INTA are selected, the direct interrupt pins (INTo and INT I) 
can still be used. 

The on-chip Interrupt Control register may be read and written by the Synchronous Load (synld) and 
Synchronous Move (synmov) instructions at the address FF000004H (see the 80960KB Program­
mer's Reference Manual). The value ofthe data fields in the Interrupt Control register is FFOOOOOOH 

after initialization. This setting specifies that the four interrupt pins function as INTA, INTR, INTI 
and lAC. 

3.9.3 Using the Four Direct Interrupt Pins 

The 80960KB processor can be interrupted by asserting any or all of the four interrupt input signals 
(INTo' INTI' INT2, INT). If the signals are simultaneously asserted, the 80960KB assumes that INTo 
has the highest priority, followed by INTI' INT2, and INT3• Software should follow this convention 
when programming the Interrupt Control register. When the interrupt input signals are asserted, the 
80960KB processor utilizes a vector number specified by the Interrupt Control register as an index 
to an entry in the interrupt table located in memory. For complete software information on this topic, 
see the Programmer's Reference Chapter of this handbook. 

2-35 



HARDWARE REFERENCE 

3.9.4 Using an External Interrupt Controller 

The 80960KB processor can communicate with an external interrupt controller by performing an 
interrupt acknowledge sequence using the INTR and INTA signals. Figure 26 shows an example of 
the timing of an interrupt acknowledge sequence using the 8259A Programmable Interrupt Control­
ler. 

ClK 

INTR 

lAD31. 

lADO 

DTiA 

~~ 

-f.-/ 
~~ 

~000. 

~~ 

IDLE 
(5 BUS STATES) 

~ ~ ~ ~ ~ ~ ~ ~ 
~ ~ ~ ~ ~ ~ ~ _ .... -

~ ~~ ~ 000. ~ ~ ~ 

~ ~/ ~ '0W ~ ~ ~ 

'\.... V 
"- / 

~ ~ E ~ ~ ~ 000. 

~ ./ 

"-

\. ./ 

Ti 

~ 
~ 

~ 

000. 

'0W 

INTERRUPT 
ACKNOWLEDGEMENT] 

CYCLE 2 

Ta Td Tw Tr 

~ ~ ~ ~ Ir 

~ ~ ~ I'l"/ff~ '0; 

- - - 1....--~\.~ r~ ~ ~ 

~/ ~ ~ 

'---V 
"- ~ -
~ //) ~ 

\. r -
/ 

'\ .r -
270647·37 

Figure 26. Timing Diagram for Interrupt Acknowledge Transaction 

INTR is asserted by the 8259 Aand remains asserted until the 80960KB processor activates the INTA 
signal for the first time. When the 80960KB processor receives an interrupt request, the CPU 
completes the current transaction (or comes to some interruptible point), and asserts INTA. INTA 
remains valid through the. Ta' Td, and Tw states. The first assertion of INTA triggers the 8259A to 
resolve priority among its interrupt requests. 

To compensate for the timing of the 8259A, the 80960KB processor automatically inserts five T. 
states before asserting the INTAagain to read the interritpt vector. Figure 26 shows READY asserted 
without a wait state during the first Interrupt Acknowledgement cycle and with one wait state during 
the second Interrupt Acknowledgement cycle. In practice, the 8259A would require about four wait 

2-36 



inter HARDWARE REFERENCE 

states in both cycles. The address during the Ta state for both interrupt acknowledge cycles is 
FFFFFFFCw For more details, see the "8259A Programmable Interrupt Controller" portion in 
Section 5 of this chapter. 

The 80960KB processor services the interrupt according to its priority. If the interrupt has higher 
priority than the current activity, the 80960KB processor services it immediately. Otherwise, after 
reading the interrupt vector, the 80960KB processor posts the interrupt vector in the interrupt table. 
Typically, the 80960KB processor responds within 4 usec for an interrupt with higher priority than 
the current process (assuming CLK2 at 40 MHz). If the interrupt has lower priority than the current 
activity, the interrupt is serviced when its priority is higherthan the priority of the subsequent activity 
of the 80960KB processor. 

3.9.5 Using lAC Requests for Interrupts 

The 80960KB processor can also be interrupted by an lAC message. The 80960KB processor can 
send lAC messages to itself by using one of the Synchronous Move instructions. Because this 
message does not utilize the L-bus when sent to the same processor, no special hardware is required. 
More details are provided in the Programmer's Reference Chapter of this manual. 

3.9.6 Synchronization 

The INT JIAC, INT l' INT /INTR and INT 3 input signals can be either synchronous or asynchronous 
to the system clock (CLK2). Synchronous interrupt signals must be set up 3 ns priorto the rising edge 
of CLK2 and held for 10 ns after the rising edge of CLK2. To properly preset the interrupt signals 
for synchronous operation, INT rlIAC, INT, INT /INTR and INT 3 must be deasserted for at least one 
processor clock cycle and asserted for at least one processor clock cycle. These signals may be 
deasserted and asserted individually. . 

If the interrupt signals are asynchronous to CLK2, the 80960KB processor internally synchronizes 
them. For the CPU to recognize the asynchronous interrupt input signals, they must be preset by 
deasserting them for at least two processor clock cycles, and then asserting them for at least two 
processor clock cycles. 

3.9.7 Interrupt Flows 

These signals may be deasserted and asserted individually. The 80960 interrupt controller intelli­
gently manages interrupts. Once an interrupt is signalled, the 80960KB interrupt mechanism 
transfers control to a microcode interrupt routine. This 80960KB routine automatically allocates a 
new set oflocal registers onto the stack, posts pending interrupts, checks priorities, and suspends or 
aborts long instructions before executing the user's interrupt handler. Once the interrupt handler has 
completed, the return instruction "knows" it is a return from interrupt and the 80960KB return routine 
restores the local registers, arithmetic, and process control registers, checks for pending interrupts, 
and returns to the next instruction of the interrupted code. 

2-37 



HARDWARE REFERENCE 

There are two main stages the 80960KB goes through before it executes the interrupt handler: 
hardware recognizes the interrupt and then a microcode interrupt routine executives. First the 
interrupt pin is pulled. Hardware stores this in a four-bit register. One bit is assigned to each pin. 
This register is used to capture subsequent interrupts once one interrupt has been recognized. 
Interrupts are recognized at instruction boundaries or interruptable points in long instructions 
(floating point). They are then immediately disabled. However, it is important to note that disabling 
interrupts does not disable the four-bit register. Interrupts are saved in this register until microcode 
reaches a point it can check the register again. When the register is read it is subsequently cleared. 
The highest priority bit in the four-bit vector is cleared, which indicates that the interrupt vector 
associated with it will be used. Then this vector is written back to the register by an ~Ring function 
with the register thus maintaining any new interrupts that may have been signalled. 

Next the 80960KB recognizes that an interrupt occurred by the fact that an interrupt event has been 
stored in the four-bit register. At this point the interrupt microcode routine is called by a hardware 
mechanism in the interrupt controller. The interrupt routine executes the action described by the 
interrupt flow in Flow Chart 1. After the interrupt routine has completed, it "calls" the interrupt 
handler and commences executing instructions. The interrupt handler is user supplied. All the 
housekeeping needed to get into and out of the interrupt handler is completed by the 80960KB 
microcode interrupt routine before the interrupt handler is "called". No processor housekeeping 
activities need t<;> be done by the user's interrupt handler. 

The 80960KB has only one "return" instruction for all types of returns. There are three bits in the 
"previous frame pointer" (local registerO) called the return status bit. See section 4 of the 
Programmer's Reference Chapter ofthis manual. These bits have encoded in them the type of call 
and, therefore, the type of return that is to occur. The 80960KB manages this completedly. 

The flow diagrams show an interrupt flow, pending interrupt flow and interrupt return flow. Each 
of these are implemented as microcode routines in the hardware of the 80960KB. 

3.9.8 Pending Interrupts 

Pending interrupts are checked in certain situations. If a pending interrupt exists then the "pending 
interrupt" flow is executed. The four situations that pending interrupts are checked are as follows: 

Return form interrupt 

-OR-

MODPC instruction (if process priority is lowered) 

-OR-

Test pending interrupt lAC is executed 

2-38 



PENDING INTERRUPTS 

HARDWARE REFERENCE 

HARDWARE RECOGNITION 
STOP INSTRUCTION FLOW 
READ INTERRUPT VECTOR NUMBER 

LESS THAN OR 
EQUAL TO 

Y 

STACK POINTER < -- INTERRUPT STACK POINTER 

READ INTERRUPT TABLE ENTRY 
STATE < - - INTERRUPTED 
MODE < - - SUPERVISOR 
PROCESS PRIORITY < - - INTERRUPT PRIORITY 
CLEAR TRACE ENABLES 

SET RETURN STATUS BITS 
TO INTERRUPTED 

PUSH ONTO STACK: 
INTERRUPT RECORD 
PROCESS CONTROLS WORD 
ARITHMETIC CONTROLS 

FP < - ROUNDUP(SP) + 64 
CALL INTERRUPT HANDLER 
NEW SP <: - FP + 64 

START FIRST INSTRUCTION 
OF INTERRUPT HANDLER 

Y 

Flowchart 1 

2-39 

POST PENDING INTERRUPT 

STACK POINTER < - - CURRENT STACK POINTER 

SET RETURN STATUS BITS TO 
"IDLE INTERRUPT" 

SET RESUME BIT IN PCW 
PUSH RESUMPTION RECORD 

TO THE STACK 

FP: FRAME POINTER (G15) 

SP: STACK POINTER (Rl) 

PCW: PROCESS CONTROL WORD 

AC: ARITHMETIC CONTROL 

270647·53 



HARDWARE REFERENCE 

ATOMIC READ PENDING PRIORITIES 

y 

GET HIGHEST PENDING PRIORITY INTERRUPT 

LESS. 

READ PENDING INTERRUPT BYTE 

y 

CLEAR PENDING INTERRUPTS 
CLEAR PENDING PRIORITY BIT 

Flowchart 2 

2-40 

ATOMIC WRITE PENDING PRIORITIES 

ATOMIC WRITE PENDING PRIORITIES 

CLEAR PENDING PRIORITY 

270647-54 



HARDWARE REFERENCE 

270647-55 

Flowchart 3 

3.9.9 Interrupt Latency 

The 80960KB interrupt controller manages the interrupt mechanism automatically and therefore 
there are many cases it deals with. Dependong on the situation, latency may vary. The 80960KB's 
interrupt latencies are comprised of a base latency and special case latencies added to it These special 
cases consist of such things as using an 8259 A interrupt controller, the local register cache being full, 
or an interrupt occuring while the processor is already in the interrupted state_ 

The base interrupt latency is 85 cycles as shown in Table 5_ Table 6 describes the breakdown of the 
base interrupt latency. Notice that is only takes 6 cycles for the 80960KB to respond to the interrupt 
Four cycles for hardware recognition of the interrupt and a minimum of one cycle to respond if the 
interrupt occurs on an instruction boundary. The tableindicates two cycles and assumes the interrupt 
is signalled at the beginning of a RISe instruction_ This value will differ depending on the instruction 
being interrupted and the point at which the interrupt is signalled in the instruction. Table 7 gives 
values for integer execution, floating point, and transcendental floating point instruction interrupt 
boundaries_ 

2-41 



HARDWARE REFERENCE 

Table 5. Interrupt Latencies 

Type of Latency Cycles 

Base Interrupt Latency 85 

Return 78 

Interrupt immediately followed by another 157 
interrupt. Second interrupt posted to 
interrupt table. 

Return with a Pending Interrupt Posted 157 

Pending Interrupt 0 

Table 6. Constituent Parts of the Base Interrupt Latency. 
(The total base interrupt latency is 85 cycles or 4.25 us.) 

Constituent Latencies Cycles 

Hardware Recognition 4 

Stop Current Instruction Flow Assuming 
a Risc Instruction 2 

Determine Next IP and Save 8 

Read Interrupt Vector Number 18 

Check Interrupt Priority 8 

Read Interrupt Table Vector 14 

Check if Processor Already Interrupted 6 

Save Process Control and Write Interrupt Record 10 

Compute Interrupt Record Address of New 
Local Register Set 10 

Allocate New Local Register Set 3 

Fetch New Instruction and Start Decoding 2 

Other situations that add to the latency are interrupts signalled at the start of a multicycle instruction 
or multiple inteni:Lpts signalled at the same time. The first may cause a resumption record to be stored 
on the stack. This records all the necessary inforamtion the 80960KB needs to resume executing the 
interrupted instruction. Not all interruptable instructions cause a resumption record to be created. 
If an instruction has been executing for over approximately 520 cycles then a resumption record will 
be created. Less than that and the instruction is simply restarted upon return from the interrupt. This 
was an engineering trade-off between the overhead to save state after less than 520 cycles and 
restarting the instruction. Restarting the instruction requires fewer cycles for most cases. 

2-42 



HARDWARE REFERENCE 

Table 7. Special Case Latencies that are Added to the Base Latency 

Special Case Latencies Cycles' 

8259A Interrupt Expansion (4ws) 18 

Frame Cache Full 24 

Current Process in "Interrupt" 14 

Risc Instructions (Worst Case) 3-4 

Integer Execution 10-40 

Floating Point 12-96 

. Transcendental Floating Point 90 

Instr,uction Cache Miss (2 Wait State) 5 

Multiple interrupts signalled at various times are handled on a first come first serve basis. Interrupts 
occurring at the same time are handled on a priority scheme with INT3<INT2<INTI <INTO. The first 
interrupt is handled as soon as the 80960KB reaches an interruptable state (e.g. end of instruction) 
and subsequent interrupts are read from the interrupt control register and posted in the interrupt table 
as soon as the microcode routine reinables interrupts. While interrupts are not enabled the event 
(another interrupt) is stored in the four-bit register described earlier. Posting a pending interrupt to 
the interrupt table adds about 60 cycles to the interrupt latency. This consists of comparing the 
priorities of the processor and interrupt, writing a "one" to the appropriate bits in the pending 
priorities field, if it is less than or equal to the current priority, and writing a "one" to the appropriate 
bits in the pending interrupt field in the interrupt table. The positions in the fields are pointed to by 
the index vector from the interrupt control register or an 8259 A vector. 

The minimum interrupt latency is 85 clocks or 4.25 usec at 20MHz. This latency assumes t~e 
instruction handler is in the cache. If there is an instruction cache miss, five clocks for caching the 
instructions must be added to the base latency (assuming a two wait state memory system). In most 
cases the instruction will be cached already. A program's typical latency would add about 3 more 
clocks for non-RISe instructions. If there is a local register cache miss then 24 cycles or 1.2 usec 
should be added. The worst case interrupt latency would be 181 cycles or 9.05 usec. This assumes 
the interrupt is signalled at the beginning of an ediv instruction (40 cycles), there is a local register 
cache miss (24 cycles), the current process is in the "interrupt" state (14 cycles), and an 8259A with 
4 wait states is being used (18 cycles). . 

It is important to note that during the microcode routine all of the stack manipulations, saving state, 
checking priorities, and allocating new registers is done automatically. When the 80960KB enters 
the user interrupt handler this routine does nothave to do any housework, it can start immediately 
with useful code. The benefit is that this work is done by the processor in microcode and can be done 
quickly and efficiently. Also note that the 80960KB responds to an interrupt in as little as 6 clocks. 
This is from the point of interrupt pin assertion to the point that the instruction flow is stopped and 
the microcode routine starts the housekeeping tasks. Normally processors do not include any of the 

2-43 



HARDWARE REFERENCE 

housekeeping activities in the interrupt latency so care should betaken in comparing latencies. 

Table 7 gives the latencies based on special cases that may occur. These values must be added to the 
base latency from Table 5. 

For more details on interrupts see section 8 of the Programmer's Reference chapter of this handbook. 

3.10 RESET AND INITIALIZATION 

The system RESET signal provides an orderly way to start or restart the 80960KB processor. When 
the 80960KB processor detects the low-to-high transition of RESET, it terminates all external 
activities and places the output pins in the high impedance state or deasserted condition. When the 
RESET signal falls low again, the 80960KB processor begins the initialization process and later 
starts fetching instructions from a specific address. 

3.10.1 RESET Timing Requirements 

To properly r~set the 80960KB processor to a known state, the low-to-high transition of RESET must 
be asserted relative to any rising edge of CLK2 and remain asserted for at least 41 CLK2 cycles, as 
shown in Figure 27. RESET !llust be'deasserted after the rising edge of CLK2, but prior to the next 
rising edge of CLK2. This establishes the next rising edge of CLK2 as edge A. 

I- CL~CK-I . I CYCLES I A EDGE 

,::=CP~ 
270647,38 

Figure 27. RESET Timing Diagram 

3.10.2 RESET Timing Generation 

The RESET input signalto the 80960KB processor can easily be generated by implementing a 
synchronization circuit comprised of a two D-type flip-flops, as shown in Figure 28. 

The user RESET signal is synchronized with the CLK signal by applying CLK to the clock input of 
both flip-flops. Tq protect against a metastable RESET signal, the output of the first flip-flop, SYNC, 
is applied to the input of the second flip-flop. The output of the second flip-flop results in a processor 
RESET signal. The timing diagram for these signals is shown in Figure 29. CLK or CLK2 can be used 
instead ofCLK in Figure 29. Using CLK provides an edge A corresponding to the rising edge ofCLK. 



HARDWARE REFERENCE 

"""':: ~_c ___ Q...I~_c ___ Q-,1 ~~~"ro 
270647-39 

Figure 28. Asynchronous RESET Circuit 

ClK2 

ClK 

USER RESET 

SYNC 

CPU RESET 

Figure 29. Diagram for RESET Timing Generation 

This circuit assumes an asynchronous user RESET signal. If the user RESET signal is already 
synchronous with the CLK signal, the same circuitry can be implemented as shown in Figure 30. 
In this case, however, the output from the first flip-flop is used to generate the processor RESET 
signal rather than being routed to the input of the second flip-flop. 

USER RESET --.I 0 

ClK [> C 

Figure 30. Synchronous RESET Circuit 

3.10.3 Initialization 

RESET TO 
CPU 

The initialization sequence of events is shown in Figure 31. When RESET is deasserted after a 
minimum of 41 CLK2 cycles, several actions take place: two input pins are sampled, the FAILURE 
output signal (see next 2 section for the pin description) is asserted, and the self-test is performed. 

2-45 



READ 
INITIALIZATION 
PARAMETERS 

PERFORM 
SELF·TEST 

PERFORM 
SYSTEM CHECK 

PREPARE FOR 
OPERATION 

HARDWARE REFERENCE 

DEASSERT RESET 

SAMPLE LPN. AND START·UP INPUT PINS 

ASSERT FAILURE 

PERFORM SELF·TEST· 

>------.. ENTER STOPPED STATE 

DEASSERT FAILURE 

NO 
>--------l.,.ENTER STOPPED STATE 

PERFORM CHECKSUM ON THE 8 WORDS 

.NO 

SET UP FOR THE FIRST INSTRUCTION . 

CLEAR ANY LATCHED INTERRUPT SIGNALS 

EXECUTE FIRST INSTRUCTION 

Figure 31. Initialization Flow Chart 

2·46 



ClK2 

ClK 

CPU 
RESET-t--....I 

OUTPUTS 

HARDWARE REFERENCE 

CLOCK EDGES· 

ABC D A 

t 
INTo/lAC AND BADAC INTo/lAC AND BADAC 
MUST BE SET PRIOR TO MUST BE HELD BEYOND 
THIS CLOCK EDGE. THIS CLOCK EDGE. 

t 
lATCHED INTERRUPT 
SIGNALS CLEARED PRIOR 

. TO FIRST INSTRUCTION. 

Figure 32. RESET Signal Timing Relationship 

When RESET is deasserted, the 80960KB processor samples the signals residing on the INTO/IAC 
and the BADAC pins (see the next section for the pin description of BADAC). At this time, these 
pins are interpreted as the Local Processor Number (LPN) and Startup (STARTUP) signals, 
respectively. The LPN input signal defines whether the 80960KB processor is a PBM (high voltage 
input level) or a SBM (low voltage input level). The STARTUP input pin indicates whether the 
80960KB processor performs initialization (high voltage level) or not (low voltage level). The 
STARTUP signal is used to allow one or more rocessors to perform the active initialization. The input 
voltage levels for the LPN and STARTUP must be setup 3 ns before the rising CLK2 edge prior to 
edge A and held 10 ns beyond edge C, as shown in Figure 32. 

Besides sampling the two input pins, the 80960KB processor asserts the FAILURE output signal a 
few cycles after RESET is deasserted. The FAILURE signal remains asserted while the CPU 
performs the self-test. If a failure is detected during the self-test, FAILURE remains asserted and the 
CPU enters the stopped state where the processor does nothing. If the self-test completes success­
fully, the CPU deasserts the FAILURE signal. 

An 80960KB processor that is designated as the initialization processor proceeds by· doing ,a 
checksum test of eight words fetched from memory at physical address 0000 OOOOH to ensure that 
the memory and L-bus are operating properly. If the initial checksum is incorrect, then the FAILURE 
signal is asserted (and remains asserted) and the 80960KB processor enters the stopped state. After 
a successful checksum test, the 80960KB processor uses some of the words as addresses to initial data 
structures. Complete details are provided in the Programmer's Reference chapter. 

Just prior to executing the first instruction, the 80960KB processor clears any latched interrupt 
signals. . 

2-47 



HARDWARE REFERENCE 

3.11 ERROR SIGNALS 

The 80960KB processor provides an input signal (BADAC) fornotification of an errorin the system, 
and provides an output signal(FAILURE) for notification of an error within the processor. 

BADAC 

FAILuRE 

3 .. 12 SUMMARY 

When asserted, the Bad Access input signal indicates that an unrecoverable 
error occurred during the current data transfer. If, however, BADAC was 
asserted after a Synchronous Move or Synchronous Load instruction, the 
error is recoverable. The 80960KB processor samples the BADAC input 
signal during the cycle following the one when the last READY is asserted. 

The FAILURE signal indicates that an error occurred during initialization. 
The 80960KB processor always asserts FAILURE after the activation of the 
RESET signal. If a failure is detected during a self-test, FAILURE remains 
asserted. Otherwise, the processor deasserts FAILURE after a successful 
self-test is performed. If the initial memory checksum is incorrect, the 
initialization processor asserts FAILURE a second time, and keeps it 
asserted. FAILURE is an open drain output signal. 

TheL-bus is a high speed 32-bit multiplexed bus with burst-transfer capability and is designed to 
operate with the high performance 80960KB processor. The L-bus consists of two signal groups: 
address/data, and control. These signal groups are utilized by the 80960KB processor to perform 
read, write, and burst transactions. 

The arbitration,interrupt, and reset operations are related to the L-bus transactions. The arbitration 
operation transfers control of the L-bus to another bus master. Three methods are available to handle 
interrupts: by invoking the on-chip interrupt controller, by employing an external interrupt controller 
using the INTR/INTA signals, by using an lAC message. The reset function sets the 80960KB 
processor to a known internal state after it successfully completes the self-test. These operations offer 
power and flexibilityto hardware system design using the 80960KB processor. 

4.0 MEMORY INTERFACE 

The high-speed bus interface has many features that enhance high-performance designs. In 
particular, the burst-transfer feature allows up to four successive 32-bit data word transfers at a 
maximum rate of one word every processor clock cycle. This section outlines approaches for memory 
designs that use these features, describes memory design considerations, analyzes the timing, and 
lists a number of useful examples. The concepts illustrated by these examples apply to a wide variety 
of memory system implementations. 

2-48 



HARDWARE REFERENCE 

4.1 BASIC MEMORY INTERFACE 

Figure 33 shows the major logic blocks of the memory interface circuit. The data transceivers buffer 
the data to compensate for any slow devices that may be connected to the 80960KB processor. The 
address latches demultiplex the address/data signals from the 80960KB processor and latch the 
address. The address decoder selects the appropriate memory device from the latched address. To 
accommodate a memory burst transaction, the burst logic decrements the word count, increments 
the local address lines 3 and 2 (LAD3 and LADz), and generates a CYCLE-IN-PROGRESS signal. 
The timing control generates a READY signal and other specific signals required by a particular 
memory device. The byte enable latch stores the byte enable signals. 

Although not part of the basic memory interface, the DRAM controller, SRAM interface, DRAM, 
SRAM, and EPROM are included in Figure 33 for completeness. In a hardware system the DRAM, 
SRAM, and EPROM are typically located in separate subsystems. 

Although the memory interface circuit can be designed using programmable logic, gate arrays, or 
other custom logic, the examples use standard components wherever possible to illustrate the design 
concepts. 

4.1.1 Data Transceivers 

Standard 8-bit transceivers can be used to provide isolation and additional drive capability for the L­
bus. Transceivers can be used to prevent bus contention that can occur if some memories are slow 
to remove data from the L-bus after a read operation. For example, if a write operation follows a read 
operation, the 80960KB processor may drive the L-bus before a slow device has removed its output 
data, potentially causing a current spike on the power and ground lines. Transceivers, however, can 
be omitted if the data float time of the device is short enough and the load does not exceed the 
80960KB device specifications. 

The data transceivers can be controlled by two signals from the 80960KB processor: data transmit/ 
receive (DTIR) and data enable (DEN). DTIR indicates the direction of data flow and DEN enables 
the transceivers. 

4.1.2 Address Latch/Demultiplexer 

Conventional transparent latches can be used to demultiplex the address/data lines of the 80960KB 
processor and to hold the address constant during the memory operation. The latch is controlled by 
the ALE signal from the 80960KB processor. ALE passes through an inverter, so that when ALE' goes 
low, the address flows through the latch. The low-to-high transition of ALE can be used to latch the 
address. The output enable of the latch can be tied to ground. The lower four address lines (LAD3-

LADo) are latched by the burst logic. . 

2-49 



. DATA 
LAD.,"LAD. TRANSCEIVERS , 

DTIR DIR 

DEN G -. 

"TI LAD .. "LAD •. 
iii r ADDRESS 
c 
iiJ i> ALE LE LATCHES 

w 
~ ~G Q 

en 
3" 

"2- • ::;;. 
iii" 
a. 
III 

80960MC ADDRESS EPROM"CS 
PROCESSOR DECODER DRAM-CS 

0" SRAM-CS 
() 
;0;-

C 
N 
in 

iii" 

0 
Ie .. 
DI 
3 
0' .. 
15: 

LAD.-LAD. 

BURST A. 
LOGIC 

~ A. 

~ ADS CYCLE-IN-PROGRESS 
0 

-< 
;- t -CD .. 
it 

TIMING 
CONTROL 

() 
CD 
r-
c8 
n 

READY READY 

W/R SRAM-WE 

SRAM-OE 

~ 
BYTE 

BE.-Be. ENABLE BE.-BE. 
LATCH 

CLK2 t 

I' 

f-- • 
RAs., 

I-- I-
CAS."CAs., 

DRAM WE 
CONTROLLER 

DRAMA,.-DRAMAo 

r+ DRAM-RDY 

, .. 
.1 
SRAM OE -Oe. 

INTERFACE -'-
WE.-WE. 

r 

.. 

~ 
-.. 
0; 

• 

..:: 

EPROM 

DRAM 

SRAM 

l 

::I: 
l> 
:D 

~ 
l> 
:D m 
:D m 
-n m 
:D m 
Z 
o m 



HARDWARE REFERENCE 

4.1.3 Address Decoder 

The 80960KB processor accesses both memory and I/O devices by supplying a 32-bit address and 
a read/write command. The address decoder determines which particular memory or I/O device is 
selected by decoding the address lines. The following discussion focuses on memory selection, and 
the "Address Decoder" portion of Section 5 discusses I/O device selection using memory-mapped 
I/O techniques. 

The memory address can be divided into regions where one region can apply to EPROM or ROM, 
another to RAM, and another to the I/O registers. In a 80960KB-based system the ROM address 
space is likely to start at address 0000 OOOOH because the CPU begins execution at this address. The 
RAM or I/O regions can start at any other address in the 4G-byte address range except for addresses 
FFOOOOOOH through FFFFFFFF H' which the 80960KB processor reserves for inter-agent commu­
nication. 

Because of the large address range of the 80960KB processor, the address can be divided into word 
address bits and chip select bits. Typically the higher-order address bits are decoded to generate the 
selection signal for ROM, RAM, or I/O devices. 

The address decoder can be located either before or after the address latches. Usually, it is placed 
after the latches, so that the chip-select signal does not need to be latched. Figure 33 shows the block 
diagram of the address decoder placed behind the address latches. 

4.1.4 Burst Logic 

To enhance system performance, the 80960KB processor performs burst transactions that transfer 
up to four data words at a maximum rate of one word every dock cycle. A DRAM controller can 
be designed that takes advantage of the burst-transfer capability by using the static column mode or 
nibble mode features of the DRAM (see the "DRAM Controller" in this section. This DRAM 
controller requires a signal,called CYCLE-IN-PROGRESS, to identi fythe start and end of am emory 
cycle. The burstfogic generates the CYCLE-IN-PROGRESS signal. 

Figure 34 shows the flow chart for the burst logic. If ADS is low and DEN is high, then the burst logic 
latches LAD3 through LADo' and asserts the CYCLE-IN-PROGRESS signal. The burst logic checks 
the SIZE signals (LAD l and LADo)' If the value of the SIZE signals equal zero, then the burst logic 
runs one memory cycle, and terminates the CYCLE-IN -PROGRESS signal. If the value of the SIZE 
signals do not equal zero, the burst logic runs one memory cycle, increments the lower two latched 
address's (A2 andA3), and decrements the SIZE value. When this is finished, the burst logic checks 
the value of the SIZE signals again. 

The burst logic can be used with EPROM, SRAM, DRAM memories. However, it cannot be used 
in the DRAM static column ornibble modes, because they do not support burst transactions. Because 
the 80960KB processor ensures that a burst transaction cannot exceed four words or cross a 16-byte 
boundary, incrementing LAD3 andLAD2 after a single data word transfer makes the burst transfer 
transparent to the memory devices. 

2-51 



4.1.5 Timing Control Logic 

HARDWARE REFERENCE 

SAMPLE ADS 
AND DEN 

LATCH LAD3-LADO 
AND 

. ASSERT CYCLE-IN­
PROGRESS 

RUN ONE CYCLE. 

DECREMENT SIZE. 

INCREMENT 
LAD3- LAD2 

Figure 34. Burst Logic Flow Chart 

270647-40 

The timing control logic accommodates memory devices that cannot transfer information at the 
maximum bus rate by inserting wait states until the data becomes available. The timing control logic 
consists of a. counter and timing logic, as shown in Figure 35. The counter produces a 4-bit binary 
count. The count begins when the CYCLE-IN-PROGRESS signal is asserted. The timing logic 
asserts READY at the appropriate time based upon the count, the EPROM-CS, and the SRAM-CS 
signals. For a burst transfer, READY resets the counter to properly time a READY signal for the next 
data transfer. When CYCLE-IN-PROGRESS is deasserted, the clock counting is terminated. 

Because the timing of DRAM is more complicated, the DRAM controller generates a DRAM-RDY 
signal to the timing control logic. In addition, the clock count, the wiR command, and SRAM-CS 
signal can also be used to generate SRAM-WE and SRAM-OE Signals. 

2-52 



CYCLE-IN­
PROGRESS 

CLK2 

WiR 
I/O-CS 

..... ... .... 

SRIiM=CS 
DRAM-ROY 

HARDWARE REFERENCE 

COUNTO 

COUNTER COUNT1 

START CYCLE COUNT2 TIMING 
LOGIC ~ 

COUNT3 

• J 
~ 

Figure 35. Timing Control Logic Block Diagram 

4.1.6 Byte Enable Latch 

READY 

SRAM-OE 

SRAM-WE 

270647-41 

The byte enable latch holds the byte enable signals constant until the DRAM controller or SRAM 
interlace uses the signals. As mentioned in the "L-Bus Signal Groups" section in Section 3, the byte 
enable signals specify which bytes (up to four) on the 32-bit data bus are transferred during the data 
cycle. Each individual byte enable signal selects eight data lines as shown in Table 5. 

Table 5. Byte Enable Signal Decoding 

Byte Enable Signal Address Line Selection 

BEa LAD7-LADo 

BE, LAD,s-LADe 

BE. LAD23-LAD'8 

BE3 LAD3,-LAD'4 

The byte enable signals are valid from the 80960KB processor before data is transferred. These 
signals are asserted during the address cycle for the first data word transfer; they are asserted again 
during the first data cycle for the second word transfer; the second data cycle for the third word 
transfer; and the third data cycle for the fourth word transfer. For each word, the byte enable signals 
remain valid throughout every data or wait cycle until READY is asserted. After READ Y is asserted, 
the byte enable signals change during the next processor clock cycle. 

The ALE signal can be used to latch the first byte enable signals. READY can be used to latch the 
other byte enable signals for each word. 

. 2-53 



HARDWARE REFERENCE 

4.2 ·SRAM . INTERFACE 

The basic memory interface can be used in conjunction with the SRAM interface to read and write 
to SRAM. This section describes the SRAM interface and examines the timing. 

4.2.1 SRAM Interface Logic 

The SRAM interface logic uses the latched byte enable signals, the· SRAM-OEo' and the SRAM-WE 
signals to generate four output enable signals (SRAM-OE3 through SRAM-OEo) and four write 
enable signals (SRAM-WE3 throughSRAM-WEo)' as shown in Figure 36. These signals allow the 
80960KB processor to write to the data byte that is specified by the byte enable signals. SRAMs with 
separate OE and CS signals require only one OE signal per bank since the 80960KB ignores 
unrequested bytes in read operations. 

4.2.2 SRAM Timing Considerations 

This section analyzes the critical timing paths of the SRAM control signals. From the critical path, 
the timing equations can be derived to determine the memory access time for no wait state operation. 

When evaluating critical timing paths, the timing calculations should use worst-case data sheet 
parametric specifications, rather than typical specifications. By using worst-case timing values, 
reliable operation is assured over all variations in temperature, voltage, and individual device 
characteristics. These timing values are determined by assuming the maximum propagation delay to 
latch an address, select a memory device, and pass through data buffers and transceivers. 

Figure 37 shows the critical timing path for a one-word SRAM read operation. The diagram consists 
of three time periods: the address setup period (Taddrset)' the memory response period (T mem)' and the 
data return period (Tdataset). Note that the timing for the read command and output control signals does 
not enter into the critical timing path. 

During the Taddrset period, the 80960KB processor outputs a valid address that is latched on the low­
to-high transition of the ALE signal. The address decoder generates the SRAM-CS signal from the 
latched address and the Timing Control/SRAM Interface logic subsequently generates the OE 
signals: During the T mem period the SRAM responds to the commands and signals and retrieves the 
data. The access time of the memory determines the duration of the T mem period. T mem can be varied 
in increments of clock cycles by delaying the READY signal. 

The data must be available at the address/data pins of the CPU before the end of the data state. The 
T dataset period must take into account the setup time requirement of the 80960KB processor and the 
throughput delay of a data transceiver. 

2-54 



HARDWARE REFERENCE 

BE3------~~--------------~--~)(}_-----------­
SRAM-OE3-

BE,------~--~---------r--or--~I(r_-----------­
SRAM-OE; 

BE, ------~---+--~----~--_Cr_~~-------- ______ 
.. SRAM-OE,-

BEo------~r__+--_r--._--r__(._--~ ------
JO-------- SRAM-OEo-

SRAM-OE -------i---t---t--t----' 

J(}-------- SRAM-WE3 

10-------- SRAM-WE, 

I(}-------- SRAM-WE, 

)(}-------- SRAM-WEo 

SRAM-WE ---------------------' 

-SRAMS WITH SEPARATE OE AND CS REQUIRE ONLY ONE OE SIGNAL PER BANK. 

Figure 36. Logic Diagram for SRAM Interface 

Taddrset T mem ~ .... ~------ Tdata •• t 

.. SRAM READ CYCLE 

Figure 37. Critical Timing Path for SRAM Read Operation 

2-55 



HARDWARE REFERENCE 

For a no wait state operation, the data transfer word must be completed in two system clock (CLK) 
cycles. The minimum time period for a no wait state operation (T mem-no-wait) can be determined by 
using equation 1. . 

T mem-no-wait 

where: T mem-no-wait 

2CLK 

Taddrset 

Tdataset 

= 2CLK - T - T 
addrset dataset 

(1) 

= Memory access time for no wait state operation 

= Two system clock (CLK) cycles 

= Maximum delay to valid address 
+ Maximum throughput delay of address latch 
+ Maximum delay to generate chip select 
+ Maximum delay to generate SRAM-OEn 

= Maximum delay through data transceiver 
+ Maximum data setup time of CPU 

A similar analysis can be done for burst transactions. Equation 1 can be used to determine the access 
time for no wait state operation of the first word. For subsequent words, equation 2 can be used. In 
this equation, the address setup time is replaced by delay in the burst logic to change the address 
(Tburst). In this case, the data transfer of each subsequent word must be completed in one system 
clock (CLK) cycle (no address state). The minimum access time for a no wait state operation (Tmem­
no-wait) can be determined by using the lesser value of equation I or equation 2. 

T . 
mero-no-walt 

where: Tmem-no-wait 

CLK 

Tburst 

Tdataset 

= CLK - Tburst - Tdataset (2) 

= Memory access time for no wait state operation 

= One system clock (CLK) cycles 

= Maximum delay to change the address 

= Maximum delay through data transceiver 

+ Maximum data setup time of CPU 

The memory access time can be extended by delaying the READY signal and adding wait states. 

The timing analysis described for a SRAM read operation can be used for EPROM timings. If 
EPROMs are only used to store initialization programs, they are seldom accessed compared to 
memory devices used to store program data or instructions. Consequently, the addition of wait states 
during the read cycle does not affect overall system performance. 

Figure 38 shows the critical timing path for an SRAM write operation. The diagram consists of two 
time periods: the address setup period (Taddrset) and the memory response period (Tmem). 

During the Taddrset period, the 80960KB processor outputs a valid address that is latched on the low­
to-high transition of ALE. The address decoder generates the SRAM-CS signal from the latched 
address. 

2-56 



HARDWARE REFERENCE 

T addrset _------ Tmem 

SRAM WRITE CYCLE .. 

Figure 38. Critical Timing Path for SRAM Write Transaction 

During the T mcm period the SRAM responds to the commands and writes the data. The access time 
of the memory determines the duration of the T mem period. T mem can be varied in increments of clock 
cycles by delaying the READY signal. 

Two timing paths should be considered during the Tmem period: the path where data is supplied to 
the memory, and the path that monitors the memory write cycle time. The first path takes into account 
the time for the 80960KB processor to generate valid data, the throughput delay of a data transceiver, 
and the data setup time requirement of the memory. The second path is the memory write cycle 
specification. The longer of the two paths is the critical timing path. 

By examining the timing path required to operate the SRAM, equation 2 can be derived which 
determines SRAM write cycle time for no wait state operation. The memory cycle time is determined 
by the lesser value of equation 1 or equation 2. 

T mem~no-wait 

where: Tmem.no.wait 

2CLK 

Taddrset 

= 2CLK - Taddrset (3) 

=> Maximum delay to valid data 

+ Maximum throughput delay of data transceiver 

+ Maximum data setup time of memory 

= Two system clock (CLK) cycles 

= Maximum delay to valid address 

+ Maximum throughput delay of address latch 

+ Maximum delay to generate chip select 

The memory access time can be extended by delaying the READY signal and generating wait states. 

2-57 



HARDWARE REFERENCE 

4.3 DRAM CONTROLLER· 

This section provides design guidelines for a DRAM controller. DRAMs offer static column mode 
and CAS before RAS refresh features. This section shows guidelines on how to use these features 
with the burst capability of the 80960KB processor to significantly enhance system throughput. 

The DRAM controller multiplexes the address into a row and column address, performs the refresh 
operation, arbitrates between a refresh request and memory request, and generates the necessary 
control signals for the DRAM. To implement these functions, the memory controller uses an address 
multiplexer, arbiter, refresh interval timer, and DRAM timing and control as shown is Figure 39 . 

BUS l­
AD DRESS 

CYC 
PRO 

ClK 

M-CS 

lE-IN-
GRESS 

... 
ADDRESS 

r MULTIPLEXER 

ROW/COL 

ARBITER 

-
MEM/REF 

J 

--- REF-ACi< 
REF-REQ 

.. REFRESH 
INTERVAL 

TIMER 

... 
.......... 

DRAM 
TIMING 

AND 
CONTROL 

,. 

Figure 39. DRAM Controller Block Diagram 

... 
> ... 

DRAMAS_ 
DRAMAO 

RASO 

CASo 

CAS1 

CAS2 

CAS3 

WE 

DRAM-RDY 

270647-42 

A standard DRAM controller can be used, but it typically degrades system performance. 

2-58 



HARDWARE REFERENCE 

4.3.1 Address Multiplexer 

The address multiplexer divides the DRAM address into a row and column address. The proper 
selection of a row or column address is accomplished by the row/column select signal (ROW/COL) 
from the DRAM timing and control circuit. 

4.3.2 Refresh Interval Timer 

The refresh interval timer periodically generates a refresh request (REF-REQ) by counting enough 
bus cycles to equal the refresh interval period. Since a refresh request is processed after a completed 
operation, the refresh period must take into account the time required to perform a bus operation, as 
well as the DRAM refresh specification. For example, a 1 M -bit DRAM that requires 512 refresh 
cycles within 8 ms needs a refresh cycle every 15.6 us. To meet the DRAM specification, the refresh 
interval timer must generate a refresh request in less than 15.6 us to compensate for any required time 
to complete the operation with wait states. 

After the REF-REQ signal is generated, the arbiter sends a refresh acknowledge signal REF-ACK 
back to the interval timer to assure that refresh occurred before generating another REF-REQ. 

4.3.3 Arbiter 

DRAM controller uses an arbiter to decide whether a memory cycle or refresh .cycle is performed. 
In a synchronous design, arbitration is easily performed because memory and refresh cycle requests 
never occur at or near the same time. 

The arbiter monitors memory cycle requests and refresh requests. The arbiter detects a DRAM 
memory request by decoding two signals: DRAM-CS and CYCLE-IN-PROGRESS. The REF-REQ 
signal indicates that a refresh cycle must be performed. The arbiter arbitrates between a memory 
cycle or refresh cycle and generates a Memory/Refresh (MEM/REF) signal. The DRAM timing and 
control block uses the MEM/REF signal to start the generation of the control signals. 

When a refresh cycle is performed, the arbiter sends a REF-ACK signal to the refresh timer, which 
uses this signal to begin another count. 

4.3.4 DRAM Timing and Control 

The DRAM timing and control circuit is the final logic block and core of the DRAM controller. The 
functions of this circuit include the following: 

Generating the DRAM control signals (RAS, CAS, and WE) with the proper timing rela­
tionships during system operation 

Generating the DRAM-RDY signal 

Performing the refresh function by asserting CAS before RAS. 

Performing several warm-up cycles required by the DRAM when power is first applied. 

2-59 



HARDWARE REFERENCE 

The DRAM timing and control logic can be designed to take advantage of the burst-transfer 
capability of the 80960KB processor by implementing static column mode or nibble mode. With 
nibble mode, a multiplexed address is applied to the DRAM, and up to four bits of data are quickly 
transferred by successively toggling the CAS pulse. The DRAM timing and control logic can be 
designed to provide the successive CAS'pulses by using theCYCLE-IN-PROGRESS and DRAM­
RDY signals. 

Static column mode can also be used to take advantage ofthe burst capability of the DRAM. Static 
column mode allows fast access to the bits located in the seleoted row of the DRAM simply by 
changing the column address after the first access. . 

Figure 40 shows a flow chart for the DRAM timing and control logic using static column mode. The 
DRAM timing and control circuit recdves a refresh request or a memory request on the MEM/REF 
and CYCLE-IN-PROGRESS input signals. For a memory request, the DRAM timing and control 
determines whether a read or a write operation is desired from theW/R signal from the 80960KB 
processor. 

For a read operation, the DRAM timing and control logic performs similar functions on the first word: 
it asserts WE; it brings ROW/COL high to select a row address; it asserts RASo; it brings ROW/COL 
low to select the column address; it asserts CAS3 through CASo (derived from the four latched byte 
enable signals); and it generates a DRAM-RDY signal. The DRAM-RDY signal causes the burst 
logic to increment the address and informs the 80960KB processor that the data word was written. 

After completing these functions the DRAM timing and control logic samples the CYCLE-IN­
PROGRESS to determine whether to transfer another data word. If so, the DRAM timing and control 
logic maintains the ROW/COL signal low to select the new column address, deasserts and asserts 
CAS, through CASo to observe the CAS prechargespecification of the DRAM, and generates another 
DRAM-RDY. The DRAM timing and control logic repeats the procedure until all the data words are 
transferred. Then the DRAM timing and control logic deasserts RASo' 

For a write operation, the DRAM timing and control logic performs similar functions on the first 
word: it asserts WE; it brings ROW/COL high to select a row address; it asserts RASo (derived from 
the four latched byte enable signals); and it generates a DRAM-RDY signal. The DRAM-RDY 
signal Causes the burst logic to increment the address and informs the 80960KB processor by 
asserting READY that the data word was written. 

After completing these functions the DRAM timing and control logic samples the CYCLE-IN­
PROGRESS to determine whether the 80960KB wants to transfer another data word. If so, the 
DRAM timing and control logic maintains the ROW/COL signal low to select the new column 
address, deasserts and asserts CAS3 through CASo to observe the CAS precharge specification of the 
DRAM. and generates another DRAM-RDY. The DRAM timing and control logic repeats the 
procedure until all the data words are transferred. Then the DRAM timing andcontrollogic deasserts 
RASo' 

Although only one RAS signal is required, four CAS signals (CAS3-CASo) are generated to enable 
each byte of the L~bus. These CAS signals are generated by the byte enable decoder and correspond 

2-60 



HARDWARE REFERENCE 

to the byte enable signals of the 80960KB processor. For example, CASo' which is mapped directly 
from BEo' selects the least-significant data byte (LAD7-LADo). 

READ 

1. GENERATE ROW 
ADDRESS--

2. ASSERT RAS. 
3. GENERATE COLUMN 

ADDRESS-- _ 
4. ASSERT CAS3-CAS. 
5. ASSERT DRAM-RDY 

1. CHANGE COLUMN 
ADDRESS 

2. ASSERT ~D;;-RA"-;M""--=R:;;:D7.y 

SAMPLE MEM/REF AND 
CYCLE-IN-PROGRESS 

INPUTS 

REFRESH CYCLE 

1. GENERATE ROW 
ADDRESS-- _ 

2. ASSERT RASo AND WE 
3. GENERATE COLUMN 

ADDRESS-- _ 
4. ASSERT CAS3-CAS. 
5. ASSERT DRAM-RDY 

1. DEASSERT CAS3-CAS. 
2. CHANGE COLUMN 

ADDRESS-- _ 
3. ASSERT CAS3-CAS. 
4. ASSERT DRAM-RDY 

ASSERT CAS3-CAS. 
BEFORE RAS. 

DEASSERT RAS AND CAS3-CAS. TO END CYCLE 

Figure 40. Flow Chart for DRAM Timing and Control Logic 

2-61 



HARDWARE REFERENCE 

A single WE control signal and four CAS signals ensure that only those DRAM bytes selected for 
a write cycle are enabled. All' other data bytes maintain their outputs in the high-impedance state. 
A common design error is to use a single CAS control signal and four WE control signals, using the 
WE signals to write the DRAM bytes selectively in write cycles that use fewer than 32 bits. Although 
the selected bytes are written correctly, the unselected bytes are enabled for a read cycle. These bytes 
output their data to the unselected bytes of the databus while the data transceivers output data to every 
bit of the data bus. When the two devices simultaneously output data to the same bus, bus contention 
occurs. 

The refresh function can be performed by asserting the CAS signal before asserting RAS. The CAS 
before RAS refresh feature eliminates the need for an external refreSh address counter. When the 
CAS pulse is activated prior to the assertion ofthe RAS pulse, the DRAM automatically performs 
a refresh cycle on one row by employing an on-chip address counter. Upon completion of the refresh 
cycle, the address counter is automatically incremented. The MEM/REF signal from the arbiter can 
be used by the DRAM timing and control logic block to initiate a CAS before RAS refresh cycle. 

Besides generating the RAS, CAS, and WE signals, the DRAM timing and control logic generates 
a number of warm-up cycles for the DRAM after reset by issuing several refresh requests. 

4.3.5 Timing Considerations for the DRAM Controller 

Figure 41 shows a typical example of a timing diagram for a two-word read transaction that uses 
static column mode; similarly, Figure 42 is a typical example for a two-word write transaction. The 
example assumes a memory access time that requires two wait states (T w) for the initial data word 
and one wait for the second data word. 

The critical timing areas for both read and write transactions are noted by circled numbers in the 
diagrams, which are enumerated below. 

1. The delay for the CPU to generate a valid address. 

2. The delay for the DRAM timing and control logic to generate the CYCLE-IN-PROGRESS 
signal. 

3. The delay to generate the DRAM row address. This time includes the address latch throughput 
delay, the multiplexer throughput delay, and the address-driver delay. 

4. The delay to generate RAS, which includes the delay to generate the DRAM-CS signal. 

5. The row address hold time after the high-to-Iow transition of RAS. 

6. The time required to generate die multiplexer control signal (ROW/COL) after the row address 
hold time is satisfied. 

7. The time required to switch from a row to column address plus any driver delays. 

8. The delay to generate and drive the CAS signals. 

9. For a read transaction, the throughput delay of the data transceivers. For a write transaction, the 
delay by the CPU to generate valid data. . 

2-62 



intJ HARDWARE REFERENCE 

10. For a read transaction, the data setup time of the CPU. For a write transaction, the throughput 
delay of the data transceivers. 

11. The time required to increment and drive the column address. 

12. For a write transaction only, the delay time to bring CAS high (terminate the CAS pulse for the 
first data byte), to precharge the CAS pulse (required by the DRAM), and to assert CAS again. 

13. The RAS precharge time, which must be satisfied before another memory cycle can b~gin. 

T. Tw Tw Td Tw Td T, 

ClK2.J "'\.../"'-~ ~ ~ ~ "'\.../"'-~~ 
ClK~ ~ ~ ~ ~ ~ ~ ~~ 
-CD @ @) 

...ii ~~ ~,,~~~,,~ ~"""~ lAD31·LADO" ~ ADDRESS z.,.,,~ ~~ ~~ ~~~~~~~ ~~ ~~ ~ DA AO ~""""""~ 

CD CD 
OATATO 

~~ t-.."""~ ~""""~ ~"""""~ ~,,~~~~ ~~~ TRANSCEIVER -
BE3'BEO~ ~ BE's FOR DATAOX BE'S FOR DATA1 

~"""""~~ ~,,~~~~~'-::: ~~~~~~~ -
W/R-" I 

CD 
CYClE·IN· I: <:I "'" PROGRESS 

DRAMAg. ~ 
CD (j) @ 
~""~ ROW ADDRESS ~'3[ COLUMN ADDRESS ~ COLUMN ADDRESS 1 

DRAMA 0 

~~ 
-

RAS "'" ~@ 

® 
ROW/COL ~, ~ 

® 
CAS ~ 1:--..';,' 

DRAM·ROY ~ ~'" ~~ 

270647·43 

Figure 41. Timing Diagram for Two-word DRAM Read Transaction 

2-63 



inter HARDWARE REFERENCE 

Ta 

ClK2 

ClK 

LA031-LAOO 

OATAFROM 
TRANSCEIVER 

BE3-BEO 

wiR 

CYClE-IN-
PROGRESS 

ORAMAg-
ORAMAO 

RAS 

ROW'OOL 

CAS 

DRAM-ROY 

270647-44 

Figure 42. Timing Diagram for Two-word DRAM Write Transaction 

4.3.6 DRAM Interleaving 

Because the DRAM consists of dynamic nodes, a row precharge time is required to recharge the 
nodes after every memory cycle. This time must be included in the timing evaluation, as noted by 
the example. To avoid the precharge time delay of the DRAM, the memory array can be arranged so 
that each subsequent memory access is most likely to be directed to a different bank. In this 
configuration, wait time between accesses is not required because while one bank of DRAMs 
performs the current access, another bank precharges and is ready to perform the next access 
immediately. 

If DRAMs are interleaved (i.e., arranged in multiple banks so that adjacent addresses are in different 
banks), the DRAM precharge time can be masked for most accesses. With two banks of DRAMs, 
one for even 32-bit addresses and one for odd 32-bit addresses, all sequential 32-bit accesses can be 
completed without Vl(aiting for the DRAM to precharge. 

Even when random accesses are made, two DRAM banks allow 50 percent of back-to-back accesses 
to be made without waiting for the DRAMs to precharge. The precharge time is also masked when 

2-64 



HARDWARE REFERENCE 

the 80960KB processor has no bus accesses to be performed. During these idle bus cycles, the most 
recently accessed DRAM bank can precharge so that the next memory access to either bank can begin 
immediately. 

4.0 SUMMARY 

The memory interface circuit allows the 80960KB processor to communicate with the memory 
devices. The basic memory interface logic can be divided into six blocks: the data transceivers, the 
address latches, the address decoder, the burst logic, the DRAM timing and control logic, and the byte 
enable latch. The DRAM controller and SRAM interface complete the memory interface circuit. The 
DRAM controller can be designed to take advantage of the 80960KB processor's burst capability to 
enhance system performance. 

5.0 I/O INTERFACE 

The 80960KB processor supports 8-bit, 16-bit, and 32-bit I/O devices by mapping them into its 4 G­
byte memory address space. This section describes the design considerations for the interface 
between the 80960KB processor and I/O components. Several examples illustrate the design 
concepts. 

5.1 INTERFACING TO a-BIT AND 16-BIT PERIPHERALS 

The 80960KB processor accesses I/O devices by using a memory-mapped address. Consequently, 
memory-type instructions can be used to perform input/output operations. For example, the 
80960KB processor's LOAD and STORE instructions can directly support 8-bit and 16-bit data 
moves to or from I/O peripherals. The instructions include those listed below. 

Load Ordinal Byte (reads a byte) 

Load Ordinal Short (reads 16-bit data) 

Store Ordinal Byte (writes a byte) 

Store Ordinal Short (writes 16-bit data) 

These instructions perform the transfer on the data bits specified by the two low-order lines of the 
effective address. See the 80960KB CPU Programmer's Reference Manual for complete details. 

5.2 GENERAL SYSTEM INTERFACE 

In a typical 80960KB processor system design, a number of slave I/O devices can be controlled 
through a general system interface. Other I/O devices, particularly those capable of controlling the 
L-bus, can use the general system interface, but may require additional logic to isolate the bus. This 
section describes the general system interface and assumes that the 80960KB processor does not 
perform burst transactions to the I/O devices. 

2-65 



inter HARDWARE REFERENCE 

Figure 43 shows the major logic blocks of the general system interface. Standard 8-bit data 
transceivers add drive capability, provide bus isolation, and prevent bus conflicts that may occur with 
slow I/O components. The address latch demultiplexes the address/data lines and holds the address 
stable throughout the L-bus transaction. The address decoder generates the I/O chip-select signals 
from the latched address lines. The timing control block provides the READY signal to the 80960KB 
processor and the I/O read and I/O write command. 

This basic interface circuit is quite similar to the one used in the basic memory interface described 
in section 4. For most systems the same data transceivers, address decoders, and address latches can 
be used to access both memory and I/O devices. The timing control logic can be implemented to 
accommodate both memory and I/O devices. 

5.2.1 Data Transceivers 

Standard 8-bit transceivers can be used to provide isolation and additional drive capability for the L­
bus. Transceivers prevent bus contention that can occur if some devices are slow to remove data from 
the data bus after a read cycle. For example, if an I/O write cycle follows a I/O read cycle, the 
80960KB processor may drive the L-bus before a slow device has removed its outputs from the bus, 
potentially causing a current spike. Transceivers, however, can be omitted if the data float time of 
the device is short enough and the load does not exceed the 80960KB device specifications. 

The data transceiver can be controlled by two signals from the 80960KB processor: Data Transmit/ 
Receive (DTIR) and Data Enable (DEN). DTIR indicates the direction of data flow and DEN enables 
the transceivers. 

5.2.2 Address Latch/Demultiplexer 

Standard transparent latches can be used to demultiplex the address/data lines of the 80960KB 
processor. The latch is controlled by the ALE signal from the 80960KB processor. The ALE signal 
passes through an inverter, such that when ALE goes low, the address flows through the latch. The 
low-to-high transition of ALE can be used to latch the address. 

If only slave-type peripherals are used in a system, the output enable of the latches can always remain 
active by connecting it to ground. For systems with DMi} devices, the output enable can be used to 
permit the DMA device to drive a common address bus. 

5.2.3 Address Decoder 

The address decoder determines which particular I/O device is selected by decoding the address. The 
I/O address can be any address in the 4 Gbyte address range except for the upper 16 Mbytes (addresses 
FFOOOOOOH through FFFFFFFF H)' which the 80960KB processor reserves for inter-agent commu­
nication and internal I/O. Typically, a small range of address bits are reserved for accessing I/O 
devices by defining certain higher-order address bits as an I/O access. 

2-66 



inter 

... 
LAD31-LADo .. 

DTiR 
-
DEN 

- r-1>o ALE 

80960MC 
PROCESSOR 

ADS 

READY 

W/R 

-
INTo 

INT, 

INT,/INTR 

INT3/1NTA -
HOLD 

HLDA 

CLK2 f 

HARDWARE REFERENCE 

... DATA 

---- DIR TRANSCEIVERS 

---- G 

-- ADDRESS 
LATCHES 

LE 

~ 
G 

Q" 

J 
ADDRESS 
DECODER 

TIMING 
CONTROL 

Figure 43. Simplified 1/0 Interface 

2-67 

... ... 

......... , ......... ........ : .. .. r 

} 
~) 

DATA 

LOWER 
ADDRESS LINES 
USED TO SELECT 
1/0 REGISTERS 

To:cs I 
(I 10 CHIP 
SELECT LINES) 

I 

I 

INTERRUPT PINS 

ARBITRATION 
PINS 



HARDWARE REFERENCE 

As an example, consider a 32-bit address: A31 through A IS could indicate an I/O access when A31 is 
set to zero, and A30-A IS are set to one; AI4 through As could then be used to specify a particular I/O 
device; and A4 through A2 can be used to access up to 8 registers of the I/O component. AI and A are 
not used by the I/O device, This particular scheme selects up to 1,024 devices, while using only 32K 
bytes of the available 4 Gbytes of address space. 

The address decoder can be located either before or after the address latches. Usually, it is placed 
after the latches, so that the chip-select signal does not need an additional latch. 

5.2.4 Timing Control LogiC 

The timing control logic accommodates I/O devices that cannot transfer information at the maximum 
bus rate by inserting Wait States until the data becomes available. The timing control logic consists 
of a counter and timing logic, as shown in Figure 44. The counter produces a 4-bit binary count. The 
count is started at the beginning of the operation (determined by ADS and DEN) and is stopped by 
the READY signal. The timing logic asserts the READY signal, the I/O write command (1/0-WR), 
and the I/O read command (I/O-RD) based upon the clock count, the I/O chip select signal (l/O-CS), 
and the w!R command. 

COUNTO 
COUNTER COUNT1 

ADS ----ct..J START CYCLE COUNT 2 
COUNT3 

CLK---------~ __ ~ ____ -1----~~ 

TIMING 
LOGIC 

W/R------~----------J 
I/O-CS-----~----------~---~ 

Figure 44. Timing Control ,Block Diagram 

p-...... ~ READY 

D--"I!O-RD 

Do--"I/O-WR 

270647-45 

For many peripherals, the timing logic can be programmed to assert READY at the appropriate count 
for the selected device. Specific I/O chip select signals can be used to indicate how many clock cycles 
to wait before asserting READY. 

For some I/O peripherals, particularly bus masters, READY cannot be determined by counting clock 
cycles. For these I/O devices, READY can be supplied by the device and passed on to 80960KB 
processor. 

The timing control block can assert the I/O-RD or 1/0-WR signal for I/O devices based upon the clock 
count. The timing for these signals can be selected for the slowest device to simplify the logic circuit 
or can be customized for each individual peripheral device to maximize performance. 

2-68 



HARDWARE REFERENCE 

5.2 I/O INTERFACE DESIGN EXAMPLES 

The general system interface shown in Figure 43 can be used to connect the 80960KB processor to 
many slave peripherals. The following list includes some common peripherals compatible with this 
interface: 

8259A Programmable Interrupt Controller 

8253, 8254 Programmable Interval Timer 

8272 Floppy Disk Controller 

82062, 82064 Fixed Disk Controller 

82510, Asynchronous Serial Controller 

8274, 82530 Multi-Protocol Serial Controller 

8255 Programmable Peripheral Interface 

8041, 8042 Universal Peripheral Interface 

This section provides guidelines and design considerations for interfacing the 80960KB processor 
to different types ofI/O configurations. Specifically, four design examples are examined. The 8259 A 
design example shows how to interface the 80960KB processor to a slave-type peripheral device. 
The 82586 design example shows how a 16-bit bus master reads and writes to the X()%()KB 
processor's system memory. The 82786 design example shows how the X()9()()K B processor can read 
or write to graphics memory using a 16-bit data bus. 

5.3.1 8259A Programmable Interrupt Controller 

The 8259A Programmable Interrupt Controller is designed for use in interrupt-driven microcom­
puter systems, where it manages up to eight independent interrupts. The 8259A handles interrupt 
priority resolution and returns an 8-bit vector to the 80960KB processor during an interrupt­
acknowledge cycle. Intel Application Note AP-59 contains detailed information on configurations 
of the 8259A. 

5.3.2 Interface 

Figure 45 shows the connection of the 80960KB processor to a single 8259A Interrupt Controller. 
This circuit consists ofthe general system interface plus a bidirectional buffer. The example assumes 
that several interrupt requests occur at the same time so that priority resolution is required. 

The data lines from the 8259A are not directly aligned to the 80960KB processor because of the 
difference in priority resolution between the devices. Although both devices use an 8-bit interrupt 
vector, the 80960KB processor implicitly defines the priority by dividing the interrupt vector by 
eight. The 8259A defines the priority in the lower three bits of the interrupt vector. Furthermore, 
the highest priority vector of the 80960KB processor has a value of 31 in the upper five bits of the 
interrupt vector. Whereas, the highest priority interrupt of the 8259A has a value of 0 in the lower 
three bits of the interrupt vector. 

2-69 



w 
o z 
w 
IX 
w 
u.. 
w 
IX 
w 
IX 
c:( 

~ 
C 
IX 
c:( 
::I: 

? .- C 

... 
LAD31-LADo ... 

DTiii 

DEN 

ALE r-tr 
80960MC 

PROCESSOR 

ADS 

READY 

W/R 

INTA 

INTR 

! 

. 
D,-Do . 
DIR 

G 
DATA 

TRANSCEIVER 

.. 
ADDRESS 
LATCHES 

LE 

~G Q 

I A_ 

~ " 
ADDRESS 
DECODER 

8259A-CS 

I 

TIMING I/o-WR 

CONTROL 
I/o-RD 

D. B. A.I---- D, 

D3 B, A,~ D. 

D. B. A.I----- D. 
D, B. A. I+-- D. 
Do B. 

BIDIRECTIONAL 
A.I- D3 BUFFER 

D, B3 A31+-- D. 
D. B. A_ I---- D, 
D. B, A, I--- Do 

GBA GAs II) 
U 

~ 
.! 
.5 
« 
en 

Ao IR,-IRo 

I .-
~ 

M8259A 
PROGRAMMABLE -- INTERRUPT 

'~ CONTROLLER 

In 
C'II 
CIO 

== .. 
0 -E 0 
as I"-.. N Cl as 
is 
~ 
u 
0 
in 
.n 
." 

CS II) .. 
:l 
Cl 
u:: 

WR 

RD 

INTA 

INT 



HARDWARE REFERENCE 

To resolve the priority difference, the interrupt vector from the 8259A can be inverted and rotated 
left by three bits as shown by the data alignment between the 80960KB processor and 8259A in 
Figure 45. Rotating the data bits in this manner provides two advantages: the interrupt table for the 
8259A can be located by contiguous addresses, and the upper two most significant bits of the interrupt 
vector remain free to group interrupt vectors if additional 8259As are needed. 

Care must be exercised, however, when programming the registers of the 8259A. For example, 
assume that the second initialization command word (ICW2 register) of the 8259A requires a data 
byte value of 000 11111 B' To transfer the correct information, the 80960KB processor needs to write 
a data word with the value of 00000111 B because this word is rotated left three places and inverted. 

5.3.3 Operation 

The 8259A starts the interrupt cycle by generating an interrupt request (INT) to the 80960KB 
processor, which receives the signal at the INTR input pin. This assumes the Interrupt Control 
register of the 80960KB processor is set to accommodate an external interrupt controller. 

When the 80960KB processor comes to a breakpoint in its execution, it asserts the INTA signal twice. 
The first INTA signal acknowledges the interrupt request and causes the 8259A to prioritize the 
interrupt requests it received up to this point. The INTA, together with the 8259A-CS, are applied 
to the timing control logic to generate a READY signal. 

The 80960KB processor automatically asserts the second INTA signal five clock cycles after the 
assertion of READY. After the second assertion oflNTA, the 80960KB processorreads the interrupt 
vector from the 8259A. 

The bidirectional buffer inverts and passes the 8-bit vector to the 80960KB processor with the 
appropriate lines rearranged. The output enable signal for the data buffer is controlled by INTA for 
this operation. After the data transfer is completed, the timing control circuit generates a second 
READY signal to terminate the interrupt acknowledge cycle. 

The same circuitry can be used to read or write to the 8259A registers. In this case, the 80960KB 
processor selects the 8259A through a memory-mapped address. Local address line 2 (A2) selects 
one of two internal registers of the 8259 A. The I/O read or I/O write command is generated by the 
timing control circuit. The data passes through the bidirectional data buffer to or from the selected 
register of the 8259A. 

The direction of data flow through the buffer is controlled by three logic gates shown in Figure 45. 
For an I/O write operation, the I/O Write command and 8259A-CS signal control the output enable 
signal of the bidirectional buffer. Similarly, for a read operation, the I/O Read command and the 
8259A-CS signal control the output enable signal of the buffer. After the data is transferred, the 
timing control circuit asserts READY. 

2-71 



HARDWARE REFERENCE 

5.3.4 82530 Serial Communication Controller 

The 82530 Serial Communication Controller is a dual-channel, multi-protocol controller with on­
chip baud rate generators, digital phase locked loops, various data encoding/decoding, and extensive 
diagnostic capabilities. The 82530 is designed to interface with high-speed serial communications 
lines using a variety of communication protocols, including asynchronous, synchronous, and HDLC/ 
SDLC protocols. The 82530 contains two independent full-duplex channels. 

The general system interface circuit previously described can be used to connect the 80960KB 
processor to the 82530, as shown in Figure 46. The 82530 can send an interrupt request to the 
80960KB processor as shown or it can send the interrupt request to an interrupt controller, which in 
tum sends it to the 80960KB processor. The 80960KB processor reponds to the interrupt request and 
issues an address. After the address is latched, the address lines are decoded to generate a chip-select 
(82530-CS) signal to activate the 82530. . 

The lower two address dnes, A2 and A3, are used for channel selection and command/data selection. 
A2 is connected to the Channel-A/Channel-B(A;B) select input pin. This selects the channel that 
performs the serial read or write operations. A3 is connected to the Data/Command (D/C) select input 
pin. This siganl defines the type of information transferred to or from the 82530 on the data lines (D7 
through DO). A high level means data is transferred; a low level indicates a command. 

The timing control circuit generates an I/O read or I/O write command based on the W if{ command 
from the 80960KB processor. When the data transfer is completed, the timing control circuit sends 
a READY signal to termiante the transaction. 

The baud rate clocks can be programmed in several ways, including use of an external crystal. 

5.3.5 82586 Local Area Network Coprocessor Example 

The 82586 is an intelligent, high-perf9rmance communications controller designed to perform most 
tasks required for controlling access to a local area network (LAN), such as Ethernet or Starlan. In 
many applications, the 82586 is the communication manager for a station connected to a LAN 
controller. Such a station usually includes a host CPU, shared memory, a Serial Interface Unit, a 
transceiver, and LAN controller link, as shown in Figure 47. The 82586 performs all functions 
associated with data transfer between the shared memory and the LAN link, including: 

Framing 

Link management 

Address filtering 

Error detection 

Data encoding 

Network management 

Direct memory access 

2-72 



HARDWARE REFERENCE 

Buffer chaining 

High-level (user) command interpretation 

The 82586 has two interfaces: a 16-bit bus interface and a network interface to the Serial Interface 
Unit. The bus interface is described here. For detailed information on using the 82586, refer to the 
Local Area Networking Component User's Manual. 

A ... 
~ LAD31-LADO Z z~ DTDO DATA D7-DO 

.... TRANSCEIVERS 

DT/R DIR 
DEN f-+o G A CHANNEL 

A ... 
'b 

~~ 
..., .. 
B CHANNEL 

ADDRESS 
A .... 

~ 
LATCHES 

ALE LE ... ... ..... 
~G Q 

A3 
NBCHANNEL 

A2 
DIG (DATNCOMMAND) 

~ ., 
80960KB ADDRESS 825330 SERIAL 

PROCESSOR DECODER COMMUNICATIONS 
CONTROLLER 

82530-CS 

,., CS 

ADS p....o RD 
TIMING 

READY CONTROL p....c W/R WR 

t INTA 

INTO ,., INT 

CLK2 
j 

270647-46 

Figure 46. Block Diagram for 82530 Interface 

2-73 



5.3.6 Interface 

HARDWARE REFERENCE 

80960KB PROCESSOR 

MEMORY AND 
MEMORY CONTROLLER 

CHANNEL 
ATIENTION 

INTERRUPT 

82586 LAN 
COPROCESSOR 

SERIAL : J:1II 
INTERFACE ,Ii!!. 

,:,,:~ 

82501 ETHERNET 
SERIAL INTERFACE 

TRANSCEIVER 1 ~ 
CABLE ~ ~ 

82C502 ENTHERNET 
TRANSCEIVER CHIP 

IEEE 802.3/ETHERNET LINK 1 

Figure 47. LAN Station 

270647-47 

There are several ways to design an interlace between the 82586 and the 80960KB processor. The 
chosen design example shows how to interface the 82586 using a shared bus. In this example, the 
82586 operates in minimum mode at one-half the processor clock frequency. 

The primary function of the interface circuit is to allow the 82586 to read and write 16-bit data using 
the 32-bit L-bus_ This is accomplished by adding the high-order address lines and translating the 16-
bit data lines to the 32-bit data lines by using byte enable signals_ 

Figure 48 shows the 82586 interlace circuit, which includes the DRAM controller (see the "DRAM 
Controller" section in Chapter 4. This interface uses the general system interlace circuit plus other 
logic units that specifically pertain to the 82586: the LAN data transceivers, the byte enable converter, 
and the LAN address latches. These logic blocks are highlighted by the shaded boxes. 

2-74 



HARDWARE REFERENCE 

HOLD 
HLDA HLDA 

1 32·BIT DATA BUS 
'<c"":, . 16.BI~ 

AD15·ADO 
LAD31·LADO DATA .. '; "t,ANOiITA· " 

TRANSCEIVERS '1 TAANSCEJVI!RSOI~L MINIMAX 
DIR 

DEN G !BE3'BEO 

82586 
LAN SERIAL 

~~ 
COPROCESSOR INTERFACE 

ADDRESS 81'TE ..... .A 

LE 
LATCHES eNABLE DEN ....-

ALE ..... 'G CON!lEl'lTEfi ... Q 

~_ ADDRESS BUS 

tAo tAl "BHE 

G LAN AOORESS ~ 
~ 

LATCHf!S 

Al$".'!2 ~ . BHE 
ADDRESS RAM-CS ~ LE ALE 

80960KB DECODER LAN·CS 
PROCESSOR 

r- CA 

~ LAD4·LADO READY RD WR 

~ BURST AO 
:> 

~ LOGIC Al 

.. ~ CYCLE·IN·PROGRESS 

t 
ADS TIMING 

READY CONTROL :::[J I I 
WR· 

~ I ,.. 
::::; DRAM· ROY 

f0- P- ::---t MEMORY 
BYTE CONTROLLER 

BE3·BEO ENABLE r_ & DRAM 
LATCH CS 

BEO·BE3 BE3·BEO 

CLI<2 t I 270647·48 

Figure 48. Block Diagram for LAN Controller 

The LAN data transceivers connect 16 data lines from the 82586 to both the upper and lower 16 bits 
of the L-bus. The data transfer is controlled by converting A, AI, and the BHE to four byte enable 
signals as shown in Figure 49. Al selects between the upper and lower 16-bit data lines; A selects 
the lower data byte for either the upper or lower 16-bit data lines; and the byte high enable signal 
(BHE) selects the upper data byte for either the upper or lower 16-bit data lines. Data flows through 
the buffers when the appropriate byte enable signal is asserted. The direction of the data flow is 
controlled by the DT/R signal of the 82586. 

The LAN address latches are used to demultiplex AD 15 through AD. The address lines and BHE are 
latched by the ALE signal from the 82586. The upper address lines (A31 through A16) are generated 
by hardware programmable DIP switches. 

The 82586 begins operation when the Channel Attention (CA) input signal is asserted. This signal 
is generated by gating the write command and 82586 chip select signal. 

2-75 



HARDWARE REFERENCE 

A1--~----------__ ~=~-1~ __ ;-' 
AO---r-----------?~--~~--~_' 

270647-49 

Figure 49. Byte Enable Generation Circuit 

5.3.7 Operation 

The interaction between the 82586 and the 80960KB processor is described below and is summarized 
in Figure 50. 

The 80960KB processor invokes the 82586 by supplying a memory-mapped address and a write 
command. The memory-mapped address results in a 82586-CS signal, which is gated with a 
write command to produce the CA signal. 

The 82586 responds by generating a hold request and waits for HLDA. 

The 80960KB processor asserts HLDA, which enables the outputs of the LAN address latches 
and disables the outputs of the address latches nextto the 80960KB processor. The HLDAsignal 
also gives control of the L-bus to the 82586. 

After the 82586 takes control of the bus, it generates a 16-bit address (AD '5 through AD), an ALE 
signal, and a BHE signal. The upper address lines are provided by the programmable DIP 
switches to produce an address on the L-bus. 

A, and A (from the 82586), and BHE are decoded to generate four byte enable signals (BE3 
through BE). DEN enables the output of the byte enable converter. 

DT/R from the 82586 controls the direction of the data flow through the buffers. 

The read or write signal from the 82586 is applied to the DRAM controller. 

The 82586 accesses DRAM by using the DRAM controller. 

-The DRAM-RDY is asserted by the DRAM controller. This action enables the output of the 
LAN data transceiver and terminates the 82586 memory cycle. The timing control logic passes 
the DRAM-RDY signal as the READY signal to the 82586. 

The 82586 deasserts HOLD and the 80960KB processor deasserts HLDA. The 80960KB 
processor regains control of bus. 

2-76 



inter HARDWARE REFERENCE 

270647-50 

Figure 50. Operational Flow Diagram for 82586 Interface 

5.3.8 82786 Graphics Coprocessor Example 

The 82786 is a high performance graphics coprocessor that provides high quality text and advanced 
display control. It provides full support for graphics primitives at up to 25 million pixels per second 
and bit-mapped text up to 25 thousand characters per second. This graphics processor supports 
advanced features such as hardware windows, zooming, panning, and scrolling. Intel Application 
Note AP-259 and Application Note AP-270 contain detailed information on 82786. 

When using the 82786, it may be necessary for the 80960KB processor to write to graphics memory. 
The interface design example illustrates how the 80960KB processor can transfer a 32-bit data word 
to the 16-bit data bus of the 82786. 

2-77 



HARDWARE REFERENCE 

5.3.9 Interface 

There are several ways to design an interface between the 82786 and the 80960KB processor. In this 
example, the 80960KB processor reads or writes to graphics memory by accessing the 82786 through 
the interface logic circuit. This example assumes that the 82786 operates in the slave mode, and that 
the 80960KB processor does not perform burst transfers. The 80960KB processor only performs 
burst transfers for instructions that specify accesses for more than one word or for instruction fetches. 

The interface circuit translates a 32-bit data bus to a 16-bit data bus by dividing the data lines into 
the upper and lower 16 bits and sequencing the data transmission. When the 80960KB processor 
writes to graphics memory, the bidirectional transceivers sequence the lower and the upper data bits 
of the L-bus to the 16-bit data bus of the 82786. 

The process is reversed when the 80960KB processor reads from graphics memory. The bidirec­
tional transceivers form a 32-bit data word by latching the first 16-bit data word on the lowerdata 
lines, routing the next 16 bits to the upper data lines, and then passing the 32-bit data word on the L­
bus. 

Figure 51 shows the details of the graphics controller interface circuit. This interface uses the general 
system interface circuit plus the following logic units: the bidirectional transceivers, the data buffer 
control, the data bus controller, and the address translator. These logic blocks are highlighted by the 
shaded boxes. 

The bidirectional transceivers pass data to (from) a 32-bit data bus from (to) a 16-bit data bus. Data 
is sequenced through the transceivers by the control signals generated by the data buffer controller. 

The data buffer control logic generates the signals that operate and sequence the bidirectional 
transceivers. The direction signal for data flow through the transceivers is derived from the w!R 
signal of the 80960KB processor. The data buffer control logic generates four output enable signals: 
GABL enables the outputs on the B side for the lower 16 bits; GBAL enables the outputs on the A side 
for the lower 16 bits; GABH enables the outputs on the B side for the higher 16 bits; and GBAH enables 
the outputs on the A side for the higher 16 bits. These output enable signals are derived from the byte 
enable signals and are asserted when the slave enable signal (SEN) is activated by the 82786. 

The select lines for the bidirectional transceivers allow data to flow from either the latched data or 
the input pins. These lines, which are not shown, can be hardwired. 

The data bus controller provides the read (RD) and write (WR) commands, memory or I/O signal (M/ 
10), and a READY 0 signal. This circuit generates two read or write commands for every 32-bit data 
transfer to or from the 80960KB processor (one for each 16-bit data transfer). The data bus controller 
starts counting clock cycles when the 82786-CS and CYCLE-IN-PROGRESS signals are asserted. 
At the proper time (based upon clock counts), it asserts the read/write command. The data bus. 
controller produces READY 0 after receiving the SEN signal from the 82786. READY 0 resets the 
count, and another read/write command is generated. 

2-78 



intJ HARDWARE REFERENCE 

LAD31-(ADol1lEl!iip.r:~DA~J~A :l I<: TRANSCEIVERS 

DTiRt:=lF~~~ __ ~l·-EI DENF 

E!:m::~~~~~ 

CYCLE-IN-
PROGRESS 

60960KB 
PROCESSOR 

ADDRESS 
DECODER 

62766-CS 

wiFi 

READY 

BYTE 
ENABLE 

BE3-BEO LATCH 

Figure 51. Block Diagram for 82786 Interface 

62766 
GRAPHICS 

COPROCESSOR 

SE~ 

RD 
WA 
MIi5 

A21-AO 

READY 
CS 

TO 
CRT 

270647-51 

The address translator perfonns four functions: it converts the four byte enable signals to A, AI' and 
BHE; it increments AI after receiving READ Yo for the first 16-bit transfer; it generates the clock 
signal (CBAL) that latches the first 16-bit data word in the bidirectional transceivers when the 
80960KB processor perfonns a read operation; and it generates the READY signal for the CPU. 

Not shown is the cycle detector circuit that generates the CYCLE-IN -PROGRESS signal. This signal 
can be generated by using the circuit similar to the one shown in Figure 44. The start of the cycle 
can be detected by gating the ADS and DEN signals. The end of the cycle can be indicated by. 
READY. 

5.3.10 Operation 

The interaction between the 82786 and the 80960KB processor is summarized in Figure 52. The 
operation is divided into two 16-bit data movements for both a read and write operation. 

2-79 



HARDWARE REFERENCE 

READ OPERATION 
INTERFACE CIRCUIT CONTROLS DATA FLOW: 

GENERATES READYO 
LATCHES DATA ON LOWER 16-BITS WITH' 
CLOCK SIGNAL (CBAd 
INCREMENTS ADDRESS A1 

WRITE OPERATION 
INTERFACE CIRCUIT CONTROLS DATA FLOW: 

GENERATES READYO 
ENABLES OUTPUT FOR DATA ON LOWER' 
1681TS 
INCREMENTS ADDRESS A1 

Figure 52. Operational Flow Diagram for 82786 Interface Circuit 

2-80 

270647-52 



HARDWARE REFERENCE 

The 80960KB processor generates a memory-mapped address and data for the desired graphics 
memory location. It accesses the 82786 by triggering the interface circuit to generate the chip select 
signal and several operational signals: the read (RD) or write (WR) command, BHE, and the memory 
or I/O (MilO) signal. The 82786 begins the memory operation after it completes the current graphics 
processing activity. The 82786 acknowledges that it is performing a memory operation by asserting 
SEN. 

After the 82786 asserts SEN, it begins a 16-bit memory read or write operation by translating the 
address inputs (A21 through A) to a multiplexed DRAM address, and generating the DRAM control 
signals. Note that AI and A are derived from the byte enable signals. 

For a read operation, the data bus controller uses SEN to generate the READY signal. The assertion 
of READY causes the address translator to increment AI and to generate CBAL, which latches the 
lower 16 data bits on the B inputs of the bidirectional transceivers to the A side. 

Similarly, for a write operation, the data bus controller uses SEN to generate the READY signal. The 
assertion of READ Y causes the address translator to increment A I' The data buffer control uses SEN 
and the byte enable signals to produce GABL , which enable the outputs for the lower 16 data bits of 
the bidirectional transceivers. 

The 82786 then deasserts SEN and the transfer of the first 16 data bits is complete. To transfer the 
second 16 data bits, the interface circuit requests another memory operation by generating RD (or 
WR), BHE, and MilO (CS is already asserted). After it completes the current graphics processing 
activity, the 82786 begins the memory operation and asserts SEN. 

For a read operation, the data bus controller uses SEN to generate the READY signal. The data buffer 
control uses SEN to assert GBAH and GBAL, which enable the outputs for the higher and lower 16 
data bits. 

For a write operation, the data bus controller uses SEN to generate the READY signal. The data 
buffer control uses SEN and the byte enable signals to produce GABH' which enable the outputs for 
the higher 16 data bits ofthe bidirectional transceivers. 

The address translator generates READY for the 80960KB processor from the second READY to 
terminate the data transfer to the graphics memory. 

5.4 SUMMARY 

The 80960KB processor supports 8-bit, 16-bit, and 32-bit I/O interfaces. A general system interface 
circuit can be designed that connects to many slave-type peripherals. This interface can be expanded 
to accommodate a bus master peripheral or a 32-bit to 16-bit data bus translator. These interfaces 
were illustrated by four design examples. 

2-81 





8'0960KB Programmer's 
Reference 

3 





80960KB PROGRAMMER'S REFERENCE 

1.0 A NEW 32-BIT ARCHITECTURE FROM INTEL 

The 80960KB processor marks the introduction of the 80960 architecture-a 32-bit architecture 
from Intel. This architecture has been designed specifically to meet the needs of embedded 
applications such as machine control, robotics, processor control, avionics, and instrumentation. It 
represents a renewed commitment from Intel to provide reliable, high-performance processors and 
controllers for the embedded processor marketplace. 

The 80960 architecture can best be characterized as a high-performance computing engine. It 
features high-speed instruction execution and ease of programming. It is also easily extensible, 
allowing processors and controllers based on this architecture to be conveniently customized to meet 
the needs of specific processing and control applications. 

Some of the important attributes of the 80960 architecture include: 

full 32-bit registers 

high-speed, pipelined instruction environment 

a convenient program execution environment with 32 general-purpose registers and a versatible 
set of special-function registers 

a highly optimized procedure call mechanism that features on-chip caching of local variables 
and parameters 

extensive facilities for handling interrupts and faults 

extensive tracing facilities to support efficient program debugging and monitoring 

register scoreboarding and write buffering to permit efficient operation with lower performance 
memory subsystems 

The following sections describe those features of the 80960 architecute that are provided to 
streamline code execution and simplify programming. Also described are those features that allow 
extensions to be added to the architecture. 

1.1 HIGH PERFORMANCE PROGRAM EXECUTION 

Much of the design of the 80960 architecture has been aimed at maximizing the processor's 
computational and data processing speed through increased parallelism. The following paragraphs 
describe several of the mechanisms and techniques used to accomplish this goal, including: 

an efficient load and store memory-access model 

caching of code and procedural data 

overlapped execution of instructions 

many one or two clock instructions 

3-1 



80960KB PROGRAMMER'S REFERENCE 

1.1.1 Load and Store Model 

One of the most important features of the 80960 architecture is that most of its operations are 
performed on operands in registers, rather than in memory. For example, all the arithmetic, logic, 
comparison, branching and bit operations are performed with registers and literals. 

This feature provides two benefits. First, it increases program execution speed by minimizing the 
number of memory accesses required to execute a program. Second, it reduces memory latency 
encountered when using slower, lower-cost memory parts. 

To support this concept, the architecture provides a generous supply of general-urpose registers. For 
each procedure, 32 registers are available (28 of which are available for general use). These registers 
are dividied into two types: global and local. Both these types of registers can be used for general 
storage of operands. The only difference is that global registers retain their contents across procedure 
boundaries, whereas the processor allocates a new set of local registers each time a new procedure 
is called. 

The architecture also provides a set of fast, versatile load and store instructions. These instructions 
allow burst transfers of 1,2,4,8,12 or 16 bytes of information between memory and the registers. 

1.1.2 On-Chip Caching of Code and Data 

To further reduce memory accesses, the architecture offers two mechanisms for caching code and 
data on chip: an instruction cache and multiple sets of local registers. The instruction cache allows 
prefetching of blocks of instruction from memory, which helps insure that the instruction execution 
pipeline is supplied with a steady stream of instructions. It also reduces the number of memory 
accesses reuqired when performing iterative operations such as loops. (The size of the instruction 
cache can vary. With the 80960KB processor, it is 512 bytes.) 

To optimize the architecture's procedure call mechanism, the processor provides multiple sets of 
local registers. This allows the processor to perform most procedure calls without having to write 
the local registers out to the stack in memory. 

(The number of local-register sets provided depends on the processor implementation. The 
80960KB processor provides four sets of local registers.) 

1.1.3 Overlapped Instruction Execution 

Another technique that the 80960 architecture employs to enhance program execution speed is 
overlapping the execution of some instructions. This is accomplish through two mechanisms: 
register scoreboarding and branch prediction. 

Register scoreboarding permits instruction execution to ocntinue while data is being fetched from 
memory. When a load instruciton is executed, the processor sets one or more scoreboard bits to 
indicate the target registers to be loaded. After the target registers are loaded, the scoreboard bits are 

3-2 



80960KB PROGRAMMER'S REFERENCE 

cleared. While the target registers are being loaded, the processor is allowed to execute other 
instructions that do not use these registers. The processor uses the scoreboard bits to insure that target 
registers are not used until the loads are complete. (The checking of scoreboard bit is carried out 
transparently from software.) The net result of using this technique is that code can often be optimized 
in such a way as to allow some instructions to be executed in zero clock cycles (that is, executed for 
free). 

Conditional branch instructions commonly cause bottlenecks in the instruction execution pipeline, 
since the instruction decoder cannot decode instructions past the branch instruction until it knows the 
direction the branch is going to take. The 80960 architecture solves this problem with a technique 
called branch prediction. Branch prediction allows a programmer or compiler to select conditional 
branch instructions that indicate to the processor the direction a branch is likely to go. The decoder 
can then continue decoding instructions beyond the branch, even though the branch condition has 
not yet been tested. This technique eliminates waits between the decoder and execution unit, while 
branch conditions are being evaluated. 

Note 

The branch prediction mechanism is not implemented in the 80960KB series of processors. 

1.1.4 Single-Clock Instructions 

It is the intent of the 80960 architecture that a processor be able to execute commonly used 
instructions such as moves, adds, subtracts, logical operations, and branches in a minimum number 
of clock cycles (preferably one clock cycle). The architecture supports this concept in several ways. 
For example, the load and store model described earlier in this section (with its concentration on 
register-to-register operations) eliminates the clock cycles required to perform memory-to-memory 
operations. 

Also, all the instructions in the 80960 architecture are 32-bits long and aligned on 32-bit boundaries. 
This feature allows instructions to be decoded in one clock cycle. It also eliminates the need for an 
instruction-alignment stage in the pipeline. 

The design of the 80960KB processor takes full advantage of these features of the architecture, 
resulting in over 50 instructions that can be executed in a single clock-cycle. 

1.1.5 Efficient Interrupt Model 

The 80960 architecture provides an efficient mechanism for servicing interrupts from external 
sources. To handle interrupts, the processor maintains an interrupt table of 248 interrupt vectors (240 
of which are available for general use). When an interrupt is signalled, the processor uses a pointer 
from the interrupt table to perform an implicit call to an interrupt handler procedure. In performing 
this call, the processor automatically saves the state of the processor prior to receiving the interrupt; 
performs the interrupt routine; and then restores the state of the processor. A separate interrupt stack 
is also provided to segregate interrupt handling from application programs. 

I 

3-3 



80960KB PROGRAMMER'S REFERENCE 

The interrupt handling facilities also feature a method of evaluating interrupts by priority. The 
processor is then able to store interrupt vectors that are lower in priority than the task that the 
processor is currently working on in a pending interrupt section of the interrupt table. At certain 
defined times, the processor checks the pending interrupts and services them. 

1.1 SIMPLIFIED PROGRAMMING ENVIRONMENT 

Partly as a side benefit of its streamlined execution environment and partly by design, processors 
based on the 80960 architecture are particularly easy to program. For example, the large number of 
general purpose registers allows relatively complex algorithms to be executed with a minimum 
number of memory accesses. The following paragraphs describe some of the other features for the 
architecture that simplify programming. 

1.2.1 Highly Efficient Procedure Call Mechanism 

The procedure call mechanism makes procedure calls and parameter passing between procedures 
simple and compact. Each time a call instruction is issued, the processor automatically saves the 
current set of local registers and allocates a new set of local registers for the called procedure. 
Likewise, on a return from a procedure, the current set of local registers is deallocated and the local 
registers for the procedure being returned to are restored. On a procedure call, the program thus never 
has to explicitly save and restore those local variables and paramters that are stored in local registers. 

f.2.2 Versatile Instruction Set and Addressing 

The selection of instructions and addressing modes also simplifies programming. The architecture 
offers a full set of load, store, move, arithmetic, comparison and branch instructions, with operations 
on both integer and ordinal data types. It also provides a complete set of Boolean and bit-field 
instructions, to simplify operations on bits and bit strings. 

The addressing modes are efficient and straightforward, while at the same time providing the 
necessary indexing and scaling modes required to address complex arrays and record structures. 

The large 4-gigabyte address space provides ample room to store programs and data. The availability 
of 32 addressing lines allows some address lines to be memory-mapped to control hardware 
functions. 

1.2.3 Extensive Fault Handling 'Capability 

To aid in progr~m development, the 80960 architecture defines a wide selection of faults that the 
processor detects, including arithmetic faults, invalid operands, invalid operations, and machine 
faults. When a fault is detected, the processor makes an implicit call to a fault handler routine, using 
a mechanism similar to that described above for interrupts. The information collected for each fault 
allows program developers to quickly correct faulting code. It also allows automatic fault recovery 
from some faults. 

3-4 



inter 80960KB PROGRAMMER'S REFERENCE 

1.2.4 Debugging and Monitoring 

To support debugging systems, the 80960 architecture provides a mechanism for monitoring 
processor activity by means of trace events. The processor can be configured to detect as many as 
seven different trace events, including the instruction execution, branch events, calls, supervisor 
calls, returns, prereturns, and breakpoints. When the processor detects a trace event, it signals a trace 
fault and calls a fault handler. Intel provides several tools that use this feature, including an in-circuit 
emulator (ICE) device. 

1.3 SUPPORT FOR ARCHITECTURAL EXTENSIONS 

The 80960 architecture described earlier in this chapter provides a high-performance computing 
engine for use as the computational and data processing core of embedded processors or controllers. 
The architecture also provides several features that enable processors based on this architecture to 
be easily customized to meet the needs of specific embedded applications, such as signal processing, 
array processing, or graphics processing. 

The most important of these features is a set of 32 special function registers. These registers provide 
a convenient interface to circuitry in the processor or to pins that can be connected to external 
hardware. They can be used to control timers, to perform operations on special data types, or to 
perform I/O functions. 

The special function registers are similar to the global registers. They can be addressed by all the 
register-access instructions. 

1.5 EXTENSIONS INCLUDED IN THE 80960K SERIES PROCESSORS 

The 80960K series of processor offer a complete implementation of the 80960 architecture, plus 
several extensions to the architecture. These extensions fall into two categories: floating-point 
processoring and interagent communication. 

1.5.1 On-Chip Floating Point 

The 80960KB processor provides a complete implementation of the IEEE standard of binary 
floating-point arithmetic (IEEE 754-185). This implementation includes a full set of floating-point 
operations, including add, subtract, multiply, divide, trigonometric functions, and logarithmic 
functions. These operations are performed on single precision (32-bit), double precision (64-bit), 
and extended precision (80-bit) real numbers. . 

One of the benefits of this implementation is that the floating-pointhandling facilities are completely 
integrated into the normal instruction execution environment. Single- and double-precision floating­
point values are stored in the same registers as non-floating point values. The four, 80-bit floating­
point registers are provided to hold extended-precision values. 

3-5 



80960KB PROGRAMMER'S REFERENCE 

1.5.2 Interagent Communication 

All of the processors in the 80960K series provide an interagent communication (lAC) mechanism, 
which ·allows agents connected to the processor's bus to communicate with one another. This 
mechanism operates similarly to the interrupt mechanism, except that lAC messages are passed 
through dedicated sections of memory. The sort of tasks handled with lAC messages are processor 
reinitialization, stopping the processor, purging the instruction cache, and forcing the processor to 
check pending interrupts. . 

1.6 LOOK FOR MORE IN THE FUTURE 

As has been shown in the preceding discussion, the 80960 architecture offers lots of possibilities and 
lots of room to grow. The first implementation of this architecture (the 80960KB processor) provides 
average instruction processing rates of 7.5 million instructions per second (7.5 MIPS) at 20 MHz 
clock rate and 10 MIPS at a 25 MHz clock rate. I This. performance places the 80960 KB at the top 
of the performance range for advanced, VLSI processor architectures. 

However, the 80960KB is only the beginning. With improvements in VLSI technology, future 
implementation of this architecture will offer even greaterperfoimance. They will also offer a variety 
of useful extensions to solve specific control and monitoring needs in the field of embedded 
applications. . 

2.0 EXECUTION ENVIRONMENT 

This section describes how the 80960KB processor stores and executes instructions and how it stores 
and manipulates data. The parts of the execution environment that are discussed include the address 
space, the register model, the instruction pointer, and the arithmetic controls. The execution· 
environment's procedure stack and procedure-call mechanism are described in section 3. 

2.1 OVERVIEW OF THE EXECUTION ENVIRONMENT 

When the 80960KB processor is initialized, it sets up an execution environment. It then begins 
executing instructions from a program, using this execution environment to store and manipulate 
data. 

Figure 1 shows the part of the execution environment that the processor sets up to execute a procedure 
within a program. This environment consists of 232-byte address space, a set of global and floating­
point registers, a set of local registers, a set of arithmetic-control bits, the instruction pointer, a set 
of process-control bits, and a set of trace-controls bits. All of these items, except the address space, 
reside on the 80960KB chip. 

IMIP is equivalent to the perfonnance of a Digital Equipment Corp. VAX 11nSO. 

3-6 



80960KB PROGRAMMER'S REFERENCE 

Note 

The floating-point registers shown in Figure I are not defined in the 80960 architecture. They are 
extensions to the architecture that have been added to the 80960KB processor to support floating-point 
operations on the extended-real (floating point) data type. (The 80960KA processor does not provide 
floating-paint registers.) 

The 32 special-function registers (shown in Figure I in a dashed box) are defined in the 80960 
architecture. These registers are not implemented in the 80960KB and 80960KA processors. 

When the instruction stream includes a procedure call, a procedure stack and some additional 
elements are added to this execution environment. These procedure-call related elements are shown 
and discussed in Section 3. 

270647-1 

NOTES: 
1. REGISTER 915 IS RESERVED FOR STACK MANAGEMENT FUNCTIONS. 
2. REGISTERS rO, r1, AND r2 ARE RESERVED FOR STACK MANAGEMENT FUNCTIONS. 
3. SPECIAL FUNCTION REGISTERS ARE NOT IMPLEMENTED IN THIS PROCESSOR. 

Figure 3-1. Execution Environment 

3-7 



inter 80960KB PROGRAMMER'S REFERENCE 

2.2 ADDRESS SPACE 

From the point of view of the processor, the address space is flat (unsegmented) and byte addressable, 
with addresses running contiguously from 0 to 232_1. Programs and the kernel can allocate space for 
data, instructions, and the stack anywhere within this space, with the following exceptions: 

Instructions must be aligned on word boundaries. 

Some of the addresses in the upper 16M bytes of the address space (addresses FFOOOOOOl6 

through FFFFFFFFI6) are reserved for specific functions. In general, programs and the kernel 
should not use this section of the address space. 

The memory requirements to support this address space are given in Section 6 in the section titled 
"Memory Requirements". 

2.3 REGISTER MODEL 

The processor provides three types of data registers: global, floating-point, and local. The 16 global 
registers constitute a set of general-purpose registers, the contents of which are preserved across 
procedure boundaries. The 4 floating-point registers are provided to support extended floating-point 
arithmetic. Their contents are also preserved across procedure boundaries. The 16 local registers 
are provided to hold parameters specific to a procedure (i.e. local variables). For each procedure that 
is called, the processor allocates a separate set of 16 local registers. 

For anyone procedure within a program, 36 registers are thus available (as shown in Figure 2): the 
global registers, the 4 floating-point registers, and the 16 local registers. All of these registers are 
maintained on the processor chip. 

2.3.1 Global Registers 

The 16 global registers (gO through g15) are 32-bit registers. Each register can thus hold a word (32 
bits) of data. Registers gO through g14 are general-purpose registers; g15 is reserved for the current 
frame pointer (FP). The FP contains the address of the first byte in the current (topmost) stack frame. 
(The FP and the procedure stack are discussed in detail in Section 3). 

The general-purpose global registers (gO through g14) can hold any of the data types that the 
processor recognizes (i.e. ordinals, integers, reals). 

2.3.2 Floating-Point Registers 

The four floating point registers (fpO through fp3) are 80-bit registers. These registers can be accessed 
only as operands of floating-point instructions. All numbers stored in these registers are stored in 
extended-real format. (This format is described in section 11). The processor automatically converts 
floating-point values from real or long-real format into extended-real format when a floating-point 
register is used as a destination for an instruction. 

3-8 



80960KB PROGRAMMER'S REFERENCE 

Note 

The floating-point registers are defined in the 80960 architecture as an option for processors such as the 
80960KB that support floating-point operations. These registers may be omitted from implementations of 
the architecture that do not support floating-point operations. 

gO 

CONTENTS OF 
GLOBAL AND 

FLOATING-POINT 
REGISTERS 
PRESERVED 

ACROSS 
PROCEDURE 
BOUNDARIES 

REGISTERS gO THROUGH g14 
AVAILABLE FOR GENERAL USE 

g15 '--____ F_R_A_M_E_P_O_IN_T_E_R...;.(F_P.;.) ____ .J 

fpO 

GLOBAL 
REGISTERS 

I 
FLOATING-POINT 

NEW SET OF 
LOCAL 

REGISTERS 
ALLOCATED 
FOR EACH 

PROCEDURE 

AVAILABLE FOR GENERAL USE REGISTERS· 

fp3 1.-______________________ --' ~ 

rO PREVIOUS FRAME POINTER (PFP) 

,1 STACK POINTER (SP) 

,2 RETURN INSTRUCTION POINTER (RIP) 

REGISTERS r3 THROUGH ,15 
AVAILABLE FOR GENERAL USE 

,15 1.-_______________ ..... 

LOCAL 
REGISTERS 

Figure 2. Registers Available to a Single Procedure 

3-9 

270647-2 



80960KB PROGRAMMER'S REFERENCE 

2.3.3 Local Registers 

The 16 local registers (rO through rI5) are 32-bit registers, like the global registers. The purpose of 
the local registers is to provide a separate set of registers, aside from the global and floating-point 
registers, for each active procedure. Each time a procedure is called, the processor automatically sets 
up a new set oflocal registers for that procedure and saves the local registers for the calling procedure. 
The program does not have to explicitly save and restore these registers. 

Local registers r3 through r15 are general-purpose registers. Register rO through r2 are reserved for 
special functions, as follows: register rO contains the previous frame pointer (PFP); r1 contains the 
stack pointer (SP); and r2 contains the return instruction pointer (RIP); (The PFP, SP, and RIP are 
discussed in detail in Section 3). The processor accesses the local registers at the same speed as it 
does the global registers. 

2.3.4 Register Alignment 

Several of the processor's instructions operate on multiple-word operands. For example, the load­
long instruction (ldl) loads two words from memory into two consecutive registers. Here, the register 
number for the least significant word is specified in the instruction and the most significant word is 
automatically loaded into the next higher numbered register. 

In cases where an instruction specifies a register number and multiple, consecutive registers are 
implied, the register number must be even if two registers are accessed (e.g. gO, g2) and an integral 
multiple of four if three or four registers are access (e.g. gO, g4). If a register reference for a source 
value is not properly aligned, the value is undefined. If a register reference for a destination value is 
not properly aligned, the registers that the processor writes to are undefined. 

2.3.5 Register Scoreboarding 

The 80960KB provides a mechanism called register scoreboarding that in certain situations permits 
instrucitons to be executed concurrently. This mechanism works as follows. While an instruction 
is being executed, the processor sets a scoreboard bit to indicate that a particular register or group 
of registers is being used in an operation. If the instructions that follow do not use registers in that 
group, the processor in some instances is able to execute those instructions before execution of the 
prior instructiOll is complete. In effect, the register scoreboarding mechanism allows some instruc­
tions to be executed for free (zero clock cycles). 

A common application of this feature is to execute one or more fast instructions (instructions that take 
one to three clock cycles) concurrently with load instructions. A load instruction typically takes 3 
to 9 clock cycles (depending on the design of system memory). Register scoreboarding allows other 
instructions to be executed concurrently with the load instruction, provided that the other instructions 
do not affect the registers being loaded. For example, the following group of instructions load a group 
of local registers while performing some other operations on data in global registers. 

3·10 



80960KB PROGRAMMER'S REFERENCE 

ld xyz, r6 
addi g4, g6, g7 
addi g9, glO, gll 
ld abc, r8 
and gO, Oxffff, gl 
addi r6, r8, r7 

# r6 ~ data from address xyz 
# g7 ~ g4 + g6 
# gll ~ g9 + glO 
# r6 ~ data from address abc 
# gl ~ gO AND Oxffff 
# r7 ~ r6 + r8 

Here, the two addi instructions following the first load and the and instruction following the second 
load are performed for free. 

The other situation where scoreboarding can be useful for procedure optimization is when floating­
point instructions are being executed. Floating-point operations are handled by a separate execution 
unit in the processor. So, non-floating point instructions can often be executed concurrently with 
floating-point instructions, providing that they do not use the same registers and do not use the 
arithmetic-logic unit (ALU). (A detailed description of the register-scoreboarding mechanism is 
given in Appendix C.) 

2.4 INSTRUCTION POINTER 

The instruction pointer (IP) is the address (in the address space) of the instruction currently being 
executed. This address is 32 bits; however, since instructions are required to be aligned on word 
boundaries in memory, the 2 least significant bits of the IP are always zero. 

Instructions in the processor are one or two words long. The IP gives the address of the lowest order 
byte of the first word of the instruction. 

The IP is stored in the processor and cannot be read directly. However, the IP~with-displacement 
addressing mode allows the IP to be used as an offset into the address space. This addressing mode 
can also be used with the Ida (load address) instruction to read the current value of the IP. 

When a break occurs in the instruction stream (due to an interrupt or a procedure call), the IP of the 
next instruction to be executed (i.e. the RIP) is stored in local register r2, which is then stored on the 
stack. Refer to Section 3 for further discussion of this operation. 

2.5 ARITHMETIC CONTROLS 

The processor's arithmetic controls are made up of a set of 32 bits, which are cached on the processor 
chip in the arithmetic-controls register. Figure 3 shows the arrangement of the arithmetic controls 
bit. The arithmetic controls bits include condition code bits; floating-point control and status bits; 
integer control and status bits; and a bit that controls faulting on imprecise faults. 

3-11 



80960KB PROGRAMMER'S REFERENCE 

31 30 29 28 27 26 25 24 201918 1716 15 12 8 6 320 

I IIIIII~IIIII~~~IIIIIII ~ RESERVED 
~ (INITIALIZE TO 0) 

Lr--oI , 

f 

Figure 3. Arithmetic Controls 

'L CONDITION CODE 

ARITHMETIC STATUS 
I 
I 
NTEGER OVERFLOW FLAG 
NTEGER OVERFLOW MASK 
NO IMPRECISE FAULTS 
F LOATING OVERFLOW FLAG 
LOATING UNDERFLOW FLAG 
LOATING INVALlD·OP FLAG 
LOATING ZERO:DIVIDE FLAG 
LOATING INEXACT FLAG 
LOATING OVERFLOW MASK 
LOATING UNDERFLOW MASK 
LOATING INVALlD·OP MASK· 
LOATING ZERO·DIVIDE MASK 
LOATING INEXACT MASK 

·POINT NORMALIZING MODE 
·POINT ROUNDING CONTROL 

F 
F 
F 
F 
F 
F 
F 
F 
F 

FLOATING 
FLOATING 

270647·3 

The processor sets or clears these bits to show the results of certain operations. For example, the 
processor modifies the condition code bits after each comparison operation to show the result of the 
comparison. Other arithmetic control bits, such as the floating-point fault masks, are set by the 
currently running program to tell the processor how to respond to certain fault conditions. 

Note 

The arithmetic status flags and the floating-point flags and masks are not defined in the 80960 
architecture. They are an extension of the architecture, which is provided in the 80960KB processor to 
support floating-point operations. For implementations of the architecture that do not support floating-
point operations. these flags and masks are reserved bits. . 

2.5.1 Initializing and Modifying the Arithmetic Controls 

The state of the processor's arithmetic controls is undefined at processor initialization or on a 
processor reini tilize (initiated with a reinitialize processor lAC). Part of the initialization code should 
thus be to set the arithmetic controls to a specific state. 

The arithmetic controls can be examined and modified using the modify AC (modac) instruction. 
THis instruction uses a mask to allow specific bits to be checked and changes. 

The processor automatically saves and restores the arithmetic controls when it services an interrupt 
or handles a fault. Here, the processor saves the current state of the arithmetic controls in an interrupt 
record or fault record, then restores the arithmetic controls upon returning from the interrupt or fault 
handler, respectively. 

The modac instruction can be used to explicitly save and restore the contents of the arithmetic 
controls. 

3-12 



80960KB PROGRAMMER'S REFERENCE 

2.5.2 Functions of the Arithmetic Controls Bit 

The functions of the various arithmetic controls bits are as follows: 

Note 

In the following discussion, some of the arithmetic control bits are refeffered to as "sticky flags". A sticky 
flag is one that the processor never implicitly clears. Once the processor sets a sticky flag to indicate that a 
particular condition has occurred, the flag remains set until the program explicitly clears it. 

2.5.3 Condition Code Flags 

The processor sets the condition code flags (bits 0-2) to indicate the results of certain instructions 
(usually comapred instructions). Other instructions, such as conditional-branch instructions, 
examine these flags and perform functions according to their state. Once the processor has set these 
flags, it leaves them unchanged until it executes another instruction that uses these flags to store 
results. 

These flags are used to show either true or false conditions or inequalities (greater-than, equal, or less­
than conditions). To show true or false conditions, the flags are set as shown in Table 1. 

Table 1. Condition Codes for True or False Conditions 

Condition Condition 
Code 

010 true 

000 false 

The condition code flags are set as shown in Table 2 to show inequalities. 

Table 2. Condition Codes for Inequality Conditions 

Condition Condition 
Code 

000 unordered 

001 greater than 

010 equal 

100 less than 

3-13 



80960KB PROGRAMMER'S REFERENCE 

The terms ordered and unordered are used when comparing floating-point numbers. If, when com­
paring two floating-point values, one of the value is a NaN (not a number), the relationship is said 
to be "unordered". Reference to the portion of Section 11 entitled "Comparison and Classification" 
for further information about the ordered and unordered conditions. . 

2.5.4 Arithmetic Status Flags 

The processor uses the arithmetic status fields (bits 3-6) in conjunction with the classify instructions 
(c1assr andClassrl) to show the class of a floating-point number. When executing these instructions, 
the processor sets the arithmetic status bits as shown in Table 3, according to the class of the value . 
being classified. 

The "s" bit is set to the sign of the value being classified. 

Table 3. Encoding of Arithmetic Status Field 

Arithmetic Classification 
Status 
sooo zero 

sOOI denormalized number 

sOlO normal finite number 

sO 11 infinity 

sloo quiet NaN 

s101 signaling NaN 

s110 reserved operand 

2.5.5 Integer Overflow Mask 

The integer overflow mask (bit 12) and the integer overflow flag (bit 8) are used in conjunction with 
the arithmetic integer-overflow fault. The mask bit masks the integer-overflow fault. When the fault 
is masked, the processor sets the integer overflow flag whenever an integer or decimal'overflow 
occurs, to indicate that the fault condition has .occurred even though the fault has been masked. If 
the fault is not masked, the fault is allowed to occur and the flag is not set. The integer overflow flag 
is a sticky flag. (Refer to the discussion of the arithmetic integer-overflow fault in Section 8 for more 
information about the integer overflow mask and flag.) 

3-14 



80960KB PROGRAMMER'S REFERENCE 

2.5.6 No Imprecise Faults Flag 

The no imprecise faults flag (bit 15) determines whether or not imprecise faults are allowed to be 
raised. If set, faults are required to be precise; if clear, certain faults can be imprecise. (Refer to the 
portion of Section 8 titled "Precise and Imprecise Faults" for more information about this flag.) 

2.5.7 Floating-Point Flags and Masks 

The floating-point flags (bits 16 through 20) and masks (bits 24 through 28) perform the same 
functions as the integer overflow flag and mask, except they are used for operations on real (floating­
point) numbers. When a mask bit is set, its associated floating-point fault is masked. If a mask bit 
is set, the processor sets the flag for the associate fault whenever the fault condition occurs. All the 
floating-point flag bits are sticky bits. Refer to the portion of Section 11 titled "Exceptions and Fault 
Handling" for a detailed discussion of the floating-point faults and their associated flag and mask bits 
in the arithmetic controls. 

2.5.8 Floating-Point Normalizing Mode Flag 

The floating-point normalizing mode flag (bit 29) determines where or not floating-point instructions 
are allowed to operate on denormalized numbers. If set, floating-point instructions are allowed to 
operate on denormalized numbers; if clear, the processor generates a floating reserved-operand fault 
when it detects denormalized numbers that are used as operantds for floating-point instructions. 
(Refer to "Normalizing Mode" in section 11 for more information on the use of this flag.) 

2.5.9 Floating-Point Rounding Control 

The floating-point rounding control fields (bits 31-30) indicates which rounding mode is in effect for 
floating point computations. These bits are set as shown in Table 4, depending on the rounding mode 
to be selected. 

Table 4. Encoding of Rounding Control Field 

Rounding Rounding Mode 
Control 
00 round to nearest (even) 

01 Round down (toward negative infinity) 

10 Round up (toward positive infinity) 

11 Truncate (round toward zero) 

(Refer to "Rounding Control" in Section 11 for more information on the use of the floating-point 
rounding control bits.) 

All the unused bits in the AC register are reserved and must be set to O. 

3-15 



80960KB PROGRAMMER'S REFERENCE 

2.6 PROCESS AND TRACE CONTROLS 

The processor's process controls and trace controls are also cached on the processor chip. The 
processor controls are a set of 32 bits that control or show the current execution state of the processor. 
The process controls are described in detail in Section 6. 

The trace controls are a set of 32 bits that control the tracing facilities of the processor. The trace 
controls are described in Section 10. 

2.7 INSTRUCTION CACHING 

The processor provides a 5l2-byte cache for instructions. When the processor fetches an instruction 
or group of instructions from memory, they are stored in this cache before being fed into the 
instruction-execution pipeline. The processor manages this cache transparently from the program 
being run. 

This instruction cache is a read-only cache, meaning that once bytes from the instruction stream are 
written into the instruction cache, they cannot be changed. Because of this, the processor does not 
support self-modified programs in a transparent fashion. The only way. to change the instruction 
stream once it has been written into the instruction cache is to purge the instruction cache. The lAC 
message "purge instruction cache" is provided for this purpose, as described in Section 12. 

Note 

The purge instruction cache lAC is not defined in the 80960 architecture. It is an implementation­
dependent feature of the 80960KB processor. 

3.0 PROCEDUR.E CALLS 

This section describes the 80960KB processor's procedure call and stack mechanism. It also 
describes the supervisor call mechanism, which provides a means of calling privileged procedure 
such as kernel services. 

3.1 TYPES OF PROCEDURE CALLS 

The processor supports three types of procedure calls: 

Local call 

System call 

Branch and link 

A local call uses the processor's call/return mechanism, in which a new set of local registers and a 
new frame on the stack are allocated for the called procedure. A system call is similar to a local call, 
however, it provides access to procedures through a system procedure table. The most important use 
of a system call is to call privileged procedures called supervisor procedures. A system call to a 

3-16 



80960KB PROGRAMMER'S REFERENCE 

supervisor procedure is called a supervisor call. A branch and link is merely a branch to a new 
instruction with the return IP stored in a global register. 

In this section, the call/return mechanism is introduced first and is followed by a discussion of how 
this mechanism is used to make local calls and system calls. 

Note 

The processor's interrupt- and fault-handling mechanisms are implicit procedure calls. These implicit 
calls are described in detail in Sections 7 and 8, respectively. 

3.2 CALl/RETURN MECHANISM 

The processor's call/return mechanism has been designed to simplify procedure calls and to provide 
a flexible method for storing and handling variables that are local to a procedure. . 

Two structures support this mechanism: the local registers (on the processor chip) and the procedure 
stack (in memory). Figure 4 shows the relationship of the local registers to the procedure stack. 

SET OF 16 LOCAL 
REGISTERS ON THE 
PROCESSOR CHIP 

n+64 

STACK 
GROWTH * 

PROCEDURE STACK 
IN MEMORY 

LOCAL REGISTER 
SAVE AREA 

OPTIONAL SPACE 
FOR ADDITIONAL 

VARIABLES 

~;ADDING ARE..(~ 

LOCAL REGISTER 
SAVE AREA 

STACK FRAME 
FOR CALLING 
PROCEDURE 

] 

STACK FRAME 
FOR CALLED 
PROCEDURE 

* STACK GROWS FROM LOW ADDRESSES TO HIGH ADDRESSES. 

Figure 4. Local Registers and Procedure Stack 

270647-4 

For each procedure, the processor automatically allocates a set of local registers and a frame on the 
procedure stack .. Since the local registers are on-chip, they provide fast-access storage for local 
variables. If additional space for local variables is required, it can be allocated in stack frame. 

When a procedure call is made, the processor automatically saves the contents of the local registers 
and the stack frame for the calling procedure and sets up a new set of local registers and a new stack 
frame for the called procedure. 

3-17 



80960KB PROGRAMMER'S REFERENCE 

This procedure call mechanism provides two benefits. First, it provides a structure for storing a 
virtually unlimited number of local variables for each procedure: the on-chip local registers provide 
quick access to often-used variables and the stack provides space for additional variables. 

Second, a program does not have to explicitly save and restore the variables stored.in the local 
registers and stack frames. The processor does this implicitly on procedure calls and on returns. 

A detailed description of the call/return mechanism is given in the following paragraphs. 

3.2.1 Local Registers and the Procedure Stack 

For each procedure, the processor allocates a set of 16 local registers. Three of these registers (r1, 
r2 and r3) are reserved for linkage information to the procedures together. The remaining 13 local 
registers are available for general storage of variables. 

The processor maintains a procedure stack in memory for use when performing local calls. This stack 
can be located anywhere in the address space and grows from low addresses to high addresses. 

The stack consists of continguous frames, one frame for each active procedure. As shown in Figure 
5, each stack frame provides a save area for the local registers and an optional area for additional 
variables. 

To increase the speed of procedure calls, the 80960KB processor provides four sets oflocal registers. 
Thus, when a procedure call is made, the contents of the current set oflocal registers often do not have 
to be stored in the procedure stack. Instead, a new set of local registers is assigned to the called 
procedure. When procedure calls are made greater than four deep, the processor automatically stores 
the contents of the oldest set of local registers on the stack to fr«e up a set of local registers for the 
most recently called procedure. 

Refer to the subsection "Mapping the Local Registers to the Procedure Stack" for further discussion 
of the relationship between the local register sets and the procedure stack. 

3.2.2 Procedure Linking Information 

Global register g 15 (FP) and local registers rO (PFP), r 1 (SP) and r2 (RIP) contain information to link 
procedures together and to link the local registers to the procedure stack. The following paragraphs 
describe this linkage information. 

3.2.3 Frame Pointer 

The FP is the address of the first byte of the current (topmost) stack frame. On procedure calls, the 
FP for the new frame is stroed in global register g15; on returns, the FP for the previous frame is 
restored in g15. . ' 

3-18 



PREVIOUS 
FRAME 

CURRENT 
FRAME 

80960KB PROGRAMMER'S REFERENCE 

PFP 

SP r1 
~-----------R~I~P----------~ 

~-------------------------i r2 

1--------------------------1 r15 

OPTIONAL VARIABLES 

~~~~~~~~~~~~~~ rO 
r1

r2

r15

Figure 5_ Procedure Stack Structure

..

STACK
GROWTH

STACK
GROWS

FROM LOW
ADDRESSES

TO HIGH
ADDRESSES

THE CURRENT FRAME
POINTER (FP) STORED
IN 915 POINTS TO THIS
WORD IN THE STACK.

270647-5

The 80960KB processor aligns each new stack frame on a 64-byte boundary. Since the resulting FP
always points to a 64-byte boundary, the processor ignores the 6 low-order bits of the FP and
interprets them to be zero.

3-19

80960KB PROGRAMMER'S REFERENCE

Note

The alignment boundary for new frames is defined by means of an implementation-dependent parameter
called SALIGN. The relationship of SALIGN to the frame alignment boundary is described in Appendix E.

3.2.4 Stack Pointer

The procedure stack grows upward (i.e. toward higher addresses). The SPpoints to the next available
byte of the stack frame, which can also be thought of as the last byte of the stack frame plus one. To
determine the initial SP value, the processor adds 64 to the FP.

If additional space is needed on the stack for local variables, the SP may be incremented in one-byte
increments. For example, the following instruction adds six words of additional space to the stack:

addo sp, 24, sp # sp ~ sp + 24

With the Intel 80960KB Assembl~r, the keyword "sp" stands for register rl.

3.2.5 Padding Area

When the processor creates a new frame on a procedure call, it will, if necessary, add a padding area
to the stack so that the new frame starts on a 64 byte boundary. To create the padding area, the
processor rounds off the SP for the current stack frame (the value in rl) to the next highest 64 byte
boundary. This value becomes the FP for the new stack frame.

3.2.6 Previous Frame Pointer

The PFP is the address of the first byte of the previous stack frame. Since the 80960KB ignores the
6 low-order bits of the FP, only the 26 most-significant bits of the PFP are stored here. The 4 least­
significant bits of rO are then used to store return status information.

3.2.7 Return Status and Prereturn-Trace Information

Bits 0 through 2 of local register rO contain return status information for the calling procedure and
bit 3 contains the prereturn-trace flag. When a procedure call is made (either explicit or implicit), the
processor records the call type in the return status field. The processor then uses this-information to
select the proper return mechanism when returning to the calling procedure.

Table 5 shows the encoding of the return status field according to the different types of calls that the
processor supports. Of the five types of calls allowed, the fault call (described in Section 8) and the
interrupt and stopped-interrupt calls (described in Section 7) are implicit calls that the processor
initiates. The local call (described in this section) is an explicit call that a program initiates using the
call or calix instruction. The supervisor call (described at the end of this section in the portion "U ser­
Supervisor Protection Model") is an explicit call that a program makes using the calls instruction.

3-20

inter 80960KB PROGRAMMER'S REFERENCE

Table 5. Encoding of Return Status Field

Encoding Call Type Return Action

000 Local call or supervisor call made Local return
from the supervisor mode

001 Fault call Fault return

010 Supervisor call from user mode, Supervisor return, with the trace
trace was disabled before call enable flag in the process controls

set to 0 and the execution mode
flag set to 0

011 Supervisor call from user mode, Supervisor return, with the trace
trace was enabled before call enable flag in the process controls

set to 1 and the execution mode
flag set to 0

100 reserved

101 reserved

110 Stopped-interrupt call Stopped-interrupt return

111 Interrupt call Interrupt return

The third column of Table 5 shows the type of a return action that the processor takes depending on
the state of the return status field.

The processor records two versions of the supervisor call: one for when the trace-enable flag in the
process controls is set prior to a supervisor call and one for when the flag is clear prior to the call.
The trace controls are described in detail in Section 9.

The prereturn-trace flag is used in conjunction with the call-trace and prereturn-trace modes. If the
call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag; otherwise
it clears the flag. Then, if this flag is set and the prereturn-trace mode is enabled, a prereturn trace
event is generated on a return before any actions associated with the return operation are performed.
Refer to Section 9 for a detailed discussion of the interaction of the call-trace and prereturn-trace
modes and the prereturn-trace flag.

3.2.8 Return Instruction Pointer

The RIP is the address of the instruction that the processor is to execute after returning from a
procedure call. This instruction is the instruction that follows the procedure call instruction.

Since the processor uses the same procedure call mechanism to make implicit procedure calls to
service faults and interrupts, programs should not use register r2 for purposes other than to hold the
RIP.

3-21

80960KB PROGRAMMER'S REFERENCE

3.2.9 Mapping the Local Registers to the Procedure Stack

The availability of mUltiple register sets cached on the processor chip and the saving and restoring
of these register sets in stack frames should be transparent to most programs. However, the following
additional information about how the local registers and procedures stack are mapped to one another

. can help avoid problems.

Since the local-register sets reside on the processor chip, the processor will often not have to access
the stack frame in the procedure stack, even though space has been allocated on the stack for the
current frame. The processor only accesses the current frame in the procedure stack in the following
instances:

1. to read or write variables other than those held in the local registers, or

2. to read local registers that were stored in the procedure stack due to the nesting of procedures
calls more than four deep.

This method of mapping the local registers to the register-save areas in the procedure stack has
several implications. First, storing information in a leoal register does not guarantee that it will be
stored in its associated word in the current stack frame. Likewise, storing information in the first 16
words of a stack frame does not guarantee that the local registers associated with the stack frame are
modified.

Second, if you try to read the contents of the current set of local registers through a memory access
to the first 16 words of the current stack frame, you may not get the expected result. This is also true
if you try to read the contents of a previously stored set of local registers through a memory address
to its associated stack frame.

The processor automatically stores the contents of a local register set into the register-save area of
its associated stack frame only if the nesting of procedure calls (local or supervisor) is deeper than
the number of local register sets.

Occasionally, it is necessary to have the contents of all local registers sets match the contents of the
register-save areas in their associated stack frames. For example, when debugging software it may
be necessary to trace the call history back through the nested procedures. This can not be done unless
the cached local-register frames are flushed (Le., written out to the procedure stack).

The processor provides the flush reg (flush local registers) instruction to allow volunatry flushing of
the local registers. This instruction causes the contents of all the local-register sets, except the current
set, to be written to their associated stack frames in memory.

Third, if you need to modify the previous FP in register rO, you should precede this operation with
the flushreg instruction, or else the behavior of the ret (return) instruction is not predictable.

Fourth, locairegisters should not be used for passing parameters between procedures. (Parameters
passing is discussed in the following subsection.)

3-22

80960KB PROGRAMMER'S REFERENCE

Fifth, when a set of local registers is assigned to a new procedure, the processor may not clear or
initialize these registers. The initial contents of these registers are therefore unpredictable. Also, the
processor does not initialize the local register-save area in the newly created stack frame for the
procedure, so its contents are equally unpredictable.

3.3. LOCAL CALL

A local call is made using either of two local call instructions: call and calix. These instructions
initiate a procedure call using the call/return mechanism described earlier in this section.

The call instruction specifies the address of the called procedures as the IP plus a signed, 24-bit
displacement (Le.-223 to 223 _4).

The calix instruction allows any of the addressing modes to be used to specify the procedure address.
The IP with displacement addressing mode allows full 32-bit IP relative addressing.

The ret instruction initiates a procedure switch back to the last procedure that issued a call.

3.3.1 Local Call Operation

During a local call, the processor performs the following operations:

1. Stores the RIP in current local-register r2.

2. Allocates a new set of local registers for the called procedure.

3. Allocates a new frame on the procedure stack.

4. Changes the instruction pointer to point to !he first instruction in the called procedure.

5. Stores the PFP in new local-register rD.

6. Stores the FP for the new frame in global register g15.

7. Allocates a save area for the new local registers in the new stack frame.

8. Stores the SP in new local-register r1.

3.3.2 Local Return Operation

On a return, the processor performs these operations:

1. Sets the FP in global register g15 to the value of the PFP in current local-register rD.

2. Deallocates the current local registers for the procedure that initiatedthe return and switches to
the local registers assigned to the procedure being returned to.

3. Deallocates the stack frame for the procedure that initiated the return.

4. Sets the IP to the value of the RIP in new local-register r2.

3-23

80960KB PROGRAMMER'S REFERENCE

The algorithms that the call, calix, and ret instructions use are described in greater detail in Section
10.

3.4. PARAMETER PASSING

The processor supports two mechanisms for passing parameters between procedures: global
registers and argument list.

3.4.1 Passing Parameters in Global Registers

The global registers provide the fastest method of passing parameters. Here, the calling procedure
copies the parameters to be passed into global registers. The called procedure then copies the
parameters (if necessary) out of the global registers after the call.

On a return, the called procedure can copy result parameters into global registers prior to the return,
with the calling procedure copying them out of the global registers after the return.

3.4.2 Passing Parameters in an Argument List

When more parameters need to be passed than will fit in the global registers, they can be placed in
an argument list. This argument list can be stored anywhere in memory providing that the procedure
being called has a pointer to the list. Commonly, a pointer to the argument list is placed in a global
register.

Parameters can also be returned to the calling procedure through an argument list. Here again, a
pointer to the argument is generally returned to the calling procedure through a global register.

The argument list method of passing parameters should bethought of as an escape mechanism and
used only when there are not enough global registers available for passing parameters.

3.4.3 Passing Parameters Through the Stack

A convenient place to store an argument list is in the stack frame for the calling procedure. Storing
the argument list in the stack provides the benefit of having the list automatically deallocated upon
returning from the procedure that set up the list. Space for the argument list is created by incrementing
the SP, as described earlier in this chapter in the section titled "Stack Pointer".

Parameters can also be returned to the calling procedure through an argument list in the stack.
However, care should be taken when doing this. The return argument list must not be placed in the
frame for the called procedure, since this frame is deallocated on the return. Also, if the return list
is to be placed in the frame of the calling procedure, the calling procedure must allocate space for this
list prior to making the call.

3-24

inter 80960KB PROGRAMMER'S REFERENCE

3.5 SYSTEM CALL

A system call is made using the call system instruction calls. This call is similar to a local call except
that the processor gets the IP for the called procedure from a data structure called the system
procedure table. (System calls are sometimes referred to in this chapter as "system procedure-table
calls".)

Figure 6 illustrates the use of the system procedure table in a system call. The calls instruction
requires a procedure-number operand. This procedure number provides an index into the system
procedure table, which contains IPs for specific procedures.

ADDRESS
SPACE

;/ / ~ALLED ' /
PROCEDURE

CALLING
PROCEDUR;~

ENTRY IN THE SYSTEM
PROCEDURE TABLE
CONTAINS AN INSTRUCTION
POINTER TO THE CALLED
PROCEDURE

\ ~
ISSUES A calls
INSTRUCTION, WHICH
CONTAINS AN INDEX FOR
AN ENTRY IN THE
SYSTEM PROCEDURE
TABLE.

SYSTEM
PROCEDURE

TABLE

HEADER

IP.

IP

IP

IP

IP

IP

Figure 6. System Call Mechanism

ENTRY 1

ENTRY 2

ENTRY 3

ENTRY 4

ENTRY 5

ENTRY 6

270647-6

The system call mechanism supports two types of procedure calls: local calls and supervisor calls.
A local call is the same as that made with the call and calIx instructions, except that the processor gets
the IP of the called procedure from the system procedure table. The supervisor call differs from the
local call in two ways: (1) it causes the processor to switch to another stack (called the supervisor
stack), and (2) it causes the processor to switch to a different execution mode.

The system call mechanism offers two benefits. First, it supports portability for application software.
System calls are commonly used to call kernel services. By calling these services with a procedure
number rather than a specific IP, applications software does not have to be changed each time the
implementation of the kernel services is modified.

3-25

80960KB PROGRAMMER'S REFERENCE

Second, the ability to switch to a different execution mode and stack allows kernel procedures and
data to be insulated from applications code. This benefit is described in more detail later in "User­
Supervisor-Protection-Model" later in this chapter.

3.6 SYSTEM PROCEDURE TABLE

The system procedure table is a general structure, which the processor uses in two ways. The first
way is as a place for storing IPs for kernel procedures, which can then be accessed through the system
call mechanism. The processor gets a pointer to the system procedure table from the initial memory
image (1M!) as described in Section 6, "System Data-Structure Pointers". .

The second way a system procedure table is used is as a place for storing IPs for fault handler
procedures. Here, the processor gets a pointer to the system procedure table from entries in the fault
table, as described in Section 8, "Fault-Table EIitires".

The structure of the system procedure table is shown in Figure 7. The following paragraphs describe
the fields in this table.

3.6.1 Procedure Entries

The procedure entires specify the target IPs for the procedures that can be accessed through the
system procedur,e table. Each entry is made up of an address (or IP) field and a type field. The address
field gives the address of the first instruction of the target procedure. Since all iJ,1structions are word
aligned, only the 30 most-significant bits of the address are given. The processor automatically
provides zeros for the least-significant bits.

The procedure entry type field indicates the type of call to execute: local or supervisor. The encociings
of this field are shown in Table 6.

Table 6. Encodings of Entry Type Field in System Procedure Table Entry

Entry Type Procedure Type
Field
00 local procedure

01 reserved

10 superVisor procedure

11 reserved

3-26

80960KB PROGRAMMER'S REFERENCE

31

PROCEDURE ENTRIES

PROCEDURE ENTRY

31

ADDRESS

li!!II!,I, ;:1111':111 RESERVED (INITIALIZE TO 0)

ma PRESERVED

o

2 0

I X X I

Figure 7. Procedure Table Structure

3.6.2 Supervisor Stack Pointer

48

270647-7

When a supervisor call is made, the processor switches to a new stack called the supervisor stack.
The processor gets a pointer to this stack from the supervisor-stack-pointer entry (bytes 12-15, bits
2-31) in the system procedure table. Since stack frames are word aligned, only the 30 most -significant
bits of the supervisor stack pointer are given.

3.6.3 Trace Control Flag

The trace-control flag (byte 12, bit 0) specifies the new value of the trace-enable flag when a
supervisor call causes a switch from user mode to supervisor mode. The use of this bit is described
in Section 9.

3-27

80960KB PROGRAMMER'S REFERENCE

3.6.4 System Call to a Local Procedure

When a calls instruction references a procedure entry designed as a local type (002), the processor'
executes a local call to the procedure selected from the system procedure table. Neither a mode switch
nor a stack switch occurs.

The ret instruction permits returns from either a local procedure or a supervisor procedure. The return
status field in local register rO determines the type of return action that the processor is to take. If the
return status field is set to 0002, a local return is executed. In a local return, no stack or mode switching
is carried out. '

3.7 USER-SUPERVISOR PROTECTION MODEL

The processor provides a mode and stack switching mechanism called the user-supervisor protection
model. This protection model allows a system to be designed in which kernel code and data reside
in the same address space as user code and data, but access to the kernel procedures (called supervisor
procedures) is only allowed through a tightly controlled interface. This interface is provided by the
system procedure table.

The user-supervisor protection model also allows kernel procedures to be executed using a different
stack (the superviosr stack) than is used to execute applications program procedures. The ability to
switch stacks helps maintain the integrity of the kernel. For example, it would allow system
debugging software or a system monitor to be accessed, even if an applications program crashes.

3.7.1 User and Supervisor Modes

When using the user-supervisor protection model, the processor can be in eithr of two execution
modes: user or supervisor. The difference between the two modes in that when in the supervisor
mode, the processor

switches to the supervisor stack, and

may execute a set of supervisor only instructions.

Note

In the 80960KB implementation of the 80960 architecture. the only supervisor-only instruction is the
modify process control instruction (modpc).

3.7.2 Supervisor Calls

Mode switching between the user and supervisor execution modes is accomplished through a
supervisor call. A supervisor call is a call executed with the calls instruction that references a
supervisor procedure in the system procedure table (i.e. a procedure with an entry type 102),

When the processor is in the user mode and it executes a calls instruction, the processor performs the
following actions:

3-28

80960KB PROGRAMMER'S REFERENCE

It switches to supervisor mode

It switches to the supervisor stack

It sets the return status field in register RO of the calling procedure to 0 lX2, indicating that a mode
and stack switch has occurred.

The processor remains in the supervisor mode until a return is performed from the procedure that
caused the original mode switch. While in the supervisor mode, either the local call instructions (call
and calix) or the calls instruction can be used to call supervisor procedures.

(The call and calix instructions call local (or user) procedures in user mode and supervisorprocedures
in supervisor mode. There is no stack or processor state switching associated with these instructions.)

When a ret instruction is executed and the return status field is set to 01X2, the processor performs
a supervisor return. Here, the processor switches from the supervisor stack to the local stack, and the
execution mode is wtich from supervisor to user.

3.7.3 Supervisor Stack

When using the user-supervisor mechanism, the processor maintains separate stacks in the address
space, one for procedures executed in the user mode (local procedures) and another for procedures
executed in the supervisor mode (supervisor procedures). When in the user mode, the local procedure
stack described at the beginning of this section is used. When a supervisor call is made, the processor
switches to the supervisor stack. It continues to use the supervisor stack until a return is made to the
user mode.

The structure of the supervisor stack is identical to that of the local procedure stack (shown in Figure
5). The processor obtains the SP for the supervisor stack from the system procedure table. When a
supervisor call is executed while in the user mode (causing a switch to the supervisor stack), the
processor aligns this SP to the next 64 byte boundary to form the new FP for the supervisor stack.
When a local call or supervisor call is made while in the supervisor mode, the processor aligns the
SP in the current frame of the supervisor stack to the next 64 byte boundary to form the FP pointer.
This operation allows supervisor procedures to be called from supervisor procedures.

3.7.4 Hints on Using the User-Supervisor Protection Model

The user-supervisor has three basic uses in an embedded system application:

1. to allow the modpc instruction to be used,

2. to allow kernel code to use a separate stack from the applications code, and

3. to allow an external memory management unit (MMU) to provide protection for kernel code and
-data.

If an application does not require any of the above features, it can be designed to not use the user­
supervisor protection model. Here, all procedure calls are to local procedures. If the system table is
used, all the entries must be the local type (i.e. entry type 002).

3-29

S0960KB PROGRAMMER'S REFERENCE

If access to the modpc instruction is required, but the other two features are not, it is suggested that
the system be designed to always run in supervisor mode. At initialization, the processor automati­
cally places itself in supervisor mode, prior to executing the first instruction. The processor then
remains in supervisor mode indefinitely, as long as no action is taken to change the execution mode
to user mode (i.e. using the modpc instruction to change the execution mode bit of the process
controls to 0). With this technique, all of the procedure calling instructions (call, calix, and calls) can
be used. The processor only uses one stack, which is considered the supervisor stack. It gets the
supervisor stack pointer from local register r2. (Prior to making the first procedure call, the supervisor
stack pointer must be loaded into r2).

The processor does not support the last use of the user-supervisor protection model directly. In other
words, the processor does not provide a pin or other device that indicates to external hardware when
a mode switch has occurred. Several techniques are available to perform this operation, which are
beyond the scope of this discussion.

3.S BRANCH AND LINK

The bal (branch and link) and balx (branch and link extended) instructions provide an alternate
method of making procedure calls. These instructions save the address of the next instruction (RIP)
in a specified location, then branch to a target instruction or set of instructions. The state of the local
registers and stack remains unchanged. (For the bal instruction, the RIP is automatically stored in
global register g14; for the balx instruction, the location of the RIP is specified with one of the
instruction. operands.)

A return is accomplished with a bx (branch extended) instruction, where the address of the target
instruction is the one saved with the branch and link instruction.

Branch and link procedure calls are recommended for calls to procedures that (1) do not call other
procedures (i.e. for procedure calls that do not result in nesting of procedures) and (2) do not need
many local variables (i.e. allocation of anew set oflocal registers does not provide any benefit). Here,
local registers as well as global registers can be used for parameter passing.

4.0 DATA TYPES AND ADDRESSING MODES

This section describes the data types that the 80960KB processor recognizes and the addressing
modes that are available for accessing memory locations.

4.1 DATA TYPES

The processor defines and operates on the following data types:

Integer (8, 16, 32 and 64 bits)

Ordinal (8, 16,32 and 64 bits)

Real (32, 64 and 80 bits)

Decimal (ASCII digits)

3-30

80960KB PROGRAMMER'S REFERENCE

Bit Field

Triple-Word (96 bit)

Quad-Word (128 bit)

Note

The real and decimal data types are not defined in the 80960 architecture. They are supported in the
80960KB processor, but not in the 80960KA processor.

The integer, ordinal, real, and decimal data types can be thought of as numeric data types because
some operations on these data types produce numeric results (e.g. add, subtract).

The remaining data types (bit field, triple word, and quad word) represent groupings of bits or bytes
that the processor can operate on as a whole, regardless of the nature of the data contained in the
group. These data types facilitate the moving of blocks of bits or bytes.

4.1.1 Integers

Integers are signed whole numbers, which are stored and operated on in two's complement format.
The processor recognizes four sizes of integers: 8 bit (byte integers), 16 bit (short integers), 32 bit
(integers) and 64 bit (long integers). Figure 9 shows the formats for the four integer sizes and the
ranges of values allowed for each size.

64
BITS

SIGN

63

DATA TYPE

BYTE INTEGER

SHORT INTEGER

INTEGER

LONG INTEGER

32
BITS

SIGN

31

RANGE
-27T027_1

-215 TO 215 -1

-2 31T02 31 _1

_2 63 T0263 _1

16
BITS

SIGN

15

8
BITS

DECIMAL EQUIVALENT

-128 TO 127

-32,768 TO 32,767

-2.14xl09 T02.14x 109 .

-9.22 x 1018 TO 9.22 x 1018

Figure 9. Integer Format and Range

3-31

SIGN

7 0

o

o

o

270647-8·

80960KB PROGRAMMER'S REFERENCE

4.1.2 Ordinals

Ordinals are a general-purpose data type. The processor recognizes four sizes of ordinals: 8 bit (byte
ordinals), 16 bit (short ordinals), 32 bit (ordinals), and 64 bit (long ordinals). Figure 10 shows the
formats for the four ordinal sizes and the ranges of numeric values allowed for each size.

64
BITS

DATA TYPE

BYTE ORDINAL

SHORT ORDINAL

ORDINAL

LONG ORDINAL

32
BITS

31

RANGE

OT028 -1

OT0216 -1

OT0232 -1

OT0264 -1

16
BITS

15

8
BITS

DECIMAL EQUIVALENT

o TO 255

o TO 65.535

o TO 4.29 x 109

o TO 1.84 x 1019

Figure 10. Ordinal Format and Range

o

o

270647-9

The processor uses ordinals for both numeric and non-numeric operations. For numeric operations,
ordinals are treated as unsigned whole numbers. The processor provides several arithmetic instruc­
tions that operate on ordinals. For non-numeric operations, ordinals cOIltain bit fields, byte strings,
and Boolean values.

When ordinals are used to represent Boolean values, 12 represents a TRUE and a O2 represents a
FALSE.

4.1.3 Reals

Reals are floating-point numbers. The processor recognizes three sizes of reals: 32 bit (reals), 64 bit
(long reals) and 80 bit (extended reals). The real-number format conforms to ANSI/IEEE Std. 754-
1985, the IEEE Standard For Binary Floating-Point Arithmetic. Real'numbers are discussed in
greater detail in Section 11.

3-32

80960KB PROGRAMMER'S REFERENCE

4.1.4 Decimals

The processor provides three instructions that perform operations on decimal values when the values
are presented in ASCII format. Figure 10 shows the ASCII format. Figure 11 shows the ASCII format
for decimal digits. Each decimal digit is contained in the least-significant byte of an ordinal (32 bits).
The decimal digit must be of the form 00 Ilddddz' where ddddz is a binary-coded decimal value from
o to 9. For decimal operations, bits 8 through 31 of the ordinal containing the decimal digit are
ignored.

ASCII FORMAT

_01011111dldldldl
31 7 ° 270647-10

Figure 11. Decimal Format

4.1.5 Bits and Fit Fields

The processor provides several instructions that perform operations on individual bits or fields of bits
within an ordinal (32 bit) operand. Figure 12 shows these data types.

31

BIT FIELD

LENGTH L BIT NUMBER OF
LOWEST-NUMBERED
BIT.

Figure 12. Bits and Bit Fields

270647-11

An individual bit is specified for a bit operation by giving its number in the ordinal in which it resides.
The least-significant bit of a 32-bit ordinal is bit 0; the most-significan bit is bit 31.

A bit field is a contiguous sequence of bits of from 0 to 32 bits in length within a 32-bit ordinal. A
bit field is defined by giving its length in bits and the bit number of its lowest-numbered bit.

A bit field cannot span a register boundary.

4.1.6 Triple and Quad Words

Triple and quad words refer to consecutive bytes in memory or in registers: a triple word is 12 bytes
and a quad word is 16 bytes. These data types facilitate the moving of blocks of bytes. The triple-word
data type is useful for moving extended-real numbers (80 bits).

3-33

80960KB PROGRAMMER'S REFERENCE

The quad-word instructions (Idq, stq, and movq) offer the most efficient way to move large blocks
of data.

4.2 BYTE, WORD, AND BIT ADDRESSING

The processor provides instructions for moving blocks of data values of various lengths from
memory to registers (load) and from registers to memory (store). The allowable sizes for blocks are
bytes, half-words (2 bytes), words (4 bytes), double words, triple words, and quad words. For
example, the stl (store long) instruction stores an 8-byte (double word) block of data in memory.

When a block of data is stored in memory, the least-significant byte of the block is stored at a base
memory address and the more significant bytes are stored at successively higher addresses.

When loading a byte, half-word, or word from memory to a register, the least-significant bit of the
block is always loaded in bit 0 ofthe register. When loading double words, triple words, and quad
words, the least-significant word is stored in the base register. The more significant words are then
stored at successively higher numbered registers. Double words, triple words, and quad words must
also be aligned in registers to natural boundaries as described in the section "Register Alignment".

Bits can only be addressed in data that resides in a register. Bit 0 in a register is the least-significant
bit and bit 31 is the most-significant bit.

4.3 ADDRESSING MODES

The processor offers 11 modes for addressing operands/These modes are grouped as follows:

Literal

Register

Absolute

Register Indirect

Register Indirect with Index

Index with Displacement

IP with Displacement

Most of the instructions use only the first two modes (literal and register). The remaining modes are
used for memory related instructions.

Table 8 shows all the addressing modes, a brief description of the elements of the address in each
mode, and the assembly-code syntax for each mode.

3-34

inler 80960KB PROGRAMMER'S REFERENCE

Table 8. Addressing Modes

Mode Description Assembler Syntax

Literal value value

Register register reg

Absolute offset offset exp

Register Indirect abase (reg)

Register Indirect abase + offset exp (reg)
with offset

Register Indirect abase + (index*scale) (reg) [reg*scale]
with index

Register Indirect abase + (index*scale) exp (reg) [reg*scale]
with index and + displacement
displacement

Index with (index *scale) exp [reg*scale]
displacement + displacement

IP with IP + displacement + 8 exp (IP)
displacement

4.3.1 Literals

The processor recognizes two types of literals: ordinal literal and floating-point literal. An ordinal
literal can range from 0 to 31 (5 bits). When an ordinal literal is used as an operand, the processor
expands it to 32 bits by adding leading zeros. If the instruction defines an operand larger than 32 bits,
the processor zero-extends the value to the operand size. If an ordinal literal is used in an instruction
that requires integer operands, the processor treats the literal as a positive integer value.

The processor also recognizes two floating-point literals (+0.0 and + 1.0). These floating-point
literals can only be used with floating-point instructions. As with the ordinal literals, the processor
converts the floating-point literals to the operand size specified by the instruction.

A few of the floating -point instructions use both floating-point and non-floating -point operands (e.g.
the convert integer-to-real instructions). Ordinal literals can be used in these instructions for non­
floating-point operands.

Note

Floating-point literals are not defined in the 80960 architecture.

3-35

80960KB PROGRAMMER'S REFERENCE

4.3.2 Register

A register is referenced as an operand by giving the register number (e.g. gO, r5, fp3). Both floating­
point and non-floating-point instructions can reference global and local registers in this way.
However, floating-point registers can only be referenced in conjunction with a floating-point
instruction.

4.3.3 Absolute

Absolute addressing is used to reference a memory location directly as an offset from address 0 of
the address space, ranging from _231 to 231_1. Typically, an assembler will allow absolute addresses
to be specified through arithmetic expressions (e.g. x + 44), symbolic labels, and absolute values.

At the machine-level, two absolute-addressing modes are provided, depending on the instruction
format (i.e. MEMAor MEMB). Forthe MEMAformat, the offset is an ordinal numberranging from
o to 2048; for the MEMB format, the offset is an integer (called a displacement) ranging from _231
to 231_1. After evaluating an absolute address, the assembler will convert the address into an offset
and select the appropriate machine-level instruction type and addressing mode. (The machine-level
addressing modes and instruction formats are described in Appendix B).

4.3.4 Register Indirect

The register indirect addressing modes allow an address to be specified with an ordinal value (32 bits)
in a register or with an offset or a displacement added to a value in a register. Here, the value in the
register is referred to as the address base (abase).

Again, an assembler will allow the offset and displacement to be specified with an expression or
symbolic label, then evalute the address to determine whether an offset or a displacement is
appropriate.

4.3.5 Registe~ Indirect with Index

The register indirect with index addressing modes allow a scaled index to be added to the value in
. a register. The index is specified by means of a value placed in a register. This index value is then
multiplied by the scale factor. The allowable scale factors are 1, 2,4, 8, and 16.

A displacement may also be added to the abase value and scaled index.

4.3.6 Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a register
and is mUltiplied by a scaling constant before the displacement is added to it.

3-36

80960KB PROGRAMMER'S REFERENCE

4.3.7IP with Displacement

The IP with displacement addressing mode is often used with load and store instructions to make
them IP relative.

Note that with this mode the displacement plus a constant of 8 is added to the IP of the instruction.

5.0 INSTRUCTION SET SUMMARY

This sections provides an overview of the instruction set for the 80960KB processor. Included is a
discussion of the instruction format and a summary of the instruction groups and the instructions in
each group.

Section 10 gives detailed descriptions of each of the instructions. The instructions are listed in this
section in alphabetical order. Included for each instruction are the assembly-language format, the
action taken when the instruction is executed, and examples of how the instruction might be used.

Appendix C provides a detailed description of the factors that affect instruction timing. It also gives
the number of clock cycles required for each instruction.

5.1. INSTRUCTION FORMATS

Instructions are described in two formats: assembly language and machine level.

5.1.1 Assembly-Language Format

The instructions are referred to by their assembly-language mnemonics. For example, the add ordinal
instruction is referred to as the addo instruction.

An assembly-language statement consists of an instruction mnemonic, followed by from 0 to 3
operands, separated by commas. Thefollowing example shows the assembly-language statement for
the addo instruction:

addo g5, g9, g7

Here, the ordinal operands in global registers g5 and g9 are added together and the result is stored
in g7.

A detailed description of the nomenclature used to describe assembly-language instructions is given
in Section 10.

3-37

80960KB PROGRAMMER'S REFERENCE

5.1.2 Machine Formats

At the machine level of the processor, all instructions are word aligned. Most of the instructions are
one word long, although some addressing modes make use of a two-word format.

There are four instruction formats: register (REG), compare and branch (COBR), control (CTRL),
and memory (MEM). Each instruction uses one of these formats, which is determined by the opcode
field of the instruction.

The machine-level formats for the instructions are described in detail in Appendix B.

5.2 INSTRUCTION GROUPS

The 80960KB processor implements all the instructions in the 80960 instruction set, which includes
all of the data movement, arithmetic, logical, and program control instructions commonly found in
computer architectures. The processor also includes a set of floating-point instructions and several
instructions to handle architectural extensions found in the processor.

The 80960 instruction set is made up of the following group of instructions:

Data Movement

Arithmetic (ordinal and Integer)

Logical

Bit and Bit Field

Comparison

Branch

Call1Retum

Fault

Debug

Processor Management

The instruction-set extensions found in the 80960KB processor include the following groups of
instructions:

• Integer to Real Conversion

Floating Point

• Synchronous Move and Load

Decimal.

Table 9 and 10 give a summary of the 80960 instructions and the 80960KB instruction-set extensions,
respectively. The actual number of instructions is greather than those shown in this list, because for

3-38

80960KB PROGRAMMER'S REFERENCE

some operations,' several different instructions are provided to handle different operand size, data
types, or branch conditions.

Table 9. Summary of the 80960 Instruction Set

Data Movement Arithmetic Logical Bit and Bit
Field

Load Add And Set Bit
Store Subtract Not And Clear Bit
Move Multiply And Not Not Bit
Load Address Divide Or Check Bit

Remainder Exclusive Or Alter Bit
Modulo Not Or Scan For Bit
Shift arNot Scan Over Bit
Extended Nor Extract

Multiply Exclusive Nor Modify
Extended \ Not

Divide Nand
Rotate

Comparison Branch Call/Return Fault

Compare Unconditional Call Conditional Fault
Conditional Branch Call Extended Synchronize Faults

Compare Conditional Branch Call System
Compare and Compare and Return

Increment Branch Branch and Link
Compare and

Decrement

Debug Processor Miscellaneous

Modify Trace Modify Arithmetic Atomic Add
Controls Controls Atomic Modify

Mark Modify Process Scan Byte For
Force Mark Controls Equal

Flush Local
Registers

Test Condition
Code

3-39

80960KB PROGRAMMER'S REFERENCE

Table 10. Summary of the 80960KB Instruction-Set Extensions

Conversion Floating Point Synchronous Decimal

Convert Real to Move Real Synchronous Load Move
Integer Add Synchronous Move Add With Carry

Convert Integer to Subtract Subtract With Carry
Real Multiply

Divide
Remainder
Scale
Round
Square Root
Sine
Cosine
Tangent
Arctangent
Log
Log Binary
Log Natural
Exponent
Classify
Copy Real Extended
Compare

The following sections give a brief overview of the instructions in each of these groups. The floating­
point instructions are described in Section 11.

5.3 OAT A MOVEMENT

The data movement instructions include those instructions that move data from memory to the global
and local registers; that move data from the global and local registers to memory; and that move data
among these registers.

5.3.1 Load

The load instructions (listed below) copy bytes or words from meory to a selected register or group
of registers:

ld load

ldoh load byte ordinal

ldos load short ordinal

3-40

Idib

Idis

Idl

Idt

Idq

80960KB PROGRAMMER'S REFERENCE

load byte integer

load short integer

load long

load triple

load quad

For the Id, Idob, Idos, Idib, and Idis instructions, a memory address and a register are specified in
the instruction and the value at the memory address is copied into the register. Zero and sign extending
is performed automatically for byte and short (half-word) operands.

The Id, Idl, Idt, and Idq instructions copy 4,8, 12, and 16 bytes from memory into successive
registers.

Note

When using the load, store, and move instructions that move 8, 12, or 16 bytes at a time, the rules for
register alignment must be followed. Refer to the section 2, "Register Alignment" for a discussion of these
rules.

5.3.2 Store

For each load instruction there is a correponding store instruction (list below), which copies bytes
or words from a selected register or group of registers to memory:

st store

stob store byte ordinal

stos store short ordinal

stib store byte integer

stis store short integer

stl store long

sU store triple

stq store quad

For the st, stob, stos, stib, and stis instructions, a register and memory address are specified in the
instruction and the value in the register is copied into memory. For the byte and short instructions,
the value in the register is automatically reformatted for the shorter memory location. For the stib
and stis instructions, this reformatting can lead to overflow if the register value is too large to be
represented in the shorter memory location.

The st, stl, sU, and stq instructions copy 4, 8, 12 and 16 bytes from successive registers into memory.

3-41

a0960KB PROGRAMMER'S REFERENCE

5.3.3 Move

The move instructions, listed below, copy data from a register or group of registers to another register
or group of registers.

mov

movl

movt

movq

move word

move long word

move triple word

move quad word

These move instructions can only be used to move data among the global and local registers. A set
of move-real instructions (movr, movrl, and movre) are provided for moving real number values
between the global and local registers and the floating-point registers. The move-real instructions are
described in Section 11.

5.3.4 Load Address

The Ida instruction computes an effective address in the addressapce from an operand presented in
one of the addressing modes. A common use of this instruction is to load a constant into a register.

5.4 ARITHMETIC

Table 11 lists all the arithmetic operations for which the 80960KB processor provides instructions
and the data types that the instructions operate on. An "X" in this table indicates that the 80960
architecture provides an instruction for the specified operation and data types; an "E" indicates that
an 80960KB instruction-set extension provides an instruction for the specified operation and data
types. An "E*" indicates that the specified operation can be performed on the specified data type
using 80960KB extended instructions, but that a unique instruction for this operation is not provided.
For example, a specific instruction is not provided to add two extended-real values. However, this
operation can be carried out with either the add real (addr) or the add long real (addrl) instruction.

With two exceptions, all the processor's arithmetic operations are carried out on operands in
registers. The processor does not provide instructions that perform arithmetic operations on operands
in memory.

The two instructions that are exceptions are the atadd (atomic ad) and atmod (atomic modify)
instructions, which are discussed later in this section:

A summary of the arithmetic instructions for real (floating-point) data types is provided in Section
11. The following sections describe the arithmetic instructions for ordinal and integer data types.

3-42

80960KB PROGRAMMER'S REFERENCE

Table 11. Arithmetic Operations

Arithmetic Integer Ordinal Real Long Extended
Operations Real Real

Add X X E E E*

Subtract X X E E E*

Multiply X X E E E*

Divide X X E E E*

Remainder X X E E E*

Modulo X

Shift Left X X

Shift Right X X

Shift Right X
Dividing

Scale E E E*

Round E E E*

Square Root E E E*

Sine E E E*

Cosine E E E*

Tangent E E E*

Arctangent E E E*

Exponent E E E*

Log E E E*

Log Binary E E E*

Log Epsilon E E E*

Classify E E E*

Copy Sign E

Copy Reversed E
Sign

3-43

80960KB PROGRAMMER'S REFERENCE

5.4.1 Add, Subtract, Multiply, and Divide

The following instructions perform add, subtract, multiply, or divide operations on integers and
ordinals:

addi add integer

addo add ordinal

subi subtract integer

subo subtract ordinal

muli multiply integer

mulo multiply ordinal

divi divide integer

divo divide ordinal

These instructions perform operations on one-word operands in registers and store the results in a
register.

5.4.2 Extended Arithmetic

The following four instructions are provided to support extended arithmetic operations to be
performed (i.e. arithmetic operations on operands greater than one word in length):

addc add ordinal with carry

subc subtract ordinal with carry

ernul extended multiply

ediv extended divide

The addc and subc instructions add or subtract two words (contained in registers) plus a condition
code bit (used as a carry bit). If the result has a carry, the carry bit in the condition code is set. Also,
a second condition code bit is set if the operation would have resulted in an integer overflow
condition. (The three-bit condition code is contained in the arithmetic controls as described in Section
2.)

These instructions treat the operands as ordinals, however, the indication of overflow in the condition
code facilitates a software implemenetation of extended-integer arithmetic.

The ernul instruction multiplies two ordinals (each contained in a register), producing long ordinal
result (stored in two registers). The ediv instruction divides a long ordinal by an ordinal, producing
an ordinal quotient and an ordinal remainder.

3-44

inter 80960KB PROGRAMMER'S REFERENCE

5.4.3 Remainder and Modulo

The following instructions divide one operand by another and retain the remainder of the operation:

remi remainder integer

remo remainder ordinal

modi modulo integer

The different between the remainder and modulo instruction lies in the sign of the result. For the remi
and remo instructions, the result has the same sign as the di vidend; for the modi instruction, the result
has the same sign as the divisor.

5.4.4 Shift and Rotate

The processor provides the following five shift instructions:

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer

These instructions shift the operand a specified number of bits to the left or to the right. The shlo, shli,
shro, and shrdi instructions are equivalent to multiplying (shift left) or dividing (shift right) by the
power of 2. Bits shifted beyond the register boundary are discarded.

The shri instruction performs a conventional arithmetic shift right. However, when this instruction
is used to divide an integer operand by the power of 2, it produces an incorrect quotient for negative
operands. (The shrdi instruction produces the correct quotient when this divide operation is used on
negative operands.)

The rotate instruction rotates the bits of the operand to the left (toward higher significance) by a
specified number of bits. Bits shifted beyond the left boundary of the register (bit 31) appear at the
right boundary (bit 0).

5.5 LOGICAL

The following instructions perform bitwise Boolean operations on the specified operands:

and AandB

notand (not A) and B

andnot A and (not B)

xor not (A=B)

3-45

or
nor
xnor
not
notor

ornot
nand

5.6 COMPARISON

80960KB PROGRAMMER'S REFERENCE

AorB

(not A) and (not B)

A=B

notA

(not A) orB

A or (not B)

(not A) or (not B)

The processor provides several types of instructions that are used to compare two operands. The
following sections describe the compare instructions for ordinal and integer data types. The compare
instructions for real data types are discussed in Section 11.

5.6.1 Compare and Conditional Compare

The compare instructions listed below, compare two operands then set the condition-code bits in the
arithmetic controls according to the results.

cmpi
cmpo

concmpi
concmpo

compare integer

compare ordinal

conditional compare integer

conditional compare ordinal

The condition-code bits are set to indicate whether one operand is less than, equal to, or greater than
the other operand. (Refer to Section 2, "Functions of the Arithmetic Controls Bits" for a discussion
of meanings of the condition-code bits for conditional operations.) .

The cmpi and cmpo instructions simply compare the two operands and set the condition-code bits
accordingly.

The concmpi and concmpo instructions first check the status of bit 2 of the condition code. If it is
not set, the operands are compared as with the cmpi and cmpo instructions. If bit 2 is set, no
comparison is performed and the condition-code bits are not changed.

The conditional compare instructions are provided specifically to optimize two-sided range compari­
sons to check if A is between Band C (i.e., B ~ A ~ C). Here, a compare instruction (cmpi or cmpo)
is used to check one side of the range (e.g. A :?: B) and a conditional compare instruction (concmpi
or concmpo) is used to check the other side (e.g.,A~ C) according to the result of the first comparison.

3-46

inter 80960KB PROGRAMMER'S REFERENCE

5.6.2 Compare and Increment or Decrement

The following instructions compare two operands, set the condition-code bits according to the
results, then increment or decrement one of the operands:

cmpinci

cmpinco

cmpdeci

cmpdeco

comapre and increment integer

compare and increment ordinal

compare and decrement integer

compare and decrement ordinal

These instructions are intended for use at the end of iterative loops.

5.7 BRANCH

The branch instructions allow the direction of program flow to be changed by explicitly modifying
the IP. The processor provides three types of branch instructions:

unconditional branch

conditional branch

compare and branch

Most of the branch instructions specify the target IP by specifying a signed displacement to be added
to the current IP. Other branch instructions specify the memory address of the target IP using one of
the processor's addressing modes. This latter group of instructions are called extended-addressing
instructions (e.g., branch extended, branch and link extended).

5.7.1 Unconditional Branch

The following four instructions are used for unconditional branching:

-b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

The band bx instructions cause'program execution to jump to the specified target IP. As described
in Section 10, these two instructions perform the same function; however, they use different machine­
level instruction formats.

The bal and balx instructions store the address of the next instruction in a specified register; then
jump to the specified target IP. (For the bal instruction, the RIPis automatically stored in register G 14;
for the balx instruction the location of the RIP is specified with an instruction operand.) As described

3-47

inter 80960KB PROGRAMMER'S REFERENCE

in Section 3, the branch and link instructions provide a method of performing procedure calls that
does not use the processor's call/return mechanism. Here, the saved instruction address is used as a
return IP. .

The bx and balx instructions can be made IP-relative by using the IP with displacement addressing
mode.

5.7.2 Conditional Branch

With the conditional branch (branch if) instructions, the processor checks the condition-code bits in
the arithmetic controls. If these bits match the value specified with the instruction, the processor
jumps to the target IP. These instructions use the displacement plus IPmethod of specifying the target
IP:

be branch if equal

bn branch if not equal

bl branch if less

ble branch if less or equal

bg branch if greater

bge branch if greater or equal

bo branch if ordered

bno branch if unordered

(Refer to Section 2, "Functions of the Arithmetic Controls Bits" for a .discussion Of meanings of the
condition-code bits for conditional operations.)

The bo and bno instructions refer to comparisons of real numbers. Ordered and unordered real
numbers are described in Section 11. .

5.7.3 Compare and Branch

The compare and branch instructions compare two operands, then branch according to the results.
There are three subtypes of instructions in this group: compare integer, compare ordinal and check
bit:

cmpibe

cmpibne

cmpibl

cmpible

cmpibg

cmpibge

cmpibo

compare integer and branch if equal

compare integer and branch if not equal

compare integer and branch if less

compare integer and branch if less or equal

compare integer and branch if greater

compare integer and branch if greater or equal

compare integer and branch if ordered

3-48

inter

cmpibno

cmpobe
cmpobne
cmpobl
cmpoble
cmpobg

cmpobge
bbs
bbc

80960KB PROGRAMMER'S REFERENCE

compare integer and branch if unordered

compare ordinal and branch if equal

compare ordinal and branch if not equal

compare ordinal and branch if less

compare ordinal and branch if less or equal

compare ordinal and branch if greater

compare ordinal and branch if greater or equal

check bit and branch if set

check bit and branch if clear

With the compare-ordinal-and-branchand compare-integer-and-branch instructions, two operands
are compared and the condition-code bits are set, as with the compare instructions described earlier
in this section. A conditional branch is then executed as with the conditional branch (branch it)
instruction.

With the check-bit-and-branch instructions, one operand specifies a bit to be checked in the other
operand. The condition-code bits are set according to the state of the specified bit (i.e. 0102 if the bit
is set and 0002 if the bit is clear). A conditional branch is then executed according to the setting of
the condition-code bits.

5.8 BIT AND BIT FIELD

The bit instructions perform operations on a specific bit in an ordinal operand or on a bit field.

5.8.1 Bit Operations

The following instructions operate on a specified bit:

setbit set bit

clrbit clear bit

notbit not bit

chkbit check bit

alterbit alter bit

scanbit scan for bit

spanbit span over bit

The setbit, clrbit, and notbit instructions set, clear, or complement (toggle) a specified bit in an
ordinal.

The chkbit instruction causes the condition-code bits to be set according to the state of a specified
bit in a register. The condition code is set to 0102 if the bit is set and 0002 otherwise.

3-49

80960KB PROGRAMMER'S REFERENCE

The alter bit instruction alters the state of a specified bit in an ordinal according to the condition code.
If the condition code is 0102, the bit is set; if the condition code is 0002, the bit is cleared.

The scanbit and span bit instructions find the most significant set bit and clear bit, respectively, in
an ordinal.

5.8.2 Bit Field Operations

There are two bit field instructions extract and modify. The extract instruction converts a specified
bit field, taken from an ordinal value, into an ordinal value. In essence, this instruction shifts a bit field
in a register to the right and fills in the bits to the left of the bit field with zeros.

The modify instruction copies bits from one register, under control of a mask, into another register.
Only the unmasked bits in the destination register are modified.

5.9 BYTE OPERATIONS

The scan byte instruction performs a byte-by-byte comparison of two ordinals to determine if any
two corresponding bytes are equal. The condition code is set according to the results of the
comparison.

5.10 CONVERSION

Data can be converted from one length to another by means of the load and store instructions. For
example, the Idis instruction loads a short integer from memory to a register and automatically
converts the integer from a half word to a full word.

The 80960KB extended instruction set provides instructions to perform conversions between integer
and real data types,-These instructions are described in Section 11.

5.11 CALL AND RETURN

The processor offers an on-chip call/return mechanism for making procedure calls to local
procedures and kernel procedures. This call/return mechanism is describe in detail in Section 3. The
following four instructions are provided to support this mechanism.

call call

calix call extended

calls call system

ret return

The call and calix instructions call local procedures. The call instruction specifies the target
procedure (the first instruction of the procedure) by adding a signed displacement to the IP. The calIx

3-50

80960KB PROGRAMMER'S REFERENCE

instruction uses extended addressing, as described for the bx and balx instructions, to specify the
target procedure. For both of these instructions, a new set of local registers and a new stack frame
are allocated for the called procedure.

The calls instruction operates similarly to the call and callx instructions, except that it gets its target
procedure address from the system procedure table. An index number included as an operand in the
instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the procedure table, the calls instructions can cause
a supervisor call to be executed. A supervisor call causes the processor to switch to the supervisor
stack and to switch to supervisor mode. The supervisor call is described in detail in Section 3.

The ret instruction performs a return from a called procedure to the calling procedure (the procedure
that made the call). This instruction obtains its target IP (return IP) from linkage information that was
saved for the calling procedure. The ret instruction is used to return from local and supervisor calls
and from implicit calls to interrupt and fault handlers.

5.12 ATOMIC INSTRUCTIONS

The atomic instructions perform read-modify-write operations on operands in memory. They insure
that an operation on a specified memory location is completed before another agent with access to
memory is allowed to access that memory location. These instructions are particularly useful in
systems in which several agents have accessto system memory. '

There are two atomic instructions: atomic add (atadd) and atomic modify (atmod). The atadd
instruction causes an operand to be added to the value in the specified memory location. The atmod
causes bits in the specified memory location to be modified under control of a mask.

5.13 CONDITIONAL FAULTS

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling routines are then invoked to handle the various types offaults without explicit intervention
by, the currently running process. (Faults are discussed in detail in Section 8).

The following conditional fault instructions permit a fault to be generated explicitly according to the
state of the condition-code bits:

faulte

faultne

faultl

faultle

faultg

fault if equal

fault if not equal

fault if less

fault if less or equal

fault if greater

3-51

80960KB PROGRAMMER'S REFERENCE

faultge

faulto

faultno

5.14 DEBUG

fault if greater or equal

fault if ordered

fault if unordered

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

modtc

mark

fmark

modify trace controls

mark

force mark

The trace functions are controlled through the processor's trace controls bits. Some of these bits allow
various types of tracing to be enabled or disabled. Other bits act as flags to indicate when an enabled
trace event has been detected. (Trace controls are described in detail in Section 9.)

The modtc instruction permits the trace controls bits to be modified.

The mark instruction causes a breakpoint trace event to be generated if the breakpoint trace mode
is enabled. The fmark instruction generates a breakpoint trace independent of the state of the
breakpoint trace mode flag. The latter two instructions allow a breakpoint to be placed anywhere in
a program.

5.15 PROCESSOR MANAGEMENT

The processor provides several instructions for use in controlling processor-related functions.

The modpc instruction provides a method of reading and modifying the contents of the process
controls.

In certain instances, it is necessary to insure thatthe contents of the local-register save area of the stack
frames are the same as the local registers. The flush local registers instruction (flushreg) automati­
cally stores the contents of all the local register sets, except the current set, in the register save area
of their associated stack frames.

The arithmetic controls cannot be addressed with the load, move, and store instructions or the bit
instructions. Instead, special instructions are provided for this purpose.

The modify arithmetic controls instructions (modac) permits bits in the arithmetic controlsregister
to be modified under the control of a mask.

3-52

intJ 80960KB PROGRAMMER'S REFERENCE

The following test instructions allow the state of the condition-code bits to be tested:

teste test if equal

testne test if not equal

testl test if less

testle test if less or equal

testg test if greater

testge test if greater or equal

testa test if ordered

testno test if unordered

These instructions cause a TRUE (0102) to be stored in a destination register if the condition code
matches the condition specified with the instruction. Otherwise, a FALSE (0002) is stored in the
register.

5.16 80960KB NON-FLOATING-POINT INSTRUCTION-SET EXTENSIONS

The following non-floating-point instructions are extensions to the 80960 architecture instruction
set. The synchronous load and move instructions are provided in both the 80960KB and 80960KA
processor; the decimal instructions are provided only in the 80960KB processor.

5.16.1 Synchronous Load and Move

The processor's store instructions are executed asynchronously with the memory controller. Once
the processor sends data out its bus for storage in main memory, it continues with the next instruction
in the instruction stream, assuming that its bus control logic will carry out the operation.

The 80960KB processor provides four special instructions for performing memory operations that
perform store and move operations synchronously with memory.

The synchronous load instructions (synld) loads a word from a register into memory. When this
instruction is performed, the processor waits until a condition code bit is set in the arithmetic controls,
indicating that the operation has been completed, before it begins executing the next instruction.

The synchronous move instructions (synmov, synmovl, and synmovq) perform synchronous moves
of data from one location in memory to another. .

These instructions are used primarily for sending lAC messages, as described in Section 12.

5.16.2 Decimal

The following three instructions are provided for use in decimal-arithmetic algorithms:

3-53

dmovt
dadde
dsube

80960KB PROGRAMMER'S R'EFERENCE

move and test decimal

decimal add with carry

. decical subtract with carry

The instructions operate on 32-bit decimal operands that contain an 8-bit, ASCII-coded decimal in
the least-significant byte of the word (as shown in Figure 11).

The dmovt instruction moves a decimal operand from one register to another and tests the least
significant byte of the operand to determine if it is a decimal digit (0 to 9). It sets the condition code
according to the results of the. test: 0102 if the operand contains a decimal digit and 0002 otherwise.

The dad de and dsube instructions operate similarly to the adde and subc instructions. They add or
subtract two decimal digits plus bit 1 of the condition code (used as a carry-in bit). If the operation
produces a decimal carry, the condition code is set accordingly. The subtraction operation is carried
out in lO's complent arithmetic.

These instructions can be used iteratively to add or subtract decimal values of any length.

With the 80960KB processor, the most efficient method of multiplying or dividing decimal numbers
is to convert them into extended-real numbers and use the muir and divr instructions. Decimal values
of up to 18 decimal digits can be handled with this technique.

6.0 PROCESSOR MANAGEMENT AND INITIALIZATION

This section describes the facilities for initializing and managing the operation of the 80960KB
processor. Included is a description of the processor-management facilities and the steps required to
initialize the processor. Appendix D gives a listing of the necessary 80960KB code to initialize the
processor.

6.1 OVERVIEW OF PROCESSOR MANAGEMENT FACILITIES

This section and sections 7, 8, 9,and 12 describe the 80960KB's processor-management facilities.
These facilities are primarily software-related, although some hardware considerations are also
discussed. .

For the purpose of discussion in these sections, it assumed that the processor is going to execute a
program made up of a system kemal (or executive) and applications code. This program may be
located in ROM or RAM.

Such a program has the following facilities available to it to initialize, communicate with, and control
the processor:

Instruction List

• System Data Structures

3·54

Interrupts

• lACs

Faults

80960KB PROGRAMMER'S REFERENCE

These facilities allow system hardware and the kernel to initialize the processor and initiate
instruction execution. They also provide software or external agents with methods of interrrupting
the processor to service external I/O devices. .

The following paragraphs give an overview of these processor-management facilities.

6.1.1 Instruction List

At the most rudimentary level, the processor is controlled through a stream of instructions that the
processor fetches from memory and executes one at a time. Once the processor is initialized, it begins
executing instructions and continues until it is stopped.

6.1.2 System Data Structures

The processor defines several system data structures that reside in memory. These data structures
(shown in Figure 13) offer a means of configuring the processor to operate in a specific way.

PROCESSOR INITIAL
MEMORY
. IMAGE

(IMI)

INTERRUPT
TABLE

INTERRUPT
STACK

STACK POINTER
LOCATED IN LOCAL
REGISTER r1

Figure 13. System Defined Data Structures

3-55

270647-12

80960KB PROGRAMMER'S REFERENCE

The system data structures can be located anywhere in the processor's address space. The processor
gets pointers to most of these data structures from the initial memory image (IMI). The IMI is
described later in this section in "Initial Memory Image".

The interrupt table provides pointers to interrupt -handling procedures. The interrupt vector numbers
act asd indices into this table. For the purpose of handling interrupts, a separate interrupt stack is
maintained in the address space. The interrupt mechanism is described in Section 7.

The fault table provides pointers to fault-handling procedures. When the processor detects a fault,
it generates a fault vector number internally that provides an index into the fault table. The fault
mechanism is described in Section 8.

The system procedure table contains pointers to the kernel procedures, which are accessed using the
system call (calls) mechanism. The system table structure is described in Section 3, "System
Procedure Table".

The processor uses two stacks for procedures calls: the local procedure stack and the (optional)
supervisor stack. These stacks are described in Section 3.

The processor also contains a register, called the process cqntrols register, that it uses to store
information about the current state of the processor and the program it is executing. The process
controls are described later in this section under "Process Controls".

6.1.3 Interrupts

The processor defines two methods of asynchronously requesting services from the processor:
interrupts and lAC messages. Interrupts are the more common of the two.

An interrupt is a break in the control flow of a program so that the processor can handle a more urgent
chore. Interrupt requests are generally sent to the processor from an external source, often to request
I/O services. When the processor receives an interrupt request, it temporarily stops work on its
current task and begins work on an interrupt-handling procedure. Upon completion of the interrupt­
handling procedure, the processor generally returns to the task that was interrupted and continues
work where it left off.

Interrupts also have a priority, which the processor uses to determine whether to service the interrupt
immediately or to postpone service until a later time.

6.1.4 lACs

The 80960KB processor provides an alternate method of communicating with other agents on the
system bus are able to communicate with the processor through messages that are exchanged in a
reserved section of memory.

3-56

80960KB PROGRAMMER'S REFERENCE

Like interrupts, lACs are used to request that the processor stop work on its current task and begin
work on another task. However, where an interrupt generally causes a temporary break in the
execution of a program, an lAC often causes a permanent change in the control flow of the processor.

The lAC mechanism is described in Section 12.

6.1.5 Faults

While executing instructions, the processor is able to recognize certain conditions that could cause
it to return an inappropriate result or that could cause it to go down a wrong and possibly disastrous
path. One example of such a condition is a divisor operand of zero in a divide operation. Another
example is an instruction with an invalid opcode. These conditions are called faults.

The processor handles faults almost the same way that it handles interrupts. When the processor
detects a fault, it automatically stops its current processoring activity and begins work on a fault­
handling procedure.

6.2 PROCESS CONTROLS

The process-controls word (shown in Figure 14) contains miscellaneous pieces of information to
control processor activity and show the current state of the processor. The various functions of this
field are described in the following paragraphs. ..

31

TRACE ENABLE
EXECUTION MODE

..... --------RESUME
"----------TRACE-FAULT PENDING

"-------------STATE
..... ---------------PRIORITY

L----------------------INTERNAL STATE

~ RESERVED INITIALIZED TO 0

270647-13

Figure 14. Process-Controls Word

The execution mode flag determines whether the processor is operating in the user mode (clear) or
superVisor mode (set). The processor automatically sets this bit on a supervisor call and clears it on
a return from supervisor mode.

The priority field determines the priority (from 0 to 31) of the processor. When the processor is in
the executing state, it sets its priority according to this value.

3-57

80960KB PROGRAMMER'S REFERENCE

The state flag detennines the state of the processor. The encoding of this bit is shown in Table 12.

Table 12. Encoding of Processor State Field

State Processor
Field State
0, Executing

1 Interrupted

This bit tells software whether the processor

• is currently executing a program (0) or

has been interrupted so it can service an interrupt (1).

The trace-enable and trace-fault-pending flags control tracing. The trace-enable field d~tel:mines '
whether trace faults are to be generated (set) or not-generated (clear). The trace-fault-pending field
is a flag that the processor uses to detennine if a trace event has been detected (set) or not (clear). The
use of these fields is discussed in detail in Section 9.

The resume flag signals the processor that ,an in~truction has be,en suspended. The processor sets this
flag whenever it suspends an instruction tei handle an interrupt or fault. 'On a return from the interrupt
or fault handler, the processor checks this flag and perfonns an instruction resumption action if the
flag is set.

All of the bits in the process controls are set to zero as part of the initialized procedure. Bits 2 through
8, 11, 13, 15, and 21 through 31 are reserved. These bits should not be altered following initialization.

6.2.1 Changing the Process Controls

The kernel can change the process controis using any of the following three methods:

• Modify-process-controls instruction (modpc)

Alter the saved process controls prior to a return from an interrupt handler

• Alter the saved process controls prior to a return from a fault handler

The modpc instruction reads and modifies the process controls cached in the processor.

In the latter two methods, the kernel changes the process controls in the interrupt or fault record that
is saved on the' stack. On the return from the interrupt or fault handler, the modified process controls
are copied into the processor's internal process controls. '

Note

Changing the saved process controls by means of a fault handler can only be used ir'the fault handler was
invoked by means of an implicit supervisor call. '

,3-58

inter 80960KB PROGRAMMER'S REFERENCE

When the process controls are changed as described above, the processor acts on the changes as soon
as it receives the new information, except for the following situation.

If the modpc instruction is used to change the trace-enable flag, the processor does not guarantee to
act on the change until after up to four more instructions have been executed.

6.3 PRIORITIES

The processor defines a priority mechanism for determining the order in which programs, interrupts,
and lACs are worked on. Priorities range from 0 to 31, with 31 being the highest priority. Each
interrupt vector is assigned a priority. Also, when the processor is executing a program, it sets its
priority according to the priority field of the process controls.

Interrupt priorities serve two functions. First, they determine if the processor will service an interrupt
immediately or delay servicing it with respect to its current priority. Second, they determine which
interrupt of several interrupts is serviced first.

When the processor receives an lAC, it always services it immediately (i.e., treats the lAC as if it has
a priority of 31). A mechanism is provided that allows priorities to be assigned to lACs. When using
this mechanism, external hardware is required to intercept all lACs sent to the processor and to check
their priority. This hardware then determines whether to send the lAC to the processor for servicing
or delay it according to the current priority of the processor .

6.4 PROCESSOR STATES

The processor has four different operating states: executing, interrupt, stopped, and stopped­
interrupted. The processor is placed in one of two states (executing or stopped) at initialization. After
that, the processor and software control the processor's state.

The processor can switch between the executing and interrupted states or between the stopped and
stopped-interrupted states. However, the processor never switches from the executing state to the
stopped state, unless it detects a series of fault ocnditions that it cannot handle.

Software can change the state of the processor in either of two ways: (1) issue a reinitialize lAC or
(2) issue a freeze lAC. The reinitialize lAC forces the processor to reread the pointers from the IMl
and begin executing instructions from a new IP. The freeze lAC forces the processor into the stopped
state.

6.4.1 Executing and Interrupted State

In the executing state, the processor is executing the program.

If the processor is interrupted while in the executing state, it saves the current state of the program,
switches to the interrupt state, and services the interrupt. Upon returning from the interrupt handler,
the processor resumes work on the program.

3-59

80960KB PROGRAMMER'S REFERENCE

6.4.2 Stopped and Stopped-Interrupted States

In the stopped state the processor ceases all activity. The only tasks it can perform while in this state
are to service an interrupt or an lAC. While servicing an interrupt, the processor switches to the
stopped-interrupt state. It then switches back to the stopped state upon completion of the interrupt
routine. Likewise, while servicing an lAC, the processor switches to the stopped-interrupted state.
If the lAC handling action does not result in a change in the processor's stte, the processor switches
back to the stopped state when it finishes the lAC handling action.

The only way to get the processor out of the stopped state (other than to service an interrupt) is to
reinitialize the processor, either with a hardware reset or by sending it an external reinitialize lAC.

6.5 INSTRUCTION SUSPENSION

When the processor is interrupted while it is in the midst of executing an instruction, it does one of
three things before it services the interrupt:

1. It completes the instruction.

2. It terminates the instruction and sets the processor state so that it is as if execution of that
instruction had not yet begun.

3. It suspends the instruction and saves the necessary resumption information so that execution of
the instruction can be continued when the processor begins work on the program again. This
course of action is generally reserved for instructions that have a long execution time and that
alter the internal and external processor state as they execute.

Which of these steps the processor takes depends on the instruction being executed. However,
whichever step it takes is transparent to the software. The processor automatically saves the
necessary state information so that work on the program can be resumed with no loss of information.

Refer to the section 7, "Interrupt Handling Action", for more information on how resumption
information is saved when an interrupt is services.

6.6 MEMORY REQUIREMENTS

The processor provides a 232-byte address space. This address space can be mapped to read-write
memory, read-only memory, and memory-mapped I/O. (The processor does not provide a dedicated,
addressable I/O space.) .

The address space is linear (or flat): there are no subdivisions of the address space such as segments.
For the purpose of memory management, an external memory management unit (MMU) may
subdivide memory into pages or restrict access to certain areas of memory to protect kernel code and
data. But from the point of view of the processor, the address space is linear.

3-60

80960KB PROGRAMMER'S REFERENCE

All of the address space is available for general use except the upper 16M bytes (FFOOOOOOI6 to
FFFFFFFFI6), which are reserved for special functions. (These functions are described in Section
12).

An address in memory is a 32-bit value in the range 0 to FFFFFFFFI6• It can be used to reference a
single byte, 2 bytes, 4 bytes, 8 bytes, 12 bytes or 16 bytes of memory depending on the instruction
being used. (Refere to the descriptions of the load and store instructions in SeCtion 10 for information
on multiple-byte addressing.)

6.6.1 Memory Restrictions

. The processor requires that the memory to which the address space is mapped has the following
capabilities.

It must be byte addressable.

It must support burst transfers (i.e., transfers of blocks of contiguous bytes up to 16 bytes in
length).

It must guarantee indivisible access (read or write) for memory addresses that fall within 16-byte
boundaries.

It must guarantee atomic access for memory addresses that fall within 16-byte boundaries.

The latter two capabilities are required to allow multiple processor to share a common memory
conveniently.

An indivisible access guarantees that a processor reading or writing a set of memory locations will
complete the operation before another processor can read or write the same location. The processor
requires indivisible access within an aligned, 16-byte block ofmemoiy.

An atomic access is read-modify-write operation. Here extemallogic must guarantee that once a
processor beings a read-modify-write operation on a set of memory locations, it is allowed to
complete the operation before another processor is allowed to access the same location.

As described above, the processor requires that when one processor is performing an atomic
operation within an aligned, 16-byte block, other processors are delayed from performing another
atomic operation within that block until the first operation has been completed.

The 80960KB processor provides two features to aid in implementing the memory requirements
described above: SIZE lines and a LOCK line on the local bus.

The SIZE lines indicate the length of a memory access in bytes. These lines can be used to specify
1-,2-,4-,8-, 12-, or 16-byte lengths. When making the multiple-byte access, the processor thus sends
the memory controller a base address, on the address lines, and a length on the SIZE lines.

3-61

80960KB PROGRAMMER'S REFERENCE

The LOCK line is used to synchronize atomic operations. When a processor performs an atomic .
operation, it first examines the LOCK line. II it is asserted, the processor waits until the line is not
asserted (i.e., spins on the LOCK line). If the line is not asserted, the processor asserts the LOCK line
when it is performing an atomic read and deasserts the line when it performs the companion atomic
write.

The LOCK line mechanism allows only one atomic operation to be carried out in memory at one time.

6.7 SOFTWARE REQUIREMENTS FOR PROCESSOR MANAGEMENT

The processor-management facilities described earlier in this section allow the processor to be
configured and operated in several ways. This section lists the data structures that the kernel must
supply to operate the processor.

To use the processor, the kernel must provide the following items:

IMI

Other System Data Structures

Address Space

Stacks

Code

The IMI comprises the minimum data structures that the processor needs to initialize the system.

As part of the initialization procedure, a more cpmplete set of system data structures are established
in memory. These data structures include an interrupt table and a fault table. If the system call
mechanism is going to be used, a system procedure table is required.

Two stacks are also required: an interrupt stack and a local (or user) procedure stack. The initial stack
pointer for the interrupt stack is given in the IMI. The initial stack pointer (SP) for the local-procedure
stack is given in local register r1; the initialization code is required to establish the SP value in this
register.

If the supervisor call mechanism is to be used, a supervisor stack must also be provided. The initial
stack pointer for this stack is given in the system-procedure table. The supervisor stack can be placed
anywhere in the address space.

Note

'"Hints on Using the User·Supervisor Protection Mode\"' in section 3 describes an application of the user­
supervisor protection model, in which the processor is always in supervisor mode. When using this
application, the local stack and the supervisor stack are the same. The processor gets the initial stack
pointer for this stack from register r1.

3-62

80960KB PROGRAMMER'S REFERENCE

Finally, three levels of code are required: initialization code, kernel code, and applications code. The
initialization code is part of the 1M!. (Appendix D gives an initialization code example.) The starting
IP for the initialization code is also provided in the IMI.

6.8 PROCESSOR INITIALIZATION

This section describes how to initialize the 80960KB processor. It defines the mechanism that the
processor uses to establish its initial state and begin instruction execution. It also describes some
general guidelines for writing code to complete the initialization of the processor for specific
applications.

Note

The 80960 architecture does not define an initial memory image or an initialization procedure. The
following initialization requirements are specific to the 80960KB processor.

6.8.1 Initial Memory Image

The IMI performs three functions for the processor: (1) it provides check-sum vvords that the
processor uses in its self-test routine at start-up, (2) it provides pointers to the system data structures,
and (3) it provides scratch space that the processor uses to perform certain internal functions. Figure
15 shows the structure of the IMI.

The IMI is made up of four parts: the check-sum word, the system address table (SAT), and the
processor control block (PRCB), and the initialization code. In an embedded application, all of the
parts of this image will generally be held in ROM, except the scratch space of the PRCB. For this
reason, the PRCB should be copied from ROM to RAM after system initialization. (The reinitialize
lAC, described in Section 12, is used to give the processor the PRCB pointer for the relocated PRCB.)

6.8.2 Check-Sum Words

The check-sum words must be in memory locations 0000000016 to 0000001F16. The first of these
words is a pointer to the base of the SAT. The second word is a pointer to the base of the PRCB. The
fourth word is the instruction pointer to the first instruction of the initialization code.

The remaining words (word 3 and words 5 through 8) are check words, which must be chosen such
that the one's complement of the sum of the eight words plus FFFFFFFF16 equals O.

6.8.3 System Address Table

The SAT is 158 bytes in size and can be located anywhere in the address space. It has four required
entries. The word beginning at byte 136 must contain a pointer to the base (first byte) of the SAT. This
pointer is identical to the pointer given in the first word of the check-sum words. The word beginning
at byte 152 must contain a pointer to the base of the system procedure table. The words beginning
at byte 140 and 156 must contain 00FCOOFB 16 and 304400FBJ6' respectively.

All of the other words in the SAT are preserved and can be used by software.

3-63

80960KB PROGRAMMER'S REFERENCE

CHECK-SUM WORDS
PROCESSOR CONTROL BLOCK

SAT POINTER 0
(PRCB) OFFSET

PRCB POINTER 4 a

CHECK WORD 8 4

INSTRUCTION POINTER 12
8

4 CHECK WORDS 16

20
12

24 20

28
24

28

0000 01FF16 32

SYSTEM ADDRESS TABLE (SAT) OFFSET 0000 027F16 36

0
FAULT TABLE POINTER 40

0000000°16 44

120 48

124 76

80

SCRATCH SPACE
172

136

140

144

148 INITIALIZATION CODE OFFSET

152

f r 156

Fff#irf0J.ili,fll
f?}$i/J

RESERVED (INITALIZE TO 0)

OOFC 00A316 172 PRESERVED

270647-14

Figure 15_ Initial Memory Image

3-64

inter S0960KB PROGRAMMER'S REFERENCE

6.8.4 Processor Control Block

The PRCB is 174 bytes long and can also be located anywhere in the address space. It has seven
required entries and one reserved space. .

Bits 0 through 30 of the word beginning at byte 4 must be zero.

The write-external-priority flag (bit 31 of the word beginning at byte 4) instructs the processor to
write the priority of the processor to the lAC message control field whenever an interrupt (not caused
by an lAC) or the execution of the modpc instruction occurs. When this bit is set, the write-external­
priority mechanism is enabled; when the bit is clear, the mechanism is disabled. The use of this flag
is described in Section 12.

The interrupt table pointer points to the first byte of the interrupt table. The interrupt stack pointer
points to the top (first available byte) of the interrupt stack.

The words beginning at bytes 32 and 36 must each contain 0000027F 16•

The fault table pointer points to the first byte of the fault table.

The word beginning at byte 44 must contain all zeros.

The processor uses the scratch space in the IMI for internal functions. This field should be set to all
zeros at initialization or reinitialization of the processor and not accessed by software thereafter.

The remaining fields in the PRCB (bytes 8 through 19, bytes 28 through 31, and bytes 48 through
79) are reserved. They should be set to all zeros at initialization or restart and not accessed by software
thereafter.

6.S.5 Initialization Code

The initial instruction list that the processor begins executing following its self test can be located
anywhere in the address space.

6.8.6 Changing the Initial Memory Image

At initialization or on a reinitialize processor lAC, the processor reads the pointers from the IMI in
memory and caches them.

In general, to change any of the IMI fields that have been cached on the processor chip, the kernel
must first modify the IMI in memory, then reinitialize the processor using the reinitialize processor
lAC. The processor then rereads the IMI and reloads the cached fields in its internal cache.

3-65

80960KB PROGRAMMER'S REFERENCE

6.8.7 Building a Memory Image

The IMI shown in Figure 15 contains the minimum data structures required for the processor to
initialize itself and begin executing code. To build a useful system, however, additional data
structures are required, such as an interrupt table, a fault table, a system procedure table, a set of kernel
procedures, a set of stacks, and a heap. Some of these data structures can be located in ROM along
with the IMI; however, others must be in RAM because they must be writable.

Table 13 lists the various system data structures and shows which can be in ROM and which must
be in RAM. The following paragraphs give the system limitations if a data structure is included in
ROM.

Table 13. ROM and RAM Resident Data Structures

Data Structure May Be in ROM MayBe in ROM Must Be in RAM
with Limitations

IMI X

PRCB X

SAT X

Interrupt table X

Fault table X

Kernel Procedures X I

Stacks and heap X

All of the PRCB except the scratch space area must be in ROM. The scratch space must be in RAM.

The interrupt table must be in RAM for the processor to operate properly, because it contains the
interrupt pending fields, which the processor must be able to write to.

The fault table can be in ROM, providing it will never be necessary to relocate the fault handler
routines.

The kernel procedures can be in either ROM or RAM or both, depending on the design of the kernel.

6.8.8 Typical Initialization Sce.nario

Initialization of the 80960KB processor typically is handled in two stages. In the first stage of
initialization the processor performs a self test and reads pointers from the 1M!. During the second
stage, the processor executes initialization code designed to build the remainder of the memory image
so that execution of applications code can begin.

3-66

B0960KB PROGRAMMER'S REFERENCE

6.B.9 First Stage of Initialization

The following procedure shows the steps that system hardware and the processor go through in the
first stage of initialization. The algorithm in Figure 16 gives the details of this procedure.

assert FAILURE pin;
perform self test;
if self test fails

then enter stopped state;
else

endif;

deassert FAILURE pin;
enter predefined state;
if STARTUP pin = 0

then enter stopped state;
else

endif;

x f- memory(O); read 8 words beginning
at address 0

AC.cc f- 0002;

temp f- FFFFFFFF16 add_with3arry x(O);
temp f- temp add_with_carry x(I);
temp f- temp add_ with_carry x(2);
temp f- temp add_with_carry x(3);
temp f- temp add_ with_carry x(4);
temp f- temp add_with3arry xeS);
temp f- temp add_with_carry x(6);
temp f- temp add_ with3arry x(7);
if temp i:- 0

then
assert FAILURE pin;
enter stopped state;

else
prcb_address f- memory(4);
IP f- memory (12)
fetch IMI;
processor. priority f- 31;
processor.state f- interrupted;
FP f- IMl.interrupcstack_pointer;
clear any latched external interrupt/lAC

signals;
begin execution;

endif;

Figure 16. Algorithm for First Stage of Initialization Procedure

3-67

S0960KB PROGRAMMER'S REFERENCE

1. Hardware asserts the RESET pin on the processor.

2. The processor samples LPN to get its locals processor (1 or 0). (LPN and STARTUP are signals
that come from multiplexed information received on several processor pins.)

3. The processor asserts the FAILURE pin and performs a self test. If the processor passes the self
test, it deasserts the FAILURE pin.

I

4. The processor samples STARTUP to determine whether it is the initializing processor (1) or not
(0). If the processor is the initializing processor, it continues with the initialization procedure;
if it is not, it goes into the stopped state. (In multiprocessing systems, all processors except the
initializing processor are put in the stopped state.)

5. The processor reads the E check-sum words and checks that the check sum is o.
6. U sing the contents of the check-sum words, the processor determines the location of the SAT,

the PRCB, and the first instruction to be executed.

7. The processor sets its process priority to 31 (highest possible) and its state to interrupted.

8. The processor clears any latched external interrupt or lAC signals. This means that the processor
will not service any interrupts or lACs prior to beginning instruction execution.

9. The processor begins execution of the initialization instruction list.

After self test, the processor establishes its own state. For the initializing processor this state is
interrupted; for any other processors in the system this state is stopped. Also at initialization, the trace
controls are set to zero; the process controls are set to zero (except for the execution mode, which is
set to supervisor, and the priority, which is set to 31); and the breakpoint registers are disabled.

Since the processor places itself in the interrupted state during the first stage of initialization, the
initialization code is essentially a special interrupt-handler procedure.

6.S.10 Second Stage of Initialization

The processor activity during the second stage of initialization, which occurs once the processor
begins instruction execution, is up to software. In general, this stage of initialization is used to copy
to create additional date structure in memory, such as the interrupt table, the system-procedure table,
and the fault table (if not in the initial memory image), and the kernel procedures.

Once these jobs are completed, the processor can then begin executing applications code.

Appendix D gives an example of the 80960KB code that might be used to carry out this second stage
of initializatin.

A common initialization technique is to create a new PRCB and interrupt table in RAM along with
the other system data structures that are placed in memory in the second stage of initialization. The
processor is then reinitialized to point to the PRCB and interrupt table. (The code in Appendix D uses
this technique.)

3-68

80960KB PROGRAMMER'S REFERENCE

The processor is reinitialized using the reinitialize lAC. This reinitialize lAC message includes new
pointers to the SAT and PRCB. The processor reads the new PRCB, then begins instruction execution
according to the control information contained in the PRCB.

7.0 INTERRUPTS

This section describes the 80960KB processor's interrupt handling facilities. It also describes how
interrupts are signaled.

7.1 OVERVIEW OF THE INTERRUPT FACILITIES

An interrupt is a temporary break in the control stream of a program so that the processor can handle
another chore. Interrupts are generally requesk from an external source. The interrupt request either
contains a vector number or else points to a vector that tells the processor what chore to do while in
the interrupted state. When the processor has finished servicing the interrupt, it generally returns to
the program that it was working on when the interrupt occurred and resumes execution where it left
off.

The processor provides a mechanism for servicing interrupts, which uses an implicit procedure call
to a selected interrupt handling procedure, called an interrupt handler.

When an interrupt occurs, the current state of the program is saved. If the interrupt occurs during an
instruction that requires many machine cycles, the instruction state is also saved and execution of the

, instruction is suspended.

The processor then creates a new frame on the interrupt stack and executes an implicit call to the
interrupt handler selected with the interrupt vector.

Upon returning from the interrupt handler, the processor switches back to the program that was
running when the interrupt occurred, restores it to the state it was in when the interrupt occurred, and
resumes work on it.

Another feature of this interrupt handling mechanism is that it allows interrupts to be prioritized. If
an interrupt is signaled that has the same or a lower priority than the processor's current priority, the
processor will save the interrupt vector and service the interrupt at a later time. Interrupts that are
waiting to be serviced are called pending interrupts.

7.2 SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING

To use the processor's interrupt handling facilities, software must provide the following items in
memory:

Interrupt Table

Interrupt Handler Routines

Interrupt Stack

3-69

80960KB PROGRAMMER'S REFERENCE

These items are generally established in memory as part of the initialization procedure. Once these
items are present in memory and pointers to them have been entered in the appropriate system data
structures, the processor then handles interrupt automatically and independent from software.

The requirements for these items are given in the following sections.

7.3 VECTORS AND PRIORITY

Each interrupt vector is 8 bits in length, which allows up to 256 unique vectors to be defined. In
practice, vectors 0 through 7 cannot be used, and vectors 244 through 251 are reserved and should
not be used by software.

Each vector has a predefined priority, which is defined by the following expression:

priority = vector/8

Thus, at each priority level, there are 8 possible vectors (vectors 8 through 15 have a priority of I,
vectors 16 through 23 a priority of 2, and so on to vectors 246 through 255, which have a priority of
31).

The processor uses the priority of an interrupt to determine whether or not to service the interrupt
immediately or to delay service. If the interrupt priority is greather than the processor's current
priority, the processor services the interrupt immediately; if the interrupt priority is equal to or less
than the processor's current priority, the processor saves the interrupt vector as a pending interrupt
so that it can be serviced at a later time.

A priority-31 interrupt is always serviced immediately.

Note that the lowest program priority allowed is O. If the current program has a 0 priority, a priority­
o interrupt will never be accepted. This is why vectors 0 through 7 cannot be used. In fact, there are
no entries provided for these vectors in the interrupt table.

7.4 INTERRUPT TABLE

The interrupt table contains instruction pointers (addresses in the address space) to interrupt handlers.
It must be aligned on a word boundary. The processor determines the location of the interrupt table
by means of a pointer in the IMI.

As shown in Figure 17, the interrupt table contains one entry (i.e., one pointer) for each allowable
vector. The structure of an interrupt-table entry is given at the bottom of Figure 17. Each interrupt
procedure must begin on a word boundary, so the two least -significant bits of the entry are set to O.

The first 36 bytes of the interrupt table are used to record pending interrupts. This section of the table
is divided into two fields: pending priorities (byte-offset 0 through 3) and pending int~rrupts (byte­
offset 4 through 35).

3-70

80960KB PROGRAMMER'S REFERENCE

31 0

PENDING PRIORITIES 0

4

PENDING INTERRUPTS

32

ENTRYS
36 (VECTORS)

ENTRY 9 40 (VECTOR 9)

ENTRY 10 44 (VECTOR 10)

976 (VECTOR 243)

9S0 (VECTOR 244)

992 (VECTOR 247)

996 (VECTOR 24S)

1000 (VECTOR 249)

1008 (VECTOR 251)

1012 (VECTOR 252)

ENTRY 255 1024 (VECTOR 255)

PROCEDURE ENTRY FORMAT
31 210

INSTRUCTION POINTER 10101

~ RESERVED (INITALIZE TO 0)

270647-15

Figure 17. Interrupt Table

The pending priorities field contains a 32-bit string in which each bit represents an interrupt priority.
The bit number in the string represents the priority number. When the processor posts a pending
interrupt in the interrupt table, the bit corresponding to the interrupt's priority is set. For example,
if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set.

The pending interrupt field contains a 256-bit string in which each bit represents an interrupt vector.
For example, byte-offset 4 is reserved, byte-offset 5 is for vectors 8 through 15, byte-offset 6 is for
vectors 16 through 23, and so on. When a pending interrupt is logged, its corresponding bit in the
pending interrupt field is set.

3-71

80960KB PROGRAMMER'S REFERENCE

This encoding of the pending priority and pending interrupt fields permits the processor to first check
if there are any pending interrupts with a priority greater than the current program and then to
determine the vector number of the interrupt with the highest priority. Software should set these fields
to 0 at initialization and not access these fields after that.

Note

Refer to the section, "Handling Pending Interrupts", later in this section for a description of the
processor's pending interrupt mechanism.

7.5 INTERRUPT HANDLER PROCEDURES

An interrupt handler is a procedure that performs a specific action that has been associated with a
particular interrupt vector. For example, a typical job for an interrupt handler is to read a character
from a keyboard.

The interrupt handler procedure can be located anywhere in the address space. Each procedure must
begin on a word boundary.

The processor execution mode is always switched to supervisor while an interrupt is being handled.

When an interrupt-handler procedure is called, the states of the processor controls and arithmetic
controls for the interrupted program are saved. However, the interrupt handler shares the other
resources of the interrupted program, in particular the global registers and the address space. This
sharing of resources imposes one important restriction on the interrupt handler procedures.

The interrupt handler procedures must preserve and restore the state of any of the resources that it
uses. For example, the processor allocates a set of local registers to the interrupt handler, just as it
does on an explicit procedure call. If the interrupt handler needs to use the global or floating-point
registers, however, it should save their contents before using them and restore them before returning
from the interrupt handler.

7.6 INTERRUPT STACK

The interrupt stack can be located anywhere in the address space. The processor determines the
location of the interrupt stack by means of a pointer in the 1M!.

The interrupt stack has the same structure as the local procedure stack described in Section 3,
"Procedure Stack".

7.7 INTERRUPT HANDLING ACTIONS

When the processor receives an interrupt, it handles it automatically. The processor takes care of
saving the processor state, calling the interrupt-handler routine, and restoring the processor state once
the interrupt has been serviced. Software support is not required.

3-72

80960KB PROGRAMMER'S REFERENCE

The following section describes the actions the processor takes while handling interrupts. It is not
necessary to read this section to use the interrupt mechanism or write an interrupt handler routine.
This discussion is provided for those readers who wish to know the details of-the interrupt handling
mechanism.

7.7.1 Receiving an Interrupt

Whenever the processor receives an interrupt signal, it performs the following action:

1. It temporarily stops work on its current task, whether it is working on a program or another
interrupt procedure.

2. It reads the interrupt vector.

3. It compares the priority of the vector with the processor's current priority.

4. If the interrupt priority is higher than that of the processor, the processor services the interrupt
immediately as described in the next sections.

5. If the interrupt priority is equal to or less than that of the processor, the processor sets the
appropriate priority bit and vector bit in pending interrupt record and continues work on its
current task.

7.7.2 Servicing an Interrupt

The method that the processor uses to service an interrupt depends on the state the processor is in
when it receives the interrupt. The following sections describe the interrupt handling actions for
various states of the processor. In all of these cases, it is assumed that the interrupt priority is higher
than that of the processor and will thus be serviced immediately after the processor receives it. The
handling of lower priority interrupts is described later in "Pending Interrupts l '.

7.7.3 Executing State Interrupt

When the processor receives an interrupt while it is in the executing stae (i.e. executing a program),
it performs the following actions to service the interrupt; this procedure is the same regardless of
whether the processor is in the user or the supervisor mode when the interrupt occurs:

1. The processor saves the current state of process controls and arithmetic controls in an interrupt
record on the stack that the processor is currently using. This stack can be the local-procedure
stack or the supervisor stack. (The interrupt record is described in the following section)

2. If the execution of an instruction was suspended, the processor includes a resumption record for
the instruction in the current stack and sets the resume flag in the saved process controls. (Refer
to section 7, "Instruction Suspension", for a discussion of the criteria for suspending instruc­
tions.

3. The processor switches to the interrupted state.

4. The processor sets the state flag in the process controls to interrupted, its execution mode to
supervisor, and its priority to the priority of the interrupt. Setting the processor priority to that

3-73

inter 80960KB PROGRAMMER'S REFERENCE

of the interrupt insures that lower priority interrupts can not interrupt the servicing of the current
interrupt.

5. Also in its internal process controls, the processor clears the trace-fault-pending and trace­
enable flags. Clearing these flags allows the interrupt to be handled without trace faults being
raised.

6. The processor allocates a new frame on the interrupt stack and switches to the interrupt stack.

7. The processor sets the frame return status field (associated with the PFP) to 1112"

8. The processor performs an implicit call-extended operation (similar to that performed for the
calix instruction). The address for the procedure tabt is called is that which is specified in the
interrupt table for the specified interrupt vector. .

Once the processor has completed the interrupt procedure, it performs the following action on the
return:

1. The processor deallocates the stack frame from the interrupt stack and switches to the local or
supervisor stack (whichever one it was using when it was interrupted).

2. The processor copies the arithmetic controls field from the interrupt record into its arithmetic
controls register.

3. The processor copies the process controls field from the interrupt record into its internal process
controls.

4. If the resume flag of the process controls is set, the processor copies the resumption record from
the interrupt record to the resumption record field of the PRCB.

5. The processor checks the interrupt table for pending interrupts that are higher then the priority
cif the program being returned to. If a higher-priority pending interrupt is found, it is handled as
if the interrupt occurred at this point.

6. Assuming that there are not pending interrupts to be serviced, the processor switches to the
executing state and resumes work on the program.

7.7.4 Interrupt State Interrupt

If the processor receives an interrupt while it is servicing an interrupt, and the new interrupt has a
higher priority than the interrupt currently being serviced, the current interrupt-handler routine is
interrupted. Here the processor performs the same action to save the state of the interrupted interrupt­
handler routine as is described at the beginning of this section. Here, the interrupt record IS saved on
the top of the interrupt stack, prior to the new frame that is created for use in servicing the new
interrupt.

7.7.5 Interrupt Record

The processor saves the state of an interrupted program (or interrupt-handler) routine in an interrupt
record. Figure 18 shows the structure of this interrupt record.

3-74

STACK
GROWTH

STACK
GROWTH

31

.~

~

31

80960KB PROGRAMMER'S REFERENCE

LOCAL, SUPERVISOR, OR INTERRUPT STACK

REGISTER SAVE AREA
FOR CURRENT FRAME

ADDITIONAL VARIABLES
AND PADDING AREA

(OPTIONAL)

INTERRUPT STACK

7

PADDING AREA

RESUMPTION RECORD
FOR SUSPENDED INSTRUCTION

(OPTIONAL)

SAVED PROCESS CONTROLS

NEW FRAME

*IFTHE INTERRUPT IS SERVICED WHILE THE PROCESSOR IS
WORKING ON ANOTHER INTERRUPT PROCEDURE, THE NEW
STACK POINTER (NSP) WILL BE THE SAME AS THE Sp,

~ RESERVED

Figure 18. Storing of an Interrupt Record on the Stack

3-75

0

FP

~

~

SP

0

NSP*

NFP-16

NFP-12

NFP-8

NFP

270647-16

80960KB PROGRAMMER'S REFERENCE

The resumption record within the interrupt record is used to save the state of a suspended instruction.
If no instruction is suspended, the resumption record is not created.

7.7.6 Stopped State Interrupt

The processor can also be interrupted while in the stopped state. The processor handles such
interrupts in essentially the same way that it handles interrupts that occur while the processor is in
the executing state, with the following exception. When the processor allocates the new frame on the
interrupt stack, it sets the frame return field to 1102. This causes the processor to revert to the stopped
state when the processor returns from the interrupt-handler procedure.

7.7.7 Stopped-Interrupted State Interrupt

If the processor receives an interrupt while it is in the stopped-interrupted state, it handles the
interrupt just as it would if it occurred in the interrupted state.

7.7.8 Pending Interrupts

As was described earlier in this section, the processor provides a mechanism for evaluating interrupts)
according to their priority. If the interrupt priority is equal to or lower than the processor's current.
priority, the processor does not service the interrupt immediately. Instead, it posts the interrupt in the
pending interrupt section of the interrupt table. The processor checks the interrupt table at specific
times and services those interrupts that have a higher priority than its current priority. This pending
interrupt mechanism provides two benefits.

1. The ability to delay the servicing of low priority interrupts (by posting them in the pending
interrupt section of the interrupt table) allows the processor to concentrate its processing activity
on higher priority tasks.

2. In a system that uses two or more 80960KB processors, both processors can share the same
interrupt table. This interrupt-table sharing allows the processors to share the interrupt handling
load.

The following paragraphs describe how the processor handles pending interrupts.

Note
The 80960 architecture defines the section of the interrupt table for storing pending interrupts and a
mechanism for checking the interrupt table for pending interrupts. The method used.for posting interrupts
to the interrupt table and circumstances under which the processor check the interrupt table for pending
interrupts is not defined.

In the following description of the pending interrupt mechanism, the information given in the sections
titled "Posting Pending Interrupts" and "Checking for Pending Interrupts" is specific to the 80960KB
processor. The information given in the section titled "Handling Pending Interrupts" is defined in the
80960 architecture and should be common in all processors that implement this part of the architecture.

3-76

80960KB PROGRAMMER'S REFERENCE

7.7.9 Posting Pending Interrupts

An interrupt can be posted in the pending-interrupt record of the interrupt table in either of the
following two ways: .

1. The processor receives an interrupt with a priority equal to or lower than that of the program the
processor is currently working on. The processor then automatically posts the interrupt in the
pending-interrupt record.

2. The kernel can set the desired pending-interrupt and pending-priority bits in the interrupt table.

Using the first method, the processor performs an atomic read/write operation that locks the interrupt
table until the posting operation has been completed. Locking the interrupt table prevents other
agents on the bus from accessing the interrupt table during this time.

The second method of posting an interrupt is risky, because it does not use this locking technique.
(The processor's atomic instructions are not able to perform a locking operation that spans several
instructions.) This method will work only if the kernel can insure the following:

that no external 1/0 agent will attempt to post a pending interrupt simultaneously with the
processor, and

that an in'terrupt cannot occur after one bit (e.g. the pending priority bit) of the pending-interrupt
record is set but before the other bit (the pending interrupt vecor) is set.

7.7.10 Checking for Pending Interrupts

The processor automatically checks the interrupt table for pending interrupts at the following times:

After returning from an interrupt-handler procedure

While executing a modify-process-controls instruction (modpc), if the instruction causes the
program's priority to be lowered.

After receiving a test pending interrupts lAC message.

7.7.11 Handling Pending Interrupts

The processor uses the same type of atomic read/write operation to check the interrupt table for
pending interrupts as it does for posting pending interrupts. Again, this technique prevents other
agents on the bus from accessing the interrupt table until the pending-interrupt check has been
completed.

When the processor finds a pending interrupt, it handles it as if it had just received the interrupt. The
handling mechanism is the same as is described earlier in this chapter for interrupts that are serviced
as soon as they are received.

3-77

S0960KB PROGRAMMER'S REFERENCE .

If the processor finds two pending interrupts at the same priority, it services the interrupt with the
highest vector number first.

7.S SIGNALING INTERRUPTS

Note

The 80960 architecture does not define a mechanism for signaling interrupts to the processor. The
methods of signaling interrupts described in the following section are specific to the 80960KB processor.

The 80960KB processor can be interrupted in any of the following five ways:

Signal on its interrupt pins

Singal on its interrupt pins from an external interrupt controller

An lAC message from external source

An lAC message from a program in the processor

A pending interrupt (described earlier in this chapter)

7.S.1 Interrupts From Interrupt Pins

I

The processor has . four interrupt pins, called INTO, INT1, INT2, and INT3. These pins can be
configured in either of the following three ways:

as four interrupt-signal inputs;

as two interrupt inputs and two pins for handshaking with an interrupt controller such as the Intel
8259A Programmable Interrupt Controller; or

as one lAC input and three interrupt inputs.

A 32-bit, interrupt-control register in the processor determines how these pins are used. Each
interrupt pin is associated with one 8-bit field in the register, as shown in Figure 19.

31 2423 1615 8 7 o
INT3VECTOR INT2VECTOR INT1 VECTOR INTO VECTOR

270647·17

Figure 19. Interrupt-Control Register

If the interrupt pins are to be used as four inputs, a different interrupt vector is stored in each of the
four fields in the interrupt-control register. Then, when an interrupt is signaled on one of the pins, the
processor reads the vector from the pin's associated field in the register. For example, if an interrupt
is signaled on pin INTO, the processor reads the vector from bits 0 through 7.

3·78

B0960KB PROGRAMMER'S REFERENCE

The processor assumes that the interrupt vectors in the interrupt register are arranged in descending
order from the INTO field to the INT3 field (e.g., the priority of INTO ~ INTI ~ INT2 ~ INT3). To
insure that interrupts are handled in the proper order, software should follow this convention.

If the INTO vector field is set to 0, the function of the INTO pin is changed to lAC, and it is used to
signal the processor that an external lAC message has been sent to it. In fact,the INTO pin must be
configured in this manner for the processor to service external lAC messages.

If the INT2 vector field is set to 0, the functions of the INT2 and INT3 pins are changed to INTR and
INTA, respectively. Here, the INTR pin is used to receive signals from an interrupt controller and the
INTA pin is used to send acknowledge signals back to the controller. When the processor receives
a signal on the INTR pin, it reads an interrupt vector from the least significant 8 bits of its bus, then
sends an acknowledge signal to the controller through INTA. When the INT2 and INT3 pins are
configured in this manner, the processor ignores the INT3 vector field.

Note

Refer to the 80960KB Hardware Designer's Reference Manual for more information on the use of INT2
and INT3 pins with an interrupt controller. .

The interrupt-control register is memory mapped to addresses FF00000416 through FF000007 16•

Only the processor can read or write this register using the synchronous load (synld) and synchronous
move (synmov) instructions. External agents on the bus cannot access this register.

The value in the interrupt-control register after the processor is initialized is FF00000016•

7.B.2IAC Interrupts

The processor can also receive an interrupt request by mearis of the lAC mechanism. (The lAC
mechanism is described in detail·in Chapter 13;) The interrupt lAC message can be sent to the
processor either from an external bus agent, such as an I/O processor or another 80960KB processor,
or internally as part of the currently running program. The interrupt vector is contained in the interrupt
lAC message.

As with any other lAC message, the processor receives notice of an external interrupt-lAC message
through the INTO pin, which has been configured as an lAC pin, as described in the previous section.
The processor then reads the lAC message to get the interrupt vector.

A program running on the processor can signal an interrupt through an internal interrupt-lAC
message. An internal lAC is sent to the processor by means of a synchronous move instruction. When
the processor executes a synchronous move to its lAC message space, it signals an lAC message
internally. The processor then reads the lAC message as it would for an external lAC.

B.O FAULT HANDLING

This section describes the fault handling facilities of the 80960KB processor. The subjects covered
include the fault-handling data structures, the software support required for fault handling, and the

3-79

80960KB PROGRAMMER'S REFERENCE

fault handling mechanism. A reference section that contains detailed information on each fault type
is provided at the end of the section.

8.1 OVERVIEW OF THE FAULT-HANDLING FACILITIES

The processor is able to detect various conditions. in code or in its interrial state (called "fault
conditions") that could cause the processor to deliver incorrect to inappropriate results or that could
cause it to head down an undesirable control path. For example, the processor recognizes divide-by­
zero and overflow conditions on integer calculations. It also detects inappropriate operand values,
uncompleted memory aCcesses, or references to incomplete or non-existent system-data structures.

The processor can detect a fault while it is executing a program, an interrupt handler, or a fault handler.
(In this section, when a program is referred to, it generally also means any interrupt handler or fault
handler that may have been invoked while the processor was working on the program.)

When the processor detects afault, it handles the fault immediately and independently of the program
or handler it is currently working on, using a mechanism similar to that used to service interrupts.

A fault is generally handled with a fault-handling procedure (called a fault handler), which the
processor invokes through an implicit procedure call. Prior to making the call, the processor saves
the state of the current program and in some cases the state of an incomplete instruction. It also saves
information about the faults, which the fault handler can use to correct or recover from the condition
that caused thefault.

If the fault handler is able to recover from the fault, the processor can then restore the program to its
state prior to the fault and resume work on the program. If the fault handler is not able to recover from
the fault, it can take any of several actions to gracefully shut down the processor.

8;2 FAULT TYPES

All of the faults that the processor detects are predefined. These faults are divided into types and
SUbtypes, each of which is given a number. The processor uses the type number to select a fault
handler. The fault handler then uses the subtype number to select a specific fault -handling procedure.

Table 14 lists the faults· that the processor detects, arranged by type and SUbtype. For convenience,
individual faults are referred to in this chapter by their fault-subtype name. Thus a machine bad­
access fault is referred to as simply a bad-access fault, or an arithmetic integer overflow fault is
referred to as an integer overflow fault.

The fifth column of Table 14 shows each fault as it appears in· the fault record (the word at offset 40
of the fault record is shown later in this section).

3-80 .

a0960KB PROGRAMMER'S REFERENCE

Table 14. Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

No.
1

2

3

4

5

7

8

9

No.!Bit
Name Position Name
Trace Bit 1 Instruction Trace OxXXOl0002

Bit 2 Branch Trace OxXXOI0004
Bit 3 Call Trace OxXXOI0008
Bit 4 Return Trace OxXXOI001O
Bit 5 Prereturn Trace OxXXOI0020
Bit 6 Supervisor Trace OxXXOI0040
Bit 7 Breakpoint Trace OxXXOI0080

Operation 1 Invalid Opcode OxXX020001
2 Unimplemented OxXX020002
4 Invalid Operand OxXX020004

Arithmetic 1 Integer Overflow OxXX03 0001
2 Arithmetic Zero-Divide OxXX030002

Floating Bit 0 Floating Overflow OxXX040001
Point

Bit 1 Floating Underflow OxXX040002
Bit 2 Floating Invalid-Operation OxXX040004
Bit 3 Floating Zero~Divide OxXX040008
Bit4 Floating Inexact OxXX04001O
Bit 5 Floating Reserved-Encoding OxXX040020

Constraint 1 Constraint Range OxXX050001
2 Privileged OxXX050002

Protection Bit 1 Length OxXX070001

Machine 1 Bad Access OxXX080001

Structural 3 lAC OxXX090003

Note

The 80960 architecture defines a basic set of fault types and sUbtypes. Processors that provide extensions
to the architecture may recognize additional fault conditions. The encoding of fault types and subtypes
allows any of these extensions to be included in the fault table along with the basic faults. Space in the
fault table will be reserved in such a way that processors that recognize the same fault types and subtypes
will encode them in the same way.

For example, the floating-point faults (fault type 4) are an extension provided in the 80960KB processor
(but not in the 80960KA processor). Any other processors based on the 80960 architecture that also
recognize floating-point faults will also encode them as fault type 4.

3-81

80960KB PROGRAMMER'S REFERENCE

8.3 FAULT-HANDLING METHOD

The processor handles all faults through an implicit procedure call to a fault handler. When a fault
occurs while the processor is executing a program, the processor creates a fault record on its current
stack. This record includes information on the state of the program and data on the fault. If the fault
occurred while the processor was in the midst of executing an instruction, a resumption record for
the instruction may also be saved on the stack.

Following the creation of the fault and resumption records, the processor selects a fault handler from
a system-data structure called the/ault table. It then invokes the fault handler (by means of an implicit
call) and begins executing the handler procedure. As is described later in this section, the fault handler
call can be a local call (call-extended operation), a local system-procedure-table call (local system­
call operation), or a supervisor call.

This same procedure call method is used to handle faults that occur while the processor is servicing
an interrupt or that occur while the processor is working on a fault handler.

8.3.1 Multiple Fault Conditions

It is possible for multiple fault conditions to occur simultaneously. For certain fault types, such as
trace faults or protection faults, bit positions in the fault-subtype field are used to indicate the
occurrence of mUltiple faults of the same type. As a general rule, however, the processor does not
indicate situations where multiple faults occur. Instead, it records one of the faults and does not report
on the faults that were not recorded.

If a fault occurs while the processor is executing a fault handling routine, the operating of the
processor is not predictable.

8.3.2 Faults and Interrupts

If an interrupt occurs during an instruction that will fault, that has just faulted, or that has faulted while
the processor is in the midst of selecting the fault handler, the processor will handle the fault in either
of the following ways:

It includes the fault information as part of its interrupt record and services the interrupt
immediately. After it has serviced the interrupt, it handles the fault.

It completes the selection of the fault handler, then services the interrupt just prior to executing
the first instruction of the fault handler.

8.4 SOFTWARE REQUIREMENTS FOR HANDLING FAULTS

To use the processor's fault-handling facilities, the following system-data structures and procedures
must be present in memory:

3-82

80960KB PROGRAMMER'S REFERENCE

Fault Table

Fault-Handler Procedures

Interrupt Table

Interrupt Stack

Software should generally load these items in memory as part of the initialization procedure. Once
they are present in memory and pointers to them have been included in the IMI, the processor then
handles faults automatically and independently from software.

Requirements for the fault table and fault-handler procedures are given in the following sections.

8.5 FAULT TABLE

The faulttable provides the processor with a pathway to the fault handlers when the processoris using
the implicit procedure-cal method of handling faults. As shown in Figure 20, there is one entry in the
fault table for each fault type. When a fault occurs, the processor uses the fault type to select an entry
in the fault table. From this entry, the processor then obtains a pointer to the fault handler for the type
of fault that occurred.

The fault handler reads the fault SUbtype or SUbtypes from the fault record to determine the
appropriate fault recovery action.

8.5.1 Location of the Fault Table in Memory

The fault table can be located anywhere in the address space. The processor obtains a pointer to the
fault table from the 1M!.

8.5.2 Fault-Table Entries

Each entry in the fault table is two words long. As shown in Figure 20, there are two types of fault­
table entries allowed: local-procedure entry and system-procedure-table entry. The entry-type field
determines the entry type.

A local-procedure entry (entry type 002) provides an instruction pointer (address in the address space)
for the fault handler procedure. Using this entry, the processor invokes the specified fault handler by
means of an implicit ca\l-extended operation (similar to that performed for the calix instruction). The
second word of a local-procedure entry is reserved. It should be set to zero when the fault table is
ere ted and not accessed after that.

A system-procedure-table entry (entry type 102) provides a procedure number in the system
procedure table. Using this entry, the processor invokes the specified fault handler by means of an
implicit call-system operation (similar to that performed for the calls instruction).

3-83

80960KB PROGRAMMER'S REFERENCE

Fault-handling procedures in the system procedure table can be local procedures or supervisor
procedures. A fault handler can thus be invoked through the fault table in any of three ways: implicit
local-procedure call, implicit local procedure-table call, or implicit supervisor call.

31 0

OVERRIDE ENTRY 0

TRACE FAULT ENTRY 8

OPERATION FAULT ENTRY 16

ARITHMETIC FAULT ENTRY 24

FLOATING-POINT FAULT ENTRY 32

CONSTRAINT FAULT ENTRY 40

VIRTUAL-MEMORY FAULT ENTRY 48

PROTECTION FAULT ENTRY 56

MACHINE FAULT ENTRY 64

STRUCTURAL FAULT ENTRY 72

TYPE FAULT ENTRY 80

FAULT-TABLE ENTRIES

31 . LOCAL-PROCEDURE ENTRY 2 1 0

!FAULfHANDLERPRFAULT-HANDLER PROCEDURE ADDRESS 0 0 n

~n+4
~~~~~~~~~~~~~~~~~~~~~ 

31 
SYSTEM PROCEDURE-TABLE ENTRY 

FAULT-HA~DLER PROCEDURE NUMBER 

0000027F16 

31 
TRACE - FAULT - PROCEDURE - TABLE ENTRY 

2 1 0 

TRACE-FAULT-HANDLER PROCEDURE NUMBER 

000002BF16 n + 4 L-________________ ~ ____ ~ ________ ~ 

~ RESERVED (INITIALIZED TO 0) 

Figure 20. Fault Table and Fault-Table Entries 

3-84 

270647-18 



inter 80960KB PROGRAMMER'S REFERENCE 

. . 
8.6 FAULT-HANDLER PROCEDURES 

The fault-handler procedures can be located anywhere in the address space. Each procedure must 
begin on a word boundary. 

The processor can execute the procedure in the user mode or the supervisor mode, depending on. the 
type of fault table entry. 

Note 

To resume work on a program at the point where a fault occurred (following the recover action of the 
fault handler), the fault handler must be executed in the supervisor mode. The reason for this requirement 
is described in "Program and Instruction Resumption Following a Fault" in this section. 

Many ofthe faults that occur can be recovered from easily. When recovery from the fault is possible, 
the processor's fault-handling mechanism allows the processor to automatically resume work on the 
program or interruptthat it was working on when the fault occurred. The resumption action is initiated 
with a ret instruction in the fault-handler procedure. 

If recovery from the fault is not possible or not desirable, the fault handler can take one of the 
following actions, depending on the nature and severity of the fault condition (or conditions, in the 
case of multiple faults): 

Return to a point in the program or interrupt code other than the point of the fault 

Save the current state of the processor and call a debug monitor 

Save the current state of the processor and place the processor in the stopped state (using freeze 
lAC) 

Explicitly write the processor state, fault record, and instruction resumption record into memory 
and place the processor in the stopped state 

Place the processor in the stopped state without explicitly saving the processor state or the fault 
information. 

When working with the processor at the development level, a common action of the fault handler is 
to save the fault and processor state information and make a call to a debugging device such as a 
debugging monitor. This device can then be used to ~nalyze the fault. 

8.6.1 Program and Instruction Resumption Following a Fault 

The processor allows work on a program to be resumed at the point where the fault occurred following 
a return from a fault handler. If an instruction was suspended to handle the fault execution of the 
instruction can also be resumed on the return. 

This resumption mechanism is similar to that provided by returing from an interrupt handler. It is only 
useful, however, for faults from which recovery is possible, such as the trace faults. 

3-85 



80960KB PROGRAMMER'S REFERENCE 

To use this mechanism, the fault handler must be invoked using an implicit supervisor procedure­
table call. This method is required because to resume work on the program and a suspended 
instruction at the point where the fault occurred, the saved process controls in the fault record must 
be copied back into the processor on the return from the fault handler. The processor only performs 
this action if the processor is in the supervisor mode on the return. 

If the fault handler is invoked with an implicit local-procedure call or an implicit local-procedure­
table call, the return IP determines where in the program the processor resumes work, following a 
return from a fault handler. Here, the return is handled in a similar manner to a return from an explicit 
call with a call or calIx instruction. 

The return IP (referred to later in this section as the saved IP) is saved in the RIP register (r2) of the 
stack frame that was in use when the fault occurred. This IP may be the instruction the processor 
faulted on or the next instruction tht the processor would have executed if the fault had not occurred. 
In either case, the resumption record is not used, so the processor might continue work on the program 
without completing the instruction that the fault occurred on. 

A fault handler should thus be invoked with an implicit local-procedure or local-procedure-table call 
only if it is not required or desirable to resume the program at the point of the fault. 'The section, 
"Return Without Resumption", discusses returning to a point in the program code other than the point 
of the fault. 

8.7 FAULT CONTROLS 

Certain fault types and sUbtypes have masks or flags associated with them that determine whether 
or not a fault is signalled when a fault condition occurs. Table 15 lists these flags and masks, the 
system data structures in which they are located, and the fault SUbtype they affect. 

Table 15. Fault Flags or Masks 

Flag or Mask Name Location Fault Affected 

Integer Overflow Mask Arithmetic Controls Integer Overflow 

Floating Overflow Mask Arithmetic Controls Floating Overflow 

Floating Underflow Mask Arithmetic Controls Floating Underflow 

Floating Invalid Operation Mask Arithmetic Controls Floating 
Invalid Operation 

Floating Zero-Divide Mask Arithmetic Controls Floating Zero-Divide 

Floating-point Inexact Mask Arithmetic Controls Floating Inexact 

No Imprecise Faults Flag Arithmetic Controls All Imprecise Faults 

Trace-Enable Flag Process Controls All Trace Faults 

Trace-Mode Flags Trace Controls All Trace Faults 

3-86 



80960KB PROGRAMMER'S REFERENCE 

The integer and float-point mask bits inhibit faults from being raised for specific fault conditions (Le., 
integer overflow and floating-point overflow, underflow, zero divide, invalid operation, and inexact). 
The use of these masks is discussed in the fault-reference section at the end of this section. Also, the 
floating-point fault masks are described in Chapter 11 in "Exceptions and Fault Handling". 

The no-imprecise-faults (NIF) flag controls the synchronizing of faults for a category of faults called 
imprecise faults. This flag should be set to 1. The function of this flag is described later in the section 
"Precise and Imprecise Faults". 

The trace-mode flags (in the trace controls) and trace-enable flag (in the processor controls) support 
trace faults. The trace-mode flags enable trace modes; the trace-enable flag enables the generation 
of trace faults. The use of these flags is described in the fault reference section on trace faults. Further 
discussion 'of these flags is provided 'in Section 9, "Trace-Enable and Trace-Fault-Pending Flags". 

8.8 SIGNALING A FAULT 

, The processor generates faults implicitly when fault conditions occur and explicitly at the request of 
software. Most faults are generated implicitly. The fault control bits described in the previous section 
allow the implicit generation of some faults to be either enabled (as with the trace faults) or masked 
(as with the floating-point faults). 

8.8.1 Fault-If Instructions 

The fault-if instructions (fauIte, fauItne, fauItI, fauItle, fauItg, fauItge, fauIto, and fauItno) allow 
a fault to be generated explicitly anywhere within an application program, kernel procedure, interrupt 
handler, or fault handler. When one of these instructions is executed, the processor checks the 
condition code bits in the arithmetic controls, then signals a constraint-range fault if the condition 
specified with the instruction is met. 

8.9 FAULT RECORD 

When a fault occurs, the processor records information about the fault in a fault record. The fault 
handler and processor use this information to recover from or correct the fault condition and resume 
execution of the process. Figure 21 shows the structure of the fault record. The use of the fields in 
this record are described in the following paragraphs. 

The type number (byte ordinal) of a fault is stored in the fault-type field; the subtype number or bit 
positions (byte ordinal) is stored in the fault-subtype field. 

The fault-flags field provides a set of general-purpose flags that the processor uses to indicate 
additional information about a particular fault subtype. Most of the faults do not use these flags, in 
which case the flags have no defined values. 

The address-of-the-faulting-instruction field contains the IP of the instruction that caused the fault 
or that was being executed when the fault occurred. 

3-87 



80960KB PROGRAMMER'S REFERENCE 

31 o 

PROCESS CONTROLS 

ARITHMETIC CONTROLS 

~--------~--------~~~~~~--------~ 

o 

4 

24 

36 

FAULT FLAGS FAULT TYPE FAULT SUBTYPE 40 

ADDRESS OF FAULTING INSTRUCTION 44 

~ RESERVED 

Figure 21. Fault Record 

270647-19 

The states of the process controls and arithmetic controls at the time that a fault is generated are stored 
in their respective fields in the fault record. This information is used to resume work on the program 
after the fault has been handled. 

Finally, a three-word fault data field is provided for the fault. The information that is stored in these 
fields depends on the type of fault that occurs. Any part of a fault-data field that is not used for a 
particular fault has no defined value. The information that is stored in these fields for each fault type 
is given in the fault reference section at the end of this section. 

8.9.1 Saved Instruction Pointer 

The saved IP (the RIP that is saved in r2 of the stack frame in use when the fault occurred) is also 
part of the fault information that the processor saves when a fault occurs. This IP generally points 
to the next instruction that the processor would have executed if the fault had not occurred, although 
it may point to the faulting instruction. It is this instruction that the processor begins working on when 
the return from the fault handler is initiated. 

8.9.2 Resumption Record 

If the processor suspends an instruction as the result of a fault, it creates a 48-byte resumption record. 
The criteria that the processor uses to determine whether or not to suspend an instruction and the 
structure of the resumption record are the same as are used when an interrupt occurs. 

3-88 



80960KB PROGRAMMER'S REFERENCE 

8.9.3 Location of the Fault and Resumption Records 

The fault and resumption records are stored in the stack that the processor is using when the fault 
occurs. This stack can be the local stack, the supervisor stack, or the interrupt stack. 

8.10 FAULT HANDLING ACTION 

Once a fault has occurred, the processor saves the program state, calls the fault handler, and restores 
the program state (if this is possible) once the fault recovery action has been completed. No software 
other than the fault-handler procedures is required to support this activity. 

Three different types of implicit procedure calls can be used to invoke the fault handler according 
to the information in the selected fault-table entry: local call, local call through the system procedure 
table, and supervisor call (also through the system procedure table). 

8.10.1 Implicit, Local Call/Return 

When the selected fault-handler entry in the fault table is an entry type 002 (local procedure) the 
processor performs the following action: 

1. The processor stores a fault record as shown in Figure 21 on the top of the stack that the processor 
is currently using. The stack can be the local stack, the supervisor stack, or the interrupt stack. 

2. If the fault caused an instruction to be suspended, the processor includes an instruction 
resumption record on the current stack and sets the resume flag in the save process controls. 

3. The processor creates a new frame on the current stack, with the frame-return status field set to 
001 2• 

4. Using the procedure address from the selected fault-table entry, the processor performs an 
implicit call-extended operation to the fault handler. 

If the fault handler is not able to perform a recovery action, it performs one of the actions described 
under "Possible Fault-Handler Actions". 

If the handler action results in a recovery from the fault, a ret instruction in the fault handler allows 
processor control to return to the program that was being worked on when the fault occurred. On the 
return, the processor performs the following action: 

1. The processor deallocates the stack frame created for the fault handler. 

2. The processor copies the arithmetic controls field from the fault record into the arithmetic 
controls register in the processor. 

3. The processor then resumes work on the program it was working on when the fault occured at 
the instruction in the return IP register. 

3-89 



80960KB PROGRAMMER'S REFERENCE 

8.11.2 Implicit, Local Procedure-Table Call 

When the fault-handler entry selects an entry in the system procedure table (entry type 10) and the 
system-procedure-table entry is for local procedure, the processor performs the same action as is 
described in the previous section for a local procedure call/return. The only difference is that the 
processor gets the address of the fault handler from the system procedure table rather than from the 
fault table. 

8.11.3 Implicit, Supervisor Call/Return 

When the fault-handler entry selects an entry in the system procedure table (entry type 102) and the 
system-procedure-table entry is for a supervisor procedure, the processor performs the same action 
as is described in the previous section for a local procedure call and return, with the exceptions 
described in the following paragraphs. 

On a supervisor fault-handler call, the processor performs the following additional actions: 

1. If the processor is in user mode when the fault occurs, the fault record and resumption record 
are stored in the local stack. The processor then takes the stack pointer from the procedure table 
and switches to the supervisor stack. The execution mode is then set to supervisor. 

2. If the processor is already in supervisor mode when the fault occurs, the fault record is stored 
in the current stack (which is the supervisor stack). The processor then creates a new frame on 
the current stack and begins work on the fault-handler procedure selected from the procedure 
table. 

3. In both of the above cases, the processor copies the state of the trace-control flag (byte 2, bit 1) 
of the procedure table into the trace-enable flag field of the process controls. 

On a return from the fault handler, the processor performs the following additional actions: 

1. If the processor is in supervisor mode prior to the return from the fault handler (which it should 
be), it copies the saved process controls into its internal process controls. 

2. If the resume flag of the process controls is set, the processor reads the resumption record from 
the stack. 

3. The processor then resumes. work on the program at the point it was working on when the fault 
occurred. 

The restoration of the process controls causes any changes in the process controls through the action 
of the fault handler to be lost. In particular, if the ret instruction from the fault handler caused the 
trace-fault-pending flag in the process controls to be set, this setting would be lost on the return. 

3-90 



80960KB PROGRAMMER'S REFERENCE 

8.11.4 Program State After a Fault 

As has been described earlier in this section, faults can occur prior to the execution of the faulting 
instruction (i.e., the instruction that causes the fault), during the instruction, or after the instruction. 
When the fault occurs before the faulting instruction is executed, the instruction can theoretically be 
executed on the return from the fault handler. So, the fault is not accompanied by a change in the 
control flow of the program. 

When a fault occurs during or after the instruction that caused a fault, the fault may be accompanied 
by a change in the program's control flow such that the faulting instruction cannot be reexecuted. 
For example, when an integer-overflow fault occurs, the overflow value is stored in the destination. 
If the destination register was the same as one of the source registers, the source value is lost, making 
it impossible to reexecute the faulting instruction. 

In general, changes in the program's control flow never accompany the following fault types or 
sUbtypes: 

All Operation Subtypes 

Arithmetic Zero-Divide 

All Floating-Point Subtypes Except Floating Inexact 

All Constraint Subtypes 

Pre return Trace 

Changes in the program's control flow always accompany the following fault types and subtypes: 

All Trace Subtypes Except Prereturn Trace 

Integer Overflow 

Floating Inexact 

Changes in the program's control flow mayor may not accompany the following fault types and 
SUbtypes: ' 

Structural 

Bad Access 

The effect that specific fault types have on a program is given in the fault reference section at the end 
of this section under the heading "Program State Changes." 

8.11.5 Return Without Resumption 

There may be situations where the fault handler needs to return to a point in the program other than 
where the fault occurred. This can be done by altering the return IP in the previous frame. However, 

3-91 



80960KB PROGRAMMER'S REFERENCE 

if resumption information was collected with the fault (resulting in the resume flag being set in the 
saved process controls), such a return can cause unpredictable results. 

To predictably perform a return from a fault handler to an alternate point in the program, the· fault 
handler should clear the following information in the process-controls field of the fault record before 
the return: the resume and trace-fault-pending flags; the internal state field. 

Note 

A return of this type can only be performed if the processor is in supervisor mode prior to the return. 

8.12 PRECISE AND IMPRECISE FAULTS 

As described in the Section 2, "Register Scoreboarding," the 80960KB processor is, in some 
instances, able to execute instructions concurrently. When two instructions are being executed 
concurrently, it is possible for them to generate faults simultaneously. When this occurs, one of the 
faults may not be signaled or may be signaled out of order, making it impossible to recover from that 
fault. 

The processor provides two mechanisms to allow the circumstances under which faults are signaled 
to be controlled. These mechanisms are the no imprecise faults flag (NIF flag) in the arithmetic 
controls and the synchronize faults instruction (syncf). The following paragraphs describe how these 
mechanisms can be used. 

Faults are grouped into the following categories: precise, imprecise, and asynchronous. 

Precise faults are those that are intended to be recoverable by software. For any instruction that can 
generate a precise fault, the processor will (1) not execute the instruction if an unfinished prior 
instruction will fault and (2) not execute subsequent out-of-order instructions that will fault. The 
following faults are always precise: . 

• trace 

• protection 

Imprecise faults are those that in some instances are allowed to occur and not be signaled or be 
signaled out of order. These faults include the following: 

operation 

arithmetic 

• floating point 

constraint 

type 

3-92 



inter 80960KB PROGRAMMER'S REFERENCE 

Asynchronous faults are those whose occurrence has no direct relationship to the instruction pointer. 
This category includes the machine fault. 

The NIF flag controls whether or not imprecise faults are allowed. When this flag is set, all faults must 
be precise. In this mode, the ability to execute instructions concurrently is essentially disabled. All 
faults that occur are signaled. 

When the NIF flag is clear, faults in the imprecise category can in some instances occur and not be 
signaled. In this mode, the following conditions hold true: 

1. When an imprecise fault occurs, the saved IP is undefined (but the address of the faulting 
instruction in the fault record is valid) 

2. If instructions are executed concurrently when an imprecise fault occurs, the results produced 
by these instructions are undefined. . 

3. If instructions are executed out-of-order and multiple imprecise faults occur, only one of the 
faults is generated. The one that is selected is not predictable. 

The syncf instruction forces the processor to complete execution of all instructions that occur prior 
to the syncfinstruction and to generate all faults, before it begins work on instructions that occur after 
the syncfinstruction. This instruction has two uses. One use is to force faults to be precise when the 
NIF is clear. The other use is to insure that all instructions are complete and all faults signaled in one 
block of code before execution of another block of code (for example, onAda block boundaries when 
the blocks have different exception handlers). 

The intent of these fault-generating modes is that compiled code should execute with the NIF clear, 
using the syncf instruction where necessary to ensure that faults occur in order. In this mode, 
imprecise faults are considered as catastrophic errors from which recovery is not needed . 

. If recovery from one or more of the imprecise faults is required (for example, a program that needs 
to handle unmasked floating-point exceptions and recover from them) and the fault handler cannot 
be closely coupled with the application to perform recovery even if the faults are imprecise, the NIF 
should be set. Executing with the NIF set will likely lead to slower execution times. 

8.13 FAULT REFERENCE 

This section describes each of the fault types and subtypes and gives detailed information about what 
is stored in the various fields ofthe fault record. The section is organized alphabetically by fault type. 

8.13.1 Fault Reference Notation 

The following paragraphs describe the information that is provided for each fault type. 

3-93 



80960KB PROGRAMMER'S REFERENCE 

8.13.2 Fault Type and Subtype 

The fault -type section gives the number entered in the fault-type field of the fault record for the given 
fault type. The fault-subtype section lists the fault subtypes .and their associated number or bit 
position in the fault-subtype field of the fault record. 

8.13.3 Function 

The function section gives a general description of the purpose of the fault type, then describes the 
purpose of each of the fault subtypes in detail. It also describes how the processor handles each fault 
subtype. 

8.13.4 Fault Record 

The fault record section describes how the flags, fault-data, and address-of-faulting -instruction fields 
of the fault record are used for the fault type and subtypes. 

8.13.5 Saved IP 

The saved IP section describes what value is saved in the RIP register (r2) of the stack frame the 
processor was using when the fault occurred. 

8.13.6 Program State Changes 

The program state changes section describes the effects that the fault subtypes have on the control 
flow of a program. 

3-94 



Arithmetic Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Prog. State Changes: 

80960KB PROGRAMMER'S REFERENCE 

316 

Number 

o 
1 
2 
3-F 

Name 

Reserved 
Integer Overflow 
Arithmetic Zero-Divide 
Reserved 

Indicates that there is a problem with an operand or the result of an 
arithmetic instruction. This fault type applies only to ordinal and 
integer instruction, not floating-point instructions. 

The integer-overflow fault occurs when the result of an integer in­
struction overflows the destination and the integer-overflow mask in 
the arithmetic-controls register is cleared. Here, the n least sig­
nificant bits of the result are stored in the destination, where n is the 
destination size. 

The arithmetic zero-divide fault occurs when the divisor operand of 
an ordinal or integer divide instruction is zero. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted. 

IP for the instruction that would have been executed next, if the 
fault had not occurred. 

A change in the program's control flow accompanies the integer­
overflow fault, because the result is stored in the destination before 
the fault is signaled. The faulting instruction can thus not be 
reexecuted. 

A change in the program's control flow does not accompany the 
arithmetic zero-divide fault, because the fault occurs before the ex­
ecution of the faulting instruction. 

3-95 



Constraint Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Prog. State Changes: 

80960KB PROGRAMMER'S REFERENCE 

516 

Number 

o 
1 
2-F 

Name 

Reserved 
Constraint Range 
Reserved 

Indicates that the processor is either in or not in the required state 
for the instruction to be executed. 

The constraint-range fault occurs when a fault-if instruction is ex­
ecuted and the condition code in the arithmetic controls matches the 
condition required by the instruction. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted 

Not used. 

No changes in the program's control flow accompany the 
constraint-range fault. This fault occurs after the fau,lt-if instruction 
has been executed, but the instruction has no effect on the program 
state. 

3-96 



Floating-Point Faults 

Fault Type: 

Fault Subtype: 

Function: 

80960KB PROGRAMMER'S REFERENCE 

416 

Bit Number 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit4 
Bit 5 
Bits 6 and 7 

Name 

Floating Overflow 
Floating Underflow 
Floating Invalid-Operation 
Floating Zero-Divide 
Floating Inexact 
Floating Reserved-Encoding 
Reserved 

Indicates that there is a problem with an operand or the result of a 
floating-point instruction. Each floating-point fault is assigned a bit 
in the fault-subtype field. Multiple floating-point faults can only 
occur simultaneously, however, with the floating-overflow, 
floating-underflow, and floating-inexact faults. 

The floating-point faults are described in detail in the section in 
Chapter 12 titled "Exceptions and Fault Handling." The following 
paragraphs give a brief description of each floating-point fault. 

A floating-overflow fault occurs when (1) the floating-point over­
flow mask is clear and (2) the infinitely precise result of a floating­
point instruction exceeds the largest allowable finite value for the 
specified destination format. This fault interacts with the floating­
inexact fault (as described in Chapter 12). 

A floating-underflow fault occurs when (1) the floating-point under­
flow mask is clear and (2) the infinitely precise result of a floating­
point instruction is less than the smallest possible normalized, finite 
value for the specified destination format. This fault interacts with 
the floating-inexact fault (as described in Chapter 12). 

The floating invalid-operation fault occurs when (1) the floating­
point invalid-operation mask is clear and (2) one of the source 
operands for a floating-point instruction is inappropriate for the type 
of operation being performed. 

The floating zero-divide fault occurs when (1) the floating-point 
zero-divide mask is clear and (2) the divisor operand of a floating­
point divide instruction is zero. 

The floating-inexact fault occurs when (1) the floating-point inexact 
mask is clear and (2) an infinitely precise result cannot be encoded 
in the format specified for the destination operand. This fault inter­
acts with the floating-overflow and floating-underflow faults (as 
described in Chapter 12). 

The floating reserved-encoding fault occurs when a denormalized 
value is used as an operand in a floating-point instruction and the 
normalizing-mode bit in the arithmetic controls is clear. 

3-97 



inter. 

Fault Record: 

Saved IP: 

Prog. State Changes: 

80960KB PROGRAMMER'S REFERENCE 

Flags: FO - Used if inexact fault occurs in conjunc­
tion with overflow or underflow fault. If set, 
FO indicates that the adjusted result has been 
rounded toward +00; if clear, FO indicates that 
the adjusted result has been rounded toward 
_00. 

Fl - Used with overflow and underflow 
faults only. If set, Fl indicates that the ad­
justed result has been bias adjusted, because 
its exponent was outside the range of the 
extended-real format. 

Fault Data: Used only with overflow and underflow 
faults. Adjusted result is stored in this field 
in extended-real format (as shown in Figure 
12-5). 

Addr. Fault. Inst.: IP for the instruction on which the processor 
faulted 

IP for the instruction that would have been executed next, if the 
fault had not occurred. 

Changes in the program's control flow accompany the floating­
overflow, floating-underflow, and floating-inexact faults, because a 
result is stored in the destination before the fault is signaled. The 
faulting instruction can thus not be reexecuted. 

Changes in the program's contro(flow do not accompany the float­
ing invalid-operation, floating zero-divide, and floating reserved­
encoding faults, because the faults occur before the execution of the 
faulting instruction. 

3-98 



Machine Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 

Prog. State Changes: 

80960KB PROGRAMMER'S REFERENCE 

816 

Number 

o 
I 
2-F 

Name 

Reserved 
Bad Access 
Reserved 

Indicates that the processor has detected a hardware or memory­
system error. 

The bad-access fault is the only one of this fault type. This fault 
occurs whenever an unrecoverable memory error occurs on a 
memory operation. In the 80960KB processor, the processor 
receives a signal on its bad access pin (BADAC) to indicate an 
unrecoverable memory error. Upon receiving this signal, the 
processor signals a machine bad access fault. There is one excep­
tion to this action. The processor will not signal a machine bad 
access fault while executing any of the synchronous load or move 
instructions. Instead, it sets the condition code bits to indicate 
whether or not the memory access was completed successfully. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: Not used. 

Not used. 

This fault may occur at any time. When it does occur, the accom­
panying state of the program's control flow is undefined. As a 
result, the processor is not able to return predictably from the fault 
handler to the point in the program where the fault occurred. 

If this fault occurs during an atomic operation, there is no guarantee 
that the locking mechanism that memory uses for synchronization is 
unlocked. 

3-99 



inter 

Operation Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

80960KB PROGRAMMER'S REFERENCE 

216 

Number 

o 
I 
2 
3 
4 
5-F 

Name 

Reserved 
Invalid Opcode 
Unimplemented 
Reserved 
Invalid Operand 
Reserved 

Indicates that the processor cannot execute the current instruction 
because of invalid instruction syntax or operand semantics. 

The invalid-opcode fault occurs when the processor attempts to ex­
ecute an instruction that contains an undefined opcode or addressing 
mode. 

The unimplemented fault occurs when unaligned memory accesses 
are not allowed and the processor attempts to access an unaligned 
word or group of words in memory. (The 80960KB processor does 
allow unaligned memory accesses, so this fault never occurs.) 

The invalid-operand fault occurs when the processor attempts to 
execute an instruction for which one or more of the operands have 
special requirements and one or more of the operands do not meet 
these requirements. This fault sUbtype is not generated on floating­
point instructions. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the last instruction executed in the 
process. 

Saved IP: . IP for the instruction that would have been executed next, if the 
fault had not occurred. 

Prog. State Changes: A change in the program's control flow does not accompany the 
operation faults, because the faults occur before the execution of the 
faulting instruction. 

3-100 



inter 

Protection Faults 

Fault Type: 

Fault Subtype: 

Function: 

Addr. Fault. Inst.: 

Saved IP: 

Prog. State Changes: 

80960KB PROGRAMMER'S REFERENCE 

716 

Bit Number 

Bit 0 
Bit 1 
Bit 2-7 

Name 

Reserved 
Length 
Reserved 

Indicates that the index operand used in a calls instruction points to 
an entry beyond the extent of the system procedure table. 

Fault Flags: Not used. 

Fault Data: Not used. 

IP for the instruction on which the processor faulted. 

Same as the address-of-faulting-instruction field. 

A change in the program's control flow does not accompany the 
protection length fault. 

3-101 



inter 

Trace Faults 

Fault Type: 

Fault Subtype: 

Function: 

80960KB PROGRAMMER'S REFERENCE 

116 

Bit Number 

Bit 0 
Bit 1 
Bit 2 
Bit 3 
Bit4 
Bit 5 

. Bit 6 
Bit 7 

Name 

Reserved 
Instruction Trace 
Branch Trace 
Call Trace 
Return Trace 
Prereturn Trace 
Supervisor Trace 
Breakpoint Trace 

Indicates that the processor has detected one or more trace events. 
The processor's event tracing mechanism is described in detail in 

. Chapter 10. 

A trace event is the occurrence of a particular instruction or type of 
instruction in the instruction stream. The processor recognizes 
seven different trace events (instruction, branch, call, return, 
prereturn, supervisor, and breakpoint). It detects these events, 
however, only if a mode bit is set for the event in the trace controls 
word, which is cached in the processor chip. If, in addition, the 
trace-enable flag in the process controls is set, the processor 
generates a fault when a trace event is detected. 

The fault is generated following the instruction that causes a trace 
event (or prior to the instruction for the prereturn trace event). 

The following trace modes are available: 

• Instruction - Generate trace event following any instruction. 

• Branch - Generate trace event following any branch instruc­
tion when branch is taken. 

• Call - Generate trace event following any call or branch~and­
link instruction, or implicit procedure call (i.e., call to fault or 
interrupt handler). 

• Return' - Generate trace event following any return instruc­
tion. 

• Prereturn - Generate trace event prior to any return instruc­
tion. 

• Supervisor - Generate trace event following any call-system 
instruction. 

• Breakpoint - Generate trace event following any processor 
action that causes a breakpoint condition. 

There is a trace fault subtype and a bit in the fault-subtype field 
associated with each of these modes. Multiple fault subtypes can 

3-102 



inter 

Fault Record: 

Saved IP: 

Prog. State Changes: 

80960KB PROGRAMMER'S REFERENCE 

occur simultaneously, with the fault-subtype bit set for each sUbtype 
that occurs. . 

When a fault type other than a trace fault occurs during the execu­
tion of an instruction that causes a trace event, the non-trace-fault is 
handled before the trace fault. An exception to this rule is the 
prereturn trace fault. Th~ prereturn trace fault will occur before the 
processor has a chance to detect a non-trace-fault, so it is handled 
first. 

Likewise, if an interrupt occurs during an instruction that causes a 
trace event, the interrupt is serviced before the trace fault is handled. 
Again, the prereturn trace fault is an exception. Since it occurs 
before the instruction, it will be handled before any interrupt that 
might occur during the execution of the instruction. 

Flags: Not used. 

Fault Data: Not used. 

Addr. Fault. Inst.: IP for the instruction that caused the trace 
event, except for the prereturn trace fault.· 
For the prereturn trace fault, this field has no 
defined value. 

IP for the instruction that would have been executed next, if the 
fault had not occurred. 

A change in the program's control flow accompanies all the trace 
faults (except the prereturn trace fault), because the events that can 
cause a trace fault occur after the faulting instruction is completed. 
As a result, the faulting instruction cannot be reexecuted upon 
returning from the fault handler. 

Since the prereturn trace fault occurs before the return instruction 
is executed, a change in the program's control flow does not accom­
pany this fault and the faulting instruction can be executed upon 
returning from the fault handler. 

3-103 



inter 

Type Faults 

Fault Type: 

Fault Subtype: 

Function: 

Fault Record: 

Saved IP: 
-

Prog. State Changes: 

80960KB PROGRAMMER'S REFERENCE 

A16 

Number 

o 
1 
2-F 

Name 

Reserved 
Type Mismatch 
Reserved 

Indicates that an attempt was made to execute the modpc instruc­
tion while the processor was in the user mode. 

Flags: Not used. 

Fault Data: 

Addr. Fault. Inst.: 

Not used. 

Not used. 

IP for the instruction on which the processor 
faulted 

When a type mismatch fault occurs, the accompanying state of the 
program is undefined. The processor is thus not able to return 
predictably from the fault handler to the point in the program where 
the fault occurred. 

3-104 



80960KB PROGRAMMER'S REFERENCE 

9.0 DEBUGGING 

This section describes the tracing facilities of the 80960KB processor, which allow the monitoring 
of instruction execution. 

9.1 OVERVIEW OF THE TRACE-CONTROL FACILITIES 

The 80960KB processor provides facilities for monitoring the activity of the processor by means of 
trace events. A trace event in the 80960KB is a condition where the processor has just completed 
executing a particular instruction or type of instruction, or where the processor is about to execute 
a particular instruction. 

By monitoring trace events, debugging software is able to display or analyze the activity of the 
processor or of a program. This analysis can be used to locate software or hardware bugs or for general 
system monitoring during the development of system or applications programs. 

The typical way to use this tracing capability is to set the processor to detect certain trace events either 
by means of the trace-controls word or a set of breakpoint registers. An alternate method of creating 
a trace event is with the mark and force mark (fmark) instructions. These instructions cause an 
explicit trace event to be generated when the processor detects them in the instruction stream. 

If tracing is enabled, the processor signals a trace fault when it detects a trace event. The fault handler 
for trace faults can then call the debugging monitor software to display or analyze the state of the 
processor when the trace event occurred. 

9.2 REQUIRED SOFTWARE SUPPORT FOR TRACING 

To use the processor's tracing facilities, software must provide trace-fault handling procedures, 
perhaps interfaced with a debugging monitor. Software must also manipulate several control flags 
to enable the various tracing modes and to enable or disable tracing in general. These control flags 
are located in the system-data structures described in the next section. 

9.3 TRACE CONTROLS 

The following flags or fields control tracing: 

Trace controls 

Trace-enable flag in the process controls 

Trace-fault-pending flag in the process controls 

Trace flag (bit 0) in the return-status field of register rO 

Trace-control flag in the supervisor-stack-pointer field of the system table or a procedure table 

3-105 



80960KB PROGRAMMER'S REFERENCE 

9.3.1 Trace-Controls Word 

The trace-controls word is cached internally in the processor. 

The trace controls allow software to define the conditions· under which trace events are generated. 
Figure 22 shows the structure of the trace-controls word. 

31 23222120191817 7"6543210 

INSTRUCTION TRACE MODE 
BRANCH TRACE MODE 
CALL TRACE MODE 

..... ---RETURN TRACE MODE 
...... ---PRERETURN TRACE MODE 

..... ----SUPERVISOR TRACE MODE 
..... -----BREAKPOINTTRACE MODE 

L---------------INSTRUCTION TRACE EVENT 
..... ---------------BRANCH TRACE EVENT 

L----------------CALL TRACE EVENT 
..... ----------------RETURN TRACE EVENT 

..... -----------------PRERETURN TRACE EVENT 
"'-------------------SUPERVISOR TRACE EVENT 

"'--------------------BREAKPOINTTRACE EVENT 

~ RESERVED (INITIALIZE TO 0) 

270647·21 

Figure 22. Trace-Controls Word 

This word contains two sets of bits: the mode flags and the event flags. The mode flags define a set 
of trace modes that the. processor can 66 W use to generate trace events. A mode represents a subset 
of instructions that will cause trace events to be generated. For example, when the call-trace mode 
is enabled, the processor generates a trace event whenever a call or branch-and-link operation is 
executed. To enable a trace mode, the kernel sets the mode flag for the selected trace mode in the trace 
controls. The trace modes are described later in this section. 

The processor uses the event flags to keep track of which trace events (for those trace modes that have 
been enabled) have been detected. 

A special instruction, the modify-trace-controls (modte) instruction, allows software to set or clear 
flags in.the trace controls. On initialization, all the flags in the processor's internal trace controls are 
cleared. The modte instruction can then be used to set or clear trace mode flags as required. 

Software can access the event flags using the modte instruction, however, there is no reason to. The 
processor modifies these flags as part of its trace-handling mechanism. 

Bits 0, 8 through 0 6, and 24 through 31 of the trace controls are reserved. Software should initialize 
these bits to zero and not modify them. 

3-106 



80960KB PROGRAMMER'S REFERENCE 

9.3.2 Trace-Enable and Trace-Fault-Pending Flags 

The trace-enable flag and the trace-fault-pending flag, in the process controls (shown in Figure 14), 
control tracing. The trace-enable flag enables the processor's tracing facilities. When this flag is set, 
the processor generates trace faults on all trace events. 

Typically, software selects the trace modes to be used through the trace controls. It then sets the trace­
enable flag when tracing is to begin. This flag is also altered as part of some of the call and return 
operations that the processor carries out, as described at the end of this section. 

The trace-fault-pending flag allows the processor to keep track of the fact that an enabled trace event 
has been detected. The processor uses this flag as follows. When the processor detects an enabled 
trace event, it sets this flag. Before executing an instruction, the processor checks this flag. If the flag 
is set, it signals a trace fault. By providing a means of recording the occurrence of a trace event, the 
trace-fault-pending flag allows the processor to service an interrupt or handle a fault otherthan a trace 
fault, before handling the trace fault. Software should not modify this flag. 

9.3.4 Trace Control on Supervisor Calls 

The trace flag and the trace-control flag allow tracing to be enabled or disabled when a call-system 
instruction (calls) is executed that results in a switch to supervisor mode. This action occurs 
independent of whether or not tracing is enabled prior to the call. 

When a supervisor call is executed (calls instruction that references an entry in the system procedure 
table with an entry type 112), the processor saves the current state of the trace-enable flag (from the 
process controls) in the trace flag (bit 0) of the return-status field of register rD. 

Then, when the processor selects the supervisor procedure from the procedure table, it sets the trace­
enable flag in the process controls according to the setting in the trace-control flag in the procedure 
table (bit 0 of the word that contains the supervisor-stack pointer). 

On a return from the supervisor procedure, the trace-enable flag in the process controls is restored 
to the value saved in the return-status field of register rOo 

9.4 TRACE MODE 

The following trace modes can be enabled through the trace controls: 

Instruction trace 

Branch trace 

Call trace 

Return trace 

Preretum trace 

3-107 



80960KB PROGRAMMER'S REFERENCE 

Supervisor trace 

Breakpoint trace 

These modes can be enabled individually or several modes can be enabled at once. Some of these 
modes overlap, such as the call-trace mode and the supervisor-trace mode. The section "Handling 
Multiple Trace Events" describes what the processor does when multiple trace events occur. 

The following sections describe each of the trace modes. 

9.4.1 Instruction Trace 

When the instruction-trace mode is enabled, the processor generates an instruction-trace event each 
time an instruction is executed. This mode can be used within a debugging monitor to single-step the 
processor. 

9.4.2 Branch Trace 

When the branch-trace mode is enabled, the processor generates an branch-trace event any time a 
branch instruction that branches is executed. A branch-trace event is not generated for conditional­
branch instructions that do not branch. Also, branch-and-link, call, and return instructions do not 
cause branch-trace events to be generated. 

9.4.3 Call Trace 

When the call-trace mode is enabled, the processor generates a call-trace event any time a call 
instruction (call, calix, or calls) or a branch-and-link instruction (bal or balx) is executed. An implicit 
call, such as the action used to invoke a fault handler or an interrupt handler; also causes a call-trace 
event to be generated. 

When the processor detects a call-trace event, it also sets the prereturn-trace flag (bit 3 of register rO) 
in the new frame created by the call operation or in the current frame if a branch-and-link operation 
was performed. The processor uses this flag to determine whether or not to signal a prereturn-trace 
event on a return instruction. 

9.4.4 Return Trace 

When the return-trace mode is enabled, the processor generates a return-trace event any time a ret 
instruction is executed. 

9.4.5 Prereturn Trace 

The prereturn-trace mode causes the processor to generate a prereturn-trace event prior to the 
execution of any ret instruction, providing the prereturn-trace flag in rO is set. (Prereturn tracing 
cannot be used without enabling call tracing.) 

3-108 



80960KB PROGRAMMER'S REFERENCE 

The processor sets the prereturn-trace flag whenever it detects a call-trace event (as described above. 
forthe call-trace mode). This flag performs a prereturn-trace-pending function. If another trace event 
occurs at the same time as the prereturn-trace event, the prereturn-trace flag allows the processor to 
fault on the non-prereturn-trace event first, then come back and fault again on the prereturn-trace 
event. The prereturn trace is the only trace event that can cause two successive trace faults to be 
generated between instruction boundaries. 

9.4.6 Supervisor Trace 

When the supervisor-trace mode is enabled, the processor generates a supervisor-trace event any time 
(1) a call-system instruction (calls) is executed, where the procedure table entry is a supervisor 
procedure, or (2) when a ret instruction is executed and the return-status field is set 0 1 O2 or 011 2 (i.e., 
return from supervisor mode). 

This trace mode allows a debugging program to determine the boundaries of kernel procedure calls 
within the instruction stream. 

9.4.7 Breakpoint Trace 

The breakpoint-trace mode allows trace events to be generated at places other than those specified 
with the other trace modes. This mode is used in conjunction with the mark and force-mark (fmark) 
instructions, and the breakpoint registers. 

The mark and fmark instructions allow breakpoint-trace events to be generated at specific points 
in the instruction stream. When the breakpoint-trace mode is enabled, the processor generates a 
breakpoint-trace event any time it encounters a mark instruction. The fmark causes the processor 
to generate a breakpoint-trace event regardless of whether the breakpoint-trace mode is enabled or 
not. 

The processor has two, one-word breakpoint registers, designated as breakpoint 0 and break-point 
1. Using the set-breakpoint-register lAC, one instruction pointer can be loaded into each register. The 
processor then generates a breakpoint trace any time it executes an instruction referenced in a 
breakpoint register. 

9.5 TRACE-FAULT HANDLER 

A fault handler is a procedure that the processor calls to handle faults that occur. The requirements 
for fault handlers are given in Section 8, "Fault-Handler Procedures." 

A trace-fault handler has one additional restriction. It must be called with an implicit supervisor call, 
and the trace-control flag in the system-procedure-table entry must be clear. This restriction insures 
that tracing is turned off when a trace fault is being handled, which is necessary to prevent an endless 
loop. 

3-109 



inter 80960KB PROGRAMMER'S REFERENCE 

9.6 SIGNALING A TRACE EVENT 

To summarize the information presented in the previous sections, the processor signals a trace event 
when it detects any of the following conditions: 

An instruction included in a trace-mode group is executed or about to be executed (in the case 
of a prereturn trace event) and the trace mode for that instruction is enabled. 

An implicit call operation has been executed and the call-trace mode is enabled. 

A mark instruction has been executed and the breakpoint-trace mode is enabled. 

An fmark instruction has been executed. 

An instruction specified in a breakpoint register is executed and the breakpoint-trace mode is 
enabled. 

When the processor detects a trace event and the trace-enable flag in the process controls is set, the 
processor performs the following action: 

1. The processor sets the appropriate trace-event flag in the trace controls. If a trace event meets 
the conditions of more than one of the enabled trace modes, a trace-event flag is set for each trace 
mode condition that is met. 

2. The processor sets the trace-fault-pending flag in the process controls. 

Note 

The processor may set a trace-event flag and the trace-fault-pending flag before it has completed execution 
of the instruction that caused the event. However, the processor only handles trace events in between the 
execution of instructions. 

If, when the processor detects a trace event, the trace-enable flag in the process controls is clear, the 
processor sets the appropriate event flags, but does not set the trace-fault-pending flag. 

9.7 HANDLING MULTIPLE TRACE EVENTS 

If the processor detects multiple trace events, it records one or more of them based on the following 
precedence, where 1 is the highest precedence: 

1. Supervisor-trace event 

2. Breakpoint- (from mark or fmark instruction, or from a breakpoint register), branch-, call-, or 
return-trace event 

3. Instruction-trace event 

When multiple trace events are detected, the processor may not signal each event; however, it will 
signal at least the one with the highest precedence. 

3-110 



80960KB PROGRAMMER'S REFERENCE 

9.8 TRACE HANDLING ACTION 

Once a trace event has been signaled, the processor determines how to handle the trace event, 
according to the setting of the trace-enable and trace-fault-pending flags in the process controls and 
to other events that might occur simultaneously with the trace event such as an interrupt or a non­
trace fault. 

The following sections describe how the processor handles trace events for various situations. 

9.8.1 Normal Handling of Trace Events 

Prior to executing an instruction, the processor performs the following action regarding trace events: 

1. The processor checks the state of the trace-fault pending flag. If this flag is clear, the processor 
begins execution of the next instruction. If the flag is set, the processor performs the following 
actions. 

2. The processor checks the state of the trace-enable flag. If the trace-enable flag is clear, the 
processor clears any trace event flags that have been set, prior to starting execution of the next 
instruction. If the trace-enable flag is set, the processor performs the following action. 

3. The processor signals a trace fault and begins the fault handling action, as described in Section 
8. 

9.8.2 Prereturn Trace Handling 

The processor handles a prereturn-trace event the same as described above except when it occurs at 
the same time as a non-trace fault. Here, the non-trace fault is handled first. 

On returning from the fault handler for the non-trace fault, the processor checks the prereturn-trace 
flag in register rOo If this flag is set, the processor generates a prereturn-trace event, then handles it 
as described above. 

9.8.3 Tracing and Interrupt Handlers 

When the processor invokes an interrupt handler to service an interrupt, it disables tracing. It does 
'this by saving the current state of the process controls, then clearing the trace-enable and trace-fault­
pending flags in the current process controls. 

On returning from the interrupt handler, the processor restores the process controls to the state they 
were in prior to handling the interrupt, which restores the state of the trace-enable and trace-fault­
pending flags. If these two flags were set prior to calling the interrupt handler, a trace fault will be 
signaled on the return from the interrupt handler. 

3-111 



S0960KB PROGRAMMER'S REFERENCE 

9.S.4 Tracing and Fault Handlers 

The processor can invoke a fault handler with either an implicit local call or an implicit supervisor 
call. On a local call, the trace-enable and trace-fault-pending flags are neither saved on the call nor 
restored on the return. The state of these flags on the return is thus dependent on the action of the fault 
handler. 

On a supervisor call, the trace-enable and trace-fault-pending flags are saved, as part of the. saved 
process controls, and restored on the return. So, if these two flags were set prior to calling the fault 
handler, a trace fault will be signaled on the return from the fault handler. 

Note 

On a return from an interrupt handler or a fault handler (other than the trace·fault handler), the trace-fault­
pending flag is restored. If this flag is set as a result of the handler's ret instruction, the detected trace 
event is lost. . 

1 O.INSTRUCTION SET REFERENCE 

This section provides detailed information about each of the instructions for the 80960KB processor. 
To provide quick access to information on a particular instruction, the instructions are listed 
alphabetically by assembly-language mnemonic. An explanation of the format and abbreviations 
used in this section is given later. 

10.1 INTRODUCTION 

The infornlation in this section is oriented toward programmers who are writing assembly-language 
code for the 80960KB processor. The information provided for each instruction includes the 
following: 

Alphabetic reference 

Assembly-language mnemonic and name 

Assembly-language format 

Description of the instruction's operation 

Action the instruction carries olit when executed (generally presented in the form of an 
algorithm) 

Faults that can occur during execution 

Assembly-language example 

Opcode and instruction format 

Related instructions 

Additional information about the instruction set can be found in the following sections and 
appendices in this chapter: 

3-112 



inter 80960KB PROGRAMMER'S REFERENCE 

Section 5 - Summary of the instruction set by group and description of the assembly-language 
instruction format 

Appendix A - Instruction Quick Reference 

Appendix B - Machine-Level Instruction Formats 

10.2 NOTATION 

To simplify the presentation ofinformation about the instructions, a simple notation has been adopted 
in this section. The following paragraphs describe this notation. . 

10.2.1 Alphabetic Reference 

The instructions are listed alphabetically by assembly-language mnemonic. If several instructions 
are related and fall together alphabetically, they are described as a group on a single page. 

The reference at the top of each page gives the assembly-language mnemonics for the instructions 
covered on that page (e.g., subc). Occasionally, there are so many instructions covered on the page 
that it is not practical to give all the mnemonics in the page reference. In these cases, the name of the 
instruction group is given in capital letters (e.g., BRANCH or FAULT IF). A box around the 
alphabetic reference indicates that the instruction or group of instructions are extensions to the 80960 
architecture instruction set. 

10.2.3 Mnemonic 

The Mnemonic section gives the complete mnemonic (in bold-face type) and instruction name for 
each instruction covered on the page, for example: 

subi Subtract Integer 

10.2.4 Format 

The Format section gives the assembly-language format of the instruction and the type of operands 
allowed. The format is given in two or three lines. The following is an example of a two line format: 

sub* srcl 

reg/lit 

src2, dst 

reg/lit reg 

The first line gives the assembly-language mnemonic (bold-face type) and the operands (italics). 
When the format is used for two or more instructions, an abbreviated form of the mnemonic is used. 
The "*,, sign at the end of the mnemonic indicates that the mnemonic has been abbreviated. 

The operand names are designed to describe the functions ofthe operands (e.g., src,len, mask). 

3-113 



80960KB PROGRAMMER'S REFERENCE 

The second line of the fonnat shows what is allowed to be entered for each operand. The notation 
used on this line is as follow&: 

reg Global (gO ... gS) or local (rO ... rS) register 

freg Global (gO ... gS) or local (rO ... rS) register, or floating-point (fpO ... fp3) 
register, where the registers contain floating-point numbers 

lit Integer or ordinal literal of the range 0 ... 31 

flit Floating-point literal of value 1.0 or 0.0 

disp. Signed displacement of range _222 ••• (222 - 1) 

mem Address defined with the full range of addressing modes 

In some cases, a third line will be added to show specifically what will be in a register or memory 
location. For example, it may be useful to know that a register is to contain an address. The notation 
used in this line is as follows: 

addr Address 

efa Effective address 

10.2.5 Description 

The Description section describes what the instruction does and the functions of the operands. It also 
gives programming hints when appropriate. 

10.2.6 Action 

The Action section gives an algorithm written in a pseudo-code that describes in detail what actions 
the processor takes when executing the instruction and the precise order of these actions. The main 
purpose of this section is to show the possible side effects of the instruction. The following is an 
example of the action algorithm for the alterbit instruction: 

if (AC.cc and 2#010#) = 0 

then dist. ~ src and not (2A(bitpos mod 32»; 

else dst ~ src or 2A(bitpdS mod 32); 

end if; 

In these action statements, the tenn AC.cc means the condition-code bits in the arithmetic controls. 
The notation 2#Value# means that the value enclosed in the "#" signs is in base 2. 

10.2.7 Faults 

The Faults section lists the faults that can be signaled as the result of execution of the instruction. 
Faults listed with all-capital letters refer to a group of faults; faults listed with initial-capital letters 
refer to a specific fault. 

3-114 



80960KB PROGRAMMER'S REFERENCE 

All instructions can signal a group of general faults which are referred to as STANDARD FAULTS. 
The standard faults include the trace-instruction and machine-bad-access faults. In addition, for all 
instructions have a MEM machine-format (such as load, store, call extended), the invalid-opcode and 
operation-unimplemented faults are standard faults. 

The following list shows the various fault groups and the individual faults in each group: 

TRACE FAULT 

Instruction Trace 

Branch Trace 

Call Trace 

Return Trace 

Pre return Trace 

Supervisor Trace 

Breakpoint Trace 

OPERATION 

Invalid Opcode 

Unimplemented 

Invalid Operand 

ARITHMETIC 

Integer Overflow 

Arithmetic Zero-Divide 

FLOATING-POINT 

Floating Overflow 

Floating Underflow 

Floating Invalid-Operation 

Floating Zero-Divide 

Floating Inexact 

Floating Reserved-Encoding 

CONSTRAINT 

Constraint Range 

Privileged 

3-115 



80960KB PROGRAMMER'S REFERENCE 

PROTECTION 

Segment Length 

MACHINE 

Bad Access 

TYPE 

Type Mismatch 

10.2.8 Example 

The Example section gives an assembly-language example of an application of the instruction. 

10.2.9 Opcode and Instruction Format 

The Opcode and Instruction Format section gives the opcode and machine language instruction 
format for each instruction, for example: 

subi 593 REG 

The opcode is given in hexadecimal format. 

The machine language format is one of four possible formats: REG, COBR, CTRL, and MEM. Refer 
to Appendix B for more information on the machine-language instruction formats. 

10.2.10 See Also 

The See Also section gives the mnemonics of related instructions, which can then be looked up 
alphabetically in this section for comparison. For instructions that are grouped on one page (such as 
addr and addrl) only the first mnemonic is given. 

10.2 INSTRUCTION 

This section contains reference information on the processor's instructions. It is arranged alphabeti­
cally by instruction or instruction group. 

3-116 





Mnemonic: addc 

Format: addc 

80960KB PROGRAMMER'S REFERENCE 

Add Ordinal With Carry 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

addc 

Description: Adds the src2 and src1 values, and bit 1 of the condition code (used here as a 
carry in), and stores the result in dst. ". If the ordinal addition results in a carry, 
bit 1 of the condition code is set; otherwise, bit 1 is cleared. If integer 
additiOl;1 results in an overflow, bit Oof the condition code is set; otherwise, 
bit 0 is· cleared. Regardless of the results of the addition, bits 0 and 1 of the 
arithmetic controls are always written. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The addc instruction can be used for either ordinal or integer arithmetic. The 
instruction does not distinguish between ordinal and integer source operands. 
Instead, the processor evaluates the result for both data types and sets bits 0 
and 1 of the condition code accordingly. 

An integer overflow fault is never signaled with this instruction. 

# Let the value of the condition code be xCx. 
dst ~ src2 + src1 + C; 
AC.cc ~ 2#OCV#; 
# C is carry from ordinal addition. 
# V is 1 if integer addition would have generated an overflow. 

STANDARD 

# Example of double-precision arithmetic 
# Assume 64-bit source operands 
# in gO,gl and g2,g3 
cmpo 1, 0 # clears Bit 1 (carry bit) of 

# the AC.cc 
addc gO, g2, gO # add low-order 32 bits; 

# gO ~ g2 + gO + Carry Bit 
addc gl, g3, gl # add. high-order 32 bits; 

# gl ~ g3 + gl + Carry Bit 
# 64-bit result is in gO, gl 

addc 5BO REG 

addo, subc 

3·118 



80960KB PROGRAMMER'S REFERENCE 

addi, addo 

Mnemonic: 

Format: 

addi 
addo 

add* 

Add Integer 
Add Ordinal 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Adds the src2 and srcl values and stores the result in dst. 

Action: dst f- src2 + srcl; 

Faults: 

Example: 

Opcode: 

See Also: 

STANDARD 

Integer Overflow 

addi r4, g5, r9 

addi 
addo 

591 
590 

addc, addr, subi, subo 

Refer to discussion of faults at the begin­
ning of this chapter. 

Result is toolaige for destination format. 
This fault is signaled only when execut­
ing the addi instruction and if both of the 
following conditions are met: (1) the 
integer-overflow mask in the arithmetic­
controls registers is clear and (2) the 
source operands have like signs and the 
sign of the result operand is different 
than the signs of the source operands. 

# r9 f- g5 + r4 

REG 
REG 

3-119 



inter 80960KB PROGRAMMER'S REFERENCE 

I addr, addrll 

Mnemonics: addr Add Real 
addrl 

Format: addr* 

Add Long Real 

srci, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Adds the src2 and srci values and stores the result in dst. 

Src2 

Action: 

. -co 

-F 

-0 

+0 

+F 

+co 

For the addrl instruction, if the srci, src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Alsq, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when adding various classes. 
of numbers, assuming that neither overflow nor underflow occurs. 

Srcl 

-co -F -0 +0 +F +co NaN 

-co -co -co -co -co * NaN 

-co -F sre2 sre2 ±For ±O +co NaN 

-co srel -0 ±O srel +co NaN 

-co srel ±O +0 srel +co NaN 

-co ±For ±O sre2 sre2 +F +00 NaN 

* +00 +co +co +00 +00 NaN 

NaN NaN NaN NaN NaN NaN NaN NaN 

Notes: . 

F 
• 

Means finite-real number 
Indicates floating invalid-operation exception 

When the sum of two operands with opposite signs is zero, the result is +0, 
except for the round toward -00 mode, in which case, the result is -0. When 
zero is added to itself (e.g. srci + srci, where srci is 0), the result retains the 
sign of the source. 

dst ~ src2 + srci; 

3-120 



inter 

Faults: 

Example: 

Opcode: 

. See Also: 

80960KB PROGRAMMER'S REFERENCE 

STANDARD 

Floating Reserved Encoding 

I addr, addrll 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact . 

addrl g6, g8, fp3 

addr 
addrl 

addi, subr 

78F 
79F 

Result is too large for destination format. 

Normalized result is too small for des­
tination format. 

Source operands are infinities of unlike 
sign. 

One or more operands is an SNaN value. 

Result cannot be represented exactly in 
destination format. 

Floating overflow occurred and the over­
flow exception was masked. 

#fp3 ~ g6,g7 + g8,g9 

REG 
REG 

3-121 



alterbit 

Mnemonic: alterbit 

Format: alterbit 

80960KB PROGRAMMER'S REFERENCE 

Alter Bit 

bitpos, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Description: Copies the src value to dst with one bit altered. The bitpos operand specifies 
the bit to be changed; the condition code determines the value the bit is to be 
changed to. If the condition code is XIX2, the selected bit is set; otherwise, 
it is cleared. 

Action: if(AC.cc and 2#010#) = 0 
then dst f- src and not (2A(bitpos mod 32)); 
else dst f- src or2A(bitpos mod 32); 

end if; 

Faults: STANDARD 

Example: # assume condition code is 2#010# 
alterbit 24, g4, g9 # g9 f- g4, with bit 24 set 

Opcode: alterbit 58F REG 

See Also: checkbit, c1earbit, notbit, set bit 

3-122 



inter 80960KB PROGRAMMER'S REFERENCE 

and, andnot 

Mnemonics: and And 
and not And Not 

Format: and srcl, src2, dst 
reg/lit reg/lit reg 

andnot src1, src2, dst 
reg/lit reg/lit reg 

Description: Perfonns a bitwise AND (and instruction) or AND NOT (andnot 
instruction) operation on the src2 and src1 values and stores the result in dst. 
Note in the action expressions below, the src2 operand comes first, so that 
with the andnot instruction the expression is evaluated as 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

{src2 andnot (src1)} 

rather than 

{src1 andnot (src2) }. 

and: dst ~ src2 and src1; 

and not: dst ~ src2 and not (src1); 

STANDARD 

and O·x17, g8, g2 
andnot r3, r12, r9 

and 
andnot 

581 
582 

# g2 ~ g8 AND Ox17 
# r9 ~ r12 AND NOT r3 

REG 
REG 

nand,nor, not, notand,notor,or, ornot, xnor,xor 

3-123 



atadd 

Mnemonic: atadd 

Format: atadd 

80960KB PROGRAMMER'S REFERENCE 

Atomic Add 

src!dst, 
reg 
addr 

src, 
reg/lit 

dst 
reg 

Description: Adds the src value (full word) to the value in the memory location specified 
with the src!dst operand. The initial value from memory is stored in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The read and write of memory are done atomically (i.e., other processors are 
prevented from accessing the word of memory specified with the src!dst 
operand until the operation has been completed). 

The memory location in src!dst is the address of the first byte (least sig­
nificant byte) of the word. The address is automatically aligned to a word 
boundary. 

tempa f- src!dst and not (3); # force alignment to word boundary 
temp f- atomic_read (tempa); 
atomic_write (tempa) f- temp + src; 
dst f- temp; 

STANDARD 

atadd r8, r2, rll # r8 f- r2 + address r8, 
# where r8 specifies the 
# address of a word in 
# memory; rl1 f- initial 
# value stored at address 
# r8 in memory 

atadd 612 REG 

atmod 

3-124 



80960KB PROGRAMMER'S REFERENCE 

! atanr, atanrl! 

Mnemonics: atanr Arctangent Real 
Arctangent Long Real atanrl 

Format: atanr* srcl, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Calculates the arctangent of the quotient of src21srcl and stores the result in 
dst. The result is returned in radians and is in the range of -It to +1t, in­
clusive. The sign of the result is always the sign of src2. 

Src2 

-00 

-F 

-0 

+0 

+F 

+00 

For the atanrl instruction, if the srcl, src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

These instructions are commonly used as part of an algorithm to convert 
rectangular coordinates to polar coordinates. They can also be used to imple­
ment the FORTRAN intrinsic functions AT AN and AT AN2. If srcl is the 
floating-point literal value + 1.0, then these instructions return a result in the 
range of -1t/2 to +1t/2. 

The following table gives the range of results for various values of src2 and 
src1 , assuming that neither overflow nor underflow occurs. 

Srcl 

-00 -F -0 +0 +F +00 NaN 

-3n/4 -n/2 -n/2 -n/2 -n/2 -n/4 NaN 

-n -n to -n/2 -n/2 -n/2 -n/2 to -0 -0 NaN 

-n -n -n -0 -0 -0 NaN 

+n +n +n +0 +0 +0 NaN 

+n +n to +n/2 r+- n/2 +n/2 + n/2 to +0 +0 NaN 

+3n/4 +n/2 +n/2 +n/2 + n/2 +n/4 NaN 

NaN NaN NaN NaN NaN NaN NaN NaN 

Notes: 

F Means finite· real number. 

3-125 



80960KB PROGRAMMER'S REFERENCE 

! atanr, atanrl! 

Action: 

Faults: 

Example: 

Opcode: 

dst ~ arctan (src2/srcl); 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

Result is too small for destination format. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

atanrl g8, g10, fp3 # fp3 ~ 
# arctan (g10,gll/g8,g9) 

atanr1 1.0, gO, gO # gO,gl ~ arctan (gO,gl) 

atanr 
atanrl 

680 
690 

REG 
REG 

See Also: tanr 

3-126 



inter 

Mnemonic: atmod 

Format: atmod 

80960KB PROGRAMMER'S REFERENCE 

Atomic Modify 

src, 
reg 
addr 

mask, 
reg/lit 

srcldst 
reg 

atmod 

Description: Copies the srcldst value into the memory location specified in src. The bits 
set in the mask operand select the bits to be modified in memory. The initial 
value from memory is stored in src!dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The read and write of memory are done atomically (i.e., other processors are 
prevented from accessing the word of memory specified with the srcldst 
operand until the operation has been completed). 

The memory location in src is the address of the first byte (least significant 
byte) of the word to be modified. The address is automatically aligned to a 
word bouridary. 

tempa ~ src and not (3); # force alignment to word boundary 
temp ~ atomic_read (tempa); 
atomic_write (tempa) ~ (src/dst and mask) 

or (temp and not(mask»; 
src!dst ~ temp; 

STANDARD 

atmod g5, g7, glO # g5 ~ g5 masked by g7, 
# where g5 specifies the 
# address of a word in 
# memory; 
# glO ~ initial value 
# stored at address g5 
# in memory 

atmod 610 REG 

atadd 

3-127 



Intel" 

bal, balx 

Mnemonic: 

Format: 

bal 
balx 

bal 

balx 

80960KB PROGRAMMER'S REFERENCE 

Branch And Link 
Branch And Link Extended 

targ 
disp 

targ, 
mem 

dst 
reg 

Description: Stores the address of the next instruction (the instruction following the bal or 
balx instruction) and branches to the instruction specified with the targ 
operand. 

With the bal instruction, the address of the next instruction is stored in 
register g 14. The targ operand can be either a label or an absolute address 
that specifies the IP of the target instruction. This value can be no farther 
than _223 to (223 - 4) from the current IP. 

The balx instruction performs almost the same operation as the bal instruc­
tion except that the target instruction can be farther than _223 to (223 - 4) 
from the current IP. With the balx instruction, the address of the next 
instruction is stored in dst. The targ operand is a memory type, which 
allows the full range of addressing modes to be used to specify the IP of the 
targetinstruction. Here, the "IP + displacement" addressing mode allows the 
instruction to be IP-relative. Indirect branching can be performed by placing 
the target address in a register and then using one of the register-indirect 
addressing modes. . 

Refer to Chapter 5 for a complete discussion of the addressing modes avail­
able with memory-type operands. 

Note 

At the machine level, the bal instruction uses the CTRL instruction format. 
With this format, the target instruction for the branch is specified by means 
of a word-displacement (represented by displacement in the following ac­
tion statement for the bal instruction), which can range from _221 to (221 -
1). To determine the IP of the target instruction, the processor converts this 
displacement value to a byte displacement (i.e., multiplies the value by 4). 
It then adds the resulting byte displacement to the current IP. 

3-128 



inter 

Action: 

Faults: 

Example: 

Opcode: 

80960KB PROGRAMMER'S REFERENCE 

bal, balx 

To allow labels or absolute addresses to be used in the assembly-language 
version of the bal instruction, the Intel 80960KB Assembler performs the 
following calculation to convert the targ value in an assembly-language 
instruction to the displacement value required by the machine instruction 
format: 

displacement = (targ/4) - IP 

For further information about the CTRL instruction format, refer to Appen­
dixB. 

014 ~ IP + 4; # destination next IP is always g14 
IP ~ IP +. targ; # resume execution at the new IP 

balx: dst ~ IP + inst length; # instruction length 
# is 4 or 8 bytes 

. IP ~ targ; # resume execution at the new IP 

STANDARD 

bal xyz . # IP ~ xyz; 

balx (g2), g4 # IP ~ (g2); 

bal 
balx 

OB 
85 

# address of return instruction 
# is stored in g4; example of 
# indirect addressing. 

CTRL 
MEM 

See Also: b, bx 

3-129 



inter 

b,bx 

Mnemonic: 

Format: 

b 
bx 

b 

bx 

80960KB PROGRAMMER'S,REFERENCE 

Branch 
Branch Extended 

targ 

targ 
mem 

Description: Branches to the instruction specified with the targ operand. 

With the b instruction, the targ operand can be either a label or an absolute 
address that specifies the IP of the target instruction. This value can be no 
farther than _223 to (223 - 4) from the current IP. 

The bx instruction performs the same operation as the b instruction except 
that the target instruction can be farther than _223 to (223 - 4) from the current 
IP. With the bx instruction, the targ operand is a memory type, which allows 
the full range of addressing modes to be used to specify the IP of the target 
instruction. Here, the "IP + displacement" addressing mode allows the in­
struction to be IP-relative. Indirect branching can be performed by placing 
the target address in a register and then using one of the register-indirect 
addressing modes. 

Refer to Chapter 5 for a complete discussion of the addressing modes avail­
able with memory-type operands, 

Note 

At the machine level, the b instruction uses the CTRL instruction fonnat. 
With this fonnat, the target instruction for the branch is specified by means 
of a word-displacement (represented by displacement in the following ac­
tion statement for the b instruction), which can range from _221 to (221 - 1). 
To detennine the IP of the target instruction, the processor converts this 
displacement value to a byte displacement (i.e., multiplies the value by 4). 
It then adds the resulting byte displacement to the current IP, 

To allow labels or absolute addresses to be used in the assembly-language 
version of the b instruction, the Intel 80960KB Assembler perfonns the 
following calculation to convert the targ value in an assembly-language 
instruction to the displacement value required by the machine instruction 
fonnat: 

displacement = (targ/4) - IP 

For further infonnation about the CTRL instruction fonnat, refer to Appen­
dix B, 

3-130 



inter 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

b,bx 

b: IP ~ IP + displacement; # resume execution at the new IP 

bx: IP ~ targ; # resume execution at the new IP 

STANDARD 

b xyz # IP ~ xyz; 

bx 1332 (ip) # IP ~ IP + 1332; 

b 
bx 

08 
84 

# this example uses ip-relative 
# addressing. 

CTRL 
MEM 

bal, balx, BRANCH IF, COMPARE INTEGER AND BRANCH, COM­
PARE ORDINAL AND BRANCH 

3-131 



intel" 

bbc,bbs 

Mnemonic: 

Format: 

bbc 
bbs 

80960KB PROGRAMMER'S REFERENCE 

Check Bit and Branch If Clear 
Check Bit and Branch If Set 

bitpos, 
reg/lit 

src, 
reg 

targ 

Description: Checks the bit in src (designated by bitpos) and sets the condition code in the 
arithmetic controls according to the value found. The processor then per­
forms a conditional branch based on the value of the condition code. 

For the bbc instruction, if the selected bit in src is clear, the processor sets 
the condition code to 0102 and branches to the instruction specified with the 
targ operand; otherwise, it sets the condition code to 0002 and goes to the 
next instruction. 

For the bbs instruction, if the selected bit is set, the processor sets the con­
dition code to 0102 and branches to targ; otherwise, it sets the condition code 
to 0002 and goes to the next instruction. 

When using the Intel 80960KB ~ssembler, the targ o~erand can be either a 
label or an absolute address that IS no farther than _21 to (212 - 4) from the 
current IP. 

Note 

At the machine level, the bbc and bbs instructions use the COBR instruc­
tion format. With this format, the target instruction for the branch is 
specified by means of a word-displacement (represented by displaceml!nt in 
the following action statement), which can range from _2 10 to (210 - 1). To 
determine the IP of the target instruction, the processor converts this 
displacement value to a byte displacement (i.e., multiplies the value by 4). 
It then adds the resulting byte displacement to the IP of the next instruction. 

To allow labels or absolute addresses to be used in the assembly-language 
versions of the bbc and bbs instructions, the Intel 80960KB Assembler 
performs the following calculation to convert the targ value in an assembly­
language instruction to the displacement value required by the machine 
instruction format: 

displacement = (targ/4) - (IP + 4) 

For further information about the COBR instruction format, refer to Appen­
dix B. 

3-132 



80960KB PROGRAMMER'S REFERENCE 

bbc,bbs 

Action: bbc: 

Faults: 

Example: 

Opcode: 

See Also: 

if (src and 2"(bitpos mod 32)) = 0 
then AC.cc f- 2#010#; 

IP f- IP + 4 + (displacement * 4); 
# resume execution at the new IP 

else AC.cc f- 2#000#; 
IP f- IP + 4; # resume execution at the next IP 

end if; 

bbs: 

if (src and 2"(bitpos mod 32)) = 1 
then AC.cc f- 2#010#; 

IP f- IP + 4 + (displacement * 4); 
# resume execution at the new IP 

else AC.cc f- 2#000#; 
IP f- IP + 4; # resume execution at the next IP 

erid if; 

STANDARD 

# assume bit 10 of r6 is clear 
bbc 10, r6, xyz # b~t 10 of r6 is checked 

# and found clear; 

bbc 
bbs 

chkbit 

30 
37 

# AC.cc f- 2#010# 
. # IP f- xyz; 

COBR 
COBR 

3-133 



BRANCH IF 

Mnemonics: be 
bne 
bl 
ble 
bg 
bge 
bo 
bno 

Format: b* 

80960KB PROGRAMMER'S REFE~ENCE 

Branch If Equal, 
Branch If Not Equal 
Branch If Less 
Branch If Less Or Equa~, ' 
Branch If Gr~ater 
Branch If Greater Or Equal 
Branch If Ordered 
Branch If Unordered 

targ 
disp 

Description: Branches to a new instruction according to the state of the condition code in 
the arithmetic controls. 

For all branch-if instructions except the bno instruction, the processor 
branches to the instruction specified with, the targ operand, if the logical 
AND of the condition code and the mask-part of the, opcode is not zero. 
Otherwise, it goes to the next instruction, 

For the bno instruction, the processor branches to the instruction specified 
with targ, if the logical AND of the condition code and the mask-part of the 
opcode is zero. Otherwise, it goes to the next instruction. 

When using the Intel 80960KB Assembler, the targ operand can be either a 
label or an absolute address that s:;Becifies the IP of the target instruction. 
This value can be no farther than -2 3 to (223 - 4) from the current IP. 

Note 

At the machine level, the branch-if instructions use the CTRL instruction 
format. With this format; the target instruction for the branch is specified 
by means of a word-displacement (represented by displacement in the 
following action statements), which can range from _221 to (221 - 1). To 
determine the IP of the target instruction, the processor converts this 
displacement value to a byte displacement (Le., mUltiplies the value by 4). 
It then adds the resulting byte displacement to the current IP. 

3·134 



Action: 

a0960KB PROGRAMMER'S REFERENCE 

BRANCH IF 

To allow labels or absolute addresses to be used in the assembly-language 
version of the branch-if instructions, the Intel 80960KB Assembler per­
forms the following calculation to convert the targ value in an assembly­
language instruction to the displacement value required by the machine 
instruction format: 

displacement = (targ/4) - IP 

For further information about the CTRL instruction format, refer to Appen­
dix B. 

The following table shows the condition-code mask for each instruction: 

Instruction Mask Condition 

bno 000 Unordered 

bg 001 Greater 

be 010 Equal 

bge all Greater or equal 

bl 100 Less 

bne 101 Not equal 

ble 110 Less or equal 

bo 111 Ordered 

For the bno instruction (unordered), the branch is taken if the condition code 
is equal to 0002. 

The mask is in bits 0-2 of the opcode. 

For All Instructions Except bno: 

if (mask and AC.cc)"* 2#000# 
then IP f- IP + displacement; # resume execution at new IP 

end if; 

bno: 

if AC.cc = 2#000# 
then IP. f- IP + displacement; # resume execution at new IP 

end if; , 

3-135 



80960KB PROGRAMMER'S REFERENCE 

BRANCH IF 

Faults: 

Example: 

Opcode: 

See Also: 

STANDARD· 

# assume AC.cc AND 2#100# are * 0 
bl xyz # IP ~ xyz; 

be 12 CTRL 
boe 15 CTRL 
bl 14 CTRL 
ble 16 CTRL 
bg 11 CTRL 
bge 13 CTRL 
bo 17 CTRL 
boo 10 CTRL 

b,bx 

3-136 



inter 80960KB PROGRAMMER'S REFERENCE 

call 

Mnemonic: call Call 

Format: call targ 

Description: Calls a new procedure. The processor performs a local call operation as 
described in Chapter 4 in ~he section titled "Local Calls." As part of this 
operation, the processor allocates a new set of local registers and a new stack 
frame for the called procedure. The processor then goes to the instruction 
specified with the targ argument and begins execution of the new procedure. 

When using the Intel 80960KB Assembler, the targ operand can be either a 
label or an absolute address that specifies the IP of the first instruction in the 
called procedure. This value can be no farther than _223 to (223 - 4) from the 
current IP. 

Note 

At the machine level, the call instruction uses the CTRL instruction format. 
With this format, the first instruction of the called procedure is specified by 
means of a word-displacement (represented by displacement in the follow­
ing action statement), which can range from _221 to (221 - 1). To determine 
the IP of the target instruction, the processor converts this displacement 
value to a byte displacement (i.e., mUltiplies the value by 4). It then adds 
the resulting byte displacement to the current IP. 

To allow labels or absolute addresses to be used in the assembly-language 
version of the call instruction, the Intel 80960KB Assembler performs the 
following calculation to convert the targ value in an assembly-language 
instruction to the displacement value required by the machine instruction 
format: 

displacement == (targ/4) - IP 

For further information about the CTRL instruction format, refer to Appen­
dixB. 

3-137 



call 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

wait for any uncompleted instructions to finish; 
temp +- (SP + 63) and not (63); # round to next boundary 
RIP +- IP; 
if registecsecavailable 

then allocate as new frame; 
else save a register_set in memory at its FP; 

allocate as new frame; 
# local register references now refer to new frame 
IP +- IP + displacement; 
PFP+- FP; 
FP +- temp; 
SP +- temp + 64; 

STANDARD 

call xyz # IP +- xyz 

. call 09 CTRL 

bal, calls, calix 

3-138 



Mnemonic: calls 

Format: calls 

80960KB PROGRAMMER'S REFERENCE 

Call System 

targ 
reg/lit 

calls 

Description: Calls a system procedure. The targ operand gives the number of the proce­
dure being called. 

For this instruction, the processor performs the system call operation 
described in Chapter 4 in the section titled "System Calls." The targ operand 
provides an index to an entry in the system procedure table. From this entry, 
the processor gets the IP of the called procedure. 

The procedure called can be either a local procedure or a supervisor proce­
dure, depending on the entry type in the procedure table. If it is a supervisor 
procedure, the processor also switches to supervisor mode (if it is not already 
in this mode). 

As part of this operation, the processor allocates a new set of local registers 
and a new stack frame for the called procedure. If the processor switches to 
the supervisor mode, the new stack frame is created on the supervisor stack. 

3-139 



inter 

calls 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

if targ > 259, then raise Protection Length Fault; 
wait for any uncompleted instructions to finish; 
temp_p_e ~ memory (SPT, 48 + (4 * targ)); 
# SPT is pointer to system procedure table from IMI 
RIP~ IP; 
IP ~ temp_p_e,address; if (temp_p_e,type = local) or 
execution_mode = supervisor 

then temp ~ (SP + 63) and not(63); 
tempRRR ~ 2#000#; 

else temp ~ memory (SPTSS, 12); # supervisorcall 
tempRRR ~ 2#0 I T#; # T is process30ntrols, T 
execution_mode ~ supervisor; 
process30ntrols,T ~ temp,T; 

end if; 
if frame_available 

then allocate as new frame; 
else save a frame in memory at its FP; 

allocate as new frame; 
# local register references now refer to new frame 
endif; 
PFP~FP; 

LO,RRR ~ tempRRR; 
FP~temp; 

SP ~ temp + 64; 

Sl'ANDARD 

calls r'12 # IP ~ value obtained from 
# procedure table for procedure 
# number given in r12 

calls 660 REG 

bal, call, calIx 

3-140 



inter 

Mnemonic: calix 

Format: calix 

80960KB PROGRAMMER'S REFERENCE 

Call Extended 

targ 
mem 

calix 

Description: Calls a new procedure. The processor performs a local call operation as 
described in Chapter 4 in the section titled "Local Calls." As part of this 
operation, the processor allocates a new set of local registers and a new stack 
frame for the called procedure. The processor then goes to the instruction 
specified with the targ argument and begins execution of the new procedure. 

Action: 

This instruction performs the same operation as the call instruction except 
that the target instruction can be farther than _223 to (223 - 4) from the current 
IP. 

The targ operand is a memory type, which allows the full range of address­
ing modes to be used to specify the IP of the target instruction. The "IP + 
displacement" addressing mode allows the instruction to be IP-relative. In­
direct calls can be performed by placing the target address in a register and 
then using one of the register-indirect addressing modes. 

Refer to Chapter 5 for a complete discussion of the addressing modes avail­
able with memory-type operands. 

wait for any uncompleted instructions to finish; 
temp f- (SP + 63) and not (63); # round to next boundary 
RIP f- IP; 
if register_secavailable 

then allocate as new frame; 
else save a registecset in memory at its FP; 

allocate as new frame; 
# local register references now refer to new frame 
endif; 
IP f- targ; 
PFPf- FP; 
FP f- temp; 
SP f- temp + 64; 

3-141 



calix 

Faults: 

Example: 

Opcode: 

.See Also: 

80960KB PROGRAMMER'S REFERENCE 

STANDARD 

callx (g5) # IP ~ (g5), where the address 

bal, calix 86 

call, calls 

# in g5 is the address of the new 
# procedure 

MEM 

3-142 



Mnemonic: chkbit 

Format: chkbit 

80960KB PROGRAMMER'S REFERENCE 

Check Bit 

bitpos, 
reg/lit 

src 
reg/lit 

chkbit 

Description: Checks the bit in src designated by bitpos and sets the condition code accord­
ing to the value found. If the bit is set, the condition code is set to 0102; if 
the bit is clear, the condition code is set to 0002, 

Action: if (src and 2A(bitpos mod 32)) = 0 
then AC.cc f-,- 2#000#; 
else AC.cc f-,- 2#010#; 

end if; 

Faults: STANDARD 

Example: chkbit 13, g8 # checks bit 13 in g8 

Opcode: chkbit 5AE REG 

See Also: alterbit, c1rbit, notbit, setbit 



inter 80960KB PROGRAMMER'S REFERENCE 

I classr, classrll 

Mnemonic: 

Format: 

c1assr 
c1assrl 

c1assr* 

Classify Real 
Classify Long Real 

src 
freg/flit 

Description: Checks the classification of the real number in src and stores the class in 
arithmetic-status bits (3 through 6) of the arithmetic controls. 

For the Classrl instruction, if the src operand references a global or local 
register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the setting of the arithmetic-status bits depending 
on the classification of the operand. 

AStatus Classification 

sOOO Zero 

sOOI Denormalized number 

sOlO Normal finite number 

sOlI Infinity 

s100 Quiet NaN 

s101 Signaling NaN 

sIlO Reserved operand 

The "s" bit is set to the sign of the src operand. 

Refer to Chapter 7 for a discussion of the different real number classifica­
tions. 

3-144 



Action: 

Faults: 

Example: 

Opcode: 

80960KB PROGRAMMER'S REFERENCE 

s ~ sign_of(src) 
if src = 0 

then arithmetic_status ~ sOOO; 
elseif src = denormalized 

then arithmetic_status ~ s001; 
elseif src = normal finite 

then arithmetic_status ~ sOlO; 
elseif src = 00 

then arithmetic_status ~ sOlI; 
elseif src = QNaN 

then arithmetic_status ~ s100; 
elseif src = SNaN 

then arithmetic_status ~ s101; 
elseif src = reserved operand 

then arithmetic_status ~ s110; 
end if 

STANDARD 

I classr, classrll 

Refer to the discussion of faults at the 
beginning of this chapter. 

None of the floating-point exceptions can be raised. 

classrl g12 

c1assr 
c1assrl 

68F 
69F 

# classifies long real in g12,g13 

REG 
REG 

3-145 



inter 

clrbit 

Mnemonic: clrbit 

Format: clrbit 

80960KB PROGRAMMER'S REFERENCE 

Clear Bit 

bitpos, 
reg/lit 

src, 
. reg/lit 

dst 
reg 

Description: Copies the src value to dst with one bit cleared. The bitpos operand specifies 
the bit to be cleared. 

Action: dst +- src and not(2A(bitpos. mod32»; 

Faults: STANDARD 

Example: 

Opcode: 

See Also: 

clrbit 23,' g3, g6 # g6 +-g3 with bit· 23 
# cleared 

clrbit 5SC REG 

alter bit, chkbit, noibit, setbit 
;: " 

3-146 



inter 80960KB PROGRAMMER'S REFERENCE 

cmpi, cmpo 

Mnemonics: cmpi Compare Integer 
Compare Ordinal cmpo 

Format: cmp* src1, 
reg/lit 

src2 
reg/lit 

Description: . Compares the src2 and src1 values and sets the condition code according to 
the results of the comparison. The following table shows the setting of the 
condition code for the three possible results of the comparison. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Condition Comparison 
Code 

100 src1 < src2 

010 src1 = src2 

001 src1 > src2 

The cmpi instruction followed by one of the branch-if instructions is equiv­
alent to one of the compare-integer-and-branch instructions. The latter 
method of comparing and branching produces more compact code; however, 
the former method can result in faster running code because it takes advan­
tage of the processor's pipelined architecture. The same is true for the comp 
instruction and the compare-ordinal-and-branch instructions. 

if src1 < src2 then AC.cc f- 2#100#; 
elseif src1 = src2 then AC.cc f- 2#010#; 
else AC.cc f- 2#001#; 
end if; 

STANDARD 

cmpo OxiO , r9 

cmpi 
cmpo 

SAl 
SAO 

# compare values in r9 and OxiO 
# and set condition code 

REG 
REG 

cmpibe, cmpr, cmpdeci, cmpdeco 

3-147 



inter 80960KB PROGRAMMER'S REFE;RENCE 

cmpde~i, cmpdeco 

Mnemonics: cmpdeci Compare and Decrement Integer 
Compare and Decrement Ordinal 

Format: 

cmpdeco 

cmpdec* src1 , 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: .Compares the src2 ·and src1 values and sets the condition code according to 
the results of the comparison. The src2 operand is then decremented by one 
.and-the result is stored in dst .. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The following table shows the setting' of the condition code for the three 
possible results of the comparison. 

Condition Comparison 
Code 

100 src1 < src2 

010 src1 = src2 

001 src1 :> src2 

These instructions are intended for use in ending iterative loops. For the 
. cmpdeci instruction, interger overflow is ignored to allow looping down 

through the minimum integer values. . 

if src1 < src2 then AC.cc f- 2#100#; 
elseif src1 = src2 then AC.cc f- 2#010#; 
elseif src1 > src2 then AC.cc f- 2#001#; 
end if; 
dst f- src2 - 1; #overflow suppressed for cmpdeci 

# instruction 

STANDARD 

cmpdeci 12, g7, gl 

cmpdeci 5A7 
cmpdeco 5A6 

cmpinco, cmpo 

# g7 and 12 are compared; 
# gl f- g7 - 1 

REG 
REG 

3-148 



80960KB PROGRAMMER'S REFERENCE 

cmpinci, cmpinco 

Mnemonics: cmpinci Compare and Increment Integer 
Compare and Increment Ordinal cmpinco 

Format: cmpinc* srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Compares the src2 and src1 values and sets the condition code according to 
the results of the comparison. The src2 operand is then incremented by one 
and the result is stored in dst. . 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

The following table shows the setting of the condition code for the three 
possible results of the comparison. 

Condition Comparison 
Code 

100 src1 < src2 

010 src1 = src2 

001 src1 > src2 

These instructions are intended for use in ending iterative loops. For the 
cmpinci instruction, integer overflow is ignored to allow looping up through 
the maximum integer values. 

if src1 < src2 then AC.cc ~ 2#100#; 
elseif src1 = src2 then AC.cc ~ 2#010#; 
elseif src1 > src2 then AC.cc ~ 2#001#; 
end if; 
dst ~ src2 + 1; # overflow suppressed for cmpinci 

# instruction 

STANDARD 

cmpinco r8, g2, g9 

cmpinci 
cmpinco 

5A5 
5A4 

cmpdeco, cmpo 

# g2 and r8 are compared; 
# g9 ~ g2 + 1 

REG 
REG 

3-149 



80960KB PROGRAMMER'S REFERENCE 

I empor; emporll 

Mnemonics: cmpor Compare Ordered Real 
Compare Ordered Long Real cmporl 

Format: cmpor* srcl, 
freg/flit 

src2 
freg/flit 

Description: Compares the src2 and srcl values and sets the condition code according to 
the results of the comparison. 

Action: 

For the cmporl instruction, if the srci or src2 operand references a global or 
local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the setting of the condition code for the four 
possible results of the comparison. 

Condition Comparison 
Code 

100 srcl < src2 

010 srcl = src2 

001 srcl-> src2 

000 if either srci or src2 
is a NaN 

The algorithm for these instructions checks the classification of the operands. 
If either is in the NaN class, the condition code is set to 0002 and a floating 
invalid-operation exception is raised. The cmpor and cmporl instructions 
operate the same as the cmpr and cmprl instructions, except that the latter 
instructions do not signal an exception if a NaN value is detected. 

If a floating-reserved-encoding fault occurs, the condition code results are 
undefined. 

if srci < src2 
then AC.cc f- 2#100#; 

elseif srcl = src2 
then AC.cc f- 2#010#; 

elseif srcl > src2 
then AC.cc f- 2#001#; 

else AC.cc f- 2#000#; # indicates one number is a NaN 
raise floating invalid operation fault 

end if; 

3-150 



inter 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

STANDARD 

Floating Reserved Encoding 

1 empor, emporll 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exception can be raised. Whether or not the 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Invalid Operation One or more operands are a NaN value. 

emparl g6, g12 

cmpor 
cmporl 

684 
694 

# compare value in g12,g13 
# with value in g6,g7 

REG 
REG 

cmpr, cmpi, BRANCH IF 

3-151 



inter 80960KB PROGRAMMER'S REFERENCE 

I cmpr, cmprll 

Mnemonics: cmpr Compare Real 
Compare Long Real cmprl 

Format: cmpr* srci, 
freg/flit 

src2 
freg/flit 

Description: Compares the src2 and src1 values and sets the condition code according to 
the results of the comparison. For the cmprl instruction, if the srcl or src2 
operand references a global.or local register, this register is the first (lowest 
numbered) of two successive registers. 

Action: 

The following table shows the setting of the condition code for the four 
possible results of the comparison. 

Condition Comparison 
Code 

100 src1 < src2 

010 src1 = src2 

001 src1 > src2 

000 if either src1 or src2 
is a NaN 

The algorithm for these instructions checks the classification of the operands. 
If either is in the NaN class, the condition code is set to 0002, but no fault is 
raised. The cmpr and crilprl instructions operate the same as the cmpor and 
cmporl instructions, except that the latter instructions raise an invalid­
operand exception if a NaN value is detected. 

If a floating-reserved-encoding fault occurs, the condition code results are 
undefined. 

if src1 < src2 
then AC.cc f- 2#100#; 

elseif src1 = src2 
then AC.cc f- 2#010#; 

elseif src1 > src2 
then AC.cc f- 2#001#; 

else AC.cc f- 2#000#; # indicates one number is a NaN 
end if; 

3-152 



Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

STANDARD 

Floating Reserved Encoding 

I cmpr, cmprll 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denonnalized) value and 
the nonnalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exception can be raised. Whether or not the 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Invalid Operation One or more operands are an SNaN 
value. 

cmprl g2, g6 # compare values in g6,g7 
# and g2,g3 

cmpr 
cmprl 

685 
695 

REG 
REG 

cmpor, cmpi, BRANCH IF 

3-153 



80960KB PROGRAMMER'S REFERENCE 

COMPARE AND BRANCH 
Mnemonics: cmpibe Compare Integer And Branch If Equal 

Compare Integer And Branch If Not Equal 
Compare Integer And Branch If Less 

Format: 

cmpibne 
cmpibl 
cmpible 
cmpibg 
cmpibge 
cmpibo 
cmpibno 

cmpobe 
cmpobne 
cmpobl 
cmpoble 
cmpobg 
cmpobge 

cmpib* 

cmpob* 

Compare Integer And Branch If Less Or Equal 
Compare Integer And Branch If Greater 
Compare Integer And Branch If Greater Or Equal 
Compare Integer And Branch If Ordered 
Compare Integer And Branch If Unordered 

Compare Ordinal And Branch If Equal 
Compare Ordinal And Branch If Not Equal 
Compare Ordinal And Branch If Less 
Compare Ordinal And BranchIf Less Or Equal 
Compare Ordinal And Branch If Greater 
Compare Ordinal And Branch If Greater Or Equal 

srci, src2, targ 
reg/lit reg 

srci, src2, targ 
reg/lit reg disp 

Description: Compares the src2 and srci values and sets the condition code according to 
the results of the comparison. If the logical AND of the condition code and 
the mask-part of the opcode is not zero, the processor branches to the instruc­
tion specified with the targ operand; otherwise, the processor goes to the 
next instruction. 

When using the Intel 80960KB Assembler, the targ o~erand can be either a 
label or an absolute address that is no farther than _21 to (212 - 4) from the 
current IP. 

Note 

At the machine level, the compare-and-branch instructions use the COBR . 
instruction format. With this format, the target instruction for the branch is 
specified by means of a word-displacement (represented by displacement in 
the following action statement), which can range from _2 10 to (210 - 1). To 
determine the IP of the target instruction, the processor converts this 
displacement value to a byte displacement (Le., multiplies the value by 4). 
It then adds the resulting byte displacement to the IP of the next instruction. 

3-154 



80960KB PROGRAMMER'S REFERENCE 

COMPARE AND BRANCH 

To allow labels or absolute addresses to be used in the assembly-language 
versions of these instructions, the Intel 80960KB Assembler performs the 
following calculation to convert the targ value in an assembly-language 
instruction to the displacement value required by the machine instruction 
format: 

displacement = (targ/4) - (IP + 4) 

For further information about the COBR instruction format, refer to Appen­
dixB. 

The following table shows the condition-code mask for each instruction: 

Instruction Mask Branch Condition 

cmpibno 000 No Condition 

cmpibg 001 srcJ > src2 

cmpibe 010 srcJ = src2 

cmpibge 011 srcJ ~ src2 

cmpibl 100 srcJ < src2 

cmpibne 101 srcJ -:/. src2 

cmpible 110 srcJ ~ src2 

cmpibo 111 Any Condition 

cmpobg 001 srcJ > src2 

cmpobe 010 srcJ = src2 

cmpobge 011 srcJ ~ src2 

cmpobl 100 srcl < src2 

cmpobne 101 srcJ -:/. src2 

cmpoble 110 srcJ ~ src2 

The cmpibo instruction always branches; the cmpibno instruction never 
branches. 

The functions that these instructions perform can be duplicated with a cmpi 
instruction followed by a branch-if instruction, as described in the descrip­
tion of the cmpi instruction in this chapter. 

3-155 



80960KB PROGRAMMER'S REFERENCE. 

COMPARE AND BRANCH 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

if srci < src2 then AC.cc ~ 2#100#; 
elseif srci = src2 then AC.cc ~ 2#010#; 
else AC.cc ~ 2#001#; 
end if; 
if mask and AC.cc *- 2#000# 

then IP ~ IP + 4 +(displacement * 4); 
# resume execution at the new IP 
else IP ~ IP +4; 

# resume execution at the next IP 
end if; 

STANDARD 

# assume g3 < g9 
cmpib1 g3, g9, xyz # g9 is compared 

# IP ~ xyz. 

# assume r7 ;::: 19 
cmpobge r.7, 19, xyz # 19 is compared 

# IP ~ xyz. 

cmpibe 3A COBR 
cmpibne 3D COBR 
cmpibl 3C COBR 
cmpible 3E COBR 
cmpibg 39 COBR 
cmpibge 3B COBR 
cmpibo 3F COBR 
cmpibno 38 COBR 

cmpobe 32 COBR 
cmpobne 35 COBR 
cmpobl 34 COBR 
cmpoble 36 COBR 
cmpobg 31 COBR 
cmpobge 33 COBR 

BRANCH IF, cmpi 

3-156 

with g3; 

with r7 



inter 80960KB PROGRAMMER'S REFERENCE 

concmpi, concmpo 

Mnemonics: concmpi Conditional Compare Integer 

Format: 

concmpo Conditional Compare Ordinal 

concmp* src1, 
reg/lit 

src2 
reg/lit 

Description: Compares the src2 and srcl values if bit 2 of the condition code is not set. If 
the comparison is performed, the condition code is set according to the 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

results of the comparison. . 

These instructions are provided to facilitate bounds checking by means of 
two-sided range comparisons (e.g" is A between Band C?). They are 
generally used after a compare instruction to test whether a value is in­
clusively between two other values. 

The example below illustrates this application by testing whether the value in 
g3 is between the values in g5 and g6, where g5 is assumed to be less than 
g6. First a comparison (cmpo) of g3 and g6 is performed. If g3 is less than 
or equal to g6 (i.e.,. condition code is either OlO2 or 001), a conditional 
comparison (concmpo) of g3 and g5 is then performed. If g3 is greater than 
or equal to g5 (indicating that g3 is within the bounds of g5 and g6), the 
condition code is set to OlO2; otherwise, it is set to 001 2, 

if (AC.cc and 2#lOO#) = 0 then 
if src1 ~ src2 

then AC.cc ~ 2#OlO; 
else AC.cc ~ 2#001; 

endif; 
endif; 

STANDARD 

cmpo g6,.g3 # compares g6 and g3 and sets 
# condition code 

concmpo g5, g3 # if condition code is not 
# 2#lxx#, g5 is compared 

concmpi 5A3 
concmpo 5A2 

cmpo, cmpi 

# with g3 

REG 
REG 

3-157 



inter 80960KB PROGRAMMER'S REFERENCE 

I cosr, cosrll 

Mnemonics: cosr Cosine Real 
Cosine Long Real co srI 

Format: cosr* src, 
freg/flit 

dst 
freg 

Description: Calculates the cosine of the value in src and stores the result in dst. The src 
value is an angle given in radians. The resulting dst value is in the range -1 
to + 1, inclusive. 

Action: 

For the cosrl instruction, if the src or dst operand references a global or local 
register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The. following table shows the results obtained when taking the cosine of 
various classes of numbers with neither overflow nor underflow. 

Src Dst 
-00 * 
-F -1 to + 1 
-0 +1 
+0 +1 
+F -1 to + 1 

+00 * 
NaN NaN 

Notes: 
F Means finite-real number 
• Indicates floating invalid-operation exception 

In the trigonometric instructions, the 80960KB uses a value for 1t with a 
66-bit mantissa which is 2 bits more than are available in the extended-real 
format. The section in Chapter 12 titled "Pi" gives this 1t value, along with 
some suggestions for representing this value in a program. 

dst ~ cosine (src); 

3-158 



inter 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

STANDARD 

I cosr, cosrll 

Refer to the discussion of faults at the 
beginning of this chapter. 

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Invalid Operation The src operand is 00. 

Floating Inexact 

cosrl r8, g2 

cosr 
cosrl 

68D 
69D 

sinr, sinrl, tanr, tanrl 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

# cosine of value in r8,r9 is 
# stored in g2,g3 

REG 
REG 

3-159 



80960KB PROGRAMMER'S REFERENCE 

I cpyrsre, cpysre I 

Mnemonics: cpysre Copy Sign Real Extended 
cpyrsre 

Format: cpy* 

Copy Reversed Sign Real Extended 

srcl, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Copies the absolute value of srcl into dst. For the cpysre instruction, the 
sign of src2 is copied to dst; for the cpyrsre instruction, the opposite of the 
sign of src2 is copied to dst. 

Action: 

Faults: 

Example: 

Opcode: 

If the srcl, src2, or dst operand references a global or local register, this 
register is the first (lowest numbered) of three successive registers. Also, the 
number of this register must be a multiple of four (e.g., gO, g4, g8). 

These instructions only operate on values in the extended-real format. The 
same operations can be performed on real- and long-real values using the 
setbit and clearbit instructions, or a combination of the chkbit and alterbit 
instructions. 

cpysre 

cpyrsre 

if src2 is positive 
then dst f- abs (srcl) 
else dst f- -abs (srcl) 

if src2 is negative 
then dst f- abs (srcl) 
else dst f- -abs (srcl) 

STANDARD Refer to the discussion of faults at the 
beginning of this chapter. 

Floating Reserved Encoding 

cpysre fpO, fpl, fp2 

One or more operands is a denonnalized 
value and the normalizing-mode bit in 
the arithmetic controls is set. 

# absolute value from fpO is copied to 
# fp2; sign from fpl is copied to fp2 

cpysre 
cpyrsre 

6E2 
6E3 

REG 
REG 

~-160 



inter 80960KB PROGRAMMER'S REFERENCE 

I cvtilr, cvtir I 

Mnemonics: cvtilr Convert Long Integer to Real 
Convert Integer to Real cvtir 

Format: cvti* src, 
reg/lit 

dst 
freg 

Description: Converts the integer in src to a real and stores the result in dst. For the cvtilr 
instruction, the src operand references the first (lowest nuinbered) of two 
successive registers. Also, this register must be even numbered (e.g., gO, g2, 
g4). 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

Converting an integer to long real format requires two instructions. First, the 
integer is converted to extended real format by using the cvtir or cvtilr 
instruction with a floating-point register as a destination. Then the movrl 
instruction is used to move the value from the floating-point register to two 
global or local registers, causing an explicit conversion to long real format. 
(Note that this conversion is always exact.) The example section below 
illustrates this conversion. 

dst f- real (src); 

STANDARD Refer to the discussion of faults at the 
beginning of this chapter. 

The following floating-point exception can be raised. Whether or not the 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Inexact Can only be signaled when converting an 
integer to real (32-bit) format 

# Conversion of an integer to a long real value 
cvtir g6, fp3 
movrl fp3, g8 # result stored in g8,g9 

cvtir 
cvtilr 

cvtri, movr 

674 
675 

REG 
REG 

3-161 



inter 80960KB PROGRAMMER'S REFERENCE 

I cvtri, cvtril, cvtzri, cvtzrill 

Mnemonics: cvtri Convert Real To Integer 

Format: 

cvtril 
cvtzri 
cvtzril 

cvtri* 

Convert Real To Integer Long 
Convert Truncated Real To Integer 
Convert Truncated Real To Long Integer 

src, 
freg/flit 

dst 
reg 

Description: Converts the real value in src to an integer and stores the result in dst. 

Action: 

For the cvtril and cvtzril instructions, the dst operand references the first 
(lowest numbered) of two successive registers. Also, this register must be 
even numbered (e.g., gO, g2, g4). 

The nontruncated versions of these instructions round according to the cur­
rent rounding mode in the Arithmetic Controls register. The truncated ver­
sions always round toward zero. 

Converting a long real value to an integer requires two instructions. First, 
the long real value is converted to extended real format by using the movrl 
instruction with a floating-point register as a destination. (Note that this 
operation is always exact.) Then one of the convert real-to-integer instruc­
tions is used to move the value from the floating-point register to one or two 
global or local registers. The example section below. illustrates this conver-
sion. 

If the magnitude of the result cannot be represented in the destination, an 
integer-overflow fault is raised, and the maximum positive or maximum 
negative value is stored in the destination (depending on whether the real. 
value was positive or negative, respectively). 

dst f-- integer (srcl); 
# srci is rounded to integer value 

3-162 



inter 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

STANDARD 

I cvtri, cvtril, cvtzri, cvtzrill 

Refer to the discussion of faults at the 
beginning of this chapter. 

The following exception can be raised. Whether or not the exception results 
in a fault being raised depends on the state of its associated mask bit in the 
arithmetic controls register. 

Integer Overflow 

# Conversion of 
movrl g4, fp2 

Result is too large for destination format. 

long real value to an integer 
# long-real source is 
# converted to extended-real 
# format and moved to fp2 

cvtril fp2, g12 # extended-real value is 
# converted to long integer 

cvtri 6CO REG 
cvtril 6Cl REG 
cvtzri 6C2 REG 
cvtzril 6C3 REG 

cvtir, movr 

3-163 



intel" 

I daddc I 

Mnemonic: dad de 

Format: dadde 

80960KB PROGRAMMER'S REFERENCE 

Decimal Add With Carry 

srcl, 
reg 

src2, 
reg 

dst 
reg 

Description: Adds bits 0 through 3 of src2 and srcl and bit 1 of the condition code (used 
here as a carry bit). The result is stored in bits 0 through 3 of dst. If the 
addition results in a carry, bit 1 of the condition code is set. Bits 4 through 
31 of src are copied to dst unchanged. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

This instruction is intended to be used iteratively to add binary-coded­
decimal (BCD) values in which the least-significant four bits of the operands 
represent the decimal numbers 0 to 9. The instruction asssumes that the least 
significant 4 bits of both operands are valid BCD numbers. If these bits are 
not valid BCD numbers, the resulting value in dst is unpredictable. 

# Let the value of the condition code be xCx. 
dst ~ src2 + srcl + C; 
AC.cc ~ 2#OCO#; 
# C is carry from addition of bits 0 through 4 of operands 
# Bits 4 - 31 of dst are same as bits 4 - 31 of src2 

STANDARD 

daddc g5, g9, gIG # gIG ~ g9 + g5 + Carry Bit, 
# where arithmetic is 

dadde 642 

dsube, dmovt 

# carried out only on bits G 
# through 3 of the operands 

REG 

3-1.64 



Mnemonic: 

Format: 

divi 
divo 

div* 

80960KB PROGRAMMER'S REFERENCE 

Divide Integer 
Divide Ordinal 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

divi, divo 

Description: Divides the src2 value by the srcl value and stores the result in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

For the divi instruction, and integer-overflow fault can be signaled. 

dst f- src2 / srcl; 

STANDARD 

Arithmetic Zero Divide 

Refer to discussion of faults at the begin­
ning of this chapter. 

The srcl operand is O. 

The following fault condition can be raised with the divi instruction. 
Whether or not a fault is raised depends on,the state of its associated mask bit ' 
in the arithmetic-controls register. 

Integer Overflow 

diva r3, r8, 

divi 74B 
divo 70B 

ediv, mulo 

Result is too large for destination format. 

r13 # r13 f- r8/r3 

REG 
REG 

3-165 



80960KB PROGRAMMER'S REFERENCE 

I'divr, divrl! 

Mnemonic: divr 
divrl 

Divide Real 
Divide Long Real 

Format: divr* src1, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Divides the src2 value by the srcl value and stores the result in dst. 

Src2 

Action: 

.00 

·F 

·0 

+0 

+F 
+00 

For the divrl instruction, if the src1 , src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The sign of the result is always the exclusive-OR of the source signs, even if 
one or more of the source values is 0, 00, or a NaN. 

The following table shows the results obtained when dividing various classes 
of numbers, assuming that neither overflow nor underflow occurs. 

Srcl 

.00 ·F ·0 +0 +F +00 NaN 

* +00 +00 _00 -00 * NaN 

+0 +F ** ** -F -0 NaN 

+0 +0 * * -0 -0 NaN 

-0 -0 * * +0 +0 NaN 

-0 -F ** ** +F +0 NaN 

* _00 _00 +00 +00 * NaN 

NaN NaN NaN NaN NaN NaN NaN NaN 

Notes: 

F 
... 

...... 

Means finite-real number. 
Indicates floating invalid-operation exception . 
Indicates floating zero-divide exception . 

dst f- src2 / srcl; 

3-166 



inter 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

STANDARD 

. Floating Reserved Encoding 

I divr, divrll 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormalf: 
ized (including denormalized) value and. 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Zero Divide 

Floating Invalid Operation 

Floating Inexact 

Result is too large for destination format. 

Result is too small for destination format. 

The srcl operand is 0 and the src2 
operand is numeric and finite. 

Both source operands are 0 or both are 
00. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

divrl glO, gO, fpl # fpI ~ gO,gl / glO,gll 

divr 
divrl 

78B 
79B 

ediv, muIr, muirl 

REG 
REG 

3,167 



80960KB PROGRAMMER'S REFERENCE 

Idmovtl 

Mnemonic: dmovt Decimal Move And Test 

Format: dmovt src, dst 
reg reg 

Description: Copies the src value into dst. The least-significant eight bits of the src value 
are tested to determine whether or not they constitute a valid ASCII decimal 
(001100002 .. 00111001 2), and the condition code is set accordingly. If the 
value is a valid ASCII decimal, the condition code is set to 0002; otherwise, 
it is set to 0102 . 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

. This instruction is intended to be used iteratively to validate decimal strings. 

dst f- src; 
if src = 2#0011000# .. 2#00111001 # 

then AC.cc f- 2#000#; 
else AC.cc f- 2#010#; 

end if; 

STANDARD 

dmovt gI, g6 # g6 f- gli 
# gl tested for decimal value 

dmovt 644 REG 

daddc, dsubc 

3-168 



inter 

Mnemonic: dsubc 

Format: dsubc 

80960KB PROGRAMMER'S REFERENCE 

Decimal Subtract With Carry 

src1, 
reg 

src2, 
reg 

dst 
reg 

Idsubcl 

Description: Subtracts bits 0 through 3 ofsrc2 and src1 and bit 1 of the condition code 
(used here as a carry bit). The result is stored in bits 0 through 3 of dst. If 
the subtraction results in a carry, bit 1 of the condition code is set. Bits 4 
through 31 of src are copied to dst unchanged. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

This instruction is intended to be used iteratively to subtract binary-coded­
decimal (BCD) values in which the least-significant four bits of the operands 
represent the decimal numbers 0 to 9. The instruction asssumes that the least 
significant 4 bits of both operands are valid BCD numbers. If these bits are 
not valid BCD numbers, the resulting value in dst is unpredictable. 

# Let the value of the condition code be xCx. 
dst ~ src2 - src1 - 1 + C; 
AC.cc ~ 2#OCO#; 
# C is carry from subtraction of bits 0 through 4 of operands 
# Bits 4 - 31 of dst are same as bits 4 - 31 of src2 

STANDARD 

dsubc r1, r2, r12 # r12 ~ r2 - r1 -1 + Carry 
# Bit, where arithmetic is 

dsubc 643 

dad dc, dmovt 

# carried out only on bits 0 
# through·3 of the operands 

REG 

3-169 



inter 

ediv 

Mnemonic: ediv 

Format: ediv 

80960KB PROGRAMMER'S REFERENCE 

Extended Divide 

srcl, 
reg/lit 

src2, . 
reg/lit 

dst 
reg 

Description: Divides src2 by srcl and stores the result in dst. The src2 value is a long 
ordinal (i.e., 64 bits), which is contained in two adjacent registers. The src2 
operand specifies the lower numbered register, which contains the least sig­
nificiillt bits of the operand. The src2 operand must be an even numbered 
register (i.e., rO, r2, r4, ... or gO, g2, ... ). The srcl value is a normal ordinal 
(i.e., 32 bits). 

Action: 

Faults: 

Example: 

Opcode: 

The remainder is stored in the register designated by dst and the quotient is 
stored in the next highest numbered register .. The dst operand must be an 
even numbered register (i.e., rO, r2, r4, ... or gO, g2, ... ). 

This instruction performs ordinal arithmetic. 

If this operation overflows (i.e., the quotient or remainder do not fit in 32-
bits), no fault is raised and the result is undefined. 

dst f- (src2 - (src2 / srcl) * srcl); # remainder 
dst + 1 f- (src2 / srcl); # quotient 

STANDARD, Arithmetic Integer Divide 

ediv g3, g4, glO # glO f- remainder of g4,g5/g3 
# gll f- quotient of g4,g5/g3 

ediv 671 REG 

See Also: ernul 

3-170 



inter 

Mnemonic: ernul 

Format: ernul 

80960KB PROGRAMMER'S REFERENCE 

Extended Multiply 

src1, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

emul 

Description: Multiplies src2 by srcl and stores the result in dst. The result is a long 
ordinal (i.e., 64 bits), which is stored in two adjacent registers. The dst 
operand specifies the lower numbered register, which receives the least sig­
nificant bits of the result. The dst operand must be an even numbered 
register (i.e., rO, r2, r4, ... or gO, g2, ... ). 

Action: 

Faults: 

Example: 

Opcode: 

This instruction performs ordinal arithmetic. 

dst f- (src1 * src2) mod 2A32; 
dst + 1 f- (src * src2)/mod 2A32; 

STANDARD 

ernul r4, r5, g2 # g2,g3 f- r4 * r5 

ernul 670 REG 

See Also: ediv 

3-171 



-inter 80960KB PROGRAMMER'S REFERENCE 

I expr, exprll 

Mnemonic: 

Format: 

expr' 
exprl 

exp* 

Exponent Real 
Exponent Long Real 

src, 
freg/flit 

dst 
freg 

Description: Calculates an approximation of the exponential value of 2 to the src power, 
.minus I, and stores the result in dst. The src value must be within the range 
of -0.5 to +0.5, inclusive. If the src value is outside this range, the result is 

Action: 

undefined. \ 

For the exprl instruction, if the src or dst operand references a global or local 
register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when computing the exponent 
of various classes of numbers. 

Src Dst 

-0.5 to-O -(llV2)-1 to-O 

-0 -0 

+0 +0 

+Oto +0.5 +0 to v'2-1 

Notes: 
••• Results are unpredictable 

dst f- (2"src) - 1; 

3-172 



inter 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

STANDARD 

Floating Reserved Encoding 

I expr, exprll 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Underflow 

Floating Invalid Operation 

Result is too small for destination format. 

One or more operands are an SNaN 
value. 

Floating Inexact Result cannot be represented exactly in 
destination format. 

# y = 2"x (y and x in gO) 
# uses identity 
# 2"x 2" (1+£) 
# = 2"1 * ( (2"f - 1) +1) 
# where: I integer, -0.5 <= f <= +0.5 
# assumes round-to-nearest 
# does not handle infinities or NaNs 

pow2x: -
roundr gO,fpO # I in fpO 
subr fpO,gO,gO # f in gO 
expr gO,gO 
addr o f1 . 0, gO, gO 
cvtri fpO,gl 
scaler gl,fpO,gO 

expr 689 REG 
exprl 699 REG 

scaler, logr 

3-173 



extract 

Mnemonic: extract 

Format: extract 

80960KB PROGRAMMER'S REFERENCE 

Extract 

bitpos, 
reg/lit 

len, 
reg/lit 

srcldst 
reg 

Description: Shifts a specified bit field in srcldst right and fills the bits to the left of the 
shifted bit field with zeros. The bitpos value specifies the least significant bit 
of the bit field to be shifted, and the len value specifies the length of the bit 
field. 

Action: srcldst f- (srcldst / 2A(bitpos mod 32» 
and (2A len - 1); 

Faults: STANDARD 

Example: extract 5, 12, g4 # g4 f- g4 with bits 5 
# through 16 shifted right 

Opcode: extract 651 REG 

See Also: modify 

3-174 



inter 80960KB PROGRAMMER'S REFERENCE 

---------------------------------------------------------------

Mnemonic: faulte 
fauUne 
faultl 
faultle 
faultg 
faultge 
faulto 
faultno 

Fault If Equal 
Fault If Not Equal 
Fault If Less 
Fault If Less Or Equal 
Fault If Greater 
Fault If Greater Or Equal 
Fault If Ordered 
Fault If Unordered 

FAULT IF 

Format: fault * 

Description: Raises a constraint-range fault if the logical AND of the condition code and 
the mask-part of the opcode is not zero. 

. Action: 

The following table shows the condition-code mask for each instruction: 

Instruction Mask Condition 

faultno 000 Unordered 

faultg 001 Greater 

faulte 010 Equal 

faultge 011 Greater or equal 

faultl 100 Less 

faultne 101 Not equal 

faultle 110 Less or equal 

faulto 111 Ordered 

For the faultno instruction (unordered), the fault is raised if the condition 
code is equal to 2#000# . 

For all instructions except faultno: 

if (mask and AC.cc) :j:. 2#000# 
then raise constraint-range fault; 

end if; 

faultno: 

if AC.cc = 2#000# 
then raise constraint-range fault; 

end if; 

3-175 



inter 80960KB PROGRAMMER'S REFERENCE 

FAULT IF 

Faults: STANDARD, Constraint Range 

Example: # assume 2#110# AND AC.cc # 2#000# 
faultle # raises Constraint Range Fault 

Opcode: faulte lA CTRL 
faultne lD CTRL 
faultl lC CTRL 
faultle IE CTRL 
faultg 19 CTRL 
faultge lB CTRL 
faulto IF CTRL 
faultno 18 CTRL 

See Also: be, teste 

3-176 



80960KB PROGRAMMER'S REFERENCE 

flushreg 

Mnemonic: flushreg Flush Local Registers 

Format: flushreg 

Description: Copies the contents of all the cached local-register sets into their associated 
register-save areas in the procedure stack. The contents of all the local­
register sets except for the current set are then marked as invalid. On a 
return, the local registers for the frame being returned to are then loaded from 
the stack. 

Action: 

Faults: 

Example: 

Opcode: 

The flush reg instruction is provided to allow a compiler or applications 
program to circumvent the normal call/return mechanism of the processor. 
For example, a compiler may need to back up several frames in the stack on 
the next return, rather than using the normal return mechansim that returns 
one frame at a time. Here, the compiler uses the flush reg instruction to 
update the stack with the. current states of the saved register sets. The 
compiler can then return to any frame in the stack without losing the contents 
of the saved local-register sets. To return to a frame other than the frame 

. directly below the current frame, the complier merely modifies the PFP in 
register rO of the current frame to point to the frame that it wishes to return 
,to. 

Each register set except the current set is flushed to its associated stack frame 
in memory and marked as purged, meaning that they will be reloaded from 
memory if and when they become the current local register set. 

STANDARD 

flushreg 

flush reg 66D REG 

3-177 



80960KB PROGRAMMER'S REFERENCE 

fmark 

Mnemonic: fmark Force Mark 

Format: fmark 

Description: Generates a breakpoint trace-event, regardless of the setting of the breakpoint 
trace mode flag. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

When a breakpoint trace event is detected, the trace-fault-pending flag (bit 
10) of the process controls word and the breakpoint-trace-event flag (bit 23) 
of the trace controls are set. Before the next instruction is executed, a trace 
fault is generated. 

For more information on trace-fault generation, refer to Chapter 12. 

if process. trace_controls and breakpoinCtrace_flag 
then 

raise trace breakpoint fault 
endif 

STANDARD, Breakpoint Trace 

Id xyz, r4 
addi r4, r5, r6 
fmark 
# Breakpoint trace event is generated at 
# this point in the instruction stream. 

fmark 66C REG 

mark 



Mnemonic: 

Format: 

ld 
ldob 
ldos 
ldib 
ldis 
ldl 
Idt 
Idq 

Id* 

80960KB PROGRAMMER'S REFERENCE 

Load 
Load Ordinal Byte 
Load Ordinal Short 
Load Integer Byte 
Load Integer Short 
Load Long 
Load Triple 
Load Quad 

src, 
mem 

dst 
reg 

LOAD 

Description: Copies a byte or string of bytes from memory into a register or group of 
successive registers. The src operand specifies the address of the first byte to 
be loaded. The full range of addressing modes may be used in specifying 
src. (Refer to Chapter 5 for a complete discussion of the addressing modes 
available with memory-type operands.) 

Action: 

Faults: 

Example: 

The dst operand specifies a register or the first (lowest numbered) register of 
successive registers. 

The ldob and ldib, and ldos and ldis instructions load a byte and half word, 
respectively, and convert it to a full 32-bit word. The ld, ldl, ldt, and ldq 
instructions copy 4, 8, 12, and 16 bytes, respectively, from memory into 
successive. registers. 

For the ldl instruction, dst must specify an even numbered register (e.g., gO, 
g2, ... , gI2). For the ldt and ldq instructions, dst must specify a register 
number that is a multiple of four (e.g., gO, g4, g8). If the data extends 
beyond register g15 or r15 for the ldl, Jdt, or ldq instruction, the results are 
unpredictable. 

dst ~ memory (src); 

STANDARD 

ldl 2456 (r3), rIO # rIO, rII ~ value of two 
# words beginning at offset 
# 2456 plus the address in 
# r3 in memory 

3-179 



inter 

LOAD 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

Id 
Idob 
Idos 
Idib 
Idis 
Idl 
Idt 
Idq 

90 
80 
88 
CO 
C8 
98 
AO 
BO 

MOVE,STORE 

MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 

3-180 



inter 

Mnemonic: Ida 

Format: Ida 

a0960KB PROGRAMMER'S REFERENCE 

Load Address 

src 
mem 
efa 

dst 
reg 

Ida' 

Description: Computes the effective address specified with src and stores it in dst. The 
src address is not checked for validity. 

Action: 

Faults: 

Example: 

Opcode:. 

An important application of this instruction is to load a constant longer than 
5 bits into a register. (To load a register with a constant of 5 bits or less, the 
move instruction (mov) can be used with a literal as the src operand.) 

dst f- efa (src); 

STANDARD 

Ida 58 (g9), gl # Computes the effective 
# address specified with 

Ida Ox749, r8 

Ida 8C 

# 58 (g9) and stores it in gl 

# loads the constant 16#749# 
# in r8 

MEM 

3-181 



in1er 80960KB PROGRAMMER'S REFERENCE 

Ilogbnr, logbnrll 

Mnemonic: 

Format: 

logbnr 
logbnrl 

logbnr* 

Log Binary Real 
Log Binary Long Real 

src, 
freg/flit 

dst 
freg 

Description: Calculates the log2 (src) and stores the integral part of this value (i.e., the 
part to the left of the binary point) as a real number in dst. The result of this 
operation is an unbiased exponent. When src is a denormalized number, dst 
is the unbiased exponent that src would have if the format had unlimited 
exponent range. 

(The fractional part of log2 (src) is ignored. If the fractional part is needed, 
use the logr or logrl instruction.) 

This instruction implements the IEEE recommended function 10gb. It is 
useful for calculating the order of magnitude of a number. 

For the logbnrl instruction, if the src2 or dst operand references a global or 
local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when taking the log binary of 
various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

Src Dst 
-00 +00 
-F ±F 
-0 ** 
+0 ** 
+F ±F 
+00 +00 
NaN NaN 

Notes: 
F Means finite-real number 

** Indicates floating zero-divide exception 

3-182 



inter 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

Ilogbnr, logbnrll 

Note that the significand of the src operand can be extracted by using the 
scaler or scalerl instruction. 

dst f- (log2 (unbiased exponent (src)) - fraction); 
# the integral part of the unbiased exponent of src 
# is stored in dst as a biased real 

STANDARD Refer to the discussion of faults at the 
beginning of this chapter. 

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

Floating Zero Divide 

logbnrl g12, fp3 

logbnr 
logbnrl 

logr, scaler 

68A 
69A 

Result is too small for destination format. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

The src operand is O. 

# fp3 f- integral part 
# of log2 (g12,g13) 

REG 
REG 

3-183 



inter 80960KB PROGRAMMER'S REFERENCE 

Ilogepr, logeprll 

Mnemonic: logepr. 
logeprl 

. Log Epsilon Real 

Format: logepr* 

Log Epsilon Long Real 

srci, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Calculates (src2 * log2 (srci + 1», and stores the result in dst. 

Sre2 

_OIl 

For the logeprl instruction, if the srcl, src2, or dst operand references a 
global or local register, this register is the first (lowest numbered) of two 
successive registers. Also, this register must be even numbered (e.g., gO, g2, 
g4). 

The following table shows the results obtained when taking the log epsilon of 
various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

Srel 

(1I"v'2) -I to -0 -0 +0 +OtoV2-I NaN 

_00 * * _00 NaN 
-F +F +0 -0 -F NaN· 

-0 +0 +0 -0 -0 NaN 
+0 ~O -0 +0 +0 NaN. 
+F ~F ~o +0 +F NaN 
+00 ·+00 * * +00 NaN 

NaN NaN NaN NaN NaN NaN 

Notes: 

F Means finite-real number. 
.. Indicates floating invalid·operation exception. 

This instruction offers optimal accuracy for values of srci + 1 close to 1 (Le., 
for values of srci close to 0). This expression is commonly found in com­
pound interest and annuity calculations. The result can be simply converted 
into a value in another logarithm base by including a scale factor in src2. 

3-184 



inter 

Action: 

Faults: 

B0960KB PROGRAMMER'S REFERENCE 

Ilogepr, logeprll 

The following equation is used to calculate the scale factor for a particular 
logarithm base, where n is the logarithm base desired for the result stored in 
dst: 

scale factor = logn 2 

The range of srcl is restricted to the following: 

l/sqrt (2) :s; srcl + 1 :s; sqrt (2) 

When the srcl operand is outside this range, the logr or logrl instruction can 
be used with very insignificant loss of accuracy by adding 1.0 to srcl. 

dst ~ src2 * log2 (srcl + 1); 

STANDARD 

. Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

3-185 

Result is too large for destination format. 

Result is too small for destination format. 

The srcl operand is a and the src2 
operand is 00. 

The srcl operand does not fall within the 
range defined in the above description 
section. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 



inter 80960KB PROGRAMMER'S REFERENCE 

Ilogepr, logeprll 

Example: logepr g8, g4, fp2 
# fp2~ g4,g5 * log2 (g8,g9 + 1) 

Opcode: logepr 681 REG 
logeprl 691 REG 

See Also: logr 

3-186 



Mnemonic: 

Format: 

logr 
logrl 

logr* 

80960KB PROGRAMMER'S REFERENCE 

Log Real 
Log Long Real 

srcJ , 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Ilogr, logrll 

Description: Calculates (src2 * log2 (srcJ», and stores the result in dst. (The logbnr and 
logbnrl instructions perform this function more efficiently, if only an es­
timate is needed.) 

Src2 

-co 

-F 

-0 

+0 

+F 
+00 

NaN 

For the logrl instruction, if the srcJ, src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when taking the log of 
various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

Srcl 

-F -0 +0 +F +co I 
NaN -co 

* * ** ** ±oo _00 NaN 

* * ** ** ±F _00 NaN 

* * * * ±O * NaN 

* * * * ±O * NaN 

*- * ** ** ±F +00 NaN 

* * ** ** ±oo +00 NaN 

NaN NaN NaN NaN NaN NaN NaN 

Notes: 

F 

•• 

Means finite-real number. 
Indicates floating invalid-operation exception. 
Indicates floating zero-divide exception . 

The logr instruction combined with the expr instruction forms the basis for 
the power function xY• 

3-187 



a0960KB PROGRAMMER'S REFERENCE 

Ilogr, logrll 

Action: 

Faults: 

Adding 1.0 to a number to be used as the src1 operand will cause infor­
mation to be lost. To perform this funCtion, use the logepr or logeprl 
instruction. 

These instructions provide a simple method of converting the result of the 
log2 arithmetic into a value in another logarithm base by including a scale 
factor in src2. The following equation is used to calculate the scale factor for 
a particular logarithm base, where n is the logarithm base desired for the 
result stored in dst; 

scale factor = logn 2 

dst ~ src2 * log2 (srcl); 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Zero Divide 

Floating Invalid Operation 

Floating Inexact 

3-188 

Result is too large for destination format. 

Result is too small for destination format. 

The srcl operand is 0 and src2 is non~ 
zero. 

The src1 and src2 operands are both O. 

The src1 operand is 00 and the src2 
operand is O. 

The srcl operand is and the src2 
operand is 00. 

The srcl operand is negative and non­
zero. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 



Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

Ilogr, logrll 

logrl r2, g8, g2 # g2,g3 ~ g8,g9 * log2(r2,r3) 

logr 
logrl 

expr,logepr 

682 
692 

REG 
REG 

3-189 



inter 80960KB PROGRAMMER'S REFERENCE 

mark 

Mnemonic: mark Mark 

Format: . mark 

Description: Generates a breakpoint trace event if the breakpoint trace mode has been 
enabled. The breakpoint trace mode is enabled if the trace-enable bit (bit 0) 
of the process controls and the breakpoint-trace mode bit (bit 7) of the trace 
controls have been set. Both these words are located in the PCB. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

When a breakpoint trace event is detected, the trace-fault-pending flag (bit 
10) of the process controls and the breakpoint-trace-event flag (bit 23) of the 
trace controls are set. Before the next instruction is executed, a trace fault is 
generated. 

If the breakpoint-trace mode has not been enabled, the mark instruction 
behaves like a no-op. . 

For mOre information on trace-fault generation, refer to Chapter 12. 

raise trace breakpoint fault 

STANDARD, Breakpoint Trace 

# Assume that the breakpoint trace mode is 
# enabled. 
ld xyz, r4 
addi r4, r5,r6 
mark 

. # Breakpoint trace event is generated at 
# this point in the instruction stream. 

mark 66B REG 

fmark, modpc, modtc 

3-190 



Mnemonic: modac 

Format: modac 

80960KB PROGRAMMER'S REFERENCE 

Modify AC 

mask, 
reg!lit 

src, 
reg/lit 

dst 
reg 

modac 

Description: Reads and modifies the arithmetic controls. The src operand contains the 
value to be placed in the arithmetic controls and the mask operand specifies 
the bits that may be changed. Only the bits set in mask are modified in the 
arithmetic controls. Once the arithmetic controls have been changed, their 
initial state is copied into dst .. 

Action: temp f- AC 
AC f- (src and mask) or 

(AC and not (mask)); 
dst f- temp; 

Faults: STANDARD 

Example: gl, g9, g12 # AC f- g9, masked by gl 
# g12 f- initial value of AC 

Opcode: modac 645 REG 

See Also: mod pc, modtc 

3-191 



inter 

modi 

Mnemonic: modi 

Format: modi 

80960KB PROGRAMMER'S REFERENCE 

Modulo Integer 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

. Description: Divides src2 by src1, where both are integers, and stores the modulo 
remainder of the result in dst. If the result is nonzero, dst is given the same 
sign as src1. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

dst ~ src2 - «src2Isrc1) * src1); 
if src2 * src1 < 0 

then dst ~ dst + src1; 
end if; 

STANDARD, Arithmetic Zero Divide 

modi r9, r2, r5, # r5 ~ modulo (r2/r9) 

modi 749 REG 

diy, remi 

3-192 



Mnemonic: modify 

Format: modify 

a0960KB PROGRAMMER'S REFERENCE 

Modify 

mask, 
reg/lit 

src, 
reg/lit 

srcldst 
reg 

modify 

Description: Modifies selected bits in srcldst with bits from SIT. The mask operand 
selects the bits to be modified: only the bits set in the mask are modified in 
srcldst. 

Action: srcldst ~ (src and mask) or (srcldst and not (mask)); 

Faults: STANDARD 

Example: modify g8, glO, r4 # r4 ~ glO masked by g8 

Opcode: modify 650 REG 

See Also: alterbit, extract 

3-193 



inter 

modpc 

Mnemonic: modpc 

Format: modpc 

80960KB PROGRAMMER'S REFERENCE 

Modify Process Controls 

src, 
reg/lit 

mask, 
reg/lit 

srcldst 
reg 

Description: Reads and modifies the processor's internally cached process controls as 
specified with mask and srcldst. The srcldst operand contains the value to be 
placed in the process controls and the mask operand specifies the bits that 
may be changed. Only the bits set in the mask are modified in the process 
controls. Once the process controls have been changed, their initial value is 
copied into srcldst. The src operand is a dummy operand that should be set 
equal to the mask operand. 

Action: 

The processor must be in the supervisor mode to modify the process controls 
using this instruction. If the mask operand is set to 0, this instruction can be 
used to read the process controls, without the processor being in the super­
visor mode. 

If the action of this instruction results in the priority of the processor being 
lowered, the interrupt table is checked for pending interrupts. 

Changing the state, resume, internal state, and trace enable fields of the 
process controls can lead to unpredictable behavior, as described in Chapter 
7 in the section titled "Changing the Process-Controls Word.'" 

if mask =t ° 
then if process. process_controls. execution_mode =t supervisor 

then raise type-mismatch fault; 
end if; 
temp ~ process. process_controls; 
process.process_controls ~ 

(mask and srcldst) or 
(process.process30ntrols and not (mask»; 

srcldst ~ temp; . 
if (temp. priority > process.process30ntrols.priority 

then check_pending_interrupts; 
# if continue here, no interrupt to do 

end if; 
else srcldst ~ process.process_controls; 

end if; 

3-194 



inter 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

STANDARD, Type Mismatch 

modpc g9, g9, g8 

modpc 655 

modac, modtc 

# process controls ~ g8 
# masked by g9 

REG 

3-195 

mod pc 



intel" 

modtc 

Mnemonic: modtc 

Format: modtc 

80960KB PROGRAMMER'S REFERENCE • 

Modify Trace Controls 

mask, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Description: Reads and modifies the trace controls for the current process. The processor 
changes its internally cach~d trace controls as specified with mask and src. 
The src operand contains the value to be placed in the trace controls and the 
mask operand specifies the bits that may be changed. Only the bits set in the 
mask are modified in the trace controls. Once the trace controls have been 
changed, their initial state is copied into dst. 

Action': 

Faults: 

Example: 

Opcode: 

See Also: 

This instruction only affects the trace controls cached in processor. The trace 
controls in the PCB for the current process are not affected. 

Since bits 8 through 15 and 24 through 31 of the trace-controls word are 
reserved, the mask operand is ANDed with OOFFOOFF16 to insure that these 
bits are not set in the mask. 

The changed trace controls take effect on the first non-branching instruction 
fetched from memory. Since instructions are prefetched four at a time, the 
trace controls may not take effect for up to the next four instructions ex­
ecuted. 

For more information o~ the trace controls, refer to Chapters 12 and 16. 

temp f- process. trace_controls; 
temp 1 f- 16#OOFFOOFF# and mask; 
process.trace30ntrols f-

(tempI and src) or 
(process.trace30ntrols and not(templ»; 

dst f- temp; 

STANDARD 

modtc g12, g10, g2 
# trace controls f- g10 masked by g12; 
# previous trace controls stored in g2 

modtc 654 REG 

modac, modpc 

3-196 



Mnemonic: 

Format: 

mov 
movl 
movt 
movq 

mov* 

80960KB PROGRAMMER'S REFERENCE 

Move 
Move Long 
Move Triple 
Move Quad 

src, 
reg/lit 

dst 
reg 

MOVE 

Description: Copies the content of one or more source registers (specified with the src 
operand) to one or more destination registers (specified with the dst 
operand). 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

For the movl, movt, and movq instructions, the src and dst operands specify 
the first (lowest numbered) register of several successive registers. The src 
and dst registers must be even numbered (e.g., gO, g2) for the movl instruc­
tion and an integral multiple of four (e.g., gO, g4) for the movt ;md movq 
instructions. 

When the src and dst operands overlap, the value moved is unpredictable. 

dst f- src; 

STANDARD 

movt g8, r4 # r4, r5, r6 f- g8, g9, glO 

mov 5CC REG 
movl 5DC REG 
movt 5EC REG 
movq 5FC REG 

)(I, movr, st 

3-197 



80960KBPROGRAMMER'S REFERENCE 

I movr, movre, movrll 

Mnemonic: 

Format: 

movr 
movrl 
movre 

movr* 

Move Real 
Move Long Real 
Move Extended Real 

src, 
freg/flit 

dst 
freg 

Description: Copies a real value from one or more source registers (specified with the src 
operand) to one or more destination registers (specified with the dst 
operand). 

Action: 

For the movrl instruction, if the src or dst operand references a global or 
local register, this register is the first (lowest. numbered) of two successive 
registers. For the movre instruction, if the src or dst operand references a 
global or local register, this register is the first (lowest numbered) of three 
successive registers. 

When copying real numbers between global or local registers and floating­
point registers, conversion between real or long-real format to extended-real 
format is performed implicitly. Conversion between real and long-real for­
mats must be done through floating-point registers and requires two instruc­
tions, as illustrated in the example below. 

When the movre instruction moves an operand from global or local registers 
to a floating-point register, it automatically truncates the most-significant 16 
bits of the word in the third register (refer to Figure 12-5). Likewise, when 
this instruction is used to move an operand from a floating-point register to 
global or local registers, it adds 16 zeros to the third word. The movre 
instruction is not a numeric instruction; it merely manipulates bits. 

The movr and movrl instructions can cause a floating-point exception to be 
raised, which might result in a fault· being raised, as is explained in the 
section below on faults. The movre instruction can never raise an exception 
and thus never faults. 

dst f- src; 

3-198 



Faults: 

Example: 

Opcode: 

80960KB PROGRAMMER'S REFERENCE 

STANDARD 

Floating Reserved Encoding 

I movr, movre, movrll 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

Result is too large for destination format. 

Result is too small for destination format. 

Source operand is an SNaN value. 

Result cannot be represented exactly in 
destination format. 

# Conversion of real value in g3 to a 
# to a long real value, which is stored 
# in g4,g5 
movr g3, fp2 
movrl fpi, g4 

movr 
movrl 
movre 

6C9 
6D9 
6E9 

REG 
REG 
REG 

See Also: mov 

3-199 



inter 80960KB PROGRAMMER'S REFERENCE 

muli, mulo 

Mnemonic: 

Format: 

muli 
mulo 

mul* 

Multiply Integer 
Multiply Ordinal 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Multiplies the src2 value by the src1 value and stores the result in dst. 

Action: dst ~ src2 * src1; 

Faults: STANDARD, Integer Overflow 

Example: muli r3, r4, r9 

Opcode: muli 741 
mulo 701 

See Also: ernul, muir 

# r9 ~ r4 TIMES r3 

REG 
REG 

3-200 



inter 

Mnemonic: 

Format: 

muir 
mulrl 

mulr* 

80960KB PROGRAMMER'S REFERENCE 

Multiply Real 
Multiply Long Real 

src1, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

I muir, mulrll 

Description: Multiplies the src2 value by the src1 value and stores the result in dst. 

_00 

-F 

-0 

Src2 +0 

+F 

+00 

NaN 

Notes: 

F 
... 

Action: 

For the mulrl instruction, if the src1, src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The sign of the result is always the exclusive-OR of the source signs, even if 
one or more of the source values is 0,00, or a NaN. 

The following table shows the results obtained when mUltiplying various 
classes of numbers together, assuming that neither overflow nor underflow 
occurs. 

SrcI 

-00 -F -0 +0 +F +00 NaN 

+00 +00 * * _00 _00 NaN 
+00 +F +0 -0 -F _00 NaN 

* +0 +0 -0 -0 * NaN 

* -0 -0 +0 +0 * NaN 
_00 -F -0 +0 +F +00 NaN 
_00 -00 " * * +00 +00 NaN 

NaN NaN NaN NaN NaN NaN NaN 

Means finite-real number. 
Indicates floating invalid-operation exception . 

When you need to multiply by the power of 2, the scaler and scalerl instruc­
tions can also be used. 

dst f- src2 * src1; 

3-201 



inter ,80960KB PROGRAMMER'S REFERENCE 

I muir, mulrll 

Faults: 

Example: 

Opcode: 

See Also: 

STANDARD Refer to the discussion of faults at the 
beginning of this chapter. 

Floating Reserved Encoding One or more operands is an unnormal­
ized (including denormalized) value and· 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

mulrl g12, g4, fp2 

muir 
mulrl 

78C 
79C 

ernul, muli, scaler 

Result is too large for destination format. 

Result is too small for destination format. 

One source operand is 0 and the other is 
00. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

# fp2 f- g4,g5 * g12,g13 

REG 
REG 

3-202 



Mnemonic: nand 

Format: nand 

B0960KB PROGRAMMER'S REFERENCE 

Nand 

srcl , 
reg/lit 

src2, 
reg/lit 

dst 
reg 

nand 

Description: Performs a bitwise NAND operation on the src2 and srcl values and stores 
the result in dst. 

Action: dst f- (not (src2)) or not (srcl); 

Faults: STANDARD 

Example: nand g5, r3, r7 # r7 f- r3 NAND g5 

Opcode: nand 58E REG 

See Also: and,andnot, nor, not, notand,notor, or, ornot, xnor, xor 

3-203 



nor 
Mnemonic: nor 

Format: nor 

80960KB PROGRAMMER'S REFERENCE 

Nor 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Performs a bitwise NOR operation on the src2 and srci' values and stores the 
result in dst. 

Action: dst f,- not (src2) and not (srcl); 

Faults: STANDARD 

Example: nor g8, 28, r5 # r5 f,- 28 NOR g8 

Opcode: nor 588 REG 

See Also: and, andnot, nand, not, notand, notor, or, ornot, xnor,xor 

3-204 



80960KB PROGRAMMER'S REFERENCE 

not, notand 

Mnemonic: not Not 
notand Not And 

Format: not sre, dst 
reg/lit reg 

notand srel, sre2, dst 
reg/lit reg/lit reg 

Description: Performs a bitwise NOT (not instruction) or NOT AND (notand instruction) 
operation on the sre2 and srcJ values and stores the result in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

not: dst f- not (srcJ); 

notand: dst f- (not (src2» and src1; 

STANDARD 

not g2, g4 # g4 f- NOT g2 
not and r5, r6, r7 # r7 f- NOT r6 AND r5 

not 
notand 

58A 
584 

REG 
REG 

and,andnot,nand,nor, notor, or, ornot, xnor, xor 

3-205 



inter 

notbi;t 

Mnemonic: notbit 

Format: notbit 

80960KB PROGRAMMER'S REFERENCE 

Not Bit 

bitpos, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Description: Copies the src value to dst with one bit toggled. The bitpos operand 
specifies the bit to be toggled. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

dst ~ src xor 21\(bitpos mod 32); 

STANDARD 

notbit r3, r12, r7 

notbit 580 

# r7 ~ r12 with the bit 
# specified in r3 toggled 

REG 

alterbit. chkbit, c1r.bit, set bit 
,I 

3-206 



Mnemonic: notor 

Format: notor 

80960KB PROGRAMMER'S REFERENCE 

Not Or 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

notor 

Description: Performs a bitwise NOT OR operation on the src2 and srcl values and stores 
the result in dst. 

Action: dst f- (not (src2)) or srcl; 

Faults: STANDARD 

Example: notor g12, g3, g6 # g6 f- NOT g3 OR g12 

Opcode: notor 58D REG 

See Also: and, andnot, nand, nor, not, notand, or, ornot, xnor, xor 

3-207 



or,ornot 

Mnemonic: 

Format: 

or 
ornot 

or 

ornot 

80960KB PROGRAMMER'S REFERENCE 

Or 
arNot 

srcJ, src2, dst 
reg/lit reg/lit reg 

srcJ, src2, dst 
reg/lit reg/lit reg 

Description: Perfonns a bitwise OR (or instruction) or aRNOT (ornot instruction)opera­
tion on the src2 and srcJ values and stores the result in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

or: dst f- src2 or srcJ; 

ornot: dst f- src2 or not (src /); . 

STANDARD 

or 14, g9, g3 
arnot r3, r8, r11 

or 
ornot 

587 
58B 

# g3 f- g9 OR 14 
# r11 f- r8 OR NOT r3 

REG 
REG 

and,andnot,nand,nor,not,notand,notor,xnor,xor 

3-208 



Mnemonic: 

Format: 

remi 
remo 

rem* 

80960KB PROGRAMMER'S REFERENCE 

Remainder Integer 
Remainder Ordinal 

srcl , 
reg/lit 

src2, 
reg/lit 

dst 
reg 

remi, remo 

Description: Divides src2 by srcl and stores the remainder in dst. The sign of the result 
(if nonzero) is the same as the sign of src2. 

Action: dst f- src2 - ((src2 / srcl) * src1); 

Faults: STANDARD 

Integer Overflow 

Example: remo r4, r5, r6 

Opcode: remi 748 
remo 708 

See Also: remr, modi 

Refer to discussion of faults at the begin­
ning of this chapter. 

Result is too large for destination format. 
This fault is signaled only when execut­
ing the remi instruction and if both of 
the following conditions are met: (l) the 
integer-overflow mask in the arithmetic­
controls registers is clear and (2) the 
source operands have like signs and the 
sign of the result operand is different 
than the signs of the source operands. 

# r6 f- r5 rem r4 

REG 
REG 

3-209 



inter 80960KB PROGRAMMER'S REFERENCE 

I remr, remrll 

Mnemonic: remr 
remrl 

Remainder Real 
Remainder Long Real 

Format: remr* srel, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Divides src2 by srel and stores the remainder in dst. The sign of the result 
(if nonzero) is the same as the sign of src2. 

Sre2 

.co 

·F 

·0 

+0 

+F 

+co 

NaN 

For the remrl instruction, if the srcl, src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when computing the 
remainder of various classes of numbers, assuming that neither overflow nor 
underflow occurs. 

Srel 

.co ·F ·0 +0 +F +co NaN 

* * * * * * NaN 
src2 -F or -0 ** ** -F or -0 src2 NaN 

-0 -0 * * -0 -0 NaN 
+0 +0 * * +0 +0 NaN 

src2 +For +0 ** ** +For +0 src2 NaN 

* * * * * * NaN 
NaN NaN NaN NaN . NaN NaN NaN 

Notes: 

F Means finite-real number. 
>10 Indicates floating invalid-operation exception. 

>10 >I< Indicates floating zero-divide exception. 

When the result is 0, its sign is the same as that of src2. When the srel is 00, 

the result is equal to the src2. 

The result of this operation is always exact if the destination format is at least 
as wide as the src2 and srel. 

3-210 



Action: 

80960KB PROGRAMMER'S REFERENCE 

I remr, remrll 

The remainder provided with the remr and remrl instructions is different 
from the remainder described in the IEEE floating-point standard. The dif­
ference is related to how the quotient (N) of the expression (src2/src1) is 
determined. 

As shown below in the action statement, N for the remr and remrl instruc­
tions is the nearest integer value obtained when the exact result (E) of the 
expression (src2/src1) is truncated toward zero. N will always be less than 
or equal to the absolute value of E. 

For the IEEE standard, N is simply the nearest integer value to E. Here, N 
may be less than, equal to, or greater than the absolute value of E. 

To help determine the IEEE remainder from the result given by the remr and 
remrl instructions, the following information about the quotient is given in 
the arithmetic-status field in the arithmetic: 

Arithmetic Meaning 
Status Bit 

6 Ql, the next-to-Iast quotient bit 

5 QQ, the last quotient bit 

4 QR, the value the next quotient bit 
would have if one more reduction were 
performed (the "round" bit of the 
quotient) 

3 QS, set if the remainder after the QR 
reduction would be nonzero (the 
"sticky" bit of the quotient) 

The information can then be used to determine the IEEE standard remainder, 
as shown in the example below. 

dst f- src2 - (N * src1); 
# where N = truncate (src2/src1. 
# Here, (src2/src1) is truncated 
# toward zero to the nearest integer. 

3-211 



inter 80960KB PROGRAMMER'S REFERENCE 

I remr, remrll 

Faults: 

Example: 

Opcode: 

See Also: 

STANDARD 

Floating Reserved Encoding 

Refer to the discus'sion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Zero Divide 

Floating Invalid Operation 

Floating Inexact 

remrl g6, g8, fpl 
# fpl f- g8,g9 rem g6,g7 

remr 
remrl 

remi,'modi 

683 
693 

REG 
REG 

3-212 

Result is too large for destination format. 

Result is too small for destination format. 

The src1 operand is O. 

The src2 operand is 00. 

The src1 operand is O. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 



80960KB PROGRAMMER'S REFERENCE 

ret 

Mnemonic: ret Return 

Format: ret 

Description: Returns process control to the calling procedure. The current stack frame 
(Le., that of the called procedure) is deallocated and the FP is changed to 
point to the stack frame of the calling procedure. Instruction execution is 
continued at the instruction pointed to by the RIP in the calling procedure's 
stack frame, which is the instruction immediately following the call instruc­
tion. 

Action: 

As shown in the action statement below, the action that the processor takes 
on the return is determined by the return status and prereturn trace bits. 
These bits are contained in bits 0, through 3 of register rO of the current set of 
local registers. 

Refer to Chapter 4 for further discussion of the return instruction. 

wait for any uncompleted instructions to finish; 
case frame_status is 

2#000#: FP f- PFP; 
free current register_set; 
if register_set (FP) not allocated 

then retrieve from memory(FP); 
end if; 
IP f- RIP; 

2#001#: x f- memory(FP-16); 
y f- memory(FP-12); 
do case 000 action; 
arithmetic_controls f- y; 
if execution_mode = supervisor 

then process30ntrols f- x; 
end if; 

2#010#: if execution_mode::;:. supervisor 
then go to case 000; 
else process30ntrols.T f- 0; 

execution_mode f- user; 
go to case 000; 

end if; 

3-213 



inter 

ret 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

2#0 11 #: if execution_mode "# supervisor 
then go to case 000; 
else process_controls.T ("- 1; 

execution_mode ("- user; 
go to case 000; 

end if; 

2#100#: undefined 

2# 1 0 1 #: undefined 

2#110#: if execution_mode = supervisor 
then free current register set; 

check_pending_interrupts; 
# if continue here, no interrupt to do 
do case 000 action; 

end if; 

2#111#: x ("- memory(FP-16); 
y ("- memory(FP-12); 
do case 000 action; 
arithmetic_controls ("- y; 
if execution_mode = supervisor 

then process30ntrols ("- x; 
check-pending_interrupts; 

end if; 

STANDARD 

ret 

ret 

# process control returns to 
# calling procedure 
# environment 

OA CTRL 

call, calls, calix 

3-214 



inter 

Mnemonic: rotate 

Format: rotate 

80960KB PROGRAMMER'S REFERENCE 

Rotate 

len, 
reg/lit 

src, 
reg/lit 

dst 
reg 

rotate 

Description: Copies src to dst and rotates the bits in the resulting dst operand to the left 
(toward higher significance). (The bits shifted off the left end of the word 
are inserted at the right end of the word.) The len operand specifies the 
number of bits that the dst operand is rotated. The len operand can range 
from 0 to 31. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

This instruction can also be used to rotate bits to'the right. Here, the number 
of bits the word is to be rotated right is subtracted from 32 to get the len 
operand. 

dst f- rotate (len mod 32 (src» 

STANDARD 

rotate r4, r8, r12 

rotate 59D 

SHIFT 

# r12 f- r8 
# with bits rotated 
# r4 bits to left 

REG 

3-215 



inter 80960KB PROGRAMMER'S REFERENCE 

r roundr, roundrll 

Mnemonic: 

Format: 

roundr 
roundrl 

roundr* 

Round Real 
Round Long Real 

src, 
freg/flit 

dst 
freg 

Description: Rounds src to the nearest· integral value, depending on the rounding mode, 
and stores the result in dst. 

Action: 

Faults: 

Example: 

Opcode: 

For the roundrl instruction, if the src or dst operand references a global or 
local register, this register is the first (lowest numbered) of two successive 

. registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

If the src operand is 00 the result is src. If the src operand is not an integral 
value, a floating-inexact exception is raised. 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

roundrl r4, rIO 

Result is too large for destination format. 

Result is too small for destination format. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

# rl0,rll ~ r4,r5 rounded 

roundr 
roundrl 

68B 
69B 

REG 
REG 

3-216 



Mnemonic: 

Format: 

scaler 
scalerl 

scaler* 

80960KB PROGRAMMER'S REFERENCE 

Scale Real 
Scale Long Real 

srcl, 
reg/lit 

src2, 
freg/flit 

dst 
freg 

I scaler, scalerll 

Description: Multiplies src2 by 2 to the power of src1 and stores the result in dst. The 
src1 operand is an integer; whereas, src2 and dst are reals. 

For the scalerl instruction, if the src2 or dst operand references a global or 
local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when scaling various classes 
of numbers, assuming that neither overflow nor underflow occurs. 

Src2 

Srcl 

-N 0 +N 

-co _00 _00 _00 

-F -F -F -F 

-0 -0 -0 -0 

+0 +0 +0 +0 

+F +F +F +F 

+co +00 +00 +co 

NaN NaN NaN NaN 

Notes: 

F Means finite-real number. 
N Means integer. 

In most cases, only the exponent is changed and the mantissa (fraction) 
remains unchanged. However, when the src1 operand is a denormalized 
value, the mantissa is also changed and the result may turn out to be a 
normalized number. Similarly, if overflow or underflow results from a scale 
operation, the resulting mantissa will differ from the source's mantissa. 

3-217 



inter 80960KB PROGRAMMER'S REFERENCE 

I scaler, scalerll 

Action: 

Faults: 

Example: 

Opcode: 

Refer to the sections titled "Floating Overflow Exception" and "Floating 
Underflow Exception" in Chapter 12 for further discussion of how overflow 
and underflow are handled. 

dst f- src2 * (2A.srcl) 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floatingcpoint exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Zero Divide 

Floating Invalid Operation 

Floating Inexact 

scalerl g6, g2, fpO 
# fpO f- g2,g3 * 2Ag6 

scaler 
scaler! 

677 
676 

REG 
REG 

Result is too large for destination format. 

Result is too sl1)all for destination format. 

The srcl operand is O. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 

See Also: muir 

3-218 



inter 

Mnemonic: scanbit 

Format: scanbit 

80960KB PROGRAMMER'S REFERENCE 

Scan For Bit 

src, 
reg/lit 

dst 
reg 

scanbit 

Description: Searches the src value for the most-significant set bit (1 bit). If a most­
significant 1 bit is found, its bit number is stored in dst and the condition 
code is set to 0102, If the src value is zero, all 1 's are stored in dst and the 
condition code is set to 0002, 

Action: dst ~ 16#FFFFFFFF#; 
AC.cc ~ 2#000#; 

Faults: 

Example: 

Opcode: 

See Also: 

for i in 31..0 reverse loop 

end loop; 

STANDARD 

if (src and 21\i) ::f:. 0 
then 

end if; 

dst ~ i; 
AC.cc ~ 2#010#; 
exit; 

# assume g8 is nonzero 
scanbit g8, g10 
# g10 ~ bit number of 
# most-significant set bit 
#in g8; AC.cc ~ 2#010# 

scanbit 641 REG 

spanbit 

3-219 



inter 

scanbyte 

Mnemonic: 

Format: 

80960KB PROGRAMMER'S REFERENCE 

scanbyte Scan Byte Equal 

scanbyte srcl , 
reg/lit 

src2 
reg/lit 

Description: Performs a byte-by-byte comparison of srcl. and src2 and sets the condition 
code to 2#010# if any two corresponding bytes are equal. If no correspond­
ing bytes are equal, the condition code is set to 0002. 

Action: if (srcl and 16#000000FF#) = (src2 and 16#OOOOOOFF#) or 
(srcl and 16#0000FFOO#) = (src2 and 16#0000FFOO#) or 
(srcl and 16#00FFOOOO#) = (src2 and 16#00FFOOOO#) or 
(srcl and 16#FFOOOOOO#) = (src2 and 16#FFOOOOOO#) 

then AC.cc ~ 2#010#; 
else AC.cc ~ 2#000#; 

endif; 

Faults: STANDARD 

Example: # assume r9 = OxllABllOO 
scanbyte OxOOAB0011, r9 
# AC.cc ~ 2#010# 

Opcode: scan byte 5AC REG 

3-220 



inter 

Mnemonic: setbit 

Format: setbit 

80960KB PR'OGRAMMER'S REFERENCE 

Set Bit 

bitpos, 
reg/lit 

src, 
reg/lit 

dst 
reg 

setbit 

Description: Copies the src value to dst with one bit set. The bitpos operand specifies the 
bit to be set. 

Action: dst f- src or 2"(bitpos mod 32); 

Faults: STANDARD 

Example: setbit 15, r9, r1 
# r1 f- r9 with bit 15 set 

Opcode: setbit 583 REG 

See Also: aiterbit, chkbit, c1rbit, notbit, 

3-221 



inter 

SHIFT 

Mnemonic: 

Format: 

shlo 
shro 
shli 
shri 
shrdi 

sh* 

80960KB PROGRAMMER'S REFERENCE 

Shift Left Ordinal 
Shift Right Ordinal 
Shift Left Integer 
Shift Right Integer 
Shift Right Dividing Integer 

len, 
reg/lit 

src, 
reg/lit 

dst 
reg 

Description: Shifts src left or right by the number of digits indicated with the len operand 
and stores the result in dst. This operation (with the exception of the shri 
instruction, as described below) is e~uivalent to multiplying (shift left) or 
dividing (shift right) the src value by 2 en. 

Action: 

The shri instruction performs a conventional arithmetic right shift, which, 
when used as a divide, produces an incorrect quotient for negative src values. 
To get a correct quotient for a negative src value, use the shrdi instruction, 
which performs correct rounding of negative results. 

shlo: if len < 32 
then dst f- src* 2"len 
else dst f- 0; 
end if; 

shro: if len < 32 

shli: 

shri: 

shrdi: 

then dst f- src/2"len 
else dst f- 0; 
e~d if; 

dst f- src* 2"len 

if src;::: 0 
then if len < 32 

then dst f- src/2"len 
else dst f- 0; 

else if len < 32 
then dst f- (src - 2"len + 1)/2"len 
else dst f- -1; 
end if; 

end if; 

dst f- src/2"len 

3-222 



inter 80960KB PROGRAMMER'S REFERENCE 

SHIFT 

Faults: STANDARD, Integer Overflow 

Example: shli 13, g4, r6 
# g6 ~ g4 shifted left 13 bits 

Opcode: shlo 59C REG 
shro 598 REG 
shli 59E REG 
shri 59B REG 
shrdi 59A REG 

See Also: divi, muli, rotate 

3-223 



a0960KB PROGRAMMER'S REFERENCE 

I sinr, sinrl! 

Mnemonics: sinr Sine Real 
sinrl 

Format: sinr* 

Sine Long Real 

src, 
freg/flit 

dst 
freg 

Description: Calculates the sine of src and stores the result in dst. The src value is an 
angle given in radians. The resulting dst value is in the range -1 to + 1, 
inclusive. 

Action: 

For the sinrl instruction, if the src or dst operand references a global or local 
register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when taking the sine of 
various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

Src Dst 
-00 * 
-F -1 to + 1 

-0 -0 

+0 +0 

+F -1 to + 1 

+00 * 
NaN NaN 

Notes: 
F Means finite· real number 
• Indicates floating invalid-operation exception 

In the trigonmetic instructions, the 80960KB uses a value for 1t with a 66-bit 
mantissa which is 2 bits more than are available in the extended-real format. 
The section in Chapter 12 titled "Pi" gives this 1t value, along with some 
suggestions for representing this value in a program. 

dst ~ sin (src); 

3-224 



Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

STANDARD 

Floating Reserved Encoding 

I sinr, sinrll 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

sinrl g6, gO 
# sine of value in g6,g7 
# is stored in gO,gl 

sinr 
sinrl 

cosr, tanr 

68C 
69C 

REG 
REG 

3-225 

Result is too small for destination format. 

The src operand is 00. 

One or more operands is an SNaN value. 

Result cannot be represented exactly in 
destination format. 



spanbit 

Mnemonic: spanbit 

Format: spanbit 

80960KB PROGRAMMER'S REFERENCE 

Span Over Bit 

src, 
reg/lit 

dst 
reg 

Description: Searches the src value for the most-significant clear bit (0 bit). If a most­
significant 0 bit is found, its bit number is stored indst and the condition 
code is set to 0102, If the src value is all 1 's, all 1 's are stored in dst and the 
condition code is set to 0002, 

Action: dst ~ l6#FFFFFFFF#; 
AC.cc ~ 2#000#; 

Faults: 

Example: 

Opcode: 

See Also: 

for i in 31 .. 0 reverse loop 
if (src and 2J\i) = 0 
then 

dst ~ i; 
AC.cc ~ 2#010#; 
exit; 

end if; 
end loop; 

STANDARD 

# assume r2 is not 16#FFFFFFFF# 
spanbit r2 r9 
# r9 ~ bit number of 
# most-significant clear bit 
# in r2; AC.cc ~ 2#010# 

spanbit 640 REG 

scanbit 

3-226 



inter 

Mnemonic: 

Format: 

sqrtr 
sqrtrl 

sqrtr* 

80960KB PROGRAMMER'S REFERENCE 

Square Root Real 
Square Root Long Real 

src, 
freg/flit 

dst 
freg 

! sqrtr, sqrtrl! 

Description: Calculates the square root of src and stores it in dst. 

Action: 

For the sqrtrl instruction, if the s/'c or dst operand references a global or 
local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when taking the square root 
of various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

Src Dst 
-00 * 
-F * 
-0 -0 
+0 +0 
+F +F 

+00 +00 

NaN NaN 

Notes: 

F Means finite-real number 
Indicates floating invalid-operation exception 

With these instructions, it is not possible to raise a floating overflow or 
floating underflow fault unless the src operand is in a floating-point register 
and the dst operand is not. 

dst f- sqrt (src); 

3-227 



80960KB PROGRAMMER'S REFERENCE 

\ sqrtr, sqrtrl\ 

Faults: 

Example: 

Opcode: 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including de normalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

sqrtrl g6, fpO 
# fpO ~ sqrt of g6,g7 

sqrtr 
sqrtrl 

688 
698 

REG 
REG 

3-228 

Result is too large for destination format. 

Result is too small for destination format. 

The src operand is less than -0. 

The src operand is an SNaN value. 

Result cannot be represented exactly in 
destination format. 



80960KB PROGRAMMER'S REFERENCE 

STORE 

Mnemonic: st Store 
stob Store Ordinal Byte 
stos Store Ordinal Short 
stib Store Integer Byte 
stis Store Integer Short 
stl Store Long 
stt Store Triple 
stq Store Quad 

Format: s1* src, dst 
reg/lit mem 

Description: Copies a byte or string of bytes from a register or group of registers to 
memory. The src operand specifies a register or the first (lowest numbered) 
register of successive registers. 

Action: 

Faults: 

Example: 

The dst operand specifies the address of the memory location where the byte 
or the first byte of a string of bytes is to be stored. The full range of 
addressing modes may be used in specifying dst. ·(Refer to Chapter 5 for a 
complete discussion of the addressing modes available with memory-type 
operands.) 

The stob and stib, and stos and stis instructions store a byte and half word, 
respectively, from the low order bytes of the src register. The st, stl, stt, and 
stq instructions copy 4, 8, 12, and 16 bytes, respectively, from successive 
registers to memory. 

For the stl instruction, dst must specify an even numbered register (e.g., gO, 
g2, ... , gI2). For the stt and stq instructions, dst must specify a register 
number that is a multiple of four (e.g., gO, g4, g8). 

memory (dst) f- src; 

STANDARD, Integer Overflow Fault (stib and stis instructions only) 

st g2, 1256 (g6) 
# word beginning at offset 
# 1256 + (g6) f- g2 

3-229 



STORE 

Opcode: 

See Also: 

.80960KB PROGRAMMER'S REFERENCE 

st 
stob 
stos 
stib 
stis 
stt 
stt 
stq 

92 
82 
8A 
C2 
CA 
9A 
A2 
B2 

LOAD,MOVE 

MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 
MEM 

3-230 



Mnemonic: subc 

Format: subc 

80960KB PROGRAMMER'S REFERENCE 

Subtract Ordinal With Carry 

src1, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

subc 

Description: Subtracts (src1 - 1) from src2, adds bit 1 of the condition code (used here as 
a carry bit), and stores the result in dst. If the ordinal subtraction results in a 
carry, bit I of the condition code is set. 

Action: 

Faults: 

Example: 

Opcode: 

This instruction can also be. used for integer subtraction. Here, if integer 
subtraction results in an overflow, bit 0 of the condition code is set. 

The subc instruction does not distinguish between ordinals and integers: it 
sets bits 0 and I of the condition code regardless of the data type. 

# Let the value of the condition code be xCx. 
dst f- src2 - (src1 - 1) + C; 
AC.cc f- 2#OCV#; 
# C is carry from ordinal subtraction. 
# V is 1 if integer subtraction would have generated 
# an overflow. 

STANDARD 

subc g5, g6, g7 
# g7 f- g6 - (g5 - 1) 
# + Carry Bit 

subc 5B2 REG 

See Also: addc 

3-231 



inter 80960KB PROGRAMMER'S REFERENCE 

subi, subo· 

Mnemonic: 

Format: 

subi 
subo 

sub* 

Subtract Integer 
Subtract Ordinal 

srcl, 
reg/lit 

src2, 
reg/lit 

dst 
reg 

Description: Subtracts srcl from src2 and stores the result in dst. The binary results from 
these two instructions are identical. The only difference is that subi can 
signal an integer overflow. 

Action: dst f- src2 - srcl; 

Faults: STANDARD, Integer Overflow (subi instruction only) 

Example: 

Opcode: 

See Also: 

subi g6, g9, g12 

subi 
subo 

593 
592 

addi, addr, subc, subr 

# g12 f- g9 - g6 

REG 
REG 

3-232 



inter 80960KB PROGRAMMER'S REFERENCE 

I subr, subrll 

Mnemonic: subr 
subrl 

Subtract Real 
Subtract Long Real 

Format: subr* srcl, 
freg/flit 

src2, 
freg/flit 

dst 
freg 

Description: Subtracts srcl from src2 and stores the result in dst. 

Src2 

-00 

For the subrl instruction, if the srcl, src2, or dst operand references a global 
or local register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following t(ible shows the results obtained when subtracting various 
classes of numbers, assuming that neither overflow nor underflow occurs. 

Srcl 

-00 -F -0 +0 +F +00 NaN 

* -00 -00 _00 -00 _00 NaN 
-F +00 ±For ±O src2 src2 -F -00 NaN 

-0 +00 srcl ±O -0 srcl -00 NaN 
+0 +00 srcl +0 ±O srcl -00 NaN 

+F +00 +F src2 src2 ±For± 0 _00 NaN 
+00 +00 +00 +00 +00 +00 * NaN 

NaN NaN NaN NaN NaN NaN NaN NaN 

Notes: 

F Means finite-real number . 
... Indicates floating invalid-operation exception. 

When the difference between two operands of like sign is zero, the result is 
+0, except for the round toward -00 mode, in which case the result is -0. This 
instruction also guarantees that +0 - (-0) = +0, and that -0 - (+0) = -0. 

When one source operand is 00, the result is 00 of the expected sign. If both 
source operands are 00 of the same sign, an invalid-operation exception is 
raised. 

3-233 



inter 80960KB PROGRAMMER'S REFERENCE 

I subr, subrll 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

dst f- src2 - srcl; 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnormal­
ized (including denormalized) value and 
the normalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating Underflow 

Floating Invalid Operation 

Floating Inexact 

subrl g6, fpO, fpl 
# fpl f- fpO - g6,g7 

subr 
subrl 

78D 
79D 

subi, sube, addr 

REG 
REG 

3-234 

Result is too large for destination format. 

Result is too small for destination format. 

Source operands are infinities of like 
sign. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination format. 



80960KB PROGRAMMER'S REFERENCE 

syncf 

Mnemonic: syncf Synchronize Faults 

Format: syncf 

Description: Waits for any faults to be generated associated with any prior uncompleted 
instructions. 

Action: if arithmetic_controls.nif 

Faults: 

Example: 

Opcode: 

See Also: 

then; 
else wait until no imprecise faults can occur 

end if; 

STANDARD 

ld xyz, g6 
addi r6, r8, r8 
syncf 

associated with any uncompleted instructions; 

and g6, OxFFFF, g8 
# the syncf instruction insures that any faults 
# that may occur during the execution of the 
# ld and addi instructions occur before the 
# and instruction is executed 

syncf 66F REG 

mark, fmark 

3-235 



inter 80960KB PROGRAMMER'S REFERENCE 

I synld I 

Mnemonic: synld Synchronous Load 

Format: synld SIT, dst 
reg reg 
addr addr 

Description: Copies a word from the memory location specified with src into dst and 
waits for the completion of all memory operations, including those initiated 
prior to the synld instruction. When the load has been successfully com­
pleted, the condition code is set to 2#010# . 

Action: 

Faults: 

. The primary function of this instruction is for reading lAC messages, the 
lAC Message Control word, or the lAC Interrupt Control Register. 
However, this instruction is not restricted to lAC applications. It may be 
used when it is important to guarantee the completion of the load operation 
before proceeding or to avoid a bad-access fault. 

The setting of the condition code indicates whether or not the load was 
completed successfully. If the load operation results in a bad access con­
dition (e.g., reading an AP-bus interconnect register), the condition code is 
set to 0002, but the bad-access fault is not raised. 

if PRCB.addressing_mode = physical 
then tempa f- src; 
else tempa f- physicaLaddress (src); 

end if; 
tempa f- tempa and 16#FFFFFFFC#; # force alignment 
if tempa = 16#FF000004# 

then dst f- interrupccontrol_reg; 
AC.cc f- 2#010#; 

else dst f- memory (tempa); 
if bad_access 

then AC.cc f- 2#000#; 
else AC.cc f- 2#010#; 

end if; 
end if; 

STANDARD 

3-236 



Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

Ida I6#FFOOOOIO#, g8 
synId g8, g9 # g9 f- word from lAC 

# message buffer; 
# AC.cc = 2#010# 

synld 615 REG 

synmov 

3-237 

I synld I 



80960KB PROGRAMMER'S REFERENCE 

I synmov, synmovl, synmovg I 

Mnemonic: 

Format: 

synmov 
synmovi 
synmovq 

synmov* 

Synchronous Move 
Synchronous Move Long 
Synchronous Move Quad 

dst, 
reg 
addr 

src 
reg 
addr 

Description: Copies 1 (synmov), 2 (synmovl), or 4 (synmovq) words from the memory 
location specified with src to the memory location specified with dst and 
waits for the completion of all memory operations, including those initiated 
prior to this instruction. When the move has been successfully completed, 
the condition code is set to 0102, 

The src and dst operands specify the address of the first (lowest address) 
word. These addresses should be for word boundaries (synmov), double­
word boundaries (synmovl), or quad-word boundaries (synmovq). If not, 
the processor forces alignment to these boundaries. 

The primary function of these instructions is for sending lAC messages. 
However, this instruction is not restricted to lAC applications. It may be 
used when it is important to guarantee the completion of the move opeFation 
before proceeding or to avoid a Bad Access Fault. 

The setting of the .condition code indicates whether or not the move was 
completed successfully. If the move operation results in a bad access con­
dition (e.g., sending an lAC message to a non-existent agent on the AP-bus), 
the condition code is set to 0002, but the Bad Access Fault is not raised. 

Address FFOOOO1016 is used to send an lAC message to the processor upon 
which the instruction is executed. Refer to Chapter 11 for further infor­
mation about sending internal lAC messages. 

3-238 



inter 

Action: 

80960KB PROGRAMMER'S REFERENCE 

I synmov, synmovl, synmovg I 

synmov: 

if PRCB.addressing_mode = physical 
then tempa f- dst; 
# dst is used as a physical address 
else tempa f- physical_address (dst); 
# dst translated into a physical address 

end if; 
tempa f- tempa and l6#FFFFFFFC#; 
# force alignment 
if tempa = l6#FF000004# 

then interrupccontrol_reg f- memory (src) 
AC.cc f- 2#010#; 

else temp f- memory (src); 
memory (tempa) f- temp; 
# write operations into memory (tempa) are 
# interpreted as noncacheable 
wait for completion; 
if bad_access . 

then AC.cc f- 2#000#; 
else AC.cc f- 2#010#; 

end if; 
end if; 

synmovl: 

if PRCB.addressing_mode = physical 
then tempa f- dst; 
# dst is used as a physical address 
else tempa f- physical_address (dst); 
# dst is translated into as a physical address 

end if; 
tempa f- temp a and 16#FFFFFFF8#; # force alignment 
temp f- memory (src); 
memory (tempa) f- temp; 
# write operations into memory (tempa) are interpreted 
# as noncacheable 
wait for completion; 
if bad_access 

then AC.cc f- 2#000#; 
else AC.cc f- 2#010#; 

end if; 

3-239 



80960KB PROGRAMMER'S REFERENCE 

I synmov, synmovl, synmovq I 

Faults: 

Example: 

Opcode: 

See Also: 

synmovq: 

if PRCB.addressing_mode = physical 
then tempa f- dst; 
# dst is used as a physical address 
else tempa f- physical_address (dst); 
# dst is translated into as a physical address 

end if; 
tempa f- tempa and 16#FFFFFFFO#; # force alignment 
temp f- memory (src); 
iftempa = 16#FFOOOO1O# 

then AC.cc f- 2#010#; 
use temp as a received iac message; 
else memory (tempa) f- temp; 
# write operations into memory (tempa) are interpreted 
# as non cache able 

wait for completion; 
if bad_access 

then AC.cc f- 2#000#; 
else AC.cc f- 2#010#; 

end if; 
end if; 

STANDARD 

Ida 16#FFOOOOIO#, g7 
# g7 f- 16#FFOOOOIO 
synmovq g7, g8 
# g7 f- lAC message from g8 

synmov 600 
synmovi 601 
synmovq 602 

synld· 

REG 
REG 
REG 

3-240 



inter 80960KB PROGRAMMER'S REFERENCE 

I tanr, tanrll 

Mnemonics: tanr Tangent Real 
Tangent Long Real tanrl 

Format: tanr* src, 
freg/tlit 

dst 
freg 

Description: Calculates the tangent of src and stores the result in dst. The src value is an 
angle given in radians. The resulting dst value is in the range of -00 to +00, 
inclusive; a result of _00 or +00 will result in a floating invalid-operation 
exception being signaled. 

For the tanrl instruction, if the src or dst operand references a global or local 
register, this register is the first (lowest numbered) of two successive 
registers. Also, this register must be even numbered (e.g., gO, g2, g4). 

The following table shows the results obtained when taking the tangent of 
various classes of numbers, assuming that neither overflow nor underflow 
occurs. 

Src Dst 
-00 * 
-F -F to +F 
-0 -0 
+0 +0 
+F -F to +F 
+00 1< 

NaN NaN 

Notes: 

F Means finite-real number 

* Indicates floating invalid-operation exception 

If the source operand is a finite value, the result will be finite, unless the src 
operand is in a floating-point register and the dst operand is not. 

In the trigonmetic instructions, the 80960KB uses a value for 1t with a 66-bit 
mantissa which is 2 bits more than are available in the extended-real format. 
The section in Chapter 12 titled "Pi" gives this 1t value, along with some 
suggestions for representing this value in a program. 

3-241 



inter 80960KB PROGRAMMER'S REFERENCE 

I tanr, tanrll 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

dst f- tangent (src); 

STANDARD 

Floating Reserved Encoding 

Refer to the discussion of faults at the 
beginning of this chapter. 

One or more operands is an unnonnal­
ized (including denonnalized) value and 
the nonnalizing-mode bit in the arith­
metic controls is set. 

The following floating-point exceptions can be raised. Whether or not an 
exception results in a fault being raised depends on the state of its associated 
mask bit in the arithmetic controls. 

Floating Overflow 

Floating U.nderflow 

Floating Invalid Operation 

Floating Inexact 

, 
Result is too large for destination fonnat. 

Result is too small for destination fonnat. 

The src operand is 00. 

One or more operands are an SNaN 
value. 

Result cannot be represented exactly in 
destination fonnat. 

tanrl g4, fpO ~ tangent of value in g4,g5 is 
# stored in fpO 

tanr 
tanrl 

cosr, sinr 

68E 
69E 

REG 
REG 

3-242 



inter 

Mnemonic: 

Format: 

teste 
testne 
testl 
testle 
testg 
testge 
testo 
testno 

test* 

80960KB PROGRAMMER'S .REFERENCE 

Test For Equal 
Test For Not Equal 
Test For Less 
Test For Less or Equal 
Test For Greater 
Test For Greater or Equal 
Test For Ordered 
Test For Unordered 

dst 
reg 

TEST 

Description: Stores a true (1) in dst if the logical AND of the condition code and the 
mask-part of the opcode is not zero. Otherwise, the instruction stores a false 
(0) in dst. 

The following table shows the condition-code mask for each instruction: 

Instruction Mask Condition 

testno 000 Unordered 

testg 001 Greater 

teste 010 Equal 

testge 011 Greater or equal 

testl 100 Less 

testne 101 Not equal 

testle 110 Less or equal 

testo 111 Ordered 

For the testno instruction (Unordered), a true is stored if the condition code 
is 2#000#; otherwise a false is stored. 

3-243 



inter 

TEST 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

80960KB PROGRAMMER'S REFERENCE 

For All Instructions Except testno: 

if (mask and AC.cc)::t 2#000# 

end if; 

testno: 

then dst ~ 1; # dst set for true 
else dst ~ 0; # dst set for false 

if AC.cc = 2#000# 

end if; 

then dst ~ 1; # dst set for true 
else dst ~ 0; # dst set for false 

STANDARD 

# assume AC.cc = 2#100# 
test1 g9 # g9 ~ 16#00000001# 

teste 22 COBR 
testne 25 COBR 
testl 24 COBR 
testle 26 COBR 
testg 21 COBR 
testge 23 COBR 
testa 27 ·COBR 
testno 20 COBR 

cmpi, cmpdeci, cmpinci 

3-244 



inter 80960KB PROGRAMMER'S REFERENCE 

xnor, xor 

Mnemonic: xnor Exclusive Nor 
xor Exclusive Or 

Format: xnor src1, src2, dst 
reg/lit reg/lit reg 

xor srci, src2, dst 
reg/lit reg/lit reg 

Description: Perfonns a bitwise XNOR (xnor instruction) or XOR (xor instruction) 
operation on the src2 and src1 values and stores the result in dst. 

Action: 

Faults: 

Example: 

Opcode: 

See Also: 

xnor: dst ~ not (src2 or src1) or 
(src2 and src1); 

xor: dst ~ (src2 or src1) and 
not (src2 and src1); 

STANDARD 

xnor r3, r9, r12 
xor gl, g7, g4 

xnor 
xor 

589 
586 

# r12 ~ r9 XNOR r3 
# g4 ~ g7 XOR gl) 

REG 
REG 

and, andnot, nand, nor, not, notand, notor, or, ornot 

3-245 



80960KB PROGRAMMER'S REFERENCE 

11.0 FLOATING-POINT OPERATION 

This section describes the floating-point processing capabilities of the 80960KB processor. The 
subjects discussed include the real number data types, the execution environment for loating-point 
operations, the floating-point instructions, and fault and exception handling. 

11.1 INTRODUCING THE 80960KB FLOATING-POINT ARCHITECTURE 

The floating-point architecture used in the 80960KB processor is designed to allow a convenient 
implementation of the IEEE Standard 754-1985 for Binary Floating-PointArithmetic. This hardware 
architecture, along with a small amount of software support, conforms to the IEEE standard and 
provides support for the following data structures and operations: 

Real (32-bit), long real (64-bit), and extended real (80-bit) floating-point number formats. 

Add, subtract, multiply, divide, square root, remainder, and compare operations 

Conversion between integer and floating-point formats 

Conversion between different floating-point formats 

Handling of floating-point exceptions, including non-numbers (NaNs) 

The software to support the 80960KB floating-point architecture is needed primarily to handle 
conversions between real numbers and decimal strings. 

In addition, the 80960KB floating-point architecture supports several functions that go beyond the 
IEEE standard. These functions fall into two categories: . 

functions recommended in the appendix to the IEEE standard, such as copy sign and classify, 
and 

commonly used transcendental functions, including trigonometric, logarithmic, and exponen­
tial functions. 

11.2 REAL NUMBERS AND FLOATING-POINT FORMAT 

This section provides an introduction to real numbers and how they are represented in floating-point 
format. Readers who are already familiar with numeric processing techniques and the IEEE standard 
may wish to skip this section. 

11.2.1 Real Number System 

As shown at the top of Figure 23, the real-number system comprises the continuum of real numbers 
from minus infinity (-00) to plus infinity (+00). 

3-246 



80960KB PROGRAMMER'S REFERENCE 

Because the size and number of registers that any computer can have is limited, only a subset of the 
real-number continuum can be used in real-number calculations. As shown at the bottom of Figure 
23, the subset of real numbers that a particular processor supports represents an approximation of the 
real number system. The range and precision of this real-number subset is determined by the format 
that the processor uses to represent real numbers. 

BINARY REAL NUMBER SYSTEM 

-100 -10 -1 o 10 100 

.... ss --.-.11------+----+-+-+----+------+--- SS~ 

... ss . 
-100 

SUBSET OF BINARY REAL-NUMBERS THAT CAN BE REPRESENTED WITH 
IEEE SINGLE-PRECISION (32-BIT) FLOATING-POINT FORMAT 

,.-.~ 

1 ...... . 
-10 -1 0 1 /10:\ 100 

, ....... ··,·· .. ·····1 .... ·_··,·· .. , .... , •• , ....... I \. ..... ./ 
~..;...,...; 

Figure 23. Binary Number System 

11.2.2 Floating-Point Format 

·ss .... 

270647-22 

To increase the speed and efficiency of real number computations, computers or numeric processors 
. typically represent real numbers in a binary floating-point format. In this format, a real number has 

three parts: a sign, a significand, and an exponent. Figure 24 shows the binary floating-point format 
that the processor uses. This format conforms to the IEEE standard. 

The sign is a binary value that indicates whether the number is positive (0) or negative (1). The 
significand has two parts: a one-bit binary integer (also referred to as the j-bit) and a binary fraction. 
The j-bit is often not represented, but instead is an implied value. The exponent is a binary integer 
that represents the base-2 power that the significand is raised to. 

3-247 



inter 80960KB PROGRAMMER'S REFERENCE 

SIGN 

EXPONENT SIGNIFICAND 

FRACTION Jl 
INTEGER OR J-BIT' 

270647-23 

Figure 24. Binary Floating-Point Format 

Table 16 shows how the real number 20 1.187 (in ordinary decimal format) is stored in floating-point 
format. The table lists a progression of real number notations that leads to the format that the 
80960KB processor uses. In this format, the binary real number is normalized and the exponent is 
biased. . 

Table 16. Real Number Notation 

NOTATION VALUE 

ORDINARY DECIMAL 201.187 

SCIENTIFIC DECIMAL 2.01187El02 

SCIENTIFIC BINARY 1.1001001001011111E2111 

SCIENTIFIC BINARY 1.1001001.001011111 E21 000011 0 
(BIASED EXPONENT) 

32-BIT SIGN BIASED EXPONENT SIGNIFICAND 

FLOATING-POINT 
FORMAT 0 10000110 41001001001011111 
(NORMALIZED) 1. (IMPLIED) 

11.2.3 Normalized Numbers 

In most cases, the processor represents real numbers in normalized form. This means that except for 
zero, the significand is always made up of an integer of land a fraction as follows: 

l.fff ... ff 

3-248 



80960KB PROGRAMMER'S REFERENCE 

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the exponent 
is decremented by one.) 

Representing numbers in normalized form maximizes the number of significant digits that can be 
accommodated in a significand of a given width. To summarize, a normalized real number consists 
of a normalized significand that represents a real number between 1 and 2 and an exponent that gives 
the number's binary point. 

11.2.4 Biased Exponent 

The processor represents exponents in a biased form. This means that a constant is added to the actual 
exponent so that the biased exponent is always a positive number. The value of the biasing constant 
depends on the number of bits available for representing exponents in the floating-point format being 
used. The biasing constant is chosen so that the smallest normalized number can be reciprocated 
without overflow. 

11.2.5 Real Number and Non-Number Encodings 

The real numbers that are encoded in the floating-point format described above are generally divided 
into three classes: +0, +nonzero-finit number, and +00. Encodings for non-numbers (NaNs) are also 
defined. The term NaN stands for "Not a Number." Figure 25 shows how the encodings for these 
numbers and non-numbers fit into the real number continuum. The encodings shown here are for the 
IEEE single-precision (32-bit) format, where the term "s" indicates the sign bit, "e" the biased 
exponent, and "f' the fraction. (The exponent values are given in decimal.) 

11.2.6 Signed Zeros 

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings are equal in value. 
The sign of a zero result depends on the operation being performed and the. rounding mode being 
used. Signed zeros have been provided to aid in implementing interval arithmetic. The sign of a zero 
may indicate the direction from which underflow occurred, or it may indicate the sign of an 00 that 
has been reciprocated. 

11.2.7 Signed, Nonzero, Finite Values 

The class of signed, nonzero, finite values is divided into two groups: normalized and denor-malized. 
The normalized finite numbers comprise all the nonzero finite values that can be encoded in a 
normalized real number format from zero to 00. In the 32-bit form shown in Figure 25, this group of 
numbers includes all the numbers with biased exponents ranging from 1 to 25410 (unbiased, the 
exponent range is from -12610 to +127 10). 

3-249 



inter S0960KB PROGRAMMER'S REFERENCE 

NaN 
~ 1--1 

-DENORMALIZED FINITE +DENORMALIZED FINITE 

-NORMALIZED FINITE -0 +0 +NORMALIZED FINITE +00 

REAL NUMBER AND NaN ENCODINGS' FOR 32-BIT FLOATING-POINT FORMAT 

S E F S E F 

11 0 0 I -0 ·+0 I 0 1 0 0 

11 0 NONZERO I -DENORMALIZED +DENORMALIZED I 0 1 0 NONZERO FINITE FINITE 

11 1. .. 254 ANY VALUE 
1 

-NORMALIZED +NORMALIZED I 0 1 
1. .. 254 ANY VALUE I FINITE FINITE 

11 255, 0 I +00 I 0 1 255 0 I 
IX11 255 1.0XX2 -SNAN +SNaN I x11 255 1.0XX2. I 
kl 255 1.1 XX -QNaN +QNaN I x11 255- 1 .. 1 XI< 

270647-24 

NOTES: 
1. SIGN BIT IGNORED 
2. FRACTIONS MUST BE NONZERO 

Figure 25. Real Numbers and NaNs 

11.2.S Denormalized Numbers 

When real numbers become very close to zero, the normalized-numberformat can no longer be used 
to represent the numbers. This is because the range of the exponent is not large enough to compensate 
for shifting the binary point to the right to eliminate leading zeros. . 

When the biased exponent is zero, smaller numbers can only be represented by making the integer 
bit (and perhaps other leading bits) of the significand zero. The numbers in this range are' called 
denormalized numbers. The use of leading zeros with denormalized numbers allows smaller 
numbers to be represented. However, this denormalization causes a loss of precision (the number 
of significant bits in the fraction is reduced by the leading zeros). 

When performing normalized'floating-point computations, a processor normally operates on nor­
malized numbers and produces normalized numbers as results. Denormalized numbers represent an 
underflow condition. . 

A denormalized number is computed through a technique called gradual underflow. Table 17 gives 
an example of gradual underflow in the denormalization process. Here the 32-bit format is being 
used, so the minimum exponent (unbiased) is -12610, The true result in this example requires an 

3-250 



80960KB PROGRAMMER'S REFERENCE 

exponent of -12910 in order to have a normalized number. Since -12910 is beyond the allowable 
exponent range, the result is denormalized by inserting leading zeros until the minimum exponent 
of -12610 is reached. 

Table 17. Denormalization Process 

Operation Sign Exponent* Signiticand 
True Result 0 -129 1.01011100 ... 00 

Denormalize 0 -128 0.101011100 ... 00 

Denormalize 0 -127 0.0101011100 ... 00 

Denormalize 0 -126 0.00101011100 ... 00 

Denormal Result 0 -126 0.00101011100 ... 00 

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating a zero 
result. 

11.2.9 Signed Infinities 

The two infinities, +00 and -00, represent the maximum positive and negative real numbers, 
respectively, that can be represented in the floating-point format. Infinity is always represented by 
a zero fraction and the maximum biased exponent allowed in the specified format (e.g., 255 10 for the 
32-bit format). 

Whereas denormalized numbers represent an underflow condition, the two infinity numbers 
represent the result of an overflow condition. Here, the normalized result of a computation has a 
biased exponent greater than the largest allowable exponent for the selected result format. 

11.2.10 NaNs 

Since NaNs are non-numbers, they are not part of the real number line. In Figure 25, the encoding 
space for NaNs in the 80960KB floating-point formatsis shown above the ends of the real number 
line. This space includes any value with the maximum allowable biased exponent and a non-zero 
fraction. (The sign bit is ignored for NaNs.) 

The IEEE standard defines two specific NaN values: a quiet NaN (QNaN) and a signaling NaN 
(SNaN). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN with the most 
significant bit clear. QNaNs are allowed to propagate through most arithmetic operations without 
signaling an exception. SNaNs signal an invalid-operation exception whenever they appear as 
operands in arithmetic operations. Exceptions are discussed later in section titled "Exceptions and 
Fault Handling." 

3-251 



intJ 80960KB PROGRAMMER'S REFERENCE 

The section "Operations on NaNs" provides detailed information on how the processor handles 
NaNs. 

11.3 REAL DATA TYPES 

The processor supports three real-number data formats: real, long real, and extended real. These 
formats orrespond directly to the single-precision, double-precision, and double-extended precision 
formats in the IEEE standard. Figure 26 shows these data formats and gives the resolution that each 
provides. 

SIGN 

SIGN 
REAL 

~TTS fff!ffffiff&Jf%F~7!~_ 
31 30 23 22 INTEGER 0 

IMPLIED 
LONG REAL 

;iTS Wfff9fff£fi&f~f@~f{{{1~~ 
63 62 52 51 INTEGER IMPLIED 0 

SIGN EXTENDED REAL 

DATA TYPE 

REAL 

LONG REAL 

RANGE 

2 -126 TO 2127 (_10-45 TO -1038) 

2-1022 TO 21023 (_10-324 TO _10308) 

EXTENDED REAL 2-16382 TO 216383 (_10-4950 TO _10+4932) 

Figure" 26., Real Number Formats 

270647-25 

For the real and long-real formats, only the fraction is given for the significand. The integer is 
assumed to be 1 for all numbers except 0 and denormalized finite numbers. 

For the extended-real format, the integer is contained in bit 63, and the most-significant fraction bit 
is bit 62. Here, the integer is explicitly set to 1 for normalized numbers, infinities, and NaNs, and 
to 0 for zero and denormalized numbers. 

Table 18 shows the encodings for all the classes of real numbers (Le., zero, denormalized finite, 
normalized finite, and 00) and NaNs, for each of the three real data-types. 

3-252 



80960KB PROGRAMMER'S REFERENCE 

Table 18. Real Numbers and NaN Encodings 

Class 

+00 

+ NORMALS 

POSITIVE 

+ DE NORMALS 

+ ZERO 

-ZERO 

- DENORMALS 

NEGATIVE 

- NORMALS 

-00 

SNaN 
NaN 

QNaN 

REAL: 

LONG REAL: 

EXTENDED REAL: 

Notes: 

Sign 

0 

0 

· · 
0 

0 

· · 0 

0 

1 

1 

· · 1 

1 

· · · 1 

1 

X 

X 

Biased Exponent 

11...11 

11 ... 10 

· · 00 ... 01 

00 ... 00 

· · 
00 ... 00 

00 ... 00 

00 ... 00 

00 ... 00 

· · 00 ... 00 

00 ... 01 

· · · 11 ... 10 

11 ... 11 

11 ... 11 

11 ... 11 

_8BITS­

_11 BITS_ 

_ 15BITS_ 

1. Integer is implied for real and long real formats and is not stored. 
2. Fraction for SNaN must be non-zero. 

3-253 

Integer' 

1 

1 

· · 1 

0 

· · 0 

0 

0 

0 

· · 0 

1 

· · · 1 

1 

1 

1 

Fraction 

00 ... 00 

11 ... 11 

00 ... 00 

11 ... 11 

· · 00 ... 01 

00 ... 00 

00 ... 00 

00 ... 01 

· 
11...11 

00 ... 00 

11...11 

00 ... 00 

OX ... XX2 

1X ... XX 

-23 BITS­

_52 BITS_ 

_63 BITS _ 



80960KB PROGRAMMER'S REFERENCE 

11.4 EXECUTION ENVIRONMENT FOR FLOATING-POINT OPERATIONS 

An important feature of the 80960KB processor is that the floating-point processing capabilities 
have been integrated into the execution environment of the processor .. Operations on floating-point 
numbers are carried out using the same registers that are used for ordinals and integers. In addition, 
four floating-point registers have been provided for extended-precision floating-point arithmetic. 

The following sections describe how floating-point operations are handled in the processor's 
execution environment. 

11.4.1 Registers 

All of the registers in the processor's execution environment, (i.e., global, local, and floating point) 
can be used for floating-point operations. When using global or local registers, real values (I.e., 32 
bits) are contained in one register; long-real values (I.e., 64 bits) are contained in two successive 
registers; and extended-real values (i.e., 80 bits) are contained in three successive registers. 

Figure 27 shows how the three fonns of the real data type are encoded when stored in global and local 
registers. Note that long-real values must be aligned on even-numbered register boundaries (e.g., gO, 
g2, ... ). Extended-real values must be aligned on register boundaries that are an integral multiple 
of four (e.g., gO, g4, ... ). . 

REAL 
31 2322 

II EXPONENT FRACTION 

SIGN 

LONG REAL 
31 20 19 

FRACTION (LEAST SIGNIFICANT BITS) . I EXPONENT I FRACTION (MOST SIGNIFICANT BITS) 

SIGN 

31 

EXTENDED REAL 

16 15 14 

FRACTION (LEAST SIGNIFICANT BITS) 

~ RESERVED (INITIALIZED TO 0) 

NOTES: 
.1. REGISTER NUMBER MUST BE EVEN. 
2. REGISTER NUMBER MUST BE AN INTEGRAL MULTIPLE OF FOUR. 

EXPONENT 

Figure 27; Storage of Real Values in Global and Local Registers 

3-254 

REGISTER 
DISPLACEMENT 

0 

In 

0 

n1 

n+1 

0 

n2 

n+1 

n+2 

270647·26 



80960KB PROGRAMMER'S REFERENCE 

Real values in the floating-point registers are always in the extended-real format. When a real or 
long-real value is moved from global or local registers to floating-point register, the processor 
automatically reformats it for the extended-real format. 

11.4.2 Loading and Storing Floating-Point Values 

Floating-point values are loaded from memory into global or local registers using the load (Id), load 
long (Idl), and load triple (Idt) instructions. Likewise, floating-point values in global or local registers 
are stored in memory using the store (st), store long (stl), and store triple (stt) instructions. 

Loading a floating-point value into a floating-point register requires two steps (two instructions). 
First, a floating-point value must be loaded from memory into one or more global or local registers. 
Then, the value must be moved to the floating-point register using a move real (movr), move long­
real (movrl), or move extended-real (movre) instruction. 

A similar two-step procedure is required to store a value from a floating-point register into memory. 
The value must first be moved into one or more global or local registers (using a movr, movrl, or 
movre instruction), then stored in memory. 

This two-step method for moving values from memory into floating-point registers and vice versa 
may seem a little cumbersome; however, in practice it generally is not. Floating-point registers are 
most often used to store and accumulate intermediate results of computations. The contents of these 
registers are not normally stored in memory. 

For example, the following instru<;:tion 

divr r3, r4, £p2 

causes the real value in local register r4 to be divided by the value in r3, with the extended-real result 
stored in floating-point register fp2. Here, a move operation from the local registers to the floating­
point registers is not required, since it is implicit in the divide operation. 

11.4.3 Moving Floating-Point Values 

Either the move instructions (mov, movl, or movt) or the move-real instructions (movr, movrl, or 
movre) can be used to move real values among global and local registers. The move real instructions 
are generally used to convert a real value from one format to another or for moving real values 
between the global or local registers and floating-point registers. The move instructions are used to 
move real values while keeping them in the same format. 

When using the movr and movrl instructions to move floating-point numbers between the global or 
local registers and the floating -point registers, the processor automatically converts values from real 
and long-real format, respectively, into the extended-real format and vice versa. 

3-255 



80960KB PROGRAMMER'S REFERENCE 

For example, the following instruction 

movr g3, fpl 

causes a 32-bit, real value in global register g3 to be converted to 80-bit, extended-real fonnat and 
placed in floating-point register fpI. 

Going the opposite direction, the instruction 

movrl fpO, r4 

causes an extended-real value in floating -point registerfpO to be converted to 64-bit, long-real fonnat 
and placed in local registers r4 and r5. 

The movre instruction moves 80-bit, extended-real values between registers, without. fonnat 
conversion. When this instruction is used to move a value from three global or local registers to a 
floating-point register, the processor extracts the 80-bit value from the three word extended-real 
fonnat. When moving a value from a floating -point register to global or local registers, the processor 
inserts the 80-bit value into the three registers in the three-word fonnat. . 

11.4.4 Arithmetic Controls 

The arithmetic controls are used extensively to control the arithmetic and faulting properties of 
floating-point operations. Table 19 shows the bits in the arithmetic controls that are used in floating­
point operations. 

The condition code flags are used to indicate the results of comparisons of real numbers; just as they 
are for integers and ordinals. 

The arithmetic status field is used to record results from the classify real (classr and classrl) and 
remainder real (remr and remrl) instructions. These instructions are discussed later in this section. 

The floating-point flags indicate exceptions to floating-point operations. Here, the tenn e~ception 
refers to a potentially undesirable operation (such as dividing a number by zero) or an undesirable 
result (such as underflow). The flags provide· a means of recording the occurrence of specific 
exceptions. 

The floating-point masks provide a method of inhibiting the processor from invoking a fault handler 
when an exception is detected. 

Use of the floating -point flag and mask bits are discussed later in this section in "Exceptions and Fault 
Handling." 

3-256 



80960KB PROGRAMMER'S REFERENCE 

Table 19. Arithmetic Controls Used in Floating-Point Operations 

Arithmetic Function 
Control 
Bits 

0-2 Condition code 

3-6 Arithmetic status field 

8 Integer overflow flag 

12 Integer overflow mask 

16 Floating overflow flag 

17 Floating underflow flag 

18 Floating invalid-operation flag 

19 Floating zero-divide flag 

20 Floating inexact flag 

24 Floating overflow mask 

25 Floating underflow mask 

26 Floating invalid-operation mask 

27 Floating zero-divide mask 

28 Floating inexact mask 

29 Normalizing mode flag 

30 - 31 Rounding control 

11.4.5 Normalizing Mode 

The normalizing-mode flag specifies whether the processor operates in normalizing mode (set) or 
not (clear). 

Nonnalizing mode is the most common mode of operation. Here, the processor operates on valid 
floating-point operands, regardless of whether they are nonnalized or denormalized values. 

When the processor is not operating in normalizing mode, it signals a reserved-encoding exception 
whenever it encounters a denormalized floating-point value as a source operand. In either mode, 
denormalized numbers are be produced if the underflow exception is masked. 

There are no flag or mask bits in the arithmetic controls for this exception. When a reserved-encoding 
exception is detected, the processor generates a floating reserved-encoding fault and leaves the 
destination operand unchanged (i.e., no result is stored). 

The unnormalized mode of operation is provided to allow unnormalized arithmetic to be simulated 
with software. Here, a fault handler routine can be used to perform unnonnalized arithmetic 
whenever a reserved-encoding exception is signaled. 

3-257 



80960KB PROGRAMMER'S REFERENCE 

11.4.6 Rounding Control 

Often the infinitely precise result of an arithmetic operation cannot be encoded exactly in the format 
of the destination operand. For example, the following value has a 24-bit fraction. The least­
significant bit of this fraction (the underlined bit) cannot be encoded exactly in the real (32-bit) 
format: 

1.0001 0000 10000011 1001 001E2 101 

The processor must then round the result to one of the following two values: 

1.001 0000 10000011 1001 011E2 101 

1.001 0000 1000 0011 1001 100E2 10 1 

A rounded result is called an inexact result. When an inexact result is produced, the floating-point 
inexact flag bit in the arithmetic controls is set. 

The processor rounds results according to the destination format (real, long real, or extended real) 
and the setting of the rounding-mode flags of the arithmetic controls. Four types of rounding are 
allowed, as described in Table 20. 

Table 20. Rounding Methods 

Rounding Mode Description 

Round up (toward +00) Rounded result is close to but no 
less than the infinitely precise 
result 

Round down (toward -00) Rounded result is close to but no 
greater than the infinitely precise 
result 

Round toward zero (Truncate) Rounded result is close to but no 
greater in absolute value than the, 
infinitely precise result 

Round to nearest (even) Rounded result is close to the in-
finitely precise result. If two 
values are equally close, the result 
is the even value (i.e., the one with 

~ 
the least-significant bit of zero). 

When the infinitely precise result is between the largest positive finite value allowed in a particular 
format and +00, the processor rounds the result as shown in Table 21. 

3-258 



80960KB PROGRAMMER'S REFERENCE 

Table 21. Rounding of Positive Numbers 

Rounding Mode Description 

Round up (toward +(0) +00 

Round down (toward -(0) Maximum, positive finite value 

Round toward zero (Truncate) Maximum, positive finite value 

Round to nearest (even) +00 

When the infinitely precise result is between the largest negative finite value allowed in a particular 
format and -00, the processor rounds the result as shown in Table 22. 

Table 22. Rounding of Negative Numbers 

Rounding Mode Description 

Round up (toward +(0) Maximum, negative finite value 

Round down (toward -(0) -00 

Round toward zero (Truncate) Maximum, negative finite value 

Round to nearest (even) -00 

The rounding modes have no effect on comparison operations, operations that produce exact results, 
or operations that produce NaN results. 

The floating-point instructions allow a result to be stored in a shorter destination than the source 
operands. For example, the instruction 

addr fpl, fp2, g5 

produces a real (32-bit) result from two extended-real (80-bit) source operands. In all such 
operations, only one rounding error occurs: the error that occurs when rounding the infinitely precise 
result to the size of the destination format. 

Technically, an operation which computes a narrow result from wide operands is in violation of the 
IEEE standard. However, systems that are designed to conform to the IEEE standard do not need 
to use this capability of the processor. 

11.5 INSTRUCTION FORMAT 

The instruction format for floating-point instructions is the same as for the other processor 
instructions. When programming in assembly language, an assembly language statement begins 
with an instruction mnemonic and is followed by from one to three operands. For example, the 
multiply-real instruction muIr might be used as follows: 

muIr r8, r9, fp3 

3-259 



80960KB PROGRAMMER'S REFERENCE 

Here, real operands in local registers r8 and r9 are multiplied together and the result is stored in 
floating-point register fp3. 

From the machine level point of view, all floating-point instructions use the REG format. Refer to 
Appendix B for details on the REG format instructions. 

11.6 INSTRUCTION OPERANDS 

Operands for floating-point instructions can be either floating-point literals or registers. The 
processor recognizes two encodings for floating-point literals: +0.0 and + 1.0. 

All of the registers in the processor's execution environment (global registers gO through glS,local 
registers rO through r1S, and floating-point registers fpO through fp3) can be used as operands in 
floating-point instructions. (Of course, registers gIS, rO, r1, and r2 would generally not be used for 
storing floating-point numbers, since they are reserved for stack management functions.) 

When global or local registers are specified as operands, the instruction mnemonic (or opcode) 
determines how the values in these registers are interpreted. For example, there are two floating­
point divide instructions: divide real (divr) and divide long real (divrl). When using the divr 
instruction, the processor assumes that global- or local-register operands contain real (32-bit) values. 
When using the divrl instruction, global- or local-register operands are assumed to contain long-real 
(64-bit) values. 

With either instruction, floating-point registers (containing extended-real values) can also be used 
as operands. 

Using floating-point registers as operands allows mixed format or mixed precision arithmetic to be 
performed with either real and extended-real values or long-real and extended-real values. Mixed­
format operations with real and long-real values are not supported. 

11.7 SUMMARY OF FLOATING~POINT INSTRUCTIONS 

The processor's floating-point instructions consist of all instructions for which as least one operand 
is a real data type. 

These instructions can be divided into the following groups: 

Data Movement 

Data Type Conversion 

Basic Arithmetic 

Comparison and Classification 

Trigonometric 

Logarithmic and Exponential 

3-260 



80960KB PROGRAMMER'S REFERENCE 

The following sections give a brief overview of the instructions in each group. Detailed descriptions 
of the operations of these instructions are given in Section 10. 

11.7.1 Data Movement 

As has been described earlier in this section, the non-floating-point load and store instructions are 
used to move real values between registers and memory. Once in registers, the non-floating-point 
move instructions (mov, movl, and movt) are used to move real values between global and local 
registers without format conversion; whereas, the floating-point move instructions (movr, movrl, 
and movre) are used to move real values between global and local registers and floating-point 
registers. 

The copy-sign-real extended (cpysre) and copy-reverse-sign real-extended (cpyrsre) instructions 
provide a means of copying the sign of one extended-real value to another, if one of the values is in 
a floating-point register. This operation is best performed on real and long-real values using the bit 
instructions chkbit and aIterbit. 

11.7.2 Data Type Conversion 

Two types of data type conversions are provided: conversion from one floating-point format to 
another (e.g., real to extended real) and conversion between integer and real. . 

Conversion between floating-point formats is handled in either of two ways: explicitly by move 
instructions or implicitly by using the floating-point registers as operands in instructions. 

As described earlier in this section, the movr instruction implicitly converts values from real to 
extended real, and vice versa, when moving values between global or local registers and floating­
point registers. Likewise, the movrl instruction implicitly converts values from long real to extended 
real, and vice versa. 

Conversion between real and long-real formats requires the use of both instructions. For example, 
the following two instructions convert a real value in global register g6 to a long-real value contained 
in g6 and g7, using a floating -point register for intermediate storage of the value: 

movr g6, fpl 

movrl fpl, g6 

Implicit format conversion is also provided through the arithmetic, trigonometric, logarithmic, and 
exponential instructions. For example, the instruction 

addr r4, r5, fp2 

adds two real values together and produces an extended-real result. 

3-261 



80960KB PROGRAMMER'S REFERENCE 

The following six instructions allow conversion between integers and reals: 

cvtir 

cvtilr 

cvtri 

cvtril 

cvtzri 
cvtzril 

convert integer to real 

convert long integer to long real 

convert real to integer 

convert real to long integer 

convert truncated real to integer 

convert truncated real to long integer 

Both the cvtir and cvtilr instructions can be used to convert an integer to an extended-real value by 
specifying that the result be placed in a floating-point register. 

The convert real-to-integer instructions round off the real value to the nearest integer or long-integer 
value. For the cvtri and cvtril instructions, the rounding mode determines the direction the real 
number is rounded. For the convert truncated real-to-integer instructions (cvtzri and cvtzril), 
rounding is always toward zero. The latter two instructions are provided to allow efficient 
implementation of FORTRAN-like truncation semantics. 

Extended-real values can be converted to integers by using a floating-point register as a source 
operand in either of the convert real-to-integer instructions. 

Converting long-real values to integers requires two instructions, as in the following example: 

movrl g6, fp3 

cvtzri fp3, g6 

The first instruction moves the long-real value to a floating-point register. The second instruction 
converts the extended-real value to an integer. . 

11.7.3 Basic Arithmetic 

The following instructions perform the basic arithmetic operations specified in the IEEE standard: 

addr add real 

addrl add long real 
. subr subtact real 

subrl subtract long real 

muIr multiply real 

mulrl multiply long real 

divr divide real 

divrl divide long real 

remr remainder real 

3·262 



remrl 

roundr 

roundrl 
sqrtr 

sqrtrl 

80960KB PROGRAMMER'S REFERENCE 

remainder long real 

round real 

round long real 

square root real 

square root long real 

The round instructions round the floating-point operand to its nearest integral (i.e., integer) value, 
based on the current rounding mode. These instructions perform a function similar to the convert 
real-to-integer instructions except that the result is in floating-point format. 

11.7.4 Comparison, Branching, and Classification 

Comparison of floating-point values differs from comparison of integers or ordinals because with 
floating-point values there are four, rather than the usual three, mutually exclusive relationships: less 
than, equal to, greater than, and unordered. 

The unordered relationship is true when at least one of the two values being compared is aN aN. This 
additional relationship is required because, by definition, NaN s are not numbers, so they cannot have 
greater than, equal, or less than relationships with other floating-point values. 

The following.instructions are provided for comparing floating-point values: 

cmpr 

cmprl 

cmpor 

cmporl 

compare real 

compare long real 

compare ordered real 

compare ordered long real 

All of these instructions set the condition code flags in the arithmetic controls to indicate the results 
of the comparison. With the compare instructions (cmpr and cmprl), the condition code flags are 
set to 0002 for the unordered condition. With the compare ordered instructions (cmpor and cmporl), 
the condition code flags are set to 0002 and an invalid-operation exception is signaled for the 
unordered condition. 

Two branch instructions (bo and bno) allow conditional branching to be performed on an ordered 
or unordered condition, respectively. With these instructions, the processor checks the! condition 
code flags for unordered (0002) or ordered (111 2) and branches accordingly. 

The classify-real instructions (c1assr and c1assrl) provide a means of determining the class of a 
floating-point value (i.e., zero, denormalized finite, normalized finite, 00, SNaN, or QNaN). The 
result of this operation is stored in the arithmetic status field of the arithmetic controls. 

3-263 



80960KB PROGRAMMER'S REFERENCE 

11.7.5 Trigonometric 

The following instructions provide four common trigonometric functions: 

sin sine real 

sinrl sine long real 

cosr cosine real 

cosrl cosine long real 

tanr tangent real 

tanrl tangent long real 

atanr arctangent real 

'atanrl arctangent long real 

The arctangent instructions facilitate conversion from rectangular to polar coordinates. 

11.7.6 Pi 

The processor uses the following value for 1t in its computations: 

1t = O.f * 2e 

where 

f=C90FDAAA2 2168C234 C l6 

e=2 if significand is O. 

(The spaces in the fraction above indicate 32-bit boundaries.) 

This value has a 66-bit mantissa, which is 2 bits more than is allowed in the significand of an 
extended-real value. (Since 66 bits is not an even number of hex digits, two additional zeros have 
been added to the value so that it can be represented in a hexadecimal format. The least-significant 
hex digit (C16) is thus 11002' where the two least significant bits represent bits 67 and 68 of the 
mantissa.) 

If the results of computations that explicitly use 1t are to be used in the sine, cosine, or tangent 
instructions, the full 66-bit fraction for 1t should be used. This insqres that the results are consistent 
with the argument reduction algorithms that these instructions use. Using a rounded version of 1t can 
cause inaccuracies in result values, which if propagated through several calculations, might result 
in meaningless results. 

A common method of representing the full 66-bit fraction of 1t is to separate the value into two 
numbers. For example, the following two long-real values added together give the value fom shown 
above with the full 66-bit fraction: 

3-264 



where 

80960KB PROGRAMMER'S REFERENCE 

1t = higher 1t + low 1t 

highern=400921FB 5440000016 

low1t=3DDOB461 1A60000016 

Here high 1t gives the most significant 33 bits of 1t and low 1t gives the least significant 33 bits. Similar 
versions of 1t can also be written in the extended-real format. 

When using this two-part 1t value in an algorithm, parallel computations should be performed on each 
part, with the results kept separate; When all the computations are complete, the two results can be 
added together to form the final result. 

11.7.7 Logarithmic, ~xponential, and Scale 

The following instructions provide three different logarithmic functions, an exponential function, 
and a scale function: 

logbnr log binary real 

logbnrl log binary long real 

logr log real 

logrl log long real 

logepr log epsilon real 

logeprl log epsilon long real 

expr exponent real 

exprl exponent long real 

scaler scale real 

scalerl scale long real 

These instructions are described in detail in Section 10. The following is a brief des'cription of their 
functions. 

The log binary instructions compute the IEEE recommended function 10gb (X). The result is an 
integral value that is the binary log of X. 

The log instructions compute the function Y * log (X), where the log of X is the base-logarithm. 

The log epsilon instructions compute the function Y * log (X + 1), where the log of X + 1 is a base-
2 logarithm. 

The exponent instructions compute the value 2' - 1. 

The scale instructions perform a multiplication of a floating-point value by a power of 2. 



00960KB PROGRAMMER'S REFERENCE 

11.7.0 Arithmetic Versus Nonarithmetic Instructions 

The floating-point instructions can be divided into two groups: arithmetic and nonarithmetic. 
Arithmetic instructions are those that are sensitive to real values, meaning that they distinguish 
among NaN, 00, normalized finite, denormalized finite, and zero values. 

All but five of the floating-point instructions are arithmetic. The five nonarithmetic instructions are 
move-real extended (movre), copy-sign real extended (cpysre), copy-reversed-sign real extended 
(cpyrsre), and Classify real (classr and c1assrl). These nonarithmetic instructions are insensitive to 
real values and cannot generate floating-point exceptions or faults. 

This distinction between arithmetic and nonarithmetic instructions is important because floating­
point exceptions and faults can be signaled only during the execution of arithmetic instructions. 

11.0 OPERATIONS ON NANS 

As was described earlier in this section, the processor supports two types of NaNs: QNaN andl 
SNaN. An SNaN is any NaN value with its most-significant fraction bit set to 0 and at least one other 
fraction bit set to 1. (If all the fraction bits are set to 0, the value is an 00.) A QNaN is any NaN value 
with the most-significant fradion bit set to 1. The sign bit of a NaN is not interpreted. 

In general, when a QNaN is used in one or more arithmetic floating-point instructions, it is allowed 
to propagate through a computation. An SNaN on the other hand causes a floating invalid-operation 
exception to be signaled. -

The floating invalid-operation exception has a flag and a mask bit associated with it in the arithmetic 
controls. The mask bit determines how the processor handles an SNaN value. If the floating invalid­
operation mask bit is set, the SNaN is converted to a QNaN by setting the most significant fraction 
bit of the value to a O. The result is then stored in the destination and the floating invalid-operation 
flag is set. If the invalid operation mask is Clear, a floating invalid-operation fault is signaled and no 
result is stored inthe destination. 

When. the result is a QNaN, the format of the result is as shown in Table 23, depending on the form 
of the source operands. 

In some cases, a QNaN result is returned when none of the source operands are NaNs. Here, a 
standard QNaN is returned. The significand for the standard QNaN is as follows: 

1.1000 ... 00 

. (For real and long-real destinations, the integer bit will be an implied 1.) 

Other than the rules specified above, software is free to use the other bits of a NaN for any purpose. 

3-266 



80960KB PROGRAMMER'S REFERENCE 

Table 23. Format of QNaN Results 

Source Operands QNaNResult 

Only one operand is NaN, destina- QNaN version of NaN source 
tion is same width 

Only one operand is NaN, destina- QNaN version of NaN source, with 
tion is longer fraction extended with zeros 

Only one operarid is NaN, destina- QNaN version of NaN source, with 
tion is shorter fraction truncated 

Both operands are NaNs QNaN version of source whos~ 
fraction field has greatest mag-
nitude, with fraction extended or 
truncated as described above 

11.9 EXCEPTIONS AND FAULT HANDLING 

Occasionally, a floating-point instruction can result in an exception being signaled. The processor 
recognizes six floating-point exceptions: 

Floating Reserved Encoding 

Floating Invalid Operation 

Floating Zero Divide 

Floating Overflow 

Floating Underflow 

Floating Inexact 

These exceptions can be divided into two categories: 

1. Situations in which one or more source operands are inappropriate for an operation and would 
cause an exception to be signaled. 

2. Situations in which the result of an operation is exceptional. 

The reserved encoding, invalid operation, and division-by-zero exceptions fall in the first category; 
the overflow, underflow, and inexact exceptions fall in the second category. 

Except for the floating reserved-encoding exception, each of these exceptions has a flag and a mask 
bit associated with it in the arithmetic controls. When an exception condition occurs, the processor 
performs one of the following operations: 

If the mask bit for the exception is set, the flag for the exception is set and instruction execution 
continues, substituting a default value in place of the result. 

3-267 



80960KB PROGRAMMER'S REFERENCE 

If the mask bit for the exception is clear, the flag for the exception is not set and a floating-point 
arithmetic fault is raised. The processor then stores diagnostic information in the fault 
information area and diverts instruction execution to a fault handler. 

Since the floating reserved-encoding exception does not have a flag or mask bit, it always results 
in a fault. 

Note 
The floating-point exception flags are "sticky," which means that the processor does riot implicitly clear 
them while carrying out floating-point ·operations. They may be cleared by software. 

11.9.1 Fault Handler 

As is described in Section 9, when a floating-point fault is signaled, the processor calls a single fault 
handler. This fault handler determines how to handle the specific fault sUbtype by interpreting the 
floating-point exception flags and the information in the fault record. . 

11.9.2 Floating Reserved-Encoding Exception 

A reserved encoding exception occurs as a result of either of the following two conditions: 

When a reserved encoding is used as an operand in a floating-point instruction, or 

When a denormalized value is used as an operand in a floating-point instruction and the 
normalizing-mode bit in the arithmetic controls is clear. 

The first condition is rare. It can only occur if a program presents an extended-real value to the 
processor that has a zero j-bit (integer part) and a non-zero biased exponent. 

\ 

The second condition was discussed earlier in the section titled "Normalizing Mode." This condition 
is also rare, since the vast majority of programs run with the normalizing mode enabled. 

There is neither a flag nor a mask bit for this exception. When a reserved-encoding exception occurs, 
the processor raises a floating reserved-encoding fault and does not store a result. 

11.9.3 Floating Invalid-Operation Exception 

The invalid-operation exception indicates that one of the source operands is inappropriate for the type 
of operation being performed. The following conditions cause this exception to be signaled: 

Any arithmetic operation on an SNaN 

Addition of infinities of unlike sign 

Subtraction of infinities of like sign 

• Multiplication of zero by 00 

3-268 



80960KB PROGRAMMER'S REFERENCE 

Division of zero by zero or 00 by 00 

Remainder of x by y, if Y is zero or x is 00 

Square root of a negative, nonzero value 

Conversion of a NaN from floating-point format to integer format 

Sine, cosine, or tangent of 00 

y * log (x), if: 

x is negative and nonzero, 

y is zero and x is 00 

y and x are zero, or 

y is 00 and x is I 

Log epsilon of (y, x), if y is 00 and x is 0 

Compare ordered, if a source operand is a NaN 

When a floating invalid-operation exception occurs and its mask is set, the following occurs: 

When the result is a floating-point value, the standard QNaN value is stored in the destination 
and the floating invalid-operation flag is set. (A discussion of how the processor handles NaNs 
was provided earlier in the section titled "Operations on NaNs.") 

When the result is an integer, the maximum negative integer is stored in the destination and the 
floating invalid-operation flag is set. 

When the mask is clear, no result is stored; the floating invalid-operation flag is not set; and the 
floating invalid-operation fault is signaled. 

11.9.4 Floating Zero-Divide Exception 

The floating zero-divide exception is signaled when an exact non-finite result would be produced 
from finite operands. (Note that a different exception, overflow, is signaled when an infinite result 
is produced inexactly from finite operands.) The most common example of this exception is a 
division operation, where the divisor is zero and the dividend is a nonzero, finite value. 

When the floating zero-divide mask is set: a correctly signed 00 is stored in the destination and the 
floating zero-divide flag is set. When the mask is clear, no result is stored; the floating zero-divide 
flag is not set; and a floating zero-divide fault is signaled .. 

11.9.5 Floating Overflow Exception 

The overflow exception occurs when the infinitely precise result of a floating-point instruction 
exceeds the largest allowable finite value for the specified destination format. For example, if the 
destination format is real (32 bits), overflow occurs when the infinitely precise result falls outside 
the range -1.0 * 2126 to 1.0 * 2126 (exclusive), where 126 is the unbiased exponent of the result. 

3-269 



inter 80960KB PROGRAMMER'S REFERENCE 

When the floating overflow mask is set, a rounded result is stored in the destination and the floating 
overflow flag is set. The current rounding mode determines the method used to round the result. 

When the mask is clear: no result is stored in the destination and the floating overflow flag is not set. 
Instead, the processor stores the result in extended-real format in the fault information area. The 
fraction of the extended-real value is rounded to the instruction's destination precision. For example, 
if the destination operand's format is real (32 bits), the extended-real fraction is rounded to 23 bits, 
with the 40 least-significant bits filled with zeros . 

. If the exponent exceeds the range of the extended-real format (16383 unbiased), then the exponent 
is divided by 224576 and a flag (bit 1 of the fault flags byte or override flags byte) is set in the fault 
information area to indicate that the exponent has been bias adjusted. After this fault information 
is stored, a floating overflow fault is signaled. 

When using the scale instructions (scaler or scalerl), massive overflow can occur, where the 
infinitely precise result is too large to be represented, even with a bias adjusted exponent. Here, a 
properly signed 00 is stored in the fault record. 

The floating overflow exception cannot occur on a conversion from floating-point format to integer 
format (although an integer overflow exception can occur). 

11.9.6 Floating Underflow Exception 

An underflow condition occurs when the infinitely precise result of a floating-point instruction is less 
than the smallest possible normalized, finite value for the specified destination format. For example, 
for the real (32~bit) format, underflow occurs when an infinitely precise result falls in the range -1.0 
* 2126 to 1.0 * 2126 (exclusive), where -126 is the unbiased·exponent. 

When a floating underflow condition occurs, the setting of the floating underflow mask determines 
how the processor handles the condition. 

If the mask is set when an underflow condition occurs, the processor goes ahead and denormalizes 
the result. Then if the result is exact, it is stored in the destination and the floating underflow 
exception is not signaled, nor is the floating underflow flag set. If, on the other hand, the 
denormalized result is inexact, the floating underflow flag is set and the processor goes on to handle 
the inexact condition as described in the next section. 

If the floating underflow mask is clear when an underflow-condition occurs, no result is stored in the 
destination and the floating underflow flag is not set. Instead, the processor stores the result in 
extended-real format in the fault information area, with the fraction of the extended-real value 
rounded to the instruction's destination precision. For example, if the destination precision is real 
(23-bit fraction) the 40 least-significant bits of the fraction are set to O. 

If the exponent of the value stored is less than the minimum allowable value in the extended-real 
format (-16,382 unbiased), then the exponent is multiplied by 224576 and a flag (bit 1 of the fault or 

3-270 



intJ S0960KB PROGRAMMER'S REFERENCE 

override flags byte) is set in the fault information area to indicate that the exponent has been bias 
adjusted. After this information is stored, a floating underflow fault is signaled. 

The scale instructions can cause massive underflow to occur, where the infinitely precise result is too 
small to be represented, even with a bias adjusted exponent. Here, a properly signed zero is stored 
in the fault record. 

Refer to the section later titled "Floating-Point Underflow Condition" for more information on the 
interaction of the floating underflow and inexact exceptions. 

11.9.7 Floating Inexact Exception 

The floating inexact exception occurs when an infinitely precise result cannot be encoded in the 
format specified for the destination operand. Either of the following two conditions can cause an 
inexact exception to be signaled: 

When a result is rounded and the result is not exact 

When overflow occurs and the floating overflow mask is set 

If the floating inexact mask is set when an inexact condition occurs and an unmasked overflow or 
underflow condition does not occur, the rounded result is stored in the destination and the floating­
point inexact flag is set. The current rounding mode determines the method used to round the result. 

If the floating inexact mask is clear when an inexact condition occurs, the floating inexact flag is not 
set and one of the following operations is carried out: 

• If only the inexact condition has occurred, the processor stores the rounded result in the specified 
destination, then raises a floating-inexact fault. 

• If the inexact condition occurs along with overflow or underflow, no result is stored in the 
destination. Instead, the processor stores the result in extended-real format in the fault 
information area, as described for the floating overflow and underflow exceptions, thenl raises 
a floating inexact fault. 

Refer to the following section for more information on the interaction of the floating underflow and 
inexact exceptions. 

11.9.S Floating-Point Underflow Condition 

Two aspects of underflow are important in numeric processings: the "tininess" of a number and "loss 
of accuracy." A result is tiny when it is nonzero and its exponent is between +2Emin, where Emin is 
the smallest unbiased exponent allowed in the destination format. For example, if the destination 
format is long-real (64-bit format), a result is tiny if it is nonzero and in the range of + 1 * 21022 to-
1 * 221022• The ability to detect a tiny result is important because such a result may cause an exception 
to be signaled in a later operation (e.g., overflow on a division). 

3-271 



80960KB PROGRAMMER'S REFERENCE 

Loss of accuracy occurs when a tiny result is approximated as part of the denormalization process 
so that it will fit into the destination format. 

In the 80960KB processor, tininess is detected after rounding as an undeiflow condition. Loss of 
accuracy is detected as an inexact condition. 

The algorithm in Figure 27 shows how the processor responds to these two conditions, when a 
floating-point operation produces a tiny result. 

An important point to note in this algorithm is that if the underflow mask is set, an underflow 
exception is signaled only if the denormalized result is inexact. If the denormalized number is exact, 
no flags are set and no faults are signaled. 

3-272 



inter 80960KB PROGRAMMER'S REFERENCE 

generate infinitely precise result # exponent and significand; 
if exponent < underflow threshold 

then 
if underflow fault mask clear 

then 
goto underflow fault handler; 
exit algorithm; 

else generate denormalized number 
if denormalized significand equals infinitely precise significand 

then 
store denormalized result in destination; 
# no underflow is signaled; 

else 
set underflow flag in AC; 
if inexact fault mask is clear 

then 
goto inexact fault handler; 
exit algorithm; 

else 
set inexact flag in AC; 
store denormalized result in destination; 

end if; 
end if; 

end if; 
else 

if infinitely precise result is inexact 
then 

if inexact fault mask is clear 
then 

goto inexact fault handler; 
exit algorithm; 

else 
set inexact flag in AC; 
store normalized result in destination; 

end if; 
else 

store normalized result in destination; 
end if; 

end if; 
exit algorithm 

Figure 27. Interaction of Floating Underflow and Inexact Exceptions 

3-273 



80960KB PROGRAMMER'S REFERENCE 

12.0 INTERAGENT COMMUNICATION 

This section describes the interagent communication (lAC) mechanism of the 80960KB processor. 
Included isa description of the lAC message structure, the lAC message sending and receiving 
mechanism, and reference information on the available lAC messages. 

Note 

The 80960KB processor's interagent communication mechanism is an extension to the architecture and 
may not be supported in other processors based on this architecture. 

12.1 INTRODUCTION TO lAC MESSAGES 

The lAC facilities provide a mechanism for agents connected to the processor's bus to communicate 
with the processor by means of messages. The agents that use these facilities may be other 80960KB 
processors, I/O processors, or special purpose hardware. Programs running on the 80960KB 
processor can also use this message-passing mechanism to send messages internally to the processor. 

The primary function of these facilities is to provide an alternative to the interrupt mechanism for 
external hardware to communicate with the processor. Also, certain processor functions like 
reinitialization, purging the instruction cache, and setting breakpoint registers can only be carried out 
with this mechanism. 

I 

lAC messages (referred to here as lACs) are four words in length and are exchanged by means of 
message buffers that are mapped to memory. All the usable lACs are predefined. The processor 
handles an lAC in much the same way as it handles an instruction. 

The processor provides two mechanisms for exchanging lACs: external and internal. The external 
lAC mechanism is used to pass lACs between two agents on the processor's bus. A processor uses 
the internal lAC mechanism to pass an lAC to itself. 

12.2 lAC MESSAGE FORMAT 

Figure 28 shows the format for an lAC message. Each message consists of a message-type field and 
up to five parameter fields. 

31 2423 

MESSAGE TYPE I 
1615 

FIELD 1 I FIELD 2 

FIELD 3 

FIELD 4 

FIELD 5 

Figure 28. lAC Message Format 

3-274 , 

o 
o 
4 

8 

12 

270647·27 



inter 80960KB PROGRAMMER'S REFERENCE 

The message type is an 8-bit binary code. Each lAC has a unique message type. 

The parameters can be 8, 16, or 32-bits in length, depending on the specified field. Many of the lACs 
do not require parameters. When a message type does require one or more parameters, the processor 
only looks at the required parameter fields. Those fields not used are ignored. 

12.3 SOFTWARE REQUIREMENTS FOR HANDLING lACS 

No special software, such as dedicated data structures or stacks, are required to handle lACs. An lAC 
is sent with a quad synchronous move instruction (synmovq). When the processor receives an lAC, 
it handles it independently from the program execution environment. It does not use the instruction 
execution unit, the registers (global or local), the stack, or memory. Thus, the state of the processor 
when the lAC is received does not need to be saved. 

Some lACs, such as the purge instruction cache lAC, do not affect the processor's state. The 
processor treats these lACs as if they were an instruction inserted in the control flow of the process. 
When the lAC action is complete, the processor resumes work on the program it is currently running. 

Other lACs, such as the reinitialize processor lAC, cause the state of the processor or the control of 
the currently running program to be permanently changed. In these instances, the processor resumes 
activity in its new processor state, following the execution of the lAC. 

All lACs are assumed to have a priority of 31, so the processor executes the action requested in the 
lAC message immediately, even if the processor's current priority is 31. While the processor is 
handling an lAC, it will not respond to interrupts signaled on the interrupt pins. 

12.4 INTERNAL lACS 

Internal lACs are used for functions such as setting breakpoint registers, purging the instruction 
cache; or sending software initiated interrupts. 

To send an internal lAC, software must perform the following steps: 

1. Load the message into four consecutive words in memory, with the first word aligned on a word 
boundary. 

2. Execute a synmovq instruction to move the message from its source address to destination 11 
address FFOOOOlO I6 • 

When the destination operand of al synmovq instruction is FFOOOO 1 0 16' the processor interprets the 
instruction as a send internal-lAC instruction. The processor then receives the lAC by moving the 
message from memory into an internal message buffer. 

The action of the synmovq move instruction insures that the loading of the message into the processor 
is completed before the processor is allowed to perform any other chores. 

3-275 



80960KB PROGRAMMER'S REFERENCE 

Note 

The address range of FFOOOOOO IO through FFFFFFFF" is reserved for interrupt handling and lAC 
message passing. 

12.5 EXTERNAL lACS 

External lACs are used by agents external to the processor to initiate processor actions such as testing 
for pending interrupts or freezing the processor. External lACs can be sent between two 80960KB 
processors that are connected to the same bus or by external logic that duplicates the external lAC 
sending mechanism. The following sections describe how one processor sends an lAC to another 
processor. The 80960KB Hardware Designer's Reference Manual describes the requirements that 
external logic must meet to perform these same functions. 

12.5.1 Sending External lACs 

Sending an external lAC message is similar to sending an internal lAC message, except that the 
address of the receiving agent is specified in a slightly different way. Figure 29 shows the required 
encoding of the address for the receiving agent. 

31 24 23 14 13 9 8 4 3 a 

Figure 29. Encoding of Address for Processor Receiving an lAC 

At initialization each agent on the bus is assigned a unique address in the range of FFOOOCOOl6 to 
FFFFCCOO 16' To send an lAC to an agent, the sending agent sends the message to the address assigned 
to the receiving agent. As shown in Figure 29, only bits 14 through 23 of this address are interpreted 
to determine the address of the receiving agent. Bits 4 through 8 of this address are used to encode 
the priority of the message. 

For example, to send a priority 25 10 lAC to the agent at address 0000000001 2, the message address 
would be FF004D90 16• 

To send an external lAC from one 80960KB processor to another, software must perform the 
following steps: 

1. Load the message into four consecutive words in memory, with the first word aligned on a word 
boundary. 

2. Execute a synmovq instruction to move the message from its source address to the address of 
the receiving agent (encoded in the form shown in Figure 29). 

3-276 



80960KB PROGRAMMER'S REFERENCE 

3. Check the condition code in the arithmetic controls to determine if the message was received 
(0102) or rejected (0002), 

The action of the synmovq move instruction insures that the sending processor does not execute any 
other instructions until the synmovq instruction is complete. It also sets the condition code bits to 
indicate whether or not the move was successful. A successful move is interpreted as the lAC being 
received by the processor. 

12.5.2 Receiving and Handling an External lACs 

A processor receives and handles an external lAC in somewhat the same manner as it receives and 
handles an interrupt. To configure a processor to receive external lACs, vector INTO of the interrupt­
control register (shown in Figure 19) is set to O. The INTO pin on the processor chip then becomes 
the lAC pin. (Refer to Section 7, "Interrupts From Interrupt Pins" for further discussion of the 
interrupt pins and interrupt-control register.) 

When the processor receives a signal on the lAC pin, it handles it initially as if it were receiving an 
interrupt. It reads the vector number associated with this pin (bits 0 through 7 of the interrupt -control 
register). If it is zero, the processor recognizes that it is receiving an external lAC. It then reads the 
four-word lAC message from the bus and performs the requested lAC. 

The processor acts immediately on any lAC that it receives. For efficient system operation, external 
logic must thus be provided to insure that low priority lAC messages do not interrupt the processor 
while it is handling a higher priority task. The handshaking for this operation is provided by the write­
external-priority mechanism described in Section 6. 

Using the write-external-priority mechanism, the processor keeps the external logic updated 
regarding the processor's current priority. When an lAC is sent to the processor, the external logic 
intercepts it and reads the priority. The external logic then determines whether the lAC priority is 
above that of the processor or not. If the lAC has a higher priority, the external logic sends an 
acknowledge signal to the sending processor, then signals the receiving processor by asserting the 
lAC pin. If the lAC has an equal or lower priority, the external logic sends a non-acknow ledge signal 
to the sending processor. 

The sending processor uses the acknowledge or non-acknowledge signals to set the condition codes 
to complete the synmovq instruction. 

While the processor is servicing an lAC, it performs some handshaking with the external logic so that 
the logic knows when the processor has finished work on an lAC. The external logic is then able to 
reject any lAC that it receives while the processor is servicing another lAC. 

12.6 SUMMARY OF lAC MESSAGES 

Table 24 gives a list of the lAC messages that the processor can send either internally or externally. 
The following section provides detailed reference information on these messages. 

3-277 



80960KB PROGRAMMER'S REFERENCE 

Table 24. lAC Messages 

Interrupt Handling Processor Management 
Interrupt Purge Instruction Cache 
Test Pending Interrupt Set Breakpoint Register 

Store System Base 
Freeze 
Continue Initialization 
Reinitialize Processor 

12.7 lAC MESSAGE REFERENCE 

The following section provides detailed descriptions of the operations carried out for each of the 
lACs. This section is organized alphabetically by lAC title for easy reference. 

3-278 



inter 

Continue Initialization 

Message Type: 

Function: 

80960KB PROGRAMMER'S REFERENCE 

9216 

Carries out the initialization procedure that follows the processor 
self test. The processor executes the initialization procedure begin­
ning with reading the initial memory image from ROM. The self 

. test is not performed. 

Refer to the section in Chapter 7 titled "Processor Initialization" for 
further details on the initialization process. 

3-279 



80960KB PROGRAMMER'S REFERENCE 

Freeze 

Message Type: 91 16 

Function: Stops the processor. The processor puts itself in the stopped state. 

3-280 



Interrupt 

Message Type: 

. Parameters: 

Function: 

80960KB PROGRAMMER'S REFERENCE 

4°16 
Field 1 

Fields 2 - 5 

Interrupt vector 

Not Used 

Generates an interrupt request. The interrupt vector is given in field 
I of the lAC message. The processor handles the interrupt request 
just as it does interrupts received from other sources. If the inter­
rupt priority is higher than the processor's current priority, the 
processor services the interrupt request immediately. Otherwise, it 
posts the interrupt in the pending interrupts section of the interrupt 
table. 

Refer to Chapter 8 for further information on the servicing of inter­
rupt lACs. 

3-281 



inter 80960KB PROGRAMMER'S REFERENCE 

Purge Instruction Cache 

Message Type: 8916 

Function: Invalidates all entries in the processor's internal instruction cache. 

3-282 



inter 80960KB PROGRAMMER'S REFERENCE 

Reinitialize Processor 

Message Type: 93 16 

Parameters: 

Function: 

Fields 1 - 2 

Field-3 

Field-4 

Field 5 

Not Used 

Address of System Address Table 

Address of Processor Control Block 

Start Instruction IP 

Reestablishes the processor state. In reinitializing itself, the proces­
sor first locates the system address table and the processor control 
block in the IMI from the addresses given in fields 3 and 4. 

The processor then begins executing the instruction list beginning 
with the IP given in field 5. 

3-283 



inter 80960KB PROGRAMMER'S REFERENCE 

Set Breakpoint Register 

Message Type: 

Parameters: 

Function: 

8F16 

Fields 1 - 2 Not Used 

Field 3 Breakpoint IP 

Field 4 Breakpoint IP 

Field 5 Not Used 

Enables or disables two .breakpoints. When the processor receives 
this lAC, it conditionally loads the parameters from fields 3 and 4 
into breakpoint registers 0 and 1, respectively. Field 3 provides a 
breakpoint IP for breakpoint register 0, and field 4 provides a break­
point IP for breakpoint register 1. Bit I in each of these fields is a 
breakpoint disable flag. 

If the disable flag in one of these fields is set, the breakpoint for the 
corresponding breakpoint regist~r is disabled. . Otherwise, the IP 
value in the field is loaded into the corresponding breakpoint 
register and the breakpoint is enabled. 

Breakpoints are described in the section in Chapter 10 titled 
"Breakpoint-Trace Mode." 

3-284 



inter 

Store System Base 

Message Type: 

Parameters: 

Function: 

80960KB PROGRAMMER'S REFERENCE 

8°16 

Fields 1 - 2 

Field 3 

Fields 4 - 5 

Not Used 

Destination Address 

Not Used 

Stores the current locations of the system address table and the 
PRCB in a specified location in memory. The address of the system 
address table is stored in the word starting at the byte specified in 
field 3, and the address of the PRCB is stored in the next word in 
memory (field 3 address plus 4). 

3-285 



inter 80960KB PROGRAMMER'S REFERENCE 

Test Pending Interrupts 

Message Type: 

Function: 

41 16 

Tests for pending interrupts. The processor checks the pending 
interrupt section of the interrupt table for a pending interrupt with a 
priority higher than the processor's current priority. If a higher 
priority interrupt is found, it is serviced immediately. Otherwise, no 
action is taken. 

3-286 



APPENDIX A 
INSTRUCTION AND DATA STRUCTURE QUICK REFERENCE 

This appendix provides quick reference for the 80960KB instructions and data structures. 

INSTRUCTION QUICK REFERENCE 

This section provides two lists of 80960KB instructions: one sorted by assembly-language 
mnemonic and another sorted by machine-level opcode. In these lists, each entry includes the 
assembly-language mnemonic for an instruction; the operands (given in the required order); the 
machine-level opcode and instruction type (Le., REG, MEM, COBR, CTRL); and the page 
number in Chapter 11 where the detailed description of the instruction is given. 

3-287 



inter 80960KB PROGRAMMER'S REFERENCE 

Instruction List by Assembler Mnemonic 

Mnemonic Operands Opcode Inst. Type Page 

addc srci, src2, dst 5BO REG 11-6 
addi srCi, src2, dst 591 REG 11-7 
addo srci, . src2, dst 590 REG 11-7 
addr srci, src2, dst 78F REG 11-8 
addrl srci, src2, dst 79F REG 11-8 
alter bit bitpos, src, dst 58F REG 11-10 
and srci, src2, . dst 581 REG 11-11 
aodnot srci, src2, dst 582 REG 11-11 
atadd srcldst, src, dst 612 REG 11-12 
atanr srci, src2, dst 680 REG 11-13 
atanrl srci, src2, dst 690 REG 11-13 
atmod src, mask, srcldst 610 REG 11-15 
b targ 08 CTRL 11-18 
bal targ OB CTRL 11-16 
balx targ, dst .85 MEM 11-16 
bbc bitpos, src, targ 30 COBR 11-20 
bbs bitpos, src, targ 37 COBR 11-20 
be targ 12 CTRL 11-22 
bg targ 11 CTRL 11-22 
bge targ 13 CTRL 11-22 
bl targ 14 CTRL 11-22 
ble targ 16 CTRL 11-22 
boe targ 15 CTRL 11-22 
boo targ 10 CTRL 11-22 
bo targ 11 CTRL 11-22 
bx targ 84 MEM 11-18 
call targ 09 CTRL 11-25 
calls targ 660 REG 11-27 
calix targ 86 MEM 11-29 
chkbit bitpos, src 5AB REG 11-31 
c1assr src 68F REG 11-32 
c1assrl src 69F REG 11-32 
c1rbit bitpos, src, dst 58C REG 11-34 
cmpdeci srci, src2, dst 5A7 REG 11-36 
cmpdeco srci, src2, dst 5A6 REG 11-36 
cmpi srci, src2 5A1 REG 11-35 
cmpibe srci, src2, targ 3A COBR 11-42 
cmpibg srci, src2, targ 39 COBR 11-42 
cmpibge srci, src2, targ 3B COBR 11-42 
cmpibl srci, src2, targ 3C COBR 11-42 
cmpible srci, src2, targ 3E COBR 11-42 
cmpibne srci, src2, targ 3D COBR 11-42 
cmpibno srci , src2, targ 38 COBR 11-42 
cmpibo srci, src2, targ 3F COBR 11-42 

3-288 



inter 80960KB PROGRAMMER'S REFERENCE 

Mnemonic Operands Opcode Inst. Type Page 

cmpinci src1, src2, dst 5A5 REG 11-37 
cmpinco srcl, src2, dst 5A4 REG 11-37 
cmpo srcl, src2 5AO REG 11-35 
cmpobe src1 , src2, targ 32 COBR 11-42 
cmpobg src1, src2, targ 31 COBR 11-42 
cmpobge srcl, src2, targ 33 COBR 11-42 
cmpobl srcl, src2, targ 34 COBR 11-42 
cmpoble srcl, src2, targ 36 COBR 11-42 
cmpobne srcl, src2, targ 35 COBR 11-42 
cmpor srcl, src2 684 REG 11-38 . 
cmporl srcl, src2 694 REG 11-38 
cmpr src1, src2 685 REG 11-40 
cmprl src1, src2 695 REG 11-40 
concmpi src1, src2 5A3 REG 11-45 
concmpo src1, src2 5A2 REG 11-45 
cosr src, dst 68D REG 11-46 
cosrl src, dst 69D REG 11-46 
cpyrsre src1, src2, dst 6E3 REG 11-48 
cpysre src1, src2, dst ·6E2 REG 11-48 
cvtilr src, dsi 675 REG 11-49 
cvtir src, dst 674 REG 11-49 
cvtri src, dst 6CO REG 11-50 
cvtril src, dst 6Cl REG 11-50 
cvtzri src, dst 6C2 REG 11-50 
cvtzril src, dst 6C3 REG 11-50 
daddc src1, src2, dst 642 REG 11-52 
divi src1, src2, dst 74B REG 11-53 
divo srcl, src2, dst 70B REG 11-53 
divr src1, src2, dst 78B REG 11-54 
divrl srcl, src2, dst 79B REG 11-54 
dmovt src, dst 644 REG 11-56 
dsubc srcl, src2, dst 643 REG 11-57 
ediv srcl, src2, dst 671 REG 11-58 
ernul srcl, src2, dst 670 REG 11-59 
expr src, dst 689 REG 11-60 
exprl src, dst 699 REG 11-60 
extract bitpos, len, src/dst .651 REG 11-62 
faulte lA CTRL 11-63 
faultg 19 CTRL 11-63 
faultge 1B CTRL 11-63 
faultl lC CTRL 11-63 
faultle IE CTRL 11-63· 
faultne 1D CTRL 11-63 
faultno 18 CTRL 11-63 
faulto IF CTRL 11-63 
flushreg 66D REG 11-65 
fmark 66C REG 11-66 

3-289 



inter 80960KB PROGRAMMER'S REFERENCE 

Mnemonic Operands Opcode Inst. Type Page 

Id src, dst 90 MEM 11-67 
Ida src dst 8C MEM 11-69 
Idib src, dst . CO MEM 11-67 
Idis src, dst C8 MEM 11-67 
Idl src, dst 98 MEM 11-67 
Idob src, dst 80 MEM 11-67 
Idos src, dst 88 MEM 11-67 
Idq src, dst BO MEM 11-67 
Idt src, dst AO MEM 11-67 
logbnr src, dst 68A REG 11-70 
logbnrl src, dst 69A REG 11-70 
logepr srcl, src2, dst 681 REG 11-72 
logeprl srcl, src2, dst 691 REG 11-72 
logr srcl, src2, dst 682 REG 11-75 
logrl src1, src2, dst 692 REG 11-75 
mark 66B REG 11-78 
modac mask, src, dst 645 REG 11-79 
modi srcl, src2, dst 749 REG 11-80 
modify mask, src, src!dst 650 REG 11-81 
modpc src mask, src!dst 655 REG 11-82 
modtc mask, src, dst 654 REG 11-84 
mov src, dst 5CC REG 11-85 
movl src, dst 5DC REG 11-85 
movq src, dst 5FC REG 11-85 
movr src, dst 6C9 REG 11-86 
movre src, dst 6E9 REG 11-86 
movrl , src, dst 6D9 REG 11-86 
movt src, dst 5EC REG 11-85 
muli src1 , . src2, dst 741 REG 11-88 
mulo srcl, src2, dst 701 REG 11-88 
muir srcl, src2, dst 78C REG 11-89 
mulrl srcl, src2, dst 79C REG 11-89 
nand srcl, src2, dst 58E REG 11-91 
nor src1, src2, dst 588 REG 11-92 
not src, dst 58A REG 11-93 
notand src, dst 584 REG 11-93 
notbit bitpos, src, dst 580 REG 11-94 
notor srcl, src2, dst 58D REG 11-95 
or srcl, src2, dst 587 REG 11-96 
ornot srcl, src2, dst 58B REG 11-96 
remi srcl, src2, dst 748 REG \ 11-97 
remo src1, src2, dst 708 REG 11-97 
remr src1, src2, dst 683 REG 11-98 
remrl srcl, src2, dst 693 REG 11-98 
ret OA CTRL 11-101 
rotate len, src, dst 59D REG 11-103 
roundr src, dst 68B REG 11-104 

3-290 



inter 80960KB PROGRAMMER'S REFERENCE 

Mnemonic Operands Opcode Inst. Type Page 

roundrl src, dst 69B REG 11-104 
scaler srcl, src2, dst 677 REG 11-105 
scalerl src1, src2, dst 676 REG 11-105 
scanbit src, dst 641 REG 11-107 
scanbyte src1, src2 5AC REG 11-108 
setbit bitpos, src, dst 583 REG 11-109 
shli len, src, dst 59E REG 11-110 
shlo len, src, dst 59C REG 11-110 
shrdi len, src, dst 59A REG 11-110 
shri· len, src, dst 59B REG 11-110 
shro len, src, dst 598 REG 11-110 
sinr src, dst 68C REG 11-112 
sinrl src, dst 69C REG 11-112 
spanbit src, dst 640 REG 11-114 
sqrtr src, dst 688 REG 11-115 
sqrtrl src, dst 698 REG 11-115 
st src, dst 92 MEM 11-117 
stib src, dst C2 MEM 11-117 
stis src, dst CA MEM 11-111 
stl src, dst 9A MEM 11-117 
stob src, dst 82 MEM 11-117 
stos src, dst 8A MEM 11-117 
stq src, dst B2 MEM 11-117 
stt src, dst A2 MEM 11-117 
subc src1, src2, dst 5B2 REG 11-119 

·subi src1, src2, dst 593 REG 11-120 
subo src1, src2, dst 592 REG 11-120 
subr src1, src2, dst 78D REG 11-121 
subrl src1, src2, dst 79D REG 11~121 
syncf 66F REG 11-123 
synld src, dst 615 REG 11-124 
synmov dst, src 600 REG 11-126 
synmovi dst, src 601 REG 11-126 
synmovq dst, src 602 REG 11-126 
tanr src, dst 68E REG 11-129 
tanrl src, dst 69E REG 11-129 
teste dst 22 COBR 11-131 
testg dst 21 COBR 11-131 
testge dst 23 COBR 11-131 
testl dst 24 COBR 11-131 
testle dst 26 COBR 11-131 
testne dst 25 COBR 11-131 
testno dst 20 COBR 11-131 
testo dst 27 COBR 11-131 
xnor src1, src2, dst 589 REG 11-133 
xor src1, src2, dst 586 REG 11-133 

3·291 



inter 80960KB PROGRAMMER'S REFERENCE 

Instruction List by Opcode 

Opcode Inst. Type Mnemonic Operands Page 

08 CTRL b targ 11-18 
09 CTRL call targ 11-25 
OA CTRL ret 11-101 
OB CTRL bal targ 11-16 
10 CTRL bno targ 11-22 
11 CTRL bg targ 11-22 
12 CTRL be targ 11-22 
13 CTRL bge targ 11-22 
14 CTRL bl targ 11-22 
15 CTRL bne targ 11-22 
16 CTRL ble targ 11-22 
17 CTRL bo targ 11-22 
18 CTRL faultno 11-63 
19 CTRL faultg 11-63 
lA CTRL faulte 11-63 
1B CTRL faultge 11-63 
lC CTRL faultl 11-63 
1D CTRL faultne 11-63 
IE CTRL faultle 11-63 
IF CTRL faulto 11-63 
20 COBR testno dst 11-131 
21 COBR testg dst 11-131 
22 COBR teste dst 11-131 
23 COBR testge dst 11-131 
24 COBR testl dst 11-131 
25 COBR testne dst 11-131 
26 COBR testle dst 11-131 
27 COBR testo dst 11:131 
30 COBR bbc bitpos, sre, targ 11-20 
31 COBR cmpobg srel, sre2, targ 11-18 
32 COBR cmpobe srel, sre2, targ 11-42 
33 COBR cmpobge srel, sre2, targ 11-42 
34 COBR cmpobl srel, sre2, targ 11-42 
35 COBR cmpobne srel, sre2, targ 11-42 
36 COBR cmpoble srcl, sre2, targ 11-42 
37 COBR· bbs bitpos, sre, targ 11-20 
38 COBR cmpibno sr.el, sre2, targ 11-42 
39 COBR cmpibg srel, sre2, targ 11-42 
3A COBR cmpibe srel, sre2, targ 11-42 
3B COBR cmpibge srel, sre2, targ 11-42 
3C COBR cmpibl srcl , sre2, targ 11-42 
3D COBR cmpibne srcl, sre2, targ 11-42 
3E COBR cmpible srcl, sre2, targ 11-42 
3F COBR cmpibo srcl, sre2, targ 11-42 
80 MEM Idob sre, dst 11-67 

3-292 



inter 80960KB PROGRAMMER'S REFERENCE 

Opcode Inst. Type Mnemonic Operands Page 

82 MEM stob src, dst 11-117 
84 MEM bx targ 11-18 
85 MEM balx targ, dst 11-16 
86 MEM calix targ 11-29 
88 MEM Idos src, dst 11-67 
8A MEM stos src, dst 11-117 
8C MEM Ida src dst 11-69 
90 MEM Id src, dst 11-67 
92 MEM st src, dst 11-117 
98 MEM Idl src, dst 11-67 
9A MEM stl src, dst 11-117 
AO MEM Idt src, dst 11-67 
A2 MEM stt src, dst 11-117 
BO MEM Idq src, dst 11-67 
B2 MEM stq src, 'dst 11-117 
CO MEM Idib src, dst 11-67 
C2 MEM stib src, dst 11-117 
C8 MEM Idis src, dst 11-67 
CA MEM stis src, dst 11-117 
580 REG notbit bitpos, src, dst 11-94 
581 REG and srci, src2, dst 11-11 
582 REG andnot srci, src2, dst 11-11 
583 REG setbit bitpos, src, dst 11-109 
584 REG notand src, dst 11-93 
586 REG xor srci, src2, dst 11-133 
587 REG or srci, src2, dst 11-96 
588 REG nor srci, src2, dst 11-92 
589 REG xnor srcl, src2, dst 11-133 
58A REG not src, dst 11-93 
58B REG ornot srcl, src2, dst 11-96 
58C REG c1rbit bitpos, src, dst 11-34 
58D REG notor srci, src2, dst 11-95 
58E REG nand srcl, src2, dst 11-91 
58F REG alterbit bitpos, src, dst 11-10 
590 REG addo srci, src2, dst 11-7 
591 REG addi srci, src2, dst 11-7 
592 REG subo srci, src2, dst 11-120 

,593 REG subi srcl, src2, dst 11-120 
598 REG shro len, src, dst 11-110 
59A REG shrdi' len, src, dst 11-110 
59B REG shri len, src, dst 11-110 
59C REG shlo len, srC' 

" 
dst 11-110 

59D REG rotate len, src, dst 11-103 
59E REG shU len, src, dst 11-110 
5AO REG cmpo srci, src2 11-35 
5A1 REG cmpi srci, src2 11-35 
5A2 REG concmpo srci, src2 11-45 

3-293 



inter 80960KB PROGRAMMER'S REFERENCE 

Opcode Inst. Type Mnemonic Operands Page 

5A3 REG concmpi src1, src2 11-45 
5A4 REG cmpinco src1, src2, dst 11-37 
5A5 REG cmpinci src) , src2, dst 11-37 
5A6 REG cmpdeco src1, src2, dst 11-36 
5A7 REG cmpdeci src1, src2, dst 11-36 
5AC REG scanbyte src1, src2 11-108 
5AE REG chkbit bitpos, src 11-31 
5BO REG addc srcl, src2, dst 11-6 
5B2 REG subc srcl, src2, dst 11-119 
5CC REG mov src, dst 11-85 
5DC REG movl src, dst 11-85 
5EC REG movt src, dst 11-85 
5FC REG movq src, dst 11-85 
600 REG synmov dst, src 11-126 
601 REG synmovl dst, src 11-126 
602 REG synmovq dst, src 11-126 
610 REG at mod src, mask, src!dst 11-15 
612 REG atadd srcidst, src, dst 11-12 
615 REG synld src, dst 11-124 
640 REG span bit src, dst 11-114 
641 REG scanbit src, dst 11-107 
642 REG daddc. srcl, src2, dst 11-52 
643 REG dsubc src1, src2, dst 11-57 
644 REG dmovt src, dst 11-56 
645 REG modac mask, src, dst 11-79 
650 REG modify mask, src, src!dst 11-81 
651 REG extract bitpos, len, src!dst 11-62 
654 REG modtc mask, SIT, dst 11-84 
655 REG modpc mask, src!dst 11-82 
660 . REG calls targ 11-27 
66B REG mark 11-78 
66C REG fmark 11-66 
66D REG flushreg 11-65 
66F REG syncf 11-123 
670 REG ernul srcl, src2, dst 11-59 
671 REG ediv srcl, src2, dst 11-58 
674 REG cvtir src, dst 11-49 
675 REG cvtilr src, dst 11-49 
676 REG scalerl src1, src2, dst 11-105 
677 REG scaler src1, src2, dst 11-105 
680 REG atanr srcl, . src2, dst 11-13 
681 REG logepr srcl, src2, dst 11-72 
682 REG logr src1, src2; dst 11-75 
683 REG remr srcl, src2, dst 11-98 
684 REG cmpor src1, src2 11-38 
685 REG cmpr srcl, src2 11-40 
688 REG sqrtr src, dst 11-115 

3-294 



inter 80960KB PROGRAMMER'S REFERENCE 

Opeode Inst. Type Mnemonic Operands Page 

689 REG expr src, dst 11-60 
68A REG logbnr src, dst 11-70 
68B REG roundr src, dst 11-104 
68C REG sinr src, dst 11-112 
68D REG eosr src, dst 11-46 
68E REG tanr src, dst 11-129 
68F REG classr src 11-32 
690 REG atanrl srci, src2, dst 11-13 
691 REG logeprl srci, src2, dst 11-72 
692 REG logrl srci, src2, dst 11-75 
693 REG remrl srci, src2, dst 11-98 
694 REG emporl srci, src2 11-38 
695 REG emprl srci, src2 11-40 
698 REG sqrtrl src, dst 11-115 
699 REG exprl src, dst 11-60 
69A REG logbnrl src, dst 11-70 
69B REG roundrl src, dst 11-104 
69C REG sinrl src, dst 11-112 
69D REG eosrl src, dst 11-46 
69E REG tanrl src, dst 11-129 
69F REG classrl src 11-32 
6CO REG evtri src, dst 11-50 
6C1 REG evtril src, dst 11-50 
6C2 REG evtzri src, dst 11-50 
6C3 REG· evtzril src, dst 11-50 
6C9 REG movr src, dst 11-86 
6D9 REG movrl src, dst 11-86 
6E2 REG epysre srci, src2, dst 11-48 
6E3 REG epyrsre srci, src2, dst 11-48 
6E9 REG movre src, dst 11-86 
701 REG mulo srci, src2, dst 11-88 
708 REG remo srci, src2, dst 11-97 
70B REG divo srci, src2, dst 11-53 
741 REG muli srci, src2, dst 11-88 
748 REG remi srci, src2, dst 11-97 
749 REG modi srci, src2, dst 11-80 
74B REG divi srci, src2, dst 11-53 
78B REG divr srci, src2, dst 11-54 
78C REG muir srci, src2, dst 11-89 
78D REG subr srci, src2, dst 11-121 
78F REG addr srci, src2, dst 11-8 
79B REG divrl srci, src2, dst 11-54 
79C REG mulrl srci, src2, dst 11-89 
79D REG subrl srci, src2, dst 11-121 
79F REG addrl srci, src2, dst 11-8 

3-295 



inter 80960KB PROGRAMMER'S REFERENCE 

SUMMARY OF SYSTEM DATA STRUCTURES 

The following pages provide a collection of the system data structures. presented in this 
manual. They are are grouped by function. The chapter reference below each data structure 
shows where in this manual this data structure is described . 

. Execution. Environment ' 

31 30292827262524 20 19 18 17 16 IS 12 8 6 3 2 0 

III 1111 I ~ 1111 I .:l1li11111 I II II 
L...-I L...--.-.....J L....--..J 

EI!II!IIIII!lI! RESERVED 
- (INITIALIZE TOO) 

11 1 1 t ~ONDITIONCODE 
ARITHMETIC STATUS 

INTEGER OVERFLOW FLAG 

INTEGER OVERFLOW MASK 

NO IMPRECISE FAULTS 

FLOATING OVERFLOW FLAG 

FLOATING UNDERFLOW FLAG 

FLOATING INVALlD·OP FLAG 

FLOATING ZERO-DIVIDE FLAG 

FLOATING INEXACT FLAG 

FLOATING OVERFLOW MASK 

FLOATING UNDERFLOW MASK 

FLOATING INVALID-OP MASK 

FLOATING ZERO-DIVIDE MASK 

FLOATING INEXACT MASK 

FLOATING-POINT NORMALIZING MODE 

FLOATING-POINT ROUNDING CONTROL 

Figure A-1: Arithmetic Controls (Chapter 3) 

3-296 



gO 

CONTENTS OF 
GLOBAL AND 

FLOA TI NG-POI NT 
REGISTERS 
PRESERVED 

ACROSS 
PROCEDURE 
BOUNDARIES 

80960KB PROGRAMMER'S REFERENCE 

REGISTERS gO THROUGH g14 
AVAILABLE FOR GENERAL USE GLOBAL 

REGISTERS 

g15 FRAME POINTER (FP) 

fpO I 

NEWSETOF 
LOCAL 

REGISTERS 
ALLOCATED 

FOR EAcH 
PROCEDURE 

AVAILABLE, FOR GENERAL USE FLOATING-POINT 
REGISTERS 

fp3 L....-______________ --I ~ 

rO PREVIOUS FRAME POINTER (PFP) 
r1 STACK POINTER (5P) 
r2 RETURN INSTRUCTION POINTER (RIP) 

REGISTERS r4 THROUGH r15 
AVAILABLE FOR GENERAL USE 

LOCAL 
REGISTERS 

Figure A-2: Registers Available to a Single Procedure (Chapter 3) 

3-297 



inter 

PREVIOUS 
FRAME 

CURRENT 
FRAME 

80960KB PROGRAMMER'S REFERENCE 

r-----------~------~~~ ,0 ,1 
r-----------~~--------~ ,2 

,15 
r-----------------------~ 

OPTIONAL VARIABLES 

,15 
r-----------------------~ 

STACK 
GROWTH 

"+64 STACK 
GROWS 

FROM LOW 
ADDRESSES 

TO HIGH 
ADDRESSES 

THE. CURRENT FRAME 
POINTER (FP) STORED 

IN 915 POINTS TO 
THIS WORD IN THE 

STACK .. 

FigureA-3: Procedure Stack Structure (Chapter 4) 

3-298 



inter 80960KB PROGRAMMER'S REFERENCE 

Processor Management 

1 I t TRACE ENABLE 

EXECUTION MODE 
-------- RESUME 

L-. ________ TRACE.FAULT PENDING 

1----------:---- STATE 
L-.-------------PRIORITy 

L-.------------------INTERNAL STATE 

RESERVED ( INITIALIZE TO 0) 

Figure A-4: Process Controls (Chapter 7) 

3-299 



inter 80960KB PROGRAMMER'S REFERENCE 

CHECK·SUM WORDS PHYSICAL 
ADDRESSES SYSTEM ADDRESS TABLE (SAT) OFFSET 

SAT POINTER 0 ~ 0 

PRCB POINTER 4 l CHECK WORD B 
136 

INSTRUCTION POINTER 12 

4 CHECK WORDS 16 140 

20 144 

24 148 

28 
SYSTEM PROCEDURE POINTER 152 

3044 00FB16 156 

PROCESSOR CONTROL BLOCK 
(PRCB) OFFSET 

0 

4 

8 

12 

20 

24 

28 

0000027F16 32 

0000027F16 36 

FAULT TABLE POINTER 40 

44 

48 

76 

80 
SCRATCH SPACE 

172 

INITIALIZATION CODE OFFSET 

ItiJ'iii1tl RESERVED ( INITIALIZE TO 0) 

@W'S'%§J PRESERVED f 
Figure A·5: Initial Memory Image (Chapter 7) 

3·300 



inter 80960KB PROGRAMMER'S REFERENCE 

Interrupt Handling 

31 0 

0 

4 

PENDING INTERRUPTS 

32 

36 (VECTOR 8) 

40 (VECTOR 9) 

ENTRY 10 44 (VECTOR 10) 

976 (VECTOR 243) 

980 (VECTOR 244) 

992 (VECTOR 247) 

996 (VECTOR 248) 

1000 (VECTOR 249) 

1008 (VECTOR 251) 

1012 (VECTOR 252) 

ENTRY 255 1024 (VECTOR 255) 

PROCEDURE ENTRY FORMAT 
31 210 

I INSTRUCTION POINTER 1010 I 

~L:::ZZ m •• 1 RESERVED ( INITIALIZE TO 0) 

Figure A-6: Interrupt Table (Chapter 8) 

3-301 



inter 

STACK 
GROWTH 

STACK 
GROWTH 

80960KB PROGRAMMER'S REFERENCE 

LOCAL, SUPERVISOR, OR INTERRUPT STACK 

31 0 

FP 

REGISTER SAVE AREA 
.~ FOR CURRENT FRAME .~ 

~ 
ADDITIONAL VARIABLES 

.~ AND PADDING AREA 
(OPTIONAL) 

SP 

INTERRUPT STACK 

31 7 0 

NSP* 

PADDING AREA 

RESUMPTION RECORD 
FOR SUSPENDED INSTRUCTION 

(OPTIONAL) 

NEW FRAME 

*If the interrupt is serviced while the processor is working on another 
interrupt procedure, the new stack pointer (NSP) will be the same as 
the SP. 

RESERVED 

Figure A-7: Interrupt Record on Stack (Chapter 8) 

3-302 

INTERRUPT 
RECORD 



inter 80960KB PROGRAMMER'S REFERENCE 

lACs 

31 2423 161S 

MESSAGE TYPE I FIELD 1 I FIELD2 

FIELD3 

FIELD4 

FIELDS 

Figure A-8: lAC Message Format (Chapter 13) 

Fault Handling 

31 o 

FAULT DATA 

---

o 
4 

12 

16 

24 

28 

PROCESS CONTROLS 32 

~----------------------------------------~ ARITHMETIC CONTROLS 36 

FAULTFLAGS FAULTTYPE FAULTSUBTYPE 40 

ADDRESS OF FAULTING INSTRUCTION 44 

RESERVED 

Figure A-9: Fault Record (Chapter 9) 

3-303 

o 
o 
4 

8 

12 



80960KB PROGRAMMER'S REFERENCE 

31 0 
0 

TRACE FAULT ENTRY 8 

OPERATION FAULT ENTRY 16 

ARITHMETIC FAU ENTRY 24 

FLOATING-POINT FAULT ENTRY 32 

CONSTRAINT FAULT ENTRY 40 

48 

56 

64 

72 

80 

88 

96 

104 

112 

120 

252 

LOCAL PROCEDURE FAULT-TABLE ENTRY 

FAULT-HANDLER PROCEDURE ADDRESS n 

n+4 

31 
SYSTEM-PROCEDURE-TABLE FAULT-TABLE ENTRY 

FAULT-HANDLER PROCEDURE NUMBER 

0000027F16 

IKtlnilw~1 RESERVED (INITIALIZE TO 0) 

Figure A-1 0: Fault Table and Fault-Table Entries (Chapter 9) 

3-304 



inter 

Trace Control 

B0960KB PROGRAMMER'S REFERENCE 

7 654 3 2 1 0 

11111111 

~ELINSTRUCTION TRACE MODE 
BRANCH TRACE MODE 

CALL TRACE MODE 

RETURN TRACE MODE 

'------PRERETURN TRACE MODE 

'-------SUPERVISOR TRACE MODE 

'--------BREAKPOINT TRACE MODE 

'--------------INSTRUCTION TRACE EVENT 

'--------------- BRANCH TRACE EVENT 

'--------------- CALL TRACE EVENT 

'---------------- RETURN TRACE EVENT 

'----------------- PRE RETURN TRACE EVENT 

'----------------- SUPERVISOR TRACE EVENT 

'------------------ BREAKPOINT TRACE EVENT 

RESERVED (INITIALIZE TO 0) 

. Figure A-11: Trace Controls (Chapter 10) 

3-305 



APPENDIX B 
MACHINE-LEVEL INSTRUCTION FORMATS 

This appendix describes the machine-level fonnat for 80960KB instructions. Included is a 
description of the four instruction fonnats. and how the addressing modes relate to these 
fonnats. A1so, a table is given that shows the relationship between the machine-level instruc­
tion operands and the assembly-language-level instruction operands. 

GENERAL INSTRUCTION FORMAT 

At the machine-level, all the 80960KB instructions are one word long and begin on word 
boundaries. (One group of instructions allows a second word, which contains a 32-bit 
displacement. ) 

There are four basic instruction fonnats: REG, COBR, CTRL, and MEM. Figure B-1 shows 
these fonnats. Each instruction has only one fonnat, which is defined by the opcode field of 
the instruction. 

31 2423 19 18 1413121110 7 6 5 4 0 

I OPCODE I SRCfDST I SRC2 I I I I OPCODE 10 0 I I 
REG 

SRC1 

1 t 
t M1 

M2 

M3 

31 2423 19 18 14 13 12 2 1 0 

OPCODE I SRC1 I SRC2 I I DISPLACEMENT 10 0 I 
COBR 

t M1 

31 2423 2 1 0 

I OPCODE I DISPLACEMENT 10 0 I CTRL 

31 2423 19 1B 14131211 0 

OPCODE SRCfDST I ABASE I 10 1 I MEMA 
OFFSET 

t MODE 

31 2423 19 1B 1413 10 9 7 6 5 4 0 MEMB 
I OPCODE I SRCfDST A8ASE I MODE I SCALE I 0 0 I INDEX I L _______________ ~~~~~~~~~~~ ________________ J 

Figure 8-1: Instruction Formats 

The following sections describe the fields in the instruction word for each fonnat. 

3-306 



80960KB PROGRAMMER'S REFERENCE 

REG FORMAT 

The REG format is for operations that are performed on data contained in the global, local, and 
floating-point registers. The majority of the 80960KB instructions use this format. 

The ope ode for the REG instructions is 12 bits long (3 hexadecimal digits) and is split between 
bits 7 through 10 and bits 24 through 31. For example, the opcode for the addi instruction is 
591 16, Here, 5916 is contained in bits 24 through 31 and 116 is contained in bits 7 through 10. 

The srcl and src2 fields specify source operands for the instruction. The operands can be 
either registers or literals. The mode bits (ml for srcl and m2 for src2) and the instruction type 
(non-floating point or floating point) determine whether an operand is a register or a literal. 
Table B-1 shows the relationship between the instruction type, the mode bits, and the src1 and 
src2 operands. 

Table 8-1: Encoding of Src1 and Src2 Fields in REG Format 

Inst. Type Ml or M2 Src1 or Src2 Register Literal 
Operand Number Value 
Value 

Non-FP 0 00000 rO 

01111 r15 
10000 gO 

11111 g15 
1 00000 0 

11111 31 
FP 0 00000 rO 

01111 r15 
10000 gO 

11111 g15 
1 00000 fpO 

00011 fp3 
00100 to reserved 

01111 
10000 +0.0 

10001 to reserved 
10101 
10110 +1.0 

10111 to reserved 
11111 

3-307 



80960KB PROGRAMMER'S REFERENCE 

For non-floating-point instructions, if a mode bit is set to 0, the respective srcl or src2 field 
specifies a global or local register. If the mode bit is set to 1, the field specifies an ordinal 
literal in the range of 0 to 31. 

For floating-point instructions, if the mode bit is set to 0, the respective srcl or src2 field 
specifies a global or local register (just as it does for non-floating-point instructions). If the 
mode bit is set to 1, the field specifies either a floating-point register or one oftwo real-number 
literals (+0.0 or + 1.0). All of the other encoding when the mode bit is set to 1 are reserved. 
When a reserved encoding is used as a source, the processor either signals an invalid opcode 
fault or produces an undefined value. 

The src/dst field can specify either a source operand or a destination operand or both, depend­
ing on the instruction. Here again, the mode bit (m3) and the instruction type (non-floating 
point or floating point) determine how this field is used. Table B-2 shows this relationship. 

Table B-2: Encoding of Src/Dst Field in REG Format 

Inst. Type m3 SrclDst Src Only Dst Only 

Non-FP 0 gO .. g15 gO .. gl5 gO .. gl5 
rO .. r15 rO .. r15 fO .. r15 

I NA Literal NA 
FP 0 NA NA gO .. gl5 -

rO .. r15 

I NA NA fpO .. fp4 

Note: NA means not allowed 

For non-floating-point instructions, if M3 is clear, the src/dst operand is a global or local 
register that is encoded as shown in Table B-1. If M3 is set, the src/dst operand can be used 
only as a src operand that is an ordinal literal. 

For floating-point instructions, the src/dst field is only used to encode destination operands. 
Here, the encoding is the same as shown in Table B-1, except that the encodings for floating­
point literals are not allowed. That is, if M3 is clear, the destination operand is a global or 
local register; if M3 is set, the destination operand is a floating-point register. When a reserved 
encoding or literal encoding is used as a destination, the processor either signals an invalid 
opcode fault or produces an undefined result. 

COBR FORMAT 

The COBR format is used primarily for control-and-branch instructions. (The test-if instruc­
tions also use this format.) The opcode field for this format is 8 bits (two hexadecimal digits). 

The src I and src2 fields specify source operands for the instruction. The src I field can specify 
either a global or local register or a literal as determined by mode bit mi. (The encoding of the 
srcl field is the same as is shown in Table B-1 for the noncfloating point instructions.) The 
src2 field can only specify a local or global register. 

3-308 



80960KB PROGRAMMER'S REFERENCE 

The displacement field contains a signed, twos complement number that specifies a word 
displacement. The processor uses this value to compute the address of a target instruction that 
the processor goes to as the result of a comparison. The displacement field can range from _2 10 

to (2 10 -1). To determine the IP of the target instruction, the processor converts the displace­
ment value to a byte displacement (i.e., multiplies the value by 4). It then adds the resulting 
byte displacement to the IP of the next instruction. 

Note 

To allow labels or absolute addresses to be used in the assembly-language version of the COBR 
format instructions, the Intel 80960KB Assembler converts a targ (target) operand value in an 
assembly-language instruction into the displacement value required for the COBR format, using 
the following calculation: 

displacement = (targ/4) - (IP + 4) 

For the test-if instructions, only the src1 field is used. Here, this field specifies a destination 
global or local register (ml is ignored). 

CTRL FORMAT 

The CTRL format is used for instructions that branch to a new IP, including the branch, 
branch-if, bal, and call instructions. The return instruction also uses this format. The opcode 
field for this format is 8 bits (two hexadecimal digits). 

The instructions that use this format have no operands. The target address for a branch is 
specified with the displacement field in the same manner as is done with the COBR format 
instructions. Here, the displacement field s~ecifies a word displacement (also a signed, twos 
complement number) that can range from -2 1 to 221 -1. 

The processor ignores the displacement field for the return instruction. 

MEM FORMAT 

The MEM format is used for instructions that require a memory address to be computed. 
These instructions include the load, store, and Ida instructions. Also, the extended versions of 
the branch, branch-and-link, and call instructions (bx, balx, and c~lIx) uses this format. 

There are two MEM formats, MEMA and MEMB. The MEMB format offers the option of 
including a 32-bit displacement (contained in a second word) to the instruction. Bit 12 of the 
first word of the instruction determines whether the format is MEMA (clear) or MEMB (set). 

For both formats the opcode field is 8 bits long. The src/dst field specifies a global or local 
register. For load instructions, the src/dst field specifies the destination register for a word 
loaded into the processor from memory or, for operands larger than one word, the first of 
successive destination registers. For store instructions, this field specifies the register or group 
of registers that contain the source operand to be stored in memory. 

3-309 



inter 80960KB PROGRAMMER'S REFERENCE 

The mode bit (or bits for the MEMB format) determine the address mode used for the instruc­
tion .. Table B-3 summarizes the addressing modes for the two versions of the MEM format. 
The fields used in these addressing modes are described in the following sections. 

Table 8-3: Addressing Modes for MEM Format Instructions 

Format Mode Address Computation 
Bit(s) 

MEMA 0 offset 

1 (abase) + offset 

MEMB 0100 (abase) 

0101 (IP) + displacement + 8 

0110 reserved 

0111 (abase) + (index) * 2scale 

1100 displacement 

1101 (abase) + displacement 

1110 (index) * 2scale + displacement 

1111 (abase) + (index) * 2scale + displacement 

Notes: 
1. In the address computations above. a field in parentheses (e.g., (abase)) 

indicates that the value in the specified register is used in the computation. 
2. The use of a reserved encoding causes an invalid opcode fault to be signaled. 

MEMA Format Addressing 

The MEMA format provides two addressing modes: . 

• absolute offset 

• register indirect with offset 

The offset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a 
global or local register that contains an address in memory. The address is interpreted as either 
a virtual address or a physical address depending on whether the processor is operating in 
virtual-addressing or physical-addressing mode, respectively. 

For the absolute offset addressing mode (the mode bit is clear), the processor interprets the 
offset field as an offset from byte 0 of the current process address space. The abase field is 
ignored. Using this addressing mode along with the Ida instruction allows a constant of from 0 
to 4096 to be loaded into a register. 

For the register indirect with offset addressing mode (the md bit is set), the value in the offset 
field is added to the address in the abase register. Setting the offset value to zero creates a 
register indirect addressing mode, however, this operation can generally be carried out faster 
by using the MEMB version of this addressing mode. 

3-310 



80960KB PROGRAMMER'S REFERENCE 

MEMB Format Addressing 

The MEMB fonnat provides the following seven addressing modes: 

• absolute displacement 

• register indirect 

• register indirect with displacement 

• register indirect with index 

• register indirect with index and displacement 

• index with displacement 

• IP with displacement 

The abase and index fields specify local or global registers, the contents of which are used in 
the address computation. When the index field is used in an addressing mode, the processor 
automatically scales the value in the index register by the amount specified in the scale field. 
Table B-4 gives the encoding of the scale field. The optional displacement field is contained in 
the word following the instruction word. The displacement is a 32-bit, signed, twos comple­
ment value. 

Table 8-4: Encoding of Scale Field 

Scale Scale Factor 
(Multiplier) 

000 1 

001 2 

010 4 

all 8 

100 16 

101 to 111 reserved 

Note: 
The use of a reserved encoding causes 
an invalid opcode fault to be signaled. 

For the IP with displacement mode, the value of the displacement field plus 8 is added to the 
address of the current instruction. 

3-311 



APPENDIX C 
INSTRUCTION TIMING 

This appendix describes the 80960KB processor's instruction pipeline and how it affects the 
timing of instructions. The number of clock cycles required for each instruction are also given 

. here. . 

'INTRODUCTION 

. The 80960 architecture defines several mechanisms for increasing processor performance 
through the use of pipelining and parallel execution of instructions. This appendix describes 
how these mechanisms have been incorporated into the design of the 80960KB processor and 
provides information to help programmers maximize the performance of the processor. 

INTERNAL STRUCTURE OF THE 80960KB PROCESSOR 

The 80960KB processor is composed of the following six major functional units (shown in 
Figure C-I): 

• Bus Control Logic 

• Instruction Fetch Unit and Instruction Cache 

• Instruction Decoder 

• Micro-Instruction Sequencer and ROM 

• Instruction Execution Unit 

• Floating Point Unit 

3-312 



80960KB PROGRAMMER'S REFERENCE 

EXTENTION TO THE 80960 
ARCHITECTURE 

r---------..., 

FLOATING­
POINT 

REGISTERS 

t 
FLOATING-
POINT UNIT 

"'--1--- i"' __ ....1 

,. 

GLOBAL 
REGISTERS AND 
LOCAL REGISTER 

SETS 

t 
INSTRUCTION 
EXECUTION 

UNIT 

i'" 

,. 

",.. 1 " ,. " ,. 
MICRO- INSTRUCTION 

" ... 

INSTRUCTION FETCH UNIT INSTRUCTION 
SEQUENCER AND ...... DECODER 
AND ROM INSTRUCTION 

CACHE 

BUS 
CONTROL 

LOGIC 

Figure C-1: Block Diagram of the 80960KB Processor 

EXTERNAL 
BUS 

H 

These units function independently from one another, but in close cooperation. The functions 
of each of these units is described in the following sections. 

Bus Control Logic 

The Bus Control Logic (BCL) provides the interface between the processor and the external 
world. This interface consists of a multiplexed, burst bus, which is capable of memory-access 
rates of over 53 Megabytes/second (with a 20 Mhz CPU clock). The BCL accepts requests 
from other units within the 80960KB, prioritizes them, and executes them. It, attempts to 
maximize bus access efficiency through buffering and burst accesses. 

The BCL provides a queuing mechanism that can buffer up to three outstanding requests at any 
given time. This mechanism, coupled with other 80960KB features (such as scoreboarding, 
which is discussed later), allow other units in the 80960KB to continue operation without 
waiting for bus requests to be completed. As a result, the execution of most memory reference 
instructions require little or no delay in the instruction execution pipeline. 

3-313 



inter 80960KB PROGRAMMER'S REFERENCE 

The BCL generates burst cycles on the external bus, which allow from one to 16 bytes of data 
to be read or written in a single operation. The processor takes advantage of burst transfers in 
several ways. First, multiple-register load or store operations can be carried out in a single bus 
operation, using the Idl (load long), Idt (load triple), and Idq (load quad) instructions and the 
corresponding stl (store long) stt (store triple), and stq (store quad) instructions. Second, 
instructions can be fetched in 16-byte bursts, thereby reducing bus traffic for instruction 
fetches. Third, floating-point values of 32, 64 or 80 bits can be stored in a single bus opera­
tion. 

Instruction Fetch Unit and Instruction Cache 

The Instruction Fetch Unit (IFU) acts as an intelligent "buffer" for the Instruction Decoder 
(ID). Its purpose is to present the instruction stream to the ID in the fastest and most trans­
parent way possible. The IFU uses several mechanisms to accomplish this goal, as described 
in the following paragraphs. 

The IFU maintains a 512 byte, direct-mapped instruction cache. This cache allows very fast 
access to instructions. While the other units in the processor are executing instructions, the 
IFU looks ahead in flow of instructions stored in the instruction cache. If a cache miss is 
detected (that is, an instruction that will soon be needed is not in the instruction cache), the IFU 
issues a prefetch request to the BCL. Upon receiving the requested instruction, the IFU 
updates the instruction cache. In most cases, this fetch and load will take place before the ID 
requires the instruction. The major exception to this rule happens on branch conditions. 

The IFU works closely with the ID in handling branch conditions. The ID informs the IFU of 
any branch operations that are about to take place. Such notifications take place on uncon­
ditional branches and on conditional branches in which the condition code is valid. When the 
IFU is notified of a branch, it checks for a cache hit on the desired instruction. If the 
instruction is not present, the IFU begins fetching instructions for the new control path. 

To further minimize delays in the instruction pipeline, the ID sends a special signal to the IFU 
whenever instructions are required immediately. The IFU then passes the fetched instructions 
to the ID directly, rather than writing them to the cache and reading them back out again. This 
technique is called an instruction-cache bypassing. 

The instruction pointer (IP) register in the processor and the IFU maintain several instruction 
pointers. These pointers point to instructions at various stages of the fetch-decode-execute 
pipeline. If a fault is signaled from any unit, the processor uses these pointers to determine the 
problem and preserve the state of the processor. 

Instruction Decoder 

The ID decodes the instructions it receives from the IFU and routes them to the appropriate 
execution units. In doing this, it attempts to keep the computing resources of the processor 
working at the highest possible levels. 

Instructions are decoded into the following four groups, according to how the instructions are 
executed: 

3-314 



80960KB PROGRAMMER'S REFERENCE 

• Simple Instructions 

• Floating Point and Branch Instructions 

• Complex Instructions 

• Load and Store Instructions 

The following paragraphs list the instructions in each of these groups and describe how the ID 
handles them. 

Simple Instructions 

The instructions in the simple-instruction group require very little decoding. These instructions 
include logical; comparison; shift; integer add and subtract; and ordinal add and subtract 
instructions. The ID decodes these instructions and passes them to the instruction execution 
unit (lEU), where they are executed, usually in a single clock period. 

Floating Point and Branch Instructions 

All floating-point instructions are executed by the floating-point unit (FPU). Often, the execu­
tion of floating-point instructions requires interaction between the FPU, ID, and Micro­
Instruction Sequencer (MIS). For example, the FPU may require access to the general-purpose 
registers (maintained by the lEU). Here, the ID assists in supplying data to the FPU. Also, 
many of the floating-point instructions are executed by means of microcode. The FPU gets the 
microcode from the MIS. 

The ID executes branch instructions directly. If the branches are unconditional, no interaction 
with the processor's other execution units is required. 

On conditional branch instructions, the ID uses a condition code scoreboard to streamline the 
branching process. Scoreboarding is a mechanism by which various resources within the 
processor can be marked as in use (or pending a result). When one of the execution units in 
the processor is in the process of altering the condition code, it marks the condition code 
scoreboard. When the ID' prepares to execute a conditional branch instruction, it checks the 
condition code scoreboard. If the scoreboard is marked as in use, the ID waits for the result 
before proceeding. If the condition code scoreboard is clear, the ID signals the IFU im­
mediately if a change in program flow is about to happen. 

Conditional fault instructions (fault-if instructions) are also executed in the ID. These opera­
tions differ from conditional branches in that they result in a fault event being generated, 
followed by an implicit call to the appropriate fault-handler routine. 

As a result of the pipelining described above, branches can often be carried out in zero clock 
cycles. For example, the branch instruction (b) shown below will execute in zero cycles, since 
the branch time is overlapped completely by the execution time, of the floating-point instruction 
(sinr). 

3-315 



80960KB PROGRAMMER'S REFERENCE 

sinr 
b 

gO, gl 
some location 

some location: 
mov gl,g2 

The branch-if instruction (be) in the following example is also executed in zero cycles: 

cmp OxlO, r9 
divi rIO, rll, rIO 
be go here 

-

go here: 
mov gl,g2 

Here, the comparison instruction (cmp) is placed early in the instruction stream, allowing the 
branch condition based on the value of r9 to take place while the integer divide instruction 
(divi) is being executed. 

Complex Instructions 

Complex instructions are those that are executed using one or more microcode instructions. 
Examples of such instructions are the flushreg (flush local registers), mark; and fmark (force 
mark) instructions. The ID decodes complex instructions and forwards them to the MIS unit. 
The MIS then sends the equivalent microcode to the lEU. 

Load and Store Instructions 

Load and store instructions are those that request data to be read from or written into memory. 
The ID sends these instructions directly to the BCL, which executes them. 

The ID is responsible for converting the addressing information encoded in load, store, branch, 
and call instructions into an effective memory addresses. The circuitry that actually performs 
effective-address calculations resides in the IFU, but the ID oversees these operations. The 
generation of effective addresses is performed within a separate carry look-ahead adder, used 
with hardware shift logic. The ability to calculate effective addresses independently from 
instruction execution allows address calculation to be overlapped with computation. The time 
required to calculate an effective address ranges from zero to four cycles; but, for the most 
commonly used addressing modes, this time is less than two cycles. 

Instructions that require effective addresses are executed by either the ID or the BCL, thus 
preserving the pipeline and eliminating delays or resource constraints on the lEU or FPU. 

3-316 



80960KB PROGRAMMER'S REFERENCE 

Micro-Instruction Sequencer and ROM 

The MIS is a multipurpose unit designed to help in the execution of instructions that use 
microcode. All of the processor's microcode is stored in ROM, which is accessed through the 
MIS. When the ID receives a complex instruction (one that requires microcode to be 
executed), the MIS supplies the microcode to the lEU as described earlier in the discussion of 
complex instructions. 

The MIS also supplies microcode for floating-point instructions; the power-up and self-test 
performed during processor initialization; interrupt handling; and fault handling. 

Instruction Execution Unit 

The IEU contains the Arithmetic Logic Unit (ALU) and the mechanism for register and 
condition-code scoreboarding. It also manages the 16 global registers and the 4 sets of 16 local 
registers. 

The ALU performs the following functions for the lEU: 

• Addition and subtraction of integers and ordinals 

• Moves between registers 

Q Logical operations 

• Bit operations 

• Shifts and rotates 

• Comparisons 

It is capable of performing any of these operations in a single clock cycle. 

The IEU can also work with integer literals in the range of -16 to +31, which are encoded in 
the REG instruction format. This method of encoding literals perforins two functions. First, it 
provides a more compact instruction stream. Second, when a literal is used as an argument for 
an instruction, the IEU is able to execute the instruction in one less clock cycle. 

The lEU handles the reading and writing of global and local registers. It also handles the 
allocation of local registers sets on procedure calls. Tqe lEU allocates a new set of local 
registers on each procedure call. If all four register sets become allocated, the IEU automati­
cally flushes the oldest frame to the stack on the next procedure call. The IEU also automati­
cally retrieves any local register frame from the stack when required by a return operation. The 
majority of procedure calls or returns do not require the processor to flush local registers to 
memory. Call instructions that can be executed without flushing a register set require only 9 
cycles to complete, with the corresponding return taking only 7 cycles. 

The register scoreboard provides scoreboarding for the global and local registers. When, one 
or more registers are being used in an operation, they are marked as in use. The register· 
scoreboarding mechanism allows the processor to continue executing subsequent instructions, 
as long as those instructions do not require the contents of the scoreboarded registers~ 

3-317 



80960KB PROGRAMMER'S REFERENCE 

A typical event that would cause scoreboarding is a load operation. For a load from memory, 
the contents of the affected registers are not valid until the BCL fetches the data and the 
registers are loaded. For example, consider the sequence: 

Id 
addi 
addi 
subi 

gO, (gl) 
g2, g3, g4 
gS, g4 ,g6 
gO, g6, g6 

Here, when the BCLinitiates the Id operation, register gO is scoreboarded. As long as sub­
sequent instructions do not require the contents of gO, the ID continues to dispatch instructions. 
For example, the two addi instructions above are executed while the BCL is fetching the data 
for gO. If gO is not loaded by the time the subi instruction is ready to be executed, the lEU 
delays execution of the instruction until the loading of gO has been completed. 

If an operation accesses a single register, only that register is scoreboarded. However, if 
mUltiple registers are accessed (such as, with the Idl, lit, or Idq instructions), registers are 
score boarded as shown in Table C-l, according to the base register of the the group being 
accessed. 

Table C-1: Registers Score boarded According to Registers Referenced 

Base Register Block of Registers 
Accessed Score boarded 

gO 0-3 
g2 0-3 
g4 0-7 
g6 0-7 
g8 8-11 

glO 8-11 

g12 12-15 

g14 12-14 

Instruction Execution Unit Performance Enhancements 

The execution times of instructions in the lEU are dependent on the instruction flow. Two' 
features in the lEU that can enhance the performance of instruction execution are: 

• Register Bypassing 

• Condition Code Score boarding 

Register Bypassing. Register bypassing is a mechanism that allows an instruction that would 
ordinarily require source operands to be plac!,:d in registers to be executed without accessing 
one or both of the source registers. ~egister bypassing occurs in either of two circumstances. 
First, when the lEU executes an instruction with two source operands, register bypassing 
occurs if one or both of the operands are literals. Second, register bypassing will also occur 

3-318 



80960KB PROGRAMMER'S REFERENCE 

when the second of two source operands is the result of the previous instruction. The net result 
of register bypassing is the saving of one clock cycle. Most instructions that the lEU executes 
can be executed in a single cycle when register bypassing occurs. 

Condition Code Scoreboarding. The processor requires one clock cycle to set the condition 
code bits as the result of an instruction. If one of the instructions that follows depends on the 
condition code, condition-code scoreboarding can be used to save one cycle of execution time. 
The following example illustrates this technique: 

Case 1 - 5 cycles 

addc 
mov 
addc 

Case 2 - 6 cycles 

addc 
addc 
mov 

r4, r5, rIO 
gIO, gI2 
r6, r7, rll 

r4, r5, rIO 
r6, r7, rll 
gIO, gI2 

Here, both Case 1 and Case 2 accomplish the same task. However, Case 2 requires a wait of 
one clock cycle between the first and second addc instruction, while the condition code is set. 
Case 1, on the other hand, takes advantage of condition code scoreboarding by executing the 
move (mov) instruction while the condition code is being set. The code in Case 1 thus 
executes one clock cycle faster than the code in Case? 

Floating Point Unit 

The FPU performs all the floating-point computations for the processor, as well as the integer 
multiply and divide operations. It also manages the four 80-bit floating-point registers, which 
it uses for extended-precision, floating-point calculations. 

The FPU shares the resources of the processor. For example, it can use the global and local 
registers as operands for floating-point operations. It also gets microcode for the execution of 
complex floating-point instructions from the MIS. 

To perform integer multiplication and several floating-point calculations, the FPU contains a 
32-bit integer Booth-Multiplier. This mUltiplier performs integer multiplication operation in a 
variable amount of time, depending on the number of significant bits. It is used for integer 
multiplications and several floating-point calculations. 

EXECUTION TIMES 

The following section' describes the execution times that can be expected for the various 
instructions in the 80960KB processor. As illustrated in the previous sections of this appendix, 
the execution time for each instruction can vary considerably, for two reasons. First, many 
instructions can vary in execution time, depending on their arguments and the state of the 

3-319 



inter 80960KB PROGRAMMER'S REFERENCE 

on-chip resources being used. Second, by taking advantage of pipelining and overlapping of 
operations, a program can be written in which some instructions, in effect, take no clock cycles 
to execute. 

In the following discussion of instruction timing, the execution time of an instruction is defined 
as the time between the beginning of actual execution of a decoded instruction and the begin­
ning of execution for the next decoded instruction. For example, the illustration in Figure C-2 
shows the execution time of a two operand instruction to be two clocks, with respect to the 
next instruction to be executed. 

FIRST INSTRUCTION 

FETCH OECOOE 

SECOND INSTRUCTION 

EXECUTE 
src1 

src2 

EXECUTION TIME 

RESULT 

. I""I-F-E-TC-H--"'-O-E-C-O-O-E--"I"" - ;A-:r - """-E-X-EC-U-T-E""'""I-R-E-S-U-L T-'" 

L.. ___ --' ____ "- ____ ....&... ___ ........ ___ --..1 

Figure C-2: Execution Time of an Instruction 

Execution times for the 80960 Architecture Instructions 

The following paragraphs show the instruction times for the instructions defined in the 80960 
architecture. 

Logical instructions 

The timing of the logical instructions depends on the lEU bypass mechanism described earlier 
in this appendix, in particular for any instruction of the form: . 

alu_instruction src1, src2, dst 

If src1 or src2. is a literal or jf src2 is the result of the previous operation, a bypass hit occurs,. 
Otherwise, there is no bypass hit and the instruction requires an extra clock to load the second 
operand. Table C-2 shows the timing of the logical instructions depending on whether or not a 
bypass hit occurs. 

Note 

In all the following tables, execution time is given in number of clock cycles. 

3-320 



inter 80960KB PROGRAMMER'S REFERENCE 

Table C-2: Logical Instruction Timing 

Instruction Normal Case Worst Case 
Execution Time Execution Time 

(Bypass Hit) (Bypass Miss) 

and 1 2 

nand 1 2 

or 1 2 

nor 1 2 

xor 1 2 

xnor 1 2 

and not 1 2 

notand 1 2 

not 1 1 

not or 1 2 

ornot 1 2 

rotate 1 2 

shlo I 2 

shro 1 2 

shli 2 3 

shri 2 3 

shrdi 2 3 

Bit Instructions 

The execution times for the bit instructions are also dependent on whether or not a register 
bypass has occurred or not, as is shown in Table C-3. 

Table C-3: Bit Instruction Timing 

Instruction Normal Case Worst Case 
Execution Time Execution Time 

(Bypass Hit) (Bypass Miss) 

notbit 2 3 

setbit 2 3 

c1rbit 2 3 

alterbit 2 3 

chkbit 2 3 

extract 7 7 

modify 8 8 

3-321 



inter 80960KB PROGRAMMER'S REFERENCE 

The execution times of the scan bit and spanbit instructions (shown in Table C-4 depend on 
condition code scoreboarding. If the condition code is not set by the previous instruction 
execution, the instruction will complete in one less clock cycle. Execution time is also depend­
ent on the number of bits operated upon. 

Table C-4: Scan and Span Bit Instruction Timing 

Instruction Best Case Normal Case Worst Case 
Execution Time Execution Time Execution Time 

scanbit 8 11 14 

spanbit 8 11 14 

Register Moves 

The timing of instructions that move data between registers is directly related to the number of 
words moved. One clock cycle is required to move one (as shown in Table C-5). 

Table C-5: Move Instruction Timing 

Instruction Execution Time 

mov 1 

movl 2 

movt 3 

movq 4 

Integer and Ordinal Arithmetic 

The execution times for the basic add, subtract, and comparison instructions (as shown in 
Table C-6) depend on register bypass. The normal-case results are achieved when a register 
bypass occurs. 

3-322 



80960KB PROGRAMMER'S REFERENCE 

Table C-6: Integer and Ordinal Arithmetic Instruction Timing 

Instruction Normal Case Worst Case 
Execution Time Execution Time 

(Bypass Hit) (Bypass Miss) 

addo I 2 

addi I 2 

subo 1 2 

subi 1 2 

cmpo I 2 

cmpi I 2 

cmpinco 2 3 

cmpdeco 2 3 

cmpinci 2 3 

cmpdeci 2 3 

The execution times for the add and subtract with carry and conditional compare instructions 
(shown in Table C-7) depend on condition code scoreboarding. If the instruction executed 
prior to any of these instructions sets the condition code (cq, the worst case instruction 
execution time occurs; if an instruction is inserted between the instruction that sets the con­
dition code and one of the instructions listed in Table C-7, the instruction is executed in the 
normal case time. 

Table C-7: Add/Subtract With Carry, Conditional Compare Instruction Timing 

Instruction Normal Case Worst Case 
Execution Time Execution Time 
(CC Available) (CC Not Available) 

addc I 2 

subc 1 2 

subi 1 2 

concmpi 1 2 

Multiply and Divide Instructions 

Table C-8 shows the typical instruction execution times for the multiply and divide instruc­
tions: 

3-323 



80960KB PROGRAMMER'S REFERENCE 

Table C-8: Multiply and Divide Instruction Timing 

Instruction Range of Typical Case 
Significant Bits Execution Time 

mulo 9 to 21 18 

muli 9 to 21 18 

divi 37 37 

divo 37 37 

remo 37 37 

remi 37 37 

modi 37 37 

emul 37 24 

ediv 37 40 

Since the processor contains a Booth Multiplier with early out, the execution times on the 
mUltiply and divide instructions (shown in Table C-8) depend on the number of significant bits 
in the src1 operand. For example, Table C-9 shows the execution times based on the number 
of signific~mt bits in src1: 

Table C-9: Multiply/Divide Execution Times Based on Significant Bits 

Src1 Significant Bits Execution Time 

2 9 

4 10 

8 11 

32 21 

Note that the shift instructions or the add and subtract instructions may be faster than the 
multiply instructions in certain instances (for example, when mUltiplying by 3, 5, 15, etc.). 

Branching 

Branch instructions are executed directly by the ID and do not require lEU or FPU resources. 
Because of this, branch instructions can in most cases be programmed so that their execution is 
overlapped with other operations. Table C-I0 lists the ranges of times for execution of branch 
instructions, from best (maximum overlap) to worst (no overlap). (The instructions in capital 
letters indicate groups of instructions that branch on condition codes, such the BRANCH IF 
instructions, be, bg, bl, etc.) 

3-324 



inter 80960KB PROGRAMMER'S REFERENCE 

Table C-10: Branch Instruction Timing 

Instruction Best Case Worst Case 
Execution Time Execution Time 
(CC Available) (CC Not Available) 

b o to 2 (0 to 2) o to 2 (0 to 2) 

BRANCH IF Ot02(Otol) o to 3 (0 to 2) 

bx o to 6 (0 to 6) o to 6 (0 to 6) 

BRANCH AND 2 to 8 (2 to 8) 2 to 8 (2 to 8) 
LINK 

COMPARE AND 3 to 5 (3 to 4) 3 to 5 (3 to 4) 
BRANCH 

TEST IF o to 3 (0 to 2) o to 4 (0 to 3) 

FAULT IF o to 2 (0 to 1) o to 3 (0 to 2) 

The second column of numbers lists execution-time ranges for conditional branches in which 
the condition code was not set in the previous instruction, and the third column lists ranges for 
branches in which the condition code was set by the previous instruction. Also, the first range 
in each column is for the case in which the branch is taken, and the range in parentheses is for 
the case in which the branch is not taken. 

When writing op~imized code for the 80960KB processor, it is best to perform conditional tests 
at least one instruction before a conditional branch. This practice allows the execution times in 
column two to be achieved. It is also important to note that the "not taken" branch case 
executes in one less cycle, because there is no break in the pipeline. (Remember, instruction 
time is defined as the time from the start of execution of one instruction to the start of 
execution of the next instruction. If the pipeline is stalled, the fetch of the next instruction will 
be delayed one clock. This delay mayor may not be hidden by the parallelism of the 80960KB 
processor). 

Call/Return Instructions 

As described earlier in this appendix, the 80960KB processor provides four sets of local 
registers. When a call instruction is executed, the processor allocates a new set of local 
registers to the called procedure or interrupt routine. If, when a call or calix instruction is 
executed, a set of local registers is available, the processor executes the instruction in 9 clock 
cycles. 

If a set of local registers is not available, the processor flushes the oldest set of registers to the 
stack in memory to free up a register set. Flushing a set of local registers requires four 
quad-word stores to memory. Assuming zero-wait-state memory, this operation adds 24 clocks 
to the 9 clocks normally required to execute a call. 

The ret (return) instruction normally requires 7 clock cycles, If the local registers being 
returned to have been flushed to the stack, an additional 24 clocks must be added to this 
execution time (with zero-wait-state memory) for the processor to reload the local registers 

3-325 



80960KB PROGRAMMER'S REFERENCE 

from the stack. It is important to note that the processor only reloads the local registers when 
they are required, thus eliminating unnecessary memory cycles. 

Load Instructions 

A load instruction requires the following steps: 

1. Instruction Fetch 

2. Decode 

3. Compute Effective Address/Scoreboard Register(s) 

4. Place Address on Bus 

5. Wait State(s) 

6. Receive Data on Bus 

7. Place Data in target register 

Of these steps, only steps 3 through 7 are included in the definition of execution time for an 
instruction. The following figures show several examples of load instruction timing depending 
on where the load instruction is placed in the instruction strl(am. 

The example in Figure C-3 illustrates a load instruction where the instruction that follows 
requires the fetched data. Here, the pipeline is stalled while the processor waits for the load to 
complete. Assuming a one-clock-cycle effective-address calculation, the load will require 4 or 
5 clock cycles to be executed, depending on whether or not zero~wait-state memory is used. 

PREVIOUS INSTRUCTION 

I DECODE I EXECUTE 

Id INSTRUCTION 

WAIT 

EXECUTION TIME 

INSTRUCTION USIN(i Id RESULT 

I FETCH I DECODE I EXEC~TE RESULT 

Figure C-3: Load Where the Next Instruction Requires the Fetched Data 

3-326 



inter 80960KB PROGRAMMER'S REFERENCE 

Figure C-4 gives an example of a load instruction where the instruction that follows does not 
require the data being fetched from memory. Here, the unrelated instruction can be executed 
while the load is being completed. The 2 clock cycles required to execute the unrelated 
instruction are then overlapped with the 4 or 5 cycles required to execute the load (again 
depending on whether or not zero-wait-state memory is used). The load instruction thus 
requires a net of 1 or 2 clock cycles from the pipeline to be executed. 

PREVIOUS INSTRUCTION 

I DECODE I EXECUTE 

Id INSTRUCTION 

UNRELATED INSTRUCTION 

FETCH DECODE EXECUTE 

WAIT 

~ ~ 
EXECUTION TIME 

RESULT 

Figure C-4: Load Where the Next Instruction Does Not Require the Fetched Data 

Finally, Figure C-5 shows an example of two load instructions being executed back-to-back. 
These two instructions can be executed in 5 or 6 clock cycles, as long as the number of BCL 
requests is limited to 3 or less (which is the size of the output request FIFO in the BCL's 
control queue). Here, the second load is almost completely overlapped by the first load. Times 
for mUltiple word loads will be lengthened 1 cycle plus wait states for each additional word. If 

< more than 3 requests become outstanding, the processor will wait until the number of outstand-
ing load operations goes below the size of the output FIFO. 

FIRST Id INSTRUCTION 

WAIT 

SECOND Id INSTRUCTION 

WAIT 

EXECUTION TIME FOR BOTH INSTRUCTIONS 

Figure C-5: 8ack-to-8ack Load Instructions 

3-327 



80960KB PROGRAMMER'S REFERENCE 

Store Operations 

Store instructions involve a posting of an address and data request to the BCL and are usually 
executed in 2to 3 clock cycles. (They do not require register scoreboarding.) If the instruction 
following a store instruction is another store instruction, the second store instruction is usually 
executed in 2 clock cycles. If the following instruction uses the lEU, the execution time is 3 
clock cycles. The only casein which this time will increase is when the three-request output 
FIFO in the BCL becomes full. Here, if another store instruction is issued, the processor waits 
for the BCL to complete its operations before other instructions can execute. 

Execution times for the Extended Instructions 

The following paragraphs show the execution times for those 80960KB instructions that are 
extensions to the 80960 architecture. 

Decimal Instructions 

Table C-ll shows the instruction times for the decimal instructions. 

Table C-11: Decimal Instruction Timing 

Instruction Execution Time 

dmovt 7 

daddc 8 

dsubc 8 

Floating-Point Instructions 

Table C-12 shows the instruction execution times for the simple floating-point instructions. 
Where applicable, a range and a typical observed average are given. 

3-328 



80960KB PROGRAMMER'S REFERENCE 

Table C-12: Simple Floating-Point Instruction Timing 

Instruction Execution Time 

movr 5 

movrl 5 to 7 

movre 7 to 8 

cpysre 8 

cpyrsre 8 

addr 9 to 17 (typical 10) 

addrl 12 to 20 (typical 13) 

subr 9 to 17 (typical 10) 

subrl 12 to 20 (typical 13) 

muir 11 to 22 (typical 20) 

mulrl 14 to 43 (typical 36) 

divr 35 

divrl 77 

cmpr 10 

cmprl 12 

cmpor 10 

cmporl 12 

cvtri 25 to 33 

cvtril 26 to 35 

cvtilr 41 to 45 

cvtilr 42 to 46 

cvtzri 41 to 45 

cvtzril 42 to 46 

roundr 56 to 69 

roundrl 56 to 70 

scaler 28 

scalerl 30 

logbnr 32 to 41 

logbnrl 32 to 43 

The instructions given in Table C-13 consist of the complex floating point instruCtions. Only 
typical instruction execution rates are given here. In many cases, the clock count can vary by 
30-40%. Execution time is dependent on the operands. . 

3-329 



80960KB PROGRAMMER'S REFERENCE 

Table C-13: Complex Floating-Point Instruction Timing 

Instruction Execution Time 

sqrtrl 104 
expr 300 
exprl 334 
logepr 400 
logeprl 420 
logr 438 
logrl 438 
remr (67 to 75878) 
remrl (67 to 75878) 
atanr 267 
atanrl 350 
cosr 406 
cosrl 441 
tanr 293 
tanrl 323 

It is important to note that these floating-point instructions are interruptible. When an interrupt 
is received while one of these instructions is being executed, the processor can suspend execu­
tion, service the external request, then resume execution of the instruction. 

3-330 



APPENDIX D 
INITIALIZATION CODE 

This appendix provides an example of the initialization code required to initialize the 80960KB 
processor. 

OVERVIEW 

The code given in this appendix demonstrates one of the methods that can be used to initialize 
the 80960KB processor. To use this code, the programmer must assemble (and compile, in the 
case of the C program modules) the individual files into object modules. These modules must 
then be loaded into ROM (generally EPROM). The resulting EPROM will contain an IMl (as 
shown in Figure 7-3; an interrupt table; a fault table; and a system procedure table; a set of 
dummy interrupt and fault handler routines; and a set of dummy system procedures. (The 
dummy interrupt and fault handler routines merely perform a return to the initialization code if 
an interrupt or fault occurs during initialization. Likewise, the dummy system procedures 
perform returns. These routines may be changed to suit the needs of a particular application.) 

When the RESET pin on the processor is asserted, the processor performs its self test, then 
begins executing the initialization code. This code directs the processor to perform the follow­
ing rudimentary steps of initialization: 

1. Copy the PRCB from the IMl into RAM. 

2. Copy the interrupt table into RAM. 

3. Execute a reinitialize processor lAC, to enable the processor to load the new pointers to 
the PRCB and interrupt table. 

The PRCB and interrupt table are copied into RAM because both of these data structures have 
fields that the processor must be able to write. 

Once these first steps of initialization have been completed, the processor is able to execute 
additional initialization steps to configure the processor for a particular application. The 
following items are examples of further initialization actions that might be included in the 
initialization code: 

• Copy new interrupt handler routines into RAM and change the pointers in the interrupt 
table to point to these new routines. 

• Copy the fault table into RAM; copy new fault handler routines into RAM; change the 
pointers in the fault table to point to the new fault handler routines; and change the pointer 
in the PRCB to point to the relocated fault table. 

• Create a new system procedure table in RAM; copy the system procedures into RAM; 
change the pointer in the PRCB to point to the new system procedure table. 

Alternatively, the interrupt handler routines, fault handler routines, and system procedures can 
all be loaded into ROM. Here, execution of an application program can begin directly follow­
ing the reinitialization of the processor. 

3-331 



80960KB PROGRAMMER'S REFERENCE 

EXAMPLE CODE 

The example code consists of the following six files: 

• example.lst 

• Ctable.lst 

• Uable.lst 

• Chandler.c 

• i_handler.c 

• cold.ld 

The first three files are listings from the Intel 80960KB Assembler. These listings include 
assembly code (such as would be included in an ".s" file) and the resulting object code. The 
fourth and fifth files are C program modules. The sixth file is a load module. 

The following steps describe how to use the code in these files: 

1. Assemble the assembly code in files example.s, Ltable.s, and i_table.s. (Here the ".s" files 
are made up of the assembly code only from the ".1st" files listed above.) 

2. Compile the C code in files L handler.c and i _ handler.c. 

3. Link the object modules (example.o, Ltable.o, i_table.o, Lhandler.o, and i_handler.o) , 
using the 80960 Linker and the script in the cold.ld file. The script in cold.ld directs the 
linker to locate the linked code at address O. 

4. Bum the output file from the linker in an EPROM. 

example. 1st 

1 0000 
2 0000 
3 0000 
4 0000 
5 0000 
6 0000 
7 0000 
8 0000 
9 0000 

10 0000 
11 0000 
12 0000 
13 0000 
14 0000 
15 0000 
16 0000 
17 0000 
18 0000 

#################################################################### 
# . 

-# Below is example system initialization code and tables. 
-# The code builds the prcb in memory, sets up the stack frame, 
-# the interrupt, fault, and system procedure tables, and 
-# then vectors to a user defined routine. 
# 
#################################################################### 

-# ------ de·clare the below symbols public 

.globl system_address_table 

.globl prcb_ptr 

.globl start_ip 

.globl csl 

. globl user_stack 

.globl sup_stack 

3-332 



19 0000 
20 0000 
21 0000 
22 0000 
23 0000 
24 0000 
25 0000 
26 0000 
27 0000 
28 0000 
29 0000 00000140 
30 0004 00000020 
31 0008 00000000 
32 OOOe 000001e8 
33 0010 00000000 
34 0014 00000000 
35 0018 00000000 
36 001e ffffffff 
37 001e 
38 001e 
39 001e 
40 001e 
41 001e 
42 001e 
43 0020 
44 0020 00000000 
45 0024 00000000 
46 0028 00000000 
47 002e 00000000 
48 0030 00000000 
49 0034 00000000 
50 0038 00000f50 
51 003e 00000000 
52 0040 0000027f 
53 0044 0000027f 
54 0048 00000000 
55 004e 00000000 
56 0050 
57 005e 00000000 
58 0060 
59 0068 00000000 
60 006e 00000000 
61 0070 
62 OOaO 
63 OOaO 
64 OOaO 
65 OOaO 
66 OOaO 
67 OOaO 
68 OOee 
69 0100 
70 0100 00000000 
71 0104 00000000 
72 0108 00000000 
73 alOe 00001150 
74 0110 00000000 
75 0114 00000000 
76 0118 00000000 
77 Olle 00000000 
78 0120 00000000 
79 0124 00000000 
80 0128 00000000 
81 012e 00000000 
82 0130 000001eO 
83 0134 000001e6 
84 0134 
85 0134 
86 0134 
87 0134 
88 0138 
89 0140 
90 0140 
91 0140 
92 01c8 00000140 
93 01cc OOfcOOfb 
94 01dO 
95 01dO 

80960KB PROGRAMMER'S REFERENCE 

.globl intr_stack 

define lAC address 

.set local_lAC, Oxff000010 

core initialization block (located at address 0) 
( 8 words) 

system_address_table 
prcbytr 

.text 

.word 

.word 

.word 

.word 

.word 

.word 

.word 

.word -1 

SAT pointer 
PReB pointer 

a 
start_ip 
cs1 
o 

initial PRes 

Pointer to first IP 
calculated at link time 
csl = - (segtab + PRes + startup) 

This is our startup 
Be copied to RAM 

PRCB. After initialization, this will 

prcbytr: 
.word OxD 
.word 
.word 
.word 
.word 
.word 
.word 
.word 
.word 
.word 
.word 
.word 
,space 
.word 
. space 
.word 
.word 
.s!?ace 
. space 

OxO 
OxO 
OxO 
OxO 
intr_table 
intr_stack 
OxO 
Ox0000027f 
Ox0000027f 
fault table 
OxO -
12 
OxO 
8 
OxO 
OxO 
48 
44 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

- reserved 
- initialize to 0 
- reserved 

12 - reserved 
16 - reserved 
20 - interrupt table address 
24 - interrupt stack pointer 
28 - reserved 
32 -
36 -
40 - fault table 
44 - reserved 
48 - reserved 
60 - reserved 
64 - reserved 
72 - reserved 

# 76 - reserved 
'# 80 - scratch space (resumption) 

# 128 - scratch space ( error) 

The system procedure table will only be used if software puts the 
processor into user mode and makes a supervisor procedure call 

· align 6 
sysyroc_table: 

.word 0 

.word 

.word 

.word sup_stack 

.word 0 

.word 0 

.word 

.word 

.word 

.word 
-.word 
.word 
.word proc_entry_O 

# Reserved 
# Reserved 
41= Reserved 
# Supervisor stack pointer 
41= Preserved 
# Preserved 
# Preserved 
:It Preserved 
# Preserved 
# Preserved 
# Preserved 
41= Preserved 

.word (proc_entry_1 + Ox2) 
Procedure entry 

# Procedure entry 

---------------- initial segment table 

· align 
system_address_table: 

.space 136 

.word system_address_table 

# reserve 136 bytes 

(user) 
(sup.) 

· word OxOOfcOOfb :# initialization words 
· space 8 

3-333 

12 



inter 
96 01d8 
97 01de 
98 01de 
99 01de 

100 01de 
101 01de 
102 01do 
103 OleO 
104 OleO 
105 OleO 
106 OleO 
107 01e4 
108 01e4 
109 01e4 
110 01e4 
111 01e4 
112 01e8 
113 01e8 
114 01e8 
115 01e8 
116 01e8 
117 01e8 
118 Olec 
119 OlfO 
120 Olf8 
121 0200 
122 0200 
123 0200 
124 0200 
125 0200 
126 0204 
127 0208 
128 020e 
129 0214 
130 0210 
131 021e 
132 0210 
133 021e 
134 0220 
135 0228 
136 0228 
137 0228 
138 0228 
139 0228 
140 0228 
141 0228 
142 0228 
143 0228 
144 0228 
145 0228 
146 0228 
147 0228 
148 0228 
149 0228 
150 022e 
151 022e 
152 0234 
153 023e 
154 0230 
155 0230 
156 0230 
157 023e 
158 0240 
159 0240 
160 0244 
161 0248 
162 0240 
163 0250 
164 0250 
16~ 0250 
166 0250 
167 0250 
168 0250 
169 0250 
170 0254 
171 0254 
172 025e 

80960KB PROGRAMMER'S REFERENCE 

00000100 
304400fb 

OaOOOOOO 

OaOOOOOO 

8e800400 
80aOOOOO 
8e883000 
80903000 
000040 Ob 

808000bO 
80aOOOOO 
8e883000 
8e903000 
000024 Ob 

8ee03000 
92e4a014 

00000000 
00000290 

00000020 
00000690 

00000290 

8ea83000 ffOOOOl0 
8eb03000 00000280 
6005a1l5 

bOe45e14 
b204ge14 
59a41094 
3985lff4 
84079000 

8ef83000 00000750 
8e07f400 ffffffeO 

.word sys-Froc_table 

. word Ox304400fb 
# initialization words 

-- Below are two "dummy" system procedures. In reality, these 
-- would contain the real system code, rather than returns 

. align 4 

.text 
proc_entry_O: 

ret 
proc_entry_l: 

ret 

These pointers are to dummy 
# supervisor routines. They 

are for example only 

--- Processor starts,execution at this spot after reset. 

iac: 

# 

copy the interrupt table to RAM 

Ida 1024, gO load length of into table 
Ida 0, g4 initialize offset to 0 
Ida intr table, gl load source 
Ida intr ram, g2 load addrss of new table 
bal loop_here branch to'move routine 

Processor will copy PReB to ram space, located at prcb_ram 

Ida 176, gO load length of prcb 
Ida 0, g4 initialize offset to 
Ida prcbytr, gl load source 
Ida prcb_ram,. g2 load destination 
bal loop_here branch to move routine 

fix up the prcb to point to a new interrupt table" 

Ida 
st 

intr_ram, g12 
g12,20(g2) 

load address 
store into PReB 

At this point, the prcb, and interrupt table have 
been moved to RAM. It is 'time 
to issue a REINITIALIZE lAC, which will start us anew with 
our ~M based prcb. 

The lAC message, found in the 4 words locatad at the 
reinitialize iac label, contain pointers to the current 
System addre~s table, the new, RAM based PRCB, and to 
the instruction pointer labeled start_again_ip 

Ida loeal_IAC, g5 
lda reinitialize_iac, g6 
synmovq g5, g6 

Below is the software loop to mo~e data 

ldq ,(gl) [g4*1], g8 
stq g8, (g2) [g4*1] 
addi g4,16, g4 
cmpibg gO,g4, loop_here 
bx (gI4) 

load 4 words into g8 
store to ram proc. block 
increment index * loop until done 

# The processor will ~egin execution here after being 
# reinitialize? We will now set up the stacks and continue 

start_again_ip: 
Ida 
Ida 

user_stack,fp 
-Ox40(fp), pfp 

3-334, 

set up user stack space 
load pfp (just in case) 



inter 
173 0264 
174 0264 
175 0264 
176 0268 
177 0268 
178 0268 
179 0268 
180 0268 
181 026c 
182 0274 
183 0274 
184 0274 
185 0274 
186 0274 
187 0274 
188 0274 
189 0274 
190 0274 
191 0274 
192 0274 
193 0278 
194 0278 
195 0278 
196 0278 
197 0280 
198 0280 
199 0284 
200 0288 
201 028c 
202 028c 
203 028c 
204 028c 

205 0290 
206 0290 
207 0290 
208 0290 
209 0290 
210 0290 
211 0290 
212 0690 
213 0690 
214 0690 
215 0740 
216 0740 
217 0750 
218 0750 
219 0750 
220 0750 
221 0750 
222 Of 50 
223 Of 50 
224 Of 50 -
225 Of 50 
226 Of 50 
227 1150 
228 1150 
229 1150 
230 1150 
231 1150 
232 1150 

80960KB PROGRAMMER'S REFERENCE 

8cOfe040 

5cf01eOO 

8c803000 3b001000 
64840290 

86003000 00000000 

93000000 
00000140 
00000690 
00000254 

Ida 

mov 

Ida 
modac 

Ox40(fp), sp 

0, 914 

#" set up current stack ptr 

g14 used by C compiler 
for arguement lists past 
13 arguements. 
Initialize to a 

Ox3b001000, gO ft set up arith. controls 
gO, gO, gO #" to mask unwanted 

# exceptions 

call main code from here 

Note: This setup assumes a main module "main()" written in 
C. Also, no opens are done for stdin, stdout, or stderr. 
If I/O is required, the devices would need to be opened 
before the call to main. 

calIx 

reinitialize iac: 
. ;';ord Ox9300QOQO #" reinitialize lac message 
.word system_address_table 
.word prcb ram #" use newly copied prcb 
.word start_again_ip #" start here 

-------------- other misc. stuff 

.data 
-- define RAM area to copy the prcb & intr to after initial bootup 

.align 

.space 1024 

prcb_ram: 
· space 176 

.align 

user_stack: # reserved area for the user stack 
# this can be located anywhere in memory 
# Size is set depending on application needs 

.space Ox800 

intr_stack: # reserved area for the interrupt stack 
# this can be located anywhere in memory 

· space Ox200 

sup_stack: 
• space Ox400 

# the end 

3-335 

Reserve stack space for 
supervisor stack 



0000 
0000 
0000 

4 0000 
0000 
0000 00000000 
0004 00000000 
0008 00000000 
OOOe 00000000 

10 0010 00000000 
11 0014 00000000 
12 0018 00000000 
13 DOle 00000000 
14 0020 00000000 
15 0024 00000000 
16 0028 00000000 
17 002e 00000000 
18 0030 00000000 
19 0034 00000000 
20 0038 00000000 
21 003c 00000000 
22 0040 00000000 
23 0044 00000000 
24 0048 00000000 
25 004e 00000000 
26 0050 00000000 
27 0054 00000000 
28 0058 00000000 
29 005e 00000000 
30 0060 00000000 
31 0064 00000000 
32 0068 00000000 
33 006e 00000000 
34 0070 00000000 
35 0074 00000000 
36 0078 00000000 
37 007e 00000000 
38 0080 00000000 
39 0084 00000000 
40 0088 00000000' 
41 008e 00000000 
42 0090 00000000 
43 0094 00000000 
44 0098 00000000 
45 00ge 00000000 
46 OOaO 00000000 
47 00a4 00000000 
48 00a8 00000000 
49 OOae 00000000 
50 OObO 00000000 
51 00b4 00000000 
52 00b8 00000000 
53 OObe 00000000 
54 OOeO 00000000 
55 00e4 00000000 
56 00e8 00000000 
57 OOee 00000000 
58 OOdO 00000000 
59 00d4 00000000 
60 00d8 00000000 
61 OOde 00000000 
62 OOeO 00000000 
63 00e4 00000000 
64 00e8 00000000 
65 OOee 00000000 
66 OOfO 00000000 
67 00f4 00000000 
68 00f8 00000000 
69 OOfe 00000000 

80960KB PROGRAMMER'S REFERENCE 

/* ** ** * * * * * * * 1<*** '" * * * * * * * * * * * ****""** * * ** k ** ** ** k** * * *** * ** ** 1< / 

/* User Fault Table */ 
.globl fault_table 
.align 8 

fault_table: 
.word _user_reserved Type a Reserved Fault Handler 
· word 4 
· word _user_trace; 
.word 0 
.word _user_operation; 
• word 0 
· word _user _ari thmetic; 
.word 
.word user real arithmetic; 
.word 0 - - # 
.word _user_constraint; 
· vJOrd 
· word user reserved - - . 
• '",oL"d . 0 
· word _user_protection; 
.word a # 
· word user machine; If 
.word a - # 
.word _user_reserved: 

.word user_type; 

.word 0 
· word _user_reserved 
.word 
.word _user_reserved 
· word a 
.word _user_reserved 
• word a 
.word _user_reserved 
.word 

.word 
· word _user_reserved 
.word 
.word _user_reserved 
.word 0 
· word user reserved 
.word 
.word _user_reserved 
.word 
.word _user_reserved 
.word 
.word _user_reserved 
.word 
· word user reserved 
.word 
.word 
.word 

.. word 
.word 
.word 
.word 
.word 
.word 
.word 
.word 
.word 
.word 
.word 
.word 
.word 
.word 

_user_reserved 

_user_reserved 
o 
_user_reserved 

_user_reserved 

_user_reserved 

_user_reserved 

ouser_reserved 

_user_reserved 

.word _user reserved 

.word 

3-336 

Type 6 Reserved Faul-c H·.wdlcr 

Type 11 Reserved Fault Hand18r 

Type 12 Reservc-d Fault Handler 

Type 13 Reserved Fault Handler 

Type 14 Reserved Fault Handler 

Type 15 Reserved Fi'l.ult Handler 

Type 16 Reserved Fault Handler 

Type 17 Reserved Fault Handler 

Type 18 Reserved Fault Handler 

Type 19 Reserved Fault Handler 

Type 20 Reserved Fault Handler 

Type 21 Reserved Fault Handler 

Type 22 Reserved Fault Handler 

Type 23 Reserved Fault Handler 

Type 24 Reserved Fault Handler 

Type 25 Reserved Fault Handler 

Type 26 Reserved Fault Handler 

Type 27 Reserved Fault Handler 

Type 28 Reserved Fault Handler 

Type 29 Reserved Fault Handler 

Type 30 Reserved Fault Handler 

Type 31 Reserved Fault Handler 



inter 

Uable.lst 

0000 
0000 
0000 
0000 
0000 
0004 
0024 
0028 

9' 002e 
10 0030 
11 0034 
12 0038 
13 003e 
14 0040 
15 0044 
16 0048 
17 004e 
18 0050 
19 0054 
20 0058 
21 005e 
22 0060 
23 0064 
24 0068 
25 006e 
26 0070 
27 0074 
28 0078 
29 007e 
30 0080 
31 0084 
32 0088 
33 008e 
34 0090 
35 0094 
36 0098 
37 00ge 
38 OOaO 
39 00a4 
40 00a8 
41 QOac 
42 OObO 
43 00b4 
44 00b8 
45 OObe 
46 OOeO 
47 00e4 
48 00e8 
49 OOee 
50 OOdO 
51 00d4 
52 00d8 
53 OOde 
54 OOeO 
55 00e4 
56 00e8 
57 OOee 
58 OOfO 
59 00f4 
60 00f8 
61 OOfe 
62 0100 
63 0104 
64 0108 
65 010e 
66 0110 
67 0114 
68 0118 
69 011e 
70 0120 
71 0124 
72 0128 
73 012e 
74 0130 

00000000 

00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

80960KB PROGRAMMER'S REFERENCE 

1* Initial Interrupt Table 
.globl intr_table 
.align 6 

* I 

intr table: 
Priori ties .;ord 0 # Pending 

.fill 8,4,0 # pending 
· word _user_intrhi #: 

Interrupts 4 + (0->7) *4 
interrupt table entry 8 

.worq _llser_)ntrh: # interrupt table entry 

.word _user_intrhi #" interrupt table entry 

.word _user_intrh: *' interrupt table entry 

.word _user_intrh: -# interrupt table entry 

.word _user intrh; * interrupt table entry 

.word _user_intrh: # interrupt table entry 

.word _user intrh; # interrupt table entry 

.word _user_intrh: # interrupt table entry 

.word _user_intrh; *" interrupt table entry 

.word _user_intrhi # 
· word _user_intrh: # 
· word _user_intrh: -It 
.word _user intrh: # 
.word _user_intrh; # 
· word _user intrh; # 

interrupt table entry 
interrupt table entry 
interrupt table entry 
interrupt table entry 
interrupt table entry 
interrupt table entry 

.word _user_intrh; # interrupt table entry 
· word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

.word _user~intrh; # interrupt table entry 29 

.word _user_intrh; # interrupt table entry 

.word _user_intrhi # interrupt table entry 

.word _user_intrh; # interrupt table entry 
· word _user_intrhi # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; # 
.word _user_intrh; * 
.word _user_intrh; # 

interrupt table entry 
interrupt table entry 
interrupt table entry 

.word _user_intrh; # interrupt table entry 

.word _user_intrh; # interrupt table entry 

.word _user_intrh; # interrupt table entry 
· word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; * interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word _user_intrh; # interrupt table entry 
.word user intrh; # interrupt table entry 
.word =user=intrh; # interrupt table entry 
.word _user_intrh; # 
.word _user_intrh; # 
.word _user_intrh: # 

interrupt table entry 
interrupt table entry 
interrupt table entry 

.word _user_intrh; # interrupt table entry 

.word _user_intrhi # interrupt table entry 

.word _user_intrh; # interrupt table entry 

.word _user_intrh; # interrupt table entry 

.word _user_intrh; # interrupt table entry 

.word _user_intrh; # interrupt table entry 

.word _user_intrh; # interrupt table entry 

.word _user_intrh; # interrupt table entry 

30 
3l 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 

45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

.word _user_intrh; # interrupt table entry -66 

.word _user_intrh: # interrupt table entry 

.word _user_intrh; # interrupt table entry 

.word _user_intrh; # 

.word _user_intrh; # 

.word _user_intrh; # 

.word ~user_intrh; # 

interrupt 
interrupt 
interrupt 
interrupt 

table entry 
table entry 
table entry 
table entry 

.word _user_intrh; # interrupt table entry 

.word _user_intrh: # interrupt table entry 

.word _user_intrh; # interrupt table entry 

3-337 

67 
68 
69 
70 
71 
72 
73 
74 
75 



inter 
75 0134 00000000 
76 0138 00000000 
77 013c 00000000 
78 0140 00000000 
79 0144 00000000 
80 0148 00000000 
8( 014c 00000000 
82 0150 00000000 
83 0154 00000000 
84 0158 00000000 
85 015c 00000000 
86 0160 00000000 
87 0164 00000000 
88 0168 00000000 
89 016e 00000000 
90 0170 00000000 
91 0174 00000000 
92 0178 00000000' 
93 017c 00000000 
94 0180 00000000 
95 0184 00000000 
96 0188 00000000 
97 018c 00000000 
98 0190 00000000 
99 0194 00000000 

100 0198 00000000 
101 01ge 00000000 
102 01aO 00000000 
103 01a4 00000000 
104 01a8 00000000 
105 01ae 00000000 
106 alba 00000000 
107 01b4 00000000 
108 01b8 00000000 
109 01bc 00000000 
110 Olea 00000000 
111 01e4 00000000 
112 01e8 00000000 
113 alec 00000000 
114 01dO 00000000 
115 01d4 00000000 
116 01d8 00000000 
117 01dc 00000000 
118 Olea 00000000 
119 01e4 00000000 
120 01e8 00000000 
121 alec 00000000 
122 01fO 00000000 
123 01f4 00000000 
124 01f8 00000000 
125 01fe 00000000 
126 0200 00000000 
127 0204 00000000 
128 0208 00000000 
129 020e 00000000 
130 0210 00000000 
131 0214 00000000 
132 0218 00000000 
133 021e 00000000 
134 0220 00000000 
135 0224 00000000 
136 0228 00000000 
137 022c 00000000 
138 0230 00000000 
139 0234 00000000 
140 0238 00000000 
141 023c 00000000 
142 0240 00000000 
143 0244 00000000 
144 0248 00000000 
145 024c 00000000 
146 0250 00000000 
147 0254 00.000000 
148 0258 00000000 
149 025c 00000000 
150 0260 00000000 
151 0264 00000000 

80960KB PROGRAMMER'S .REFERENCE 

.word user intrh: 

.word =user=intrh: 

.word _user_intrh: 

.v.7ord _user_intrh: 
· word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh; 
.word _liser_intrh; 
.word _user_intrh; 
.word _user_intrh: 
.word user intrh: 
· word =user~)ntrh; 
.word _user_intrh: 
.word _user_intrh: 
· word _user_ intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh: 
· word _llser_intrh; 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh; 
.word _llser_intrh: 
.word _user_intrh; 
.word _user_intrh; 
· word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh: 
.word _user~intrh: 

.word _user_intrh; 

.word _user_intrh: 

.word _user_intrh: 

.word _user_intrh: 

.word _user_intrh: 

.word user intrh: 

.word =user=intrh: 
· word _user_intrh; 
· word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _llser_intrh: 
.word _llser_intrh: 
.word _user_intrh: 
.word _user~intrh: 

· word _llser_intrh: 
.word _llser_intrh: 
· word _llser....:.intrh: 
.word _llser_intrh: 
· word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
· word _user_intrh; 
.word _user~intrh; 

.word _user_intrh: 
· word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh; 
.word _user_intrh; 

3-338 

interrupt table entry 76 
interrupt table entry 77 
interrupt table entry 78 
interrupt table entry 79 
interrupt table entry 70 
interrupt table entry 71 
interrupt table entry 72 
interrupt table entry 73 
interrupt table entry 74 
interrupt table entry 75 
interrupt table entry 76 
interrupt table entry 77 
interrupt table entry 78 
interrupt table entry 79 
interrupt table entry 80 
interrupt table entry 81 
interrupt table entry 82 
interrupt table entry 83 
interrupt table entry 84 
interrupt table entry 85 
interrupt table entry 86 
interrupt table entry 87 
interrupt table entry 88 
interrupt table entry 89 
interrupt table entry 90 
interrupt table entry 91 
interrupt table entry 92 
interrupt table" entry 93 
interrupt table entry 94 
interrupt table entry 95 
interrupt table entry 96 
interrupt table entry 97 
interrupt table entry 98 
interrupt table entry 99 
interrupt table entry 100 
interrupt table entry 101 
interrupt table entry 102 
interrupt table entry 103 

# interrupt table entry 104 
# interrupt table entry 105 
# interrupt table entry 106 
# .interrupt table entry 107 
# interrupt table entry 108 
# interrupt table entry 109 
# interrupt 'table entry 110 
# interrupt table entry 111 
# interrupt table entry 112 
# interrupt table entry 113 
# interrupt table entry 114 
# interrupt table entry 115 
# interrupt table entry 116 
# interrupt table entry 117 
# interrupt table entry 118 
# interrupt table entry 119 
# interrupt table entry 120 
# interrupt table entry 121 
# interrupt table entry 122 
# interrupt table entry 123 
# interrupt table entry 124 
# interrupt table entry 125 
# interrupt table entry 126 
# interrupt table entry 127 
# interrupt table entry 128 
# interrupt table entry 129 
# interrupt table entry 130 
# interrupt table entry 131 
# interrupt table entry 132 
# interrupt table entry 133 
# interrupt table entry 134 
# inter-rupt table entry 135 
# interrupt table entry 136 
# interrupt table entry 137 
# interrupt table entry 138 
# interrupt table entry 139 
# interrupt table entry 140 
# interrupt table entry 141 
# interrupt table entry 142 



152 0268 00000000 
153 026c 00000000 
154 0270 00000000 
155 0274 00000000 
156 0278 00000000 
157 027c 00000000 
158 0280 00000000 
159 0284 00000000 
160 0288 00000000 
161 028c 00000000 
162 0290 00000000 
163 0294 00000000 
164 0298 00000000 
165 029c 00000000 
166 02aO 00000000 
167 02a4 00000000 
168 02a8 00000000 
169 02ac 00000000 
170 02bO 00000000 
171 02b4 00000000 
172 02b8 00000000 
173 02bc 00000000 
174 02cO 00000000 
175 02c4 00000000 
176 02c8 00000000 
177 02cc 00000000 
178 02dO 00000000 
179 02d4 00000000 
IBO 02d8 00000000 
181 02dc 00000000 
182 02eO 00000000 
183 02e4 00000000 
IB4 02e8 00000000 
185 02ec 00000000 
186 02fO 00000000 
187 02f4 00000000 
188 02f8 00000000 
189 02fc 00000000 
190 0300 00000000 
191 0304 00000000 
192 0308 00000000 
193 030c 00000000 
194 0310 00000000 
195 0314 00000000 
196 0318 00000000 
197 031c 00000000 
198 0320 00000000 
199 0324 00000000 
200 0328 00000000 
201 032c 00000000 
202 0330 00000000 
203 0334 00000000 
204 0338 00000000 
205 033c 00000000 
206 0340 00000000 
207 0344 00000000 
208 0348 00000000 
209 034c 00000000 
210 0350 00000000 
211 0354 00000000 
212 0358 00000000 
213 035c 00000000 
214 0360 00000000 
215 0364 00000000 
216 0368 00000000 
217 036c 00000000 
218 0370 00000000 
219 0374 00000000 
220 0378 00000000 
221 037c 00000000 
222 0380 00000000 
223 0384 00000000 
224 0388 00000000 
225 038c 00000000 
226 0390 00000000 
227 0394 00000000 
228 0398· 00000000 

80960KB PROGRAMMER'S REFERENCE 

· word _user_intrh; 
.word user intrh;-
· word =user - intrh; 
· word user intrh: 
.word =user=intrh; 
· word _user_intrh; 
.word _user_intrhi 
· word _user_intrh: 
.word _user_intrh: 
· word _user_intrh: 
· word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.i..,rQrd _user_intrh; 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
· word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _~user_intrh: 

.word _user_intrh: 
· word _user_intrh: 
.word _user intrh: 
.word _user_intrh: 
· word _user_intrh: 
.word user intrh: 
.word =user=intrh: 
.word user intrh: 
.word =user=intrh: 
· word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
· word _user_intrh: 
.word _user_intrh; 
.word _user_intrh: 
.word _user_intrh: 
· word _use( .. Jntrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
· word _user_intrh: 
.word user intrh; 
.word =user=intrh; 
.word _user_intrh: 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrh: 
· word _user_intrh; 
· word _user intrh: 
· word _user_intrh; 
.word user intrh; 
· word =user - intrh; 
.word _user_intrh; 
· word _user intrh; 
· word user intrh: 
.word =user-intrh: 
.word _user_intrh; 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh; 
.word user intrh: 
· word =user~)ntrh; 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh: 
.word _user_intrh; 
· word _user_intrh; 
.word _user_intrh: 
.word _user_intrh; 
.word _user_intrh; 

3-339 

interrupt table entry 143 
interrupt table entry 144 
interrupt table entry 145 
interrupt table entry 146 
interrupt table entry 147 
interrupt table entry 148 
interrupt table entry 149 
interrupt table entry 150 
interrupt table entry 151 
interrupt table entry 152 
interrupt table entry 153 
interrupt table entry 154 
interrupt table entry 155 
interrupt table entry 156 
interrupt table entry 157 
interrupt table entry 158 
interrupt table entry 159 
interrupt table entry 160 
interrupt table entry 161 
interrupt table entry 162 
interrupt table entry 163 
interrupt table entry 164 
interrupt table entry 165 
interrupt table entry 166 
interrupt table entry 167 
interrupt table entry 168 
interrupt table entry 169 
interrupt table entry 170 
interrupt table entry 171 
interrupt table entry 172 
interrupt table entry 173 
interrupt table entry 174 
interrupt table entry 175 
interrupt table entry 176 
interrupt table entry 177 
interrupt table entry 178 
interrupt table entry 179 
interrupt table entry 170 
interrupt table entry 171 
interrupt table entry 172 
interrupt table entry 173 
interrupt table entry 174 
interrupt table entry 175 
interrupt table entry 176 
interrupt table entry 177 
interrupt table entry 178 
interrupt table entry 179 
interrupt table entry 180 
interrupt table entry 181 
interrupt table entry 182 
interrupt table entry 183 
interrupt table entry 184 
lnterrupt table entry 185 
interrupt table entry 186 
interrupt table entry 187 
interrupt table entry 188 
interrupt table entry 189 
interrupt table entry 190 
interrupt table entry 191 
interrupt table entry 192 
interrupt table entry 193 
interrupt table entry 194 
interrupt table entry 195 
interrupt table entry 196 
interrupt table entry 197 
interrupt table entry 198 
interrupt table entry 199 
interrupt table entry 200 
interrupt table entry 201 
interrupt table entry 202 
interrupt table entry 203 
interrupt table entry 204 
interrupt table entry 205 
interrupt table entry 206 
interrupt table entry 207 
interrupt table entry 208 
interrupt table entry 209 



229 039c 00000000 
230 03aO 00000000 
231 03a4 00000000 
232 03a8 00000000 
233 03ac 00000000 
234 03bO 00000000 
235 03b4 00000000 
236 03b8 00000000 
237 03bc 00000000 
238 03cO 00000000 
239 03c4 00000000 
240 03c8 00000000 
241 03cc 00000000 
242 03dO 00000000 
243 03d4 00000000 
244 03d8 00000000 
245 03dc 00000000 
246 03eO 00000000 
247 03e4 00000000 
248 03e8 00000000 
249 03ec 00000000 
250 03fO 00000000 
251 03f4 00000000 
252 03f8 00000000 
253 03fc 00000000 
254 0400 00000000 
255 0404 00000000 
256 0408 00000000 
257 040c 00000000 
258 0410 00000000 
259 0414 00000000 
260 0418 00000000 
261 041c 00000000 
262 0420 00000000 
263 0424 00000000 
264 0428 00000000 
265 042c 00000000 
266 0430 00000000 
267 0434 00000000 
268 0438 00000000 
269 043c 00000000 
270 0440 00000000 
271 0444 00000000 
272 0448 00000000 
273 044c 00000000 
274 0450 00000000 

80960KB PROGRAMMER'S REFERENCE 

.word _user_intrh; 

.word _user_intrh: 

.word _user_intrh; 

.word user_intrh; 

.word _llser_intrh; 

.word user intrh; 

.word =user=intrh; 

.word _user_intrh; 

.word _user_intrh: 

.word _user-.:.intrh; 

.word _llser_intrhi 

.word _user_intrh; 

.word user intrh; 

.word :=user:=intrh; 

. word _user_intrh: 

.vlOrd _llser_intrh; 

.word _user_intrh; 

. word _user_intrh: 

.word _user_intrh; 

.word _user_intrh; 

.word _user~intrh; 

.word user intrh: 

.word =user-intrh; 

.word _user_intrh; 

.word _user_intrh; 

.word user intrh; 

.word =user=intrh; 

.word _llser_intrh; 

.word user_intrh; 

.'dord user_intrhi 

.word user_intrh; 

.word _user_intrhi 

.word user intrhi 

.word =user~)ntrhi 

.word _user_intrh; 

.word user intrh; 

.word =user=intrh; 

.word _user_intrh; 

.word _user_intrh; 
,.word _user intrh; 
.word _user_intrh; 
.word _user_intrh; 
.word _user_intrhi 
.word _user_intrhi 
.word _user_intrhi 
.word _user_intrhi 

3-340 

interrupt table entry 210 
interrupt table entry 211 
interrupt table entry 212 
interrupt table entry 213 
interrupt table entry 214 
interrupt table entry 215 
interrupt table entry 216 

#- interrupt table entry 217 
# interrupt table entry 218 
=11= interrupt table entry 219 
# interrupt table entry 220 
# interrupt table entry 221 

interrupt table enery 222 
interrupt table entry 223 
interrupt table entry 224 
interrupt table entry 225 
interrupt table entry 226 
interrupt table entry 227 
interrupt table entry 228 
interrupt table entry 229 
interrupt table entry 230 
interrupt table entry 231 
interrupt table entry 232 
interrupt table entry 233 
interrupt table entry 234 
interrupt table entry 235 
interrupt table entry 236 
interrupt table entry 237 
interrupt table entry 238 
interrupt table entry 239 
interrupt table entry 240 
interrupt table entry 241 
interrupt table entry 242 
interrupt table entry 243 
interrupt table entry 244 
interrupt table entry 245 
interrupt table entry 246 
interrupt table entry 247 
interrupt table entry 248 
interrupt table entry 249 
interrupt table entry 250 
interrupt table entry 251 
interrupt table entry 252 
interrupt table entry 253 

# interrupt table entry 254 
# interrupt table entry 255 



80960KB PROGRAMMER'S REFERENCE 

Chandler.c 

user reserved () 
user=machine() 

user _ operat:.ion () 
user_arithmetic () 

() 

{} 

{} 
{} 

{} 

user_real_arithmetic () {} 
user_constraint() 
user_protection () 
user_type () 

user intrh () 
{ -. 
} 

cold.ld 

MEMORY 

{ 

{} 

{) 
{} 

rom: o=OxO,l=Ox40000 
o=Ox40000,1=Ox40000 

SECTIONS 
{ 

.text 

} >rom 

.data : 

} >ram 

.bss : 

} >rarn 

csl - (system_address table + prcb_ptr + start lp); 

3-341 



APPENDIX E 
CONSIDERATIONS FOR WRITING PORTABLE SOFTWARE 

This appendix describes those parts of the 80960KB processor design that are implementation 
dependent. This information is provided to facilitate the design of programs and kernel code 
that will be portable to other implementations of the 80960 architecture. 

ARCHITECTURE RESTRICTIONS 

The following aspects of the 80960KB' s operation are deviations from the 80960KB architec­
ture: 

1. On all bus write operations except those of the synmov, synmovl, and synmovq instruc­
tions, the processor ignores the BADAC pin (i.e., errors signaled on "normal" writes are 
ignored). 

2. The check for out-of-range input values for the expr, exprl, logepr, and logeprl instruc­
tions is omitted; out-of-range inputs yield an undefined result. 

3. Bits 5 and 6 of a machine-level instruction word in the REG and MEMB formats and bits 
o and 1 of the CTRL format are provided to designate special function registers. The 
80960KB processor has no special function registers. 

4. The 80960KB processor does not guarantee that the value in register r2 of the current 
frame is predictable. 

5. (The following is a note rather than a restriction.) When using the REG-format instruc­
tions, the m bit for every operand that is not defined by the instruction should be set (e.g., 
code the unused operand as an arbitrary literal). This practice may reduce overhead in 
some situations. 

SALIGN PARAMETER 

Stack frames in the 80960KB architecture are aligned on (SALIGN*16) byte boundaries. 
SALIGN is an implementation defined parameter. For the 80960KB processor, SALIGN is 4. 
Stack frames for this processor are thus aligned on 64 byte boundaries. 

The low-order N bits of the FP are ignored and always interpreted to be zero. The N parameter 
is defined by the following expression: SALIGN*16 = 2N. Thus for the 80960KB processor, 
N is 6. 

BOUNDARY ALIGNMENT 

The physical-address boundaries on which an operand begins has an impact on processor 
performance. For the 80960KB processor, the following is true: 

• An operand that spans more word boundaries than necessary (e.g., addressing a 32-bit 
operand on a nonword boundary) suffers a moderate cost in speed because of extra bus 
and memory cycles. 

3-342 



inter 80960KB PROGRAMMER'S REFERENCE 

• An operand that spans a 16-byte boundary suffers a large cost in speed. 

• String operands that begin on non word boundaries suffer a moderate cost in speed. String 
operands that begin on word boundaries but not on 16-byte boundaries suffer a small cost 
in speed. 

FAULTS 

The size of resumption records conditionally placed on the stack during faults and interrupts is 
16 bytes. 

PHYSICAL MEMORY 

The upper 16M bytes of physical memory are reserved for special functions of local-bus 
components and lACs. 

lACS 

The mechanism for sending, receiving, and handling lAC messages is not defined in the 80960 
architecture. It is a special implementation of the 80960KB processor. 

The write-external-priority flag in the IMI controls is not defined in the 80960 architecture. 

INTERRUPTS 

The interrupt lAC message, the interrupt pins, and the interrupt register are not defined in the 
80960 architecture. They are special implementations for the 80960KB processor. 

INITIALIZATION 

The 80960 architecture does not define an initialization mechanism. The initialization 
mechanism and procedures described in this manual are implementation dependent for the 
80960KB processor. 

BREAKPOINTS 

The breakpoint registers in the 80960KB processor are not defined in the 80960 architecture. 

IMPLEMENTATION DEPENDENT INSTRUCTIONS 

The synmov, synmovl, synmovq, and synld instructions are not defined in the 80960 architec­
ture and are implementation dependent in the 80960KB processor. 

3-343 



intel" 80960KB PROGRAMMER'S REFERENCE. 

LOCK PIN 

The LOCK pin is not defined in the 80960 architecture and is. implementation dependent in the 
80960KB processor. 

3-344 



Data Sheets 4 





• 

• 

• 

80960KB 
EMBEDDED 32-BIT MICROPROCESSOR 

WITH INTEGRATED FLOATING-POINT UNIT 

High-Performance Embedded • Multiple Register Sets 
Architecture - Sixteen Global 32-Bit Registers 
- 20 MIPS Burst Execution at 20 MHz - Sixteen Local 32-Bit Registers 
-7.5 MIPS* Sustained Execution at - Four Local Register Sets Stored 

20 MHz On-Chip 

On-Chip Floating-Point Unit - Register Scoreboarding 

- Supports IEEE 754 Floating-Point • Built-In Interrupt Controller 
Standard - 32 Priority Levels 

- Four 80-Bit Registers - 256 Vectors 
- 4 Million Whetstones/Second at - Supports 8259A 

20 MHz • Easy to Use, High Bandwidth 32-Bit Bus 
512-Byte On-Chip Instruction Cache - 53.3 MBytes/s Burst 
- Direct Mapped - Up to 16-Bytes Transferred per Burst 
- Parallel Load/Decode for Uncached • 4 Gigabyte, Linear Address Space 

Instructions 

• 132-Lead Pin Grid Array (PGA) Package 

The 80960KB is the first member of Intel's new 32-bit microprocessor family, the 960 series, which is designed 
especially for embedded applications. It is based on the family's high performance, common core architecture, 
and includes a 512-byte instruction cache, a built-in interrupt controller, and an integrated floating-point unit. 
The 80960KB has a large register set, multiple parallel execution units, and a high-bandwidth, burst bus. Using 
advanced RiSe technology, this high performance processor is capable of execution rates in excess of 7.5 
million instructions per second.' The 80960KB is well-suited for a wide range of embedded applications, 
including image processing, industrial control, robotics, and telecommunications. 

'Relative to Digital Equipment Corporation's VAX-11/7BO" at 1 MIPS 

BUS 
CONTROL 

LOGIC 
AND 

INTERRUPT 32-BIT 
CONTROLLER BURST 

BUS 

270565-1 

Figure 1. The 80960KB's Highly Parallel Microarchitecture 

"VAX-111M is a trademark of Digital Equipment Corporation. 

4-1 
August 1988 

Order Number: 270565-002 



infef 80960KB 

THE 960 SERIES 

The 80960KB is the first member of a new family of 
32-bit microprocessors from Intel known as the 960 
Series. This series was especially designed to serve 
the needs of embedded applications. The embed­
ded market includes applications as diverse as in­
dustrial automation, avionics, image processing, 
graphics, robotics, telecommunications, and auto­
mobiles. These types of applications require high 
integration, low power consumption, quick interrupt 
response times, and high performance. Since time 
to market is critical, embedded microprocessors 
need to be easy to use in both hardware and soft­
ware designs. 

gO 

SIXTEEN 
32-BIT 

REGISTERS 

g15 '--___ --J 

GLOBAL 
REGISTERS(1) 

All members of the 80960 series share a common 
core architecture which utilizes RISC technology so 
that, except for special functions, the family mem­
bers are object code compatible. Each new proces­
sor in the series will add its own special set of func­
tions to the core to satiSfy the needs of a specific 
application or range of applications in the embedded 
market. For example, future processors may include 
a DMA controller, a timer, or an AID converter. 

The 80960KB includes an integrated floating-point 
unit. Also available is the 80960MC, a military-grade 
version of the processor, and in the near future, the 
80960KA, another commercial version without float­
ing-point will be available. 

o 

fpO 

FOUR 80-BIT REGISTERS 

fp3 

FLOATING­
POINT 
REGISTERS 

rO 

r15 

SIXTEEN 
32-BIT 

REGISTERS 

LOCAL 
REGISTERS(2) 

1...-_32_-_BI_T_S--, ARITHMETIC CONTROLS 

32-BITS INSTRUCTION POINTER 

32-BITS PROCESS CONTROLS 

32-BITS TRACE CONTROLS 

NOTES: 
1. Register g15 is reserved for stack management functions. 
2. Registers rO, r1, and r2 are reserved for stack management functions. 

Figure 2. Register Set 

4-2 

ADDRESS 
SPACE 



80960KB 

KEY PERFORMANCE FEATURES 

The B0960KB's architecture is based on the most 
recent advances in RISC technology and is ground­
ed in Intel's long experience in designing embedded 
controllers. Many features contribute to the 
B0960KB's exceptional performance: 

1. Large Register Set. Having a large number of 
registers reduces the number of times that a proces­
sor needs to access memory. Modern compilers can 
take advantage of this feature to optimize execution 
speed. For maximum flexibility, the B0960KB pro­
vides 32 32-bit registers and four BO-bit floating­
point registers. (See Figure 2.) 

2. Fast Instruction Execution. Simple functions 
make up the bulk of instructions in most programs, 

Control Opcode 

Compare Opcode Reg/Lit 
and Branch 

Register Opcode Reg 
to Register 

Memory Opcode Reg 
Access-Short 

Memory Opcode Reg 
Access-Long 

so that execution speed can be greatly improved by 
ensuring that these core instructions execute in as 
short a time as possible. The most-frequently exe­
cuted instructions such as register-register moves, 
add/subtract, logical operations, and shifts execute 
in one to two cycles (Table 1 contains a list of in­
structions.) 

3. Load/Store Architecture. Like other processors 
based on RISC technology, the B0960KB has a 
Load/Store architecture, only the LOAD and STORE 
instructions reference memory; all other instructions 
operate on registers. This type of architecture simpli­
fies instruction decoding and is used in combination 
with other techniques to increase parallelism. 

Displacement 

Reg M Displacement 

Reg/Lit Modes Ext'd Op Reg/Lit 

Base M x Offset 

Base Mode Scale xx Index 

Displacement 

Figure 3. Instruction Formats 

4-3 



inter 80960KB 

Table 1. 80960KB Instruction Set 

Data Movement Arithmetic Logical Bit and Bit 
Field 

Load Add And Set Bit 
Store Subtract. Not And Clear Bit 
Move Multiply And Not Not Bit 
Load Address Divide Or Check Bit 

Remainder Exclusive Or Alter Bit 
Modulo Not Or Scan for Bit 
Shift Or Not Scan over Bit 
Extended Multiply Nor Extract 
Extended Divide Exclusive Nor Modify 

Not 
Nand 
Rotate 

Comparison Branch Call/Return Fault 

Compare Unconditional Call Conditional Fault 
Conditional Branch Call Extended Synchronize Faults 

Compare Conditional Branch Call System 
Compare and Compare and Return 

Increment Branch Branch and Link 
Compare and 

Decrement 

Debug Miscellaneous Decimal 

Modify Trace Atomic Add Move 
Controls Atomic Modify Add with Carry 

Mark Flush Local Registers Subtract with Carry 
Force Mark Modify Arithmetic 

Controls 
Scan Byte for Equal 
Test Condition Code 

Conversion Floating-Point Synchronous 

Convert Real to Integer Move Real Synchronous Load 
Convert Integer to Real Add Synchronous Move 

Subtract 
Multiply 
Divide 
Remainder 
Scale 
Round 
Square Root 
Sine 
Cosine 
Tangent 
Arctangent 
Log 
Log Binary 
Log Natural 
Exponent 
Classify 
Copy Real Extended 
Compare 

4-4 



80960KB 

4. Simple Instruction Formats. All instructions in 
the a0960KB are 32-bits long and must be aligned 
on word boundaries. This alignment makes it possi­
ble to eliminate the instruction-alignment stage in 
the pipeline. To simplify the instruction decoder fur­
ther, there are only five instruction formats and each 
instruction uses only one format. (See Figure 3.) 

5. Overlapped Instruction Execution. A load oper­
ation allows execution of subsequent instructions to 
continue before the data has been returned from 
memory, so that these instructions can overlap the 
load. The a0960KB manages this process transpar­
ently to software through the use of a register score­
board. Conditional instructions also make use of a 
scoreboard so that subsequent unrelated instruc­
tions can be executed while the conditional instruc­
tion is pending. 

6. Integer Execution Optimization. When the re­
sult of an operation is used as an operand in a sub­
sequent calculation, the value is sent immediately to 
its destination register. Yet at the same time, the 
value is put back on a bypass path to the ALU, 
thereby saving the time that otherwise would be re­
quired to retrieve the value for the next operation. 

7. Bandwidth Optimizations. The a0960KB gets 
optimal use of its memory bus bandwidth because 
the bus is tuned for use with the cache: the line size 
of the instruction cache matches the maximum burst 
size for instruction fetches. The a0960KB automati­
cally fetches four words in a burst and stores them 
directly in the cache. Due to the size of the cache 
and the fact that it is continually filled in anticipation 
of needed instructions in the program flow, the 
a0960KB is exceptionally insensitive to memory wait 
states. In fact, each wait state causes only a 7% 
degradation in system perfomance. The benefit is 
that the a0960KB will deliver outstanding perform­
ance even with a low cost memory system. 

8. Cache Bypass. If there is a cache miss, the proc­
essor fetches the needed instruction, then sends it 
on to the instruction decoder at the same time it 
updates the cache. Thus, no extra time is taken to 
load and read the cache. 

Memory Space and Addressing Modes 

The a0960KB offers a linear programming environ­
ment so that all programs running on the processor 
are contained in a single address space. The maxi­
mum size of the address space is 4 Gigabytes (232 
bytes). 

For ease of use, the a0960KB has a small number of 
addressing modes, but includes all those necessary 

4-5 

to ensure efficient compiler implementations of high­
level languages such as C, Fortran and Ada. Table 2 
lists the memory addressing modes. 

Data Types 

The a0960 KB recognizes the following data types: 

Numeric: 
• a-, 16-, 32- and 64-bit ordinals 
• a-, 16, 32- and 64-bit integers 
• 32-, 64- and aO-bit real numbers 

Non-Numeric: 
• Bit 
• Bit Field 
• Triple-Word (96 bits) 
• Quad-Word (12a bits) 

Large Register Set 

The programming environment of the a0960KB in­
cludes a large number of registers. In fact, 36 regis­
ters are available at any time. The availability of this 
many registers greatly reduces the number of mem­
ory accesses required to execute most programs, 
which leads to greater instruction processing speed. 

There are two types of general-purpose registers: 
local and global. The 20 global registers consist of 
sixteen 32-bit registers (GO through G15) and four 
aO-bit registers (FPO through FP3). These registers 
perform the same function as the general-purpose 
registers provided in other popular microprocessors. 
The term global refers to the fact that these regis­
ters retain their contents across procedure calls. 

The local registers, on the other hand, are proce­
dure specific. For each procedure call, the a0960KB 
allocates 16 local registers (RO through R 15). Each 
local register is 32 bits wide. Any register can also 
be used for single or double-precision floating-point 
operations; the aO-bit floating-point registers are pro­
vided for extended precision. 

Multiple Register Sets 

To further increase the efficiency of the register set, 
multiple sets of local registers are stored on-chip. 
This cache holds up to four local register frames, 
which means that up to three procedure calls can be 
made without having to access the procedure stack 
resident in memory. 

Although programs may have procedure calls nest­
ed many calls deep, a program typically oscillates 
back and forth between only two or three levels. As 



inter 80960KB 

Table 2. Memory Addressing Modes 

• 12-Bit Offset 

• 32-Bit Offset 

• Register-Indirect 

• Register + 12-Bit Offset 

• Register + 32-Bit Offset 

• Register + (Index-Register x Scale-Factor) 

• Register x Scale Factor + 32-Bit Displacement 

• Register + (Index-Register x Scale-Factor) + 32-Bit Displacement 

Scale-Factor is 1, 2, 4, 8 or 16 

a result, with four stack frames in the cache, the 
probability of there being a free frame on the cache 
when a call is made is very high. In fact, runs of 
representative C-Ianguage programs show that 80% 
of the calls are handled without needing to access 
memory. 

If there are four or more active procedures and a 
new procedure is called, the processor moves the 
oldest set of local registers in the register cache to a 

FOUR ONE OF 
LOC 

REGISTER 
AL 

SETS 

-------

REGISTER 
CACHE 

r--.. 

procedure stack in memory to make room for a new 
set of registers. Global register G 15 is used by the 
processor as the frame pointer (FP) for the proce­
dure stack. 

Note that the global and floating-point registers are 
not exchanged on a procedure call, but retain their 
contents, making them available to all procedures 
for fast parameter passing. An illustration ofthe reg­
ister cache is shown in Figure 4. 

LOCAL REGISTER SET ----

31 o 
2705~5-2 

Figure 4. Multiple Register Sets Are Stored On-Chip 

4-6 



inter 80960KB 

Instruction Cache 

To further reduce memory accesses, the B0960KB 
includes a 512-byte on-chip instruction cache. The 
instruction cache is based on the concept of locality 
of reference; that is, most programs are not usually 
executed in a steady stream but consist of many 
branches and loops that lead to jumping back and 
forth within the same small section of code. Thus, by 
maintaining a block of instructions in a cache, the 
number of memory references required to read in­
structions into the processor can be greatly reduced. 

To load the instruction cache, instructions are 
fetched in 16-byte blocks, so that up to four instruc­
tions can be fetched at one time. An efficient 
prefetch algorithm increases the probability that an 
instruction will already be in the cache when it is 
needed. 

Code for small loops will often fit entirely within the 
cache, leading to a great increase in processing 
speed since further memory references might not be 
necessary until the program exits the loop. Similarly, 
when calling short procedures, the code for the call­
ing procedure is likely to remain in the cache, so it 
will be there on the procedure's return. 

Register Scoreboarding 

The instruction decoder has been optimized in sev­
eral ways. One of these optimizations is the ability to 
do instruction overlapping by means of register 
scoreboarding. 

Register scoreboarding occurs when a LOAD in­
struction is executed to move a variable from memo­
ry into a register. When the instruction is initiated, a 
scoreboard bit on the target register is set. When the 
register is actually loaded, the bit is reset. In be­
tween, any reference to the register contents is ac­
companied by a test of the scoreboard bit to insure 
that the load has completed before processing con­
tinues. Since the processor does not have to wait for 
the LOAD to be completed, it can go on to execute 
additional instructions placed in between the LOAD 
instruction and the instruction that uses the register 
contents, as shown in the following example: 

LOAD R4, address 1 
LOAD R5, address 2 
Unrelated instruction 
Unrelated instruction 
ADD R4, R5, R6 

4-7 

In essence, the two unrelated instructions between 
the LOAD and ADD instructions are executed for 
free (Le., take no apparent time to execute) because 
they are executed while the register is being loaded. 
Up to three LOAD instructions can be pending at 
one time with three corresponding scoreboard bits 
set. By exploiting this feature, system programmers 
"and compilers have a useful tool for optimizing exe­
cution speed. 

Floating-Point Arithmetic 

In the B0960KB, floating-point arithmetic has been 
made an integral part of the architecture. Having the 
floating-point unit integrated on-chip provides two 
advantages. First, it improves the performance of 
the chip for floating-point applications, since no 
additional bus overhead is associated with floating­
point calculations, thereby leaving more time for oth­
er bus operations such as 110. Second, the cost of 
using floating-point operations is reduced because a 
separate coprocessor chip is not required. 

The B0960KB floating-point (real number) data types 
include single-precision (32-bit), double-precision 
(64-bit), and extended precision (BO-bit) floating­
point numbers. Any register may be used to execute 
floating-point operations. 

The processor provides hardware support for both 
mandatory and recommended portions of IEEE 
Standard 754 for floating-point arithmetic, including 
all arithmetic, exponential, logarithmic, and other 
transcendental functions. Table 3 shows execution 
times for some representativ~ instructions. 

Table 3. Sample Floating-Point Execution 
Times (j.Ls) at 20 MHz 

32-Bit 64-Bit 

Add 0.5 0.7 
Subtract 0.5 0.7 
Multiply 1.0 1.B 
Divide 1.B 3.B 

Square Root 5.0 5.2 
Arctangent 13.4 17.5 
Exponent 15.0 16.7 
Sine 20.3 22.1 
Cosine 20.3 22.1 



80960KB 

High Bandwidth Local Bus· 

An 80960KB CPU resides on a high-bandwidth ad­
dress/data bus known as the local bus (L-Bus). The 
L-Bus . provides a direct communication path be­
tween the processor and the memory and 110 sub­
system interfaces. The processor uses the local bus 
to fetch instructions, manipulate memory, and re­
spond to interrupts. Its features include: 

• 32-bit multiplexed address/data path 

• Four-word burst capability, which allows transfers 
from 1 to 16 bytes at a time 

• High bandwidth reads and writes at 53 MBytes 
per second 

• Special signal to indicate whether a memory 
transaction can be cached 

Figure 5 identifies the groups of signals which con­
stitute the L-Bus. Table 4 lists the function of the L­
Bus and other processor-support signals, such as 
the interrupt line.s. 

Interrupt Handling 

The 80960KB can be interrupted in one of two. ways: 
by the activation of one of four interrupt pins or by 
sending a message on the processor's data bus. 

The 80960KBis unusual in that it automatically han­
dles interrupts on a priority basis and tracks pending 
interrupts through its on-chip interrupt controller. 
Two of the interrupt pins can be configured to pro­
vide 8259A handshaking for expansion beyond four 
interrupt lines. 

LOCAL BUS 

\ 

Debug Features 

The 80960KB has built-in debug capabilities. There 
are two types of breakpoints and six different trace 
modes. The debug features are controlled by two 
internal 32-bit registers, the Process-Controls Word 
and the Trace-Controls Word. By setting bits· in 
these control words, a software debug monitor can 
closely control how the processor responds during 
program execution . 

The 80960KB has both hardware and software 
breakpoints. It provides two hardware breakpoint 
registers on-chip which can be set by a special com­
mand to any value. When the instruction pointer 
matches the value in one of the breakpoint registers, 
the breakpOint will fire, and a breakpOint handling 
routine is called automatically. 

The 80960KB also provides software breakpoints 
through the use of two instructions, MARK and 
FMARK. These instructions can be placed at any 
point in a program and will cause the processor to 
halt execution at that point and call the breakpoint 
handling routine. The breakpoint mechanism is easy 
to use and provides a powerful debugging tool. 

Tracing is available for instructions (Single-step exe­
cution), calls and returns, and branching. Each dif­
ferent type of trace may be enabled separately by a 
special debug instruction. In each case, the 
80960KB executes the instruction first and then 
calls a trace handling routine (usually part of a soft­
wa:re debug monitor). Further program execution is 
halted until the trace routine is completed. When the 
trace event handling routine is completed, instruc­
tion execution resumes at the next instruction. The 

LOCAL BUS SIGNAL GROUPS 

\ 
ADDRESS/DATA (32 LINES) 

< > CONTROL (ADDRESS,DATA, and OPERATION SIGNALS-IS LINES) 

< > ARBITRATION (2 LINES) 
270565-3 

Figure 5. Local Bus Signal Groups 

4-8 



inter 80960KB 

80960KB's tracing mechanisms, which are imple­
mented completely in hardware, greatly simplify the 
task of testing and debugging software. 

FAULT DETECTION 

The 80960KB has an automatic mechanism to 
handle faults. There are ten fault types including 
trace, arithmetic, and floating-point faults. When the 
processor detects a fault, it automatically calls the 
appropriate fault handling routine and saves the cur­
rent instruction pointer and necessary state informa­
tion to l]1ake efficient recovery possible. The proces­
sor posts diagnostic information on the type of fault 
to a Fault Record. Like interrupt handling routines, 
fault handling routines are usually written to meet 
the needs of a specific application and are often in­
cluded as part of the operating system or kernel. 

For each of the ten fault types, there are numerous 
subtypes that provide specific information about a 
fault. For example, a floating-point fault may have its 
subtype set to an Overflow or Zero-Divide fault. The 
fault handler can use this specific information to re­
spond correctly to the fault. 

BUILT-IN TESTABILITY 

Upon reset, the 80960KB automatically conducts an 
extensive internal test of its major blocks of logic. 

Then, before executing its first instruction, it does a 
zero check sum on the first eight words in memory 
to ensure that the system has been loaded correctly. 
If a problem is discovered at any point during the 
self-test, the 80960KB will assert its FAILURE pin 
and will not begin program execution. The self-test 
takes approximately 47,000 cycles to complete. 

System manufacturers can use the 80960KB's self­
test feature during incoming parts inspection. No 
special diagnostic programs need to be written, and 
the test is both thorough and fast. The self-test ca­
pability helps ensure that defective parts will be dis­
covered before systems are shipped, and once in 
the field, the self-test makes it easier to distinguish 
between problems caused by processor failure and 
problems resulting from other causes. 

CHMOS 

The 80960KB is fabricated using Intel's CHMOS III 
(Complementary High Speed Metal Oxide Semicon­
ductor) process. This advanced technology elimi­
nates the frequency and reliability limitations of older 
CMOS processes and opens a new era in micro­
processor performance. It combines the high per­
formance capabilities of Intel's industry-leading 
HMOS III technology with the high density and low 
power cliaracteristics of CMOS. The 80960KB is 
available at 16 MHz and 20 MHz. A 25 MHz version 
will be available in the near future. 

Table 4a. 80960KB Pin Description: L-Bus Signals 

Symbol Type Name and Function 

CLK2 I SYSTEM CLOCK provides the fundamental timing for 80960KB systems. It is 
divided by two inside the 80960KB to generate the internal processor clock. 

LAD31 I/O LOCAL ADDRESS/DATA BUS carries 32-bit physical addresses and data to and 
-LADo T.S. from memory. During an address (T a) cycle, bits 2-31 contain a physical word 

address (bits 0-1 indicate SIZE; see below). During a data (T d) cycle, bits 0-31 
contain read or write data. The LAD lines are active HIGH and float to a high 
impedance state when not active. 

SIZE, which is comprised of bits 0-1 of the LAD lines during aT a cycle, specifies 
the size of a burst transfer in words. 

LAD 1 LAD 0 

0 0 1 Word 
0 1 2 Words 
1 . 0 3 Words 
1 1 4 Words 

ALE 0 ADDRESS-LATCH ENABLE indicates the transfer of a physical address. ALE is 
T.S. asserted during aT a cycle and deasserted before the beginning of the T d state. It 

is active LOW and floats to a high impedance state when the processor is idle or 
is at the end of any bus access. 

1/0 = InpUt/Output, 0 = Output, I = Input, 0.0. = Open-Dra,n, I.S. = tn-state 

4-9 



80960KB 

Table 4a. 80960KB Pin Description: L-Bus Signals (Continued) 

Symbol Type Name and Function 

ADS a ADDRESS/DATA STATUS indicates an address state. ADS is asserted every T a 
0.0. state and deasserted during the the following T d state. For a burst transaction, 

ADS is asserted again every T d state where READY was asserted in the previous 
cycle. 

W/R a WRITE/READ specifies, during a T a cycle, whether the operation is a write or 
0.0. read. It is latched on-chip and remains valid during T d cycles. 

DT/R a DATA TRANSMIT/RECEIVE indicates the direction of data transfer to and from 
0.0. the L-Bus. It is low during T a and T d cycles for a read or interrupt __ 

acknowledgement; it is high during T a and T d cycles for a write. DT /R never 
changes state when DEN is asserted (see Timing Diagrams). 

DEN a DATA ENABLE is asserted during T d cycles and indicates transfer of data on the 
0.0. LAD bus lines. 

READY I READY indicates that data on LAD lines can be sampled or removed. If READY is 
not asserted during a T d cycle, the T d cycle is extended to the next cycle by 
inserting a wait state (T w), and ADS is not asserted in the next cycle. 

LOCK I/O BUS LOCK prevents other bus masters from gaining control of the L-Bus 
0.0. following the current cycle (if they would assert LOCK to do so). LOCK is used by 

the processor or any bus agent when it performs indivisible Read/Modify/Write 
(RMW) operations. 

For a read that is designated as a RMW-read, LOCK is examined. if asserted, the 
processor waits until it is not asserted; if not asserted, the processor asserts 
LOCK during the T a cycle and leaves it asserted. 

A write that is designated as an RMW-write deasserts LOCK in the T a cycle. 
During the time LOCK is asserted, a bus agent can perform a normal read or write 
but no RMW operations. LOCK is also held asserted during an interrupt-
acknowledge transaction. 

BE3-BEa a BYTE ENABLE LINES s~ify which data bytes (up to four) on the bus take part 
0.0. in the current bus cycle. BE3 corresponds to LAD31-LAD24 and BEa corresponds 

to LADrLADa. 

The byte enables are provided in advance of data. The byte enables asserted 
during T a specify the bytes of the first data word. The byte enables asserted 
during T d specify the bytes of the next data word (if any), that is, the word to be 
transmitted following the next assertion of READY. The byte enables during the 
T d cycles preceding the last assertion of READY are undefined. The byte enables 
are latched on-Chip and remain constant from cine T d cycle to the next when 
READY is not asserted. 

For reads, the byte enables specify the byte(s) that the processor will actually use. 
L-Bus agents are required to assert only adjacent byte enables (e.g., asserting just 
BEa and BE2 is not permitted), and are required to asse~east one byte enable. 
Accesses must also be naturally aligned (e.g., asserting BE1 and BE2 is not 
allowed even though they are adjacent). To produce address bits Aa and A1 
externally, they can be decoded from the byte enables. 

I/O = Input/Output. 0 = output. I = Input. 0.0. = Open-Drain. I.S. = tri-state 

4-10 



inter 80960KB 

Table 4a. B0960KB Pin Description: L-Bus Signals (Continued) 

Symbol Type Name and Function 

HOLD/ I HOLD: If the processor is the primary bus master (PBM), the input is interpreted 
HLDAR as HOLD, a request from a secondary bus master to acquire the bus. When the 

. processor receives HOLD and grants another master control of the bus, it floats 
its tri·state bus lines and then asserts HLDA and enters the T h state. When HOLD 
is deasserted, the processor will de assert HLDA and go to either the Tj or T a 
state. 

HOLD ACKNOWLEDGE RECEIVED: If the processor is a secondary bus master 
(SBM), the input is HLDAR, which indicates, when HOLDR output is high, that the 
processor has acquired the bus. Processors and other agents can be told at reset 
if they are the primary bus master (PBM). 

HLDAI 0 HOLD ACKNOWLEDGE: If the processor is a primary bus master, the output is 
HOLDR T.S. HLDA, which relinquishes control of the bus to another bus master. 

HOLD REQUEST: For secondary bus masters (SBM), the output is HOLDR, which 
is a request to acquire the bus. The bus is said to be acquired if the agent is a 
primary bus master and does not have its HLDA output asserted, or if the agent is 
a secondary bus master and has its HOLD input and HLDA output asserted. 

CACHE 0 CACHE indicates if an access is cacheable during aT a cycle. It is not asserted 
T.S. during any synchronous access, such as a synchronous load or move instruction 

used for sending an lAC message. The CACHE signal floats to a high impedance 
state when the processor is idle. 

Table 4b. B0960KB Pin Description: Module Support Signals 

Symbol Type Name and Function 

BADAC I BAD ACCESS, if asserted in the cycle following the one in which the last READY 
of a transaction is asserted, indicates that an unrecoverable error has occurred on 
the current bus transaction, or that a synchronous load/store instruction has not 
been acknowledged. 

STARTUP: During system reset, the BADAC Signal is interpreted differently. If the 
signal is high, it indicates that this processor will perform system initialization. If it 
is low, another processor in the system will perform system initialization instead. 

RESET I RESET clears the internal logic of the processor and causes it to re-initialize. 

During RESET assertion, the input pins are ignored (except for BADAC and 
lAC/I NT 0), the tri-state output pins are placed in a high impedance state, and 
other output pins are placed in their non-asserted state. 

RESET must be asserted for at least 41 CLK2 cycles for a predictable RESET. 
The HIGH to LOW transition of RESET should occur after the rising edge of both 
CLK2 and the external bus CLK, and before the next rising edge of CLK2. 

FAILURE 0 INITIALIZATION FAILURE indicates that the processor has failed to initialize 
0.0. correctly. After RESET is deasserted and before the first bus transaction begins, 

FAILURE is asserted while the processor performs a self-test. If the self-test 
completes successfully, then FAILURE is deasserted. Next, the processor 
performs a zero checksum on the first eight words of memory. If it fails, FAILURE 
is asserted for a second time and remains asserted; if it passes, system 
initialization continues and FAILURE remains deasserted. 

N.C. N/A NOT CONNECTED indicates pins should not be connected. Never connect any 
pin marked N.C. 

1/0 = Input/Output, 0 = Output, I = Input, 0.0. = Open·Draln, T.S. = tn-state 

4-11 



!iif'lil.lr-t 
ut,rI~ 

Symbol 

lAC 
INTO 

INT1 

INT2/ 
INTR 

INT3/ 
INTA 

80960KB 

Table 4b.80960KB Pin Description: Module Support Signals (Continued) 

'Type Name and Function 

I INTERAGENT COMMUNICATION REQUEST/INTERRUPT 0 indicates either 
that there is a pending lAC message for the processor or an interrupt. The bus 
interrupt control register determines in which way the signal should be interpreted. 
To signal an interrupt or lAC request in a synchronous system, this pin (as well as 
the other interrupt pins) must be enabled by being deasserted for at least one bus 
cycle and then asserted for at least one additional bus cycle; in an asynchronous 
system, the pin must remain deasserted for at least two bus cycles and then be 
asserted for at least two more bus cycles. 

LOCAL PROCESSOR NUMBER: This signal is interpreted differently during 
system reset. If the signal is at a high voltage level, it indicates that this processor 
is a primary bus master (Local Processor Number = 0); if it is at a low voltage 
level, it indicates that this processor is a secondary bus master (Local Processor 
Number = 1). 

I INTERRUPT 1, like INTO, provides direct interrupt signaling. 

I INTERRUPT 2/INTERRUPT REQUEST: The bus control registers determines 
how this pin is interpreted. If INT2, it has the same interpretation as the INTO and 
INT1 pins. If INTR, it is used to receive an interrupt request from an external 
interrupt controller. 

I/O INTERRUPT 3/INTERRUPT ACKNOWLEDGE: The bus interrupt control register 
0.0. determines how this pin is interpreted. If INT3, it has the same interpretation as 

the INTO, INT1, and INT2 pins. If INTA, it is used as an output to control interrupt-
acknowledge bus transactions. The INTA output is latched on-chip and remains 
valid during T d cycles; as an output, it is open-drain. 

1/0 ~ Input/Output, 0 ~ Output, I ~ Input, 0.0. ~ Open·Draln, T.S, ~ t,,·state 

ELECTRICAL SPECIFICATIONS Power Decoupling Recommendations 

Liberal decoupling capacitance should be placed 
near the 80960KB. The processor can cause tran­
sient power surges when driving the L-Bus, particu­
larly when it is connected to a large capacitive load. 

Power and Grounding 

The 80960KB is implemented in CHMOS III technol­
ogy and has modest power requirements. Its high 
clock frequency and numerous output buffers (ad­
dress/ data, control, error, and arbitration signals) 
can cause power surges as multiple output buffers 
drive new signal levels simultaneously. For clean on­
chip power distribution at high frequency, 11 Vee 
and 13 Vss pins separately feed functional units of 
the 80960KB. 

Power and ground connections must be made to all 
power and ground pins of the 80960KB. On the cir­
cuit board, all Vee pins must be strapped closely 

,together, preferably on a power plane. Likewise, all 
Vss pins should be strapped together, preferably on 
a ground plane. These pins may not be connected 
together within the chip. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per­
formance. Inductance can be reduced by shortening 
the board traces between the processor and de­
coupling capacitors as much as possible. Capacitors 
specifically designed for PGA packages are also 
commercially available and offer the lowest possible 
inductance. 

Connection Recommendations 

For reliable operation, always connect unused in­
puts to an appropriate signal level. In particular, if 
one or more interrupt lines are not used, they should 
be pulled up. No inputs should ever be left floating. 

4-12 ' 



inter 80960KB 

All open-drain outputs require a pullup device. While 
in some cases a simple pullup resistor will be ade­
quate, we recommend a network of pullup and pull­
down resistors biased to a valid VIH (:<!3.4V) and 
terminated in the characteristic impedance of the cir­
cuit board. Figure 6 shows our recommendations for 
the resistor values for both a low and high current 
drive network, which assumes that the circuit board 
has a characteristic impedance of 1 OOn.. The advan­
tage of terminating the output signals in this fashion 
is that it limits signal swing and reduces AC power 
consumption. 

Characteristic Curves 

Figure 7 shows the typical supply current require­
ments over the operating temperature range of the 
processor at supply voltage (VeC> of 5V. Figure S 
shows the typical power supply current (IcC> re­
quired by the S0960KB at various operating frequen­
cies when measured at three input voltage (VeC> 
levels. 

For a given output current (Iou, the curve in Figure 9 
shows the worst case output low voltage (Iou. 

80960KB 

Vee 
) 

180.0. 

OPEN-DRAIN '1--0-" 
OUTPUT 

390.0. 

Low Drive Network: 
• VOH = 3.42V 
• IOl = 25.3 rnA 

270565-25 

Figure 10 shows the typical capacitive derating 
curve for the S0960KB measured from 1.5V on the 
system clock (ClK) to O.SV on the falling edge and 
2.0V on the rising edge of the LoBus address/data 
(LAD) signals. 

Test Load Circuit 

Figure 13 illustrates the load circuit used to test the 
S0960KB's tristate pins, and Figure 14 shows the 
load circuit used to test the open drain outputs. The 
open drain test uses an active load circuit in the form 
of a matched diode bridge. Since· the open-drain 
only sink current, however, only the 10L legs of the 
bridge are necessary and the 10H legs are not used. 
When the S0960KB driver under test is turned off, 
the output pin is pulled up to VREF (Le., VOH)' Diode 
Dl is turned off and the 10L current source flows 
through diode D2. . 

When the S0960KB open-drain driver under test is 
on, diode Dl is also on, and the voltage on the pin 
being tested drops to VOL. Diode D2 turns off and 
10L flows through diode Dl. 

80960KB 
OPEN-DRAIN 

OUTPUT 

High Drive Network: 
• VOH = 3.41V 
• IOl = 33.8 rnA 

vee 

130.0. 

280.0. 

270565-26 

Figure 6. Connection Recommendations for Low and High Current Drive Networks 

4-13 



inter 80960KB 

Vee ~ .5.0V 

420 

L 
II 
~ 320 

D.. 

.300 

/ 
/ 

/ 
" 

r" -
'20 ~Hz 

-'" ..... 

1\6 ~Hz 
-20 .0' 20 40 6080 100' 

Case Temperature ("C) 
270565-27 

Figure 7. Typical Supply Current (Icc)' 

(Temp = + 85'C, Vee = 4.5V) . 

0.8 

~ 
II 0.6 

1 
o 
> 0.4 

~ -:J 

.; 0.2 
o 

0.0 
o 

/ 

./ 
/ 

/. 
V 

10 20 30 40 50 

Output Low Current (mA) 
270565-29 

Figure 9. Worst Case Voltagevs Output Current 
on Open-Drain Pins 

4-14 

. (Temp = +22'C) 

600r----r--~~--,_--_, 

-;c 
.5. 500 I'---+-~-+--__+-"-_l 
.., 
.S:: 

. ~ 400 1---+-~_\_-t-~clT'-7..,. 
':J 
u. 
~3001'-~-+--~~~~~~_l 
'ii. 
'" cil 200 I'--"""'...."r""~..,--__+--_l 

11001---+--+--~--' 
~ 

o~-~----~--~----~ 
o 5 10 15 20 

Operating Frequency (MHz) 
270565-28 

Flgure'S:Typical Current vs Frequency 

(Temp = + 85'C, Vee = 4.5V) 

30 ..,. 
. -;: 25 

.2 

~ 20 
3! 

~ 15 
;; 
,e. 
:J 10 o 

5 

FALL 

~ f.--

NG 

~ ...-:: .-~ 
-"" i'RISI G 

o 
o 20 40 60 80 100 

Capacitive Load (pF) 
270565-30 

Figure 10. Capacitive Derating CurVe 



inter 80960KB 

ABSOLUTE MAXIMUM RATINGS* 

Operating Temperature ........ O·C to + 85·C Case 

Storage Temperature .......... - 65·C to + 150·C 

Voltage on Any Pin .......... -0.5V to Vcc + 0.5V 

Power Dissipation ................. 2.9W (20 MHz) 

D.C. CHARACTERISTICS 

• Notice: Stresses above those listed under '~bso­
lute Maximum Ratings" may cause permanent dam­
age to the device. This is a stress rating only and 
functional operation of the device at these or any 
other conditions above' those indicated in the opera­
tional sections of this specification is not implied. Ex­
posure to absolute maximum rating conditions for 
extended periods may affect device reliability. 

NOTICE' Specifications contained within the 
following tables are subject to change. 

80960KB (16 MHz): TCASE = O·C to + 85·C, Vce = 5V ± 10% 
B0960KB (20 MHz): TCASE = O·C to + 85·C, Vcc = 5V ± 5% 

Symbol Parameter Min Max Units Test Conditions 

Vil Input Low Voltage -0.3 +0.8 V 

VIH Input High Voltage . 2.0 Vce + 0.3 V 

VCl CLK2 Input Low Voltage -0.3 +1.0 V 

VCH CLK2 Input High Voltage 0.55 Vce Vcc + 0.3 V 

Val Output Low Voltage 0.45(5) V (1) 
0.60(6) 

VOH Output High Voltage 2.4 V (2,4) 

Icc Power Supply Current: 
16MHz 475 mA TA = O·C 
20 MHz 545 mA TA = O·C 

III Input Leakage Current ±15 p.A o ~ Va ~ Vcc 

ILO Output Leakage.Current ±15 p.A 0.45 ~ Va ~ Vcc 

CIN Input Capacitance 10 pF fc = 1 MHz(3) 

Co 1/0 or Output Capacitance 12 pF fc = 1 MHz(3) 

CelK Clock CapaCitance 10 pF fc = 1 MHz(3) 

NOTES: 
1. For tri-state outputs, this parameter is measured at: 

Address/Data ......•................................................................................... 4.0 mA 
Controls ............................................................................................... 5.0 mA 

2. This parameter is measured at: 
Address/Data ........................................................................................ -1.0 mA 
Controls ....................... ~ ..................................................................... -0.9 mA 
ALE .................................................................................................. -5.0 mA 

3. Input, output, and clock capacitance are not tested. 
4. Not measured on open-drain outputs. 
5. For open-drain outputs .... , ............................................................................. 25 mA 
6. For open-drain outputs ........... ' ....................................................................... 40 mA 

4-15 



inter 80960KB 

AC SPECIFICATIONS 

This section describes the AC specifications for the 
80960KB pins. All input and output timings are spec­
ified relative to the 1.5V level of the rising edge of 
CLK2, . and refer to the time at which the signal 

EDGE 

CLK2 

OUTPUTS: 
LAD31 -LADo, 
ADS, . 
W/R,DEN, 
BE3-BEo; 
HLDA/HOLDR, 
CACHE, 
LOCK,INTA, 
FAILURE 

DT!R 

INPUTS(I): 
LAD31 -LADo, 

BADAC, 
IAC/INTo,INT1, 

INT2/INTR,INT3 

INPUTS(2): 
HOLD,HLDAR, 
LOCK, 
READY 

A B C 

reaches (for output delay and input setup) or leaves 
(for hold time) the TIL levels of LOW (0.8V) or HIGH 
(2.0V). All AC testing should be done with input volt­
ages of O.4V and 2.4V, except for the clock (CLK2), 
which should be tested with input voltages of 0.45V 
and 0.55 Vee. 

D A 

VALID OUTPUT 

B c 

HOLD AFTER ALE 
INACTIVE 

VALID OUTPUT 

270565-4 

Figure 11. Drive Levels and Timing Relationships for B0960KB Signals 

4-16 



inter 80960KB 

To Td Tr To Td Td Tr 

ClK2 ~1t~~('..~~~~~~ 
ClK ~ Lr-'~~~ Lr-'~~ 
~&- ~~~ kID-~~ ~ . -~ 

A/D t--..."'''-; ~ '" '" '" '" ~ ~ f\.. '" '" '" 
~~ ~"X ~~ ~"'''' "'0 rev- 14 l- :-®- - -® 

ALE ~ I;. 1\::."'''''' f\.. '" '" '" 
~~ R. ~ ~ 

I-< H k H 

ADS ""-I 

BE(O:3) ~ ~'" '" '" '" '" '" "'0 ~"''''~ ~"'''''' ~~ r0..."-'" ~'" '" '\: ~"\."'''''''''''''~ ~ &"0::' 

I-~ 1;-- -~ -~ l@ - '9-
W/R ~ ~""",,,,,, ~~ 

~ 
~ 

~ ®-f-.::. -~ 
DT/R 

f\.."''''''' "''''''''''' &'" ~"'''' '" '" '" "'''l' ~ - °.1 ~ 
DEN \.."" ~ 

""" 
f:7 

.~ ~ ~ ~ .~ ~ 
READY 

~"''''''''''''''''''' '" ~ '" '" '" '" '" R---. '" '" '" '" ~"'''' '" '" '" ",,,,"'0 ~ '" ","'",'7 "\."''''' L:....'" '" '" '" "'0 

270565-5 

Figure 12. Timing Relationship of L-Bus Signals 

4-17 



Inter 

A.C. Specification Tables 
B0960KB A.C. Characteristics (16 MHz) 

Symbol Parameter 

T1 Processor Clock 
Period (CLK2) 

T2 Processor Clock 
Low Time (CLK2) 

T3 Processor Clock 
High Time (CLK2) 

T4 Processor Clock 
Fall Time (CLK2) 

T5 Processor Clock 
Rise Time (CLK2) 

T6 Output Valid 
Delay 

T7 ALE Width 

Ta ALE Output Valid Delay 

T9 Output Float 
Delay 

T10 Input Setup 1 

T11 Input Hold 

T12 Input Setup 2 

. T13 Setup to ALE 
Inactive 

T14 Hold after ALE 
Inactive 

T15 Reset Hold 

T16 Reset Setup 

T17 Reset Width 

NOTES: 

80960KB 

Min Max 

31.25 125 . 

11 

11 

10 

10 

5 35 

15 

5 20 

5 20 

3 

10 

8 

10 

8 

5 

8 

1281 

1. iAC/INTo. INT1. INT2/INTR. iNTa can be asynchronous. 

Units Test Conditions 

ns . VIN = 1.5V 

ns VIL = 10% Point 
= 1.2V 

ns VIL = 90% Point 
= 0.1V + 0.5 Vee 

ns VIN = 90% Point to 10% 
Point 

ns VIN = 10% Point to 90% 
Point 

ns CL = 100 pF (LAD) 
CL = 75 pF (Controls) 

ns CL= 75 pF 

ns CL = 75 pF(2) . 

ns CL = 100 pF (LAD) 
CL = 75 pF (Controls)(2) 

ns 

. ns 

ns 

ns CL = 100 pF (LAD) 
CL = 75 pF (Controls) 

ns CL = 100 pF (LAD) 
CL = 75 pF (Controls) 

ns 

ns 

ns 41 CLK2 Periods Minimum 

2. A float condition occurs when the maximum output current becomes less than ILO. Float delay is not tested. but should be 
no longer than the valid delay. 

4-18 



intJ 80960KB 

80960KB AC Characteristics (20 MHz) 

Symbol Parameter Min Max Units Test Conditions 

T1 Processor Clock 25 125 ns VIN = 1.5V 
Period (CLK2) 

T2 Processor Clock 8 ns VIL = 10% Point 
Low Time (CLK2) = 1.2V 

T3 Processor Clock 8 ns VIL = 90% Point 
High Time (CLK2) = 0.1V + 0.5 Vcc 

T4 Processor Clock 10 ns VIN = 90% Point to 10% 
Fall Time (CLK2) Point 

T5 Processor Clock 10 ns VIN = 10% Point to 90% 
Rise Time (CLK2) Point 

T6 Output Valid 5 30 ns CL = 60 pF (LAD) 
Delay CL = 50 pF (Controls) 

T7 ALE Width 12 ns CL = 50 pF 

Ts ALE Output Valid Delay 5 20 ns CL = 50 pF(2) 

T9 Output Float 5 20 ns CL = 60 pF (LAD) 
Delay CL = 50 pF (Controls)(2) 

T10 Input Setup 1 3 ns 

T11 Input Hold 10 ns 

T12 Input Setup 2 7 ns 

T13 Setup to ALE 10 ns CL = 60 pF (LAD) 
Inactive CL = 50 pF (Controls) 

T14 Hold after ALE 8 ns CL = 60 pF (LAD) 
Inactive CL = 50 pF (Controls) 

T15 Reset Hold 5 ns 

T16 Reset Setup 7 ns 

T17 Reset Width 1025 ns 41 CLK2 Periods Minimum 

NOTES: 
1. IAC/INTo.INT1.INT2/INTR.INT3 can be asynchronous. 
2. A float condition occurs when the maximum output current becomes less than ILQ. Float delay is not tested. but should be 
no longer than the valid delay. 

80960KS 
TRISTATE OUTPUT 

270565-31 

Figure 13. Test Load Circuitfor 
TRI-STATE Output Pins 

o---...,..---1 .. -.....L.. ___ +---o VREF 

10L Tested at 25 and 40 rnA 
VREF = Vce 
D1 and 02 are matched 

270565-32 

Figure 14. Test Load Circuit for Open-Drain Output Pins 

4-19 



inter 80960KB 

T1 
~' 

HIGH LEVEL (MIN) 0.55VCC 90% 

LOW LEVEL (MAX) 1 .OV 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

10% 

I 
I 

I I 
T5~ 

I I~~-----+' 
T4~ 

I I I 

Figure 15. Processor Clock Pulse (CLK2) 

FIRST 

ABC D A 

••• CLK2 

CLK 
••• 

,+---1-- ••• ---1--... 
RESET 

OUTPUTS ~~-~ • • • --t--+--+----1---l--

INIT PARAMETERS (BADAC, ~ 
IACo) MUST BE SETUP 8 CLOCKS 
PRIOR TO THIS CLK2 EDGE 

INIT PARAMETERS MUST BE HELD 
BEYOND THIS CLK2 EDGE 

Figure 16. RESET Signal Timing 

T 15 = RESET HOLD 
T16 = RESET SETUP 
T 17 = RESET WIDTH 

270565-6 

270565-7 



intJ 80960KB 

Th Th Th Th 

CLK2 

CLK 

HOLDR 

HOLD 

HLDA 

HLDAR 

270565-8 

PRIMARY SECONDARY 

HOLD I+--o---i HOLDR 

HLDA J----o--.+I HOLDAR 
~----~ ~----~ 

DELAY or 5 ns MINIMUM 
IS REOUIRED 

270565-24 

Figure 17. Hold Timing 

Design Considerations 

Input hold times can be disregarded by the designer 
whenever the input is removed because a subse­
quent output from the processor is deasserted (e.g., 
DEN becomes deasserted). 

In other words, whenever the processor generates 
an output that indicates a transition into a subse­
quent state, the processor must have sampled any 
inputs for the previous state. As an example, in the 
IL.9'cle following a read, the minimum time that 
DEN becomes deasserted is 5 ns, but the minimum 
hold time on the data is 10 ns. When DEN is deas­
serted, however, the data is guaranteed to have 
been sampled. 

Similarly, whenever the processor generates an out­
put that indicates a transition into a subsequent 
state, any outputs that are specified to be tri-stated 
in this new state are guaranteed to be tri-stated. For 
example, in the T d cycle following a T a cycle for a 
read, the minimum output delay of DEN is 5 ns, but 
the maximum float time of LAD is 20 ns. When DEN 
is asserted, however, the LAD outputs are guaran­
teed to have been tri-stated. 

Designing for the ICE·960KB 
The 80960KB In-Circuit Emulator assists in debug­
ging 80960KB nardware and software designs. The 

4-21 

product consists of a probe module, cable, and con­
trol unit. Because of the high operating frequency of 
80960KB systems, the probe module connects di­
rectly to the 80960KB socket. 

When designing an 80960KB hardware system that 
uses the ICE-960KB to debug the system, several 
electrical and mechanical characteristics should be 
considered. These considerations include capacitive 
loading, drive requirement, power requirement, and 
physical layout. 

The ICE-960KB probe module increases the load 
capacitance of each line by up to 25 pF. It also adds 
one standard Schottky TTL load on the CLK2 line, 
up to one advanced low-power Schottky TTL load 
for each control signal line, and one advanced low­
power Schottky TTL load for each addressl data and 
byte enable line. These loads originate from the 
probe module and are driven by the 80960KB proc­
essor. 

To achieve high noise immunity, the ICE-960KB 
probe is powered by the user's system. The high­
speed probe circuitry draws up to 1.1 A plus the max­
imum current (Icc> of the 80960KB processor. 

The mechanical considerations are shown in Figure 
18, which illustrates the lateral clearance require­
ments for the ICE-960KB probe as viewed from 
above the socket of the 80960KB processor. 



intJ 80960KB 

~~----- 3.B"-----~---+I 

1--1.22" --I I-- 1.13" ~ ~ 
-'0:-".1 =5"--...----.--

r ------, 
I USER CPU I 
: SOCKET : 

o I EM~~~~N I 0 
: PROCESSOR : 
I -",~ 

.-------~ VERTICAL 
CLEARANCE 1.2" 

PIN ~I o 
EMULATION 
PROCESSOR 

4.75" 

VIEW FROM 
ABOVE USER CPU 

SOCKET ICE PROCESSOR MODULE 5.5" 

n 
RIBBON CABLE CONNECTOR 

V CABLE TO ICE CONTROL UNIT N ----~---"+'--
MINIMUM CABLE 
BEND RADIUS: 
LESS THAN 3.0" 

270565-9 

Figure 18. ICE-960KB Later~1 Clearance Requirements 
MECHANICAL DATA wire wrap. Several applicable sockets are shown in 

Figure 22. 

Pin Assignment 

The 80960KB pinout as viewed from the substrate 
side of the comporient is shown in Figure 19 and 
from the pin side in Figure 20. 

Vee and GND connections must be made to multi­
ple Vee and GND pins. Each Vee and GND pin must 
be connected to the appropriate voltage or ground 
and externally strapped close to the package. Pref­
erably. the circuit board should include power and 
ground planes for power distribution. Table 5 and 
Table 6 list the function of each pin. 

NOTE: 
Pins identified as N.C., "No Connect," should never 
be connected under any circumstances. The 
80960KB component contains 54 N.C. pins. 

Package Dimensions and Mounting 

The 80960KB is packaged in a 132-lead ceramic 
pin-grid array (PGA). Pins in this package. are ar­
ranged 0.100 inch (2.54mm) center-Io-center, in a 
14 by 14 matrix, three rows around. (See Figure 21.) 

A wide variety of available sockets allow low-inser­
tion or zero-insertion force mountings, and a choice 
of terminals such as soldertail, surface mount, or 

4-22 

Package Thermal Specification 

The 80960KB is specified for operation when case 
temperature is wilhin the range O°C to + 85°C. The 
PGA case temperature should be measured at the 
center of the top surface of the package opposite 
the pins as shown in Figure 23. 

The ambient temperature can be calculated from the 
(Jjc and (Jja by using the following equations: 

TJ = Te +P*(Jjc . 
TA = TJ - P*(J'a 
Te = TA + P*((Jja - (Jjc) 

Values for (Jja and (Jjc are given in Table. 7 at various 
airflows. Note that (Jja can be reduced by attaching a 
heatsink to the package. The maximum allowable 
ambient temperature (T A) permitted without exceed­
ing T e is shown by the curve in Figure 25. The curve 
assumes an lee of 545 mA, Vee of 5.0V, and a 
TeASE of + 85°C. . 

WAVEFORMS 

Figures 24 through 31 show the waveforms for vari­
ous transactions on the 80960KB's local bus. 



intJ 80960KB 

2 3 4 5 6 7 8 9 10 11 12 13 14 

p ,() () () () () () () () () () () () () () p 

Vee N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. Vss Vee 

N () () () () () () () () () () () () () () N 

Vss N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. 

() () () () () () () () () () () () () () 
N.C. N.C. Vss Vss Vee N.C. N.C. N.C. N.C. Vss Vee N.C. N.C. N.C. 

L () () () () () () L 
DEN N.C. Vee Vss N.C. N.C. 

K () () () () () () K 

BE3 FAIL Vss Vee N.C. N.C. 

() () () () () () 
DTR BE2 Vss N.C. N.C. N.C. 

H () () () () () () H 

WR BEo LOCK 80960KB N.C. N.C. N.C. 

G () () () () () () G 
LAD30 READY BE, N.C. N.C. N.C. 

F () () () () () () F 

LAD29 LAD3, CACHE N.C. N.C. N.C. 

E () () () () () () E 

LAD28 LAD26 LAD27 N.C. Vss N.C. 

° () () () () () () ° ALE ADS HLDA Vee N.C. N.C. 

C () () () () () () () () () () () () () () C 

HOLD LAD2S BADAC Vce Vss LAD20 LAD,3 LAD8 LAD3 Vee Vss INT3 INT, INTo 

B () () () () () () () () () () () () () () B 
LAD23 LAD24 LAD22 LAD21 LAD,8 LAD,s LAD,2 LADlO LADs LAD2 CLK LADo RESET Vss 

A () () () () () () () () () () () () () () A 
Vee Vss LAD,g LAD17 LAD16 LAD'4 LAD" LADg LAD7 LADs LAD4 LADl INT2 Vee 

2 3 4 5 6 7 8 9 10 11 12 13 14 

270565-10 

Figure 19. 80960KB PGA Pinout-View from Bottom (Pins Facing Up) 

4-23 



inter 80960KB 

14 13 12 11 10 9 8 7 6 5 4 3 2 

p o 0 0 0 0 0 0 0 0 0 0 0 0 0 p 

Vee Vss N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. Vee 

N o 0 0 0 0 0 0 0 0 0 0 0 0 0 N 
N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. N.C. Vss 

000 000 000 0 0 0 0 0 
N.C. N.C. N.C. Vee Vss N.C. N.C. N.C. N.C. Vee Vss Vss N.C. N.C. 

l 000 000 l 
N.C. N.C. Vss Vee N.C. DEN 

K 000 000 K 
N.C. N.C. Vee Vss .All BE3 

000 000 
N.C. N.C. N.C. Vss BE2 DTR 

H 000 000 H 
N.C. N.C. N.C. 80960KB lOCK BEo WR 

G 000 000 G 
N.C. N.C. N.C. BEl READY LAD30 

000 000 
N.C. N.C. N.C. CACHE LAD31 LAD29 

E 000 000 E 
N.C. Vss N.C. LAD27 LAD26 LAD2S 

° 000 000 ° N.C. N.C. Vee HlDA ADS ALE 

C o 0 0 0 0 0 0 00 0 0 0 0 0 C 

INTO INTl INT3 Vss Vee LAD3 LADs lAD13 LAD20 Vss Vee BADAC LAD25 HOLD 

B 000 000 0 000 o 0 0 0 B 
Vss RESET LADo ClK LAD2 LAD6 LAD10 LAD12 LAD15 LAD1S LAD21 LAD22 LAD24 LAD23 

A o 0 0 0 0 0 0 0 0 0 0 0 0 0 A 
Vee INT2 LAD1 LAD4 LAD5 LAD7 LADg lADll LAD14 LAD16 LAD17 LAD19 Vss Vee 

14 13 12 11 10 9 8 7 6 5 4 3 2 

270565-11 

Figure 20. 80960KB PGA Pinout-View from Top (Pins Facing Down) 

4-24 



80960KB 

Table 5. 80960KB PGA Pinout-In Pin Order 

Pin Signal Pin Signal Pin Signal Pin Signal ! , 
-----

A1 Vee C6 LAD20 H1 W/R M10 Vss 
A2 Vss C7 LAD13 H2 BEo M11 Vee 
A3 LAD19 CB LADs H3 LOCK M12 N.C. 
A4 LAD17 C9 LAD3 H12 N.C M13 N.C. 
A5 LAD1S C10 Vee H13 N.C. M14 N.C. 
A6 LAD14 C11 Vss H14 N.C. N1 Vss 
A7 LAD11 C12 INT3/1NTA J1 DT/R N2 N.C. 
AB LAD9 C13 INT1 J2 BE2 N3 N.C. 
A9 LAD7 C14 IACIiNTo J3 Vss N4 N.C. 

A10 LAD5 D1 ALE J12 N.C N5 N.C. 
A11 LAD4 D2 ADS J13 N.C. N6 N.C. 
A12 LAD1 D3 HLDAlHLDR J14 N.C. N7 N.C. 
A13 INT2/1NTR D12 Vee K1 BE3 NB N.C. 
A14 Vee D13 N.C. K2 FAILURE N9 N.C. 
B1 LAD23 D14 N.C. K3 Vss N10 N.C. 
B2 LAD24 E1 LAD2S K12 Vee N11 N.C. 
B3 LAD22 E2 LAD2S K13 N.C. N12 N.C. 
B4 LAD21 E3 LAD27 K14 N.C. N13 N.C. 
B5 LAD1S E12 N.C. L1 DEN N14 N.C. 
B6 LAD15 E13 Vss L2 N.C. P1 Vee 
B7 LAD12 E14 N.C. L3 Vee P2 N.C. 
BB LAD10 F1 LAD29 L12 Vss P3 N.C. 
B9 LADs F2 LAD31 L13 N.C. P4 N.C. 
B10 LAD2 F3 CACHE L14 N.C. P5 N.C. 
B11 CLK2 F12 N.C. M1 N.C. P6 N.C. 
B12 LADo F13 N.C. M2 N.C. P7 N.C. 
B13 RESET F14 N.C. M3 Vss P8 N.C. 
B14 Vss G1 LAD30 M4· Vss P9 N.C. 
C1 HOLD/HLDAR G2 READY M5 Vee P10 N.C. 
C2 LAD25 G3 BE1 M6 N.C. P11 N.C. 
C3 BADAC G12 N.C. M7 N.C. P12 N.C. 
C4 Vee G13 N.C. MB N.C. P13 Vss 
C5 Vss G14 N.C. M9 N.C. P14 Vee 

4-25 



intJ 80960KB 

Table 6. 80960KB PGA Pinout-In Signal Order 

Signal Pin Signal · Pin Signal Pin Signal Pin 

ADS 02 LAD15 86 N.C. J14 ·N.C. P8 
ALE 01 LAD1S A5 N.C. K13 N.C. P9 
BADAC C3 LAD17 A4 N.C. K14 N.C. P10 
BEo H2 LAD18 85 N.C. L13 N.C. I P11 

BE1 G3 LAD19 A3 N.C. L14 N.C. P12 
BE2 J2 LAD20 C6 N.C. M1 N.C. L2 

BEa K1 LAD21 84 N.C. M2 READY G2 
CACHE F3 LAD22 83 N.C. M6 RESET 813 
CLK2 811 LAD23 81 N.C. M7 Vee A1 
DEN L1 LAD24 · 82 N.C. M8 Vee A14 
DT/R J1 LAD25 C2 N.C. M9 Vee C4 
FAILURE K2 LAD2S' E2 N.C. M12 Vee C10 
HLDAlHOLDR 03 LAD27' E3 N.C. M13 Vee 012 
HOLD/HLDAR C1 LAD28 ' E1 N.C. M14 Vee K12 
lAC/INTo C14 LAD29 · F1 N.C. N2 Vee L3 
INT1 C13 LAD30 G1 N.C. .N3 Vee. M5 
INT2/INTR A13· . LAD31 F2 N.C. N4 . Vee M11 
INT3/INTA C12 LOCK H3 '. N.C. N5 Vee P1 

LADo 812 N.C. 013 N.C. N6 Vee P14 

LAD1 A12 N.C. · 014 N.C. N7 Vss A2 

LAD2 810 N.C. E12 N.C. N8 Vss B14 
LAD3 C9 N.C. E14 N.C. N9 Vss C5 

LAD4 A11 N.C. F12 N.C. N10 Vss C11 

LAD5 A10 N.C. · F13 N.C. N11 Vss E13 

LADs 89 N.C. F14 N.C. N12 Vss' J3 
LAD7 A9 N.C. G12 N.C. N13 Vss' K3 

LADs C8 N.C. · G13 N.C. N14 Vss L12 
LADg A8 N.C. G14 N.C. P2 Vss M3 

LAD10 88 N.C. H12 N.C. P3 Vss M4 

LAD11 A7 N.C. · H13 N.C. P4 Vss M10 

LAD12 87 N.C. H14 N.C. P5 Vss N1 

LAD13 C7 N.C. J12 N.C. P6 Vss P13 

LAD14 A6 N.C. J13 N.C. P7 W/R H1 

4-26 



intJ 80960KB 

CIN #1 POSITION 

·@@@@@@'I@@@@@@@ 
2 @@@@@@@@@@@@@@ 
3 @@@»@@@@,@@@@@»@@ 
4 @@@ @@@ 
5 @@@ , @@@ 
6 @@@ I @@@ 

7 @@@ + @@@ 
8 -@@@ -- -- @@@ 

9 @@@ @@@ 
10 @@@ @@@ 
11 @@@ @@@ 
12 @@@»@@@@'@@@@ @@ 
13 @@@@@@@I@@@@@@@ 
14 @@@@@@@,@@@@@@@ 

.725 (18.401) 

, .650 (16.497) 

.550 (13.959) 

.450 (11.421) 

.350 (8.883) 

.250 (6.345) 

.150 (3.807) 

.050 (1.269) 
o 

SWEDGE PIN 
STANDOFF 
(4) PLACES 

ABC D E F G H J K L M N P Ii 
.020 (0.508) .020 -I 
MIN TYP (0.508) 

-- .070 (1.777) DIA 
TYP BRAZE PAD 

1-----1.450(36.802) • 

.057(1.269) l t 
MAX TYP 

.001 (0.025) R 
MIN TYP 

270565-12 

Figure 21. A 132-Lead Pin-Grid Array (PGA) Used to Package the 80960KB 

4-27 



inter 

• Low insertion force (UF) soldertail 
55274-1 

• Amp tests indicate 50% reduction in 
insertion force compared to 
machined sockets 

Other socket options 
• Zero insertion force (ZIF) soldertail 

55583-1 
• Zero insertion force (ZIF) Burn-in 

version 55573-2 
Amp Incorporated 

(Harrisburg, PA 17105 U.S.A 
Phone 717-564-0100) 

80960KB 

55274-1 

Cam handle locks in low proiile position when 80960KB is installed 
(handle UP for open and DOWN for closed positions). 

Peel-A-Way' Mylar and Kapton 
Socket Terminal Carriers 

• Low insertion force surface 
mount CS132-37TG 

• Low insertion force soldertail 
CS132-0HG 

• Low insertion force wire-wrap 
CS132-02TG (two-level) 
CS132-03TG (thee· level) 

• Low insertion force press-fit 
CS132-05TG 

Advanced Interconnections 
(5 Division Street) 
Warwick. RI 02818 U.S.A. 
Phone 401-885-0485) 

Peel-A-Way Carrier No. 132: 
Kapton Carrier is KS 132 
Mylar Carrier is MS 132 

Molded Plastic Body KS 132 
is shown below: 

FOOT PRINT NO. 132 

1--,.'00 OQ'-1 

~!rmmm 

HlDU 
Iil~:::_Jii 

-II-- .100TYP 

14x14x3ROWS 

270565-14 

'Peel-A-Way is a trademark of Advanced Interconnections. 

Courtesy Amp Incorporated 

SOLDER TAIL-01 LOW PROFILE-04 PRESS FIT·05 r r r ., .. -r :iii" 

-+ --+ 
I~ T1i !:!!. ., .. 

~DIA 
.110 

---'- bttMA ~~:lloDlA. ..... .- . 

-=- =7iT;~ 
WIRE WRAP -02/-03 SOLDER TAIL-33 SURFACE MOUNTING ·37 

ti 
PEEL-A·WAY 

!! -:-iii 

{t ., .. 
.. ,. -02 l..m ~ .. 2LEYEL 

1!!! -03 1-.-1" 
.100 :I LEVEL i'£---II--'-1 0'" 

270565-15 
Courtesy Advanced Interconnections 

(Peel-A-Way Terminal Carriers 
U.S. Patent No. 4442938) 

Figure 22. Several Socket Options for Mounting the 80960KB 

4-28 



Vcr:; = 5.0V, Freq. = 20 MHz 

80960KB 

MEASURE PGA CASE TEMPERATURE 
AT CENTER OF TOP SURFACE 

270565-16 

Figure 23. Measuring 80960KB PGA Case Temperature 

CLK2 

ClK 

270565-17 

Figure 24. System and Processor Clock Relationship 

90 

~ 80 

l! 70 ::s 
t! 60 .. 
<>. 
E 50 .~ .. 
c 40 .! 

..Q 

E 30 0( 

20 
0 200 400 600 800 

Airflow (ft/mln) 
270565-33 

Figure 25. Maximum Allowable Ambient Temperature 

4-29 



80960KB 

Ta Td Tr 

ClK2 

ClK 

LAD3i-
lADo 

ALE 

ADS 

BE3-BEo 

W/R 

DT/R 

DEN 

READY 

270565-18 

Figure 26. Read Transaction 

4-30 



80960KB 

Table 7. 80960KB PGA Package Thermal Characteristics 

Thermal Resistance-OC/Watt 

Airflow-ft.lmin (m/sec) 
Parameter 0 50 100 200 400 600 800 

(0) (0.25) (0.50) (1.01) (2.03) (3.04) (4.06) °Ja 

e Junction-to-Case 
(Case Measured 2 2 2 2 2 2 2 OJPlnrr °Jc 

as Figure 6-4) 
oJ cap I e Case-to-Ambient 

(No Heatsink) 
19 18 17 15 12 10 9 

UUU 'UUU e Case-to-Ambient 
(with Omnidirectional 16 15 14 12 9 7 6 270565-34 

Heatsink) 

e Case-to-Ambient 
(with Unidirectional) 15 14 13 11 8 6 5 
Heatsink) 

NOTES: 
1. Table 7 applies to 80960KB PGA 3. 0J.CAP = 4°C/w (approx.) 
plugged into socket or soldered di- OJ-PIN = 4°C/w (inner pins) (approx.) 
rectly into board. OJ-PIN = 8°C/w (outer pins) (approx.) 
2. 0JA = 0JC + 0CA· 

Tn Td Tw Tr 

ClK2 

ClK 

lAD31 -

lADO 

ALE 

ADS 

BE3-BEO 

W/P. 

DT/P. 

DEN 

READY 

270565-19 

Figure 27. Write Transaction with One Wait State 

4-31 



80960KB 

To Td Td Td T, 

CLK2 

CLK 

LAD3'-

LADO 

ALE 

ADS 

BE3-BEO 

will 

DT/ii 

DEN 

READY 

270565-20 

Figure 28. Burst Read Transaction 

270565-21 

Figure 29. Burst Write Transaction with One Wait State 

4-32 



inter 80960KB 

I- PREVIOUS t INTERRUPT ~ IDLE --j-:- INTERRUPT j 
CYCLE, ACKNOWLEDGEMENT (5 BUS STATES) ACKNOWLEDGEMENT ' 

CYCLE 1 CYCLE 2 

T T To Td Tr T, T, T, T, T, To Td Tw Tr 

ClK J~ ~ ~ ~ ru ~ ~ ru ru ~ ~ ~ ~ ~ ~ 
INm -~ ~",,\, ~""",\:: ~"",,\, ~""",\:: 0."""" ~""",\:: 0."""\' ~""~ ~"",,\\ ~""",\:: 0.",,"\\ ~""",\:: 0.~ 

'f:0.""~ ~""",\:: ~R~ --~"",\:: ~""",\:: ~"",,\, ~",," "'''''~ ~""",\:: ~R~ --l')(vEcToR~ --~ ~ 
..; -0.""" :;." " " " "" / 

,,," "''',,'' 10."",," "''',,'' 0.""" -0.""" 0.,/ ~ ~ 

"--V '--J 

\. I \. / 

DT/ii ~""",\:: ~"",,\, ~ &. ~"",,\\ ~""",\:: 0."""\' ~""",\:: ~"",,\\ ~ ~ ~ 

r -"-- / \. 

\. / 

\,J -\. V 
270565-22 

NOTE: 
INTR can go low no sooner than 10 ns (input hold time) following the beginning of interrupt acknowledgement cycle 1. 
For a second interrupt to be acknowledged, INTR must be low for at least three cycles before it can be reasserted. 

, Figure 30. Interrupt Acknowledge Transaction 

4-33 



PPSM BUS 
STATE 

SBM BUS 
STATE 

elK 

w/fl 

PSM ALE 

SBM ALE 

SBM 
HOlDR 

PSM 
HOLD 

PSM 
HlDA 

SBM 
HlDAR 

/'w '\.... 
.. ~ - '--

)(DATA 
'--

~~ 

-:::W 

-0-.""""" ~""""""" 
\. 

-~ 

-~~ 

'\.... '\.... '\.... 
X-
'--

)('Ao'DR 
'--

)(DATA 
'--

~ ~ 

"''''''''''' f0-. "" """ '-0.""""'-

f0-. "" """ 
~/ 

V \. 

~ 

/ 

80960KB 

~ ~ ~ ~ ~ 

Tr Thr Thr Thr Thr 

~ '\.... '\.... ~ ~ 
~ -..... ~ '--

)(DATA 
'--

)(DATA 
'--
~ ...... 

&""'- y ~ 

f0-. "" """ 
~/ ~""" 

"''''''''''- ~""""'-: -0-.""""'-~""""" t-...""""""" 

V \. A V 

"--V . 

l/'--~ p 

~ 
~ 

r------
\. / 

~ ~ ~ 
r:x"AOoR 
'--

)(DATA 
'--

)(DATA 
'--

~ 

t-...""""""" ~""""" '-0.""""" 

~'\./ 

\. V\. 

T, 

~ 
~""'0 

\.""""'-

~""""" 
'" "" '-: 

.I 

\. 

! 
L 

T, 

T, 

~ 

-0-.""""" 

~""""""" 
-0-.""""'-

~""""'-

~ 

L 

r 

~ 

-0: 

~ 

-0: 

-
-

270565~23 

Figure 31. Bus Exchange Transaction (PBM = Primary Bus Master, SBM = Secondary Bus Master) 



376™ HIGH PERFORMANCE 
32-BIT EMBEDDED PROCESSOR 

• Full 32-Bit Internal Architecture • Complete Intel Development Support 
- 8-, 16-, 32-Bit Data Types - C, PL/M, Assembler Translators 
- 8 General Purpose 32-Bit Registers -ICETM-376, In-Circuit Emulator 
- Extensive 32-Bit Instruction Set - iRMK Real Time Kernel 

• High Performance 16-Bit Data Bus • Extensive Third-Party Support: 
- 16 MHz CPU Clock - Software: C, Pascal, FORTRAN, 
- Two-Clock Bus Cycles BASIC and ADA' 
-16 Mbytes/Sec Bus Bandwidth - Hosts: VMS*, UNIX', MS-DOS·, and 

• 16 Mbyte Physical Memory Size Others 
- Real-Time Kernels 

• High Speed Numerics Support with the 
High Speed CHMOS Technology 80387SX • 

• Low System Cost with the 82370 • Available in 100 Pin Plastic Quad Flat-

Integrated System Peripheral Pack Package and 88-Pin Pin Grid Array 
(See Packaging Outlines and Dimensions #231369) 

• On-Chip Debugging Support Including 
Break Point Registers 

INTRODUCTION 

The 376 32-bit embedded processor is designed for high performance embedded systems. It provides the 
performance benefits of a highly pipelined 32-bit internal architecture with the low system cost associated with 
16-bit hardware systems. The 80376 is based on the 80386 and offers a high degree of compatibility with the 
80386. All 80386 32-bit programs not dependent on paging can be executed on the 80376 and all 80376 
programs can be executed on the 80386. All 32-bit 80386 language translators can be used for software 
development. With proper support software, any 80386-based computer can be used to develop and test 
80376 programs. In addition, any 80386-based PC-AT' compatible computer can be used for hardware proto­
typing for designs based on the 80376 and its companion product the 82370. 

Execution Unit MMU 

32-81t Registers Protection 

64-Bit Borrel Segment 
Shifter Registers 

Multiply/Divide 
Segment 

-+ ALU f--+ 
Transistor 

I ~ 
J I Bus Interface 

32-81t Data Path Unit 
I I 

Decoder ~ 
Prefelch 

Queue 

'- Instruction 
Queue Prefetcher 

Pretetch Unit 

80376 Microarchitecture 

·UNIX is a registered trademark of AT&T. 
ADA is a registered trademark of the U.S. Government, Ada Joint Program Office. 
PC-AT is a registered trademark of IBM Corporation. 
VMS is a trademark of Digital Equipment Corporation. 
MS-DOS is a trademark of MicroSoft Corporation. 

4-35 

Control 

¥-
J¥-

240182-48 

August 1988 
Order Number: 240182-002 



UI'eI 80376 

1.0 PIN DESCRIPTION 

100 240182-1 

Figure 1.1.80376 100-Pin Quad Flat-Pack Pin Out (Top View) 

Table 1.1. 100-Pin Plastic Quad Flat-Pack Pin Assignments 

A Row BRow CRow DRow 
Pin Label pin Label Pin Label Pin Label 
1 00 26 LOCK# 51 A2 76 A21 
2 Vss 27 N/C 52 A3 77 Vss 
3 HLDA 28 N/C 53 A4 78 Vss 
4 HOLO 29 N/C 54 As 79 A22 
5 Vss 30 N/C 55 A6 80. A23 
6 NA# 31 N/C 56 A7 81 01S 
7 REAOY# 32 Vee 57 Vee 82 014 
8 Vee 33 RESET 58 As 83 013 
9 Vee 34 BUSY# . 59 A9 84 Vee 
10 Vee 35 Vss 60 AlO 85 Vss 
11 Vss 36 ERROR# 61 All 86 012 
12 Vss 37 PEREO 62 A12 87 0 11 
13 Vss 38 NMI 63 Vss 88 010 
14 Vss 39 Vee 64 A13 89 09 
15 CLK2 40 INTR 65 A14 90 Os 
16 AOS# 41 Vss 66 A15 91 Vee 
17 BLE# 42 Vee 67 Vss 92 07 
18 Al 43 N/C 68 Vss 93 06 
19 BHE# 44 N/C 69 Vee 94 Os 
20 N/C 45 N/C 70 A16 95 04 
21 Vee 46 N/C 71 Vee 96 03 
22 Vss 47 N/C 72 A17 97 Vee 
23 M/IO# 48 Vee 73 A1S 98 Vss 
24 O/C# 49 Vss 74 A19 99 02 
25 W!R# 50 Vss 75 . A20 100 01 

4-36 



inter 80376 £[Q)W£OO©~ OOO!P@OOIMl£'iJO@OO 

Top View Bottom View 
(Component Side) (Pin Side) 

, 0 0 0 0 0 0 0 0 0 0 0 0 0 01 /0 0 0 0 0 0 0 0 0 0 0 0 0 
Vee v" Hie A' ADS!!, READY, HOLD DO 02 V" Vee V" Vee Vee V" Vco V" P, 0, HOLD RU,OY!I' AOS* A, Hie V" Vco 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 
v" vee "'/101 eH~1II BLE, elK2 HA, HLOA 01 0' v" vee v" v" Vco v" 0, 0, HLOA "AI elK2 BlE, 8HE(I "'/1011' Vee V" , 0 0 0 0 , 0 0 0 0 
Vee ole, " Vee Vco o. o/el1 Vee 

4 0 0 0 0 , 0 0 0 0 
vss W/R/I 06 05 0, 0, W/Rfl V" 

5 0 0 0 0 , 0 0 0 0 
Vee lOCKIll D7 08 0, 0, LOCKII' Vee , 0 0 0 0 , 0 0 0 0 
VS5 RESF;T 09 DID °to 0, REsrr Vss , 0 0 0 0 , 0 0 0 0 

PEREO BUSY, Oil 012 0" Oil BUSYJ!I PEREa 

, 0 0 0 0 , 0 0 0 0 
ERROR, N ... I 01> 014 0" 0" 1'1.11 ERRORII' 

9 0 0 0 0 9 0 0 0 0 
V" INTR A2J A" 0" INTR V" 

ID 0 0 0 0 ID ID 0 0 0 0 
vee A2 A2I A22 A" A2I A, Vee 

II 0 0 0 0 II 0 0 0 0 

v" AJ v" Vco Vco v" A, V" 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 

v" A4 " A' A8 AIO AI5 AI7 AI8 A20 Vco V" V" Vee A" A" A" A" A" Ato A, A, A, A. V" 
IJ 0 0 0 0 0 0 0 0 0 0 0 0 0 IJ I> 0 0 0 0 0 0 0 0 0 0 0 0 0 

Vee V" Vee " " All '" AU '" Vco V" Vee Vee V" Vee A" A" A" A" All A, A, Vee V" Vee 

240182-49 240182-2 

Figure 1.2. a0376 aa-Pin Grid Array Pin Out 

Table 1.2. aa-Pin Grid Array Pin Assignments 

Pin Label Pin Label Pin Label Pin Label 

2H CLK2 120 A1S 2L M/IO# 11A Vee 
98 015 12E A17 5M LOCK# 13A Vee 
SA 014 13E A16 1J AOS# 13C Vee 
88 013 12F A15 1H REAOY# 13L Vee 
7A 012 13F A14 2G NA# iN Vee 
78 011 12G A13 1G HOLD 13N Vee 
6A 010 13G A12 2F HLOA 118 Vss 
68 09 13H All 7N PEREa 2C Vss 
5A Os 12H AlO 7M 8USY# 10 Vss 
58 07 13J A9 8N ERROR# 1M Vss 
48 06 12J As 9M INTR 4N Vss 
4A 05 12K A7 8M NMI 9N Vss 
38 04 13K A6 6M RESET 11N Vss 
20 03 12L A5 28 Vee 2A Vss 
1E 02 12M A4 128 Vee 12A Vss 
2E 01 11M A3 1C Vee 18 Vss 
iF Do 10M A2 2M Vee 138 Vss 
9A A23 1K Al 3N Vee 13M Vss 
10A A22 2J 8LE# 5N Vee 2N Vss 
108 A21 2K 8HE# iON Vee 6N Vss 
12C A20 4M W/R# 1A ')Icc 12N Vss 
130 A19 3M O/C# 3A Vee 1L N/C 

4-37 



80376 

The following table lists a brief description of each pin on the 80376. The following definitions are used in 
these descriptions: 

# The named signal is active LOW. 
I Input signal. 
o Output signal. 
1/0 Input and Output signal. 

No electrical connection. 

Symbol Type Name and Function 

CLK2 I CLK2 provides the fundamental timing for the 80376. For additional 
information see Clock (page 33). 

RESET I RESET suspends any operation in progress and places the 80376 in a 
known reset state. See Interrupt Signals (page 38) for additional 
information. 

D15-DO 1/0 DATA BUS inputs data during memory, 110 and interrupt acknowledge 
read cycles and outputs data during memory and 1/0 write cycles. See 
Data Bus (page 34) for additional information. 

A23-A1 0 ADDRESS BUS outputs physical memory or port 1/0 addresses. See 
Address Bus (page 34) for additional information. 

W/R# 0 WRITE/READ is a bus cycle definition pin that distinguishes write 
cycles from read cycles. See Bus Cycle Definition Signals (page 35) 
for additional information. 

D/C# 0 DATA/CONTROL isa bus cycle definition pin that distinguishes data 
cycles, either memory or 1/0, from control cycles which are: interrupt 
acknowledge, halt, and instruction fetching. See Bus Cycle Definition 
Signals (page 35) for additional information. 

M/IO# 0 MEMORY I/O is a bus cycle definition pin that distinguishes memory 
cycles from input/output cycles. See Bus Cycle Definition Signals 
(page 35) for additional information. 

LOCK# 0 BUS LOCK is a bus cycle definition pin that indicates that other 
system bus masters are denied access to the system bus while it is 
active. See Bus Cycle Definition Signals (page 35) for additional 
information. 

ADS# 0 ADDRESS STATUS indicates that a valid bus cycle definition and 
address (W/R#, D/C#, M/IO#, BHE#, BLE# and A23"'"A1) are being 
driven at the 80376 pins. See Bus Control Signals (page 35) for 
additional information. 

NA# I NEXT ADDRESS is used to request address pipelining. See Bus 
Control Signals (page 35) for additional·information. 

READY# I BUS READY terminates the bus cycle. See Bus Control Signals 
(page 35) for additional information. 

BHE#, BLE# 0 BYTE ENABLES indicate which data bytes of the data bus take part in 
a bus cycle. See Address Bus (page 34) for additional information. 

HOLD I BUS HOLD REQUEST input allows another bus master ,to request 
control of the local bus. See Bus Arbitration Signals (page 36) for 
additional information. 

4-38 



intJ 80376 

Symbol Type Name and Function 
HLDA a BUS HOLD ACKNOWLEDGE output indicates that the 80376 has 

surrendered control of its local bus to another bus master. See Bus 
Arbitration Signals (page 36) for additional information. 

INTR I INTERRUPT REQUEST is a maskable input that signals the 80376 to 
suspend execution of the current program and execute an interrupt 
acknowledge function. See Interrupt Signals (page 38) for additional 
information. 

NMI I NON-MASKABLE INTERRUPT REQUEST is a non-maskable input 
that signals the 80376 to suspend execution of the current program 
and execute an interrupt acknowledge function. See Interrupt Signals 
(page 38) for additional information. . 

BUSY# I BUSY signals a busy condition from a processor extension. See 
Coprocessor Interface Signals (page 37) for additional information. 

ERROR# I ERROR signals an error condition from a processor extension. See 
Coprocessor Interface Signals (page 37) for additional information. 

PEREQ I PROCESSOR EXTENSION REQUEST indicates that the processor 
extension has data to be transferred by the 80376. See Coprocessor 
Interface Signals (page 37) for· additional information. 

N/C - NO CONNECT should always remain unconnected. Connection of a 
N/C pin may cause the processor to malfunction or be incompatible 
with future steppings of the 80376. 

Vee I SYSTEM POWER provides the + 5V nominal D.C. supply input. 

Vss I SYSTEM GROUND provides OV connection from which all inputs and 
outputs are measured. 

2.0 ARCHITECTURE OVERVIEW sists of the execution unit and instruction unit. The 
execution unit contains the eight 32-bit general reg­
isters which are used for both address calculation 
and data operations and a 64-bit barrel shifter used 
to speed shift, rotate, multiply, and divide operations. 
The instruction unit decodes the instruction opcodes 
and stores them in the decoded instruction queue 
for immediate use by the execution unit. 

The 80376 supports the protection mechanisms 
needed by sophisticated multitasking embedded 
systems and real-time operating systems. The use 
of these protection mechanisms is completely op­
tional. For embedded applications not needing pro­
tection, the 80376 can easily be configured to pro­
vide a 16 Mbyte physical address space. 

Instruction pipelining, high bus bandwidth, and a 
very high performance ALU ensure short average 
instruction execution times and high system 
throughput. The 80376 is capable of execution at 
sustained rates of 2.5-3.0 million instructions per 
second. 

The 80376 offers on-chip testability and debugging 
features. Four break point registers allow conditional 
or unconditional break point traps on code execution 
or data accesses for powerful debugging of even 
ROM based systems. Other testability features in­
clude self-test and tri-stating of output buffers during 
RESET. 

The Intel 80376 embedded processor consists of a 
central processing unit, a memory management unit 
and a bus interface. The central processing unit con-

4-39 

The Memory Management Unit (MMU) consists of a 
segmentation and protection unit. Segmentation al­
lows the managing of the logical address space by 
providing an extra addressing component, one that 
allows easy code and data relocatability, and effi­
cient sharing. 

The protection unit provides four levels of protection 
for isolating and protecting applications and the op­
erating system from each other. The hardware en­
forced protection allows the design of systems with 
a high degree of integrity and simplifies debugging. 

Finally, to facilitate high performance system hard­
ware designs, the 80376 bus interface offers ad­
dress pipe lining and dire9t Byte Enable signals for 
each byte of the data bus. 



1"'81 80376 

2.1 Register Set 

The 80376 has twenty·nine registers as shown in Figure 2.1. These registers are grouped into the following six 
categories: . 

31 16 15 87 

AH ~ 

BH B 

CH C 

DH C 

SI 

01 

BP 

SP 

15 

31 

31 

I 
47 16 15 

o 
AL 

BL 

CL 

DL 

0 

O' 

£AX 

EBX 

Eex 

EDX 

ESI 

EDI 

EBP 

ESP 

cs 
SS 

OS 

ES 

rs 

GS 

I EFlAGS 

EIP 

0 

I CRO 

0 

63 I~ :: 48~1 ---+-1----1 
31 0 

LINEAR BREAKPOINT ADDRESS 0 ORO 

LINEAR BREAKPOINT ADDRESS 1 DR1 

LINEAR BREAKPOINT ADDRESS 2 DR2 

DR3 

DR4 

DRS 

DR6 

BREAKPOINT CONTROL DR7 

IZ::J - INTEL RESERVED DO NOT USE 
240182-5 

GENERAL PURPOSE 
REGISTERS 

SEGMENT 
REGISTERS 

] FLAGS AND 
INSTRUCTION 
POINTER 

=:J CONTROL 
REGISTER 

J~~ REGISTERS 

DEBUG 
REGISTERS 

Figure 2.1. 80376 Base Architecture Registers 

4·40 

240182-47 



80376 

General Registers: The eight 32-bit general pur­
pose registers are used to contain arithmetic and 
logical operands. Four of these (EAX, EBX, ECX and 
EDX) can be used either in their entirety as 32-bit 
registers, as 16-bit registers, or split into pairs of 
separate 8-bit registers. 

Segment Registers: Six 16-bit special purpose reg­
isters select, at any given time, the segments of 
memory that are immediately addressable for code, 
stack, and data. 

Flags and Instruction Pointer Registers: These 
two 32-bit special purpose registers in Figure 2.1 
record or control certain aspects of the 80376 proc­
essor state. The EFLAGS register includes status 
and control bits that are used to reflect the outcome 
of many instructions and modify the semantics of 
some instructions. The Instruction POinter, called 
EIP, is 32 bits wide. The Instruction Pointer controls 
instruction fetching and the processor automatically 
increments it after executing an instruction. 

Control Register: The 32-bit control register, CRO, 
is used to control Coprocessor Emulation. 

SPECIAL FIELDS: 

System Address Registers: These four special 
registers reference the tables or segments support­
ed by the 80376/80386 protection model. These ta­
bles or segments are: 

GDTR (Global Descriptor Table Register), 
IDTR (Interrupt Descriptor Table Register), 
LDTR (Local Descriptor Table Register), 
TR (Task State Segment Register). 

Debug Registers: The six programmer accessible 
debug registers provide on-chip support for debug­
ging. The use of the debug registers is described in 
Section 2.11 Debugging Support. 

EFLAGS REGISTER 

The flag Register is a 32-bit register named 
EFLAGS. The defined bits and bit fields within 
EFLAGS, shown in Figure 2.2, control certain opera­
tions and indicate the status of the 80376 processor. 
The function of the flag bits is given in Table 2.1. 

STATUS FLAGS: 

,--------------OVER,LOW 

r---------SIGN 

r--------ZERO 

,------ AUX CARRY 

CONTROL FLAGS 

"-----TRAP 

"------ INTERRUPT 
L-_____ DIRECTION 

PARITY 

CARRY 

"--------------RESUME 

MONITOR COPROCESSOR _____ --, 

EMULATE COPROCESSOR ____ .., 

TASK SWITCHED ___ .., 

f22I - INTEL RESERVED DO NOT USE 
240182-5 

Figure 2.2. Status and Control Register Bit Functions 

4-41 

240182-3 

, eRO 
o 
240182-4 



111'eI 80376 

Table 2.1. Flag Definitions 

Bit Position Name Function 
0 CF Carry Flag-Set on high-order bit carry or borrow; cleared otherwise. 
2 PF Parity Flag-Set if low-order 8 bits of result contain an even number 

of 1-bits; cleared otherwise. 
4 AF Auxiliary Carry Flag-Set on carry from or borrow to the low order 

four bits of AL; cleared otherwise. 
6 ZF Zero Flag-Set if result is zero; cleared otherwise. 
7 SF Sign Flag-Set equal to high-order bit of result (0 if positive, 1 if 

negative). 
8 TF Single Step Flag-Once set, a single step interrupt occurs after the 

next instruction executes. TF is cleared by the single step interrupt. 
9 IF Interrupt-Enable Flag-When set, external interrupts signaled on the 

INTR pin will cause the CPU to transfer control to an interrupt vector 
specified location. 

10 OF Direction Flag-Causes string instructions to auto-increment (default) 
the appropriate index registers when cleared. Setting OF causes auto-
decrement. 

11 OF Overflow Flag-Set if the operation resulted in a carry/borrow into 
the sign bit (high-order bit) of the result but did not result in a 
carry/borrow out of the high-order bit or vice-versa. 

12,13 10PL I/O Privilege Level-Indicates the maximum CPL permitted to 
execute I/O instructions without generating an exception 13 fault or 
consulting the I/O permission bit map. It also indicates the maximum 
CPL value allowing alteration of the IF bit. 

14 NT Nested Task-Indicates that the execution of the current task is 
nested within another task (see Task Switching). 

16 RF Resume Flag-Used in conjunction with debug register breakpoints. It 
is checked at instruction boundaries before breakpoint processing. If 
set, any debug fault is ignored on the next instruction. It is reset at the 
successful completion of any instruction except IRET, POPF, and 
those instructions causing task switches. 

CONTROL REGISTER 

The 80376 has a 32-bit control register called CRO that is used to control coprocessor emulation. This register 
is shown in Figures 2.1 and 2.2. The defined CRO bits are described in Table 2.2. 

Table 2.2. CRO Definitions 

Bit Position Name Function 
1 MP Monitor Coprocessor Extension-Allows WAIT instructions to cause 

a processor extension not present exception (number 7). 
2 EM Emulate Processor Extension-When set, this bit causes a 

processor extension not present exception (number 7) on ESC 
instructions to allow processor extension emulation. 

3 TS Task Switched-When set, this bit indicates the next instruction using 
a processor extension will cause exception 7, allowing software to test 
whether the current processor extension context belongs to the 
current task (see Task Switching). 

4-42 



inter 80376 

2.2 Instruction Set 

The instruction set is divided into nine categories of 
operations: 

Data Transfer 
Arithmetic 
Shift/Rotate 
String Manipulation 
Bit Manipulation 
Control Transfer 
High Level Language Support 
Operating System Support 
Processor Control 

These 80376 processor instructions are listed in Ta­
ble 8.1 80376 Instruction Set and Clock Count 
Summary. 

All 80376 processor instructions operate on either 0, 
1, 2 or 3 operands; an operand resides in a register, 
in the instruction itself, or in memory. Most zero op­
erand instructions (e.g. CLI, STI) take only one byte. 
One operand instructions generally are two bytes 
long. The average instruction is 3.2 bytes long. 
Since the 80376 has a 16-byte prefetch instruction 
queue an average of 5 instructions can be pre­
fetched. The use of two operands permits the follow­
ing types of common instructions: 

Register to Register 
Memory to Register 
Immediate to Register 
Memory to Memory 
Register to Memory 
Immediate to Memory 

The operands are either 8-, 16- or 32-bit long. 

4-43 

2.3 Memory Organization 

Memory on the 80376 is divided into 8-bit 9uantitie.s 
(bytes), 16-bit quantities (words), and 32-blt qua~tl­
ties (dwords). Words are stored in two consecutive 
bytes in memory with the low-order byte at the low­
est address. Dwords are stored in four consecutive 
bytes in memory with the low-order byte at the low­
est address. The address of a word or Dword is the 
byte address of the low-order byte. 

In addition to these basic data types the 80376 proc­
essor supports segments. Memory can be divi~ed 
up into one or more variable length segments, which 
can be shared between programs. 

ADDRESS SPACES 

The 80376 has three types of address spaces: 
logical, linear, an? physical. A logi~al address 
(also known as a virtual address) consists of a se­
lector and an offset. A selector is the contents of a 
segment register. An offset is formed by summing all 
of the addressing components (BASE, INDEX, and 
DISPLACEMENT), discussed in Section 2.4 
Addressing Modes, into an effective address. 

Every selector has a logical base address associat­
ed with it that can be up to 32 bits in length. This 32-
bit logical base address is added to either a 32-bit 
offset address or a 16-bit offset address (by using 
the address length prefix )to form a final 32-bit 
linear address. This final linear address is then trun­
cated so that only the lower 24 bits of this address 
are used to address the 16 Mbytes physical memory 
address space. The logical base address is stored 
in one of two operating system tables (Le. the Local 
Descriptor Table or Global Descriptor Table). 

Figure 2.3 shows the relationship between the vari­
ous address spaces. 



80376 

EFFECTIVE ADDRESS CALCULATION 

OFFFFFFH l Base I 15 0 
I , ... ~t -----------------------. 

I ~ 32 32 
I 16 Mbyte 

Index I Physical 
1.2.4.8 • ! Memory 

24 ~~ I Displacement ~ 
ProtectIon Descriptor 

BHE#. Table , 
(GOT or LOT) 

, 
BLE#. 

'A23-A1 

!:I~~~ A.::e!s_ 
Base o 

!:1~~~A.::e!,,-
Base 

Iselector IRPLl 14 
'-- !:I~~~":.":e!,,-

Base .Ef--

MEMORY MANAGEMENT UNIT -----------------------
240182-6 

Figure 2_3. Address Translation 

SEGMENT REGISTER USAGE 

The main data structure used to organize memory is 
the segment. On the 80376, segments are variable 
sized blocks of linear addresses which have certain 
attributes associated with them. There are two main 
types of segments, code and data. The simplest use 
of segments is to have one code and data segment. 
Each segment is 16 Mbytes in size overlapping each 
other. This allows code and data to be directly ad­
dressed by the same offset. 

In order to provide compact instruction encoding 
and increase processor performance, instructions 
do not need to explicitly specify which segment reg-

4-44 

ister is used. The segment register is automatically 
chosen according to the rules of Table 2.3 (Segment 
Register Selection Rules). In general, data refer­
ences use the selector contained in the OS register, 
stack references use the SS register and instruction 
fetches use the CS register. The contents of the In­
struction Pointer provide the offset. Special segment 
override prefixes allow the explicit use of a given 
segment register, and override the implicit rules list­
ed in Table 2.3. The override prefixes also allow th.e 
use of the ES, FS and GS segment registers. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
segments could have the base address set to zero. 
Further details of segmentation are discussed in 
Section 3.0 Architecture. 



80376 

Table 2.3. Segment Register Selection Rules 

Type of 
Memory Reference 

Code Fetch 

Destination of PUSH, PUSHF, INT, 
CALL, PUSHA Instructions 

Source of POP, POPA, POPF, IRET, 
RET Instructions 

Destination of STOS, 
MOVS, REP STOS, 
REP MOVS Instructions 
(01 is Base Register) 

Other Data References, 
with Effective Address 
Using Base Register of: 

[EAX] 
[EBX] 
[ECX] 
[EOX] 
[ESI] 
[EOI] 
[EBP] 
[ESP] 

2.4 Addressing Modes 

The 80376 provides a total of 8 addressing modes 
for instructions to specify operands. The addressing 
modes are optimized to allow the efficient execution 
of high level languages such as C and FORTRAN, 
and they cover the vast majority of data references 
needed by high-level languages. 

Two of the addressing modes provide for instruc­
tions that operate on register or immediate oper­
ands: 

Register Operand Mode: The operand is located in 
one of the 8-, 16- or 32-bit general registers. 

Immediate Operand Mode: The operand is includ­
ed in the instruction as part of the opcode. 

The remaining 6 modes provide a mechanism for 
specifying the effective address of an operand. The 
linear address consists of two components: the seg-

Implied (Default) Segment Override 
Segment Use Prefixes Possible 

4-45 

CS None 

SS None 

SS None 

ES None 

OS CS, SS, ES, FS, GS 
OS CS, S8, ES, FS, GS 
OS CS, SS, ES, FS, GS 
OS CS, S8, ES, FS, GS 
OS CS, SS, ES, FS, GS 
OS CS, S8, ES, FS, GS 
SS CS, SS, ES, FS, GS 
SS CS, SS, ES, FS, GS 

ment base address and an effective address. The 
effective address is calculated by summing any 
combination of the following three address elements 
(see Figure 2.3): 

DISPLACEMENT: an 8-, 16- or 32-bit immediate val­
ue following the instruction. 

BASE: The contents of any general purpose regis­
ter. The base registers are generally used by compil­
ers to point to the start of the local variable area. 
Note that if the Address Length Prefix is used, only 
BX and BP can be used as a BASE register. . 

INDEX: The contents of any general purpose regis­
ter except for ESP. The index registers are used to 
access the elements of an array, or a string of char­
acters. The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. The scaled index 
is especially useful for accessing arrays or struc­
tures. Note that if the Address Length Prefix is 
used, no Scaling is available and only the registers 
SI and 01 can be used to INDEX. 



80376 

Combinations of these 3 components make up the 6 
additional addressing modes. There is no perform­
ance penalty for using any of these addressing com­
binations, since the effective address calculation is 
pipelined with the execution of other instructions. 
The one exception is the simultaneous use of BASE 
and INDEX components which requires one addi­
tional clock. 

As shown in Figure 2.4, the effective address (EA) of 
an operand is calculated according to the following 
formula: 

EA = BASER~ter + (INDEXRegisterXscaling) + 
DISPLACEMENT 

1. Direct Mode: The operand's offset is contained 
as part of the instruction as an 8-, 16- or 32-bit 
DISPLACEMENT. 

SEGMENT REGISTER 

SS 
GS 

FS 
ES 

OS 

2. Register Indirect Mode: A BASE register con­
tains the address of the operand. 

3. Based Mode: A BASE register's contents is add­
ed to a DISPLACEMENT to form the operand's 
offset. 

4. Scaled Index Mode: An INDEX register's con­
tents is multiplied by a SCALING factor which is 
added to a DISPLACEMENT to form the oper­
and's offset. 

5. Based Scaled Index Mode: The contents of an 
INDEX register is multiplied by a SCALING factor 
and the result is added to the contents of a BASE 
register to obtain the operand's offset. 

6. Based Scaled Index Mode with Displacement: 
The contents of an INDEX register are multiplied 
by a SCALING factor, and the result is added to 
the contents of a BASE register and a DISPLACE­
MENT to form the operand's offset. 

+J+------t 

DESCRIPTOR REGISTERS 

SS 
GS 

FS 
ES 

OS 

ACCESS RIGHTS CS 

LIMIT 

BASE ADDRESS 

EFFECTIVE 
ADORE SS 

LINEAR 
ADDRESS 

~ 

------~ 

TARGET ADDRESS 

SEGMENT BASE ADDRESS 

Figure 2.4. Addressing Mode Calculations 

4-46 

/ 
"'\ 

SEGMENT 
LIMIT 

SELECTED 
SEGMENT 

240182-7 



80376 

GENERATING 16-BIT ADDRESSES biers. The Operand Length and Address Length Pre­
fixes can be applied separately or in combination to 
any instruction. The 80376 executes code with a default length for 

operands and addresses of 32 bits. The 80376 is 
also able to execute operands and addresses of 16 
bits. This is specified through the use of override 
prefixes. Two prefixes, the Operand Length Prefix 
and the Address Length Prefix, override the de­
fault 32-bit length on an individual instruction basis. 
These prefixes are automatically added by assem-

The 80376 normally executes 32-bit code and uses 
either 8- or 32-bit displacements, and any register 
can be used as based or index registers. When exe­
cuting16-bit code (by prefix overrides), the displace­
ments are either 8 or 16 bits, and the base and index 
register conform to the 16-bit model. Table 2.4 illus­
trates the differences. 

Table 2.4. BASE and INDEX Registers for 16- and 32-Blt Addresses 

16-Blt Addressing 32-Blt Addressing 

BASE REGISTER BX, BP Any 32-Bit GP Register 

INDEX REGISTER SI,DI Any 32-Bit GP Register 
except ESP 

SCALE FACTOR None 1,2,4,8 

DISPLACMENT 0,8,16 Bits 0,8,32 Bits 

2.5 Data Types 

The 80376 supports all of the data types commonly used in high level languages: 

Bit: 

Bit Field: 

Bit String: 

Byte: 

Unsigned Byte: 

Integer (Word): 

Long Integer (Double Word): 

Unsigned Integer (Word): 

Unsigned Long Integer 
(Double Word): 

Signed Quad Word: 

Unsigned Quad Word: 

Pointer: 

Long Pointer: 

Char: 

String: 

BCD: 

Packed BCD: 

A single bit quantity. 

A group of up to 32 contiguous bits, which spans a maximum of four 
bytes. 

A set of contiguous bits, on the 80376 bit strings can be up to 16 Mbits 
long. 

A signed 8-bit quantity. 

An unsigned 8-bit quantity. 

A signed 16-bit quantity. 

A signed 32-bit quantity. All operations assume a 2's complement 
representation. 

An unsigned 16-bit quantity. 

An unsigned 32-bit quantity. 

A signed 64-bit quantity. 

An unsigned 64-bit quantity. 

A 16- or 32-bit offset only quantity which indirectly references another 
memory location. 

A full pointer which consists of a 16-bit segment selector and either a 
16- or 32-bit offset. 

A byte representation of an ASCII Alphanumeric or control character. 

A contiguous sequence of bytes, words or dwords. A string may 
contain between 1 byte and 16 Mbytes. 

A byte (unpacked) representation of decimal digits 0-9. 

A byte (packed) representation of two decimal digits 0-9 storing one 
digit in each nibble. 

4-47 



80376 

When the 80376 is coupled with a numerics Coprocessor such as the 80387SX then the following 
common Floating Point types are supported. 

Floating Point: A signed 32-, 64- or 80-bit real number representation. Floating point 
numbers are supported by the 80387SX numerics coprocessor. 

Figure 2.5 illustrates the data types supported by the 80376 processor and the 80387SX coprocessor. 

7 0 
SIGNED rf"T"'T1 

BYTEU-:......J 
SIGN BIT.JL---j 

MAGNITUDE 

7 0 
UNSIGNED IT"'J'ITIl 

BYTE L..:.-.J 
L-....J 
MAGNITUDE 

+1 0 
1514 87 0 

s~~~g II iii iii Iii iii i " 
SIGN BIT.J .. 'L...;;M..;;S;;..B __ --' 

MAGNITUDE 

+1 0 
15 0 

UNS~~~~ I' iii iii Iii iii i ,I I , , 
MAGNITUDE 

+N +1 o 
7 0 7 07. 0 

BINARY IT"'J'ITIl Ii" I ii i I ii 'I i Ii I 
CODED L..:.-.J ••• . . . 

OECIMAL BCD . L-B-C-D......L.-BC-D.....J 

(BCD) DIGIT N DIGIT 1 DIGIT 0 

+N +1 o 
7. 0 7 07 0 

ASCIIL!:1 ••• 1"'Iii'I'i1Ii1" 
ASCII ASCII ASCII 

CHARACTERN CHARACTER, CHARACTERo 

+N +' o 
7 0 7 07 0 

PAc~~gL!:1 ••• 1''' I Ii i I Iii I Ii " 
L...J L...J 
MOST LEAST 
SIGNlrlCANT DIGIT SIGNIFICANT DIGIT 

+N +1 0 
7/15 0 7/15 07/15 0 

ST:Y.!~ L!:1 ••• 1''' I ii i I Ii i I Ii 1.1 

+3 +2 +1 0 
31 1615 0 

+2 GIGABITS -2 GIGA~~ 

SIGNED DO~~~~ II iii iii Iii ili.1 i I ~ ii", iii iii Iii i , STRI~I~ ..... 11I ..... 1I __ ..... II_...i7\ \""-__ ..... III~1I 
SIGN BIT.J .. ,L...;;M..;;S;;..B _______ ---' BITO 

MAGNITUDE 

+3 +2 -. +1 o +3 +2 +1 0 
31 0 

UNSIGNED Do~g~~ Iii iii iii iii Iii iii iii iii Iii iii iii 31 0 
i:..?~~liiiliiiliiiliiiliiili'iliiiliiil 

POINTER'" --.... --.... --... ---'. 
I , 

MAGNITUDE OFFSET 

+7 +6 +5 +5 +3 +2 +1 0 +5 +4 +3 +2 +1 o 
63 4847 3231 1615 0 ~ 0 

SIGNED ~g~g II " , I 4~~~I~li Ii I i Ii I Ii 'I' Ii I iii I Ii i I Ii i I Ii" iii Iii iii iii ii" 

POINTER . 
SIGN BIT.J ... IL...;;M..;;S;;..B _______ ---' I I . , 

MAGNITUDE SELECTOR 

+9 .+8 +7 +6 +5 +4 +3 +2 +1 0 
n 0 

rL~~T~~ ':""--1-'--"'-"_·-'1 __ 1....-&..-....... ""-_-'1 
SIGN BIT.J .. I ___ ... I ________ --' 

EXPONENT MAGNITUDE 

+5 +4 +3 +2 + 1 0 

BIT3~~~~li iii iii I Ii iii' iii iii iii Iii iii iii iii Iii 'I iii Iii " 
I, BIT FIELD ·1 

1 TO 32 BITS 

Figure 2.5. 80376 Supported Data Types 

4-48 

OFFSET 

·SUPPORTED BY 80387SX 
NUMERIC DATA 
COPROCESSOR 

'2401B2-B 



inter 80376 

2.6 1/0 Space 

The 80376 has two distinct physical address 
spaces: physical memory and I/O. Generally, pe­
ripherals are placed in I/O space although the 
80376 also supports memory-mapped peripherals. 
The I/O space consists of 64 Kbytes which can be 
divided into 64K 8-bit ports, 32K 16-bit ports, or any 
combination of ports which add to no more than 64 
Kbytes. The MIIO# pin acts as an additional ad­
dress line, thus allowing the system designer to easi­
ly determine which address space the processor is 
accessing. Note that the I/O address refers to a 
physical address. 

The I/O ports are accessed by the IN and OUT in­
structions, with the port address supplied as an im­
mediate 8-bit constant in the instruction or in the OX 
register. All 8-bit and 16-bit port addresses are zero 
extended on the upper address lines. The I/O in­
structions cause the M/IO# pin to be driven LOW. 
I/O port addresses 00F8H through OOFFH are re­
served for use by Intel. 

2.7 Interrupts and Exceptions 

Interrupts and exceptions alter the normal program 
flow in order to handle external events, report errors 
or exceptional conditons. The difference between in­
terrupts and exceptions is that interrupts are used to 
handle asynchronous external events while excep­
tions handle instruction faults. Although a program 
can generate a software interrupt via an INT N in­
struction, the processor treats software interrupts as 
exceptions. 

Hardware interrupts occur as the result of an exter­
nal event and are classified into two types: maskable 
or non-maskable. Interrupts are serviced after the 
execution of the current instruction. After the inter­
rupt handler is finished servicing the interrupt, exe­
cution proceeds with the instruction immediately 
after the interrupted instruction. 

Exceptions are classified as faults, traps, or aborts 
depending on the way they are reported, and wheth­
er or not restart of the instruction causing the excep­
tion is suported. Faults are exceptions that are de­
tected and serviced before the execution of the 
faulting instruction. Traps are exceptions that are 
reported immediately after the execution of the in­
struction which caused the problem. Aborts are ex­
ceptions which do not permit the precise location of 
the instruction causing the exception to be deter­
mined. Thus, when an interrupt service routine has 
been completed, execution proceeds from the in-

struction immediately following the interrupted in­
struction. On the other hand the return address from 
an exception/fault routine will always point at the 
instruction causing the exception and include any 
leading instruction prefixes. Table 2.5 summarizes 
the possible interrupts for the 80376 and shows 
where the return address points to. 

The 80376 has the ability to handle up to 256 differ­
ent interrupts/exceptions. In order to service the in­
terrupts, a table with up to 256 interrupt vectors 
must be defined. The interrupt vectors are simply 
pointers to the appropriate interrupt service routine. 
The interrupt vectors are 8-byte quantities, which are 
put in an Interrupt Descriptor Table. Of the 256 pos­
sible interrupts, 32 are reserved for use by Intel and 
the remaining 224 are free to be used by the system 
designer. 

INTERRUPT PROCESSING 

When an interrupt occurs the following actions hap­
pen. First, the current program address and the 
Flags are saved on the stack to allow resumption of 
the interrupted program. Next, an 8-bit vector is sup­
plied to the 80376 which identifies the appropriate 
entry in the interrupt table. The table contains either 
an Interrupt Gate, a Trap Gate or a Task Gate that 
will pOint to an interrupt procedure or task. The user 
supplied interrupt service routine is executed. Final­
ly, when an IRET instruction is executed the old 
processor state is restored' and program execution 
resumes at the appropriate instruction. 

The 8-bit interrupt vector is supplied to the 80376 in 
several different ways: exceptions supply the inter­
rupt vector internally; software INT instructions con­
tain or imply the vector; maskable hardware inter­
rupts supply the 8-bit vector via the interrupt ac­
knowledge bus sequence. Non-Maskable hardware 
interrupts are assigned to interrupt vector 2. 

Maskable Interrupt 

. Maskable interrupts are the most common way to 
respond to asynchronous external hardware events. 
A hardware interrupt occurs when the INTR is pulled 
HIGH and the Interrupt Flag bit (IF) is enabled. The 
processor only responds to interrupts between in­
structions (string instructions have an "interrupt win­
dow" between memory moves which allows inter­
rupts during long string moves). When an interrupt 
occurs the processor reads an 8-bit vector supplied 
by the hardware which identifies the source of the 
interrupt (one of 224 user defined interrupts). 

4-49 



80376 

Table 2.5. Interrupt Vector Assignments 

Instruction Which 
Return Address 

Function. 
Interrupt 

Can Cause 
Points to 

Type 
Number Faulting 

Exception 
Instruction 

Divide Error 0 DIV,IDIV Yes FAULT 

l::Jebug Exception 1 Any Instruction Yes TRAp· 

NMllnterrupt 2 INT20rNMI No NMI 

One-Byte Interrupt 3 INT No TRAP 

Interrupt on Overflow 4 INTO No TRAP 

Array Bounds Check 5 BOUND Yes FAULT 

Invalid OP-Code 6 Any Illegal Instruction Yes FAULT 

Device Not Available 7 ESC,WAIT Yes FAULT 

Double Fault 
8 

Any Instruction That Can ABORT 
Generate an Exception 

Coprocessor Segment Overrun 9 ESC No ABORT 

InvalidTSS 10 JMP, CALL, IRET, INT Yes FAULT 

Segment Not Present 11 Segment Register Instructions Yes FAULT 

Stack Fault 12 Stack References Yes FAULT 

General Protection Fault 13 Any Memory Reference Yes FAULT 

Intel Reserved 14-15 - - -
Coprocessor Error 16 ESC,WAIT Yes FAULT 

Intel Reserved 17-32 

Two-Byte Interrupt 0-255 INTn No TRAP 
• Some debug exceptions may report both traps on the previous instruction, and faults on the next InstructIon. 

Interrupts through Interrupt Gates automatically re­
set IF, disabling INTR requests. Interrupts through 
Trap Gates leave the state of the IF bit unchanged. 
Interrupts through a Task Gate change the IF bit ac­
cording to the image of the EFLAGs register in the 
task's Task State Segment (TSS). When an IRET 
instruction is executed, the original state of the IF bit 
is restored. 

tion is executed or the processor is reset. If NMI 
occurs while currently servicing an NMI, its presence 
will be saved for servicing after executing the first 
IRET instruction. The disabling of INTR requests de­
pends on the gate in lOT location 2. 

Non-Maskable . Interrupt 

Non-maskable interrupts provide a method of servic­
ing very high priority interrupts. When the NMI input 
is pulled HIGH it causes an interrupt with an internal­
ly supplied vector value of 2. Unlike a normal hard­
ware interrupt no interrupt acknowledgement se­
quence is performed for an NMI. 

While executing the NMI servicing procedure, the 
80376 will not service any further NMI request, or 
INT requests, until an interrupt return (IRET) instruc-

4-50 

Software Interrupts 

A third type of interrupt/exception for the 80376 is 
the software interrupt. An INT n instruction causes 
the processor to execute the interrupt service rou­
tine pointed to by the nth vector in the interrupt table. 

A special case of the two byte software interrupt 
INT n is the one byte INT 3, or breakpoint interrupt. 
By inserting this one byte instruction in a program, 
the user can set breakpoints in his program as a 
debugging tool. 



inter 80376 

A final type of software interrupt, is the single step 
interrupt. It is discussed in Single-Step Trap (page 
22). 

INTERRUPT AND EXCEPTION PRIORITIES 

Interrupts are externally-generated events. Maska­
ble Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on the NMI input) are recognized at in­
struction boundaries. When NMI and maskable 
INTR are both recognized at the same instruction 
boundary, the 80376 invokes the NMI service rou­
tine first. If, after the NMI service routine has been 
invoked, maskable interrupts are still enabled, then 
the 80376 will invoke the appropriate interrupt serv­
ice routine. 

As the 80376 executes instructions, it follows a con­
sistent cycle in checking for exceptions, as shown in 
Table 2.6. This cycle is repeated as each instruction 
is executed, and occurs in parallel with instruction 
decoding and execution. 

INSTRUCTION RESTART 

The 80376 fully supports restarting all instructions 
after faults. If an exception is detected in the instruc­
tion to be executed (exception categories 4 through 
9 in Table 2.6), the 80376 device invokes the appro­
priate exception service routine. The 80376 is in a 
state that permits restart of the instruction. 

DOUBLE FAULT 

A Double fault (exception 8) results when the proc­
essor attempts to invoke an exception service rou­
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing so, detects an exception. 

2.8 Reset and Initialization 

When the processor is Reset the registers have the 
values shown in Table 2.7. The 80376 will then start 
executing instructions near the top of physical mem­
ory, at location OFFFFFOH. A short JMP should be 
executed within the segment defined for power-up 
(see Table 2.7). The GDT should then be initialized 
for a start-up data and code segment followed by a 
far JMP that will load the segment descriptor cache 
with the new descriptor values. The IDT table, after 
reset, is located at physical address OH, with a limit 
of 256 entries. 

RESET forces the 80376 to terminate all execution 
and local bus activity. No instruction execution or 
bus activity will occur as long as Reset is active. 
Between 350 and 450 CLK2 periods after Reset be­
comes inactive, the 80376 will start executing in­
structions at the top of physical memory. 

Table 2.6. Sequence of Exception Checking 

Consider the case of the 80376 having just completed an instruction. It then performs the following checks 
before reaching the point where the next instruction is completed: 

1. Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or Data 
Breakpoints set in the Debug Registers). 

2. Check for external NMI and INTR. 

3. Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the 
Debug Registers for the next instruction). 

4. Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions 11 or 
13). 

5. Check for Faults decoding the next instruction (exception 6 if illegal opcode; or exception 13 if 
instruction is longer than 15 bytes, or privilege violation (I.e. not at IOPL or at CPL = 0). 

6. If WAIT opcode, check if TS = 1 and MP = 1 (exception 7 if both are 1). 

7. If ESCape opcode for numeric coprocessor, check if EM = 1 or TS = 1 (exception 7 if either are 1). 

8. If WAIT opcode or ESCape opcode for numeric coprocessor, check ERROR# input signal (excep­
tion 16 if ERROR # input is asserted). 

9. Check for Segmentation Faults that prevent transferring the entire memory quantity (exceptions 11, 
12, 13). 

4-51 



80376 

Table 2.7. Register Values after Reset 

Flag Word (EFLAGS) uuuuOO02H (Note 1) 

Machine Status Word (CRO) uuuuuuu1H (Note 2) 

I nstruction Pointer (EI P) OOOOFFFOH 

Code Segment (CS) FOOOH (Note 3) 

Data Segment (OS) OOOOH (Note 4) 

Stack Segment (SS) OOOOH 

Extra Segment (ES) OOOOH (Note 4) 

Extra Segment (FS) OOOOH 

Extra Segment (GS) OOOOH 

EAX Register OOOOH (Note 5) 

EOX Register Component and Stepping 10 (Note 6) 

All Other Registers Undefined (Note 7) 

NOTES: 
1. EFLAG Register. The upper 14 bits of the EFLAGS register are undefined, all defined 
flag bits are zero. 
2. CRO: The defined 4 bits in the CRO is equal to 1 H. 
3. The Code Segment Register (CS) will have its Base Address set to OFFFFOOOOH and 
Limit set to OFFFFH. 
4. The Data and Extra Segment Registers (DS and ES) will have their Base Address set 
to OOOOOOOOOH and Limit set to OFFFFH. 
5. If self-test is selected, the EAX should contain a 0 value. If a value of 0 is not found 
the self-test has detected a flaw in the part. 
6. EDX register always holds component and stepping identifier. 
7. All unidentified bits are Intel Reserved and should not be used. 

2.9 Initialization 

Because the 80376 processor starts executing in protected mode, certain precautions need be taken during 
initialization. Before any far jumps can take place the GOT and/or LOT tables need to be setup and their 
respective registers loaded. Before interrupts can be initialized the lOT table must be setup and the 10TR must 
be loaded. The example code is shown below: 

**************************************************************** 

This is an example of startup code to put either an 80376, 
80386SX or 80386 into flat mode. All of memory is treated as 
Simple linear RAM. There are no interrupt routines. The 
Builder creates the GDT-alias and"IDT-alias and places them, 
by default, in GDT[l] and GDT[2]. Other entries in the GDT 
are specified in the Build file. After initialization it jumps 
to a C startup routine. To use this template, change this jmp 
address to that of your code, or make the label of your code 
·c_startup". 

This code was assembled and built using version 1.2 of the 
Intel RLL utilities and Intel 386ASM assembler. 

*** . This code was tested *** 

**************************************************************** 

4-52 



80376 

NAME FLAT name of the object module 

EXTRN c_startup:near this is the label jmped to after init 

pe_flag equ 1 
data_selc equ 20h ; assume code is GDT[3] , data GDT[4] 

SEGMENT ER PUBLIC USE32 ; Segment base at Of'fffff80h 

PUBLIC GDT_DESC 

dq ? 

PUBLIC START 

start: 
cld 
smsw bx 
test bl,l 
jnz pestart 

realstart 
db 66h 
mov eax,offset gdt_desc 
xor ebx,ebx 
mov bh,ah 
move bl,al 
db 67h 
db 66h 
19dt cs:[ebx] 
smsw ax 
or al,pe_flag 
lmsw ax 
jmp next 

pestart: 
mov ebx,offset gdt_desc 
xor eax,eax 
mov aX,bx 
19dt cs: [eax] 
xor ebx,ebx 
mov bl,data_selc 
mov ds,bx 
mov sS,bx 
mov es,bx 
mov fs,bx 
mov gs,bx 
jmp pejump 

next: 
xor ebx,ebx 
mov bl,data_selc 
mov ds,bx 
mov sS,bx 
mov es,bx 
mov fs,bx 
mov gS,bx 
db 66h 

pejump: 
jmp far ptr c_startup 

org 70h 
jmp short start 

INIT_CODE ENDS 
END 

clear direction flag 
check for processor (80376) at reset 
use SMSW rather than MOV for speed 

is an 80386 and in real mode 
force the next operand into 32-bit mode. 
move address of the GDT descriptor into eax 
clear ebx 
load 8 bits of address into bh 
load 8 bits of address into bl 

use the 32-bit form of LGDT to load 
the 32-bits of address into the GDTR 
go into protected mode (set PE bit) 

flush pre fetch queue 

low~r portion of address only 

initialize data selectors 
GDT[3] 

initialize data selectors 
GDT[3] 

for the 80386, need to make a 32-bit jump 

but the 80376 is already 32-bit. 

only if segment base is at Offffff80h 

4-53 



inter 80376 

This code should be linked into your application for boot,loadable code. The following build file illustrates how 
this is accomplished. 

FLAT; -- build program id , 

SEGMENT 

GATE 

*segments (dpl=O), 
_phantom_code_ (dpl=O), 
_phantom_data_ (dpl=O), 
iniLcode (base=OffffffSOh); 

g13 (entry:13, dpl=O, trap), 

Give all user segments a DPL of O. 
These two segments are created by 
the builder when the FLAT control is used. 
Put startup code at the reset vect~r area. 

i32 (entry:32, dpl=O, interrupt), 
trap gate disables interrupts 
interrupt gates doesn't 

TABLE 
-- create GDT 

GDT (LOCATION = GDT_DESC, 

ENTRY'= (3:_phantom_code_, 
4:_phantom_data_, 
5:code32, 

) ; 
TASK 

MAIN_TASK 
( 

6:data, 
7:init_code) 

DPL = 0, 
DATA = DATA, 

CODE ='main, 

STACKS = (DATA), 

NO INTENABLED, 
PRESENT ' 

) ; 

MEMORY 

In a buffer starting at GDT_DESC, 
BLD3S6 places the GDT base and 
GDT limit values. Buffer must be 
6 bytes long. The base and limit 

-- values are places in this buffer 
as two bytes of limit plus 
four bytes of base in the format 
required for use by the LGDT 
instruction. 

Explicitly place segment 
entries into the GDT. 

Task privilege level is 0.' 
Points to a segment that 
indicates initial DS value. 
Entry ppintis main, which 
must be a public id. 

Segment id points to stack 
segment. Sets the initial SS:ESP. 
Disable interrupts. 
Present bit in TSS set to 1. 

(RANGE = (EPROM = ROM(OffffSOOOh •• Offffffffh), 
DRAM = RAM(O •• Offffh)), 

ALLOCATE = (EPROM = (MAIN_TASK))); 

END 

asm3S6 flatsim.a3S debug 
asm3S6 application.a3S debug 
bnd3S6 application.obj,flatsim.obj nolo debug oj (application.bnd) 
bld3S6 application.bnd bf (flatsim.bld) bl flat 

Commands to assemble and build a boot-Ioadable application named "application.a3S". The initialization code 
is called "flatsim.a3S", and build file is called "application. bid". 

4-54 



intJ 80376 

2.10 Self· Test 

The 80376, like the 80386, has the capability to per· 
form -a self-test. The self-test checks the function of 
all of the Control ROM and most of the non-random 
logic of the part. Approximately one-half of the 
80376 can be tested during self-test. 

Self-Test is initiated on the 80376 when the RESET 
pin transitions from HIGH to LOW, and the BUSY# 
pin is LOW. The self-test takes about 220 clocks, or 
approximately 33 ms with a 16 MHz 80376 proces­
sor. At the completion of self-test the processor per­
forms reset and begins normal operation. The part 
has successfully passed self-test if the contents of 
the EAX register is zero. If the EAX register is not 
zero then the self-test has detected a flaw in the 
part. If self-test is not selected after reset, EAX may· 
be non-zero after reset. 

DEBUG REGISTERS 

2.11 Debugging Support 

The 80376 provides several features which simplify 
the debugging process. The three categories of on­
chip debugging aids are: 

1. The code execution breakpoint opcode (OCCH). 

2. The single-step capability provided by the TF bit 
in the flag register, and 

3. The code and data breakpoint capability provided 
by the Debug Registers DRO-3, DR6, and DR7. 

BREAKPOINT INSTRUCTION 

A single-byte software interrupt (Int 3) breakpoint in­
struction is available for use by software debuggers. 
The breakpoint opcode is OCCh, and generates an 
exception 3 trap when executed. 

BREAKPOINT 0 DEBUG FAULT/TRAP --------------------, 

BREAKPOINT 1 DEBUG FAULT/TRAP -----------------., 

BREAKPOINT 2 DEBUG FAULT/TRAP -----------------, 

BREAKPOINT 3 DEBUG FAULT/TRAP ----------------, 

REGISTER ACCESS FAULT -----.. 

SINGLE-STEP DEBUG TRAP ---, 

TASK SWITCH DEBUG TRAP 
DEBUG 
STATUS 

,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,,.,..,.,.,.,,.,..,.,.,.,,.,..,..,.,. ..... .,.,.,.,.,.,.,.,.,.,.,.,.~-r.lI:oor-lI ...... ,.,.,,.,..,.,.,.,,.,..,.,.,., ..... .,.,. ..... ..,....JTL..r-Lr.z..,REGISTER 

Gt,~tg~t ~:~~~g:~~ ~~:~t~: 1--------------, 
LOCAL EXACT BREAKPOINT ~ATCH -------, 

GLOBAL EXACT BREAKPOINT ~ATCH -------, 

GLOBAL DEBUG REGISTER ACCESS DETECT 

BREAKPOINT 
...--___ ...L.. ___ -, CONTROL 

DR7 

L.------------l[ LENI: BREAKPOINT LENGTH I 
RWI: ~E~ORY ACCESS QUALIFIER I 

240182-10 

I2ZI - INTEL RESERVED DO NOT USE 
240182-5 

Figure 2.6. Debug Registers 

4-55 



80376 

SINGLE-STEP TRAP 

If the single-step flag (TF, bit 8) in the EFLAG regis­
ter is found to be set at the end of an instruction, a 
single-step exception occurs. The single-step ex­
ception is auto vectored to exception number 1. 

The Debug Registers are an advanced debugging 
feature of the 80376. They allow data access break­
points as well as code execution breakpoints. Since 
the breakpoints are indicated by on-chip registers, 
an instruction execution breakpoint can be placed in 
ROM code or in code shared by several tasks, nei­
ther of which can be supported by the INT 3 break­
point opcode. 

The 80376 contains six Debug Registers, consisting 
of four breakpoint address registers and two break­
point control registers. Initially after reset, break­
points are in the disabled state; therefore, no break­
points will occur unless the debug registers are· 
programmed. Breakpoints set up in the Debug 
Registers are auto-vectored to exception 1. 
Figure 2.6 shows the breakpoint status and control. 
registers. 

48/32 BIT POINTER 

3.0 ARCHITECTURE 

The Intel 80376 Embedded Processor has a physi­
cal address space of 16 Mbytes (224 bytes) and al­
lows the running of virtual memory programs of al­
most unlimited size (16 Kbytes x 16 Mbytes or 
256 Gbytes (238 bytes». In addition the 80376 pro­
vides a sophisticated memory management and a 
hardware-assisted protection mechanism. 

3.1 Addressing Mechanism 

The 80376 uses two components to form the logical 
address, a 16-bit selector which determines the lin- . 
ear base address of a segment, and a 32-bit effec­
tive address. The selector is used to specify an 
index into an operating system defined table (see 
Figure 3.1). The table contains the 32-bit base ad­
dress of a given segment. The linear address is 
formed by adding the base address obtained from 
the table to the 32-bit effective address. This value 
is truncated to 24 bits to form the physical address, 
which is then placed on the address bus. 

SEGMENT LIMIT 

~--'o.. ~ MEMORY OPERAND 

16 

ACCESS RIGHTS 

LIMIT 

BASE ADDRESS 

SEGMENT 
DESCRIPTOR 

32 

SEGMENT BASE 
ADDRESS 

Figure 3.1. Address Calculation 

4-56 

SELECTED 
SEGMENT 

240182-11 



intJ 80376 

3.2 Segmentation 

Segmentation is one method of memory manage­
ment and provides the basis for protection in the 
80376. Segments are used to encapsulate regions 
of memory which have common attributes. For ex­
ample, all of the code of a given program could be 
contained in a segment, or an operating system ta­
ble. may reside in a segment. All information about 
each segment, is stored in an 8-byte data structure 
called a descriptor. All of the descriptors in a system 
are contained in tables recognized by hardware. 

TERMINOLOGY 

The following terms are used throughout the discus­
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level 0 is the most privileged 
level and level 3 is the least privileged. 

RPL: Requestor Privilege Level-The privilege 
level of the original supplier of the selector. 
RPL is determined by the least two significant 
bits of a selector. 

DPL: Descriptor Privilege Level-This is the least 
privileged level at which a task may access 
that descriptor (and the segment associated 
with that descriptor). Descriptor Privilege Lev­
el is determined by bits 6:5 in the Access 
Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level 
at which a task is currently executing, which 
equals the privilege level of the code seg­
ment being executed. CPL can also be deter­
mined by examining the lowest 2 bits of the 
CS register, except for conforming code seg­
ments. 

EPL: Effective Privilege Level-The effective 
privilege level is the least privileged of the 
RPL and the DPL. EPL is the numerical maxi­
mum of RPL and DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

DESCRIPTOR TABLES 

The descriptor tables define all of the segments 
which are used in an 80376 system. There are three 
types of tables on the 80376 which hold descriptors: 
the Global Descriptor Table, Local Descriptor Table, 
and the Interrupt Decriptor Table. All of the tables 
are variable length memory arrays, they can range in 
size between 8 bytes and 64 Kbytes. Each table can 
hold up to 8192 8-byte descriptors. The upper 13 
bits of a selector are used as an index into the de­
scriptor table. The tables have registers associated 
with them which hold the 32-bit linear base address, 
and the 16-bit limit of each table. 

4-57 

Each of the tables have a register associated with it: 
GDTR, LDTR and IDTR; see Figure 3.2. The LGDT, 
LLDT and LlDT instructions load the base and limit 
of the Global, Local and Interrupt Descriptor Tables 
into the appropriate register. The SGDT, SLOT and 
SlOT store these base and limit values. These are 
privileged instructions. 

LDTR 

15 0 
32 

lOT LIMIT PROGRAM INVISIBLE 
AUTOMATICALLY LOADED 
FROM LOT DESCRIPTOR 

IDTR ._-------------
0 

0 

GOT LIMIT 

GDTR 

240182-12 

Figure 3.2. Descriptor Table Registers 

Global Descriptor Table 

The Global Descriptor Table (GOT) contains de­
scriptors which are possibly available to all of the 
tasks in a system. The GOT can contain any type of 
segment descriptor except for interrupt and trap de­
scriptors. Every 80376 system contains a GOT. A 
simple 80376 system contains only 2 entries in the 
GOT; a code and a data descriptor. 

The first slot of the Global Descriptor Table corre­
sponds to the null selector and is not used. The null 
selector defines a null pointer value. 

Local Descriptor Table 

LOTs contain descriptors which are associated with 
a given task. Generally, operating systems are de­
signed so that each task has a separate LOT. The 
LOT may contain only code, data, stack, task gate, 
and call gate descriptors. LOTs provide a mecha­
nism for isolating a given task's code and data seg­
ments from the rest of the operating system, while 
the GOT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac­
cessed by a task if its segment descriptor does not 
exist in either the current LOT or the GOT. This pro-



80376 

vides both isolation and protection for a task's seg­
ments, while still allowing global data to be shared 
among tasks. 

Unlike the 6-byte GOT or lOT registers which contain 
a base address and limit, the visible portion of the 
LOT register contains only a 16-bit selector. This se­
lector refers to a Local Descriptor Table descriptor in 
the GOT (see Figure 2.1). 

INTERRUPT DESCRIPTOR TABLE 

The third table needed for 80376 systems is the In­
terrupt Descriptor Table. The lOT contains the de­
scriptors which point to the location of up to 256 
interrupt service routines. The lOT may contain only 
task gates, interrupt gates and trap gates. The lOT 
should be at least 256 bytes in size in order to hold 
the descriptors for the 32 Intel Reserved Interrupts. 
Every interrupt used by a system must have an entry 
in the lOT. The lOT entries are referenced by INT 
instructions, external interrupt vectors, and excep­
tions. 

DESCRIPTORS 

The object to which the segment selector points to 
is called a descriptor. Descriptors are eight-byte 
quantities which contain attributes about a given 
region of linear address space. These attributes in­
clude the 32-bit logical base address of the seg-

31 

ment, the 20-bit length and granularity of the seg­
ment, the protection level, read, write or execute 
privileges, and the type of segment. All of the attri­
bute information about a segment is contained in 12 
bits in the segment descriptor. Figure 3.3 shows the 
general format of a descriptor. All segments on the 
the 80376 have three attribute fields in common: the 
Present bit (P), the Descriptor Privilege Level bits 
(DPL) and the Segment bit (S). P= 1 if the segment 
is loaded in physical memory, if P = 0 then any 
attempt to access the segment causes a not present 
exception (exception 11). The DPL is a two-bit field 
which specifies the protection level, 0-3, associated 
with a segment. 

The 80376 has two main categories of segments: 
system segments, and non-system segments (for 
code and data). The segment bit, S, determines if a 
given segment is a system segment, a code seg­
ment or a data segment. If the S bit is 1 then the 
segment is either a code or data segment, if it is 0 
then the segment is a system segment. 

Note that although the 80376 is limited to a 
16-Mbyte Physical address space (224), its base ad­
dress allows a segment to be placed anywhere in a 
4-Gbyte linear address space. When writing code for 
the 80376, users should keep code protability to an 
80386 processor (or other processors with a larger 
physical address space) in mind. A segment base 
address can be placed anywhere in this 4-Gbyte lin­
ear address space, but a physical address will be 

o BYTE 
ADDRESS 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 o 

BASE A LIMIT 
31 ... 24 G 1 o V 19 ... 16 L 

BASE Base Address of the segment 
LIMIT The length of the segment 

P DPL 

I 

P Present Bit 1 = Present 0 = Not Present 
DPL Descriptor Privilege Level 0-3 

S TYPE A 

I I 

S Segment Descriptor: 0 = System Descriptor. 1 = Code or Data Descriptor 
TYPE Type of Segment 
A Accessed Bit 
G Granularity Bit 1 = Segment length is 4 Kbyte Granular 

o = Segment length is byte granular 
o Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or as 

Figure 3.3. Segment Descriptors 

31 

SEGMENT BASE 15 ... 0 

BASE G 1 0 C LIMIT 
31 ... 24 L 19 ... 16 

SEGMENT LIMIT 15 ... 0 

ACCESS 
RIGHTS 
BYTE 

BASE +4 
23 ... 16 

o 
o 

BASE +4 
23 ... 16 

G Granularity Bit 1 = Segment length is 4 Kbyte granular 
o = Segment length is byte granular 

o Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or as 

Figure 3.4. Code and Data Descriptors 
4-58 



inter 80376 

Table 3.1. Access Rights Byte Definition for Code and Data Descriptors 

Bit 
Name Function 

Position 

7 Present (P) P = 1 Segment is mapped into physical memory. 
P=O No mapping to physical memory exits 

6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 
Level (DPL) 

4 Segment S = 1 Code or Data (includes stacks) segment descriptor 
Descriptor (S) S=O System Segment Descriptor or Gate Descriptor 

3 Executable (E) E=O Descriptor type is data segment: 

} 
If 

2 Expansion ED = 0 Expand up segment, offsets must be :s; limit. Data 
Direction (ED) ED = 1 Expand down segment, offsets must be > limit. Segment 

1 Writable (W) W = 0 Data segment may not be written into. (S = 1, 
W = 1 Data segment may be written into. E = 0) 

3 Executable (E) E = 1 Descriptor type is code segment: 

} 
If 

2 Conforming (C) C=1 Code segmant may only be executed when Code 
CPL ~ DPL and CPL remains unchanged. Segment 

1 Readable (R) R=O Code segment may not be read. (S = 1, 
R=1 Code segment may be read. E = 1) 

0 Accessed (A) A=O Segment has not been accessed. 
A = 1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

generated that is a truncated version of this linear 
address. Truncation will be to the maximum number 
of address bits. It is recommended to place EPROM 
at the highest physical address and DRAM at the 
lowest physical addresses. 

Code and Data Descriptors (S= 1) 

Figure 3.4 shows the general format of a code and 
data descriptor and Table 3.1 illustrates how the bits 
in the Access Right Byte are interpreted. 

Code and data segments have several descriptor 
fields in common. The accessed bit, A, is set when­
ever the processor accesses a descriptor. The gran­
ularity bit, G, specifies if a segment length is 1·byte­
granular or 4·Kbyte·granular. Base address bits 
31-24, which are normally found in 80386 descrip· 
tors, are not made externally available on the 80376. 
They do not affect the operation of the 80376. The 
A31-A24 field should be set to allow an 80386 to 
correctly execute with EPROM at the upper 4096 
Mbytes of physical memory. 

System Descriptor Formats (S = 0) 

System segments describe information about oper­
ating system tables, tasks, and gates. Figure 3.5 
shows the general format of system segment de­
scriptors, and the various types of system segments. 

80376 system descriptors (which are the same as 
80386 descriptor types 2, 5, 9, B, C, E and F) contain 
a 32-bit logical base address and a 20-bit segment 
limit. 

Selector Fields 

A selector has three fields: Local or Global Descrip-
. tor Table Indicator (TI), Descriptor Entry Index (In­

dex), and Requestor ( the selector's) Privilege Level 
(RPL) as shown in Figure 3.6. The TI bit selects ei­
ther the Global Descriptor Table or the Local De­
scriptor Table. The Index selects one of 8K descrip­
tors in the appropriate descriptor table: The RPL bits 
allow high speed testing of the selector's privilege 
attributes. 

4-59 

Segment Descriptor Cache 

In addition to the selector value, every segment reg­
ister has a segment descriptor cache register asso­
ciated with it. Whenever a segment register's con­
tents are changed, the 8-byte descriptor associated 
with that selector is automatically loaded (cached) 
on the chip. Once loaded, all references to that seg­
ment use the cached descriptor information instead 
of reaccessing the descriptor. The contents of the 
descriptor cache are not visible to the programmer. 
Since descriptor caches only change when a seg­
ment register is changed, programs which modify 
the descriptor tables must reload the appropriate 
segment registers after changing a descriptor's 
value. 



Intel 80376 

31 16 o 
SEGMENT BASE 15 ... 0 o 

BASE +4 
23 ... 16 

Type Defines Type Defines 
o Invalid 8 Invalid 
1 Reserved 9 Available 80376180386 TSS 
2 LOT A Undefined (intel Reserved) 
3 Reserved B Busy 80376/80386 TSS 
4 Reserved C 80376/80386 Call Gate 
5 Task Gate (80376/80386 Task) o Undefined (Intel Reserved) 
6 Reserved E 80376/80386 Interrupt Gate 
7 Reserved F 80376/80386 Trap Gate 

Figure 3.5. System Descriptors 

SEGMENT 
REGISTER 

SELECTOR 

15 43210 

I 0 I 0 ""--- 0 I 0 
IITII RPL 

1 1 1 I . . 
TABLE INDEX 
INDICATOR 

TI=l TI-O! 

N N 

DESCRIPTOR 
NUMBER 

6 6 

5 5 

4 4 

L-l ·······ti¢SC;RIl':r()~ .... ·•·· 3 

2 

1 

0 

LOCAL 
DESCRIPTOR 

TABLE 
(LOT) 

2 

1 

0 NULL 

GLOBAL 
DESCRIPTOR 

TABLE 
(GOT) 

240182-13 

Figure 3.6. Example Descriptor Selection 

3.3 Protection 

The 80376 offers extensive protection features. 
These protection features are particularly useful in 
sophisticated embedded applications which use 
multitasking real-time operating systems. For sim­
pler embedded applications these protection capa­
bilities can be easily bypassed by making all applica­
tions run at privilege level (PL) O. 

RULES OF PRIVILEGE 

The 80376 controls access to both data and proce­
dures between levels of a task, according to the fol­
lowing rules. 

-Data stored in a segment with privilege level p 
can be accessed only by code executing at a 
privilege level at least as privileged as p. 

-A code segment/procedure with privilege level p 
can only be called by a task executing at the 
same or a lesser privilege level than p. 

4-60 

PRIVILEGE LEVELS 

At any point in time, a task on the 80376 always 
executes at one of the four privilege levels. The Cur­
rent Privilege Level (CPL) specifies what the task's 
privilege level is. A task's CPL may only be changed 



80376 

by control transfers through gate descriptors to a 
code s~g~ent with a different privilege level. Thus, 
an application program running at PL = 3 may call an 
operating system routine at PL = 1 (via a gate) which 
would cause the task's CPL to be set to 1 until the 
operating system routine was finished. 

Selector Privilege (RPL) 

The ~rivilege level of a selector is specified by the 
RPL field. The selector's RPL is only used to estab­
lish a less trusted privilege 'level than the current 
pri~ilege I~vel of the task for the use of a segment. 
ThiS level IS called the task's effective privilege level 
(EPL). The EPL is defined as being the least privi­
leged (numerically larger) level of a task's CPL and a 
selector's RPL. The RPL is most commonly used to 
verify that pointers passed to an operating system 
procedure do not access data that is of higher privi­
lege than the procedure that originated the pointer. 
Since the originator of a selector can specify any 
~PL value, the Adjust RPL (ARPL) instruction is pro­
vided to force the RPL bits to the originator's CPL. 

1/0 Privilege 

The 1/0 privilege level (IOPL) lets the operating sys­
tem code executing at CPL = 0 define the least privi­
leged level at which 1/0 instructions can be used. An 
exception 13 (General Protection Violation) is gener­
ated if an 1/0 instruction is attempted when the CPL 
of the task is less privileged than the 10PL. The 
!OPL is stored in bits 13 and 14 of the EFLAGS reg­
Ister. The following instructions cause an exception 
13 if the CPL is greater than 10PL: IN, INS, OUT, 
OUTS, STI, CLI and LOCK prefix. 

Descriptor Access 

There are basically two types of segment acces­
sess: those involving code segments such as con­
trol transfers, and those involving data accesses. 
Determining the ability of a task to access a seg­
ment involves the type of segment to be accessed 
the instruction used, the type of descriptor used and 
CPL, RPL, and DPL as described above. 

4-61 

Any time an instruction loads a data segment regis­
ter (DS, ES, FS, GS) the 80376 makes protection 
validation checks. Selectors loaded in the DS ES 
FS, GS registers must refer only to data segm~nt 0; 
readable code segments. 

Finally the privilege validation checks are performed. 
The CPL is compared to the EPL and if the EPL is 
more privileged than the CPL, an exception 13 (gen­
eral protection fault) is generated. 

The rules regarding the stack segment are slightly 
different than those involving data segments. In­
structions that load selectors into SS must refer to 
data segment descriptors for writeable data seg­
ments. The DPL and RPL must equal the CPL of all 
other descriptor types or a privilege level violation 
will cause an exception 13. A stack not present fault 
causes an exception 12. 

PRIVILEGE LEVEL TRANSFERS 

Inter-segment control transfers occur when a selec­
tor is loaded in the CS register. For a typical system 
most of these transfers are simply the result of a call 
or a jump to another routine. There are five types of 
control transfers which are summarized in Table 3.2. 
Many of these transfers result in a privilege level 
transfer. Changing privilege levels is done only by 
control transfers, using gates, task switches, and in­
terrupt or trap gates. 

Control transfers can only occur if the operation 
which loaded the selector references the correct de­
scriptor type. Any violation of these descriptor usage 
rules will cause an exception 13. 

CALL GATES 

Gates provide protected indirect CALLs. One of the 
major uses of gates is to provide a secure method of 
privilege tr~nsfers within a task. Since the operating 
system defines all of the gates in a system, it can 
ensure that all gates only allow entry into a few trust­
ed procedures. 

; 



Intel 80376 

Table 3.2. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegment to the same or higher privilege level 
Interrupt within task may change CPL 

Intersegment to a lower privilege level 
(changes task CPL) 

Task Switch 

• NT (Nested Task bit of flag register) = 0 
.. NT (Nested Task bit of flag register) = 1 

Operation Types 

JMP, CALL, RET, IRET' 

CALL 

Interrupt Instruction, 
Exception, External 
Interrupt 

RET,IRET' 

CALL,JMP 

CALL, JMP 

IRET" 
Interrupt Instruction, 
Exception, External 
Interrupt 

4-62 

Descriptor 
Referenced 

Code Segment 

Call Gate 

Trap or 
Interrupt 
Gate 

Code Segment 

Task State 
Segment 

Task Gate 

Task Gate 

Descriptor 
Table 

GOT/LOT 

GOT/LOT 

lOT 

GOT/LOT 

GOT 

GOT/LOT 

lOT 



inter 

: NOTE 
BIT_ 
must 

MAP_OFFSET 

Type 

Type 

be';; DFFFH 

.-- ... ---- .. _----,. 
" ACCESS I TSS 

, , , , RIGHTS LIMIT , , , , , , 
BASE 

, , , , , 
: 31 PROGRAM 0' , , INVISIBLE , 
.. -------------~ 

TASK REGISTER 

TR SELECTOR ~ 
15 0 

= 9: Available 80376 
TSS. 

= B: Busy 80376 TSS. 

-

31 

80376 

31 16 15 

0000000000000000 BACK LINK 

ESPO 

0000000000000000 I SSO 

, ESP1 

0000000000000000 SS1 

ESP2 

0000000000000000 SS2 

CR3 

EIP 

EFLAGS 

EAX 

ECX 

EDX 

EBX 

ESP 

EBP 

ESI 

EDI 

0000000000000000 ES 

OOOOODOOOOOOoooo cs 
0000000000000000 SS 

0000000000000000 DS 

0000000000000000 FS 

0000000000000000 GS 

OOOOOOOODDOOOOOO LDT 

BILMAP _OFFSET( 15:0) 0000000000000000 IT 

AVAILABLE '---
SYSTEM STATUS. ETC. 

IN 80386 TSS 

31 24 23 16 15 8 7 0 

63 56 55 48 47 40 39 32 

95 88 87 80 79 72 71 64 

96 

I/O PERMISSION BITMAP 

65407 (ONE BIT PER BYTE I/o 
PORT. BITMAP MAY BE 65439 

TRUNCATED USING TSS LIMIT.) 
65471 I 

65503 I 65472 

65535 65504 

"FFH" 

00 J TSS BASE 

4 

8 

C 

10 

14 

18 

1C 

20 

24 

28 

2C 

30 

34 

38 

3C 

40 

44 

48 

4C 

50 

54 

58 

5C 

60 

STACKS 
FOR 
CPL 0.1.2 

CURRENT 
TASK 
STATE 

~ 
)T 

DEBUG 
RAP BIT 

BILMA 

OFFSET 

OFFSET 

... 
r 

OFFSET 

OFFSET 

OFFSET 

OFFSET 

OFFSET 

OFFSET 

+ C 

+ 10 

+ 1FEC 

+ 1FFO 

+ 1FF4 

+ 1FF8 

+ 1FFC 

+ 2000 

t TSS LIMIT = OF FSET + 2000H 

80386 TSS DESCRIPTOR (IN GDT) 0 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 .. 0 

BASE 31 .. 24 H 11+11L~~;~ pi DPLH TYPE I BASE 
23 .. 16 

240182-14 

Figure 3.7. 80376 TSS And TSSRegisters 

4-63 



80376 

TASK SWITCHING 

A very important attribute of any multi-tasking oper­
ating system is its ability to rapidly switch between 
tasks or processes. The 80376 directly supports this 
operation by providing a task switch instruction in 
hardware. The 80376 task switch operation saves 
the entire state of the machine (all of the registers, 
address space, and a link to the previous task), 
loads anew· execution state, performs protection 
checks, and commences execution in the new task. 
Like transfer of control by gates, the task switch op­
eration is invoked by executing an inter-segment 
JMP or CALL instruction which refers to a Task' 
State Segment (TSS) , or a task gate descriptor in 
the GOT or LOT. An INT n instruction, exception, 
trap or external interrupt may also invoke the task 
switch operation if there is a task gate descriptor in 
the associated lOT descriptor slot. For simple appli­
cations, the TSS and task switching may not be 
used. The TSS or task switch will not be used or 
occur if no task gates are present in the GOT, LOT 
or lOT. 

The TSS descriptor points to a segment (see Figure 
3.7) containing the entire 80376 execution state. A 
task gate descriptor contains a TSS selector. The 
limit of an 80376 TSS must be greater than 64H, and 
can be as large as 16 Mbytes. In the additional TSS 
space, the operating system is free to store addition­
al information as the reason the task is inactive, the 
time the task has spent running, and open files be­
longing to the task. 

Each Task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
80376 called the Task State Segment Register (TR). 
This register contains a selector referring to the task 
state segment descriptor that defines the current 
TSS. A hidden base and limit' register associated 
with the TSS descriptor is loaded whenever TRis 
loaded with a new selector. Returning from a task is 
accomplished by the IRET instruction. When IRET is 
executed, control is returned to the task which was 

interrupted. The current executing task's state is 
saved in the TSS and the old task state is restored 
from its TSS. 

Several bits in the flag register and CRO register give 
information about the state of a task which is useful 
to the operating system. The Nested Task bit, NT,. 
controls the function of the IRET instruction. If NT = 
o the IRET instruction performs the regular return. If 
NT = 1, IRET performs a task switch operation 
back to the previous task. The NT bit is set or reset 
in the following fashion: 

When a CALL or INT instruction initiates a task 
switcih, the new TSS will be marked busy and 
the back link field of the new TSS set to the old 
TSS selector. The NT bit of the new task is set 
by CALL or INT initiated task switches. An inter­
rupt that does not cause a task switch will clear 
NT (The NT bit will be restored after execution 
of the interrupt handler). NT Il)ay also be set or 
cleared by POPF or IRET instructions. 

The 80376 task .state segment is marked busy by 
changing the descriptor type field from TYPE 9 to 
TYPE OSH. Use of a selector that references a busy 
task state segment causes an exception 13. 

. The coprocessor's state is not automatically saved. 
when a task switch occurs. The Task Switched Sit, 
TS, in the CRO register helps deal with the coproces­
sor's state in a multi-tasking environment. Whenever 
the 80376 switches tasks, it sets the TS bit. The. 
80376 detects the first use of a processor extension 
instruction after a task switch and causes the proc­
essor extension not available exception 7. The ex­
ception handler for exception 7 may then decide 
whether to save the state of the coprocessor. 

The T bit in the 80376 TSS indicates that the proc­
essor should generate a debug exception when 
switching to a task. If T = 1 then upon entry to a 
new task a debug exception 1 will be generated. 

313029282726252423222120191817161514131211109 8 7 6 5 432 10 

31 

63 

95 

127 

1 1 

0 0 

1 1 

o 0 

'l" 

1 1 o 1 

1 0 o 0 

1 1 1 1 

o 0 0 0 

1 o 0 o 0 o 1 1 1 1 

1 1 1 1 0 o 1 0 1 0 

1 1 1 1 1 1 1 1 1 1 

o 0 o 0 o 0 0 0 0 0 

etc. 

o 1 o 0 1 1 0 0 o 0 00001 

1 1 1 1 1 1 0 o 1 1 1 1 1 o 0 

1 ·1 1 1 1 1 1 1 1 1 1 1 1 1 1 

o 0 o 0 o O. o 0 0 o 0 o 0 0 0 

1 1 1 1 1 1 1 

1/0 Ports Accessible 2 -+ 9,12.13.15,20 -+ 24,27,33.34,40.41,48,50.52,53,58 -+ 60,62.63,96 -+ 127 

.' Figure 3.a.Sample 1/0 Permission Bit Map 

4-64 

1 

1 

1 

0 

1 

~ 
240182-'15 



inter 80376 

PROTECTION AND 1/0 PERMISSION BIT MAP 

The liD instructions that directly refer to addresses 
in the processor's liD space are IN, INS, OUT and 
OUTS. The 80376 has the ability to selectively trap 
references to specific liD addresses. The structure 
that enables selective trapping is the //0 Permis­
sion Bit Map in the TSS segment (see Figures 3.7 
and 3.8). The liD permission map is a bit vector. 
The size of the map and its location in the TSS seg­
ment are variable. The processor locates the liD 
permission map by means of the 1/0 map base field 
in the fixed portion of the TSS. The 1/0 map base 
field is 16 bits wide and contains the offset of the 
beginning of the liD permission map. 

If an liD instruction (IN, INS, OUT or OUTS) is en­
countered, the processor first checks whether 
CPL ::;; 10PL. If this condition is true, the liD opera­
tion may proceed. If not true, the processor checks 
the liD permission map. 

Each bit in the map corresponds to an liD port byte 
address; for example, the bit for port 41 is found at 
1/0 map base + 5 linearly, (5 x 8 = 40), bit offset 
1. The processor tests all the bits that correspond to 
the liD addresses spanned by an liD operation; for 
example, a double word operation tests four bits cor­
responding to four adjacent byte addresses. If any 
tested bit is set, the processor signals a general pro­
tection exception. If all the tested bits are zero, the 
liD operations may proceed. 

2X CLOCK ( 
CLK2 .. 

A " 16-BIT(OO_015 
DATA 

i( DATA BUS 

BUS[ 
CONTROL 

BUS{ 
ARBITRATION 

INTERRUPTS [ 

~ v 

AOS# 

NA# 

READY# 

HOLD 
HLOA .. 

INTR 

Nt.ll" 

RESET : 

80376 
PROCESSOR 

It is not necessary for the liD permission map to 
represent all the liD addresses. liD addresses not 
spanned by the map are treated as if they had one­
bits in the map. The 1/0 map base should be at 
least one byte less than the TSS limit and the last 
byte beyond the liD mapping information must con­
tain all 1's. 

Because the liD permission map is in the TSS seg­
ment, different tasks can have different maps. Thus, 
the operating system can allocate ports to a task by 
changing the I/O permission map in the task's T5S. 

IMPORTANT IMPLEMENTATION NOTE: 
Beyond the last byte of liD mapping information in 
the liD permission bit map must be a byte contain­
ing all 1 'so The byte of all 1 's must be within the 
limit of the 80376's TSS segment (see Figure 3.7). 

4.0 FUNCTIONAL DATA 

The Intel 80376 embedded processor features a 
straightforward functional interface to the external 
hardware. The 80376 has separate parallel buses 
for data and address. The data bus is 16 bits in 
width, and bidirectional. The address bus outputs 
24-bit address values using 23 address lines and 
two-byte enable Signals. 

The 80376 has two selectable address bus cycles: 
pipelined and non-pipe lined. The pipelining option 
allows as much time as possible for data access by 

1\ 
ADDRESS BUS ) 

BHE# .. 
BLE# 

Al-A23] 
24-BIT 

} BYTE ADDRESS 
ENABLES . 

W/R# 

o/c# 

MiIO# 

LOCK# 
] ,~s =E "'""""'" 

PEREQ 

BUSY# 

ERROR# 
} COPROCESSOR SIGNALLING 

vee 
GNO } POWER CONNECTIONS 

240182-16 

Figure 4.1. Functional Signal Groups 

4-65 



80376 

starting the pending bus cycle before the present 
bus cycle is finished. A non-pipe lined bus cycle 
gives the highest bus performance by executing ev­
ery bus cycle in two processor clock cycles. For 
maximum design flexibility, the address pipelining 
option is selectable on a cycle-by-cycle basis. 

The processor's bus cycle is the basic mechanism 
for information transfer, either from system to proc­
essor, or from processor to system. 80376 bus cy­
cles perform data transfer in a minimum·of only two 
clock periods. On a 16-bit data bus, the maximum 
80376 transfer bandwidth at 16 MHz is therefore 
16 Mbytes/sec. However, any bus cycle will be ex­
tended for more than two clock periods if external 
hardware withholds acknowledgement of the cycle. 

The 80376 can relinquish control of its local buses 
to allow mastership by other devices, such as direct 
memory access (DMA) channels. When relin­
quished, HLDA is the only output pin driven by the 
80376, providing near-complete isolation of the 
processor from its system (all other output pins are 
in a float condition); 

4.1 Signal DescrJption Overview 

Ahead is a brief description of the 80376 input and 
output signals arranged by functional groups. Note 
the # symbol at the end of a signal name indicates 
the active, or asserted, state occurs when the signal 
is at a LOW voltage. When no # is present after the 
signal name, the signal is asserted when at the 
HIGH voltage level. 

Example signal: M/IO#-HIGH voltage indicates 
Memory selected 

-LOW voltage indicates 
1/0 selected 

The signal descriptions sometimes refer to A.C. tim­
ing parameters, such as "t25 Reset Setup Time" and 
"t26 Reset Hold Time." The values of these parame­
ters can be found in Table 6.4. 

CLOCK (CLK2) 

CLK2 provides the fundamental timing for the 
80376. It is divided by two internally to generate the 
internal processor clock used for instruction execu­
tion. The internal clock is comprised of two 

PROCESSOR CLOCK 
PERIOD 

PROCESSOR CLOCK 
PERIOD 

. INTERNAL [ 
PROCESSOR CLOCK 

CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD CLK2 PERIOD 
III 112 III 112 

62.5 NS ~IN. 
(16 ~Hz ~AX) 

Figure 4.2. CLK2 Signal and Internal Processor Clock 

4-66 

240182-17 



80376 

phases, "phase one" and "phase two". Each CLK2 
period is a phase of the internal clock. Figure 4.2 
illustrates the relationship. If desired, the phase of 
the internal processor clock can be synchronized to 
a known phase by ensuring the falling edge of the 
RESET signal meets the applicable setup and hold 
times t25 and t26. 

DATA BUS (D15-DO) 

These three-state bidirectional signals provide the 
general purpose data path between the 80376 and 
other devices. The data bus outputs are active HIGH 
and will float during bus hold acknowledge. Data bus 
reads require that read-data setup and hold times 
t21 and t22 be met relative to CLK2 for correct oper­
ation. 

ADDRESS BUS (BHE#, BLE#, A23-A1) 

These three-state outputs provide physical memory 
addresses or liD port addresses. A23-A16 are LOW 
during lID transfers except for lID transfers auto­
matically generated by coprocessor instructions. 

During coprocessor lID transfers, A22-A16 are driv­
en LOW, and A23 is driven HIGH so that this ad­
dress line can be used by external logic to generate 
the coprocessor select signal. Thus, the liD address 
driven by the 80376 for coprocessor commands is 
8000F8H, and the lID address driven by the 80376 
processor for coprocessor data is 8000FCH or 
8000FEH. 

The address bus is capable of addressing 16 Mbytes 
of physical memory space (OOOOOOH through 
OFFFFFFH), and 64 Kbytes of lID address space 
(OOOOOOH through OOFFFFH) for programmed liD. 
The address bus is active HIGH and will float during 
bus hold acknowledge. 

The Byte Enable outputs BHE# and BLE# directly 
indicate which bytes of the 16-bit data bus are in­
volved with the current transfer. BHE# applies to 
015-08 and BLE# applies to DrDo. If both BHE# 
and BLE# are asserted, then 16 bits of data are 
being transferred. See Table 4.1 for a complete de­
coding of these signals. The byte enables are active 
LOW and will float during bus hold acknowledge. 

Table 4.1. Byte Enable Definitions 

BHE# BLE# Function 

0 0 Word Transfer 

0 1 Byte Transfer on Upper Byte of the Data Bus, 015-08 

1 0 Byte Transfer on Lower Byte of the Data Bus, Dr Do 

1 1 Never Occurs 

4-67 



inter 80376 

BUS CYCLE DEFINITION SIGNALS 
(W/R#, D/C#, MIIO#,LOCK#) 

These three-state outputs define the type of bus cy­
cle being performed: W/R# distinguishes between 
write and read cycles, D/C# distinguishes between 
data and control cycles, M/IO# distinguishes be­
tween memory and 1/0 cycles, and LOCK # distin­
guishes between locked and unlocked bus cycles. 
All of these signals are active LOW and will float 
during bus acknowledge. 

The primary bus cycle definition signals are W/R#, 
D/C# and M/IO#, since these are the signals driv­
en valid as ADS # (Address Status output) becomes 
active. The LOCK # signal is driven valid at the same 
time the bus cycle begins, which due to address 
pipelining, could be after ADS# becomes active. Ex­
act bus cycle definitions, as a function of W IR # , 
D/C# and M/IO# are given in Table 4.2. 

LOCK # indicates that other system bus masters are 
not to gain control of the system bus while it is ac­
tive. LOCK # is activated on the CLK2 edge that be- . 
gins the first locked bus cycle (i.e., it is not active at 
the same time as the other bus cycle definition pins) 
and is deactivated when ready is returned to the end 
of the last bus cycle which is to be locked. The be­
ginning of a bus cycle is determined when READY # 
is returned in a previous bus cycle and another is 
pending (ADS# is active) or the clock in which 
ADS# is driven active if the bus was idle. This 
means that it follows more closely with the write 
data rules when it is valid, but may cause the bus to 
be locked longer than desired. The LOCK# signal 
may be explicitly activated by the LOCK prefix on 
certain instructions. LOCK # is always asserted 
when executing the XCHG instruction, during de­
scriptor updates, and during the interrupt acknowl­
edge sequence. 

BUS CONTROL SIGNALS 
(ADS#, READY#, NA#) 

The following signals allow the processor to indicate 
when a bus cycle has begun, and allow other system 
hardware to control address pipelining and bus cycle 
termination. 

Address Status (ADS # ) 

This three-state output indicates that a valid bus cy­
cle definition and address (W/R#, D/C#, M/IO#, 
BHE#, BLE# and A23-Al) are being driven at the 
80376 pins. ADS # is an active LOW output. Once 
ADS# is driven active, valid address, byte enables, 
and definition Signals will not change. In addition, 
ADS# will remain active until its associated bus cy­
cle begins (when READY# is returned for the previ­
ous bus cycle when running pipelined bus cycles). 
ADS# will float during bus hold acknowledge. See 
sections Non·Pipelined Bus Cycles (page 43) and 
Plpellned Bus Cycles (page 45) for additional infor­
mation on how ADS # is asserted for different bus 
states. 

Transfer Acknowledge (READY#) 

This input indicates the current bus cycle is com­
plete, and the active bytes indicated by BHE# and 
BLE# are accepted or provided. When READY# is 
sampled active during a read cycle or interrupt ac­
knowledge cycle, the 80376 latches the input data 
and terminates the cycle. When READY # is sam­
pled active during a write cycle, the processor termi­
nates the bus cycle. 

Table 4.2. Bus Cycle Definition 

MIIO# D/C# W/R# Bus Cycle Type Locked? 

0 0 0 INTERRUPT ACKNOWLEDGE Yes 

0 0 1 Does Not Occur -
0 1 0 1/0 DATA READ No 

0 1 1 1/0 DATA WRITE No 

1 0 0 MEMORY CODE READ No 

1 0 1 HALT: . SHUTDOWN: No 
Address = 2 Address = 0 
BHE# = 1 BHE# = 1 
BLE# = 0 BLE# = 0 

1 1 0 MEMORY DATA READ Some Cycles 

1 1 1 MEMORY DATA WRITE Some Cycles 

4-68 



inter 80376 

READY # is ignored on the first bus state of all bus 
cycles, and sampled each bus state thereafter until 
asserted. READY # must eventually be asserted to 
acknowledge every bus cycle, including Halt Indica­
tion and Shutdown Indication bus cycles. When be­
ing sampled, READY # must always meet setup and 
hold times t19 and t20 for correct operation. 

Next Address Request (NA #) 

This is used to request pipelining. This input indi­
cates the system is prepared to accept new values 
of BHE#, BLE#, A23-A1, W/R#, D/C# and 
MIlO # from the 80376 even if the end of the current 
cycle is not being acknowledged on READY #. If this 
input is active when sampled, the next bus cycle's 
address and status signals are driven onto the bus, 
provided the next bus request is already pending in­
ternally. NA# is ignored in clock cycles in which 
ADS # or READY # is activated. This signal is active 
LOW and must satisfy setup and hold times t15 and 
t16 for correct operation. See Pipelined Bus Cycles 
(page 45) and Read and Write Cycles (page 42) for 
additional information. 

BUS ARBITRATION SIGNALS (HOLD, HLDA) 

This section describes the mechanism by which the 
processor reliriquishes control of its local buses 
when requested by another bus master device. See 
Entering and Exiting Hold Acknowledge (page 
52) for additional information. 

Bus Hold Request (HOLD) 

This input indicates some device other than the 
80376 requires bus mastership. When control is 
granted, the 80376 floats A23-A1, BHE#, BLE#, 
D15-DO, LOCK#, M/IO#, D/C#, W/R# and 
ADS#, and then activates HLDA, thus entering the 
bus holCl acknowledge state. The local bus will re­
main granted to the requesting master until HOLD 
becomes inactive. When HOLD becomes inactive, 
the 80376 will deactivate HLDA and drive the local 
bus (at the same time), thus terminating the hold 
acknowledge condition. 

HOLD must remain asserted as long as any other 
device is a local bus master. External pull-up resis­
tors may be required when in the hold acknowledge 
state since none of the 80376 floated outputs have 
internal pull-up resistors. See Resistor Recommen­
dations (page 59) for additional information.· HOLD 
is not recognized while RESET is active but is recog­
nized during the time between the high-to-Iow tran­
sistion of RESET and the first instruction fetch. If 
RESET is asserted while HOLD is asserted, RESET 
has priority and places the bus into an idle state, 
rather than the hold acknowledge (high-impedance) 
state. 

4-69 

HOLD is a level-sensitive, active HIGH, synchronous 
input. HOLD signals must always ineet setup and 
hold times t23 and t24 for correct operation. 

Bus Hold Acknowledge (HLDA) 

When active (HIGH), this output indicates the 80376 
has relinquished control of its local bus in response 
to an asserted HOLD signal, and is in the bus Hold 
Acknowledge state. 

The Bus Hold Acknowledge state offers near-com­
plete signal isolation. In the Hold Acknowledge 
state, HLDA is the only signal being driven by the 
80376. The other output Signals or bidirectional sig­
nals (015-00, BHE#, BLE#, A23-A1, W/R#, 
D/C#, M/IO#, LOCK# and ADS#) are in a high­
impedance state so the requesting bus master may 
control them. These pins remain OFF throughout the 
time that HLDA remains active (see Table 4.3). Pull­
up resistors may be desired on several signals to 
avoid spurious activity when no bus master is driving 
them. See Resistor Recommendations (page 59) 
for additional information. 

When the HOLD Signal is made inactive, the 80376 
will deactivate HLDA and drive the bus. One rising 
edge on the NMI input is remembered for processing 
after the HOLD input is negated. 

Table 4_3. Output Pin State during HOLD 

Pin Value Pin Names 

1 HLDA 
Float LOCK#, M/IO#, D/C#, W/R#, 

ADS#, A23-A1, BHE#, BLE#, 
015-00 

In addition to the normal usage of Hold Acknowl­
edge with DMA controllers or master peripherals, 
the near-complete isolation has particular attractive­
ness during system test when test equipment drives 
the system, and in hardware-fault-tolerant applica­
tions. 

Hold Latencies 

The maximum possible HOLD latency depends on 
the software being executed. The actual HOLD la­
tency at any time depends on the current bus activi­
ty, the state of the LOCK# signal.(internal to the 
CPU) activated by the LOCK # prefix, and interrupts. 
The 80376 will not honor a HOLD request until the 
current bus operation is complete. Table 4.4 shows 
the types of bus operations that can affect HOLD 
latency, and indicates the types of delays that 



intJ 80376 

these operations may introduce. When considering 
maximum. HOLD latencies, designers must select 
which of these bus operations are possible, and 
then select the maximum latency form among them. 

The 80376 breaks 32-bit data or 1/0 accesses into 2 
internally locked 16-bit bus cycles; the LOCK # sig­
nal is not asserted. The. 80376 breaks unaligned 
16-bit or 32-bit data or 1/0 accesses into 2 or 3 inter­
nally locked 16-bit bus cycles. Again the LOCK # 
signal is not asserted but a HOLD request will not be 
recognized until the end of the entire transfer. 

As indicated in Table 4.4, wait states affect .HOLD 
latency. The 80376 will not honor a HOLD request 
until the end of the current bus operation, no matter 
how many wait states are required. Systems with 
DMA where data transfer is critical must insure that 
READY # returns sufficiently soon. 

Table 4.4. Locked Bus Operations Affecting 
HOLD Latency in Systems Clocks 

1 ***Not Available At This Time*** { 

COPROCESSOR INTERFACE SIGNALS 
(PEREQ, BUSY #, ERROR #) 

In the following sections are descriptions of signals 
dedicated to the numeric coprocessor interface. In 
addition to the data bus, address bus, and bus cycle 
definition signals, thesefoliowing Signals control 
communication between the 80376 and the 
80387SX processor extension. 

Coprocessor Request (PEREQ) 

When asserted (HIGH), this input signal indicates a 
coprocessor request for a data operand to be trans­
ferred tolfrom memory by the 80376. In response, 
the 80376 transfers information between the co­
processor and memory. Because the 80376 has in­
ternally stored the coprocessor opcode being exe­
cuted, it performs the requested data transfer with 
the correct direction and memory address. 

PEREQ is a level-sensitive active HIGH asynchro7 
nous signal. Setup and hold times, t29 and t30' rela­
tive to the CLK2 signal must be met to guarantee 
recognition ata particular clock edge. This signal is 
provided with a weak internal pull-down resistor of 
around 20 Kn to ground so that it will not float active 
when left unconnected. . 

4-70 

Coprocessor Busy (BUSY #) 

When ass~rted. (LOW), this input indicates the co­
processor is still executing an instruction, and is not 
yet able to accept another. When the 80376 en­
counters any coprocessor instruction which oper­
ates on the numerics stack (e.g. load, pop, or arith­
metic operation): or the WAIT instruction, this input 
is first automatically sampled until it is seen to be 
inactive. This sampling of the BUSY # input prevents 
overrunning the execution of a previous coprocessor 
instruction. 

The F(N)INIT, F(N)CLEX coprocessor instructions 
are allowed to execute even if BUSY # is active, 
since these instructions are used for coprocessor 
initialization and exception-clearing. 

BUSY # is an active LOW, level-sensitive asynchro­
nous signal. Setup and hold times, t29 and t30, rela­
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around 
20 Kn to Vee so that it will not float active when left 
unconnected. 

BUSY # serves an additional function. If BUSY # is 
sampled LOW at the falling edge of RESET, the . 
80376 processor performs an internal self-test (see 
Bus ~ctlvity During and Following Reset on page 
54). If BUSY # is sampled HIGH, no self-test is per­
formed .. 

Coprocessor Error (ERROR #) 

When asserted (LOW), this input signal indicates 
that the previous coprocessor instruction genera~ed 
a coprocessor error of a type not masked by the 
coprocessor's control register. This input is automat­
ically sampled by the 80376 when a coprocessor 
instruction is encountered, and if active, the 80376 
generates exception 16 to access the error-handling 
software. 

Several coprocessor instructions, generally those 
which clear the numeric error flags in the coproces­
sor or save coprocessor state, do execute without 
the 80376 generating exception 16 even if ER­
ROR # is active. These instructions are FNINIT, 
FNCLEX, FNSTSW; FNSTSWAX, FNSTCW, 
FNSTENV and FNSAVE. 



intJ 80376 

ERROR # is an active LOW, level-sensitive asyn­
chronous signal. Setup and hold times t29 and t30, 
relative to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. This pin is pro­
vided with a weak internal pull-up resistor of around 
20 Kfl to Vee so that it will not float active when left 
unconnected. 

INTERRUPT SIGNALS (INTR, NMI, RESET) 

The following descriptions cover inputs that can in­
terrupt or suspend execution of the processor's cur­
rent instruction stream. 

Maskable Interrupt Request (INTR) 

When asserted, this input indicates a request for in­
terrupt service, which can be masked by the 80376 
Flag Register IF bit. When the 80376 responds to 
the INTR input, it performs two interrupt acknowl­
edge bus cycles and, at the end of the second, 
latches an 8-bit interrupt vector on 07-00 to identify 
the source of the interrupt. 

INTR is an active HIGH, level-sensitive asynchro­
nous signal. Setup and hold times, t27 and t28, rela~ 
tive to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. To assure rec­
ognition of an INTR request, INTR should remain 
active until the first interrupt acknowledge bus cycle 
begins. INTR is sampled at the beginning of every 
instruction. In order to be recognized at a particular 
instruction boundary, INTR must be active at least 
eight CLK2 clock periods before the beginning of the 
execution of the .instruction. If recognized, the 80376 
will begin execution of the interrupt. 

Non-Maskable Interrupt Request (NMI) 

This input indicates a request for interrupt service 
which cannot be masked by software. The non­
maskable interrupt request is always processed ac­
cording to the pointer or gate in slot 2 of the interrupt 
table. Because of the fixed NMI slot assignment, no 
interrupt acknowledge cycles are performed when 
processing NMI. . 

NMI is an active HIGH, rising edge-sensitive asyn­
chronous signal. Setup and hold times, t27 and t28, 
relative to the CLK2 signal must be met to guarantee 
recognition at a particular clock edge. To assure rec­
ognition of NMI, it must be inactive for at least eight 
CLK2 periods, and then be active for at least eight 
CLK2 periods before the beginning of the execution 
of an instruction. 

Once NMI processing has begun, no additional 
NMI's are processed until after the next IRET in­
struction, which is typically the end of the NMI serv-

4-71 

ice routine. If NMI is re-asserted prior to that time, 
however, one rising edge on NMI will be remem­
bered for processing after executing the next IRET 
instruction. . 

Interrupt Latency 

The time that elapses before an interrupt request is 
serviced (interrupt latency) varies according to sev­
eral factors. This delay must be taken into account 
by the interrupt source. Any of the following factors 
can affect inter~upt latency: 

1. If interrupts are masked, and INTR request will 
not be recognized until interrupts are reenabled. 

2. If an NMI is currently being serviced, an incoming 
NMI request will not be recognized until the 80376 
encounters the IRET instruction. 

3. An interrupt request is recognized only on an in­
struction boundary of the 80376 Execution Unit 
except for the following cases: 

- Repeat string instructions can be interrupted 
after each iteration. 

- If the instruction loads the Stack Segment reg­
ister, an interrupt is not processed until after 
the following instruction, which should be an 
ESP load. This allows the entire stack pointer 
to be loaded without interruption. 

- If an instruction sets the interrupt flag (enabling 
interrupts), an interrupt is not processed until 
after the next instruction. 

The longest latency occurs when the interrupt re­
quest arrives while the 80376 processor is exe­
cuting a long instruction such as multiplication, di­
vision or a task-switch. 

4. Saving the Flags register and CS:EIP registers. 

5. If interrupt service routine requires a task switch, 
time must be allowed for the task switch. 

6. If the interrupt service routine saves registers that 
are not automatically saved by the 80376. 

RESET 

This input Signal suspends any operation in progress 
and places the 80376 in a known reset state. The 
80376 is reset by asserting RESET for 15 or more 
CLK2 periods (80 or more CLK2 periods before re­
questing self-test). When RESET is active, all other 
input pins are ignored, and all other bus pins are 
driven to an idle bus state as shown in Table 4.5. If 
RESET and HOLD are both active at a point in time, 
RESET takes priority even. if the 80376 was in a 
Hold Acknowledge state prior to RESET active. 

RESET is an active HIGH, level-sensitive synchro­
nous signal. $etup and hold times, t25 and t26, must 
be met in order to assure proper operation of the . 
80376. 



infef 80376 

Table 4.5. Pin State (Bus Idle) during RESET 

Pin Name Signal Level during RESET 

AOS# 1 

D15- 00 Float 

BHE#, BLE# 0 

A23-A1 1 

W/R# 0 

D/C# 1 

M/IO# 0 

LOCK# 1 

HLOA 0 

4.2 Bus Transfer Mechanism 

All data transfers occur as a result of one or more 
bus cycles. Logical data operands of byte and word 
lengths may be transferred without restrictions on 
physical address alignment. Any byte boundary may 
be used, although two physical bus cycles are per­
formed as required for unaligned operand transfers. 

The 80376 processor address signals are designed 
to simplify external system hardware. BHE# and 

, BLE# provide linear selects for the two bytes of the 
16·bit data bus. 

Byte Enable outputs BHE # and BLE # are asserted 
when their associated data bus bytes are involved 
with the present bus cycle, as listed in Table 4.6. 

Table 4.6. Byte Enables and Associated 
Data and Operand Bytes 

Byte Enable Associated Data Bus Signals 

BHE# 015-08 (Byte 1-Most Significant) 
BLE# 07-00 (Byte O-Least Significant) 

4-72 

Each bus cycle is composed of at least two bus 
states. Each bus state requires one processor clock 
period. Additional bus states added to a single bus 
cycle are called wait states. See Bus Functional 
Description (page 39) for additional information. 

4.3 Memory and 1/0 Spaces 

Bus cycles may access physical memory space or 
1/0 space. Peripheral devices in the system may ei­
ther be memory-mapped, or I/O-mapped, or both. 
As shown in Figure 4.3, physical memory addresses 
range from OOOOOOH to OFFFFFFH (16 Mbytes) and 
1/0 addresses from OOOOOOH to OOFFFFH 
(64 Kbytes). Note the'110 addresses used by the 
automatic 110 cycles for coprocessor communica­
tion are 8000F8H to 8000FFH, beyond the address 
range of programmed 1/0, to allow easy generation 
of a coprocessor chip select signal using the A23 
and M/IO# signals. 

OPERAND ALIGNMENT 

With the flexibility of memory addressing on the 
80376, it is possible to transfer a logical operand 
that spans more than one physical Dword or word of 
memory or 1/0. Examples are 32-bit Oword or 16-bit 
word operands beginning at addresses not evenly 
divisible by 2. 

Operand alignment and size dictate when multiple 
bus cycles are required. Table 4.6a describes the 
transfer cycles generated for all combinations of log­
ical operand lengths and alignment. 

Table 4.6a. Transfer Bus Cycles 
for Bytes, Words and Dwords 

Byte-Length of Logical Operand 

1 
Physical Byte 
Address in xx 00 
Memory 
(Low-Order 
Bits) 
iTransfer 
Cycles 

b w 

Key: b = byte transfer 
w = word transfer' 

01 

Ib, 
hb 

I = low·order portion 
m = mid·order portion 
x = don't care 
h = high.o,rder portion 

2 4 

10 11 00 01 10 

w hb, Iw, hb, hw, 
I,b hw Ib, Iw 

mw 

11 

mw, 
hb, 
Ib 



inter 80376 

FFFFFFH r---_ 

~ 
I NOT81 

~ PHYSICAL 
MEMORY aOOOFFH I ---------?- COPROCESSOR 

aOOOF8H .... __ ==::::!_"' 

(""") ~ 

/NOT /). 

16-MBYTE 

W ,/~ 
OOFFFFH EJ } ACCESSIBLE 

64 kBYTE PROGRAMMED 
OOOOOOH I/O SPACE OOOOOOH L.. __ ....J 

PHYSICAL MEMORY SPACE I/o SPACE 
240182-18 

NOTE: 
Since A23 is HIGH during automatic communication with coprocessor, A23 HIGH and M/IO# LOW can be used to easily 
generate a coprocessor select signal. 

Figure 4.3. Physical Memory and 1/0 Spaces 

4.4 Bus Functional Description 

The 80376 has separate, parallel buses for data and 
address. The data bus is 16 bits in width, and bidi· 
rectional. The address bus provides a 24-bit value 
using 23 signals for the 23 upper-order address bits 
and 2 Byte Enable signals to directly' indicate the 
active bytes. These buses are interpreted and con· 
trolled by several definition Signals. 

The definition of each bus cycle is given by three 
signals: M/IO#, W/R# and D/C#. At the same 
time, a valid address is present on the byte enable 
,signals, BHE # and BLE #, and the other address 
signals A23-Al. A status signal, ADS#, indicates 
when the 80376 issues a new bus cycle definition 
and address. 

Collectively, the address bus, data bus and all asso­
ciated control signals are referred to simply as "the 
bus". When active, the bus performs one of the bus 
cycles below: 

1. Read from memory space 

2. Locked read from memory space 

3. Write to memory space 

4. Locked write to memory space 

4·73 

5. Read from lID space (or coprocessor) 

6. Write to 110 space (or coprocessor) 

7. Interrupt acknowledge (always locked) 

8. Indicate halt, or indicate shutdown· 

Table 4.2 shows the encoding of the bus cycle defi­
nition signals for each bus cycle. See Bus Cycle 
Definition Signals (page 35) for additonal informa­
tion. 

When the 80376 bus is not performing one of the 
activities listed above, it is either Idle or in the Hold 
Acknowledge state, which may be detected by ex­
ternal circuitry. The idle state can be identified by the 
80376 giving no further assertions on its address 
strobe output (ADS#) since the beginning of its 
most recent bus cycle, and the most recent bus cy· 
cle having been terminated. The hold acknowledge 
state is identified by the 80376 asserting its hold ac­
knowledge (HLDA) output. 

The shortest time unit of bus activity is a bus state. A 
bus state is one processor clock period (two CLK2 
periods) in duration. A complete data transfer occurs 
during a bus cycle, composed of two or more bus 
states. 



80376 

CYCLE 1 
NON-PIPELINED 

(READ) 

CYCLE 2 
NON-PIPELINED 

(READ) 

CYCLE 3 
NON-PIPELINED 

(READ) 

n n n n n n 
</>1 1</>2 </>1 1</>2 </>1 1</>2 </>1 1</>2 </>1 1</>2 </>1 1</>2 </>1 

CLK2[ 
(INPUT) 

BHE#,BLE#,Al-A23 [ 
M/IO#, D/C#, W/R# 

(OUTPUTS) 

ADS#[ 
(OUTPUT) 

NA# [ 
(iNPUT) 

READY# [ 
(iNPUT) 

LOCK# [ 
(OUTPUT) 

DO-D1S[ 
(INPUT DURING READ) 

240182-19 

Figure 4.4. Fastest Read Cycles with Non-Pipelined Timing 

The fastest 80376 bus cycle requires only two bus 
states. For example, three consecutive bus read cy­
cles, each consisting of two bus states, are shown 
by Figure 4.4. The bus states in each cycle are 
named T1 and T2. Any memory or 1/0 address may 
be accessed by such a two-state bus cycle, if the 
external hardware is fast enough. 

Every bus cycle continues until it is acknowledged 
by the external system hardware, using the 80376 
READY # input. Acknowledging the bus cycle at the 
end of the first T2 results in the shortest bus cycle, 
requiring only T1 and T2. If READY # is not immedi­
ately asserted however, T2 states are repeated in­
definitely until the READY # input is sampled active. 

The pipe lining option provides a choice of bus cycle 
timings. Pipelined or non-pipelined cycles are 

4-74 

selectable on a cycle-by-cycle basis with the Next 
Address (NA#) input. 

When pipelining is selected the address (SHE #, 
SLE# and A23-Al) and definition (W/R#, D/C#, 
M/IO# and LOCK#) of the next cycle are available 
before the end of the current cycle. To signal their 
availability, the 80376 address status output (ADS#) 
is asserted. Figure 4.5 illustrates the fastest read cy­
cles with pipelined timing. 

Note from Figure 4.5 the fastest bus cycles using 
pipelining require only two bus states, named T1 P 
and T2P. Therefore pipelined cycles allow the same 
data bandwidth as non-pipelined cycles, but ad­
dress-to-data access time is increased by one 
T-state time compared to that of a non-pipe lined cy­
cle. 



inter 80376 

CYCLE 1 
PIPELINED 

(READ) 

CYCLE 2 
PIPELINED 

(READ) 

CYCLE 3 
PIPELINED 

(READ) 

T1 P T2P T1 P T2P T1 P T2P 

<1>11<1>2 <1>11<1>2 <1>11<1>2 <1>11<1>2 <1>11<1>2 <1>11<1>2 
CLK2[ 

(INPUT) 

BHE#,BLE#.A l-A23 [ 
M/IO#, D/C#, W /R# 

(OUTPUTS) 

ADS# [ 
(OUTPUT) 

NA# [ 
(INPUT) 

READY# [ 
(INPUT) 

LOCK# [ 
(OUTPUT) 

DO-D1S[ 
(INPUT DURING READ) 

240182-20 

Figure 4.5. Fastest Read Cycles with Pipelined Timing 

READ AND WRITE CYCLES 

Data transfers occur as a result of bus cycles, classi­
fied as read or write cycles. During read cycles, data 
is transferred from an external device to the proces­
sor. During write cycles, data is transferred from the 
processor to an external device. 

Two choices of bus cycle timing are dynamically se­
lectable: non-pipelined or pipelined. After an idle bus 
state, the processor always uses non-pipelined tim-

o ing. However the NA# (Next Address) input may be 
asserted to select pipelined timing for the next bus 
cycle. When pipelining is selected and the 80376 
has a bus request pending internally, the address 
and definition of the next cycle is made available 
even before the current bus cycle is acknowledged 
by READY#. 

Terminating a read or write cycle, like any bus cycle, 
requires acknowledging the cycle by asserting the 
READY # input. Until acknowledged, the processor 
inserts wait states into the bus cycle, to allow adjust-

4-75 

ment for the speed of any external device. External 
hardware, which has decoded the address and bus 
cycle type, asserts the READY # input at the appro- . 
priate time. 

At the end of the second bus state within the bus 
cycle, READY # is sampled. At that time, if external 
hardware acknowledges the bus cycle by asserting 
READY #, the bus cycle terminates as shown in Fig­
ure 4.6. If READY# is negated as in Figure 4.7, the 
80376 executes another bus state (a wait state) and 
READY # is sampled again at the end of that state. 
This continues indefinitely until the cycle is acknowl­
edged by READY # asserted. 

When the current cycle is acknowledged, the 80376 
terminates it. When a read cycle is acknowledged, 
the 80376 latches the information present at its data 
pins. When a write cycle is acknowledged, the write 
data of the 80376 remains valid throughout phase 
one of the next bus state, to provide write data hold 
time. 



inter 80376 

IDLE I CYCLE 1 
NON-PIPELINED 

(WRITE) 

CYCLE 2 I 
NON-PIPELINED 

(READ) 

CYCLE .3 
NON-PIPELINED 

(WRITE) 

IDLE I CYCLE 4 
NON-PIPELINED 

(READ) 

IDLE I 

TI n T1 T2 T1 T2 T1 T2 TI T1 T2 

CLK2 [ 

PROCESSOR CLK [ 

BHE#.BLE#. [ 
A1-A2.3. 

M/IO#.D/C# 

ADS# [ 

READY # [ 

LOCK# [ 

DO-D1S[ 

240182-21 

Idle states are shown flere for diagram variety only. Write cycles are not always followed by an idle state. An active bus 
cycle can immediately follow the write cycle. 

Figure 4.6. Various Non·Plpelined Bus Cycles (Zero Walt States) 

Non·Plpelined Bus Cycles 

Any bus cycle may be performed with non-pipe lined 
timing. For example, Figure 4.6 shows a mixture of 
non-pipe lined read and write cycles. Figure 4.6 
shows that the fastest possible non-pipelined cycles 
have two bus states per bus cycle. The states are 
named T1 and T2. In phase one of T1, the address 
signals and bus cycle definition signals are driven 
valid and, to signal their availability, address strobe 
(ADS#) is simultaneously asserted. 

4-76 

During read or write cycles, the data bus behaves as 
follows. If the cycle is a read, the 80376 floats its 
data Signals to allow driving by the external device 
being addressed. The 80376 requires that all data 
bus pins be at a valid logic state (HIGH or LOW) 
at the end of each read cycle, when READY # Is 
asserted. The system MUST be designed to 
meet this requirement. If the cycle is a write, data 
signals are driven by the 80376 beginning in phase 
two of T1 until phase one of the bus state following 
cycle acknowledgement. 



intJ 80376 

IDLE I CYCLE 1 
NON-PIPELINEO 

(REAO) 

CYCLE 2 
NON-PIPELINED 

(WRITE) 

IDLE I 
n 

CYCLE 3 
NON-PIPElINED 

(REAO) 

IDLE I 

TI 

ClK2 [ 

PROCESSOR ClK [ 

BHE #,BlE #, [ 
Al-A23, 

M/IO#,D/C# 

W/R# [ 

ADS# [ 

NA# [ 

READY# [ 

lOCK# [ 

DO-D1S[ • 

TI T1 T2 T1 T2 T2 T1 T2 T2 

240182-22 

Idle states are shown here for diagram variety only. Write cycles are not always followed by an idle state. An active bus 
cycle can immediately follow the write cycle. 

Figure 4.7. Various Non·Plpelined Bus Cycles (Various Number of Wait States) 

Figure 4.7 illustrates non-pipe lined bus cycles with 
one wait state added to Cycles 2 and 3. READY # is 
sampled inactive at the end of the first T2 in Cycles 
2 and 3. Therefore Cycles 2 and 3 have T2 repeated 
again. At the end of the second T2, READY # is 
sampled active. 

When address pipelining is not used, the address 
and bus cycle definition remain valid during all wait 
states. When wait states are added and it is desir­
able to maintain non-pipelined timing, it is necessary 
to negate NA# during each T2 state except the 

4-77 

last one, as shown in Figure 4.7, Cycles 2 and 3. If 
NA # is sampled active during a T2 other than the 
last one, the next state would be T21 or T2P instead 
of another T2. 

When address pipe lining is not used, the bus states 
and transitions are completely illustrated by Figure 
4.8. The bus transitions between four possible 
states, T1, T2, Ti, and T h. Bus cycles consist of T1 
and T2, with T2 being repeated for wait states. Oth­
erwise the bus may be idle, Ti, or in the hold ac­
knowledge state T h. 



Intel 80376 

HOLD ASSERTED 

HOLD NEGATED. ~~a):: 
REQUEST PENDING ~a:, "loS: 

;!',r. ;!'~.p 
~"~~a 

~a • 

ALWAYS 

READY# ASSERTED. 
HOlO NEGATED. 

REQUEST PENDING 

READY # N EGA TED. 
NA# "NEGATED 

240182-23 

Bus States: 
T1-first clock of a non-pipelined bus cycle (80376 drives new address and asserts ADS#). 
T2-subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle. 
Ti-idie state. 
Th-hold acknowledge state (80376 asserts HLDA). 
The fastest bus cycle consists of two states: T1 and T2. 
Four basic bus states describe bus operation when not using pipelined address. 

Figure 4.8. 80376 Bus States (Not Using Plpelined Address) 

Bus cycles always begin with T1. T1 always leads to 
T2. If a bus cycle is not acknowledged during T2 and 
NA#is inactive, T2 is repeated. When a cycle is 
acknowledged during T2, the following state will be 
T1 of the next bus cycle if a bus request is pending 
internally, or Ti if there is no bus request pending, or 
T h if the HOLD input is being asserted. 

Use of pipelining allows the 80376 to enter three 
additional bus states not shown in Figure 4.8. Figure 
4.12 on page 49 is the -complete bus state diagram, 
including pipelined cycles. 

Pipelined Bus Cycles 

Pipelining is the option of requesting the address 
and the bus cycle definition of the next inter-

nally pending bus cycle before the current bus cycle 
" is acknowledged with READY# asserted. ADS# is 

asserted by the 80376 when the next address is is­
sued. The pipelining option is .controlled on a cycle­
by-cycle basis with the NA # input signal. 

4-78 

Once a bus cycle is in progress and the current ad­
dress has been valid for at least one entire bus 
state, the NA # input is sampled at the end of every 
phase one until the bus cycle is acknowledged. Dur­
ing non-pipelined bus cycles NA# is sampled at the 
end of phase one in every T2. An example is Cycle 2 
in Figure 4.9, during which NA# is sampled at the 
end of phase one of every T2 (it was asserted once 
during the first T2 and has no further effect during 
that bus cycle). . 



80376 

IDLE CYCLE 1 
NON-PIPELINED 

CYCLE 2 
NON-PIPELINED 

CYCLE 3 
PIPELINED 

CYCLE 4 
PIPELINED 

IDLE 

(WRITE) (READ) (WRITE) (READ) 
�.---------~~------------~~---------I----------·I-----

ClK2 [ 

PROCESSOR ClK [ 

BHE #,BlE #, [ 
A1 - A23, 

M/IO#,D/C# 

W/R# [ 

ADS# [ 

READY# [ 

lOCK# [ 

00-015 [ 

TI T1 T2 T1 T2 T2P T1P T2P T1P T21 Ti 

240182-24 

Following any idle bus state (Ti), bus cycles are non-pipelined. Within non-pipelined bus cycles, NA # is only sampled 
during wait states. Therefore, to begin pipelining during a group of non-pipe lined bus cycles requires a non-pipelined 
cycle with at least one wait state (Cylcle 2 above). 

Figure 4.9. Transitioning to Pipelining during Burst of Bus Cycles 

If NA# is sampled active, the 80376. is free to drive 
the address and bus cycle definition of the next bus 
cycle, and assert ADS #, as soon as it has a bus 
request internally pending. It may drive the next ad­
dress as early as the next bus state, whether the 
current bus cycle is acknowledged at that time or 
not. 

Regarding the details of pipelining, the 80376 has 
the following characteristics: 

1. The next address and status may appear as early 
as the bus state after NA# was sampled active 
(see Figures 4.9 or 4.10). In that case, state T2P 
is entered immediately. However, when there is 
not an internal bus request already pending, the 
next address and status will not be available im­
mediately after NA# is asserted and T21 is en­
tered instead of T2P (see Figure 4.11 Cycle 3). 
Provided the current bus cycle isn't yet acknow-

4-79 

ledged by READY # asserted, T2P will be entered 
as soon as the 80376 does drive the next address 
and status. External hardware should therefore 
observe the ADS # output as confirmation the 
next address and status are actually being driven 
on the bus. 

2. Any address and status which are validated by a 
pulse on the 80376 ADS# output will remain sta­
ble on the address pins for at least two processor 
clock periods. The 80376 cannot produce a new 
address and status more frequently than every 
two processor clock periods (see Figures 4.9, 
4.10 and 4.11). 

3. Only the address and bus cycle definition of the 
very next bus cycle is available. The pipelining ca­
pability cannot look further than one bus cycle 
ahead (see Figure 4.11, Cycle 1). 



80376 

IDLE CYCLE 1 
NON-PIPELINED 

(WRITE) 

CYCLE 2 
PIPELINED 

(READ) 

CYCLE :5 
PIPELINED 

(WRITE) 

CYCLE" 
PIPELINED 

(READ) 

IDLE 

TI Tl T2 T2P T1P T2P T1P T2P T1P T21 T21 n 

CLK2 [ 

PROCESSOR CLK [ 

BHE #,BLE #, [ 
Al-A2:5, 

M/IO#,D/C# 

W/R# [ 

ADS# [ 

READY # [ ,-¥~~~~~1I.;,f 

LOCK# [ ~~CJI.~--+",:,:;:,:::,r--~~~:..:.-.p-..:.;;;:::..;~~-+==-r---1~:a.~1 
00-015 [ 

240182-25 

Following any idle bus state (Ti) the bus cycle is always non-pipelined and NA# is only sampled during wait states. To 
start, address pipelining after an idle state requires a non-pipe lined cycle with at least one wait state (cycle 1 above). 
The pipelined cycles (2, 3, 4 above) are shown with various numbers of wait states. 

Figure 4.10. Fastest Transition to Pipelined Bus Cycle Following Idle Bus State 

The complete bus state transition diagram, including 
pipelining is given by Figure 4.12. Note it is a super­
set of the diagram for non-pipelined only, and the 
three additional bus states for pipelining are drawn 
in bold. 

The fastest bus cycle with pipelining consists of just 
two bus states, T1 P and T2P (recall for non-pipe­
lined it is T1 and T2). T1 P is the ·first bus state of a 
pipe lined cycle. 

Initiating and Maintaining Pipelined Bus Cycles 

Using the state diagram Figure 4.12, observe the 
transitions from an idle state, Ti, to the beginning of 

4-80 

a pipelined bus cycle T1 P. From an idle state, Tj, the 
first bus cycle must begin with T1, and is therefore a 
non-pipe lined bus cycle. The next bus cycle will be 
pipelined, however, provided NA# is asserted and 
the first bus cycle ends in a T2P state (the address 
and status for the next bus cycle is driven during 
T2P). The fastest path from an idle state to a pipe­
lined bus cycle is shown in bold below: 

idle non-pipelined 
states cycle 

T1P-T2P, 

pipelined 
cycle 



inter 

CLK2 [ 

PROCESSOR CLK [ 

BHE #.BLE #. [ 
A1-A23. 

M/IO#.D/CH 

W/R# [ 

ADS# [ 

READY# [ 

LOCK# [ 

DD- 015 [ 

CYCLE 1 
PIPELINED 
(WRITE) 

80376 

CYCLE 2 
PIPELINED 

(READ) 

CYCLE 3 
PIPELINED 
(WRITE) 

CYCLE 4 
PIPELINED 

(READ) 

T1P T2P T2P T1P T2 T2P T.1 P T21 T2P T1 P 

ASSERTING NA# MORE 
THAN ONCE DURING 
ANY CYCLE HAS NO 
ADDITIONAL EFFECTS 

NA# COULD HAVE 
BEEN ASSERTED 

IN T1 P IF DESIRED. 
ASSERTION NOW IS 

THE LATEST TIt.tE 
POSSIBLE TO ALLOW 
80376 TO ENTER T2P 
STATE TO t.tAINTAIN 

PIPELINING IN CYCLE 3 

~ 

AS LONG AS 80376 ENTERS THE 
T2P STATE DURING CYCLE 3. 

ADDRESS PIPELINING IS 
MAINTAINED IN CYCLE 4 

Figure 4.11. Details of Address Plpellnlng during Cycles with Walt States 

240182-26 

T1-T2-T2P are the states of the bus cycle that es­
tablishes address plpelining for the next bus cycle, 
which begins with T1 P. The same is true after a bus 
hold state, shown below: 

The transition to pipe lined address is shown func­
tionally by Figure 4.10, Cycle 1. Note that Cycle 1 is 
used to transition Into plpellned address timing for 
the subsequent Cycles 2, 3 and 4, which are pipe­
lined. The NA# input is asserted at the appropriate 
time to select address pipelining for Cycles 2, 3 and 
4. 

T1-T2-T2P, 

hold aknowledge non-pipelined 
states cycle 

T1P-T2P, 

pipelined 
cycle 

4-81 

Once a bus cycle is in progress and the current ad­
dress and status has been valid for one entire bus 
state, the NA # input is sampled at the end of every 
phase one until the bus cycle is acknowledged. 



intJ 

Bus States: 

80376 

HOLD ASSERTED 

READY# ASSERTED' 
HOLD NEGATED' 

NO REQUEST 

READY# NEGATED 

T1-first clock of a non·pipelined bus cycle (80376 drives new address, status and asserts ADS#). 

240182-27 

T2-subsequent clocks of a bus cycle when NA # has not been sampled asserted in the current bus cycle. 
T21-subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle but there is not 
yet an internal bus request pending (80376 will not drive new address, status or assert ADS#). . 
T2P-subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle and there is an 
internal bus request pending (80376 drives new address, status and asserts ADS#). 
T1 P-first clock of a pipelined bus cycle. 
Ti-idle state. 
Th-hold acknowledge state (80376 asserts HLDA). 
Asserting NA# for pipelined bus cycles gives access to three more bus states: T21, T2P and T1P. 
Using pipelining the fastest bus cycle consists of T1 P and T2P. 

Figure 4.12. 80376 Processor Complete Bus States (Including Pipelining) 

4-82 



80376 

Sampling begins in T2 during Cycle 1 in Figure 4.10. 
Once NA# is sampled active during the current cy­
cle, the 80376 is free to drive a new address and bus 
cycle definition on the bus as early as the next bus 
state. In Figure 4.10, Cycle 1 for example, the next 
address and status is driven during state T2P. Thus 
Cycle 1 makes the transition to pipelined timing, 
since it begins with T1 but ends with T2P. Because 
the address for Cycle 2 is available before Cycle 2 
begins, Cycle 2 is called a pipelined bus cycle, and it 
begins with T1 P. Cycle 2 begins as soon as 
READY # asserted terminates Cycle 1. 

Examples of transition bus cycles are Figure 4.10, 
Cycle 1 and Figure 4.9, Cycle 2. Figure 4.10 shows 
transition during the very first cycle after an idle bus 
state, which is the fastest possible transition into ad­
dress pipelining. Figure 4.9, Cycle 2 shows a tran­
sition cycle occurring during a burst of bus cycles. In 
any case, a transition cycle is the same whenever it 
occurs: it consists at least of T1, T2 (NA # is assert­
ed at that time), and T2P (provided the 80376 has an 
internal bus request already pending, which it almost 
always has). T2P states are repeated if wait states 
are added to the cycle. 

Note that only three states (T1, T2 and T2P) are 
required in a bus cycle performing a transition from 
non-pipelined into pipelined timing, for example Fig­
ure 4.10, Cycle 1. Figure 4.10, Cycles 2, 3 and 4 
show that pipelining can be maintained with two­
state bus cycles consisting only of T1 P and T2P. 

Once a pipelined bus cycle is in progress, pipelined 
timing is maintained for the next cycle by asserting 
NA# and detecting that the 80376 enters T2P dur­
ing the current bus cycle. The current bus cycle must 
end in state T2P for pipelining to be maintained in 
the next cycle. T2P is identified by the assertion of 
ADS#. Figures 4.9 and 4.10 however, each show 

4-83 

pipelining ending after Cycle 4 because Cycle 4 
ends in T21. This indicates the 80376 didn't have an 
internal bus request prior to the acknowledgement 
of Cycle 4. If a cycle ends with a T2 or T21, the next 
cycle will not be pipelined. 

Realistically, pipe lining is almost always maintained 
as long as NA# is sampled asserted. This is so be­
cause in the absence of any other request, a code 
prefetch request is always internally pending until 
the instruction decoder and code prefetch queue are 
completely full. Therefore pipelining is maintained 
for long bursts of bus cycles, if the bus is available 
(Le., HOLD inactive) and NA# is sampled active in 
each of the bus cycles. ' 

INTERRUPT ACKNOWLEDGE (lNTA) CYCLES 

In repsonse to an interrupt request on the INTR in­
put when interrupts are enabled, the 80376 performs 
two interrupt acknowledge cycles. These bus cycles 
are similar to read cycles in that bus definition sig­
nals define the type of bus activity taking place, and 
each cycle continues until acknowledged by 
READY # sampled active. 

The state of A2 distinguishes the first and second 
interrupt acknowledge cycles. The byte address 
driven during the first interrupt acknowledge cycle is 
4 (A23-A3, A1, BLE# LOW, A2 and BHE# HIGH). 
The byte address driven during the second interrupt 
acknowledge cycle is ° (A23-A1, BLE# LOW and 
BHE# HIGH). 

The LOCK # output is asserted from the beginning 
of the first interrupt acknowledge cycle until the end 
of the second interrupt acknowledge cycle. Four idle 
bus states, Ti, are inserted by the fJ0376 between 
the two interrupt acknowledge cycles for compatibil­
ity with the interrupt specification T RHRL of the 
8259A Interrupt Controller and the 82370 Integrated 
Peripheral. 



intJ 80376 

PREVIOUS I 
CYCLE 

T2 T1 

INTERRUPT 
ACKNOWLEDGE 

CYCLE 1 

T2 T2 

IDLE 
(4 BUS STATES) 

TI TI TI TI T1 

INTERRUPT 
ACKNOWLEDGE 

CYCLE 2 

T2 T21 

IDLE 

TI 

ClK2 [ -rut rut rut rLfl nn rut rut rut rLfl nn rut nn 
PROCESSOR ClK [ -~ ~ ~ \.f \.f ~ ~ ~ \.f \.f ~ V 

XIXXXXIY 'xxx IXXX IXX :)()()( y I'XXX xxx 
r 

BlEH, A1, A3-A23[ 
tot/IOH, D/CH, W /RH XXXXXIX A"XXX IXX.xX IXXX IXXX IX I.< X X IXXX 

lOCKH [ 

ADS#[ 

NA#[ 

READY#[ 

DS-D15 [ 

X'XXXXIY 

xxxxx~ 

I\..-V 
,xxx ,xXXIY '< 

,xx x Y 

. --.-- ----- -----

. ---- ----------

x 

Il()()( xx 

~\ }(X 
IGNORED 

ro--{D--
IGNORED --q::>--

V 
x.xx IXXXX IXXXX IX. I.< X x 

V 
~ 

~/' 

x .xx IXXX IXXXXX }(IXXXX IXXXX 

x xx IXXXX IXXX XXy ~ m 
VECTOR 

----- ----- ----- -----ro---- --0---
IGNORED 

----- ----- ----- -----ro---- --q::>---
240182-28 

Interrupt Vector (0-255) is read on DO-D7 at end of second Interrupt Acknowledge bus cycle. 
Because each Interrupt Acknowledge bus cycle is followed by idle bus states, asserting NA # has no practical effect. 
Choose the approach which is simplest for your system hardware design. 

Figure 4.13. Interrupt Acknowledge Cycles 

During both interrupt acknowledge cycles, 015-00 
float. No data is read at the end of the first interrupt 
acknowledge cycle. At the end of the second inter­
rupt acknowledge cycle, the 80376 will read an ex­
ternal interrupt vector from 07-00 of the data bus. 
The vector indicates the specific interrupt number 
(from 0-255) requiring service. 

HALT INDICATION CYCLE 

The 80376 execution unit halts as a result of execut­
ing a HL T instruction. Signaling its entrance into the 
,halt state, a halt indication cycle is performed. The 
halt indication cycle is identified by the state of the 
bus definition signals shown on page 34, Bus Cycle 
Definition Signals, and a byte address of 2. The 
halt indication cycle must be acknowledged by 
READY # asserted. A halted 80376 resumes execu­
tion when INTR (if interrupts are enabled), NMI or 
RESET is asserted. 

4-84 



80376 

I CYCLE 1 I 
NON-PIPELINED 

(WRITE) 

T1 T2 

CYCLE 2 I IDLE 
NON-PIPELINED 

(HALT) 

T1 T2 TI n TI n 

CLK2[ 

PROCESSOR CLK [ 

BHEH, Al,[ 
M/IOH, W/RH 

-IIr~+--:--i"7'--+--~~~*,~~~80376 REMAINS HALTED 
'Q~~~~+- UNTIL INTR, NMI OR 
• RESET IS ASSERTED. 

A2-A23[ 
BLEH, D/CH 

I I 
-fI;),.....;.;.;;;:...;...-~--t---j'~~~~~f-80376 RESPONDS TO 

ADS#[ 
,--+--+---i~ HOLD INPUT WHILE IN 

THE HALT STATE. 

NA# [ ~~~~~~~~~"Q,Q.QjQ"Q,Q.QjQ~.QjQ~~ 

- (fLOATING) - - - -
I I . 

240182-29 

Figure 4.14. Example Halt Indication Cycle from Non-Pipelined Cycle 

SHUTDOWN INDICATION CYCLE 

The 80376 shuts down as a result of a protection 
fault while attempting to process a double fault. Sig­
naling its entrance into the shutdown state, a shut­
down indication cycle is performed. The shutdown 
indication cycle is identified by the state of the bus 
definition signals shown on page 34 Bus Cycle Def­
Inition Signals and a byte address of O. The shut­
down indication cycle must be acknowledged by 
READY # asserted. A shutdown 80376 resumes ex­
ecution when NMI or RESET is asserted. 

4-85 

ENTERING AND EXITING HOLD 
ACKNOWLEDGE 

The bus hold acknowledge state, T h' is entered in 
response to the HOLD input being asserted. In the 
bus hold acknowledge state, the 80376 floats all 
outputs or bidirectional signals, except for HLDA. 
HLDA is asserted as long as the 80376 remains in 
the bus hold acknowledge state. In the bus hold ac­
knowledge state, all inputs except HOLD and RE­
SET are ignored. 



ClK2[ 

PROCESSOR ClK [ 

BHE#[ 
1.4/10#. W/R# 

BlE #. A l-A23. [ 
D/C# 

ADS#[ 

NA#[ 

READY#[ 

lOCK#[ 

CYCLE 1 
PIPELINED 

(READ) 

T1P T2P 

80376 

CYCLE 2 
PIPELINED 

(SHUTDOWN) 

T1P 

I IDLE 

T21 TI TI n TI 

-t"':":":':":':'":"tr--+---k7"""~~~~m~~B0376 PROCESSOR REMAINS 
'Q~~~~~~loCJ+-SHUTDOWN UNTil NMI OR 
- RESET IS ASSERTED. 

~~~~. I I 
-+~~~~-~---~~~~~~~loCJ~B0376RESPONDSTO

HOLD INPUT WHilE IN
---+---+---+---l-THE SHUTDOWN STATE.

240182-30

Figure 4.15. Example Shutdown Indication Cycle from Non-Pipelined Cycle

T h may be entered from a bus idle state as in Figure
4.16 or after the acknowledgement of the current
physical bus cycle if the LOCK # signal is not assert­
ed. as in Figures 4.17 and 4.18.

This exited in response to the HOLD input being
negated. The following state will be Ti as in Figure
4.16 if no bus request is pending. The following bus

4-86

state will be T1 if a bus request is internally pending.
as in Figures 4.17 and 4.18. This exited in response
to RESET being asserted.

If a rising edge occurs on the edge-triggered NMI
input while in T h. the event is remembered as a non­
maskableinterrupt 2 and is serviced when Th is exit­
ed unless the 80376 is reset before Th is exited.

intJ 80376

IDLE

TI

CLK2[

PROCESSOR CLK [

HOLD[

~ HOLD --I I _ ACKNOWLEDGE _ I
Th Th Th

IDLE

TI

HLDA[-+---f

BHE#, BLE#[
A1-A23, M/IO# """1''"''''"

D/C#, W/R# -
(FLOATING) - •••

I
ADS#[(FLOATING) - •••

LOCK#[•• -- (FLOATING)-···

~~"'" I
(FLOATING)

00- 015 [- ----------.----~---. 240182-31

NOTE:
For maximum design flexibility the 80376 has no internal pull-up resistors on its outputs. Your design may require an
external pullup on ADS# and other 80376 outputs to keep them negated during float periods.

Figure 4.16. Requesting Hold from Idle Bus

RESET DURING HOLD ACKNOWLEDGE

RESET being asserted takes priority over HOLD be­
ing asserted. If RESET is asserted while HOLD re­
mains asserted, the 80376 drives its pins to defined
states during reset, as in Table 4.5, Pin State Dur­
ing Reset, and performs internal reset activity as
usual.

If HOLD remains asserted when RESET is inactive,
the 80376 enters the hold acknowledge state before
performing its first bus cycle, provided HOLD is still
asserted when the 80376 processor would other-

wise perform its first bus cycle. If HOLD remains as­
serted when RESET is inactive, the BUSY # input is

. still sampled as usual to determine whether a self
test is being requested.

4-87

BUS ACTIVITY DURING AND FOLLOWING
RESET

RESET is the highest priority input signal, capable of
interrupting any processor activity when it is assert­
ed. A bus cycle in progress can be aborted at any
stage, or idle states or bus hold acknowledge states
discontinued so that the reset state is established.

80376

CYCLE 1
NON-PIPELINED

(READ)

HOLD CYCLE 2
ACKNOWLEDGE NON-PIPELINED

(WRITE)

NOTE:

ClK2[

PROCESSOR ClK [

HOLD [

HlDA [

BHE#. BlE#. Al-A23.[
M/IO#. D/C#. W IR#

11 T2 T2 Th Th T1 T2

NO LATER THAN READY# ASSERTED

240182-32

HOLD is a synchronous input and can be asserted at any CLK2 edge. provided setup and hold (123 and t24) require·
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 4.17. Requesting Hold from Active Bus (NA# Inactive)

RESET should remain asserted for at least 15 CLK2
periods to ensure it is recognized throughout the
80376. and at least 80 CLK2 periods if a 80376 self·
test is going to be requested at the falling edge. RE·
SET asserted pulses less than 15 CLK2 periods may
not be recognized. RESET pulses less than 80 CLK2

4·88

periods followed by a self·test may cause the self·
test to report a failure when no true failure exists.

Provided the RESET falling edge meets setup and
hold times t25 and t26. the internal processor clock
phase is defined at that time as illustrated by Figure
4.19 and Figure 6.7.

80376

T1P

CLK2[

PROCESSOR CLK[

HOLD [

HLDA [

CYCLE 1
PIPELINED
(WRIT~)

T21 T21

HOLD CYCLE 2
ACKNOWLEDGE NON-PIPELINED

(READ)

Th Th T1 T2

BHE#. BLE#. Al- A23. [
M/IO#. D/C#. W/R# ~~~.p..~~~c:J;.*,

NOTE:

ADS# [

NA# [

240182-33

HOLD is a synchronous input and can be asserted at any CLK2 edge. provided setup and hold (t23 and t24) require­
ments are met. This waveform is useful for determining Hold Acknowledge latency.

Figure 4.18. Requesting Hold from Idle Bus (NA# Active)

An 80376 self-test may be requested at the time RE­
SET goes inactive by having the BUSY # input at a
LOW level as shown in Figure 4.19. The self-test
requires (220 + approximately 60) CLK2 periods to
complete. The self-test duration is not affected by
the test results. Even if the self-test indicates a

4-89

problem. the 80376 attempts to proceed with the
reset sequence afterwards.

After the RESET falling edge (and after the self-test
if it was requested) the 80376 performs an internal
initialization sequence for approximately 350 to 450
CLK2 periods.

inter 80376

INTERNAL
1----RESET----t->---INITIALIZATION------1 CYCLE I

ClK2[

RESET [

l!: IS ClK2 DURATION If
NOT GOING TO REQUEST
SElf-TEST.

ClK (li':!TERNAl) [~'''-II '''"-'

PROCESSOR ClK [

NON-PIPELINED
(READ)

T1 T2

ERROR# [~~~~~'lp.~~~~~~~~~~~~~~~~~
BHE#. BlE#.

W/R#.M~~gA [~~~~~_-I ~;,;,,;,;;;..;,:.;,;,;;;;:,;,...-~~~~ Fl~~~~I'---t--
AI-A23. [

D/C#; lOCK# QI,~~~~

ADS#[~~~~

NA#[~~~~~~~~~~~~~~~~~~~L}.

DO-DIS[XXXXXXX>--- -(fLOATING)----------- --- -- - ---- --.

240182-34

NOTES:
1. BUSY # should be held stable for 8 CLK2 periods before and after the CLK2 period in which RESET falling edge
occurs.
2. If self-test is requested. the 80376 outputs remain in their reset state as shown here.

Figure 4.19. Bus Activity from Reset until First Code Fetch

4.5 Self-Test Signature

Upon completion of self-test (if self-test was re­
quested by driving BUSY # LOW at the falling edge
of RESET) the EAX register will contain a signature
of OOOOOOOOH indicating the 80376 passed its self­
test of microcode and major PLA contents with no
problems detected. The passing signature in. EAX,
OOOOOOOOH, applies to all 80376 revision levels. Any
non-zero signature indicates the 80376 unit is faulty.

4-90

4.6 Component and Revision
Identifiers

To assist 80376 users, the 80376 after reset holds a
component identifier and revision identifier in its OX
register. The upper 8 bits of OX hold 33H as identifi­
cation of the 80376 component. (The lower nibble,
03H, refers to the Intel386TM architecture. The up­
per nibble, 30H, refers to the third member of the
Intel386 family). The lower 8 bits of OX hold an
8-bit unsigned binary number related to the

80376

component revision level. The revision identifier will,
in general, chronologically track those component
steppings which are intended to have certain im­
provements or distinction from previous steppings.
The 80376 revision identifier will track that of the
80386 where possible.

The revision identifier is intended to assist 80376
users to a practical extent. However, the revision
identifier value is not guaranteed to change with ev­
ery stepping revision, or to follow a completely uni­
form numerical sequence, depending on the type or
intention of revision, or manufacturing materials re­
quired to be changed. Intel has sole discretion over
these characteristics of the component.

Table 4.7. Component and
Revision Identifier History

80376 Stepping Name Revision Identifier

AO 05H

ERROR # inputs of the 80376 may also be used for
the custom coprocessor interface, if such hardware
assist is desired. These Signals can be tested by the
80376 WAIT opcode (9BH). The WAIT instruction
will wait until the BUSY # input is inactive (interrupta­
ble by an NMI or enabled INTR input), but generates
an exception 16 fault if the ERROR # pin is active
when the BUSY # goes (or is) inactive. If the custom
coprocessor interface is memory-mapped, protec­
tion of the addresses used for the interface can be
provided with the segmentation mechanism of the
80376. If the custom interface is liD-mapped, pro­
tection of the interface can be provided with the
80376 10PL (liD Privilege Level) mechanism.

The 80387SX numeric coprocessor interface is liD
mapped as shown in Table 4.8. Note that the
80387SX coprocessor interface addresses are be­
yond the OH-OFFFFH range for programmed liD.
When the 80376 supports the 80387SX coproces­
sor, the 80376 automatically generates bus cycles to

. the coprocessor interface addresses.

4.7 Coprocessor Interfacing

The 80376 provides an automatic interface for the
Intel 80387SX numeric floating-point coprocessor.
The 80387SX coprocessor uses an liD mapped in­
terface driven automatically. by the 80376 and as­
sisted by three dedicated signals: BUSY #, ER­
ROR # and PEREa.

As the 80376 begins supporting a coprocessor in­
struction, it tests the BUSY # and ERROR # signals
to determine if the coprocessor can accept its next
instruction. Thus, the BUSY # and ERROR # inputs
eliminate the need for any "preamble" bus cycles·
for communication between processor and coproc­
essor. The 80387SX can be given its command op­
code immediately. The dedicated signals provide in­
struction synchronization, and eliminate the need of
using the 80376 WAIT opcode (9BH) for 80387SX
instruction synchronization (the WAIT opcode was
required when the 8086 or 8088 was used with the
8087 coprocessor).

Custom coprocessors can be included in 80376
based systems by memory-mapped or liD-mapped
interfaces. Such coprocessor interfaces allow a
completely custom protocol, and are not limited to a
set of coprocessor protocol "primitives". Instead,
memory-mapped or liD-mapped interfaces may use
all applicable 80376 instructions for high-speed co­
processor communication. The BUSY # and

4-91

Table 4.8 Numeric Coprocessor Port Addresses

Address in 80376 80387SX
I/O Space Coprocessor Register

8000F8H Opcode Register
8000FCH Operand Register
8000FEH Operand Register

SOFTWARE TESTING FOR COPROCESSOR
PRESENCE

When software is used to test coprocessor
(80387SX) presence, it should use only the following
coprocessor opcodes: FNINIT, FNSTCW and
FNSTSW. To use other coprocessor opcodes when
a coprocessor is known to be not present, first set
EM = 1 in the 80376 CRO register.

5.0 PACKAGE THERMAL
SPECIFICATIONS

The Intel 80376 embedded processor is specified
for operation when case temperature is within the
range of 0°C-115°C for the ceramic 88-pin PGA
package, and 0°C-110°C for the 100-pin plastic
package. The case temperature may be measured
in any environment, to determine whether the 80376
is within specified operating range. The case tem­
perature should be measured at the center of the
top surface.

Intel 80376

The ambient temperature is guaranteed as long as
T e is not violated. The ambient temperature can be
calculated from the 0je and 0ja from the following
equations:

TA = Tj - P*lIja

Tc = Ta + P*[lIja - IIje]

Values for 0ja and 0je are given in Table 5.1 for the
100-lead fine pitch. 0ja is given at various airflows.
Table 5.2 shows the maximum Ta allowable (without
exceeding T cl at various airflows. Note that T a can
be improved further by attaching "fins" or a "heat
sink" to the package. P is calculated using the maxi­
mum hot Icc.

Table 5.1. 80376 Package Thermal
Characteristics Thermal Resistances

("C/Watt) 0je and 0ja

0ja Versus Airflow-ft/min (m/sec)

Package °je 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100·Lead 7 33 27 24 21 18 17
Fine Pitch

88-Pin 2 25 20 17 14 12 11
PGA

Assuming lee hot of 360 mA, Vee of 5.0V, and a
TeASE of 110°C for plastic and 115°C for the 88-Pin
PGA Package:

Table 5.2. 80376
Maximum Allowable Ambient

Temperature at Various Airflows

T A("C) vs Airflow-ft/min (mIse c)

Package °je 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)

100-Lead 7 63 74 79 85 91 92
Fine Pitch

88-Pin 2 74 83 88 93 97 99
PGA

4-92

6.0 ELECTRICAL SPECIFICATIONS

The following sections describe recommended elec­
trical connections for the 80376, and its electrical
specifications.

6.1 Power and Grounding

The 80376 is implemented in CHMOS III technology
and has modest power requirements. However, its
high clock frequency and 47 output buffers (address,
data, control, and HLDA) can cause power surges
as multiple output buffers drive new signal levels
simultaneously. For clean on-chip power distribution
at high frequency, 14 Vee and 18 Vss pins separate­
ly feed functional units of the 80376.

Power arid ground connections must be made to all
external Vee and GND pins of the 80376. On the
circuit board, all Vee pins should be connected on a
Vee plane and all Vss pins should be connected on
a GND plane.

POWER DECOUPLING RECOMMENDATIONS

Liberal decoupling capacitors should be placed near
the 80376. The 80376 driving its 24-bit address bus
and 16-bit data bus at high frequencies can cause
transient power surges, particularly when driving
large capacitive loads. Low inductance capacitors
and interconnects are recommended for best high
frequency electrical performance. Inductance can
be reduced by shortening circuit board. traces be­
tween the 80376 and decoupling capacitors as
much as possible.

RESISTOR RECOMMENDATIONS

The ERROR # and BUSY # inputs have internal pull­
up resistors of approximately 20 Kn and the PEREO
input has an internal pull-down resistor of approxi­
mately 20 Kn built into the 80376 to keep these
signals inactive when the 80387SX is not present in
the system (or temporarily removed from its socket).

inter 80376

In typical designs, the external pull-up resistors
shown in Table 6.1 are recommended. However, a
particular design may have reason to adjust the re­
sistor values recommended here, or alter the use of
pull-up resistors in other ways.

Pin Signal

16 ADS#

Table 6.1. Recommended
Resistor Pull-Ups to Vee

Pull-Up Value Purpose

20Kn ± 10% Lightly Pull ADS#
Inactive during 80376
Hold Acknowledge
States

26 LOCK# 20 Kn ± 10% Lightly Pull LOCK#
Inactive during 80376
Hold Acknowledge
States

OTHER CONNECTION RECOMMENDATIONS

For reliable operation, always connect unused in­
puts to an appropriate signal level. N/C pins should
always remain unconnected. Connection of N/C
pins to Vee or Vss will result In incompatibility
with future stepplngs of the 80376.

Particularly when not using interrupts or bus hold (as
when first prototyping), prevent any chance of spuri­
ous activity by connecting these associated inputs to
GND:

-INTR
-NMI
-HOLD

4-93

If not using address pipelining connect the NA# pin
to a pull-up resistor in the range of 20 Kn to Vee.

6.2 Absolute Maximum Ratings
Table 6.2. Maximum Ratings

Parameter Maximum Rating

Storage Temperature -65°C to + 150°C

Case Temperature -65°C to + 120°C
under Bias

Supply Voltage with -0.5Vto +6.5V
Respect to Vss

Voltage on Other Pins -0.5V to (Vee + 0.5)V

Table 6.2 gives a stress ratings only, and functional
operation at the maximums is not guaranteed. Func­
tional operating conditions are given in Section 6.3,
D.C. Specifications, and Section 6.4, A.C. Specifi­
cations.

Extended exposure to the Maximum Ratings may af­
fect device reliability. Furthermore, although the
80376 contains protective circuitry to resist damage
from static electric discharge, always take precau­
tions to avoid high static voltages or electric fields.

inter 80376

6.3 D.C. Specifications

ADVANCE INFORMATION SUBJECT TO CHANGE·
Table 6.3: 80376 D.C. Characteristics

Functional Operating Range: Vee = 5V ±10%; TeAsE = O·C to 115·C 88-pin PGA, TeASE = O·C to 110·C
100-pin plastic

Symbol Parameter

Input LOW Voltage

Input HIGH Voltage

CLK2 Input LOW Voltage

CLK2 Input HIGH Voltage

VOL Output LOW Voltage

IOL = 5 rnA: BHE#, BLE#, W/R#,
D/C#, M/IO#, LOCK#,
ADS#, HLDA

VOH Output High Voltage

IOH = ~ 0.2 rnA:

A23-A 1, D1S-Do

IOH = -0.9 rnA: BHE#, BLE#, W
D/C#, M/IO#

IOH = -0.18 rnA:

III

ILO

ICC

COUT

CeLK

NOTES:

ADS#, HLD

Input Leakage Current
(Busy# and ERROR# Pins)

Output Leakage Current

Supply Current
at HOT

Input Capacitance

Output or 1/0 Capacitance

CLK2 Capacitance

1. Tested at the minimum operating frequency of the part.
2. PEREQ input has an internal pull-down resistor.

Min

-0.3

2.0

-0.3

Vee - 0.8

3. BUSY # and ERROR # inputs each have an internal pull-up resistor.
4. lee max measurement at worse case frequency, Vee and temperature (0°C).
5. Not 100% tested.

Max

+0.8

±15

200

-400

±15

400·
360

10

12

20

6. lee HOT max measurement at worse case frequency, Vee and max temperature.

4-94

Unit

V(1)

V(1)

V(1)

p..A, OV :s: VIN :s: VeC<1)

/LA, VIH = 2.4V(1, 2)

/LA, VIL = 0.45V(3)

/LA, 0.45V :s: VOUT :s: VeC<1)

rnA(4)
rnA(6)

pF, Fe = 1 MHz(S)

pF, Fe = 1 MHz(S)

pF, Fe = 1 MHz(S)

inter 80376

The A.C. specifications given in Table 6.4 consist of
output delays, input setup requirements and input
hold requirements. All A.C. specifications are rela­
tive to the CLK2 rising edge crossing the 2.0V level.

A.C. specification measurement is defined by Figure
6.1. Inputs must be driven to the voltage levels indi­
cated by Figure 6.1 when A.C. specifications are
measured. 80376 output delays are specified with
minimum and maximum limits measured as shown.
The minimum 80376 delay times are hold times pro­
vided to external circuitry. 80376 input setup and
hold times are specified as minimums, defining the

~1

CLK2[

~----~Ar-----~

®
NOTE 2

OUTPUTS

smallest acceptable sampling window. Within the
sampling window, a synchronous input signal must
be stable for correct 80376 processor operation.

Outputs NA#, W/R#, O/C#, MIIO#, LOCK#,
BHE#, BLE#, A23-A1 and HLOA only change at
the beginning of phase one. 015-00 (write cycles)
only change at the beginning of phase two. The
READY #, HOLD, BUSY #, ERROR #, PEREO and
015-00 (read cycles) inputs are sampled at the be­
ginning of phase one. The NA#, INTR and NMI in­
puts are sampled at the beginning of phase two.

~2

(A l-A23.BHEH.BLEH. [
ADSH.M/IOH.D/CH.

W/RH.LOCKH.HLDA) -----"-"-........ .:.....;, ";O";~---T""-

OUTPUTS [
(00-015)

INPUTS [
(NAH.INTR.NMI)

INPUTS
(READY#.HOLD. [

ERRORH.BUSYH.
PEREO.DD-Dls)

LEGEND:
A-Maximum Output Delay Spec.
S-Minimum Output Delay Spec.
C-Minimum Input Setup Spec.
D-Minimum Input Hold Spec.

I------{A}-----+j

© NOTE 1

3.0V "....,"7"b7-------~~-.:-
l.sV VALID

INPUT
l.sV

DV~~~------~~"""

© NOTE 1 ®
3.DV "....,...,...""""------~~-O:-

l.sV VALID
INPUT l.sV

DV~~~-----~~~

240182-35

Figure 6.1. Drive Levels and Measurement Points for A.C. Specifications

4-95

inter 80376 ~IIDW~OO©[§ OOO!F@OOIMl~jj'O©OO

6.4 A.C. Specifications

ADVANCE INFORMATION SUBJECT TO CHANGE
Table 6.4. 80376 A.C. Characteristics at 16 MHz

Functional Operating Range: Vee = 5V ± 1 D%; TeASE = DOC to 115°C for SS-pin PGA, DOC to 11 DOC for
1 DO-pin plastic

Symbol Parameter Min Max Unit Figure Notes

Operating Frequency 4 16 MHz Half CLK2 Freq

t1 CLK2 Period 31 125 ns ~;:

t2a CLK2 HIGH Time 9 ns

t2b CLK2 HIGH Time 5

t3a CLK2 LOW Time 9

t3b CLK2 LOW Time 7

t4 CLK2 Fall Time

t5 CLK2 Rise Time D.SV to (Vee-D.S)(3)

t6 A23-A1 Valid Delay

t7 A23-A1 Float Delay

ts BHE#, BLE#, LOCK#
Valid Delay

t9 BHE#, BLE#, LOCK# (1)

Float Delay

t10 W/R#, M/IO#, 01 6.5 CL = 75 pF(4)
ADS# Valid Del

t11 ns 6.6 (1)

t12 015- 4D ns 6.5 CL = 12D pF(4)

V~lid

t13 4 35 ns 6.6 (1)

t14 6 33 . ns 6.6 CL = 75pF(4)

t15 NA# Setup Time 5 ns 6.4

t16 NA# Hold Time 21 ns 6.6

t19 READY # Setup Time 19 ns 6.4

t20 READY # Hold Time 4 ns 6.4

t21 Setup Time 015-00 Read Data 9 ns 6.4

t22 Hold Time 015-00 ReadData 6 ns 6.4

t23 HOLD Setup Time 26 ns 6.4

t24 HOLD Hold Time 5 ns 6.4

t25 RESET Setup Time 13 ns 6.7

t26 RESET Hold Time 4 ns 6.7

NOTE:
The S0376 does not have t17 or t18 timing specifications.

4-96

inter 80376

Table 6.4. 80376 A.C. Characteristics at 16 MHz
Functional Operating Range: Vcc = 5V ±10%; TCASE = O·C to 115·C for aO·pin PGA, O·C to 110·C for
100·pin plastic (Continued)

Symbol Parameter Min Ma~,~" Unit Figure Notes

t27 NMI, INTR Setup Time 16 "«;~ :':','ns 6.4 (2)

t28 NMI, INTR Hold Time 16 i;,;1' , . ,(,:;;. ns 6.4 (2)

t29 PEREQ,ERROR#,BUSY# 16{,C'

:£;<~~> ns 6.4 (2)

Setup Time ",/:,,>:':::'1,1/
.; '.

tso PEREQ, ERROR #, BUSY #',:~ . \;0 <~~,,~.:, <\,~" ns 6.4 (2)
,.,>

Hold Time ,,:,:;:' .-
,:«"' 'r> .. "/

;~<;.h,/,J;

NOTES:. ,\ .1.'1" A:[') ,
1. Float condition occurs when maxim~m,9ulpuk~urrem~~ecomes less than ILO in magnitude. Float delay is not 100%
tested ' .".. r'" ";,,,
2. The~e inputs are allowed to be aS5tnChrol19~;'to CLK2. The setup and hold specifications are given for testing purposes,
to assure recognition within a specific CLKa.period.
3. These are not tested. They are guarante'ad by design characterization.
4. Tested with CL set to 50 pF and derated to support the indicated distributed capacitive load. See Figure 6.8 for the
capacitive derating curve.

A.C. TEST LOADS A.C. TIMING WAVEFORMS

B0376
OUTPUT~

~CL=50PF

240162-36

Figure 6.2. A.C. Test Loads

Tx Tx

CLK2 [

READY# [~~IoD. __ + __ .lW~

HOLD [~~IoD. __ + __ .lW~

00-015 [(INPUT) ~~ ____ + __ -.!~

BUSY#. [
ERROR#

PEREQ ~~----+---.!~

NA# [

INTR. [
NMI

240162-37

Figure 6.3. CLK2 Waveform

Tx

, ,
240162-38

Figure 6.4. A.C. Timing Waveforms-Input Setup and Hold Timing

4-97

CLK2 [

BHE #. BLE #. [
LOCK#

W/R#. M/IO#. [
D/C#.ADS#

Al-A23 [

00-015 [
(OUTPUT)

HLDA [

80376

Tx

Figure 6.5. A.C. Timing Waveforms-Output Valid Delay Timing

CLK2 [

BHE#. BLE#. [
LOCK#

W/R#. M/IO#. [
D/C#.ADS#

Al-A23 [

00-015 [

HLDA [

';2 ';1
Th nOR T1

';1 ';2

(HIGH Z)

@ALSO APPLIES TO DATA FLOAT WHEN WRITE
CYCLE IS FOLLOWED BY READ OR IDLE

240182-39

MAX

240182-40

Figure 6.6. A.C. Timing Waveforms-Output Float Delay and HLDA Valid Delay Timing

4-98

80376

CLK2 [

RESET [

240182-41
The second internal processor phase following RESET high·to·low transition (provided t25 and 126 are met) is <l>2.

Figure 6.7. A.C. Timing Waveforms-RESET Setup and Hold Timing, and Internal Phase

Typical Capacitive Derating

!
>-

~
" " ::;
~
>-
:::> ..
>-
:::>
0

.·Low to High
X·High to Low

25

20

15

10

v
...--::: ~ ~ V

~

25 50 75 100 125 150

CAPACITIVE LOAD (pF)

240182-42

Figure 6.8. Capacitive Derating Curve

Typical Slew Rates at TTL Levels
~~.8V to 2.0V and 2.0V to O.8V)

20

-c:;- 15
.5
:;; 10

.·Low to High
X·High to Low

~ ~
j:::: r.--'

25 50 75 100 125 150

CAPACITANCE

240182-44

Figure 6.10. TTL Level Slew
Rates for Output Buffers

4·99

300

200

Typical Slew Rates
at CMOS Levels
30r--r--r--r--r--r--.

25 50 75 100 125 150

CAPACITANCE

240182-43

Figure 6.9. CMOS Level Slew
Rates for Output Buffers

..---~ -
295 ---

?-~
100

o
4

Icc MEASURED AT WORST CASE Vee AND TEMPERATURE

B 10 12 14 16

FREQUENCY (MHz)

240182-45

Figure 6.1,1. Typical Icc vs Frequency

inter 80376

6.5 Designing for ICETM-376 Emulator
(Advanced Data)

The 376 embedded processor in-circuit emulator
product is the ICE-376 emulator. Use of the emula­
tor requires the target system to provide a socket
that is compatible with the ICE-376 emulator. The
80376 offers two different probes for emulating user
systems: an 88-pin PGA probe and a 100-pin fine
pitch flat-pack probe. The 100-pin fine pitch flat­
pack probe requires a socket, called the 100-pin
PQFP, which is available from 3-M text-tool (part
number 2-0100-07243-000). The ICE-376 emulator
probe attaches to the target system via an adapter
which replaces the 80376 component in the target
system. Because of the high operating frequency of
80376 systems and of the ICE-376 emulator, there is
no buffering between the 80376 emulation proces­
sor in the ICE-376 emulator probe and the target
system. A direct result of the non-buffered intercon­
nect is that the ICE-376 emulator shares the ad­
dress and data bus with the user's system, and the
RESET signal is intercepted by the ICE emulator
hardware. In order for the ICE-376 emulator to be
functional in the user's system without the Optional
Isolation Board (OIB) the designer must be aware of
the following conditions:

1. The bus controller must only enable data trans­
ceivers onto the data bus during valid read cycles
of the S0376, other local devices or other bus
masters.

2. Before another bus master drives the local proc­
essor address bus, the other master must gain
control of the address bus by asserting HOLD and
receiving the HLDA response.

3. The emulation processor receives the RESET sig­
nal 2 or 4 CLK2 cycles later than an 80376 would,
and responds to RESET later. Correct phase of
the response is guaranteed.

In addition to the above considerations, the ICE-376
emulator processor module has several electrical
and mechanical characteristics that should be taken
into consideration when designing the S0376 sys­
tem.

Capacitive Loading: ICE-376 adds up to 27 pF to
each 80376 signal.

Drive Requirements: ICE-376 adds one FAST TTL
load on the CLK2, control, address, and data lines.
These loads are within the processor module and
are driven by the 80376 emulation processor, which
has standard drive and loading capability listed in
Tables 6.3 and 6.4.

Power Requirements: For noise immunity and
CMOS latch-up protection the ICE-376 emulator
processor module is powered by the user system.
The circuitry on the processor module draws up to
1.4A including the maximum S0376 Icc from the
user S0376 socket.

80376 Location and Orientation: The ICE-376 em­
ulator processor module may require lateral clear­
ance. Figure 6.12 shows the clearance requirements
of the iMP adapter and Figure 6.13 shows the clear­
ance requirements of the SS-pin PGA adapter. The

1--------17.5" --------1°1
I-~-----.I

FLEXIBLE 0'0

00 ~----------------~

p"---I-I' ------------ 26.75" -------------1°1
~~E--~========~~s~========~b~==Ifc,==~1 FE .a::;::ll

1.25"

Figure 6.12. Preliminary ICETM-376 Emulator User Cable with PQFP Adapter

4-100

240182-46

inter 80376

PIN 1

~
UhJll

b F3 I
240182-50

Figure 6.13. Preliminary ICETM-376 Emulator User Cable with SS-Pin PGA Adapter

optional isolation board (OIB), which provides extra
electrical buffering and has the same lateral clear­
ance requirements as Figures 6.12 and 6.13, adds
an additional 0.5 inches to the vertical clearance re­
quirement. This is illustrated in Figure 6.14.

Optional Isolation Board (OIB) and the CLK2
speed reduction: Due to the unbuffered probe de­
sign, the ICE·376 emulator is susceptible to errors

on the user's bus. The OIB allows the ICE·376 emu·
lator to function in user systems with faults (shorted
signals, etc.). After electrical verification the OIB
may be removed. When the OIB is installed, the user
system must have a maximum CLK2 frequency of 20
MHz.

j4----------12.75"---------+l',
r--------I

DI-_-_·~=~=~::·=·_F=--L_-~=-=X=l~_B--=L=:--=::-_-=_-_--' ----
FLEXIBLE

crc=r ~ lE!I--I' -----22·°"--------1'1'
f6ii ji F3

240182-51

Figure 6.14. Preliminary ICETM-376 Emulator User Cable with OIB and PQFP Adapter

4-101

80376

7.0 DIFFERENCES BETWEEN THE
80376 AND THE 80386

The following are the major differences between the
80376 and the 80386.

1. The 80376 generates byte selects on BHE# and
BLE# (like the 8086 and 80286 microprocessors)
to distinguish the upper .and lower bytes on its
16-bit data bus. The 80386 uses four-byte selects,
BEO#-BE3#, to distinguish between the differ­
ent bytes on its 32-bit bus.

2. The 80376 has no bus sizing option. The 80386
can select between either a 32-bit bus or a 16-bit
bus by use of the BS16# input. The 80376 has a
16-bit bus size.

3. The NA# pin operation in the 80376 is identical to .
that of the NA # pin on the 80386 with one excep­
tion: the NA# pin of the 80386 cannot be activat­
ed on 16-bit bus cycles (where BS 16 # is LOW in
the 80386 case), whereas NA# can be activated

. on any 80376 bus cycle.

4. The contents of all 80376 registers at reset are
identical to the contents of the 80386 registers at
reset, except .the OX register. The OX register
contains a component-stepping identifier at reset,
Le.

in 80386', after reset OH = 3 indicates 80386
OL = revision number;

in 80376, after reset OH = 33H indicates 80376
OL = revision number.

5. The 80386 uses A31 and MIIO# as a select
for numerics coprocessor. The 80376 uses the
A23 and MIIO# to select its numerics coproc­
essor.

6. The 80386 prefetch unit fetches code in four­
byte units. The 80376 prefetch unit reads two

bytes as one unit (like the 80286 microproces­
sor). In BS16# mode, the 80386 takes two con­
secutive bus cycles to complete a prefetch re­
quest. If there is a data read or write request after
the prefetch starts, the 80386 will fetch all four
bytes before addressing the new request.

7. The 80376 has no paging mechanism.

8. The 80376· starts executing code in what corre­
sponds to the 80386 protected mode. The 80386
starts execution in real mode, which is then used
to enter protected mode.

9. The 80386 has a virtual-86 mode that allows the
execution of a real mode 8086 program as a task

. in protected mode. The 80376 has no virtual-86
mode.

10. The 80386 maps a 48-bit logical address. into a.
32-bit physical address by segmentation and
paging. The 80376 maps its 48-bit logical ad­
dress into a 24-bit physical address by segmen­

. tation only .

11. The 80376 uses the 80387SX numerics coproc­
essor for floating point operations, while the
80386 uses the 80387 coprocessor.

12. The 80386 can execute from 16-bit code seg­
ments. The 80376 can only execute from 32-bit
code Segments.

8.0 INSTRUCTION SET

This section. describes the 376 embedded processor
instruction set. Table 8.1 lists all instructions along
with instruction encoding diagrams and clock
counts. Further details of the instruction encoding
are then provided in the following sections, which
completely describe the encoding structure and the
definition of all fields occurring within 80376 instruc-
tions. .

8.1 80376 Instruction Encoding and
Clock Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 8.1 be­
low, by the processor clock period (e.g. 62.5 ns for
an 80376 operating at 16 MHz). The actual clock
count of an 80376 program will average 10% more

4-102

inter 80376

than the calculated clock count due to instruction
sequences which execute faster than they can be
fetched from memory. -

Instruction Clock Count Assumptions:

1. The instruction has been prefetched, decoded,
and- is ready for execution.

2. Bus cycles do not require wait states.

3. There are no local bus HOLD requests delaying
processor acess to the bus.

4. No exceptions are detected during instruction ex­
ecution.

5. If an effective address is calculated, it does not
use two general register components. One regis­
ter, scaling and displacement can be used within
the clock counts showns. However, if the effec­
tive address calculation uses two general register
components, add 1 clock to the clock count
shown.

6. Memory reference instruction accesses byte or
aligned 16-bit operands.

Instruction Clock Count Notation

- If two clock counts are given, the smaller refers to
a register operand and the larger refers to a
memory operand.

-n = number of times repeated.

-m = number of components in the next instruc-
tion executed, where the entire displacement (if
any) counts as one component, the entire im­
mediate data (if any) counts as one component,
and all other bytes of the instruction and pre­
fix(es) each count as one component.

Misaligned or 32-Bit Operand Accesses:

- If instructions accesses a misaligned 16-bit oper­
and or 32-bit operand on even address add:

2* clocks for read or write.

4 * * clocks for read and write.

- If instructions accesses a 32-bit operand on odd
address add:

'4 * clocks for read or write.

S*· clocks for read and write.

Wait States:

Wait states add 1 clock per wait state to instruction
execution for each data access.

4-103

Intel 80376 ~[Q)W~OO©~ OOO[P@OO[MJ~'1iO@OO

Table 8.1. 80376 Instruction Set Clock Count Summary

Clock
Number

Instruction Format
Counts

of Date Notes
Cycles

GENERAL DATA TRANSFER
MOV = Move:

Register to Register/Memory 1000100w 1 mod reg rIm 1 2/2' 0/1' a

Register/Memory to Register 1000101w 1 mod reg rim 1 2/4' 0/1'

Immediate to Register/Memory 1100011 w I modOOO rim I immediate data a

Immediate to Register (Short Form) 11011 w reg immediate data 2

Memory to Accumulator (Short Form) 1010000w full displacement I'

Accumulator to Memory (Short Form) 1010001w full displacement I'

Register/Memory to Segment Register 10001110 modsreg3 rIm I 0/6' a,b,c

Segment Register to Register/Memory 10001100 modsreg3 0/1' a

MOVSX = Move with Sign Extension

Register from Register/Memory 0/1' a

MOVZX = Move with Zero Extension

Register from Register/Memory 0/1' a

PUSH = Push:

Register/Memory 7/9' 2/4' a

Register (Short Form) 4 2 a

Segment Register (ES, CS, SS or OS)
4 2 a

\

Segment Register (FS or GS)
a

Immediate 4 2 a

PUSHA = Push All 34 16 a

POP = Pop ::;f:;
Register/Memory 7/9' 2/4' a

Register (Short Form) a

25 6 a, b,c

Segment Register (FS or GS)
00001111 1 Osreg300 1 25 6 a, b,c

POPA = Pop All 01100001 40' 16 a

XCHG = Exchange

Register/Memory with Register 1000011w I. mod reg rIm I :315"· 0/2"· a,m

Register with Accumulator (Short Form) 110010 reg I 3 0

IN = Input from:

Fixed Port 1110010w port number 6' I' f,k

26' I' f,1

Variable Port 1110110w 7' I' f,k

27' I' f,1

OUT = Output to:

Fixed Port 1110011 w port number 4' I' f,k

24' I' f,1

Variable Port 1110111 w 5' I' f,k

26' I' f,1

LEA = Load EA to Register 10001101 1 mod reg rIm I 2

4-104

inter 80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format Counts olData Notes

Cycles

SEGMENT CONTROL

LOS ~ Load Pointer to OS 11000101 mod reg rim I 26' 6' a, b, c

LES ~ Load Pointer to ES 11000100 mod reg rim I 26' 6' a, b, c

I mod reg rim I ,!j::
LFS ~ Load Pointer to FS 00001111 10110100 6' a,b,c

LGS ~ Load Pointer to GS 00001111 10110101 I mod reg rim I a, b, c

LSS ~ Load Pointer to SS 00001111 10110010 I mod reg rim I a, b,c

FLAG CONTROL

CLC ~ Clear Carry Flag 11111000

CLD ~ Clear Dlrecllon Flag 11111100

CLI ~ Clear Interrupt Enable Flag

CL TS ~ Clear Task Switched Flag e

CMC ~ Complement Carry Flag

LAHF ~ Load AH Into Flag

POPF ~ Pop Flags a, g

PUSHF ~ Push Flags s

SAHF ~ Store AH Into Flags

STC ~ Set Carry Flag

STD ~ Set Dlrecllon Flag

STI ~ Set Interrupt Enable

ARITHMETIC
ADD ~ Add

:::'"
Register to Register -'
Register to Memory 7" 2" s

Memory to Register 6' l' a

Immediate to RegisterlMemory 100000sw I modOOO immediate data 217" 0/2" a

Immediate to Accumulator (Short Form) 0000010w Immediate data

ADC - Add with Carry

Register to Register 000100dw I mod reg rim I

Register to Memory 0001000w I mod reg rim I 7" 2" a

Memory to Register 0001001w I mod reg rIm I 6' l'

Immediate to ReglsterlMemory 100000sw Imod010 rim I Immediate data 217"" 0/2" a

Immediate to Accumulator (Short Form) 0001010w Immediate data 2

INC ~ Increment

RegisterlMemory 1111111w I modOOO rIm I 2/6" 0/2·· a

Register (Short Form) 101000 reg I 2

SUB - Subtract

Register from Register 001010dw I mod reg rim I

4-105

80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format Counts

01 Data Notes
Cycles,

ARITHMETIC (Continued)

Register from Memory 100101 OOw Imodreg r/ml 7" 2" a

Memory from Register I 0010101w I mod reg r/ml 6' a

11 OOOOOsw ImOdl 01 r/ml immediate data
~*

Immediate from Register/Memory 2/7" " 0/1·· a

Immediate from Accumulator (Short Form) 10010110wi immediate data

SBB ~ Subtract with Borrow

Register from Register 00011 Odw ImOdreg r/ml
Register from Memory 00011 OOw ImOdreg r/mi 2" a

Memory from Register 0001101 w ImOdreg r/mi I' a

Immediate from Register/Memory 1 OOOOOsw ImOdO 11 0/2··

Immediate from Accumulator (Short Form) 0001110wi

DEC = Decrement

RegisterlMemory 0/2" a

Register (Short Form) 2

CMP = Compare

Register with Register 2

Memory with Register 5' I' a

Register with Memory 6" 2"

Immediate with Register/Memory 2/5' OIl'

Immediate with Accumulator_(S

NEG = Change Sign 2/6' 0/2' s

AAA ~ ASCII Adjust IIffAdd

4

DAS = Decimal Adjust for Subtract 00101111

MUL = Multiply (Unsigned)

Accumulator with Register/Memory 1111011 w Imod 1 00 r/ml
Multiplier-Byte 12-17/15-20 011 a,n

-Word 12-25/15-28' OIl' a,n
-Doubleword 12-41/17-46' 0/2' a,n

IMUL = Integer Multiply (Signed)

Accumulator with Register I Memory 1111011 w I mod 1 0 1 r/mi
Multiplier-Byte 12-17115-20 011 a,n

-Word 12-25/15-28' OIl' s,n
-Doubleword 12-41/17-46' 0/2' a,n

Register with Register/Memory 00001111 10101111 ImOdreg r/mi
Multiplier-Byte 12-17/15-20 011 a,n

-Word 12-25/15-28' OIl' a,n
-Doubleword 12-41/17 -46' 0/2' s,n

Register/Memory with Immediate to Register I 01101 Os 1 ImOd reg r/ml immediate data

-Word 13-26/14-27' OIl' a,n
-Doubleword 13-42/16-45' 0/2' a,n

4-106

inter 80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)
--r-------~----r---~

Clock Number
Instruction Format

Counla OfDala Notes
Cycles

ARITHMETIC (Continued)
DIY = Divide (Unsigned)

Accumulator by Register/Memory 1111011 w Imod 11 0 r/ml

Divisor-Byte *17 0/1 a,o
-Word 0/1' a,o
-Doubleword 0/2' a,o

IDlY = Integer Divide (Signed)

Accumulator by Register/Memory 11 11 011 w Imod 111 r/ml

Divisor-Byte 0/1 a,o
-Word 0/1 a,o
-Doubleword 0/2' a,o

AAD = ASCII Adjust for Divide 11010101 1000010101 19

AAM = ASCII Adjust for MulUply 11010100 17

CBW = Convert Byte to Word 10Qll000

CWD = Convert Word to Double Word I 10011001 2

LOGIC

Register/Memory by 1 317" 0/2·· a

Register/Memory by CL 3/7" 0/2·· a

3/7·· 0/2·· a

Through Carry (RCL and RCR)

Register/Memory by 1 9/10·· 0/2·· a

Register/Memory by~ 9/10" 10/2" a

9110" 0/2·· a

000
001
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR

SHLD = Shift Left Double

Register/Memory by Immediate 100001111 10100100lmOdreg r/mhmmed 8·bltdata 3/7" 0/2··

Register/Memory by CL I 00001111 I 101001011mOdreg r/ml 317·· 0/2··

SHRD = Shift Right Double

Register/Memory by Immediate 100001111 10101100lmOdreg r/mhmmed 8·bitdata 3/7u 0/2··

Register/Memory by CL 100001111 I 101011011mOdreg r/ml 3/7·· 0/2··

AND = And

Register to Register I 001000dw ImOdreg r/ml 2

4-107

80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts olData Notes

Cycles

LOGIC (Continued)

Register to Memory 0010000w I mod reg r/ml 1;. 2" a

Memory to Register 0010001w I mod reg - r/ml I' a

Immediate to Register/Memory 1000000w Imodl00 r/ml immediate data 0/2" a

Immediate to Accumulator (Short Form) 0010010w I immediate data

TEST = And Function to Flags, No Result

Register/Memory and Register I 1000010w I mod reg r/ml 0/1'

Immediate Data and Register/Memory I 1111011 w ImodOOO 0/1' a

Immediate Data and Accumulator
(Short Form) 1010100w

OR= Or

Register to Register

Register to Memory 7" 2" a

Memory to Register 6' I' a

Immediate to Register/Memory 217" 0/2" a

Immediate to Accumulator-(Short Form)

XOR = Exclusive Or

Register to Register 2

Register to Memory 7" 2" a

Memory to Register 6' I' a

Immediate to Registeril&i.mory 2/7'· 0/2'* a

Immediate to Accumulator (Short

NOT = Invert Register/Memory r/ml 2/S" 0/2" a"

STRING MANIPULATION

CMPS = Compare Byte Word 1010011w 10' 2' a

INS = Input Byte/Word Irom OX Port 01 tOIl Ow
9" I" a,l,k
29'" I" a,l,l

LODS = Load Byte/Word to AL/ AX/EAX I 1 0 1 0 1 lOw 5' I' a

MOVS = Move Byte Word 1010010w 7" 2" a

OUTS = Output Byte/Word to OX Port 0110111 w
8" I" a,l,k
28" I" a,l,l

SCAS = Scan Byte Word 1010111 w 7' I' a

STOS = Store Byte/Wordlrom

AL/AX/EX 1010101 wi 4' I' a

XLA T = Translate String 11010111 I 5' I' a

REPEATED STRING MANIPULATION
Repeated by Count in CX or ECX

REPE CMPS = Compare String

(Find Non-Match) 11110011 11010011 w I 5 + 9n"" 2n'" a

4-108

intJ 80376 £[Q)W£OO©~ OOOrr©OOIMl£iiO©OO

Table 8.1.80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format 01 Data Notes
Counts Cycles

REPEATED STRING MANIPULATION (Continued)

REPNE CMPS = Compare String

(Find Match) 11110010 1010011 w I 5 + 9n" 2n" a

REP INS = Input String 1 1 1 1 001 1 011011 Ow I 1n' a,f,k
1n' a,f,1

REP LODS = Load String 11110011 101011 Ow I 1n' a

REP MOYS = Move String 11110011 1010010w I 2n" a

REP OUTS = Output String 0110111 w I 1n' a,f,k
11110011

1n' a,f,1

REPE SCAS = Scan String

(Find Non-ALI AX/EAX) 11110011 I 1010111 w I 1n' a

REPNE SCAS = Scan String

(Find AL/ AX/EAX) 11110010 I 1010111 w I 1n' a

REP STOS = Store String 11110011 1n' a

BIT MANIPULATION

BSF = Scan BII Forward 10 + 3n" 2n" a

BSR = Scan BII Reverse 10 + 3n" 2n" a

BT = TestBIl

Aegister/Memory, Immediate 3/6' 0/1' a

Aegister/Memory, Aegister 3/12' 0/1' a

BTC = Test BII and Complement

Aegister/Memory, Immediate 6/8' 0/2' a

6/13' 0/2' a

Aegister/Memory, I 6/8' 0/2' a

6/13' 0/2' a

BTS = Test Bit and Sst

Aegister/Memory, Immediate 6/8' 0/2' a

Aegister/Memory, Aegister 00001111 10101011 6/13' 0/2' a

CONTROL TRANSFER

CALL = Can

Direct within Segment 11101000 I full displacement 9+ m' 2

Aegister/Memory

Indirect within Segment 11111111 Imod010 r/ml 9 + m/12 + m 2/3 a,j

Direct Intersegment 10011010 I unsigned full offset, selector 42 + m c,d,1

4-109

inter 80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

ofData Notes
Cycles

CONTROL TRANSFER (Continued)

(Direct Intersegment)

eil$ m Via Call Gats to Same Privilege Level 13 a,c,d,j

Via Call Gate to Different Privilege Level,
(No Parameters) 13 a,c,d,j

Via Call Gate to Different Privilege Level,
(x Parameters) 13 + 4x a,c,d,j

From 386 Task to 386 TSS 124 a,c,d,j

Indirect Intersegment 11111111 imodOll r/ml 10 a,c,d,j

Via Call Gate to Same Privilege Level 14 a,c,d,j

Via Call Gate to Different Privilege Level,

(No Parameters) 14 a,c,d,j

Via Call Gate to Different Privilege Level,

(x Parameters) 14 + 4x a,c,d,j

From 386 Task to 386 TSS 399 130 a,c,d,j

JMP ~ Unconditional Jump

Short 7 + m

Direct within Segment 7 + m

9 + m/14 + m 2/4 a,j

Direct Intersegment 37 + m c,d,j -

Via Call Gate to sa~~li . 53 + m a,c,d,j

From 386 Task to 386 TSS 395 124 a,c,d,j

Indirect Intersegment I mod 1 01 r/ml 37 + m a,c,d,j

Via Call Gate to Same Privilege Level 59 + m 13 a,c,d,j

From 386 Task to 386 TSS 401 124 a,c,d,j

4-110

inter 80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format olData Notes
Counts

Cycles

CONTROL TRANSFER (Continued)
RET ~ Return Irom CALL:

Within Segment 1100 00 11 12 + m a,j,p
~t<'>
.' Within Segment Adding Immediate to SP 11000010 lS·bil displ a,j,p

Intersegment 1100 1 a 11 a,c,d,j,p

Intersegment Adding Immediate to SP 11001010 16·bit displ 4 a,c,d,j,p

to Different Privilege Level
intersegment c,d,j,p
intersegment Adding Immediate to SP c,d,j,p

CONDITIONAL JUMPS
NOTE: Times Are Jump "Taken or Not Taken"
JO = Jump on Overflow

8-Bit Displacement

Full Displacement

JNO ~ Jump on Not Overflow

8-Bit Displacement

Full Displacement 7+mor3

8-Bit Displacement 7 + mor3

Full Displacement 7 + mor3

B-Bit Displacement 7 + mor3

Full Displacement 7 + mor3

JE/JZ ~ Jump on EcAAllIze

8-Bit Displacement 7 + mor3

Full Displacement 7+mor3

JNE/JNZ ~ Jump on Not EquallNot Zero

8·Bit Displacement I a 111 a 10 1 B·bitdispl] 7+mor3

Full Displacement I 0000 1111 10000101 I full displacement 7 + mor3

JBE/JNA = Jump on Below or Equal/Not Above

a-Bit Displacement I a 1110 t 1 a B·bit displ 7 + m or 3

Full Displacement I 00 00 1111 10000110 I full displacement 7 + m or 3

JNBE/JA ~ Jump on Not Below or Equal/Above

e-Bit Displacement I 01110111 8-bit displ 7+mor3

Full Displacement I 00001111 10000111 I full displacement 7 + m or3

JS ~ Jump on Sign

8-Bit Displacement 01111000 B·bitdispl 7 + m or 3

Fun Displacement 0000 1111 1000100'0 I full displacement 7+mor3

4-111

inter 80376 ~[Q)W~OO©[§ ooo~©rrulMl~jj'O©OO

Table B.1. B0376 Instruction Set Clock Count Summary (Continued)

Clock Number
Instruction Format

Counts
of Data Notes
Cycles

CONDITIONAL JUMPS (Continued)

JNS = Jump on Not Sign

B·Bit Displacement 01111001 8·bitdispl 7 + mor3

Full Displacement 00001111 10001001 I full displacement 7 + mar>}::;

JP/JPE = Jump on Parity/Parity Even

8·Bit Displacement I 01111010 8·bitdispl

Full Displacement I 00001111 10001010 I full displacement

JNP/JPO = Jump on Not Parity/Parity Odd

8·Bit Displacement I 01111011 8·bit displ

Full Displacement I 00001111 10001011

8-Bit Displacement

Full Displacement

8-Bit Displacement

Full Displacement 7 + mor3

a-Bit Displacement 7 + mor3

Full Displacement 7 + mor3

a-Bit Displacement 7 + mor3

Full Displacement 7 + mor3

JCXZ = Jump on C~ro 9 + mar5

JECXZ = Jump on ECX Zer g + morS

(Address Size Prefix Differen

LOOP = Loop CX Times 11100010 8·bitdispl 11 '+- m

LOOPZ/LOOPE = Loop with
Zero/Equal 11100001 8·bitdispl 11 + m

LOOPNZ/LOOPNE = Loop While
Not Zero 11100000 8·bitdispl 11 + m

CONDITIONAL BYTE SET

NOTE: Times Are Register/Memory

SETO = Set Byte on Overflow

. To Register/Memory 00001111 10010000 I modOOO rIm I 4/5' 0/1' a

SETNO = Set Byte on Not Overflow

To RegisterlMemory 00001111 10010001 I modOOO rim I 4/5' Oil' a

SETB/SETNAE = Set Byte on BelowlNot Above Dr Equal

To Register/Memory I 00001111 I 10010010 I modOOO rim I 415' 011' a

4·112

inter 80376 ~@W~OO©[§ OOO[P@OO[MI~'U'O@OO

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format Counts
01 Data Notes
Cycles

CONDITIONAL BYTE SET (Continued)

SETNB = Set Byte on Not Below/Above or Equal

To Register/Memory I 0000 t 111 10010011 I modOOO rim I 4/5' 0/1'

SETE/SETZ = Set Byte on EquallZero

To Register/Memory I 00001111 10010100 I modOOO rim I a

SETNE/SETNZ = Set Byte on Not EquallNot Zero

To Register/Memory I 00001111 10010101 I modOOO /1' a

To Register/Memory 0/1' a

To Register/Memory 0/1'

SETS = Set Byte on Sign

To Register/Memory 0/1' a

SETNS = Set Byte on Not Sign

To Register/Memory 0/1'

To Register/Memory 4/5' 0/1' a

To Register/Memory 4/5' 0/1'

4/5' 0/1'

4/5' 0/1'

4/5' 0/1'

SETNLE/SETG = Set Byte on

To Register/Memory 00001111 10011111 I modOOO rIm I 4/5' 0/1' a

ENTER = Enter Procedure 16-bit displacement, 8-bit level

L=O 10
L=1 14
L> 1 17 +8(n - 1) 4(n -1)

LEAVE = Leave Procedure 11001001

4-113

80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

InstructIon Format

INTERRUPT INSTRUCTIONS

INT ~ Interrupt:

Type Specified

Via Interrupt or Trap Gate

to Same Privilege level
Via Interrupt or Trap Gate

to Different Privilege Level

From 386 Task to 386 TSS via Task Gate

Type 3

Via Interrupt or Trap Gate
to Same Privilege Level

Via Interrupt or Trap Gate

to Different Privilege level

From 386 Task to 386 TSS via Task Gate

IIOF~ 1:

110F ~ 0

11001101

11001100

type

71

111

308

3

71

111

413

4-114

Number
olData
Cyel.s

14

14

140

14

14

138

14

'14

138

Notes

c,d,l,p

c,d,l,p

c,d,l,p

c,d,l,p

c,d,l,p

c,d,l,p

c,d,l,p

c,d,l,p

c,d,l,p

intJ 80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Instruction Format
Clock Number

Counts OIDats Notes
Cycles

INTERRUPT INSTRUCTIONS (Continued)

Bound = Out 01 Range Otl000l0 mod reg rIm
~ . ..

Interrupt 5 II Detect Value

IllnRange 0 a,c,d,l,o,p

II Out 01 Range:
Via Interrupt or Trap Gate

to Same Privilege level 14 c,d,l,p
Via Interrupt or Trap Gate

to DiHerent Privilege level 14 c,d,l,p

From 386 Task to 386 TSS via Task Gate 138 c,d,l,p

INTERRUPT RETURN

IRET = Interrupt Return 11001111

To the Same Privilege level (within Task) 42 5 a,c,d,l,p

To DiHerent Privilege level (within Task) 86 5 a,c,d,l,p

From 386 Task to 386 TSS 328 138 c,d,l,p

PROCESSOR CONTROL

HLT = HALT 5 b

CRO from register 10 b

Register from CRO 6 b
~

DRO-3 from Registel' 22 b

DR6-7 from Register 16 b

Register from DR6-7 14 b

Register from DRO-3 00001111 00100001 11 eeereg 22 b

NOP = No Operation 10010000 3

WAIT= Walt until BUSY;II Pin Is Negated I 10011011 6

4-115

infef 80376 8.\[Q)W8.\OO©~ OOOIP@OO!M]8.\iiO@OO

Table 8,1, 80376 Instruction Set Clock Count Summary (Continued)

Clock
Number

Instruction Format
Counts

01 Data Notes
Cycles

PROCESSOR EXTENSION INSTRUCTIONS

Processor Extension Escape I 11011 TTT I modLLL r/mi See 80387SX Data Sheet a

ITT and LLL bits are opcoda
information for coprocessor.

PREFIX BYTES

Address Size Prellx 01100111

LOCK = Bus Lock Prellx 11110000

Operand Size Prellx 01100110

Segment Override Prellx

CS: 00101110

OS: 00111110

ES: 00100110

FS: 01100100

GS: 01100101 0

55:

PROTECTION CONTROL

From Register/Memory 20/21" 2" a

LAR = Load Access Rights

17118' l' a,c,i,p

LGDT = Load Global Des

13** 3' a,a

LIDT =

Table Register 13" 3' a,e

Table Register to
RegisterlMemory 00001111 00000000 ImodOl0 rim I 24/28' 5' a,c,e,p

LMSW = Load Machine Status Word

From Register/Memory 00001111 00000001 I modll 0 rim I 10/13' l' a,a

LSL = Load Segment Limit

From Register/Memory 00001111 00000011 I mod reg rim I
Byte·Granular Limit 24/27' 2' a,c,i,p
Page-Granular Limit 29/32' 2' a,c,i,p

LTR = Load Task Register

From Register/Memory 00001111 00000000 ImodOOl rim I 27/31' 4' a,c,B,p

SGDT = Store Global Descriptor

Table Register 00001111 00000001 I modOOO rim I 11' 3' a

SlOT = Store Interrupt Descriptor

Table Register I 00001111 00000001 I modOO 1 rim I 11' 3' a

SLOT = Store Local Descriptor Table Register

To RegisterlMemory I 00001111 00000000 I modOOO rim I 2/2' 4' a

4-116

inter 80376

Table 8.1. 80376 Instruction Set Clock Count Summary (Continued)

Instruction

PROTECTION CONTROL (Continued)

SMSW = Store Machine
Status Word

STR = Store Task Register

To Register/Memory

VERR '= Verify Read Access.

Register/Memory

VERW = Verily Write Access.

Formal

00001111

00001111

00000001 I molllQO' r!ml/

ooooooa.o':;(~odo.O'f~"r/iTrl

0000111IQO'oOoooii',~I··::.od1·0'0 rIm I
0000 11 H'+%O(l.O·o'o'~a lmeOd 1 0 1 rIm I

NOTES: ,\'

Clock
Counts

2/2'

2/2'

10/11"

15/16··

Number
of Data Notes
Cycles

I' a,c

I' a

2" 8,c,i,p

2" 8,c,i,p

a. Exception 13 fault (general violation) wilL'occur if the memory operand in CS, OS, ES, FS or GS cannot be used due to
either a segment limit violation or access rights violation. If a stack limit is violated, and exception 12 (stack segment limit
violation or not present) occurs.
b. For segment load operations, the CPL, RPL and OPL must agree with the privilege rules to avoid an exception 13 fault
(general protection violation). The segments's descriptor must indicate "present" or exception 11 (CS, OS, ES, FS, GS not
present). If the SS register is loaded and a stack segment not present is detected, an exception 12 (stack segment limit
violation or not present occurs).
c. All segment descriptor accesses in the GOT or LOT made by this instruction will automatically assert LOCK# to maintain
descriptor integrity in multiprocessor systems.
d. JMP, CALL. INT, RET and IRET instructions referring to another code segment will cause an exception 13 (general
protection violation) if an applicable privilege rule is volated.
e. An exception 13 fault occurs if CPL is greater than O.
f. An exception 13 fault occurs if CPL is greater than IOPL.
g. The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL field of the flag register is updated only
if CPL = O. -
h. Any violation of privelege rules as applied to the selector operand does not cause a protection exception; rather, the zero
flag is cleared.
i. If the coprocessor's memory operand violates a segment limit or segment access rights, an exception 13 fault (general
protection exception) will occur before the ESC instruction is executed. An exception 12 fault (stack segment limit violation
or no present) will occur if the stack limit is violated by the operand's starting address.
j. The destination of a JMP, CALL, INT, RET or IRET must be in the defined limit of a code segment or an exception 13 fault
(general protection violation) will occur.
k. If CPL ,;;; IOPL
I. If CPL > IOPt
m. LOCK# is automatically asserted, regardless of the presence or absence of the LOCK# prefix.
n. The 80376 uses an early-out multiply algorithm. The actual number of clocks depends on the position of the most signifi­
cant bit in the operand (multiplier). Clock counts given are minimum to maximum. To calculate actual clocks use the follow~
ing formula:

Actual Clock = if m < > 0 thim max ([Iog2lml1, 3) + 9 clocks:
if m = 0 then 12 clocks (where m is the multiplier)

o. An exception may occur, depending on the value of the operand.
p. LOCK # is asserted during descriptor table accesses.

4-117

inter 80376

8.2 INSTRUCTION ENCODING

Overview

All instruction encodings are subsets of the general
instruction format shown in Figure B.1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the "mod rim"
byte and "scaled index" byte, a displacement if re­
quired, and an immediate data field if. required.

Within the primary opcode or opcodes, smaller en­
coding fields may be defined. These fields vary ac- '
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex'­
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod rim
byte, specifies the address mode to be used. Certain

encodings of the mod rim byte indicate a second
addressing byte, the scale-index-base byte, follows
the, mod rim byte to fully specify the addressing
mode.

Addressing modes can include a displacement im­
mediately following the mod rim byte, or scaled in­
dex byte. If a displacement is present, the possible
sizes are B, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure B.1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the rim field, but the Figure does not show all fields.
Several smaller fields also appear in certain instruc­
tions, sometimes within the' opcode bytes them­
selves. Table,B.2 is a complete list of all fields ap­
pearing in the B0376 instruction set. Further ahead,'
following Table B.2, are detailed tables for each
field.

ITTT TTT TT I TTTT TTT T I mod TT T rim I ss index base Id32/16/B/ none data32/16/B/ none

:z 07 01\765320 j \.?65320J\. '), j
Of T T

opcode
(one or two bytes)
(T represents an

opcode bit.)

"mod rim" "s-j-b" address , byte byte
j

displacement
(4, 2, 1 bytes

register and address or none)
mode specifier

Figure 8.1_ General Instruction Format

Table 8.2. Fields within 80376 Instructions

Field Name Description

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits
d Specifies Direction of Data Operation
s Specifies if an Immediate Data Field Must be Sign-Extended
reg General Register Specifier
mod rim Address Mode Specifier (Effective Address can be a General Register)

ss Scale Factor for Scaled Index Address Mode
index General Register to be used as Index Register
base General Register to be used as Base Register
sreg2 Segment Register Specifier for CS, SS, OS, ES
sreg3 ' Segment Register Specifier for CS, SS, OS, ES, FS, GS
tUn For Conditional Instructions, Specifies a Condition Asserted

or a Condition Negated
. ,

Note: Table 8.1 show~ encoding of Individual instructions.

4-11B

immediate
' data

(4, 2, 1 bytes
or none)

Number of Bits

1
1
1
3

2 for mod;
3 for rim

2
3
3
2
3

4

inter
16-Bit Extensions of the
Instruction Set

80376

Encoding of reg Field When w Field
is not Present in Instruction

Register Selected Register Selected Two prefixes, the Operand Size Prefix (66H) and the
Effective Address Size Prefix (67H), allow overriding
individually the Default selection of operand size and
effective address size. These prefixes may precede
any opcode bytes and affect only the instruction
they precede. If necessary, one or both of the prefix­
es may be placed before the opcode bytes. The
presence of the Operand Size Prefix and the Effec-

reg Field During 16-Bit During 32-Bit

, tive Address Prefix will allow 16-bit data operation
and 16-bit effective address calculations.

For instructions with more than one prefix, the order
of prefixes is unimportant.

Unless specified otherwise, instructions with a-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.

Encoding of Instruction Fields

Within the instruction are several fields indicating
register selection, addressing mode and so on.

ENCODING OF OPERAND LENGTH (w) FIELD

For any given instruction performing a data opera­
tion, the instruction will execute as a 32-bit opera­
tion. Within the constraints of the operation size, the
w field encodes the operand size as either one byte
or the full operation size, as shown in the fable be­
low

Operand Size Operand Size
wField During 16-Bit During 32-Bit

Data Operations Data Operations

0 a Bits a Bits
1 16 Bits 32 Bits

ENCODING OF THE GENERAL
REGISTER (reg) FIELD .

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the "mod rIm" byte, or as the rIm
field of the "mod rIm" byte.

.4-119

000
001 ,
010
011
100
101
101
101

reg

000
001
010
011

. 100
101
110
111

reg

000
001
010
011
100
101
110
111

Data Operations Data Operations

AX EAX
CX ECX
DX EDX
BX EBX
SP ESP
BP EBP
SI ESI
01 EDI

Encoding of reg Field When w Field
is Present in Instruction

Register Specified by reg Field
During 16-Bit Data Operations:

Function of w Field

(whenw = 0) (whenw = 1)

AL AX
CL CX
DL DX
BL BX
AH SP
CH BP
DH SI
BH DI

Register Specified by reg Field
During 32-Blt Data Operations

Function of w Field

(whenw = 0) (whenw = 1)

AL EAX
CL ECX
DL EDX
BL EBX
AH ESP
CH EBP
DH ESI
BH EDI

inter 80376

ENCODING OF THE SEGMENT
. REGISTER (sreg) FIELD

The sreg field in certain instructions is a 2-bit field
allowing one of the es, OS, ES or SS segment regis­
ters to be specified. The sreg field in other instruc­
tiOnS is a 3-bit field, allowing the FS and GS segment
registers to be specified also.

2·Blt sreg2 Field

2·Blt
Segment

sreg2Fleid
Register
Selected

00 ES
01 es
10 SS
11 OS

3·Bit sreg3 Field

3·Blt
Segment

sreg3 Field
Register
Selected

000 ES
001 es
010 SS
011 OS
100 FS
101 GS
110 do not use
111 do not use

ENCODING OF ADDRESS MODE

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the "mod
rim" byte, and a second byte of addressing informa­
tion, the "s-i-b" (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the "mod
rim" byte has rim = 100 and mod = 00,01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the "mod rim" byte,
also contains three bits (shown as TIT in Figure 8.1)
sometimes used as an extension of the primary op­
code. The three bits, however, may also be used as
a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is· used. 16-bit ad­
dressing uses 16-bit address components to calcu­
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef­
fective address. When 16-bit addressing is used,· the
"mod rim" byte is interpreted as a 16-bit ac;ldressing
mode specifier. When 32-bit addressing is used, the
"mod rim" byte is interpreted as a 32-bit addressing
mode specifier.

Tables.on the following three pages define all en­
codings of all 16-bit addressing modes and 32-bit
addressing modes.

4-120

inter 80376

Encoding of Normal Address Mode with "mod rIm" byte (no "s-I-b" byte present):

mod rIm Effective Address mod rIm Effective Address

00000 OS: [EAX] 10000 OS: [EAX + d32]
00001 DS:[ECX] 10001 OS: [ECX + d32]
00010 DS:[EOX] 10010 DS: [EOX + d32] ,
00011 DS:[EBX] 10011 DS: [EBX + d32]
00100 s-i-b is present 10100 s-i-b is present
00101 DS:d32 10101 SS:[EBP+d32]
00110 OS: [ESI1 10110 OS: [ESI + d32]
00111 OS:[EOI] 10111 OS: [EOI + d32]

01000 OS:[EAX+dS] 11000 register-see below
01001 OS:[ECX+dS] 11001 register-see below
01010 OS:[EDX+dS] 11010 register-see below
01011 DS:[EBX+dS] 11 011 register-see below
01100 s-i-b is present 11100 register-see below
01101 SS:[EBP+dS] 11 101 register-see below
01110 OS: [ESI + dS] 11 110 register-see below
01 111 DS:[EDI+dS] 11 111 register-see below

Register Specified by reg or rIm
during Normal Data Operations:

mod rIm
function of w field

(whenw=O) (whenw=1)

11000 AL EAX
11001 CL ECX
11010 DL EOX
11 011 BL EBX
11100 AH ESP
11 101 CH EBP
11 110 DH ESI
11 111 BH EOI

Register Specified by reg or rIm
during 16-8it Data Operations: (66H Prefix)

mod rIm
function of w field

(whenw=O) (whenw=1)

11000 AL AX
11001 CL CX
11010 OL OX
11 011 BL BX
11100 AH SP
11 101 CH BP
11 110 OH SI
11 111 BH 01

4-121

80376

Encoding of 16-blt Address Mode with "mod rIm" Byte Using 67H Prefix

mod rIm Effective Address mod rIm Effective Address

00000 OS:[BX+Si] 10000 OS:[BX+SI+d16]
00001 OS:[BX+Oi] 10001 OS:[BX+ 01 +d16]
00010 SS:[BP+SI] 10010 SS:[BP+SI+d16]
00011 SS:[8P+0i] 10011 SS:[BP+ 01 + d16]
00100 OS:[SI] 10100 OS:[SI + d16].
00101 OS:[OI] 10101 OS: [01 + d16]
00110 OS:d16 10110 SS:[BP+d16]
00111 OS: [BX] 10111 OS:[BX + d16]

01000 OS: [BX + SI + dB] 11000 register-see below
01001 OS: [BX + 01 + dB] 11 001 register-see below
01010 SS:[BP + SI + dB] 11 010 register-see below
01011 SS: [BP + 01 + dB] 11 011 register-see below
01100 OS:[SI+dB] 11100 register-see below
01101 OS:[OI + dB] 11 101 register-see below
01110 SS:[BP+dB] 11 110 register-see below
01 111 OS:[BX+dB] 11 111 register-see below

4-122

inter

mod base .

00000
00001
00010
00011
00100
00101
00110
00111

01000
01001
01010
01011
01100
01101
01110
01 111

10000
10001
10010
10011
10100
10101
10110
10111

NOTE:

80376

Encoding of 32-bit Address Mode (Umod rIm" byte and Us-i-b" byte present):

Effective Address

OS: [EAX + (scaled index)]
OS: [ECX + (scaled index)]
OS: [EOX + (scaled index)]
OS: [EBX + (scaled index)]
SS: [ESP + (scaled index)]
OS: [d32 + (scaled index)]
OS: [ESI + (scaled index)]
OS: [EOI + (scaled index)]

OS: [EAX + (scaled index) + dB]
OS: [ECX + (scaled index) + dB]
OS: [EOX + (scaled index) + dB]
OS: [EBX + (scaled index) + dB]
55: [ESP + (scaled index) + dB]
SS: [EBP + (scaled index) + dB]
OS: [ESI + (scaled index) + dB]
OS: [EOI + (scaled index) + dB]

OS: [EAX + (scaled index) + d32]
OS: [ECX + (scaled index) + d32]
OS: [EOX + (scaled index) + d32]
OS:[EBX + (scaled index) + d32]
SS: [ESP + (scaled index) + d32]
SS: [EBP + (scaled index) + d32]
OS:[ESI + (scaled index) + d32]
OS: [EOI + (scaled index) + d32]

ss Scale Factor

00 x1
01 x2
10 x4
11 xB

index Index Register

000 EAX
001 ECX
010 EOX
011 EBX
100 no index reg"
101 EBP
110 ESI
111 EOI

··IMPORTANT NOTE:
When index field is 100, indicating "no index register," then
55 field MUST equal 00. If index is 100 and 55 does not
equal 00, the effective address is undefined. .

Mod field in "mod rIm" byte; 55, index, base fields in
"s-i-b" byte.

4-123

Iniei 80376

ENCODING OF OPERATION
DIRECTION (d) FIELD

In many two-operand instructions the d field is pres­
ent to indicate which operand is considered the
source and which is the destination.

d Direction of Operation

0 Register/Memory <- - Register
"reg" Field Indicates Source Operand;
"mod r/m" or "mod ss index base" Indicates
Destination Operand

1 Register <- - Register/Memory
"reg" Field Indicates Destination Operand;
"mod r/m" or "mod ss index base" Indicates
Source Operand

ENCODING OF SIGN-EXTEND (s) FIELD

The s field occurs primarily to instructions with im­
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination

Effect on Effect on s Immediate Data8 Immediate Data 16132

o None

1 Sign-Extend Data8 to Fill
16-Bit or 32-Bit Destination

ENCODING OF CONDITIONAL
TEST (tttn) FIELD

None

None

For the conditional instructions (conditional jumps
and set on condition), ttln is encoded with n indicat­
ing to use the condition (n = 0) or its negation (n = 1),
and ttt giving the condition to test.

Mnemonic Condition

0 Overflow
NO No Overflow
B/NAE Below/Not Above or Equal
NBIAE Not Belowl Above or Equal
E/Z Equal/Zero
NE/NZ Not EquallNot Zero
BEINA Below or Equal/Not Above
NBE/A Not Below or Equal/Above
S Sign
NS Not Sign
PIPE Parity/Parity Even
NP/PO Not Parity/Parity Odd
LINGE Less ThanlNot Greater or Equal
NLIGE Not Less Than/Greater or Equal
LE/NG Less Than or Equal/Greater Than
NLE/G Not Less or Equal/Greater Than

ENCODING OF CONTROL OR DEBUG
REGISTER (eee) FIELD

tttn

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

For the loading and storing of the Control and Debug
registers.

When Interpreted as Control Register Field

eeeCode Reg Name

000 CRO
010 Reserved
011 Reserved

Do not use any other encoding

When Interpreted as Debug Register Field

eee Code Reg Name

000 ORO
001 DR1
010 DR2
011 DR3
110 DR6
111 DR?

Do not use any other encoding

4-124

inter 80376

9.0 REVISION HISTORY

This B0376 data sheet, version -002, contains updates and improvements to previous versions. A revision
summary is listed here for your convenience.

The sections significantly revised since version -001 are:

Front Page The B0376 Microarchitecture diagram was added.

Section 1.0 Figure 1.2 was updated to show both top and bottom views of the BB-pin PGA package.

Section 2.0

Section 2.1

Section 2.1

Section 2.3

Section 2.6

Section 2.B

Section 2.10

Section 3.0

Section 3.2

Section 3.2

Section 3.3

Section 4.1

Section 4.1

Section 4.2

Section 4.4

Section 4.6

Section 4.7

Section 5.0

Section 6.2

Section 6.4

Section 6.4

Section 6.5

Section B.1

Section B.2

Figure 2.0 was updated to show the 16-bit registers 51, DI, BP and SP.

Figure 2.2 was updated to show the correct bit polarity for bit 4 in the CRO register.

Tables 2.1 and 2.2 were updated to include additional information on the EFLAGs and CRO
registers.

Figure 2.3 was updated to more accurately reflect the, addressing mechanism of the B0376.

In the subsection Maskable Interrupt a paragraph was added to describe the effect of
interrupt gates on the IF EFLAGs bit.

Table 2.7 was updated to reflect the correct power up condition of the CRO register.

Figure 2.6 was updated to show the correct bit positions of the BT, BS and BD bits in the
DR6 register.

Figure 3.1 was updated to clearly show the address calculation process.

The subsection DESCRIPTORS was elaborated upon to clearly define the relationship be­
tween the linear address space and physical address space of the B0376.

Figures 3.3 and 3.4 were updated to show the AVL bit field.

The last sentence in the first paragraph of subsection PROTECTION AND 1/0 PERMIS-
SION BIT MAP was deleted. This was an incorrect statement. .

In the Subsection ADDRESS BUS (BHE#, BLE#, A23-A1 last sentence in the first para­
graph was updated to reflect the numerics operand addresses as BOOOFCH and BOOOFEH.
Because the B0376 sometimes does a double word 1/0 access a second access to
BOOOFEH can be seen.

The Subsection Hold Lantencies was updated to describe how 32-bit and unaligned ac­
cesses are internally locked but do not assert the LOCK # signal.

Table 4.6 was updated to show the correct active data bits during a BLE# assertion.

This section was updated to correctly reflect the pipelining of the address and status of the
B0376 as opposed to "Address Pipelining" which occurs on processors such as the B02B6.

Table 4.7 was updated to show the correct Revision number, 05H.

Table 4.B was updated to show the numerics operand register BOOOFEH. This address is
seen when the B0376 does a DWORD operation to the port address BOOOFCH.

I n the first paragraph the case temperatures were updated to correctly reflect the 0·C-115·C
for the ceramic package and 0·C-11 O·C for the plastic package.

Table 6.2 was updated to correctly reflect the Case Temperature under Bias specification of
- 65·C-120·C.

Figure 6.B vertical axis was updated to reflect "Output Valid Delay (ns)".

Figure 6.11 was updated to show typical Icc vs Frequency for the B0376.

This entire section was updated to reflect the new ICE-376 emulator.

The clock counts and opcodes for various instructions were updated to their" correct value.

The section INSTRUCTION ENCODING was appended to the data sheet.

4-125

82370
INTEGRATED SYSTEM PERIPHERAL

• High Performance 32-Bit DMA • Programmable Wait State Generator
Controller for 16-Bit Bus - 0 to 15 Wait States Pipelined
- 16 MBytes/Sec Maximum Data - 0 to 16 Wait States Non-Pipelined

Transfer Rate at 16 MHz • DRAM Refresh Controller
- 8 Independently Programmable

Channels • 80376 Shutdown Detect and Reset

20-Source Interrupt Controller
Control • - Software/Hardware Reset

-Individually Programmable Interrupt
Vectors • High Speed CHMOS '" Technology

-15 External, 5 Internal Interrupts • 100-Pin Plastic Quad Flat-Pack Package
- 82C59A Superset and 132-Pin Pin Grid Array Package

• Four 16-Bit Programmable Interval (See Packaging Handbook Order '" 231369)

Timers • Optimized for Use with the 80376
- 82C54 Compatible Microprocessor

• . Software Compatible to 82380 - Resides on Local Bus for Maximum
Bus Bandwidth

The 82370 is a multi-function support peripheral that integrates system functions necessary in an 80376
environment. It has eight channels of high performance 32-bit DMA (32-bit internal, 16-bit external) with the
most efficient transfer rates possible on the 80376 bus. System support peripherals integrated into the 82370
provide Interrupt Control, Timers, Wait State generation, DRAM Refresh Control, and System Reset lcigic.

The 82370's DMA Controller can transfer data between devices of different data path widths using a single
channel. Each DMA channel operates independently in any of several modes. Each·channel has a temporary
data storage register for handling non-aligned data without the need for external alignment logic.

80376 LOCAL BUS

16.,. BIT PHYSICAL
(32 - BIT LOGICAL)

8-CHANNEL
DMA

CONTROLLER

TIMER 0

TIMER 1

TIMER 2

TIMER 3

Internal Block Diagram

4-126

290164-1

October 1988
Order Number: 290164-002

infef 82370

Pin Descriptions

The 82370 provides all of the signals necessary to
interface an 80376 host processor. It has a separate
24-bit address and 16-bit data bus. It also has a set
of control signals to support operation as a bus mas­
ter or a bus slave. Several special function signals

exist on the 82370 for interfacing the system support
peripherals to their respective system counterparts.
Following are the definitions of the individual pins of
the 82370. These brief descriptions are provided as
a reference. Each signal is further defined within the
sections which describe the associated 82370 func­
tion.

Symbol Type Name and Function

A1-A23 1/0 ADDRESS BUS: Outputs physical memory or port 1/0 addresses. See
Address Bus (2.2.3) for additional information.

BHE# 1/0 BYTE ENABLES: Indicate which data bytes of the data bus take part in a bus
BLE# cycle. See Byte Enable (2.2.4) for additional information.

00-0 15 1/0 DATA BUS: This is the 16-bit data bus. These pins are active outputs during
interrupt acknowledges, during Slave accesses, and when the 82370 is in the
Master Mode.

CLK2 I PROCESSOR CLOCK: This pin must be connected to the processor's clock,
CLK2. The 82370 monitors the phase of this clock in order to remain
synchronized with the CPU. This clock drives all of the internal synchronous
circuitry.

O/C# 1/0 DATA/CONTROL: O/C# is used to distinguish between CPU control cycles
and OMA or CPU data access cycles. It is active as an output only in the
Master Mode.

W/R# 1/0 WRITE/READ: W IR # is used to distinguish between write and read cycles. It
is active as an output only in the Master Mode.

M/IO# 1/0 MEMORY 110: MIIO# is used to distinguish between memory and 10
accesses. It is active as an output only in the Master Mode.

AOS# 1/0 ADDRESS STATUS: This signal indicates presence of a valid address on the
address bus. It is active as output only in the Master Mode. AOS# is active
during the first T-state where addresses and control signals are valid.

NA# I NEXT ADDRESS: Asserted by a peripheral or memory to begin a pipelined
i address cycle. This pin is monitored only while the 82370 is in the Master

Mode. In the Slave Mode, pipelining is determined by the current and past
status of the AOS# and READY # signals.

HOLD 0 HOLD REQUEST: This is an active-high signal to the Bus Master to request
control of the system bus. When control is granted, the Bus Master activates
the hold acknowledge signal (HLOA).

HLOA I HOLD ACKNOWLEDGE: This input signal tells the OMA controller that the
Bus Master has relinquished control of the system bus to the OMA controller.

4-127

82370

Pin Descriptions (Continued)

Symbol Type Name and Function

DREQ (0-3, 5-7) I DMA REQUEST: The DMA Request inputs monitor requests from peripherals
requiring DMA service. Each of the eight DMA channels has one DREQ input.
These active-high inputs are internally synchronized and prioritized. Upon
request, channel 0 has the highest priority and channel 7 the lowest.

DREQ4I1RQ9# I DMA/INTERRUPT REQUEST: This is the DMA request input for channel 4. It
is also connected to the interrupt controller via: interrupt request 9. This
internal connection is available for DMA channel 4 only. The interrupt input is
active low and can be programmed as either edge or level triggered. Either
function can be masked by the appropriate mask register. Priorities of the
DMA channel and the interrupt request are not related but follow the rules of
the individual controllers.

Note that this pin has a weak internal pull-up. This causes the interrupt
request to be inactive, but the DMA request will be active if there is no
external connection made. Most applications will require that either one or the
other of these functions be used, but not both. For this reason, it is advised
that DMA channel 4 be used for transfers where a software request is more
appropriate (such as memory-to-memory transfers). In such an application,
DREQ4 can be masked by software, freeing IRQ9# for other purposes.

EOP# I/O END OF PROCESS: As an output, .this signal indicates that the current
Requester.access is the last access of the currently operating DMA channel.
It is activated when Terminal Count is reached. As an input, it signals the DMA
channel to terminate the current buffer and proceed to the next buffer, if one
. is available. This signal may be programmed as an asynchronous or
synchronous input.

EOP # must be connected to a pull-up resistor. This will prevent erroneous
external requests for termination of a DMA process.

EDACK(0-2) 0 ENCODED DMA ACKNOWLEDGE: These signals contain the encoded
acknowledgment of a request for DMA service by a peripheral. The binary
code formed by the three signals indicates which channel is active. Channel 4
does not have a DMA acknowledge. The inactive state is indicated by the

. code 100. During a Reque.ster access, EDACK presents the code for the
active DMA channel. During a Target access, EDACK presents the inactive
code 100.

IRQ (11-23) # I INTERRUPT REQUEST: These are active low interrupt request inputs. The
inputs can be programmed to be edge or level sensitive. Interrupt priorities
are programmable as either fixed or rotating. These inputs have weak internal
pull-up resistors. Unused interrupt reqllest inputs should be tied inactive
externally.

INT 0 INTERRUPT OUT: INT signals that an interrupt request is pending.

CLKIN I TIMER CLOCK INPUT: This IS the clock input signal to all of the 82370's
programmable timers. It is independent of the system clock input (CLK2).

TOUT1/REF# 0 TIMER 1 OUTPUT IREFRESH: This pin is software programmable as either
the direct output of Timer 1, or as the indicator of a refresh cycle in progress.
As REF #, this signal is active during the memory read cycle which occurs
during refresh.

4-128

82370

Pin Descriptions (Continued)

Symbol Type Name and Function

TOUT2# IIR03# 1/0 TIMER 2 OUTPUT/INTERRUPT REQUEST: This is the inverted output of
Timer 2. It is also connected directly to interrupt request 3. External hardware
can use IR03 # if Timer 2 is programmed as OUT = 0 (TOUT2 # = 1).

TOUT3# 0 TIMER 3 OUTPUT: This is the inverted output of Timer 3.

READY# I READY INPUT: This active-low input indicates to the 82370 that the current
bus cycle is complete. READY is sampled by the 82370 both while it is in the
Master Mode, and while it is in the Slave Mode.

WSC (0-1) I WAIT STATE CONTROL: WSCO and WSC1 are inputs used by the Wait-
State Generator to determine the number of wait states required by the
currently accessed memory or 1/0. The binary code on these pins, combined
with the M/IO# signal, selects an internal register in which a wait-state count
is stored. The combination WSC= 11 disables the wait-state generator.

READYO# 0 READY OUTPUT: This is the synchronized output of the wait-state generator.
It is also valid during CPU accesses to the 82370 in the Slave Mode when the
82370 requires wait states. READYO# should feed directly the processor's
READY # input.

RESET I RESET: This synchrono!Js input serves to initialize the state of the 82370 and
provides basis for the CPURST output. RESET must be held active for at least
15 CLK2 cycles in order to guarantee the state of the 82370. After Reset, the
82370 is in the Slave Mode with all outputs except timers and interrupts in
their inactive states. The state of the timers and interrupt controller must be
initialized through software. This input must be active for the entire time
required by the host processor to guarantee proper reset.

OHPSEL# 0 CHIP SELECT: This pin is driven active whenever the 82370 is addressed in a
slave bus read or write cycle. It is also active during interrupt acknowledge
cycles when the 82370 is driving the Data Bus. It can be used to control the
Ipcal bus transceivers to prevent contention with the system bus.

CPURST 0 CPU RESET: CPURST provides a synchronized reset signal for the CPU. It is
activated in the event of a software reset command, a processor shut-down
detect, or a hardware reset via the RESET pin. The 82370 holds CPURST
active for 62 clocks in response to either a software reset command or a shut-
down detection. Otherwise CPURST reflects the RESET input.

Vee POWER: + 5V input power.

Vss Ground Reference.

Table 1. Wait-State Select Inputs

Port Wait-State Registers Select Inputs
Address 07 04 03 DO WSC1 WSCO

72H MEMORY 0 1/00 0 0
73H MEMORY 1 1/01 0 1
74H MEMORY 2 1/02 1 0

DISABLED 1 1

M/IO# 1 0

4-129

Intel 82370

100
290164-2

100 Pin Quad Flat-Pack Pin Out (Top View)

A Row BRow CRow DRow

Pin Label Pin Label Pin Label Pin Label

1 CPURST 26 Vee 51 Al1 76 DRE05
2 INT 27 Dl1 52 A10 77 DRE04/IR09#
3 Vee 28 D4 53 A9· 78 . DRE03
4 Vss 29 D12 54 Aa 79 DRE02
5 TOUT2#/IR03# 30 D5 55 A7 80 DRE01
6 TOUT3# 31 D13 56 A6 81 DREOO
7 D/C# 32 D6 57 A5 82 IR023#
8 Vee 33 Vss 58 Vee 83 IR022#
9 W/R# 34 D14 59 A4 84 IR021 #

10 M/IO# 35 D7 60 A3 85 IR020#
11 HOLD 36 D15 61 A2 86 IR019#
12 TOUT1/REF# 37 A23 62 A1 87 IR018#
13 ClK2 38 A22 63 Vss 88 IR017#
14 Vss 39 A21 64 BlE# 89 IR016#
15 READYO# 40 A20 65 BHE# 90 IR015#
16 EOP# 41 A19 66 Vss 91 IR014#
17 CHPSEl# 42 A1a 67 ADS# 92 IR013#
18 Vee 43 Vee 68 Vee 93 IR012#
19 Do 44 A17 69 EDACK2 94 IR011 #
20 D8 45 A16 70 EDACK1 95 ClKIN
21 D, 46 A15 71 EDACKO 96 WSCO
22 D9 47 A14 72 HlDA 97 WSC1
23 D2 48 Vss 73 DREQ7 98 RESET
24 DlO 49 A13 74 DRE06 99 READY#
25 D3 50 A12 75 NA# 100 Vss

4-130

82370

A B C 0 E F G H K M N P

/Vss Vee ,Vss Vee AI2 A9 AS A5 A3 BHE# OREQO EDACKI Vss Vee

0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee AI9 AI7 AI5 AI3 AIO A7 A4 AI AOS# EOACK2 INT Vss Vee

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vss A21 AI8 AI6 AI4 All A6 A2 BLE#

OREQ4/
IRQ9# EDACKO HLOA OREQ7 OREQ5

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee A22 A20 OREQS NA# OREQ3

4 0 0 0 0 0 0
(NC) (NC) A23 WSCO OREQ2 OREQI

5 0 0 0 0 0 0
(NC) (NC) (NC)

BonOM VIEW
METAL LID WSCI IR022# IRQ23#

6 0 0 0 0 0 0
(NC) (NC) (NC) IR021# IR020# IROI9#

7 0 0 0 0 0 0
(NC) (NC) 015 (82370) IROI7# IROIS# IRQI8#

8 0 0 0 0 0 0
07 (NC) (NC) IRQI3# IROI4# IROI5#

9 0 0 0 0 0 0
014 OS 013 o/c# IROI2# IROII#

10 0 0 0 0 0 0
(NC) 05 (NC) REAOY# CLKIN W/R#

II 0 0 0 0 0 0
Vee (NC) 012 (NC) 03 010 (NC) REAOYO# HOLD CHPSEL# EOP# CPURST RESET Vee

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vss (NC) 04 (NC) (NC) 02 09 (NC) (NC)

TOUTI/
M/IO#

TOUT2#/
REF# TOUT3# IRQ3 Vss

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vee Vss Vec OIl (NC) (NC) CLK2 01 DO 08 Vss Vee Vss Vee

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0

290164-3

82370 PGA Pinout

4-131

inter 82370

Pin Label Pin Label

G14 CLK2 014 011
N12 RESET F12 010
M12 CPURST G13 09
C5 A23 K14 Os
84 A22 A9 07
83 A21 810 06
C4 A20 811 05
82 A19 C13 04
C3 A1S E12 03
C2 A17 F13 02
03 A16 H14 01
02 A15 J14 00
E3 A14 P11 W/R#
E2 A13 L13 M/IO#
E1 A12 K2 AOS#
F3 All M10 O/C#
F2 AlO N4 NA#
F1 A9 M11 REAOY#
G1 As H12 REAOYO#
G2 A7 J12 HOLO
G3 A6 M3 HLOA
H1 A5 M2 INT
H2 A4 L12 EOP#
J1 A3 L2 EOACK2
H3 A2 M1 EOACK1
J2 Al L3 EOACKO
J3 8LE# N3 OREQ7
K1 8HE# M4 OREQ6
K12 CHPSEL# P3 OREQ5
C8 015 K3 OREQ4/IRQ9#
A10 014 P4 OREQ3·
C10 013 N5 OREQ2
C12 012 P5 OREQ1

1.0 FUNCTIONAL OVERVIEW

The 82370 contains several independent functional
modules. The following is a brief discussion of the
components and features of the 82370. Each mod­
ule has a corresponding detailed section later in this
data sheet. Those sections should be referred to for
design·and programming information.

1.1 82370 Architecture

The 82370 is comprised of several computer system
functions that are normally found in separate LSI
and VLSI components.' These include: a high-per­
formance, eight-channel, 32-bit Oirect Memory Ac­
cess Controller; a 20-level Programmable Interrupt

Pin Label Pin Label

L1 OREQO A2 Vee
P6 IRQ23# P2 Vee
N6 IRQ22# A4 Vee
M7 IRQ21 # A12 Vee
N7 IRQ20# P12 Vee
P7 IRQ19# A14 Vee
PS IRQ1S# C14 Vee
MS IRQ17# M14 Vee
NS IRQ16# P14 Vee
P9 IRQ15# A5 NC
N9 IRQ14# 85 NC
M9 IRQ13# A6 NC
N10 IRQ12# 86 NC
P10 IRQ11 # C6 NC
M5 WSCO A7 NC
M6 WSC1 87 NC
M13 TOUT3# C7 NC
N13 TOUT2#/IRQ3# AS NC
K13 TOUT1/REF# 8S NC
N11 CLKIN 89 NC
A1 Vss C9 NC
C1 Vss A11 NC
N1 Vss 811 NC
N2 Vss C11 NC
A3 Vss 012 NC
A13 Vss G12 NC
P13 Vss 813 NC
814 Vss 013 NC
L14 Vss E13 NC
N14 Vss H13 NC
81 Vee J13 NC
01 Vee E14 NC
P1 Vee F14 NC

Controller which is a superset of the 82C59A; four
16-bit Programmable Interval Timers which are func­
tionally equivalent to the S2C54 timers; a ORAM Re­
fresh Controller; a Programmable Wait State Gener­
ator; and system reset logic. The interface to the
82370' is optimized for high-performance operation
with the S0376 microprocessor.

The 82370 operates directly on the 80376 bus. In
the Slave Mode, it monitors the state of the proces­
sor at all times and acts or idles according to the
commands of the host. It monitors the address pipe­
line status and generates the programmed number
of wait states for the device being accessed. The
S2370 also has logic to the reset of the 80376 via
hardware or software reset requests and processor
shutdown status.

4-132

82370

After a system reset, the 82370 is in the Slave
Mode. It appears to the system as an I/O device. It
becomes a bus master when it is performing DMA
transfers.

To maintain compatibility with existing software, the
registers within the 82370 are accessed as bytes. If
the internal logic of the 82370 requires a delay be­
fore another access by the processor, wait states

are automatically inserted into the access cycle.
This allows the programmer to write initialization rou­
tines, etc. without regard to hardware recovery
times.

Figure 1-1 shows the basic architectural compo­
nents of the 82370. The following sections briefly
discuss the architecture and function of each of the
distinct sections of the 82370.

80376 LOCAL BUS CHPSEL#

TOUTl/REF#

1,3 IRO#
i

INT

--~---- ..
DREOO

DRE07

EDACKO

EDACK1

EDACK2

EOP#

TOUT2#

L...::::';:'::".JlVI~ TOUT3#

.. _____________________ L._-_..::._:.::..:.._-_---:-.. - CLK IN

Figure 1-1. Architecture of the 82370

4-133

290164-4

82370

1.1.1 DMA CONTROLLER

The 82370 contains a high-performance, 8·channel
DMA Controller. It provides a 32·bit internal data
path. Through its 16-bit external physical data bus, it
is capable of transferring data in any combination of
bytes, words and double·words. The addresses of
both source and destination can be independently
incremented, decremented or held constant, and
cover the entire 16·bit physical address space of the
80376. It can 'disassemble and assemble non­
aligned data via a 32·bit internal temporary data
storage register. Data transferred between devices
of different data path widths can also be assembled
and disassembled using the internal temporary data
storage register. The DMA Gontroller can also trans·
fer aligned data between 1/0 and memory on the fly,
allowing data transfer rates up to 16 megabytes per
second for an 82370 operating at 16 MHz. Figure
1-2 illustrates the functional components of the DMA
Controller.

There are twenty-four general status and command
registers in the 82370 DMA Controller. Through
these registers any of the channels may be pro­
grammed into any of the possible modes. The oper­
ating modes of anyone channel are independent of
the operation of the other channels.

Each channel has three programmable registers
which determine the location and amount of data to
be transferred:

Byte Count Register- Number of bytes to trans­
fer. (24-bits)

Requester Register - Byte Address, of memory
, or peripheral which is re­

questing DMA service.
(24-bits)

Target Register - Byte Address of peripheral
or memory which will be
accessed. (24-bits)

There are also port addresses which, when ac­
cessed, cause the 82370 to perform specific func­
tions. The actual data written doesn't matter, the act
of writing to the specific address causes the com­
mand to be executed. The commands which operate
in this mode are: Master Clear, Clear Terminal Count
Interrupt' Request, Clear Mask Register, and Clear
Byte Pointer Flip-Flop. '

DMA transfers can be done between all combina­
tions of memory and 1/0; memory-to-memory, mem­
ory-to-I/O, I/O-to-memory, and I/O-to-I/O. DMA
service can be requested through software andlor
hardware. Hardware DMA acknowledge signals are
available for all channels (except channel 4) through
an encoded 3-bit DMA acknowledge bus
(EDACKO-2).

HOLD +-----...
HLDA---....

CONTROL/STATUS REGISTERS CHANNEL REGISTERS

DREQO
DREOl
DREQ2
DREQ3
DREQ4
DREQ5
DREQ6
DREQ7

:::::::
:::::::
:::::::
:::::::

-l_ l

DMA
REQUEST

ARBITRATION
LOGIC

COMMAND REGISTER I

COMMAND REGISTER]I

MODE REGISTER I

MODE REGISTER]I

SOFTWARE REQUEST
REGISTER

MASK REGISTER

STATUS REGISTER

BUS SIZE REGISTER

CHAINING REGISTER

BASE CURRENT TEMPORARY
BYTE COUNT BYTE COUNT REGISTER

BASE CURRENT
REQUESTER REQUESTER

ADDRESS ADDRESS
CHANNEL 0

BASE CURRENT
TARGET TARGET

ADDRESS ADDRESS

CHANNEL 1 (SAME AS CH 0)

CHANNEL 2 (SAME AS CH 0)

CHANNEL 3 (SAME AS CH 0)

I "LOWER" GROUP OF CHANNELS

EDACKO +---
EDACKl +-- PROCESS

CONTROL
EDACK2 +--

EOP# +--+
I "UPPER" GROUP OF CHANNELS

CHANNEL 4 (SAME AS CH 0)
CONTROL/STATUS CHANNEL 5 (SAME AS CH 0)
(SAME AS

CHANNEL 6 (SAME AS CH 0) LOWER GROUP)
CHANNEL 7 (SAME AS CH 0)

Figure 1-2. 82370 DMA Controller
4-134

290164-5

82370

The 82370 DMA Controller transfers blocks of data
(buffers) in three modes: Single Buffer, Buffer Auto­
Initialize, and Buffer Chaining. In the Single Buffer
Process, the 82370 DMA Controller is programmed
to transfer one particular block of data. Successive
transfers then require reprogramming- of the DMA
channel. Single Buffer transfers are useful in sys­
tems where it is known at the time the transfer be­
gins what quantity of data is to be transferred, and
there is a contiguous block of data area available.

The Buffer Auto-Initialize Process allows the same
data area to be used for successive DMA transfers
without having to reprogram the channel.

The Buffer Chaining Process allows a program to
specify a list of buffer transfers to be executed. The
82370 DMA Controller, through interrupt routines, is
reprogrammed from the list. The channel is repro­
grammed for a new buffer before the current buffer
transfer is complete. This pipelining of the channel
programming process allows the system to allocate
non-contiguous blocks of data storage space, and

. transfer all of the data with one DMA process. The
buffers that make up the chain do not have to be in
contiguous locations.

Channel priority can be fixed or rotating. Fixed priori­
ty allows the programmer to define the priority of
DMA channels based on hardware or other fixed pa-

GATES[

eLKIN

CONTROL Hi--+!
LOGIC

rameters. Rotating priority is used to provide periph­
erals access to the bus on a shared basis.

With fixed priority, the programmer can set any
channel to have the current lowest priority. This al­
lows the user to reset or manually rotate the priority
schedule without reprogramming the command reg­
isters.

1_1-2 PROGRAMMABLE INTERVAL TIMERS

Four 16-bit programmable interval timers reside
within the 82370. These timers are identical in func­
tion to the timers in the 82C54 Programmable Inter­
val Timer. All four of the timers share a common
clock input which can be independent of the system
clock. The timers are capable of operating in six dif­
ferent modes. In all of the modes, the current count
can be latched and read by the 80376 at any time,
making these very versatile event timers. -Figure 1-3
shows the functional components of the Program­
mable Interval Timers.

The outputs of the timers are directed to key system
functions, making system design simpler. Timer 0 is
routed directly to an interrupt input and is not avail­
able externally. This timer would typically be used to
generate time-keeping interrupts.

TOUTO

TIMER 0

TIMER 1 TOUT1

TIMER 2 TOUT2

TIMER 3 TOUT3

290164-6

Figure 1-3. Programmable Interval Timers-Block Diagram

4-135

inter 82370

Timers 1 and 2 have outputs which are available for
general timer/counter purposes as well as special
functions. Timer 1 is routed to the refresh control
logic to provide refresh. timing. Timer 2 is connected
to an interrupt request input to provide other timer
functions. Timer 3 is a general purpose timer/coun-

. ter whose output is available to external hardware. It
is also connected internally to the interrupt request
which defaults to the highest priority (IRQO).

1.1.3 INTERRUPT CONTROLLER

The 82370 has the equivalent of three enhanced
82C59A Programmable Interrupt Controllers. These
controllers can all be operated in the Master Mode,
but the priority is always as if they were cascaded.
There are 15 interrupt request inputs provided for
the user, all of which can be inputs from external
slave interrupt controllers. Cascading 82C59As to
these request inputs allows a possible total of 120
external interrupt requests. Figure 1-.4 is a block dia­
gram of the 82370 Interrupt Controller.

Each of the interrupt request inputs can be individu­
ally programmed with its own interrupt vector, allow­
ing more flexibility in interrupt vector mapping than

IRQO#
IRQ1#
IRQ2#
IRQ3#
IRQ4#
IRQ5#
IRQS#
IRQ7#

DATA (0-7)

was available with the 82C59A. An interrupt is pro­
vided to alert the system that an attempt is being
made to program the vectors in the method of the
82C59A. This provides compatibility of existing soft­
ware that used the 82C59A or 8259A with new de­
signs using the 82370.

In the event of an unrequested or otherwise errone­
ous interrupt acknowledge cycle, the 82370 Interrupt
Controller issues a default vector. This vector, pro­
grammed by the system software, will alert the sys­
tem of unsolicited interrupts of the 80376.

The functions of the 82370 Interrupt Controller are
identical to the 82C59A, except in regards to pro­
gramming the interrupt vectors as mentioned above.
Interrupt request inputs are programmable as either
edge or level triggered and are software maskable.
Priority can be either fixed or rotating and interrupt
requests can be nested.

Enhancements are added to the 82370 for cascad­
ing external interrupt controllers. Master to Slave
handshaking takes place on the data bus, instead of
dedicated cascade lines.

IRQ2
IRQ3
IRQ4
IRQ5
IRQS
IRQ7

...-___ -.INTERRUPT
TO HOST

IN­
SERVICE

REG.

DATA (0-7)

INDIVIDUALLY PROGRAMMABLE
VECTOR BANK

82370 ENHANCEMENT OVER THE 82C59A
290164-7

Figure 1-4. 82370 Interrupt Controller-Block Diagram

4-136

inter 82370

1.1.4 WAIT STATE GENERATOR

The Wait State Generator is a programmable
READY generation circuit for the 80376 bus. A p~­
ripheral requiring wait states can request the Walt
State Generator to hold the processor's READY in­
put inactive for a predetermined number of bus
states. Six different wait state counts can be pro­
grammed into the Wait State Generator by software;
three for memory accesses and three for 1/0 ac­
cesses. A block diagram of the 82370 Wait State
Generator is shown in Figure 1-5.

The peripheral being accessed selects the re~uire?
wait state count by placing a code on a 2-bit walt
state select bus. This code along with the M/IO#
signal from the bus master is used to select one of
six internal 4-bit wait state registers which has been
programmed with the desired number of wait states.
From zero to fifteen wait states can be programmed
into the wait state registers. The Wait State genera­
tor tracks the state of the processor or current bus
master at all times, regardless of which device is the
current bus master and regardless of whether or not
the wait state generator is currently active.

The 82370 Wait State Generator is disabled by mak­
ing the select inputs both high. This all~ws hardware
which is intelligent enough to generate Its own ready
signal to be accessed without penalty. As previously
mentioned, deselecting the Wait State Generator
does not disable its ability to determine the proper
number of wait states due to pipeline status in sub­
sequent bus cycles.

The number of wait states inserted into a pipelined
bus cycle is the value in the selected wait state ~eg­
ister. If the bus master is operating in the non-plpe­
lined mode, the Wait State Generator will increase
the number of wait states inserted into the bus cycle
by one.

Pipelined 0-15 Wait States
Non·Pipelined 0-16 Wait States

On reset, the Wait State Generator's registers are
loaded with the value FFH, giving the maximum
number of wait states for any access in which the
wait state select inputs are active.

1.1.5 DRAM REFRESH CONTROLLER

The 82370 DRAM Refresh Controller consists of a
24-bit refresh address counter and bus arbitration
logic. The output of Timer 1 is used to periodically
request a refresh cycle. When the controller re­
ceives the request, it requests access to the system
bus through the HOLD signal. When bus control is
acknowledged by the processor or current bus mas­
ter, the refresh controller executes a memory read
operation at the address currently in the Refresh Ad­
dress Register. At the same time, it activates a re­
fresh signal (REF#) that the memory uses to force a
refresh instead of a normal read. Control of the bus
is transferred to the processor at the completion of
this cycle. Typically a refresh cycle will take six clock
cycles to execute on an 80376 bus.

The 82370 DRAM Refresh Controller has the high­
est priority when requesting bus access and will in­
terrupt any active DMA process. This allows large
blocks of data to be moved by the DMA controller
without affecting the refresh function. Also the DMA
controller is not required to completely relinquish the
bus, the refresh controller simply steals a bus cycle
between DMA accesses.

The amount by which the refresh address is incre­
mented is programmable to allow for different bus
widths and memory bank arrangements.

1.1.6 CPU RESET FUNCTION

The 82370 contains a special reset function which
can respond to hardware reset signals as well as a

INTERNAL WAIT STATE
REQUIREMENT

04 03 DO

MEMORY 0 I/O 0
wsco

WSC1

M/IO#

REGISTER
SELECT
LOGIC

MEMORY 1 I/O 1

MEMORY 2 I/O 2

(RESERVED) REFRESH

PROGRAMMABLE WAIT STATE
REGISTERS

WAIT STATE
COUNTER

Figure 1-5.82370 Wait State Generator-Block Diagram

4-137

290164-8

82370

software reset command. The circuit will hold the
80376's RESET line active while an external hard­
ware reset signal is present' at its RESET input. It
can also reset the 80376 processor as the result of a
software command. The software reset command
causes the 82370 to hold the processor's RESET
line active for a minimum of 62 clock cycles. The
80376 requires that its RESET line be held active for
a minimum of 80 clock cycles to re-initialize. For a
more detailed explanation and solution, see Appen­
dix D (System Notes).

The 82370 can be programmed to sense the shut­
down detect code on the status lines from the
80376. If the Shutdown Detect function is enabled,
the 82370 will automatically reset the processor. A
diagnostic register is available which can be used to
determine the cause of reset.

1.1.7 REGISTER MAP RELOCATION

After a hardware reset, the internal registers of the
82370 are located in 1/0 space beginning at port
address OOOOH. The map of the 82370's registers is
relocatable via a software command. The default
mapping places the 82370 between 1/0 addresses
OOOOH and OODBH. The relocation register allows
this map to be moved to any even 256-byte bounda­
ry in the processor's 16-bit 110 address space or any
even 64 kbyte. boundary in the 24-bit memory ad­
dress space.

1.2 Host Interface

The 82370 is designed to operate efficiently on the
local bus of an 80376 microprocessor. The control
signals of the 82370 are identical in function to
those of the 80376. As a slave, the 82370 operates
with all of the features available on the 80376 bus.
When the 82370 is in the Master Mode, it looks iden­
tical to an 80376 to the connected devices.

The 82370 monitors the bus at all times, and deter­
mines whether the current bus cycle is a pipelined or
non-pipelined access. All of the status signals of the
processor are monitored.

The control, status, and data registers within the
82370 are located at fixed addresses relative to
eachbther, but the group can be relocated to either
memory or 1/0 space and to different locations with­
in those spaces.

As a Slave device, the 82370 monitors the control!
status lines of the CPU. The 82370 will generate all
of the wait states it needs whenever it is accessed.
This allows the programmer the freedom of access-

ing 82370 registers without having to insert NOPs in
the program to wait for slower 82370 internal regis­
ters.

The 82370 can determine if a current bus cycle is a
pipelined or a non-pipelined cycle. It does this by
monitoring the ADS#, NA# and READY# signals
and thereby keeping track of the current state of the
80376.

As a bus master, the 82370 looks like an 80376 to
the rest of the system. This enables the designer
greater flexibility in systems which include the
82370. The designer does not have to alter the inter­
faces of any peripherals designed to operate with
the 80376 to accommodate the 82370. The 82370
will access any peripherals on the bus in the same
manner as the 80376, including recognizing pipe­
lined bus cycles.

The 82370 is accessed as an 8-bit peripheral. The
80376 places the data of all 8-bit accesses either on
D(0-7) or D(8-15). The 82370 will only accept data
on these lines when in the Slave Mode. When in the
Master Mode, the 82370 is a full 16-bit machine,
sending and receiving data in the same manner as
the 80376.

2.0 80376 HOST INTERFACE

The 82370 contains a set of interface signals to op­
erate efficiently with the 80376 host processor.
These signals were designed so that minimal hard­
ware is needed to connect the 82370 to the 80376.
Figure 2-1 depicts a typical system configuration
with the 80376 processor. AS'shown in the diagram,
the 82370 is designed to interface directly with the
80376 bus.

Since the 82370 resides on the opposite side of the
data bus transceivers with respect to the rest of the
system peripherals, it is important to note that the
transceivers should be controlled so that contention
between the data bus transceivers and the 82370
will not occur. In order to ease the implementation of
this, the 82370 activates the CHPSEL# signal which
indicates that the 82370 has been addressed and
may output data. This signal should be included in
the direction and enable control logic of the trans­
ceiver. When any of the 82370 internal registers are
read, the data bus transceivers should be disabled
so that only the 82370 will drive the local bus.

This section describes the basic bus functions of the
82370 to show how this device interacts with the
80376 processor. Other signals which are not direct­
ly related to the host interface will be discussed in
their associated functional block description.

4-138

intJ 82370

fROIA OTHER
PERIPHERALS

Vee
+
?

CLOCK GENERATOR S 10k.ll

CLK2 RESET RESET

CLK2

I
ADS#

ADS# CLK2
RESET CPURST

r OPTIONAL

~ READY#

I I
WAITSTATE READYO#

LOGIC

READY#

HOLD HOLD 82370
HLDA HLDA

80376 INT INT

D/C# D/C#

W/R# W/R#

IA/IO# IA/IO#

BLE#.BHE# A " BLE#.BHE#
Al-A23

~ I I
Al-A23

~
00- 015 00-015

'I ! .JJ
CHPSEL#

I TO BUS' TO BUS OE
CONTROLLER BUffERS

290164-A6

Figure 2-1. 80376/82370 System Configuration

2.1 Master and Slave Modes

At any time. the 82370 acts as either a Slave device
or a Master device in the system. Upon reset. the
82370 will be in the Slave, Mode. In this mode. the
80376 processor can read/write into the 82370 in·
ternal registers. Initialization information may be pro·
grammed into the 82370 during Slave Mode.

When DMA service (including DRAM Refresh Cycles
generated by the 82370) is requested. the 82370 will
request and subsequently get control of the 80376
local bus. This is done through the HOLD and HLDA
(Hold Acknowledge) signals. When the 80376 proc-

essor responds by asserting the HLDA signal. the
82370 will switch into Master Mode and perforlT'
DMA transfers; In this mode. the 82370 is the bus
master of the system. Itcan read/write data from/to
memory and peripheral devices. The 82370 will re­
turn to the Slave Mode upon completion of DMA
transfers. or when HLDA is negated.

2.2 80376 Interface Signals

As mentioned in the Architecture section, the Bus
Interface module of the 82370 (see Figure 1-1) con­
tains signals that are directly connected to the
80376 host processor. This module has separate

4-139

82370

16-bit Data and 24-bit Address busses. Also, it has
additional control signals to support different bus op­
erations on the system. By residing on the 80376
local bus, the 82370 shares the same address, data
and control lines with the processor. The following
subsections discuss the signals which interface to
the 80376 host processor.

2.2.1 CLOCK (CLK2)

The CLK2 input provides fundamental timing for the
82370. It is divided by two internally to generate the
82370 internal clock. Therefore, CLK2 should be
driven with twice the 80376's frequency. In order to.
maintain synchronization with the 80376 host prpc­
essor, the 82370 and the 80376 should share a
common clock source.

The internal clock consists of two phases: PHI1 and
PHI2. Each CLK2 period is a phase of the internal
clock. PHI2 is usually used to sample input and set
up internal signals and PHI1 is for latching internal
data. Figure 2-2 illustrates the relationship of CLK2
and the 82370 internal clock signals. The CPURST
signal generated by the 82370 guarantees that the
80376 will wake up in phase with PHI1.

2.2.2 DATA BUS (00-015)

This 16-bit three-state bidirectional bus provides a
general purpose data path between the 82370 and
the system. These pins are tied directly to the corre­
sponding Data Bus pins of the 80376 local bu.s. The
Data Bus is also used for interrupt ve.ctors generated
by the 82370 in the Interrupt Acknowledge cycle.

During Slave I/O operations, the 82370 expects a
single byte to be written or read. When the 80376
host processor writes into the 82370, either Do-D7
or 08-D15 wiil be latched into the 82370, depending

upon whether Byte Enable bit BLE# is 0 or 1 (see
Table 2-1). When the 80376 host processor reads
from the 82370, the single byte data will be duplicat­
ed twice on the Oata Bus; i.e. on 00-07 and 08-
015·

During Master Mode, the 82370 can transfer 16-,
and 8-bit data between memory (or I/O devices) and
I/O devices (or memory) via the Data Bus.

These three-state bidirectional signals are connect­
ed directly to the 80376 Address Bus. In the Slave
Mode, they· are used as input signals so that the
processor can address the 82370 internal ports/reg­
isters. In the Master Mode, they are used as output
signals by the 82370 to address memory and periph­
eral devices. The Address Bus is capable of ad­
dreSSing 16.Mbytes of physical memory space
(OOOOOOH to FFFFFFH), and 64 Kbytes of I/O ad­
dresses.

2.2.4 BYTE ENABLE (BHE#. BLE#)

The Byte Enable pins BHE# and BLE# select the
specific byte(s) in the word addressed by A1-A23.
During Master Mode operation, it is used as an out­
put by the 82370 to address memory and I/O loca­
tions. The definition of BHE# and BLE# is further
illustrated in Table 2-1.

NOTE:
The 82370 will activate BHE# when output in Mas­
ter' Mode. For a more detailed explanation and its
solutions, see Appendix D (System Notes).

I

82370 CLOCK PERIOD 82370 CLOCK PERIOD 82370 CLOCK PERIOD
CLK2PERIOD CLK2 PERIOD CLK2 PERIOD

I!Jl I 1!J2 I!Jl I 1!J2 I!Jl I 1!J2

CLK2

I
\ \ 1 \

I
PHllJ, f I

I I I PHI2\ ~ }-I
290164,..9

Figure 2·2. CLK2 and 82370 Internal Clock

4-140

intJ 82370

As an output (Master Mode):
Table 2-1. Byte Enable Signals

Byte to be Accessed
Logical Byte Presented on

BHE# BLE# Data Bus During WRITE Only'
Relative to A23-A1

015-08 07-0 0

0 0 0, 1 B A
0 1 1 A A
1 0 0 U A
1 1 (Not Used)

U = Undefined
A = Logical Do-D7
B = Logical D8-D15

'NOTE: .
Actual number of bytes accessed dep.ends upon the programmed data path width.

Table 2-2. Bus Cycle Definition

MIIO# D/C# W/R#

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

1 1 0
1 1 1

2.2.5 BUS CYCLE DEFINITION SIGNALS
(D/C#, W/R#, M/IO#)

These three-state bidirectional signals define the
type of bus cycle being performed. W/R# distin­
guishes between write and read cycles. D/C# dis­
tinguishes between processor data and control cy­
cles. M/IO# distinguishes between memory and 1/0
cycles.

During Slave Mode, these signals are driven by the
80376 host processor; during Master Mode, they are
driven by the 82370. In either mode, these signals
will be valid when the Address Status (ADS#) is
driven LOW. Exact bus cycle definitions are given in
Table 2-2. Note that some combinations are recog­
nized as inputs, but not generated as outputs. In the
Master Mode, D/C# is always HIGH.

2.2.6 ADDRESS STATUS (ADS#)

This signal indicates that a valid address (A1-A23,
BHE#, BLE#) and bus cycle definition (W/R#,
D/C#, M/IO#) is being driven on the bus. In the
Master Mode, it is driven by the 82370 as an output.
In the Slave Mode, this signal is monitored as

As INPUTS As OUTPUTS

Interrupt Acknowledge NOT GENERATED
UNDEFINED NOT GENERATED
1/0 Read 110 Read
110 Write 110 Write
UNDEFINED NOT GENERATED
HALT if A1 = 1 NOT GENERATED
SHUTDOWN if A1 = 0
Memory Read Memory Read
Memory Write Memory Write

an input by the 82370. By the current and past
status of ADS# and the READY# input, the 82370
is able to determine, during Slave Mode, if the next
bus cycle is a pipelined address cycle. ADS# is as­
serted during T1 and T2P bus states (see Bus State
Definition).

NOTE:
ADS# must be qualified with the rising edge of
CLK2.

2.2.7 TRANSFER ACKNOWLEDGE (READY#)

This input indicates that the current bus cycle is
complete. In the Master Mode, assertion of this sig­
nal indicates the end of a DMA bus cycle. In the
Slave Mode, the 82370 monitors this input and
ADS# to detect a pipelined address cycle. This sig­
nal should be tied directly to the READY # input of
the 80376 host processor.

2.2.8 NEXT ADDRESS REQUEST (NA#)

This input is used to indicate to the 82370 in the
Master Mode that the system is requesting address

4-141

82370

pipelining. When driven LOW by either memory or
peripheral devices during Master Mode, it indicates
that the system is prepared to accept a new address
and bus cycle definition signals from the 82370 be­
fore the end of the current bus cycle. If this input is
active when sampled by the 82370, the next address
is driven onto the bus, provided. a bus request is
already pending internally.

This input pin is monitored only in the Master Mode.
In the Slave Mode, the 82370 uses the ADS# and
READY # signals to determine address pipelining
cycles, and NA# will be ignored.

2.2.9 RESET (RESET, CPURST)

RESET

This synchronous input suspends any operation in
progress and places the 82370 in a known initial
state. Upon reset, the 82370 will be in the Slave
Mode waiting to be initialized by the 80376 host
processor. The 82370 is reset by asserting RESET
for 15 or more CLK2 periods. When RESET is as­
serted, all other input pins are ignored, and all other
bus pins are driven to an idle bus state as shown in
Table 2-3. The 82370 will determine the phase of its
internal clock following RESET going inactive.

RESET is level-sensitive and must be synchronous
to the CLK2 signal. The RESET setup and hold time
requirements are shown in Figure 2-3.

Table 2·3. Output Signals Following RESET

Signal Level

Al-:-A23, Do-DI5, BHE#, BLE# Float
D/C#, W/R#, M/IO#, ADS# Float
READYO# '1 '
EOP# '1' (Weak Pull-UP)
EDACK2-EDACKO '100'
HOLD· '0'
INT UNDEFINED·
TOUT1/REF#, UNDEFINED';'
TOUTU/IRQ3#, TOUT3#
CPURST '0'
CHPSEL# '1 '

°NOTE:
The Interrupt Controller and Programmable Interval Timer
are initialized by software commands.

CPURST

This output signal. is used to reset the 80376 host
processor. It will go active (HIGH) whenever one of
the following events occurs: a) 82370's RESET input
is active; b) a software RESET command is issued
to the 82370; or c) when the 82370 detects a proc­
essor Shutdown cycle and when this detection fea­
ture is enabled (see CPU Reset and Shutdown De­
tect). When activated, CPURST will be held active
for 62 clocks. The timing of CPURST is such that the
80376 processor will be in synchronization with the
82370. This timing is shown in Figure 2-4.

PHI 1/2 PHI 1/2 PHI 2 PHil . PHI 2

CLK2

. RESET \~-------------------------
T30-RESET Hold Time
T31-RESET Setup Time

CLK2

CPURST

T33-CPU Reset from CLK2

Figure 2·3. RESET Timing

I PHI 2 PHil

1 ~m.,".
\\\\\\~ .~IT33 MAX.

Figure 2·4. CPURST Timing

4-142

290164-10

PHI 2 PHI 1

290164-11

infef 82370

2.2.10 INTERRUPT OUT (I NT)

This output pin is used to signal the 80376 host
processor that one or more interrupt requests (either
internal or external) are pending. The processor is
expected to respond with an Interrupt Acknowledge
cycle. This signal should be connected directly to
the Maskable Interrupt Request (INTR) input of the
80376 host processor.

2.3 82370 Bus Timing

The 82370 internally divides the CLK2 signal by two
to generate its internal clock. Figure 2-2 showed the
relationship of CLK2 and the internal clock which
consists of two phases: PHI1 and PHI2. Each CLK2
period is a phase of the internal clock.

In the 82370, whether it is in the Master or Slave
Mode, the shortest time unit of bus activity is a bus
state. A bus state, which is also referred as a
'I-state', is defined as one 82370 PHI2 clock period
(Le. two CLK2 periods). Recall in Table 2-2 various
types of b,us cycles in the 82370 are defined by the
M/IO#, D/C# and W/R# signals. Each of these
bus cycles is composed of two or more bus states.
The length of a bus cycle depends on when the
READY # input is asserted (Le. driven LOW).

2.3.1 ADDRESS PIPELINING

The 82370 supports Address Pipelining as an option
in both the Master and Slave Mode. This feature typ­
ically allows a memory or peripheral device to oper­
ate with one less wait state than would otherwise' be
required. This is possible because during a pipelined
cycle, the address and bus cycle definition of the
next cycle will be generated by the bus master while
waiting for the end of the current cycle to be ac­
knowledged. The pipe lined bus is especially well
suited for an interleaved memory environment. For
16 MHz interleaved memory designs with 100 ns ac­
cess time DRAMs, zero wait state memory accesses
can be achieved when pipelined addressing is se­
lected.

In the Master Mode, the 82370 is capable of initiat­
ing, on a cycle-by-cycle basis, either a pipelined or
non·pipelined access depending upon the state of
the NA# input. If a pipelined cycle is requested (indi­
cated by NA# being driven LOW), the 82370 will
drive the address and bus cycle definition of the next
cycle as soon as there is an internal bus request
pending.

In the Slave Mode, the 82370 is constantly monitor­
ing the ADS# and READY# signals on the proces­
sor local bus to determine if the current bus cycle is

a pipelined cycle. If a pipelined cycle is detected, the
82370 will request one less wait state from the proc­
essor if the Wait State Generator feature is selected.
On the other hand, during an 82370 internal register
access in a pipelined cycle, it will make use of the
advance address and bus cycle information. In all
cases, Address Pipe lining will result in a savings of
one wait state.

2.3.2 MASTER MODE BUS TIMING

When the 82370 is in the Master Mode, it will be in
one of six bus states. Figure 2-5 shows the complete
bus state diagram of the Master Mode, including
pipelined address states. As seen in the figure, the
82370 state diagram is very similar to that of the
80376. The major difference is that in the 82370,
there is no Hold state. Also, in the 82370, the condi­
tions for some state transitions depend upon wheth­
er it is the end of a DMA process.

. NOTE:
The term 'end of a DMA process' is loosely defined
here. It depends on the DMA modes of operation
as well as the state of the EOP# and DREQ in­
puts. This is expained in detail in section 3-DMA
Controller.

The 82370 will enter the idle state, Ti, upon RESET
and whenever the internal address is not available at
the end of a DMA cycle or at the end of a DMA
process. When address pipelining is not used (NA#
is not asserted), a new bus cycle always begins with
state T1. During T1, address and bus cycle definition
signals will be driven on the bus. T1 is always fol­
lowed by T2.

If a bus cycle is not acknowledged (with READY #)
during T2 and NA# is negated, T2 will be repeated.
When the end of the bus cycle is acknowledged dur­
ing T2, the following state will be T1 of the next bus
cycle (if the internal address latch is loaded and if
this is not the end of the DMA process). Otherwise,
the Ti state will be entered. Therefore, if the memory
or peripheral accessed is fast enough to respond
within the first T2, the fastest non·pipelined cycle will
take one T1 and one T2 state.

Use of the address pipelining feature allows the
82370 to enter three additional bus states: T1 P, T2P
and T2L T1 P is the first bus state of a pipelined bus
cycle. T2P follows T1 P (or T2) if NA# is asserted
when sampled. The 82370 will drive the bus with the
address and bus cycle definition signals of the next
cycle during T2P. From the state diagram, it can be
seen that after an idle state Ti, the first bus cycle
must begin with T1, and is therefore a non-pipelined
bus cycle. The next bus cycle can be pipelined if

4-143

intJ 82370

NA # is asserted and the previous bus cycle ended
in a T2P state. Once the 82370 is in a pipelined
cycle and provided that NA# is asserted in subse­
quent cycles, the 82370 will be switching between
T1 P and T2P states. If the end of the current bus
cycle is not acknowledged by the READY# input,
the 82370 will extend the cycle by adding T2P
states. The fastest pipelined cycle will consist of one
T1 P and one T2P state.

The 82370 will enter state T2i when NA# is assert­
ed and when one of the following two conditions
occurs. The first condition is when the 82370 is in
state T2. T2i will be entered if READY # is not as­
serted and there is no next address available. This
situation is similar to a wait state. The 82370 will stay
in T2i for as long as this condition exists. The sec­
ond condition which will cause the 82370 to enter
T2i is when the 82370 is in state T1 P. Before going
to state T2P, the 82370 needs to wait in state T2i
until the next address is available. Also, in both cas­
es, if the DMA process is complete, the 82370 will
enter the T2i state in order to finish the current DMA
cycle.

Figure 2-6 is a timing diagram showing non-pipelined
bus accesses in the Master Mode. Figure 2-7 shows
the timing of pipelined accesses in the Master Mode.

ADAV. READY# Asserted

2.3.3 SLAVE MODE BUS TIMING

Figure 2-8 shows the Slave Mode bus timing in both
pipelined and non-pipelined cycles when the 82370
is being accessed. Recall that during Slave Mode,
the 82370 will constantly monitor the ADS # and
READY # signals to determine if the next cycle is
pipelined. In Figure 2-8, the first cycle is non-pipe­
lined and the second cycle is pipelined. In the pipe­
lined cycle, the 82370 will start decoding the ad­
dress and bus cycle signals one bus state earlier
than in a non-pipe lined cycle.

The READY # input signal is sampled by the 80376
host processor to determine the completion of a bus
cycle. This occurs during the end of every T2, T2i
and T2P state. Normally, the output of the 82370
Wait State Generator, READYO#, is directly con­
nected to the READY # input of the 80376 host
processor and the 82370. In such case, READYO#
and READY # will be identical (see Wait State Gen­
erator).

NA# Asserted. [Not ADAV + End of DMA]

Not ADAV. READY# Negated

NOTE:
ADAV-Internal Address Available

Figure 2·5. Master Mode State Diagram

4-144

290164-12

intJ 82370

CYCLE 1 CYCLE 2

n T2 n T2 T2 n T2

CLK2

PHI2

ADS# , I \ 2 I \ 3 ~
ADDRESS

AND CONTROL --< ADDR 1 X ADDR 2 X ADDR 3

DATA CD o:::J a: (READ)

DATA X X (WRITE)

NA# XXXXXXXXXXXX1 ~ '<XXXXXXXXXXXXX \
READY#)()(}(}()()(}() 1 I.XXXXXXXXXY m 2 &XXXXXl<* 3

CLK2

PHI2

I 0 WAIT STATE 1 WAIT STATE 0 WAIT STATE

Figure 2-6. Non-Pipelined Bus Cycles

CYCLE 1

np T2p np

CYCLE 2

T2p T2p

\ 3 I

~

CYCLE 3

np I T2p

@ 2 MXXXXXXX». 3

290164-13

DATA CD r-::--'\ r;-
(READ) -------C 1)--------<\...LJ ---<\.l..

DATA --~,.--~--_,....---~----""',.-_=_--(WRITE) X X 2 X~_...;3 __ _

290164-14

Figure 2-7. Plpelined Bus Cycles

4-145

82370

CLK2

PHI2

NON-PIPELINEO
CYCLE

PIPELINEO
CYCLE

A(I-23)

BLE#.BHE# ~~~K:===!====t:C==~ 104/10# ... ~--I-----+..J'---.n-----1
O/C#.W/R#

AOS#

REAOYO# __ -!-'

READY#

0(0-15)
(READ)

0(0-15)
(WRITE)

NOTE:

(TWO OR MORE WAIT STATES)

X'XX\ ~X ,XX ,xxxxXXI
"[

L

(ONE OR MORE WAIT STATES)

~ I.XX 'X 'XX YYT '-

L

X
'-

290164-15

NA # is shown here only for timing reference. It is not sampled by the 82370 during Slave Mode.
When the 82370 registers are accessed. it will take one or more wait states in pipe lined and two or more wait states in
non-pipelined cycle to complete the internal access.

Figure 2-8. Slave Read/Write Timing

3.0 DMA CONTROLLER

The 82370 DMA Controller is capable of transferring
data between any combination of memory and/or
I/O, with any combination of data path widths. The
82370 DMA Controller can be programmed to ac­
commodate 8- or 16-bit devices. With its 16-bit ex­
ternal data path, it can transfer data in units of byte
or a word. Bus bandwidth is optimized through the
use of an internal temporary register which can dis­
assemble or assemble data to or from either an
aligned or non-aligned destination or source. Figure
3-1 is a block diagram of the 82370 DMA Controller.

The 82370 has eight channels of DMA. Each chan­
nel operates independently of the others. Within the
operation of the individual channels, there are many
different modes of data transfer available. Many of
the operating modes can be intermixed to provide a
very versatile DMA controller.

3.1 Functional Description

In describing the operation of the 82370's DMA Con­
troller, close attention to terminology is required. Be-

4-146

inter 82370

HOLD +-----.,
HLDA

DREQO
DREQ1
DREQ2
DREQ3
DREQ4
DREQ5
DREQ6
DREQ7

:::::
:::::
.,...----.

::::: .,...----.

.. I

DMA
REQUEST

ARBITRATION
LOGIC

CONTROL/STATUS REGISTERS CHANNEL REGISTERS

COMMAND REGISTER I BASE CURRENT TEMPORARY
COMMAND REGISTER II BYTE COUNT BYTE COUNT REGISTER

MODE REGISTER I BASE CURRENT
REQUESTER REQUESTER

MODE REGISTER II ADDRESS ADDRESS
CHANNEL 0

SOFTWARE REQUEST BASE CURRENT
REGISTER TARGET TARGET

MASK REGISTER ADDRESS ADDRESS

STATUS REGISTER CHANNEL 1 (SAME AS CH 0)
BUS SIZE REGISTER CHANNEL 2 (SAME AS CH 0)
CHAINING REGISTER CHANNEL 3 (SAME AS CH 0)

I "LOWER" GROUP OF CHANNELS

EDACKO ~

EDACK1 ~ PROCESS
CONTROL

EDACK2 +--
EOP# ~

I "UPPER" GROUP OF CHANNELS

CHANNEL 4 (SAME AS CH 0)
CONTROL/STATUS CHANNEL 5 (SAME AS CH 0)
(SAME AS

CHANNEL 6 (SAME AS CH 0) LOWER GROUP)
CHANNEL 7 (SAME AS CH 0)

290164-16

Figure 3·1. 82370 DMA Controller Block Diagram

fore entering the discussion of the function of the
82370 DMA Controller, the following explanations of
some of the terminology used herein may be of ben­
efit. First, a few terms for clarification:

DMA PROCESS-A DMA process is the execution
of a programmed DMA task from beginning to end.
Each DMA process requires intitial programming by
the host 80376 microprocessor.

BUFFER-A contiguous block of data.

BUFFER TRANSFER-The action required by the
DMA to transfer an entire buffer.

DATA TRANSFER-The DMA action in which a
group of bytes or words are moved between devices
by the DM,A Controller. A data transfer operation
may involve movement of one or many bytes.

BUS CYCLE-Acqess by the DMA to a single byte
or word.

Each DMA channel consists of three major compo­
nents. These components are identified by the con­
tents of programmable registers which define the

memory or I/O devices being serviced by the DMA.
They are the Target, the Requester, and the Byte
Count. They will be defined generically here and in
greater detail in the DMA register definition section.

The Requester is the device which requires service
by the 82370 DMA Controller, and makes the re­
quest for service. All of the control signals which the
DMA monitors or generates for specific channels
are logically related to the Requester. Only the Re­
quester is considered capable of initiating or termi­
nating a DMA process.

The Target is the device with which the Requester
wishes to communicate. As far as the DMA process
is concerned, the Target is a slave which is incapa­
ble of control over the process.

The direction of data transfer can be either from Re­
quester to Target or from Target to Requester; i.e.
each can be either a source or a destination.

The Requester and Target may each be either I/O
or memory. Each has an address associated with it
that can be incremented, decremented, or held con­
stant. The addresses are stored in the Requester

4-147

82370

Address Registers and Target Address Registers,
respectively. These registers have two parts: one
which contains the current address being used in the
DMA process (Current Address Register), and one
which holds the programmed base address (Base
Address Register). The contents of the Base Regis­
ters are never changed by the 82370 DMA Control­
ler. The Current Registers are incremented or decre­
mented according to the progress of the DMA pro­
cess.

The Byte Count is the component of the DMA pro­
cess which dictates the amount of data which must
be transferred. Current and Base Byte Count Regis­
ters are provided. The Current Byte Count Register
is decremented once for each byte transferred by
the DMA process. When the register is decremented
past zero, the Byte Count is considered 'expired'
and the process is terminated or restarted, depend­
ing on the mode of operation of the channel. The
point at which the Byte Count expires is called 'Ter­
minal Count' and several status signals are depen­
dent on this event.

Each channel of the 82370 DMA Controller also
contains a 32-bit Temporary Register for use in as­
sembling and disassembling non-aligned data. The
operation of this register is transparent to the user,
although the contents of it may affect the timing of
some DMA handshake sequences. Since there is
data storage available for each channel, the DMA
Controller can be interrupted without loss of data.

To avoid unexpected results, care should be taken
in programming the byte count correctly when as­
sembing and disassembling non-aligned data. For
example:

Words to Bytes:
Transferring two words to bytes, but setting the byte
count to three, will result in three bytes transferred
and the final byte flushed.

Bytes to Words:
Transferring six bytes to three words, but setting the
byte count to five, will result in the sixth byte trans­
ferred being undefined.

The 82370 DMA Controller is a slave on the bus until
a request for DMA service is received via either a
software request command or a hardware request
signal. The host processor may access any of the
control/status or channel registers at any time the
82370 is a bus slave. Figure 3-2 shows the flow of
operations that the DMA Controller performs.

At the time a DMA service request is received, the
DMA Controller issues a bus hold request to the
host processor. The 82370 becomes the bus master
when the host relinquishes the bus by asserting a

hold acknowledge signal. The channel to be serv­
iced will be the one with the highest priority at the
time the DMA Controller becomes the bus master.
The DMA Controller will remain in control of the bus
until the hold acknowledge signal is removed, or un­
til the current DMA transfer is complete.

While the 82370 DMA Controller has control of the
bus, it will perform the required data transfer(s). The
type of transfer, source and destination addresses,
and amount of data to transfer are programmed in
the control registers of the DMA channel which re­
ceived the request for service.

At completion of the DMA process, the 82370 will
remove the bus hold request. At this time the 82370
becomes a slave again, and the host returns to be­
ing a master. If there are other DMA channels with
requests pending, the controller will again assert the
hold request signal and restart the bus arbitration
and switching process.

290164-17

Figure 3-2. Flow of DMA Controller Operation

3.2 Interface Signals

There are fourteen control signals dedicated to the
DMA process. They include eight DMA Channel Re­
quests (DREQn), three Encoded DMA Acknowledge
signals (EDACKn), Processor Hold and Hold Ac-

4-148

82370

WjR# 1.4/10# D/C#} ~~~;~:TROL
END OF PROCESS

REQUESTER

DREQn

TO HOST{ HOLD 82370
PROCESSOR DMA CONTROLLER 1--~rEC-"l;;:DA':":C::::K~n-----"""

HLDA L __ -r...JEoiiCK~

290164-18

Figure 3-3. Requester, Target and DMA Controller Interconnection

knowledge (HOLD, HLDA), and End·of-Process
(EOP#). The DREQn inputs and EDACK (0-2) out­
puts are handshake signals to the devices requiring
DMA service. The HOLD output and HLDA input are
handshake signals to the host processor. Figure 3-3
shows these signals and how they interconnect be­
tween the 82370 DMA Controller, and the Requester
and Target devices.

3.2.1 DREQn and EDACK (0-2)

These signals are the handshake signals between
the peripheral and the 82370. When the peripheral
requires DMA service, it asserts the DREQn signal
of the channel which is programmed to perform the
service. The 82370 arbitrates the DREQn against
other pending requests and begins the DMA pro­
cess after finishing other higher priority processes.

When the DMA service for the requested channel is
in progress, the EDACK (0-2) signals represent the
DMA channel which is accessing the Requester.
The 3-bit code on the EDACK (0-2) lines indicates
the number of the channel presently being serviced.
Table 3-2 shows the encoding of these signals. Note
that Channel 4 does not have a corresponding hard­
ware acknowledge.

The DMA acknowledge (EDACK) signals indicate
the active channel only during DMA accesses to the
Requester. During accesses to the Target, EDACK
(0-2) has the idle code (100). EDACK (0-2) can
thus be used to select a Requester device during a
transfer.

DREQn can be programmed as either an Asynchro·
nous or Synchronous input. See section 3.4.1 for de­
tails on synchronous versus asynchronous operation
of these pins.

Table 3-2. EDACK Encoding
During a DMA Transfer

EDACK2 EDACK1 EDACKO Active Channel

0 0 0 0
0 0 1 1
0 1 .0 2
0 1 1 3
1 0 0 Target Access
1 0 1 5
1 1 0 6
1 1 1 7

The EDACKn signals are always active. They either
indicate 'no acknowledge' or they indicate a bus ac­
cess to the requester. The acknowledge code is ei·
ther 100, for an idle DMA or during a DMA access to
the Target, or 'n' during a Requester access, where
n is the binary value representing the channel. A
simple 3-line to 8-line decoder can be used to pro­
vide discrete acknowledge signals for the peripher-
als. '

3.2.2 HOLD AND HLDA

The Hold Request (HOLD) and Hold Acknowledge
(HLDA) signals are the handshake signals between
the DMA Controller and the host processor.' HOLD is
an output from the 82370 and HLDA is an input.
HOLD is asserted by the DMA Controller when there
is a pending DMA request, thus requesting the proc­
essor to give up control of the bus so the DMA pro­
cess can take place. The 80376 responds by assert­
ing HLDA when it is ready to relinquish control of the
bus.

4-149

82370

The 82370 will begin operations on the bus one
clock cycle after the HLDA signal goes active. For
this reason, other devices on the bus should be in
the slave mode when HLDA is active.

HOLD and HLDA should not be used to gate or se­
lect peripherals requesting DMA service. This is be­
cause of the use of DMA-like operations by the
DRAM Refresh Controller. The Refresh Controller is
arbitrated with the DMA Controller for control of the
bus, and refresh cycles have the highest priority. A
refresh cycle will take place between DMA cycles
without relinquishing bus control. See section 3.4.3
for a more detailed discussion of the interaction be­
tween the DMA Controller and the DRAM Refresh
Controller.

3.2.3 EOP#

EOP# is a bi-directional signal used to indicate the
end of a DMA process. The 82370 activates this as
an output during the T2 states of the last Requester
bus cycle for which a channel is programmed to exe­
cute. The Requester should respond by either with­
drawing its DMA request, or interrupting the host
processor to indicate that the channel needs to be
programmed with a new buffer. As an input, this sig­
nal is used to tell the DMA Controller that the periph­
eral being serviced does not require any more data
to be transferred. This indicates. that the current
buffer is to be terminated.

EOP# can be programmed as either an Asynchro­
nous or a Synchronous input. See section 3.4.1 for
details on synchronous versus asynchronous opera­
tion of this pin.

3.3 Modes 01 Operation

The 82370 DMA Controller has many independent
operating functions. When designing peripheral in­
terfaces for the 82370 DMA Controller, all of the
functions or modes must be considered. All of the
channels are independent of each other (except in
priority of operation) and can operate in any of the
modes. Many of the operating modes, though inde­
pendently programmable, affect the operation of
other modes. Because of the large number of com­
binations possible, each programmable mode is dis­
cussed here with its affects on the operation of other
modes. The entire list of possible combinations will
not be presented.

Table 3-1 shows the categories of DMA features
available in the 82370. Each of the five major cate­
gories is independent of the others. The sub-catego­
ries are the available modes within the major func-

Table 3-1. DMA Operating Modes

I. TARGET/REQUESTER DEFINITION
a. Data Transfer Direction
b. Device Type

II. BUFFER PROCESSES
a. Single Buffer Process
b. Buffer Auto-Initialize Process
c. Buffer Chaining Process

III. DATA TRANSFER/HANDSHAKE MODES
a. Single Transfer Mode
b. Demand Transfer Mode
c. Block Transfer Mode
d. Cascade Mode

IV. PRIORITY ARBITRATION
a. Fixed
b. Rotating
c. Programmable Fixed

V. BUS OPERATION
a. Fly-By (Single-Cycle)/Two-Cycle
b. Data Path Width
c. Read, Write, or Verify Cycles

tion or mode category. The following sections ex­
plain each mode or function and its relation to other
features.

3.3.1 TARGET/REQUESTER DEFINITION

All DMA transfers involve three devices: the DMA
Controller, the Requester, and the Target. Since the
devices to be accessed by the DMA Controller vary
widely, the operating characteristics of the DMA
Controller must be tailored to the Requester and
Target devices.

The Requester can be defined as either .the source
or the destination of the data to be transferred. This
is done by specifying a Write· or a Read transfer,
respectively. In a Read transfer, the Target is the
data source and the Requester is the destination for
the data. In a Write transfer, the Requester is the
source and the Target is the destination.

The Requester and Target addresses can each be
independently programmed to be incremented, dec­
remented, or held constant. As an example, the
82370 is capable of reversing a string of data by
having the Requester· address increment and the
Target address decrement in a memory-to-memory
transfer.

4-150

infef 82370

3.3.2 BUFFER TRANSFER PROCESSES

The 82370 DMA Controller allows three programma·
ble Buffer Transfer Processes. These processes de­
fine the logical way in which a buffer of data is ac­
cessed by the DMA.

The three Buffer Transfer Processes include the Sin­
gle Buffer Process, the Buffer Auto-Initialize Pro­
cess, and the Buffer Chaining Process. These pro­
cesses require special programming considerations.
See the DMA Programming section for more details
on setting up the Buffer Transfer Processes.

Single Buffer Process

The Single Buffer Process allows the DMA channel
to transfer only one buffer of data. When the buffer
has been completely transferred (Current Byte
Count decremented past zero or EOP# input ac­
tive), the DMA process ends and the channel be­
comes idle. In order for that channel to be used
again, it must be reprogrammed.

The Single Buffer Process is usually used when the
amount of data to be transferred is known exactly,
and it is also known that there is not likely to be any
data to follow before the operating system can re­
program the channel.

Buffer Auto-Initialize Process

The Buffer Auto-Initialize Process allows multiple
groups of data to be transferred to or from a single
buffer. This process does not require reprogram­
ming. The Current Registers are automatically repro­
grammed from the Base Registers when the current
process is terminated, either by an expired Byte
Count or by an external EOP# signal. The data
transferred will always be between the same Target
and Requester.

The auto-initialization/process-execution cycle is re­
peated until the channel is either disabled or re-pro­
grammed.

Buffer Chaining Process

The Buffer Chaining Process is useful for transfer­
ring large quantities of data into non-contiguous
buffer areas. In this process, a single channel is
used to process data from several buffers, while
having to program the channel only once. Each new
buffer is programmed in a pipelined operation that
provides the new buffer information while the old
buffer is being processed. The chain is created by
loading new buffer information while the 82370 DMA
Controller is processing the Current Buffer. When
the Current Buffer expires, the 82370 DMA Control­
ler automatically restarts the channel using the new
buffer information.

Loading the new buffer information is done by an
interrupt routine which is requested by the 82370.
Interrupt Request 1 (lRQ1) is tied internally to the
82370 DMA Controller for this purpose. IRQ1 is gen­
erated by the 82370 when the new buffer informa­
tion is loaded into the channel's Current Registers,
leaving the Base Registers 'empty'. The interrupt
service routine loads new buffer information into the
Base Registers. The host processor is required to
load the information for another buffer before the
current Byte Count expires. The process repeats un­
til the host programs the channel back to single buff­
er operation, or until the channel runs out of buffers.

The channel runs out of buffers when the Current
Buffer expires and the Base Registers have not yet
been loaded with new buffer information. When this
occurs, the channel must be reprogrammed.

If an external EOP# is encountered while executing
a Buffer Chaining Process, the current buffer is con­
sidered expired and the new buffer information is
loaded into the Current Registers. If the Base Regis­
ters are 'empty', the chain is terminated.

The channel uses the Base Target Address Register
as an indicator of whether or not the Base Registers
are full. When the most significant byte of the Base
Target Register is loaded, the channel considers all
of the Base Registers loaded, and removes the in­
terrupt request. This requires that the other Base
Registers (Base Requester Address, Base Byte
Count) must be loaded before the Base Target Ad­
dress Register. The reason for implementing the re­
loading process this way is that, for most applica­
tions, the Byte Count and the Requester will not
change from one buffer to the next, and therefore do
not need to be reprogrammed. The details of pro­
gramming the channel for the Buffer Chaining Pro-·
cess can be found in the section on DMA program­
ming.

3.3.3 DATA TRANSFER MODES

Three Data Transfer modes are available in the
82370 DMA Controller. They are the Single Transfer,
Block Transfer, and Demand Transfer Modes.
These transfer modes can be used in conjunction
with anyone of three Buffer Transfer modes: Single
Buffer, Auto-Initialized Buffer and Buffer Chaining.
Any Data Transfer Mode can be used under any of
the Buffer Transfer Modes. These modes are inde­
pendently available for all DMA channels.

Different devices being serviced by the DMA Con­
troller require different handshaking sequences for
data transfers to take place. Three handshaking
modes are available on the 82370, giving the de­
signer the opportunity to use the DMA Controller as
efficiently as possible. The speed at which data can

4-151

intJ 82370

be presented or read by a device can I(lffect the way
a DMA Controller uses the host's bus, thereby af­
fecting not only data throughput during the DMA pro­
cess, but also affecting the host's performance by
limiting its access to the bus.

HOLQ-HLDA-DACK handshake cycle. Figure 3-5
shows the timing of the Single Transfer Mode cycle.

Single Transfer Mode

In the Single Transfer Mode, one data transfer to or
from the Requester is performed by the DMA Con­
troller at a time. The DREQn input is arbitrated and
the HOLD/HLDA sequence is executed for each
transfer. Transfers continue in this manner until the
Byte Count expires, or until EOP# is sampled active.
If theDREQn input is held active continuously, the
entire DREQ-HOLD-HLDA-DACK sequence is re­
peated over and over until the programmed number
of bytes has been transferred. Bus control is re­
leased to the host between each transfer. Figure 3-4
shows the logical flow of events which make up a
buffer transfer using the Single Transfer Mode. Re­
fer to section 3.4 for an explanation of the bus con­
trol arbitration procedure.

The Single Transfer Mode is used for devices which
require complete handshake cycles with each data
access. Data is transferred to or from the Requester
only when the Requester is ready to perform the
trl(lnsfer. Each transfer requires the entire DREQ-

Tx Tx n
ClK2

ClK

OREOn

HOLD _-1-__ -"

n

INITIALIZE BUFFER

END OF BUFFER

Figure 3·4. Buffer Transfer
In Single Transfer Mode

T1 T2 n

HlOA

A(1-23) ;ii~~~~ii~~~~iii~--+----t==:t==~ BlE#,BHE# ~

290164-19

WR#,t.I/IO#
EOACK(O-2) --+---+-~~I---+---.y.---+--....,jf-~":':"+-

EOP#

290164-20

NOTE:
The Single Transfer Mode is more efficient (15%-20%) in the case where the source is the Target. Because of the
internal pipeline of the 82370 DMA Controller, two idle states are added at the end of a transfer in the case where the
source is the Requester. .

Figure 3·5. DMA Single Transfer Mode

4-152

inter 82370

Block Transfer Mode

In the Block Transfer Mode, the DMA process is ini­
tiated by a DMA request and continues unti the Byte
Count expires, or until EOP# is activated by the Re­
quester. The DREQn signal need only be held active
until the first Requester access. Onlya refresh cycle
will interrupt the block transfer process.

Figure 3-6 illustrates the operation of the DMA dur­
ing the Block Transfer Mode. Figure 3-7 shows the
timing of the handshake signals during Block Mode
Transfers.

Tx Tx Tx TI TI T1

ClK2

ClK

DREan

HOLD ---4-......;~

HlDA ---t---t---tJ

T2 T1 T2

END OF BUFFER
290164-21

Figure 3-6_ Buffer Transfer
in Block Transfer Mode

TI T2 TI Tx TI

290164-22

Figure 3-7. Block Mode Transfers

4-153

82370

Deman~ Transfer Mode

The Demand Transfer Mode provides the most flex­
ible handshaking procedures during the DMA pro­
cess. A Demand Transfer is initiated by a DMA re­
quest. The process continues until the Byte Count
expires, or an external EOP# is encountered. If the
device being serviced (Requester) desires, it can in­
terrupt the DMA ,process by de-activating the
DREQr; line. Action is taken on the condition of
DREQn during Requester accesses only. The ac­
cess during which DREQn is sampled inactive is the
last Requester access which will be performed dur­
ing the current transfer. Figure 3-8 shows the flow of
events during the transfer of a buffer in the Demand
Mode.

When the DREQn line goes inactive, the DMA Con­
troller will complete the current. transfer, including
any necessary accesses to the Target, and relin­
quish control of the bus to the host. The current pro­
cess information is saved (byte count, Requester
and Target addresses, and Temporary Register).

The Requester can restart the transfer process by
reasserting DREQn. The 82370 will arbitrate the re­
quest with other pending requests and begin the
process where it left off. Figure 3-9 shows the timing
of handshake signals during Demand Transfer Mode
operation.

Tx Tx Tx TI Ti T1

ClK2

ClK

DREOn

DREOn

HOLD

HlDA

ADS#

READY#

A(1-23) . I
BlE#.BHE#

WR#.t.4/IO#

EOP#

T2 T1 T2

INITIALIZE BUFFER

END OF BUFFER
290164-23

Figure 3-8. Buffer Transfer
in Demand Transfer Mode

T1 T2 TI Tx Tx

290164-24

Figure 3-9. Demand Mode Transfers

4-154

inter 82370

Using the Demand Transfer Mode allows peripherals
to access memory in small, irregular bursts without
wasting bus control time. The 82370 is designed to
give the best possible bus control latency in the De­
mand Transfer Mode. Bus control latency is defined
here as the time form the last active bus cycle of the
previous bus master to the first active bus cycle of
the new bus master. The 82370 DMA Controller will
perform its first bus access cycle two bus states af­
ter HLDA goes active. In the typical configuration,
bus control is returned to the host one bus state
after the DREQn goes inactive.

There are two cases where there may be more than
one bus state of bus control latency at the end of a
transfer. The first is at the end of an Auto-Initialize
process, and the second is at the end of a process
where the source is the Requester and Two-Cycle
transfers are used.

When a Buffer Auto-Initialize Porcess is complete,
the 82370 requires seven bus states to reload the
Current Registers from the Base Registers of the
Auto-Initialized channel. The reloading is done while
the 82370 is still the bus master so that it is prepared·
to service the channel immediately after relinquish­
ing the bus, if necessary.

I
CHANNEL 7

CHANNEL 6
CHANNEL 5

In the case where the Requester is the source, and
Two-Cycle transfers are being used, there are two
extra idle states at the end of the transfer process.
This occurs due to the housekeeping in the DMA's
internal pipeline. These two idle states are present
only after the very last Requester access, before the
DMA Controller de-activates the HOLD signal.

3.3.4 CHANNEL PRIORITY ARBITRATION

DMA channel priority can be programmed into one
of two arbitration methods: Fixed or Rotating. The
four lower DMA channels and the four upper DMA
channels operate as if they were two separate DMA
controllers operating in cascade. The lower group of
four channels (0-3) is always prioritized between
channels 7 and 4 of the upper group of channels (4-
7). Figure 3-10 shows a pictorial representation of
the priority grouping.

The priority can thus be set up as rotating for one
group of channels and fixed for the other, or any

. other combination. While in Fixed Priority, the pro­
grammer can also specify which channel has the
lowest priority.

LOW PRIORITY

I
CHANNEL 4

CHANNEL 3

PHANTOM -- CHANNEL 2

1
CHANNEL 1
CHANNEL 0

i
HIGH PRIORITY

290164-25

Figure 3-10. DMA Priority Grouping

4-155

InIeI 82370

The 82370 DMA Controller defaults to Fixed Priority.
Channel 0 has the highest priority, then 1, 2, 3, 4, 5,
6, 7. Channel 7 has the lowest priority. Any time the
DMA Controller arbitrates DMA requests, the re­
questing channel with the highest priority will be
serviced next.

Fixed Priority can be entered into at any time by a
software command. The priority levels in effect after
the mode switch are determined by the current set­
ting of the Programmable Priority.

Programmable Priority is available for fixing the prior­
ity of the DMA channels within a group to levels oth­
er than the default. Through a software command,
the channel to have the lowest priority in a group
can be specified. Each of the two groups of four
channels can have the priority fixed in this way. The
other channels in the group will follow the natural
Fixed Priority sequence. This mode affects only the
priority levels while operating with Fixed Priority.

For example, if channel 2 is programmed to have the
lowest priority in its group, channel 3 has the highest
priority. In descending order, the other channels
would have the following priority: (3,0,1,2),4,5,6,7
(channel 2 lowest, channel 3 highest). If the upper

CHANNEL 6
CHANNEL 7
PHANTOM --

CHANNEL 4
CHANNEL 5

group were programmed to have channel 5 as the
lowest priority channel, the priority would be (again,
highest to lowest): 6,7, (3,0,1,2), 4,5. Figure 3-11
shows this example pictorially. The lower group is
always prioritized as a fifth channel of the upper
group (between channels 4 and 7).

The DMA Controller will only accept Programmable
Priority commands while the addressed group is op­
erating in Fixed Priority. Switching from Fixed to Ro­
tating Priority preserves the current priority levels.
Switching from Rotating to Fixed Priority returns the
priority levels to those which were last programmed
by use of Programmable Priority.

Rotating Priority allows the devices using DMA to
share the system bus more evenly. An individual
channel does not retain highest priority after being
serviced, priority is passed to the next highest priori­
ty channel in the group. The channel which was
most recently serviced inherits the lowest priority.
This rotation occurs each time a channel is serviced.
Figure 3"12 shows the sequence of events as priori­
ty is passed between channels. Note that the lower
group rotates within the upper group, and that serv­
icing a channel within the lower group causes rota­
tion within the group as well as rotation of the upper
group.

LOW PRIORITY

CHANNEL 3
CHANNEL 2
CHANNEL 1
CHANNEL 0

HIGH PRIORITY
290164-26

Figure 3-11 .. Example of Programmed Priority

4-156

inter 82370

101112131141516171-default (highest to low­
est)

DREQ2 and DREQ6-process channel 2

141516171131011121- chann~1 .2 dr?p~ to low-
est PriOrity within group.
Lower group drops to
lowest priority within up­
per group. (Double Rota­
tion)

DREQ6 (still) and DREQ7-process channel 6

o 131011 121 [iliE] - chann.el .6 dr?p.s to low­
est PriOrity within group

DREQ7 (still) and DREQO-process channel 7

131011121141516171- chan~el? dr?p.s to low-
est Priority within group

DREQO (still) and DREQ1-process channel 0

channel 0 drops to low­
est priority within group.
(Double Rotation)

DREQ1 (still)-process channel 1

141516171121310111-chan~el.1 d~o~s to low-
est PriOrity within group

Figure 3-12. Rotating Channel Priority.
Lower and upper groups are programmed

for the Rotating Priority Mode.

3.3.5 COMBINING PRIORITY MODES

Since the DMA Controller operates as two four­
channel controllers in cascade, the overall priority
scheme of all eight channels can take on a variety of
forms. There are four possible combinations of prior­
ity modes between the two groups of channels:
Fixed Priority only (default), Fixed PriQrity upper
group/Rotating Priority lower group, Rotating Priority
upper group/Fixed Priority lower group, and Rotating
Priority only. Figure 3-13 illustrates the operation of
the two combined priority methods.

Case 1-
0-3 Fixed Priority, 4-7 Rotating Priority

High Low

Default priority 101112131141516 71

After servicing channel 2 141516171'101112131

After servicing channel 6 0 101112131 [iliE]

After servicing channel 1 141516171101112131

Case 2-
0-3 Rotating Priority, 4-7 Fixed Priority

High Low

Default priority 101112131141516 71

After serviCing channel 2 131011121141516171

After servicing channel 6 131011121141516171

After servicing channel 1 121310111141516171

Figure 3-13. Combining Priority Modes

3.3.6 BUS OPERATION

Data may be transferred by the DMA Controller us­
ing two different bus cycle operations: Fly-By (one­
cycle) and Two-Cycle. These bus handshake meth­
ods are selectable independently for each channel
through a command register. Device data path
widths are independently programmable for both
Target and Requester. Also selectable through soft­
ware is the direction of data transfer. All of these
parameters affect the operation of the 82370 on a
bus-cycle by bus-cycle basis.

3.3.6.1 Fly-By Transfers

The Fly-By Transfer Mode is the fastest and most
efficient way· to use the 82370 DMA Controller to
transfer data. In this method of transfer, the data is
written to the destination device at the same time it
is read from the source. Only one bus cycle is used
to accomplish the transfer.

4-157

82370

In the Fly-By Mode, the DMA acknowledge signal is
used to select the Requester. The DMA Controller
simultaneously places the address of the Target on
the address bus. The state of M/IO# and W/R#
during the Fly-By transfer cycle indicate the type of
Target and whether the Target is being written to or
read from. The Target's Bus Size is used as an in­
crementer for the Byte Count. The Requester ad­
dress registers are ignored during Fly-By transfers.

Note that memory-to-memory transfers cannot be
done using the Fly-By Mode. Only one memory of
I/O address is generated by the DMA Controller at a

. time during Fly-By transfers. Only one of the devices
being accessed can be selected by an address.
Also, the Fly-By method of data transfer limits the
hardware to accesses of devices with the same data
bus width. The Temporary Registersare not affect­
ed in the Fly-By Mode.

Fly-By transfers also require that the data paths of
the Target and Requester be directly connected.
This requires that successive Fly-By access be to
word boundaries, or that the Requester be capable
of switching its connections to the data bus.

3.3.6.2. Two-Cycle Transfers

Two-Cycle transfers can also be performed by the
82370 DMAControlier. These transfers require at
least two bus cycles to execute. The data being
transferred is read into the DMA Controller's Tempo­
rary Register during the first bus cycle(s). The sec­
ond bus cycle is used to write the data from the
Temporary Register to the destination.

If the addresses of the data being transferred are
not word aligned, the 82370 will recognize the situa­
tion and read and write the data in groups of bytes,
placing them always at the proper destination. This
process of collecting the desired bytes and putting
them together is called "byte assembly". The re­
verse process (reading from aligned locations and
writing to non-aligned locations) is called "byte dis­
assembly".

The assembly/disassembly process takes place
transparent· to the software, but can only be done
while using the Two-Cycle transfer method. The
82370 will always perform the assembly/disassem­
bly process as necessary for the current data trans­
fer. Any data path widths for either the Requester or
Target can be used in the Two-Cycle Mode. This is
very convenient for interfacing existing 8- and 16-bit
peripherals to the 80376's 16-bit bus.

The 82370 DMA Controller always reads and write
data within the word boundaries; i.e. if a word to be

read is crossing a word boundary, the DMA Control­
ler will perform two read operations, each reading
one byte, to read the 16-bit word into the Temporary
Register. Also, the 82370 DMA Controller always at­
tempts to fill the Temporary Register from the
source before writing any data to the destination. If
the process is terminated before the Temporary
Register is filled (TC or EOP#), the 82370 will write
the partial data to the destination. If a process is
temporarily suspended (such as when DREQn is de­
activated during a demand transfer), the contents of
a partially filled Temporary Register will be stored
within the 82370 until the process is restarted .

For example, if the source is specified as an 8-bit
device and the destination as a 32-bit device, there
will be four reads as necessary from the 8-bit source
to fill the Temporary Register. Then the 82370 will
write the 32-bit contents to the destination in two
cycles of 16-bit each. This cycle will repeat until the
process is terminated or suspended.

With Two-Cycle transfers, the devices that the
82370 accesses can reside at any address within
I/O or memory space. The device must be able to
decode the byte-enables (BLE#, BHE#). Also, if the
device cannot accept data in byte quantities, the
programmer must take care not to allow the DMA
Controller to access the device on any address oth­
er than the device boundary.

3.3.6.3 Data Path Width and Data Transfer Rate
Considerations

The number of bus cycles used to transfer a single
"word" of data is affected by whether the Two-Cycle
or the Fly-By (Single-Cycle) transfer method is used.

The number of bus cycles used to transfer data di­
rectly affects the data transfer rate. Inefficient use of
bus cycles will decrease the effective data transfer
rate that can be obtained. Generally, the data trans­
fer rate is halved by using Two-Cycle transfers in­
stead of Fly-By transfers.

The choice of data path widths of both Target and
Requester affects the data transfer rate also. During
each bus cycle, the largest pieces of data possible
should be transferred.

The data path width of the devices to be accessed
must be programmed into the DMA controller. The
82370 defaults after reset to 8-bit-to-8-bit data trans­
fers, but the Target and Requester can have differ­
ent data path widths, independent of each other and
independent of the other channels. Since this is a
software programmable function, more discussion of
the uses of this feature are found in the section on
programming.

4-158

82370

3.3.6.4 Read, Write and Verify Cycles

Three· different bus cycles types may be used in a
data transfer. They are the Read, Write and Verify
cycles. These cycle types dictate the way in which
the 82370 operates on the data to be transferred.

A Read Cycle transfers data from the Target to the
Requester. A Write Cycle transfers data from the
Requester to the target. In a Fly-By transfer, the ad­
dress and bus status signals indicate the access
(read of write) to the Target; the access to the Re­
quester is assumed to be the opposite.

The Verify Cycle is used to perform a data read only.
No write access is indicated or assumed in a Verify
Cycle. The Verify Cycle is useful for validating block
fill operations. An external comparator must be pro­
vided to do any comparisons on the data read.

3.4 Bus Arbitration and Handshaking

Figure 3-14 shows the flow of events in the DMA
request arbitration process. The arbitration se­
quence starts when the Requester asserts a DREQn
(or DMA service is requested by software). Figure
3-15 shows the timing of the sequence of events
following a DMA request. This sequence is executed
for each channel that is activated. The DREQn sig­
nal can be replaced by a software DMA channel re­
quest with no change in the sequence.

After the Requester asserts the service request, the
82370 will request control of the bus via the HOLD
signal. The 82370 will always assert the HOLD sig­
nal one bus state after the service request is assert­
ed. The 80376 responds by asserting the HLDA sig­
nal, thus releasing control of the bus to the 82370
DMA Controller.

Priority of pending DMA service requests is arbitrat­
ed during the first state after HLDA is asserted by
the 80376. The next state will be the beginning of
the first transfer access of the highest priority pro­
cess.

When the 82370 DMA Controller is finished with its
current bus activity, it returns control of the bus to
the host processor. This is done by driving the
HOLD signal inactive. The 82370 does not drive any
address or data bus signals after HOLD goes low. It
enters the Slave Mode until another DMA process is
requested. The processor acknowledges that it has

regained control of the bus by forcing the HLDA sig­
nal inactive. Note that the 82370's DMA Controller
will not re-request control of the bus until the entire
HOLD/HLDA handshake sequence is complete.

82370 ASSERTS HOLD REQUEST

290164-27

Figure 3-14. Bus Arbitration and DMA Sequence

The 82370 DMA Controller will terminate a current
DMA process for one of three reasons: expired byte
count, end-of-process command (EOP # activated)
from a peripheral, or deactivated DfoJ!A request sig­
nal. In each case, the controller will de-assert HOLD
immediately after completing the data transfer in
progress. These three methods of process termina­
tion are illustrated in Figures 3-16, 3-19 and 3-18,
respectively.

An expired byte count indicates that the current pro­
cess is complete as programmed and the channel
has no further transfers. to process. The channel
mU'st be restarted according to the currently pro­
grammed Buffer Transfer Mode, or reprogrammed
completely, including a new Buffer Transfer Mode.

4-159

82370

Tx Tx n TI T1 T2 T1

ClK2

ClK

DREOn

HOLD

HlDA

A(l - 23)
BlE#,BHE#
WR#,M/IO#

EDACK(D-2) 100 n

ADS#

READY#

NOTE: 290164-28
Channel priority resolution takes place during the bus state before HOLDA is asserted, allowing the DMA Controller to
respond to HLDA without extra idle bus states. -

Figure 3-15. Beginning of a DMA process

If the peripheral activates the EOP# signal, it is indi­
cating that it will not accept or deliver any more data·
for the current buffer. The 82370· DMA Controller
considers this as a completion of the channel's cur­
rent process and interprets the condition the same
way as if the byte count expired.

. The action taken by the 82370 DMA Controller in
response to a de-activated DREQn signal depends
on the Data Transfer Mode of the channel. In the
Demand Mode, data transfers will take place as long
as the DREQn is active and the byte count has not
expired. In the Block Mode, the controller will com­
plete the entire block transfer without relinquishing
the bus, even if DREQn goes inactive before the

transfer is complete. Inthe Single Mode, the control­
ler will execute single data transfers, relinquishing
the bus between each transfer, as long as DREQn is
active.

Normal termination of a DMA process due to expira­
tion of the byte count (Terminal Count-TC) is
shown if Figure 3-16. The condition of DREQn is
ignored until after the process is terminated. If the
channel is programmed to auto-initialize, HOLD will
be held active for an additional seven clock cycles
while the auto-initialization takes place.

Table 3-3 shows the DMA channel activity due to
EOP# or Byte Count expiring (Terminal Count) .

. Table 3-3. DMA Channel Activity Due to Terminal Count or External EOP#

Siligle or
Auto- Chaining-Base Buffer Process Chaining-Base

Empty Initialize Loaded

EVENT

Terminal Count True X True X True X
EOP# X 0 X 0 X 0

RESULTS

Current Registers Load Load Load Load
Channel Mask Set Set
EOP# Output 0 X 0 X 1 X
Terminal Count Status Set Set Set Set
Software Request CLR CLR CLR CLR

4-160

inter 82370

T2 T1 T2 TI Tx Tx Tx

CLK2

CLK

DREQn \XXXXXXXXXXXXXXXXXXX
HOLD \~-------------------
HLDA

ADS# =-.J
EOP#

11 I \
- BYTE COUNT~EX""P""IR"'ES~(T""C)"------

\----r-;~~------------­
~r-1

READY# X>OC<XX>OOC\ txxXXXXXXXXXXXXXXXXXXXXX
290164-29

Figure 3-16. Terminatio~ of a DMA Process Due to Expiration of Current Byte Count

T2 Ti Tx Tx Ti

CLK2

ClK

DREQa

DREQb

HOLD

HlDA I I
-- CHANNEL A~ ;..I'---CHANNEL B--

290164-30

Figure 3-17. Switching between Active DMA Channels

The 82370 always relinquishes control of the bus
between channel services. This allows the hardware
designer the flexibility to externally arbitrate bus hold
requests, if desired. If another DMA request is pend­
ing when a higher priority channel service is com­
pleted, the 82370 will relinquish the bus until the
hold acknowledge is inactive. One bus state after
the HLDA signal goes inactive, the 82370 will assert
HOLD again. This is illustrated in Figure 3-17.

3.4.1 SYNCHRONOUS AND ASYNCHRONOUS
SAMPLING OF DREQn AND EOP#

As an indicator that a DMA service is to be started,
DREQn is always sampled asynchronous. It is sam-

pled at the beginning of a bus state and acted upon
at the end of the state. Figure 3-15 illustrates the
start of a DMA process due to a DREQn input.

The DREQn and EOP# inputs can be programmed
to be sampled either synchronously or asynchro­
nOLI sly to signal the end of a transfer.

The synchronous mode affords the Requester one
bus state of extra time to react to an access. This
means the Requester can terminate a process on
the current access, without losing any data. The
asynchronous mode requires that the input signal be
presented prior to the beginning of the last state of
the Requester access. .

4-161

82370

The timing relationships of the DREQn and EOP#
signals to the termination of a DMA transfer are
shown in Figures 3-18 and 3-19. Figure 3-18 shows
the termination of a DMA transfer due to inactive
DREQn. Figure 3-19 shows the termination of a
DMA process due to an active EOP # input.

In the Synchronous Mode, DREQn and EOP# are
sampled at the end of the last state of every Re­
quester data transfer cycle. If EOP # is active or
DREQn is inactive at this time, the 82370 recognizes
this access to the Requester as the last transfer. At
this point, the 82370 completes the transfer in prog­
ress, if necessary, and returns bus control to the
host.

T2 T1

In the asynchronous mode, the inputs are sampled
at the beginning of every state of a Requester ac­
cess. The 82370 waits until the end of the state to
act on the input.

DREQn and EOP# are sampled at the latest possi­
ble time when the 82370 can determine if another
transfer is required. In the Synchronous Mode,
DREQn and EOP# are sampled on the trailing edge
of the last bus state before another data access cy­
cle begins. The Asynchronous Mode requires that
the signals be valid one clock cycle earlier.

T2 TI Tx Tx Tx

DREon---+------+---'-4 ______ 4-~gggggggggg~gggggg~gggg
(ASYNCHRONOUS) \.

DREOn ~XX8Xl7J--t~~~~~ (SYNCHRONOUS) .c. W~~IAC~ __ !-.l:IAC~-¥~QOj~~IAC~~~QA

:::: _-+-__ -+-__ +-_--I_~-il4--+----IIf-----r--
290164-31

Figure 3-18. Termination of a DMA Process due to De-Asserting DREOn

T2 ' T1 T2 TI Tx Tx Tx

ClK2

ClK

ADS#

READY#

EOP~
(ASYNCHRONOUS

EOP~
(SYNCHRONOUS

HOLD 4 ! HlDA

290164-32

Figure 3-19. Termination of a DMA Process due to an External EOP#

4-162

inter 82370

While in the Pipeline Mode, if the NA # signal is sam­
pled active during a transfer, the end of the state
where NA # was sampled active is when the 82370
decides whether to commit to another transfer. The
device must de-assert DREQn or assert EOP# be­
fore NA# is asserted, otherwise the 82370 will com­
mit to another, possibly undesired, transfer.

Synchronous DREQn and EOP# sampling allows
the peripheral to prevent the next transfer from oc­
curring by de-activating DREQn or asserting EOP#
during the current Requester access, before the
82370 DMA Controller commits itself to another
transfer. The DMA Contro·ller will not perform the
next transfer if it has not already begun the bus cy­
cle. Asynchronous sampling allows less stringent
timing requirements than the Synchronous Mode,
but reqljires that the DREQn signal be valid at the
beginning of the next to last bus state of the current
Requester access.

Using the Asynchronous Mode with zero wait states
can be very difficult. Since the addresses and con­
trol signals are driven by the 82370 near half-way
through the first bus state of a transfer, and the
Asynchronous Mode requires that DREQn be inac­
tive before the end of the state, the peripheral being
accessed is required to present DREQn only a few
nanoseconds after the control information is avail­
able. This means that the peripheral's control logic
must be extremely fast (practically non-causal). An
alternative is the Synchronous Mode.

80376 82370

DREQO
HOLD ~ HOLD

HLDA r-+ HLDA
EDACKO =: EDACKI
EDACK2 -+

DREQn

A
B
C

3.4.2 ARBITRATION OF CASCADED MASTER
REQUESTS

The Cascade Mode allows another DMA-type de­
vice to share the bus by arbitrating its bus accesses
with the 82370's. Seven of the eight DMA channels
(0-3 and 5-7) can be connected to a cascaded de­
vice. The cascaded device requests bus control
through the DREQn line of the channel which is pro­
grammed to operate in Cascade Mode. Bus hold ac­
knowledge is signalled to the cascaded device
through the EDACK lines. When the EDACK lines
are active with the code for the requested cascade
channel, the bus is available to the cascaded master
device.

A cascade cycle begins the same way a regular
DMA cycle begins. The requesting bus master as­
serts the DREQn line on the 82370. This bus control
request is arbitrated as any other DMA request
would be. If any channel receives a DMA request,
the 82370 requests control of the bus. When the
host acknowledges that it has released bus control,
the 82370 acknowledges to the requesting master
that it may access the bus. The 82370 enters an idle
state until the new master relinquishes control.

A cascade cycle will be terminated by one of two
events: DREQn going inactive, or HLDA going inac­
tive. The normal way to terminate the cascade cycle

Bus Master 0
HOLD REQUEST

O~ HOLD ACKNOWLEDGE

latched
decoder

n !---to HOLD ACKNOWLEDGE

Bus Master n
HOLD REQUEST

290164-33

Figure 3-20. Cascaded Bus Master

4-163

82370

is for the cascaded master to drop the DREQn sig­
nal. Figure 3-21 shows the two cascade cycle termi­
nation sequences.

The Refresh Controller may interrupt the cascaded
master to perform a refresh cycle. If this occurs, the
82370 DMA Controller will de-assert. the EDACK sig­
nal (hold acknowledge to cascaded master) and wait
for the cascaded master to remove its hold request.
When the 82370 regains bus control, it will perform
the refresh cycle in its normal fashion. After the re­
fresh cycle has been completed, and if the cascad­
ed device has re-asserted its request, the 82370 will
return control to the cascaded master which was in­
terrupted.

The 82370 assumes that it is the only device moni­
toring the HLDA signal. If the system designer
wishes to place other devices on the bus as bus
masters, the HLDA from the processor must be in­
tercepted before presenting it to the 82370. Using
the Cascade capabililty of the 82370 DMA Controller
offers a much better solution.

3.4.3 ARBITRATION OF REFRESH REQUESTS

The arbitration of refresh requests by the DRAM Re­
fresh Controller is slightly different from normal DMA

channel request arbitration. The 82370 DRAM Re­
fresh Controller always has the highest priority of
any DMA process. It also can interrupt a process in
progress. Two types of processes in progress may
be encountered: normal DMA, and bus master cas­
cade.

In the event of a refresh request during a normal
DMA process, the DMA Controller will complete the
data transfer in progress and then execute th~ re­
fresh cycle before continuing with the current DMA
process. The priority of the interrupted process is
not lost. If the data transfer cycle interrupted by the
Refresh Controller is the last of a DMA process, the
refresh cycle will always be executed before control
of the bus is transferred back to the host.

When the Refresh Controller request occurs during
a cascade cycle, the Refresh Controller must be as·
sured that the cascaded master device has relin­
quished control of the bus before it can execute the
refresh cycle. To do this, the DMA Controller. drops
the EDACK Signal to the cascaded master and waits
for the corresponding DREQn input to go inactive.
By dropping the DREQn signal, the cascaded mas­
ter relinquishes the bus. The Refresh Controller then
performs the refresh cycle. Control of the bus is re­
turned to the cascaded master if DREQn returns to
an active state before the end of the refresh ·cycle,
otherwise control is passed to the processor and the
cascaded master loses its priority.

Cascade cycle termination by DREQn Inactive

DREOn -----"""'\\.

~---------------
EDACK ___________ -JX~ ___ 1..;D_D ______ _

HOLD-----------""""'\.

~----------------
HLDA ----------------~\.

~--------

Cascado cycle tormlnatlon by HLDA Inactive

HLDA --------.\.

~------------------
" EDACK ___________ -JX'-____ 1_00 ______ __

DREOn

HOLD

\XX\

,'----
Figure 3-21. Cascade Cycle Termination

4-164

290164-34

82370

3.5 DMA Controller Register Overview

The 82370 DMA Controller contains 44 registers
which are accessable to the host processor. Twen­
ty-four of these registers contain the device ad­
dresses and data counts for the individual DMA
channels (three per channel). The remaining regis­
ters are control and status registers for initiating and
monitoring the operation of the 82370 DMA Control­
ler. Table 3-4 lists the DMA Controller's registers
and their accessability.

Table 3-4. DMA Controller Registers

Register Name Access

Control/Status Registers-one each per group

Command Register I
Command Register II
Mode Register I
Mode Register II
Software Request Register
Mask Set-Reset Register.
Mask Read-Write Register
Status Register
Bus Size Register
Chaining Register

write only
write only
write only
write only
read/write
write only
read/write
read only
write only
read/write

. Channel Registers-one each per channel
Base Target Address
Current Target Address
Base Requester Address
Current Requester Address
Base Byte Count
Current Byte Count

write only
read only
write only
read only
write only
read only

3.5.1 CONTROL/STATUS REGISTERS

The following registers are available to the host
processor for programming the 82370 DMA Control­
ler into its various modes and for checking the oper­
ating status of the DMA processes. Each set of four
DMA channels has one of each of these registers
associated with it.

Command Register I

Enables or disables the DMA channel as a group.
Sets the Priority Mode (Fixed or Rotating) of the
group. This write-only register is cleared by a hard­
ware reset, defaulting to all channels enabled and
Fixed Priority Mode.

Command Register II

Sets the sampling mode of the DREOn and EOP#
inputs. Also sets the lowest priority channel for the
group in the Fixed Priority Mode. The functions pro­
grammed through Command Register II default after

a hardware reset to: asynchronous DREOn and
EOP#, and channels 3 and 7 lowest priority.

Mode Registers I

Mode Register I is identical in function to the Mode
register of the 8237 A. It programs the following func­
tions for an individually selected channel:

Type of Transfer-read, write, verify
Auto-Initialize-enable or disable
Target Address Count-increment or decrement
Data Transfer Mode-demand, single, block,
cascade

Mode Register I functions default to the following
after reset: verify transfer, Auto-Initialize disabled, In­
crement Target address, Demand Mode.

Mode Register II

Programs the following functions for an individually
selected channel:

Target Address Hold-enable or disable
Requester Address Count-increment or
decrement
Requester Address Hold...:..enable or disable
Target Device Type-I/O or Memory ..
Requester Device Type-I/O or Memory
Transfer Cycles-Two-Cycle or Fly-By

Mode Register II functions are defined as follows
after a hardware reset: Disable Target Address Hold,
Increment Requester Address, Target. (and Re­
quester) in memory, Fly-By Transfer Cycles. Note:
Requester Device Type ignored in Fly-By Transfers.

Software Request Register

The DMA Controller can respond to service requests
which are initiated by software. Each channel has an
internal request status bit associated with it. The
host processor can write to this register to set or
reset the request bit of a selected channel.

The status of a group's software DMA service re­
quests can be read from this register as well. Each
status bit is cleared upon Terminal Count or external
EOP#.

The software DMA requests are non-maskable and
subject to. priority arbitration with all other software
and hardware requests. The entire register is
cleared by a hardware reset.

Mask Registers

Each channel has associated with it a mask bit
which can be set/reset to disable/enable that chan­
nel. Two methods are available for setting and clear-

4-165

82370

ing the mask bits. The Mask Set/Reset Register is a
write-only register which allows the host to select an
individual channel and either set or reset the mask
bit for that channel only. The Mask Read/Write Reg­
ister is available for reading the mask bit status and
for writing mask bits in groups of four.

The mask bits ofa group may be cleared in one step
by executing the Clear Mask Command. See the
DMA Programming section for details. A hardware
reset sets all of the channel mask bits, disabling all
channels.

Status Register

The Status register is a read-only register which con­
tains the Terminal Count (TC) and Service Request
status for a group. Four bits indicate the TC status
and four bits indicate the hardware request status
for the four channels in the group. The TC bits are
set when the Byte Count expires, or when and exter­
nal EOP# is asserted. These bits are cleared by
reading from the Status Register. The Service .Re­
quest bit for a channel indicates when there IS a
hardware· DMA request (DREQn) asserted for that
channel. When the request has been removed, the
bit is cleared.

Bus Size Register

This write-only register is used to define the bus size
of the Target and Requester of a selected channel.
The bus sizes programmed will be used to dictate
the sizes of the data paths accessed when the DMA
channel is active. The values programmed into this
register affect the operation of the Temporary Regis­
ter. When 32-bit bus width is programmed, the
82370 DMA Controller will access the device twice
through its 16-bit external Data Bus to perform a
32-bit data transfer. Any byte-assembly required to
make the transfers using the specified data path
widths will be done in the Temporary Register. The
Bus Size register of the Target is used as an incre­
ment/decrement value for the Byte Counter and
Target Address when in the Fly-By Mode. Upon re­
set, all channels default to 8-bit Targets and 8-bit
Requesters.

Chaining Register

As a command or write register, the Chaining regis­
ter is used to enable or disable the Chaining Mode
for a selected channel. Chaining can either be dis­
abled or enabled for an individual channel, indepen­
dently of the Chaining Mode status of other chan­
nels. After a hardware reset, all channels default to
Chaining disabled.

When read by the host, the Chaining Register pro­
vides the status of the Chaining Interrupt of each of

the channels. These interrupt status bits are cleared
when the new buffer information has been loaded.

3.5.2 CHANNEL REGISTERS

Each channel has three individually programmable
registers necessary for the DMA process; they are
the Base Byte Count, Base Target Address, and
Base Requester Address registers. The 24-bit Base
Byte Count register contains the number of bytes to
be transferred by the channel. The 24-bit Base Tar­
get Address Register contains the beginning ad­
dress (memory or I/O) of the Target device. The
24-bit Base Requester Address register contains the
base address (memory or I/O) of the device which is
to request DMA service.

Three more registers for each DMA channel exist
within the DMA Controller which are directly related
to the registers mentioned above. These registers
contain the current status of the DMA process. They
are the Current Byte Count register, the Current Tar­
get Address, and the Current Requester Address. It
is these registers which are manipulated (increment­
ed, decremented, or held constant) by the 82370
DMA Controller during the DMA process. The Cur­
rent registers are loaded from the Base registers at
the beginning of a DMA process.

The Base registers are loaded when the host proc­
essor writes to the respective channel register ad­
dresses. Depending on the mode in which the chan­
nel is operating, the Current registers are typically
loaded in the same operation. Reading from the
channel register addresses yields the contents of
the corresponding Current register.

To maintain compatibility with software which ac­
cesses an 8237 A, a Byte Pointer Flip-Flop is used to
control access to the upper and lower bytes of some
words of the Channel Registers. These words are
accessed as byte pairs at single port addresses. The
Byte Pointer Flip-Flop acts as a one-bit pointer.
which is toggled each time a qualifying Channel
Register byte is accessed.

It always points to the next logical byte to be ac­
cessed of a pair of bytes.

The Channel registers are arranged as pairs of
words, each pair with its own port address. Address~
ing the port with the Byte Pointer Flip-Flop re~etac­
cesses the least significant byte of the pair. The
most significant byte is accessed when the Byte
Pointer is set.

For compatibility with existing 8237A designs, there
is one exception to the above statements about the
Byte Pointer Flip-Flop. The third byte (bits 16-23) of

4-166

intJ 82370

the Target Address is accessed through its own port
address. The Byte Pointer Flip-Flop is not affected
by any accesses to this byte.

The upper eight bits of the Byte Count Register are
cleared when the least significant byte of the regis­
ter is loaded. This provides compatibility with soft­
ware which accesses an 8237 A. The 8237 A has
16-bit Byte Count Registers.

3.5.3 TEMPORARY REGISTERS

Each channel has a 32-bit Temporary Register used
for temporary data storage during two-cycle DMA
transfers. It is this register in which any necessary
byte assembly and disassembly of non-aligned data
is performed. Figure 3-22 shows how a block of data
will be moved between memory locations with differ­
ent boundaries. Note that the order of the data does
not change.

Source Destination

20H

21H

22H

23H

24H

25H

26H

27H

A

B

C

D

E

F

G

50H

51H

52H

53H

54H

55H

56H

57H

58H

59H

5AH

Target = source = 00000020H
Requester = destination = 00000053H
Byte Count = 000007H

A

B

C

D

E

F

G

Figure 3-22. Transfer of data between memory
locations with different boundaries. This will be

the result, independent of data path width.

If the destination is the Requester and an early pro­
cess termination has been indicated by the EOP#
signal or DREQn inactive in the Demand Mode, the
Temporary Register is not affected. If data remains
in the Temporary Register due to differences in data
path widths of the Target and Requester, it will not
be transferred or otherwise lost, but will be stored for
later transfer.

If the destination is the Target and the EOP# signal
is sensed active during the Requester access of a
transfer, the DMA Controller will complete the trans­
fer by sending to the Target whatever information is
in the Temporary Register at the time of process

termination. This implies that the Target could be
accessed with partial data in two accesses. For this
reason it is advisable to have an I/O device desig­
nated as a Requester, unless it is capable of han­
dling partial data transfers.

3.6 DMA Controller Programming

Programming a DMA Channel to perform a needed
DMA function is in general a four step process. First
the global attributes of the DMA Controller are pro­
grammed via the two Command Registers. These
global attributes include: priority levels, channel
group enables, priority mode, and DREQn/EOP# in­
put sampling.

The second step involves setting the operating
modes of the particular channel. The Mode Regis­
ters are used to define the type of transfer and the
handshaking modes. The Bus Size Register and
Chaining Register may also need to be programmed
in this step.

The third step in setting up the channel is to load the
Base Registers in accordance with the needs of the
operating modes chosen in step two. The Current
Registers are automatically loaded from the Base
Registers, if required by the Buffer Transfer Mode in
effect. The information loaded and the order in
which it is loaded depends on the operating mode. A
channel used for cascading, for example, needs no
buffer information and this step can be skipped en­
tirely.

The last step is to enable the newly programmed
channel using one of the Mask Registers. The chan­
nel is then available to perform the desired data
transfer. The status of the channel can be observed
at any time through the Status Register, Mask Reg­
ister, Chaining Register, and Software Request reg­
ister.

Once the channel is programmed and enabled, the
DMA process may be initiated in one of two ways,
either by a hardware DMA request (DREQn) or a
software request (Software Request Register).

Once programmed to a particular Process/Mode
configuration, the channel will operate in that config­
uration until programmed otherwise. For this reason,
restarting a channel after the current buffer expires
does not require complete reprogramming of the
channel. Only those parameters which have
changed need to be reprogrammed. The Byte Count
Register is always changed and must be repro­
grammed. A Target or Requester Address Register
which is incremented or decremented should be re­
programmed also.

4-167

82370

3.6.1 BUFFER PROCESSES

The Buffer Process is determined by the Auto-Initial­
ize bit of Mode Register I and the Chaining Register.
If Auto-Initialize is enabled, Chaining should not be
used.

3.6.1.1 Single Buffer Process

The Single Buffer Process is programmed by dis­
abling Chaining via the Chaining Register and pro­
gramming Mode Register I for non·Auto-lnitialize. .

3.6.1.2 Buffer Auto-Initialize Process

Setting the Auto-Initialize bit in Mode Register I is all
that is necessary to place the channel in this mode.
Buffer Auto-Initialize must not be enabled simulta­
neous to enabling the Buffer Chaining Mode as this
will have unpredictable results.

Once the Base Registers are loaded, the channel is
ready to be enabled. The channel will reload its Cur­
rent Registers from the Base Registers each time
the Current Buffer expires, either by an expired Byte
Count or an external EOP#.

3.6.1.3 Buffer Chaining

The Buffer Chaining Process is entered into from the
Single Buffer Process. The Mode Registers should
be programmed first, with all of the Transfer Modes
defined as if the channel were to operate in the Sin­
gle Buffer Process. The channel's Base Registers
are then loaded. When the channel has been set up
in this way, and the chaining interrupt service routine
is in place, the Chaining Process can be entered by
programming the Chaining Register. Figure 3·23 il­
lustrates the Buffer Chaining Process.

An interrupt (IRQ1) will be generated immediately af­
ter the Chaining Process is entered, as the channel
then perceives the Base Registers as empty and in
need of reloading. It is important to have the inter­
rupt service routine in place at the time the Chaining
Process is entered into. The interrupt request is re­
moved when the most significant byte of the Base
Target Address is loaded.

. The interrupt will occur again when the first buffer
expires and the Current Registers are loaded from
the Base Registers. The cycle continues until the
Chaining Process is disabled, or the host fails to re­
spond to IRQ1 before the Current Buffer expires.

INSTALL IRQl INTERRUPT SERVICE ROUTINE

SET THE CHANNEL TO NON-CHAINING PROCESS

PROGRAM THE MODE REGISTERS

LOAD BASE REGISTERS FOR FIRST BUFFER

SET THE CHANNEL TO CHAINING PROCESS

(IRQl WILL BE ACTIVATED)

ENABLE INTERRUPT

(IRQl WILL NEED SERVICE­
LOAD BASE REGISTERS)

FROM THIS POINT, THE HOST CAN PERFORM
ANOTHER TASK. THE INTERRUPT SERVICE ROUTINE

LEFT BEHIND WILL MAINTAIN THE CHANNEL.
290164-35

Figure 3-23. Flow of Events in the Buffer Chaining Process

4-168

82370

Exiting the Chaining Process can be done by reset­
ting the Chaining Mode Register. If an interrupt is
pending for the channel when the Chaining Register
is reset, the interrupt request will be removed. The
Chaining Process can be temporarily disabled by
setting the channel's Mask bit in the Mask Register.

The interrupt service routine for IRQ1 has the re­
sponsibility of reloading the Base Registers as nec­
essary. It should check the status of the channel to
determine the cause of channel expiration, etc. It
should also have access to operating system infor­
mation regarding the channel, if any exists. The
IRQ1 service routine should be capable of determin­
ing whether the chain should be continued or termi­
nated and act on that information.

3.6.2 DATA TRANSFER MODES

The Data Transfer Modes are selected via Mode
Register I. The Demand, Single, and Block Modes
are selected by bits D6 and D7. The individual trans­
fer type (Fly-By vs Two-Cycle, Read-Write-Verify,
and 1/0 vs Memory) is programmed through both of
the Mode registers.

3.6.3 CASCADED BUS MASTERS

The Cascade Mode is set by writing ones to D7 and
D6 of Mode Register I. When a channel is pro­
grammed to operate in the Cascade Mode, all of the
other modes associated with Mode Registers I and II
are ignored. The priority and DREQn/EOP# defini­
tions of the Command Registers will have the same
effect on the channel's operation as any other
mode.

3.6.4 SOFTWARE COMMANDS

There are five port addresses which, when written
to, command certain operations to be performed by
the 82370 DMA Controller. The data written to these
locations is not of consequence, writing to the loca-

tion is all that is necessary to command the 82370 to
perform the indicated function. Following are de­
scriptions of the command functions.

Clear Byte Pointer Flip-Flop-Location OOOCH

Resets the Byte Pointer Flip-Flop. This command
should be performed at the beginning of any access
to the channel registers in order to be assured of
beginning at a predictable place in the register pro­
gramming sequence.

Master Clear-Location OOODH

All DMA functions are set to their default states. This
command is the equivalent of a hardware reset to
the DMA Controller. Functions other than those in
the DMA Controller section of the 82370 are not af-
fected by this command. ..

Clear Mask Register-Channels 0-3
- Location OOOEH

Channels 4-7
- Location OOCEH

This command simultaneously clears the Mask Bits
of all channels in the addressed groLip, enabling all
of the channels in the group.

Clear TC Interrupt Request-Location 001EH

This command resets the Terminal Count Interrupt
Request Flip-Flop. It is provided to allow the pro­
gram which made a software DMA request to ac­
knowledge that it has responded to the expiration of
the requested channel(s).

3.7 Register Definitions

The following diagrams outline-the bit definitions and
functions of the 82370 DMA Controller's Status and
Control Registers. The function and programming of
the registers is covered in the previous section on
DMA Controller Programming. An entry of "X" as a
bit value indicates "don't care."

4-169

inter 82370

Channel Registers (read Current, write Base)

Channel Register Name
Address Byte Bits

(hex) Pointer Accessed

Channel 0 Target Address 00 0 0-7
1 8-15

87 x 16-23
Byte Count 01 0 0-7

1 8-15
11 0 16-23

Requester Address 90 0 0-7
1 8-15

91 0 16-23

Channel 1 Target Address 02 0 0-7
1 8-15

83 x 16-23
Byte Count 03 0 0-7

1 8-15
13 0 16-23

Requester Address 92 0 0-7
1 8-15

93 0 16-23

Channel 2 Target Address 04 0 0-7
1 8-15

81 x 16-23
Byt,e Count 05 0 0-7

1 8-15
15 0 16-23

Requester Address 94 0 0-7
1 8-15

95 0 16-23

Channel 3 Target Address 06 0 0-7
1 8-15

82 x 16-23
Byte Count 07 0 0-7

1 8-15
17 0 16-23

Requester Address 96 0 0-7
1 8-15

97 0 16-23

Channel 4 Target Address CO 0 0-7
1 8-15

8F x 16-23
Byte Count C1 0 0-7

1 8-15
D1 0 16-23

Requester Address 98 0 0-7
1 8-15

99 0 16-23

4-170

82370

Channel Registers (read Current, write Base) (Continued)

Channel Register Name Address Byte
(hex) Pointer

ChannelS Target Address C2 0
1

88 x
8yte Count C3 0

1
03 0

Requester Address 9A 0
1

98 0

Channel 6 Target Address C4 0
1

89 x
8yte Count C5 0

1
05 0

Requester Address 9C 0
1

90 0

Channel 7 Target Address C6 0
1

8A x
8yte Count C7 0

1
07 0

Requester Address 9E 0
1

9F 0

Command Register I (write only)

Port Addresses- Channels 0-3-0008H

Channels 4-7-00C8H

D7 D6 D5 D4 D3 D2 Dl DO

I x x I x

I I GROUP MASK
'------ 0 = ENABLE CHANNELS

1 = DISABLE CHANNELS

PRIORITY L-_______ 0 = FIXED PRIORITY

1 = ROTATING PRIORITY

4-171

Bits
Accessed

0-7
. 8-15

16-23
0-7
8-15
16-23
0-7
8-15
16-23

0-7
8-15
16-23
0-7
8-15
16-23
0-7
8-15
16-23

0-7
8-15
16-23
0-7
8-15
16-23
0-7
8-15
16-23

290164-36

inter
Command Register II (write only)

Port Addresses- Channels 0-3-001 AH

Channels 4-7-00DAH

07 06 05 04

82370

03 02 01 DO

101010101~1~1~1~1

L DREON SAMPLING

Mode Register I (write only)

Port Addresses- Channels 0-3-000BH

Channels 4-7-00CBH

D7 D6 D5 D4 03 D2 01 DO

1811 BO I TI J AI I T11 TO J cq CO J
I I

EOP# SAMPLING
o = ASYNCHRONOUS
1 = SYNCHRONOUS

LOW PRIORITY LEVEL SET
00 = CHANNEL 0(4) LOWEST
01 = 1(5)
10 = 2(6)
11 = 3(7)

CHANNEL SELECT
00 = CHANNEL 0(4)
01 = 1(5)
10 = 2(6)
11 = 3(7)

TRANSFER TYPE
00 = VERIFY
01 = WRITE
10 = READ
11 = ILLEGAL
xx IF IN CASCADE MOOE

AUTO-INITIALIZE
o = DISABLE, 1 = ENABLE

TARGET INCREMENT/DECREMENT
o = INCREMENT TARGET
1 = DECREMENT TARGET •
X IF TARGET HOLD ENABLED

DATA TRANSFER MODE
00 = DEMAND MODE
01 = SINGLE TRANSFER MODE
10 = BLOCK MODE
11 = CASCADE MODE

·Target and Requester DECREMENT is allowed only for byte transfers.

4-172

290164-37

290164-38

intJ
Mode Register II (write only)

Port Addresses- Channels 0-3-001 BH

Channels 4-7-00DBH

82370

07 06 05 04 03 02 01 DO

I CY I RD I TO I RH I RI I TH I Cl I CO I

I I CHANNEL SELECT
SEE MODE REGISTER I

TARGET HOLD
o = INCREMENT/DECREMENT
1 = HOLD

REQUESTER INCREMENT
o = INCREMENT
1 = DECREMENT • .

X IF REQUESTER HOLD ENABLED

REQUESTER HOLD
o = INCREMENT/DECREMENT
1 = HOLD

TARGET DEVICE TYPE

REQUESTER DEVICE TYPE
0= MEMORY
1 = INPUT/OUTPUT

TRANSFER CYCLES
o = ONE-CYCLE (FLY-BY)
1 = TWO-CYCLE

'Target and Requester DECREMENT is allowed only for byte transfers.

Software Request Register (read/write)

Port Addresses- Channels 0-3-0009H

Channels 4-7-00C9H

Write Format: Software DMA Service Request

07 06 05 04 03

I x I x I x I x I x

02 01 DO

R Cl I CO I

I
I CHANNEL SELECT

SEE MODE REGISTER I

REQUEST SERVICE
o = REMOVE REQUEST

290164-39

1 = ASSERT REQUEST
290164-40

4-173

intJ 82370

Read Format: Software Requests Pending

07 06 05 04 03 02 01 DO 1 = REQUEST PENDING

1 x I x I x I x I SR3 I SR2 I SR 1 I SRO I

I L CHANNEL 0(4) REQUEST

CHANNEL 1 (5) REQUEST

CHANNEL 2(6) REQUEST

CHANNEL 3(7) REQUEST

Mask Set/Reset Register Individual Channel Mask (write only)

Port Addresses- Channels 0-3-000AH

Channels 4-7-00CAH

07 06 05 04

I x x I x I x I
03 02 01 DO

x M I C1 I CO I

I
I I CHANNEL SELECT

SEE MODE REGISTER I

MASK SET BIT
o = CLEAR MASK
1 = SET MASK

Mask Read/Write Register Group Channel Mask (read/write)

Port Addresses- Channels 0-3-000FH

Channels 4-1-eoCFH

07 06 05 04 03 02 01 DO

I x I x I x I x I M3 I M2 I M 1 I MO I

I L CHANNEL 0(4) MASK BIT

CHANNEL 1 (5) MASK BIT

CHANNEL 2(6) MASK BIT

CHANNEL 3(7) MASK BIT

MASK BIT = 0 - CHANNEL ENABLED
= 1 - CHANNEL DISABLED

4-174

290164-41

290164-42

290164-43

82370

Status Register Channel Process Status (read only)

Port Addresses- Channels 0-3-000BH

Channels 4-7-00CBH

D7 D6 D5 D4 D3 D2 D 1 DO

I R3 I R2 I R1 I RO I TC3 I TC2 I TC1 I TCO I

I

Bus Size Register Set Data Path Width (write only)

Port Addresses- Channels 0-3-001BH

Channels 4-7 -OOOBH

L CHANNEL 0(4) EXPIRED

CHANNEL 1 (5) EXPIRED

CHANNEL 2(6) EXPIRED

CHANNEL 3(7) EXPIRED
1 = EXPIRED

CHANNEL 0(4) REQUEST

CHANNEL 1 (5) REQUEST

CHANNEL 2(6) REQUEST

CHANNEL 3(7) REQUEST
1 = REQUEST PENDING

07 D6 D5 D4 D3 02 D1 DO

I RBS1 I RBSO I TBS1 I TBSO I 0 I 0 I C1 I CO I
I I CHANNEL SELECT

290164-44

SEE MODE REGISTER I

Bus Size Encoding:
00 = Reserved by Intel 10 = 16-bit Bus
01 = 32-bit Bus' 11 = 8-bit Bus

TARGET BUS SIZE

REQUESTER BUS SIZE
290164-45

'If programmed as 32-bit bus width, the corresponding device will be accessed in two 16-bit cycles provided that the data is
aligned within word boundary.

Chaining Register (read/write)

Port Addresses- Channels 0-3-0019H

Channels 4-7-0009H

WRITE FORMAT: SET CHAINING MODE

D7 D6 D5 D4 D3 D2 D1 DO

I 0 o I 0 I 0 I o I CH I C1 I CO I

I I CHANNEL SELECT

L.
_____ SEE MODE REGISTER I

• CHAINING ENABLE BIT

4-175

o = DISABLE CHAINING MODE
1 = ENABLE CHAINING MODE

290164-46

82370

READ FORMAT: CHANNEL INTERRUPT STATUS

07 06 05 04 03 02 01 DO

IxTxlx I X I CI3 I CI2 I Cll I CIO I

3.8 8237 A Compatibility

The register arrangement of the 82370 DMA Con­
troller is a superset of the 8237 A DMA Controller.
Functionally the 82370 DMA Controller is very differ­
ent from the 8237 A. Most of the functions of the
8237 A are performed also by the 82370. The follow­
ing discussion points out the differences between
the 823"(A and the 82370.

The 8237A is limited to transfers between 1/0 and
memory only (except in one special case, where two
channels can be used to perform memory-to-memo­
rytransfers). The 82370 DMA Controller can transfer
between any combination of memory and 1/0. Sev­
eral other features of the 8237A are enhanced or
expanded in the 82370 and other features are add­
ed.

The 8237 A is an 8-bit only DMA device. For pro­
gramming compatibility, all of the 8-bit registers are
preserved in the 82370. The 82370 is programmed
via 8-bit registers. The address registers in the
82370 are 24-bit registers in order to support the
80376's 24-bit bus. The Byte Count Registers are
24-bit registers, allowing. support of larger data
blocks than possible with the 8237 A.

All of the 8237 A's operating modes are supported
by the 82370 (except the cumbersome two-channel
memory-to-memory transfer). The 82370 performs
memory-to-memory transfers using only one chan­
nel. The 82370 has the added features of buffer
pipelining (Buffer Chaining Process) and program­
mable priority levels.

The 82370 also adds the feature of address regis­
ters for both destination and source. These address­
es may be incremented, decremented, or held con­
stant, as required by the application of the individual
channel. This allows any combination of destination
and source device.

I L CHANNEL 0(4) BASE EMPTY

CHANNEL 1 (5) BASE EMPTY

CHANNEL 2(6) BASE EMPTY

CHANNEL 3(7) BASE EMPTY
290164-47

Each DMA channel has associated with it a Target
and a Requester. In the 8237A, the Target is the
device which can be accessed by the address regis­
ter, the Requester is the device which is accessed
by the DMA Acknowledge signals and must be an
1/0 device.

4.0 PROGRAMMABLE INTERRUPT
CONTROLLER (PIC)

4.1 Functional Description

The 82370 Programmable Interrupt Controller (PIC)
consists of three enhanced 82C59A Interrupt Con­
trollers. These three controllers together provide 15
external and 5 internal interrupt request inputs. Each
external request input can be cascaded with an ad­
ditional 82C59A slave controller. This scheme al­
lows the 82370 to support a maximum of 120
(15 x 8) external interrupt request inputs.

Following one or more interrupt requests, the 82370
PIC issues an interrupt signal to the 80376. When
the 80376 host processor responds with an interrupt
acknowledge signal, the PIC will arbitrate between
the pending interrupt requests and place the inter­
rupt vector associated with the highest priority pend­
ing request on the data bus.

The major enhancement in the 82370 PIC over the
82C59A is that each of the interrupt request inputs
can be individually programmed with its own inter­
rupt vector, allowing more flexibility in interrupt vec­
tor mapping.

4.1.1 INTERNAL BLOCK DIAGRAM

The block diagram of the 82370 Programmable In­
terrupt Controller is shown in Figure 4-1. Internally,

4-176

82370

the PIC consists of three 82C59A banks: A, Band C.
The three banks are cascaded to one another: C is
cascaded to B, B is cascaded to A. The INT output
of Bank A is used externally to interrupt the 80376.

Bank A has nine interrupt request inputs (two are
unused), and Banks Band C have eight interrupt
request inputs. Of the fifteen external interrupt reo
quest inputs, two are shared by other functions. Spe­
cifically, the Interrupt Request 3 input (IRQ3#) can
be used as the Timer 2 output (TOUT2#). This pin
can be used in three different ways: IRQ3# input
only, TOUT2# output only, or using TOUT2# to
generate an IRQ3# interrupt request. Also, the In­
terrupt Request 9 input (IRQ9#) can be used as
OMA Request 4 input (OREQ 4). Typically, only
IRQ9# or OREQ4 can be used at a time.

IRQ16#
IRQ17#
IRQ1B#
IRQ19#
IRQ20#
IRQ21#
IRQ22#
IRQ23#

TOUTa (IRQ
DREQ4/IRQ9#

8#)

(
IRQ11#
IRQ12#
IRQ13#
IRQ14#
IRQ15#

IRQ10#) -+

TOUT3#(IRQ
CHAINING (IRQ

ICW2 (IRQ 1.

O#)-r-+
1#)-r-+

TOUT2#/IRQ3#
SW Req TC (IRQ

NOT
NOT

DEFAULT (IRQ

5#)-r-+
(IRQ2#) '-+
4#)--'
USED--+
USED--+
7#)--'

0
1

4.1.2 INTERRUPT CONTROLLER BANKS

All three banks are identical, with the exception of
the IRQ1.5 on Bank A. Therefore, only one bank will
be discussed. In the 82370 PIC, all external requests
can be cascaded into and each interrupt controller
bank behaves like a master. As compared to the
82C59A, the enhancements in the banks are:

- All interrupt vectors are individually programma­
ble. (In the 82C59A, the vectors must be pro­
grammed in eight consecutive interrupt vector lo­
cations.)

- The cascade address is provided on the Data
Bus (00-07). (In the 82C59A, three dedicated
control signals (CASO, CAS 1 , CAS2) are used for
master/slave cascading.)

~ INTERRUPT
4 BANK .lliI
5 C

6
7

0
1

~ INTERRUPT
4 BANK
5 B

6
7

0
1
1.5
2 INTERRUPT
3 BANK
4 A
5
6
7

~

~ INT
(OUTPUT)

290164-48

Figure 4-1. Interrupt Controller Block Diagram

4-177

inter 82370

The block diagram of a bank is shown in Figure 4-2.
As can be seen from this figure, the bank consists of
six major blocks: the Interrupt Request Register
(IRR), the In-Service Register (ISR), the Interrupt
Mask Register (IMR), the Priority Resolver (PR), the
Vector Registers (VR), and the Control Logic. The
functional description of each block is included be­
low.

INTERRUPT REQUEST (IRR) AND
IN-SERVICE REGISTER (ISR)

The interrupts at the Interrupt Request (IRQ) input
lines are handled by two registers in cascade, the
Interrupt Request Register (IRR) and the In-Service
Register (ISR). The IRR is used to store all interrupt
levels which are requesting service; and the ISR is
used to store all interrupt levels which are being
serviced.

PRIORITY RESOLVER (PR)

This logic block determines the priorities of the bits
set in the IRR. The highest priority is selected and
strobed into the corresponding bit of the ISR during
an Interrupt Acknowledge cycle .

OSC • A.

-- 74F109

I
PR

_;J 0

r K_
CLR

I

-~ lOOk 74F'379 J ,u.

~ 10 10

7~1: L.- 20 20

IN4148

47.0.

i-1""' ~ 3D 30 I--

r- 40
40

-I

G

.oe

INTERRUPT MASK REGISTER (IMR)

The IMR stores the bits which mask the interrupt
lines to be masked (disabled). The IMR operates on
the IRR. Masking of a higher priority input will not
affect the interrupt request lines of lower priority.

VECTOR REGISTERS (VR)

This block contains a set of Vector Registers, one
for each interrupt request line, to store the pre-pro­
grammed interrupt vector number. The correspond­
ing vector number will be driven onto the Data Bus
of the 82370 during the Interrupt Acknowledge cy­
cle.

CONTROL LOGIC

The Control Logic coordinates the overall operations
of the other internal blocks within the same bank.
This logic will drive the Interrupt Output signal (INT)
HIGH when one or more unmasked interrupt inputs
are active (LOW). The INT output Signal goes direct­
ly to the 80376 (in bank A) or to another bank to
which this bank is cascaded (see Figure 4-1). Also,

CLK2

~CLK

82370

RESET CPURST

I
--

10k 74121 -RIC
B

0,01p.F'~
C Al A2 01-

Y
RESET

80376
74F'32

<1-
290164-A7

Figure 4-2. Interrupt Bank Block Diagram

4-178

inter 82370

this logic will recognize an Interrupt Acknowledge
cycle (via M/IO#, D/C# and W/R# signals). During
this bus cycle, the Control Logic will enable the cor­
responding Vector Register to drive the interrupt
vector onto the Data Bus.

In bank A, the Control Logic is also responsible for
handling the special ICW2 interrupt request input
(IRQ1.5).

4.2 Interface Signals

4.2.1 INTERRUPT INPUTS

There are 15 external Interrupt Request inputs and 5
internal Interrupt Requests. The external request in­
puts are: IRQ3#, IRQ9#, IRQ11 # to IRQ23#. They
are shown in bold arrows in Figure 4-1. All IRQ in­
puts are active LOW and they can be programmed
(via a control bit in the Initialization Command Word
1 (ICW1» to be either edge-triggered or level-trig­
gered. In order to be recognized as a valid interrupt
request, the interrupt input must be active (LOW) un­
til the first INTA cycle (see Bus Functional Descrip­
tion). Note that all 15 external Interrupt Request in­
puts have weak internal pull-up resistors.

As mentioned earlier, an 82C59A can be cascaded
to each external interrupt input to expand the inter­
rupt capacity to a maximum of 120 levels. Also, two
of the interrupt inputs are dual functions: IRQ3# can
be used as Timer 2 output (TOUT2#) and IRQ9#
can be used as DREQ4 input. IRQ3# is a bidirec­
tional dual function pin. This interrupt request input is
wired-OR with the output of Timer 2 (TOUT2#). If
only IRQ3# function is to be used, Timer 2 should
be programmed so that OUT2 is LOW. Note that
TOUT2 # can also be used to generate an interrupt
request to IRQ3# input.

The five internal interrupt requests serve special
system functions. They are shown in Table 4-1. The
following paragraphs describe these interrupts.

Table 4-1 82370 Internal Interrupt Requests

Interrupt Request Interrupt Source

IRQO# Timer 3 Output (TOUT3)
IRQ8# Timer 0 Output (TOUTO)
IRQ1# DMA Chaining Request
IRQ4# DMA Terminal Count
IRQ1.5# ICW2 Written

TIMER 0 AND TIMER 3 INTERRUPT REQUESTS

IRQ8# and IRQO# interrupt requests are initiated
by the output of Timers 0 and 3, respectively. Each
of these requests is generated by an edge-detector
flip-flop.

The flip-flops are activated by the following condi­
tions:

Set - Rising edge of timer output (TOUT);

Clear - Interrupt acknowledge for this request; OR
Request is masked (disabled); OR Hard­
ware Reset.

CHAINING AND TERMINAL COUNT INTERRUPTS

These interrupt requests are generated by the
82370 DMA Controller. The chaining request
(IRQ1 #) indicates that the DMA Base Register. is
not loaded. The Terminal Count request (IRQ4#) In­
dicates that a software DMA request was cleared.

ICW2 INTERRUPT REQUEST

Whenever an Initialization Control Word 2 (ICW2) is
written to a Bank, a special ICW2 interrupt request is
generated. The interrupt will be cleared when the
newly programmed ICW2 Register is read. This in­
terrupt request is in Bank A at level 1.5. This inter­
rupt request is internally ORed with the Cascaded
Request from'Bank B and is always assigned a high­
er priority than the Cascaded Request.

This special interrupt is provided to support compati­
bility with the original 82C59A. A detailed description
of this interrupt is discussed in the Programming
section.

DEFAULT INTERRUPT (IRQU)

During an Interrupt Acknowledge cycle, if there is no
active pending request, the PIC will automatically
generate a default vector. This vector corresponds
to the IRQ7# vector in bank A.

4.2.2 INTERRUPT OUTPUT (INT)

The INT output pin is taken directly from bank A.
This signal should be tied to the Maskable Interrupt
Request (INTR) of the 80376. When this Signal is
active (HIGH), it indicates that one or more internal I
external interrupt requests are pending. The 80376
is expected to respond with an interrupt acknowl­
edge cycle.

4.3 Bus Functional Description

The INT output of bank A will be activated as a result
of any unmasked interrupt request. This may be a
non-cascaded or cascaded request. After the PIC
has driven the INT signal HIGH, the 80376 will re­
spond by performing two interrupt acknowledge c~­
cles. The timing diagram in Figure 4-3 shows a tyPI­
cal interrupt acknowledge process between the
82370 and the 80376 CPU.

4-179

82370

PREVIOUS
CYCLE

INTERRUPT ACKNOWLEDGE
CYCLE 1 (5 WAIT STATES)

IDLE
(4 BUS STATES)

INTERRUPT ACKNOWLEDGE
CYCLE 2 (5 WAIT STATES)

T2 T1 T2 T2 T2 T2 T2 T2 TI TI TI TI T1 T2 T2 T2 T2 T2 T2
ClK

READY#

SEE NOTE

00-07 ~--t--1---t--t--1---t~~~~~--1---~-t--1---~-t--~--~~::~~-
SEE NOTE
I I
290164-49

NOTE:
What is actually driven on the Data Bus depends on if the current interrupt request is a Slave Request.

INTA Cycle 1 INTA Cycle 2
NON-SLAVE REQUEST
SLAVE REQUEST

·Slave will place a vector at this time.

OOH Vector
Slave Address High Impedence-

Figure 4·3. Interrupt Acknowledge Cycle

After activating the INT signal, the 82370 monitors
the status lines (M/IO#, D/C#, W/R#) and waits
for the 80376 to initiate the first interrupt acknowl­
edge cycle. In the 80376 environment, two succes­
sive interrupt acknowledge cycles (INTA) marked by
M/IO# = LOW, D/C#=LOW, and W/R#=LOW
are performed. During the first INTA cycle,the PIC
will determine the highest priority request. Assuming
this interrupt input has no external Slave Controller
cascaded to it, the 82370 will drive the Data Bus
with OOH in the first INTA cycle. During the second
INTA cycle, the 82370 PIC will drive the Data Bus
with the corresponding pre-programmed interrupt
vector.

If the PIC determines (from the ICW3) that this inter­
rupt input has an external Slave Controller cascaded
to it, it will drive the Data Bus with the specific Slave
Cascade Address (instead of OOH) during the first
INTA cycle. This Slave Cascade Address is the pre­
programmed content in the corresponding Vector
Register. This means that no Slave Address should
be chosen to be OOH. Note that the Slave Address
and Interrupt Vector are different interpretations of .
the same thing. They are both the contents of the
programmable Vector Register. During the second
INTA cycle, the Data Bus will be floated so that the
external Slave Controller can drive its interrupt vec­
tor on the bus. Since the Slave Interrupt Controller
resides on the system bus, bus transceiver enable
and direction control logic must take this into consid­
eration.

In order to have a successful interrupt service, the
interrupt request input must be held valid (LOW) until
the beginning of the first interrupt acknowledge cy­
cle. If there is no pending interrupt request when the
first INTA cycle is generated, the PIC will generate a
default vector, which is the IRQ7 vector (Bank A,
level 7).

According to the Bus Cycle definition of the 80376,
there will be four Bus Idle States between the two
interrupt acknowledge cycles. These idle bus cycles
will be initiated by the 80376. Also, during each inter­
rupt acknowledge cycle, the internal Wait State Gen­
erator of the 82370 will automatically generate the
required number of wait states for internal delays.

4.4 Modes of Operation

A variety of modes and commands are available for
controlling the 82370 PIC. All of them are program­
mable; that is, they may be changed dynamically un­
der software control. In fact, each bank can be pro­
grammed individually to operate in different modes.
With these modes and commands, many possible
configurations are conceivable, giving the user
enough versatility for almost any interrupt controlled
application.

This section is not intended to show how the 82370
PIC can be. programmed. Rather, it describes the
operation in different modes.

4-180

inter 82370

4.4.1 END-Of-INTERRUPT

Upon completion of an interrupt service routine, the
interrupted bank needs to be notified so its ISR can
be updated. This allows the PIC to keep track of
which interrupt levels are in the process of being
serviced and their relative priorities. Three different
End-Of-Interrupt (EOI) formats are available. They
are: Non-Specific EOI Command, Specific EOI Com­
mand, and Automatic EOI Mode. Selection of which
EOI to use is dependent upon the interrupt opera­
tions the user wishes to perform.

If the 82370 is NOT programmed in the Automatic
EOI Mode, an EOI command must be issued by the
80376 to the specific 82370 PIC Controller Bank.
Also, if this controller bank is cascaded to another
internal bank, an EOI command must also be sent to
the bank to which this bank is cascaded. For exam­
ple, if an interrupt request of Bank C in the 82370
PIC is serviced, an EOI should be written into Bank
C, Bank B and Bank A. If the request comes from an
external interrupt controller cascaded to Bank C,
then an EOI should be written into the external con­
troller as well.

NON-SPECifiC EOI COMMAND

A Non-Specific EOI command sent from the 80376
lets the 82370 PIC bank know when a service rou­
tine has been completed, without speCification of its
exact interrupt level. The respective interrupt bank
automatically determines the interrupt level and re­
sets the correct bit in the ISR.

To take advantage of the Non-Specific EOI, the in­
terrupt bank must be in a mode of operation in which
it can predetermine its in-service routine levels. For
this reason, the Non-Specific EOI command should
only be used when the most recent level acknowl­
edged and serviced is always the highest priority lev­
el (Le. in the Fully Nested Mode structure to be de­
scribed below). When the interrupt bank receives a
Non-Specific EOI command, it simply resets the
highest priority ISR bit to indicate that the highest
priority routine in service is finished.

Special consideration should be taken when decid­
ing to use the Non-Specific EOI command. Here are
two operating conditions in which it is best NOT
used since the Fully Nested Mode structure will be
destroyed:

- Using the Set Priority command within an inter­
rupt service routine.

- Using a Special Mask Mode.

These conditions are covered in more detail in their
own sections, but are listed here for reference.

SPECifiC EOI COMMAND

Unlike a Non-Specific EOI command which automat­
ically resets the highest priority ISR bit, a Specific
EOI command specifies an exact ISR bit to be reset.
Anyone of the IRQ levels of an interrupt bank can
be specified in the command.

The Specific EOI command is needed to reset the
ISR bit of a completed service routine whenever the
interrupt bank is not able to automatically determine
it. The Specific EOI command can be used in all
conditions of operation, including those that prohibit
Non-Specific EOI command usage mentioned
above.

AUTOMATIC EOI MODE

When programmed in the Automatic EOI Mode, the
80376 no longer needs to issue a command to notify
the interrupt bank it has completed an interrupt rou­
tine. The interrupt bank accomplishes this by per­
forming a Non-Specific EOI automatically at the end
of the second INTA cycle.

Special consideration should be taken when decid­
ing to use the Automatic EOI Mode because it may
disturb the Fully Nested Mode structure. In the Auto­
matic EOI Mode, the ISR bit of a routine in service is
reset right after it is acknowledged, thus leaving no
designation in the ISR that a service routine is being
executed. If any interrupt request within the same
bank occurs during this time and interrupts are en­
abled, it will get serviced regardless of its priority.
Therefore, when using this mode, the 80376 should
keep its interrupt request input disabled during exe­
cution of a service routine. By doing this, higher pri­
ority interrupt levels will be serviced only after the
completion of a routine in service. This guideline re­
stores the Fully Nested Mode structure. However, in
this scheme, a routine in service cannot be interrupt­
ed since the host's interrupt request input is dis­
abled.

4.4.2 INTERRUPT PRIORITIES

The 82370 PIC provides various methods for arrang­
ing the interrupt priorities of the interrupt request in­
puts to suit different applications. The following sub­
sections explain these methods in detail.

4.4.2.1 fully Nested Mode

The Fully Nested Mode of operation is a general pur­
pose priority mode. This mode supports a mUlti-level
interrupt structure in which all of the Interrupt Re­
quest (IRQ) inputs within one bank are arranged
from highest to lowest.

4-181

82370

Unless otherwise programmed, the Fully Nested
Mode is entered by default upon initialization. At this
time, IRQO# is assigned the highest priority
(priority = 0) and IRQ7# the lowest (priority = 7).
This default priority can be changed, as will be ex­
plained later in the Rotating Priority Mode.

When an interrupt is acknowledged, the highest pri­
ority request is determined from the Interrupt Re­
quest Register (IRR) and its vector is placed on the
bus. In addition, the corresponding bit in the In-Serv­
ice Register (ISR) is set to designate the routine in
service. This ISR bit will remain set until the 80376
issues an End Of Interrupt (EOI) command immedi­
ately before returning from the service routine; or
alternately, if the Automatic End Of Interrupt (AEOI)
bit is set, the ISR bit will be reset at the end of the
second INT A cycle.

While the ISR bit is set, all further interrupts of the
same or lower priority are inhibited. Higher level in­
terrupts can still generate an interrupt, which will be
acknowledged only if the 80376 internal interrupt en­
able flip-flop has been reenabled (through software
inside the current service routine).

4.4.2.2 Automatic Rotation-Equal Priority
Devices

Automatic rotation of priorities serves in applications
where the interrupting devices are of equal priority

within an interrupt bank. In this kind of environment,
once a device is serviced, all other equal priority pe­
ripherals should be given a chance to be serviced
before the original device is serviced again. This is
accomplished by automatically assigning a device
the lowest priority after being serviced. Thus, in the
worst case, the device would have to wait until all
other peripherals connected to the same bank are
serviced before, it is serviced again.

There are two methods of accomplishing automatic
rotation. One is used in conjunction with the Non­
Specific EOI command and the other is used with
the Automatic EOI' mode. These two methods are
discussed below.

ROTATE ON NON-SPECIFIC EOI COMMAND

When the Rotate On Non-Specific EOI command is
issued, the highest ISR bit is reset as in a normal
Non-Specific EOI command. However, after it is re­
set, the corresponding Interrupt Request (IRQ) level
is assigned the lowest priority. Other IRQ priorities
rotate to conform to the Fully Nested Mode based
on the newly assigned low priority.

Figure 4-4 shows how the Rotate On Non-Specific
EOI command affects the interrupt priorities. As­
sume the IRQ priorities were assigned with IRQO the
highest and IRQ7 the lowest. IRQ6 and IRQ4 are

IS7 IS6 ISS IS4 IS3 IS2 IS 1 ISO

ISR STATUS

PRIORITY

LOWEST PRIORITY

(BEFORE
COMMAND)

HIGHEST PRIORITY

IS7 IS6 ISS IS4 IS3 IS2 IS 1 ISO

ISR STATUS

PRIORITY

HIGHEST PRIORITY

(AFTER
COMMAND)

LOWEST PRIORITY

Figure 4-4. Rotate On Non-Specific EOI Command

4-182

290164-50

290164-51

inter 82370

already in service but neither is completed. Being
the higher priority routine, IRQ4 is necessarily the
routine being executed. During the IRQ4 routine, a
rotate on Non-Specific EOI command is executed.
When this happens, Bit 4 in the ISR is reset. IRQ4
then becomes the lowest priority and IRQS becomes
the highest.

ROTATE ON AUTOMATIC EOI MODE

The Rotate On Automatic EOI Mode works much
like the Rotate On Non-Specific EOI Command. The
main difference is that priority rotation is done auto­
matically after the second INTA cycle of an interrupt
request. To enteror exit this mode, a Rotate-On-Au­
tomatic-EOI Set Command and Rotate-On-Automat­
ic-EOI Clear Command is provided. After this mode
is entered, no other commands are needed as in the
normal Automatic EOI Mode. However, it must be
noted again that when using any form of the Auto­
matic EOI Mode, special consideration should be
taken. The guideline presented in the Automatic EOI
Mode also applies here.

4.4.2.3 Specific Rotation-Specific Priority

Specific rotation gives the user versatile capabilities
in interrupt controlled operations. It serves in those
applications in which a specific device's interrupt pri­
ority must be altered. As opposed to Automatic Ro­
tation which will automatically set priorities after.
each interrupt request is serviced, specific rotation is
completely user controlled. That is, the user selects
which interrupt level is to receive the lowest or the
highest priority. This can be done during the main
program or within interrupt routines. Two specific ro-

tation commands are available to the user: Set Prior­
ity Command and Rotate On Specific EOI Com­
mand.

SET PRIORITY COMMAND

The Set Priority Command allows the programmer to '
assign an IRQ level the lowest priority. All other in-,
terrupt levels will conform to the Fully Nested Mode
based on the newly assigned low priority.

ROTATE ON SPECIFIC EOI COMMAND

The Rotate On Specific EOI Command is literally a
combination of the Set Priority Command and the
Specific EOI Command. Like the Set Priority Com­
mand, a specified IRQ level is assigned lowest priori­
ty. Like the Specific EOI Command, a specified level
will be reset in the ISA. Thus, this command accom­
plishes both tasks in one single command.

4.4.2.4 Interrupt Priority Mode Summary

In order to simplify understanding the many modes
of interrupt priority, Table 4-2 is provided to bring out
their summary of operations.

4.4.3 INTERRUPT MASKING

VIA INTERRUPT MASK REGISTER

Each bank in the 82370 PIC has an, Interrupt Mask
Register (IMR) which enhances interrupt control ca-

Table 4-2. Interrupt Priority Mode Summary

Interrupt
Operation Effect On Priority After EOI

Priority
Summary

Mode Non-Specific! Automatic Specific

Fully-Nested Mode IRQO# - Highest Priority No change in priority. Not Applicable.
IRQ7# - Lowest Priority Highest ISR bit is reset.

Automatic Rotation Interrupt level just Highest ISR bit is reset Not Applicable.
(Equal Priority Devices) serviced is the lowest and the corresponding

priority. level becomes the lowest

Other priorities rotate to priority.

conform to Fully-Nested
Mode.

Specific Rotation User specifies the Not Applicable. As described under
(Specific Priority Devices) lowest priority level. "Operation Summary".

Other priorities rotate to
conform to Fully-Nested
Mode.

4-183

inter 82370

pabilities. This IMR allows individual IRQ masking.
When an IRQ is masked, its interrupt request is dis­
abled until it is unmasked. Each bit in the 8-bit IMR
disables one interrupt channel if it is set (HIGH). Bit
o masks IRQO, Bit 1 masks IRQ1 and so forth.
Masking an IRQ channel will only disable the corre­
sponding channel and does not affect the others'
operations.

The IMR acts only on the output of the IRR. That is,
if an interrupt occurs while its IMR bit is set, this
request is not "forgotten". Even with an IRQ input
masked, it is still possible to set the IRR. Therefore,
when the IMR bit is reset, an interrupt request to the
80376 will then be generated, providing that the IRQ
request remains active. If the IRQ request is re­
moved before the IMR is reset, the Default Interrupt
Vector (Bank A, level 7) will be generated during the
interrupt acknowledge cycle.

SPECIAL MASK MODE

In the Fully Nested Mode, all IRQ levels of lower
priority than the routine in service are inhibited. How­
ever, in some applications, it may be desirable to let
a lower priority interrupt request to interrupt the rou­
tinein service. One method to achieve this is by
using the Special Mask Mode. Working in conjunc­
tion with the IMR, the Special Mask Mode enables
interrupts from all levels except the level in service.
This is usually done inside an interrupt service rou­
tine by masking the level that is in service and then
issuing the Special Mask Mode Command. Once the
Special Mask Mode is enabled, it remains in effect
until it is disabled.

4.4.4 EDGE OR LEVEL INTERRUPT
TRIGGERING

Each bank in the 82370 PIC can be programmed
independently for either edge or level sensing for the

..

82370
D(0:..zL.

interrupt request signals. Recall that all IRQ inputs
are active LOW. Therefore, in the edge triggered
mode, an active edge is defined as an input tran­
sition from an inactive (HIGH) to active (LOW) state.
The interrupt input may remain active without gener­
ating another interrupt. During level triggered mode,
an interrupt request will be recognized by an active
(LOW) input, and there is no need for edge detec­
tion. However, the interrupt request must be re­
moved before the EOI Command is issued, or the
80376 must be disabled to prevent a second false
interrupt from occurring.

In either modes, the interrupt request input must be
active (LOW) during the first INTA cycle in order to
be recognized. Otherwise, the Default Interrupt Vec­
tor will be generated at level 7 of Bank A.

4.4.5 . INTERRUPT CASCADING

As mentioned previously, the 82370 allows for exter­
nal Slave interrupt controllers to be cascaded to any
of its external interrupt request pins. The 82370 PIC
indicates that an external Slave Controller is to be
serviced by putting the contents of the Vector Regis­
ter associated with the particular request on the
80376 Data Bus during the first INTA cycle (instead
of OOH during a non-slave service). The external log­
ic should latch the vector on the Data Bus using the
INTA status signals and use it to select the external
Slave Controller to be serviced (see Figure 4-5). The
selected Slave will then respond to the second INTA
cycle and place its vector on the Data Bus. This
method requires that if external Slave Controllers
are used in the system, no vector should be pro­
grammed to OOH.

Since the external Slave Cascade Address is provid­
ed on the Data Bus during INTA cycle 1, an external
latch is required to capture this address for the Slave
Controller. A simple scheme is depicted in Figure
4-5 below .

POSITIVE
EDGE

MASTER/SLAVE
FLIP-FLOP CAS(0-7)

IN OUT 1-+ TO SLAVE
8259's

ClK

I .-.J DATA BUS . INTA# """'---((FROM BUS CONTROllER)

lATCH HERE
290164-52

Figure 4-5. Slave Cascade Address Capturing

4-184

inter 82370

4.4.5.1 Special Fully Nested Mode

This mode will be used where cascading is em­
ployed and the priority is to be conserved within
each Slave Controller. The Special Fully Nested
Mode is similar to the "regular" Fully Nested Mode
with the following exceptions:

- When an interrupt request from a Slave Control­
ler is in service, this Slave Controller is not
locked out from the Master's priority logic. Fur­
ther interrupt requests from the higher priority
logic within the Slave Controller will be recog­
nized by the 82370 PIC and will initipte interrupts
to the 80376. In comparing to the "regular" Fully
Nested Mode, the Slave Controller is masked out
when its request is in service and no higher re­
quests from the same Slave Controller can be
serviced ..

- Before exiting the interrupt service routine, the
software has to check whether the interrupt serv­
iced was the only request from the Slave Con­
troller. This is done by sending a Non-Specific
EOI Command to the Slave Controller and then
reading its In Service Register. If there are no
requests in the Slave Controller, a Non-Specific
EOI can be sent to the corresponding 82370 PIC
bank also. Otherwise, no EOI should be sent.

4.4.6 READING INTERRUPT STATUS

The 82370 PIC provides several ways to read differ­
ent status of each interrupt bank for more flexible
interrupt control operations. These include polling
the highest priority pending interrupt request and
reading the contents of different interrupt status reg­
isters.

4.4.6.1 Poll Command

The 82370 PIC supports status polling operations
with the Poll Command. In a Poll Command, the
pending interrupt request with the highest priority
can be determined. To use this command, the INT
output is not used, or the 80376 interrupt is disabled.
Service to devices is achieved by software using the
Poll Command.

This mode is useful if there is a routine command
common to several levels so that the INTA se­
quence is not needed. Another application is to use
the Poll Command to expand the number of priority
levels.

Notice that the ICW2 mechanism is not supported
for the Poll Command. However, if the Poll Com­
mand is used, the programmable Vector Registers
are of no concern since no INTA cycle will be gener­
ated.

4.4.6.2 Reading Interrupt Registers

The contents of each interrupt register (IRR, ISR,
and IMR) can be read to update the user's program
on the present status of the 82370 PIC. This can be
a versatile tool in the decision making process of a
service routine, giving the user more control over
interrupt operations.

The reading of the IRR and ISR contents can be
performed via the Operation Control Word 3 by us­
ing a Read Status Register Command and the con­
tent of IMR can be read via a simple read operation
of the register itself.

4.5 Register Set Overview

Each bank of the 82370 PIC consists of a set of 8-bit
registers to control its operations. The address map
of all the registers is shown in Table 4-3 below.
Since all three register sets are identical in functions,
only one set will be described.

Functionally, each register set can be divided into
five groups. They are: the four Initialization Com­
mand Words (ICW's), the three Operation Control
Words (OCW's), the Poll/Interrupt Request/In-Serv­
ice Register, the Interrupt Mask Register, and the
Vector Registers. A description of each group fol­
lows.

4-185

inter 82370

Table 4-3. Interrupt Controller Register Address Map

Port
Access Register Description

Address

20H Write Bank B ICW1, OCW2, or DCWS
Read Bank B Poll, Request or In-Service

Status Register
21H Write Bank B ICW2, ICWS, ICW4, OCW1

Read Bank B Mask Register
22H Read Bank B ICW2
28H Read/Write , IR08 Vector Register
29H Read/Write IR09 Vector Register
2AH Read/Write Reserved
2BH Read/Write IR011 Vector Register
2CH Read/Write IR012 Vector Register
2DH Read/Write IR01S Vector Register
2EH Read/Write IR014 Vector Register
2FH Read/Write IR015 Vector Register

AOH Write Bank C ICW1, OCW2, or OCWS
Read Bank C Poll, Request or In-Service

Status Register
A1H Write Bank C ICW2, ICWS, ICW4, OCW1

Read Bank C Mask Register
A2H Read BankCICW2
A8H Read/Write IR016 Vector Register
A9H Read/Write IR017 Vector Register
AAH Read/Write IR018 Vector Register
ABH Read/Write IR019 Vector Register
ACH Read/Write IR020 Vector Register
ADH Read/Write IR021 Vector Register
AEH Read/Write IR022 Vector Register
AFH Read/Write IR02S Vector Register

SOH Write Bank A ICW1 , OCW2, or OCWS
Read Bank A Poll, Request or In-Service

Status Register
S1H Write Bank A ICW2, ICWS, ICW4, OCW1

Read Bank A Mask Register
S2H Read BanklCW2
S8H Read/Write IROO Vector Register
S9H Read/Write IR01 Vector Register
SAH Read/Write IR01.5 Vector Register
SBH Read/Write IROS Vector Register
SCH Read/Write IR04 Vector Register
SDH Read/Write Reserved
SEH Read/Write Reserved
SFH Read/Write IR07 Vector Register

4-186

82370

4.5.1 INITIALIZATION COMMAND WORDS (ICW)

Before normal operation can begin, the 82370 PIC
must be brought to a known state. There are four
8-bit Initialization Command Words in each interrupt
bank to setup the necessary conditions and modes
for proper operation. Except for the second com­
mand word (ICW2) which is a read/write register, the
other three are write-only registers. Without going
into detail of the bit definitions of the command
words, the following subsections give a brief de­
scription of what functions each command word
controls.

ICW1

The ICW1 has three major functions. They are:

- To select between the two IRQ input triggering
modes (edge- or level-triggered);

- To designate whether or not the interrupt bank is
to be used alone or in the cascade mode. If the.
cascade mode is desired, the interrupt bank will
accept ICW3 for further cascade mode program­
ming. Otherwise, no ICW3 will be accepted;

- To determine whether or not ICW4 will be issued;
that is, if any of the ICW4 operations are to be
used.

ICW2

ICW2 is provided for compatibility with the 82C59A
only. Its contents do not affect the operation of the
interrupt bank in any way. Whenever the ICW2 of
any of the three banks is written into, an interrupt is
generated from bank A at level 1.5. The interrupt
request will be cleared after the ICW2 register has
been read by the 80376. The user is expected to
program the corresponding vector register or to use
it as an indicator that an attempt was made to alter
the contents. Note that each ICW2 register has dif­
ferent addresses for read and write operations.

ICW3

The interrupt bank will only accept an ICW3 if pro­
grammed in the external cascade mode (as indicat­
ed in ICW1). ICW3 is used for specific programming
within the cascade mode. The bits in ICW3 indicate
which interrupt request inputs have a Slave cascad­
ed to them. This will subsequently affect the inter­
rupt vector generation during the interrupt acknowl­
edge cycles as described previously.

ICW4

The ICW4 is accepted only if it was selected in
ICW1. This command word register serves two func­
tions:

- To select either the Automatic EOI mode or soft­
ware EOI mode;

- To select if the Special Nested mode is to be
used in conjunction with the cascade mode.

4.5.2 OPERATION CONTROL WORDS (OCW)

Once initialized by the ICW's, the interrupt banks will
be operating in the Fully Nested Mode by default
and they are ready to accept interrupt requests.
However, the operations of each interrupt bank can
be further controlled or modified by the use of
OCW's. Three OCW's are available for programming
various modes and commands. Note that all OCW's
are 8-bit write-only registers.

The modes and operations controlled by the OCW's
are:

- Fully Nested Mode;

- Rotating Priority Mode;

- Special Mask Mode;

- Poll Mode;

- EOI Commands;

- Read Status Commands.

OCW1

OCW1 is used solely for masking operations. It pro­
vides a direct link to the Internal Mask Register
(IMR). The 80376 can write to this OCW register to
enable or disable the interrupt inputs. Reading the
pre-programmed mask can be done via the Interrupt
Mask Register which will be discussed shortly.

OCW2

OCW2 is used to select End-Of-Interrupt, Automatic
Priority Rotation, and Specific Priority Rotation oper­
ations. Associated commands and modes of these
operations are selected using the different combina­
tions of bits in OCW2.

Specifically, the OCW2 is used to:

- Designate an interrupt level (0-7) to be used to
reset a specific ISR bit or to set a specific priori­
ty. This function can be enabled or disabled;

- Select which software EOI command (if any) is to
be executed (Le. Non-Specific or Specific EOI);

- Enable one of the priority rotation operations (Le.
Rotate On Non-Specific EOI, Rotate On Auto­
matic EOI, or Rotate On Specific EOI).

4-187

Intel 82370

OCW3

There are three main categories of operation that
OCW3 controls. They are summarized as follows:

- To select and execute the Read Status Register
Commands, either reading the Interrupt Request
Register (IRR) or the In-Service Register (ISR);

- To issue the Poll Command. The Poll Command
will override a Read Register Command if both
functions are enabled simultaneously;

- To set or reset the Special Mask Mode.

4.5.3 POLLIINTERRUPT REQUEST liN-SERVICE
STATUS REGISTER

As the name implies, this 8-bit read-only register has
multiple functions. Depending on the command is­
sued in the OCW3, the content of this register re­
flects the result of the command executed. For a
Poll Command, the register read contains the binary
code of the highest priority level requesting service
(if any). For a Read IRR Command, the register con­
tent will show the current pending interrupt re­
quest(s). Finally, for a Read ISR Command, this reg­
ister will specify all interrupt levels which are being
serviced.

4.5.4 INTERRUPT MASK REGISTER (IMR)

This is a read-only 8-bitregister which, when read,
will specify all interrupt levels within the same bank
that are masked.

4.5.5 VECTOR REGISTERS (VR)

Each interrupt request input has an 8-bit read/write
programmable vector register associated with it. The
registers should be programmed to contain the inter­
rupt vector for the corresponding request. The con­
tents of the Vector Register will be placed on the
Data Bus during the INTA cycles as described previ­
ously.

4.6 Programming

Programming the 82370 PIC is accomplished by us­
ing two types of command words: ICW's and
OCW's. All modes and commands explained in the
previous sections are programmable using the
ICW's and OCW's. The ICW's are issued from the
80376 in a sequential format and are used to setup
the banks in the 82370 PIC in an initial state of oper­
ation. The OCW's are issued as needed to vary and
control the 82370 PIC's operations.

Both ICW's and OCW's are sent by the 80376 to the
interrupt banks via the Data Bus. Each bank distin­
guishes between the different ICW's and OCW's by
the I/O address map, the sequence they are issued
(ICW's only), and by some dedicated bits among the
ICW's and OCW's.

An example of programming the 82370 interrupt
controllers is given in Appendix C (Programming the
82370 Interrupt Controllers).

All three interrupt banks are programmed in a similar
way. Therefore, only a single bank will be described
in the following sections.

4.6.1 INITIALIZATION (ICW)

,Before normal operation can begin, each bank must
be initialized by programming a sequence of two to
four bytes written into the ICW's.

Figure 4-6 shows the initialization flow for an inter­
rupt bank. Both ICW1 and ICW2 must be issued for
any form of operation. However, ICW3 and ICW4 are
used only if designated in ICW1. Once initialized, if
any programming changes within the ICW's are to
be made, the entire ICW sequence must be repro­
grammed, not just an individual ICW.

Note that although the ICW2's in the 82370 PIC do
not effect the Bank's operation, they still must be
programmed in order to preserve the compatibility
with the 82C59A. The contents programmed are not
relevant to the overall operations of the interrupt
.banks. Also, whenever one of the three ICW2's is
programmed, an interrupt level 1.5 in Bank A will be
generated. This interrupt request will be cleared
upon reading of the ICW2 registers. Since the three
ICW2's share the same interrupt level and the sys­
tem may not know the origin of the interrupt, all three
ICW2's must be read.

4-188

inter 82370

"ICW2 vector address must be programmed now.

(ICW2 INTERRUPT GENERATED)

(ALLOW SERVICING
OF ICW2 INTERRUPT)

290164-53

Other vector addresses may be programmed via ICW2 interrupt service routine.

Figure 4·6. Initialization Sequence

Certain internal setup conditions occur automatically
within the interrupt bank after the first ICW (lCW1)
has been issued. These are:

- The edge sensitive circuit is reset, which means
that following initialization, an interrupt request
input must make a HIGH·to·LOW transition to
generate an interrupt;

- The Interrupt. Mask Register (IMR) is cleared;
that is, all interrupt inputs are enabled;

- IRQ7 input of each bank is assigned. priority 7
(lowest);

- Special Mask Mode is cleared and Status Read
is set to IRR;

- If no ICW4 is needed, then no Automatic-EOI is
selected.

4.6.2 VECTOR REGISTERS (VR)

Each interrupt request input has a separate Vector
Register. These Vector Registers are used to store
the pre-programmed vector number corresponding
to their interrupt sources. In order to guarantee prop­
er interrupt handling, all Vector Registers must be
programmed with the predefined vector numbers.
Since an interrupt request will be generated whenev­
er an ICW2 is written during the initialization se­
quence, it is important that the Vector Register of
IRQ1.5 in Bank A should be initialized and the inter­
rupt service routine of this vector is set up before the
ICW's are written.

4-189

82370

4.6.3 OPERATION CONTROL WORDS (OCW)

After the ICW's are programmed, the operations of
each interrupt controller bank can be changed by
writing into the OCW's as explained before. There is
no special programming sequence required for the
OCW's. Any OCW may be written at any time in or­
der to change the mode of or to perform certain op­
erations on the interrupt banks.

4.6.3.1 Read Status and Poll Commands (OCW3)

Since the reading of IRR and ISR status as well as
the result of a Poll Command are available on the,
same read-only Status Register, a special Read
Status/Poll Command must be issued before the
Poll/Interrupt Request/In-Service Status Register is
read. This command can be specified by writing the
required control word into OCW3. As mentioned ear­
lier, if both the Poll Command and the Status Read
Command are enabled simultaneously, the Poll
Command will override the Status Read. That is, af­
ter the command execution, the Status Register will
contain the result of the Poll Command.

4.7 Register Bit Definition

INITIALIZATION COMMAND WORD 1 (ICW1)
,

Note that for reading IRR and ISR, there is no need
to issue a Read Status Command to the OCW3 ev­
ery time the IRR or ISR is to be read. Once a Read
Status Command is received by the interrupt bank, it
"remembers" which register is selected. However,
this is not true when the Poll Command is used.

In the Poll Command, after the OCW3 is written, the
82370 PIC treats the next read to the Status Regis­
ter as an interrupt acknowledge. This will set the ap­
propriate IS bit if there is a request and read the
priority level. Interrupt Request input status remains
unchanged from the Poll Command to the Status
Read.

In addition to the above read commands, the Inter­
rupt Mask Register (IMR) can also be read. When
read, this register reflects the contents of the pre­
programmed OCW1 which contains information on
which interrupt request(s) is(are) currently disabled.

07 06 05 04 03' 02 01 DO

I x I x I x I 1 I LTIM I x ISNGLI IC4 I

I ~
~ o - NO ICW4 NEEDED

1 - ICW4 NEEDED
o - EDGE TRIGGERED
1 - ,LEVEL TRIGGERED

INITIALIZATION COMMAND WORD 2 (ICW2)

o - EXTERNAL CASCADE
(iCW3 NEEDED)

1 - NO EXTERNAL CASCADE
(iCW3 NOT NEEDED)

CONTENT IS NOT RELEVANT TO THE ACTUAL
OPERATION OF THE BANK BUT cAN BE READ

,BY THE INTERRUPT SERVICE ROUTINE TO
DETERMINE WHERE THE INTERRUPT VECTORS

OF EACH BANK START.

4-190

290164-55

290164~54

inter 82370

INITIALIZATION COMMAND WORD 3 (ICW3)

ICW3 for Bank A:

ICW3 for Bank B:

ICW3 for Bank C:

07 06 05 04 03 02 01 DO

I 0 o ! 0 ! 0 !l:o!o!ol
0- NO SLAVE CASCADED TO BANK A
1 - THERE IS A SLAVE CASCADED

TO TOUT2#/IRQ3# PIN

07 06 05 04 03 02 01 DO

IS151S141S131S121S111 x 1 s91 0 I
I I I I I

4 0 - NO CASCADED REQUEST TO IRQN
1 - THERE IS A CASCADED REQUEST

CONNECTED TO IRQN (I.E. THE
CORRESPONDING INTERRUPT
REQUEST INPUTS)

07 06 05 04 03 02 01 DO

o - 'NO CASCADED REQUEST TO IRQN
1 - THERE IS A CASCADED REQUEST

CONNECTED TO IRQN

INITIALIZATION COMMAND WORD 4 (ICW4)

07 06 05 04 03 02 01 DO

I 0 I 0 I 0 'ISFNMI x I x I AEOII x I
I 0 = NORMAL EOI _-+ 1 =AUTOMATIC EOI

290164-56

290164-57

290164-58

L-_______ + 0 = NOT SPECIAL FULLY NESTED MODE
1 = SPECIAL FULLY NESTED MODE

4-191

290164-59

82370

OPERATION CONTROL WORD 1 (OCW1)

07 06 05 04 03 02 01 DO

MI = 1 MASK SET (iNTERRUPT DISABLED)
""---~ MI = 0 MASK RESET (INTERRUPT ENABLED)

290164-60

OPERATION CONTROL WORD 2 (OCW2)

07 06 05 04 03 02 01 DO

1 NON-SPECIFIC EOI COMMAND

R I SL I EOI

I I I
o o L2 '~" I . = ,l,,,,",, """

TO BE ACTED UPON

1 SPECIFIC EOI.COMMANo
1. ROTATE ON NON-SPECIFIC EOI
o ROTATE ON AUTO-EOI MODE (SET)
o ROTATE ON AUTO-EOI MODE (CLEAR)

o
o
1
1
o
1
1
o

o
1
o
o
o
1
1
1

1 ROTATE ON SPECIFIC EOI (L2-LO USED)
o SET PRIORITY (L2-LO USED)
o NO OPERATION

OPERATION CONTROL WORD 3 (OCW3)

07 06 05 04 03 02 01 DO

ESMM SMM RIS
o 0 NO ACTION o NO ACTION
o 1 NO ACTION 1 - POLL COMMAND 1 NO ACTION
1 0 RESET SPECIAL MASK 0- NO POLL COMMAND o READ IR REG.
1 1 SET SPECIAL MASK 1 READ IS REG.

290164-61

290164-62

ESMM - Enable Special Mask Mode. When this bit .is set to 1, it enables the SMM bit to set or reset the
Special Mask Mode. When this bit is set to 0, SMM bit becomes don't care.

SMM - Special Mask Mode. If ESMM = 1 and SMM = 1, the interrupt controller bank will enter Special Mask
Mode. If ESMM = 1 and SMM = 0, the bank will revert to normal mask mode. When ESMM = 0, SMM
has no effect.

4·192

82370

POLL/INTERRUPT REQUEST/IN-SERVICE STATUS REGISTER

Poll Command Status

Interrupt Request Status

NOTE:

07 06 05 04 03 02 01 DO

a - NO PENDING INTERRUPT
1 - PENDING INTERRUPT

BINARY CODE OF
THE HIGHEST PRIORITY
LEVEL REQUESTING

07 06 05 04 03 02 01 DO

IIRQ711RQ611RQ511RQ411RQ311RQ211RQI IIRQO I
IF IRQ BIT IS: a - NO REQUEST

290164-63

1 - REQUEST PENDING
290164-64

Although all Interrupt Request inputs are active LOW, the internal logical will invert the state of the pins so that when there
is a pending interrupt request at the input, the corresponding IRQ bit will be set to HIGH in the Interrupt Request Status
register.

In-Service Status

07 06 05 04 03 02 01 DO

1157 1156 1155 1154 1153 1152 I IS 1 1150 I

IF IS BIT IS: a - NOT IN-SERVICE
1 - REQUEST IS IN-SERVICE

290164-65

VECTOR REGISTER (VR)

a-BIT VECTOR NUMBER
290164-66

4-193

82370

Table 4·4. Register Operational Summary

Operational
Description

Fully Nested Mode
Non-specific EOI Command
Specific EOI Command
Automatic EOI Mode.
Rotate On Non-Specific

EOI Command
Rotate On Automatic

EOI Mode
Set Priority Command
Rotate On Specific

EOI Command
Interrupt Mask Register
Special Mask Mode
Level Triggered Mode
Edge Triggered Mode
Read Register Command, IRR
Read Register Command, ISR
Read IMR
Poll Command
Special Fully Nested Mode

4.8 Register Operational Summary

For ease of reference, Table 4-4 gives a summary of
the different operating modes and commands with
their corresponding registers.

5.0 PROGRAMMABLE INTERVAL
TIMER

5.1 Functional Description

The 82370 contains four independently Programma­
ble Interval Timers: Timer 0-3. All four timers are
functionally compatible to the Intel 82C54. The first
three timers (Timer 0-2) have specific functions.
The fourth timer, Timer 3, is a general purpose timer.
Table 5-1 depicts the functions of each timer. A brief
description of each timer's function follows. -

:rimer

0
1

2

3

Table 5·1. Programmable
Interval Timer Functions

Output Function

IR08 Event Based IR08 Generator
TOUT1/REF# Gen. Purpose/DRAM

Refresh Req.
TOUT2/IR03# Gen. Purpose/Speaker

OutlIR03#
TOUT3# Gen. Purpose/IROO

Generator

Command Bits
Words

OCW-Default
OCW2 EOI
OCW2 SL, EOI, LO-L2

ICW1,ICW4 IC4,AEOI
OCW2 EOI

OCW2 R,SL, EOI

OCW2 LO-L2
OCW2 R,SL, EOI

OCW1 MO-M7
OCW3 ESMM,SMM
ICW1 LTIM
ICW1 LTIM
OCW3 RR,RIS
OCW3 RR,RIS

IMR MO-M7
OCW3 P

ICW1,ICW4 IC4, SFNM

TIMER O-Event Based Interrupt Request 8
Generator

Timer 0 is intended to be used as an Event Counter.
The output of this timer will generate an Interrupt
Request 8 (IR08) upon a rising edge of the timer
output (TOUTO). Normally, this timer is used to im­
plement a time-of-day clock or system tick. The Tim­
er 0 output is not available as an external signal.

TIMER 1-General Purpose/DRAM Refresh
Request

The output of Timer 1, TOUT1, can be used as a
general. purpose timer or as a DRAM Refresh Re­
quest signal. The rising edge of this output creates a
DRAM refresh request to the 82370 DRAM Refresh
Controller. Upon reset, the Refresh Request func­
tion is disabled, and the output pin is the Timer 1
output.

TIMER 2-General Purpose/Speaker OutIlRQ3#

The Timer 2 output, TOUT2#, could be used to sup­
port tone generation to an external speaker. This pin
is a bidirectional signal. When used as an input, a
logic LOW asserted at this pin will generate an Inter­
rupt Request 3 (IR03#) (see Programmable Inter­
rupt Controller).

4-194

inter 82370

DATA BUFFER OUTO I EDGE I IR08 4
8-BIT • & COUNTER 0 I DETECTOR I (INTERN

INTERNAL BUS
LOGIC +-

AL)

J OUTl EDGE REFRESH I
COUNTER 1 I DETECTOR CONTROLLER

+- REF#

CONTROL I REF#
2-TO-l

GATE WORD 1 MUX
--+TOUT1/R

REGISTER I TOUTl
o .elect

EF#

OPEN COLLECTOR
L-~EFENA

(INTERNA
BLE
L)

OUT2
TOUT2#/ COUNTER 2 - ! IR03#

TO IR03# (INTERNAL)

-. CONTROL OUT3 .I EDGE I IROO WORD COUNTER 3 I DETECTOR J (INTERNA
REGISTER II L)

----t> TOUT3#
CLKIN

290164-67

Figure 5-1. Block Diagram of Programmable Interval Timer

TIMER 3-General Purpose/lnterrupt Request °
Generator

The output of Timer 3 is fed to an edge detector and
generates an Interrupt Request 0 (IROO)· in the
82370. The inverted output of this timer (TOUT3#)
is also available as an external signal for general
purpose use.

5.1.1 INTERNAL ARCHITECTURE

The functional block diagram of the Programmable
Interval Timer section is shown in Figure 5-1. Follow­
ing is a description of each block.

DATA BUFFER & READ/WRITE LOGIC

This part of the Programmable Interval Timer is used
to interface the four timers to the 82370 internal bus.
The Data Buffer is for transferring commands and
data between the 8·bit internal bus and the timers.

The Read/Write Logic accepts inputs from the inter­
nal bus and generates signals to control other func­
tional blocks within the timer section.

CONTROL WORD REGISTERS I & II

The Control Word Registers are write-only registers.
They are used to control the operating modes of the
timers. Control Word Register I controls Timers 0, 1
and 2, and Control Word Register II controls Timer
3. Detailed description of the Control Word Regis­
ters will be included in the Register Set Overview
section.

COUNTER 0, COUNTER 1, COUNTER 2,
COUNTER 3

Counters 0, 1, 2, and 3 are the major parts of Timers
0, 1, 2, and 3, respectively. These four functional
blocks are identical in operation, so only a single
counter will be described. The internal block dia­
gram of one counter is shown in Figure 5-2.

4-195

inter 82370

GATE n
elK n OUT n

290164-68

Figure 5-2. Internal Block Diagram of a Counter

The four counters share a common clock input
(ClKIN), but otherwise are fully independent. Each
counter is programmable to operate in a different
mode.

Although the Control Word Register is shown in the
figure, it is not part of the counter itself. Its pro­
grammed contents are used to control the opera­
tions of the counters.

The Status Register, when latched, contains the cur­
rent contents of the Control Word Register and
status of the output and Null Count Flag (see Read
Back Command).

The Counting Element (CE) is the actual counter. It
is a 16-bit presettable synchronous down counter.

The Output latches (Ol) contain two 8-bit latches
(OlM and Oll). Normally, these latches "follow"
the contentof the CEo OlM contains the most signif­
icant byte of the counter and Oll contains the least
significant byte. If the Counter latch Command is
sent to the counter, Ol will latch the present count
until read by the 80376 and then return to follow the
CEo One latch at a time is enabled by the timer's
Control logic to drive the internal bus. This is how
the 16-bit Counter communicates over the 8-bit in­
ternal bus. Note that CE cannot be read. Whenever
the count is read, it is one of the Ol's that is being
read.

When a new count is written into the counter, the
value will be stored in the Count Registers (CR), and
transferred to CEo The transferring of the contents
from CR's to CE is defined as "loading" of the coun­
ter. The Count Register contains two 8-bit registers:
CRM (which contains the most significant byte) and
CRl (which contains the least significant byte). Simi­
lar to the Ol's, the Control logic allows one register
at a time to be loaded from the 8-bit internal bus.
However, both bytes are transferred from the CR's
to theCE simultaneously. Both CR's are cleared
when the Counter is programmed. This way, if the
Counter has been programmed for one byte count
(either the most significant or the least significant
byte only), the other byte will be zero. Note that CE
cannot be written into directly. Whenever a count is
written, it is the CR that is being written.

As shown in the diagram, the Control logic consists
of three signals: GlKIN, GATE, and OUT. ClKIN
and GATE will be discussed in detail inthe section
that follows. OUT is the internal output of the coun­
ter. The external outputs of some timers (TOUT) are
the inverted version of OUT (see TOUT1, TOUT2#,
TOUT3#). The state of OUT depends on the mode
of operation of the timer.

4-196

82370

5.2 Interface Signals

5.2.1 CLKIN

ClKIN is an input signal used by all four timers for
internal timing reference. This signal can be inde­
pendent of the 82370 system clock, ClK2. In the
following discussion, each "ClK Pulse" is defined
as the time period between a rising edge and a fail­
ing edge, in that order, of ClKIN.

During the rising edge of ClKIN, the state of GATE
is sampled. All new counts are loaded and counters
are decremented on the falling edge of ClKIN.

5.2.2 TOUT1, TOUTU, TOUT3#

TOUT1, TOUT2# and TOUT3# are the external
output signals of Timer 1, Timer 2 and Timer 3, reo
spectively. TOUT2# and TOUT3# are the inverted
signals of their respective counter outputs, OUT.
There is no external output for Timer O.

If Timer 2 is to be used as a tone generator of a
speaker, external buffering must be used to provide
sufficient drive capability.

The Outputs of Timer 2 and 3 are dual function pins.
The output pin of Timer 2 (TOUT2#/IR03#), which
is a bidirectional open·collector signal, can also be
used as interrupt request input. When the interrupt
function is enabled (through the Programmable In·
terrupt Controller), a lOW on this input will generate
an Interrupt Request 3# to the 82370 Programma­
ble Interrupt Controller. This pin has a weak internal
pull-up resistor. To use the IR03# function, Timer 2
should be programmed so that OUT2 is lOW. Addi­
tionally, OUT3 of Timer 3 is connected to an edge
detector which will generate an Interrupt Request 0
(IROO) to the 82370 after the rising edge of OUT3
(see Figure 5-1).

5.2.3 GATE

GATE is not an externally controllable signal. Rath·
er, it can be software controlled with the Internal
Control Port. The state of GATE is always sampled
on the rising edge of ClKIN. Depending on the
mode of operation, GATE is used to enable/disable
counting or trigger the start of an operation.

For Timer 0 and 1, GATE is always enabled (HIGH).
For Timer 2 and 3, GATE is connected to Bit 0 and
6, respectively, of an Internal Control Port (at ad­
dress.61 H) of the 82370. After a hardware reset, the
state of GATE of Timer 2 and 3is disabled (lOW).

5.3 Modes of Operation

Each timer can be independently programmed to
operate in one of six different modes. Timers are
programmed by writing a Control Word into the Con­
trol Word Register followed by an Initial Count (see
Programming).

The following are defined for use in describing the
different modes of operation.

ClK Pulse- A rising edge, then a falling edge, in
that order, of ClKIN.

Trigger-'- A rising edge of a timer's GATE input.

Timer/Counter loading- The transfer of a count
from Count Register
(CR) to Count Element
(CE).

5.3.1 MODE O-INTERRUPT ON TERMINAL
COUNT

Mode 0 is typically used for event counting. After the
Control Word is written, OUT is initially lOW, and will
remain lOW until the counter reaches zero. OUT
then goes HIGH and remains HIGH until a new
count or a new Mode 0 Control Word is written into
the counter.

In this mode, GATE = HIGH enables counting;
GATE = lOW disables counting. However, GATE
has no effect on OUT.

After the Control Word and initial count are written to
a timer, the initial count will be loaded on the next
ClK pulse. This ClK pulse does not decrement the
count, so for an initial count of N, OUT does not go
HIGH until N + 1 ClK pulses after the initial count is

. written.

If a new count is written to the timer, it will be loaded
on the next ClK pulse and counting will continue
from the new count. If a two-byte count is written,
the following happens:

1: Writing the first byte disables counting, OUT is set
lOW immediately (i.e. no ClK pulse required).

2. Writing the second byte allows the new count to
be loaded on the next ClK pulse.

This allows the counting sequence to be synchroniz­
ed by software. Again, OUT does not go HIGH until
N + 1 ClK pulses after the new count of N is written.

4-197

82370

CW.l0 lSB_4,...-_________ _

WRITELJU

ClK

GATE ----------------

OUT ~_.L-________ ...I

CW.:10 LSB-3
, WRITE LJUI""""'----------

ClK

GATE

WRITE

ClK

GATE

OUT ::-::JL.. _______ .:..-Jr-
ININININI I~I~~I

290164-69

NOTES:
The following conventions apply to all mode timing diagrams.
1. Counters are programmed for binary (not BCD) counting and for reading/writing least significant byte (LSB) only.
2. The counter is always selected (CS# always low).
3. CW stands for "Control Word"; CW = 10 means a control word of 10, Hex is written to the counter.
4. LSB stands for "Least significant byte" of count.
5. Numbers below diagrams are count values.
The lower number is the least significant byte.
The upper number is the most significant byte. Since the counter is programmed to read/write LSB only, the most
significant byte cannot be read,
N stands for an undefined count.
Vertical lines show transitions between count values.

Figure 5-3. Mode 0

If an initial count is written while GATE is lOW, the
counter will be loaded on the next ClK pulse. When
GATE goes HIGH, OUT will go HIGH N ClK pulses
later; no ClK pulse is needed to load the counter as
this has already been done.

5.3.2 MODE 1-GATE RETRIGGERABLE
ONE-SHOT

In this mode, OUT will be initially HIGH. OUT will go
lOW on the ClK pulse following a trigger to start the

one-shot operation. The OUT signal will then remain
lOW until the timer reaches zero. At this point, OUT
will stay HIGH until the next trigger comes in. Since
the state of GATE signals of Timer 0 and 1 are inter­
nally set to HIGH.

After writing the Control Word and initial count, the
timer is considered "armed". A trigger results in
loading the timer and setting OUT lOW on the next
ClK pulse. Therefore, an initial count of N will result
in a one-shot pulse width of N ClK cycles. Note

4-198

intJ 82370

CW:a12 LSB=3

WR ~--------------------

CLK JlJl...JVl...I1JlI1JlJ1JlI1J"
GATE ------;n---------1n-----

OUT =.:J
I N I N I N I N I N I ~ I

CW=12 LSB~3r-___________ _

WlI """'LJLJ
CLK

GATE -------1n ----In----------

OUT ~ IL-____ --II
I N I N I N I N I N I ~ I ~ I I ~ I

CLK

GATE -------1n --------; n------

OUT

I N I N I N I N I N I ~ I ~ I ~ I ~~ I ~~ I
290164-70

Figure 5-4. Mode 1

that this one-shot operation is retriggerable; i.e. OUT
will remain lOW for N ClK pulses after every trigger.
The one-shot operation can be repeated without re­
writing the same count into the timer.

If a new count is written to the timer during a one­
shot operation, the current one-shot pulse width will
not be affected until the timer is retriggered. This is
because loading of the new count to CE will occur
only when the one-shot is triggered.

5.3.3 MODE 2-RATE GENERATOR

This mode is a divide-by-N counter. It is typically
used to generate a Real Time Clock interrupt. OUT
will initially be HIGH. When the initial count has dec-

remented to 1, OUT goes lOW for one ClK pulse,
then OUT goes HIGH again. Then the timer reloads
the initial count and the process is repeated. In other
words, this mode is periodic since the same se­
quence is repeated itself indefinitely. For an initial
count of N, the sequence repeats every N ClK cy­
cles.

Similar to Mode 0, GATE=HIGH enables counting,
where GATE = lOW disables counting. If GATE
goes lOW during an output pulse (lOW), OUT is set
HIGH immediately. A trigger (rising edge on GATE)
will reload the timer with the initial count on the next
ClK pulse. Then, OUT will go lOW (for one ClK
pulse) N· ClK pulses after the new trigger. Thus,
GATE can be used to synchronize the timer.

4-199

inter 82370

CW=14 LSB=3

WRITE L.rU
CLK

GATE

OUT

I N I N I N I N I
0
3

CW=14 LSB=3

WRITE LJLJ
ClK

GATE

OUT =:J
I N I N I N I N I

0
3

CW=14

WRITE

ClK

GATE

OUT~

I N I N I N I N I :

NOTE:

0 0 0
3 2 3

LJ
L.J

I ~ I ~ I I ~ I ~ I

U
I ~ I ~ I :

o
3

290164-71

A GATE transition should not occur one clock prior to terminal count.

Figure 5-5. Mode 2

After writing a Control Word and initial count, the
timer will be loaded on the next ClK pulse. OUT
goes lOW (for one ClK pulse) N ClK pulses after
the initial count is written. This is another way the
timer may be synchronized by software.

Writing a new count while counting does not affect
the current counting sequence because the new
count will not be loaded until the end of the current
counting cycle. If a trigger is received after writing a

new count but before the end of the current period,
the timer will be loaded with the new count on the
next ClK pulse after the trigger, and counting will
continue with the new count.

5.3.4 MODE 3-SQUARE WAVE GENERATOR

Mode 3 is typically used for Baud Rate generation.
Functionally, this mode is similar to Mode 2 except

4-200

82370

for the duty cycle of OUT. In this mode, OUT will be
initially HIGH. When half of the initial count has ex­
pired, OUT goes low for the remainder of the count.
The counting sequence will be repeated, thus this
mode is also periodic. Note that an initial count of N
results in a square wave with a period of N ClK
pulses.

The GATE input can be used to synchronize the tim­
er. GATE=HIGH enables counting; GATE=lOW
disables counting. If GATE goes lOW while OUT is
lOW, OUT is set HIGH immediately (i.e. no ClK
pulse is required). A trigger reloads the timer with the
initial count on the next ClK pulse.

After writing a Control Word and initial count, the
timer will be loaded on the next ClK pulse. This al­
lows the timer to be synchronized by software.

Writing a new count while counting does not affect
the current counting sequence. If a trigger is re­
ceived after writing a new count but before the end
of. the current half-cycle of the square wave, the tim­
er will be loaded with the new count on the next ClK
pulse and counting will continue from the new count.
Otherwise, the new count will be loaded at the end
of the current half-cycle.

4-201

There is a slight difference in operation depending
on whether the initial count is EVEN or ODD. The
following description is to show exactly how this
mode is implemented.

EVEN COUNTS:

OUT is initially HIGH. The initial count is loaded on
one ClK pulse and is decremented by two on suc­
ceeding ClK pulses. When the count expires (decre­
mented to 2), OUT changes to lOW and the timer is
reloaded with the initial count. The above process is
repeated indefinitely.

ODD COUNTS:

OUT is initially HIGH. The initial count minus one
(which is an even number) is loaded on one ClK
pulse and is decremented by two on succeeding
ClK pulses. One ClK pulse after the count expires
(decremented to 2), OUT goes lOW and the timer is
loaded with the initial count minus one again. Suc­
ceeding ClK pulses decrement the count by two.
When the count expires, OUT goes HIGH immedi­
ately and the timer is reloaded with the initial count
minus one. The above process is repeated indefi­
nitely. So for ODD counts, OUT will HIGH or
(N + 1)/2 counts and lOW for (N -1)/2 counts.

inter 82370

CW_1S lSB.4r--______________ _

WRITE L..Jl-J
ClK

GATE

OUT

I ~ I I ~ I I ~ I
CW_1S lSBmSr--______________ _

WRITE L..Jl-J
ClK

GATE

OUT

I ~ I
CW_1S lSa-4r--_______ '--______ _

WRITE L..Jl-J
ClK

GATE LJ
OUT

290164-72

NOTE:
A GATE transition should not occur one clock prior to terminal count.

Figure 5-6. Mode 3

5.3.5 MODE 4-INITIAL COUNT TRIGGERED
STROBE

This mode allows a strobe pulse to be generated by
writing an initial count to the timer. Initially, OUT will
be HIGH. When a new initial count is written into the
timer, the counting sequence will begin. When the
initial count expires (decremented to 1), OUT will go
lOW for one ClK pulse and then go HIGH again.

Again, GATE = HIGH enables counting while
GATE = lOW disables counting. GATE has no ef­
fect on OUT.

After writing the Control Word and initial count, the
timer will be loaded on the next ClK pulse. This ClK
pulse does not decrement the count, so for an initial
count of N, OUT does not strobe lOW until N + 1
ClK pulses after initial count is written.

If a new count is written during counting, it will be
loaded in the next ClK pulse and counting will con-
tinue from the new count. '

4-202

inter 82370

CW=18 lSB=3
WRITE LJUr-------------

ClK

GATE

OUT =::J
I N I N I N I N I ~ o

2

u
o I 0 I FF I FF I FF I
1 0 FF FE FD

CW=18 lSB=3 ___________ _

WRITELJU

ClK

GATE I
OUT =::J u-

I N I N I N I N I gig I gig o I 0 I FF I 1 .0 FF

WRITE

ClK

GATE ------------------

OUT~

I N I N I N I N I gig I ~ I g
290164-73

Figure 5-7. Mode 4

If a two-byte count is written, the following will occur:

1. Writing the first byte has no effect on counting.

2. Writing the second byte allows the new count to
be loaded on the next CLK pulse.

OUT will strobe LOW N + 1 CLK pulses after the
new count of N is written. Therefore, when the
strobe pulse will occur after a trigger depends on the
value of the initial count loaded.

5.3.6 MODE 5-GATE RETRIGGERABLE
STROBE

Mode 5 is very similar to Mode 4 except the count
sequence is triggered by the gate signal instead of

by writing an initial count. Initially, OUT will be HIGH.
Counting is triggered by a rising edge of GATE.
When the initial count has expired (decremented to
1), OUT will go LOW for one CLK pulse and then go
HIGH again.

After loading the Control Word and initial count, the
Count Element will not be loaded until the CLK pulse
after a trigger. This CLK pulse does not decrement
the count. Therefore, for an initial count of N, OUT
does not strobe LOW until N + 1 CLK pulses after a
trigger. '

4-203

inter 82370

CW= lA lSB=3,..-__________ _

WRITE lJl.-.J
ClK

OUT

CW=lA lSB=3 ______________ _

WRITE lJl.-.J
ClK

GATE - - - - - - - - -l ~ - - - - - - - - - - - -

OUT =:J LJ
ININININININI~I o I 0 I FF I

1 0 FF

. WRITE
r-_~lSB=5r---__ ---~----

ClK

GATE - ---- ---1[r---------'Jl-----

OUT ~ ~

I N I N I N I N I N I ~ I ~ I . ~ I ~ I == I ~~ I
290164-74

Figure 5·8. Mode 5

The counting sequence is retriggerable. Every trig­
ger will result in the timer being loaded with the initial
count on the next elK pulse.

5.3.7 OPERATION COMMON TO ALL MODES

If the new count is written during counting, the cur­
rent counting sequence will not be affected. If a trig­
ger occurs after the new count is written but before
the current count expires, the timer will be loaded
with the new count on the next elK pulse and a new
count sequence will start from there.

5.3.7.1 GATE

The GATE input is always sampled on the rising
edge of elKIN. In Modes 0, 2, 3 and 4, the GATE
input is level sensitive. The logic level is sampled on
the rising edge of elKIN. In Modes 1, 2, 3 and 5, the
GATE input is rising edge sensitive. In these modes,

4-204

82370

Summary of Gate Operations

Mode GATE LOW or Going LOW

0 Disable count
1 No Effect

2 1. Disable count
2. Sets output HIGH

immediately
3 1. Disable count

2. Sets output HIGH
immediately

4 Disable count
5 No Effect

a rising edge of GATE (trigger) sets an edge sensi­
tive flip-flop in the timer. The flip-flop is reset imme­
diately after it is sampled. This way, a trigger will be
detected no matter when it occurs; i.e. a HIGH logic
level does not have to be maintained until the next
rising edge of ClKIN. Note that in Modes 2 and 3,
the GATE input is both edge and level sensitive.

5.3.7.2 Counter

New counts are loaded and counters are decre­
mented on the falling edge of ClKIN. The largest
possible initial count is O. This is equivalent to 2**16
for binary counting and 10**4 for BCD counting.

Note that the counter does not stop when it reaches
zero. In Modes 0, 1, 4 and 5, the counter 'wraps
around' to the highest count: either FFFF Hex for
binary counting or 9999 for BCD counting, and.con­
tinues counting. Modes 2 and 3 are periodic. The
counter reloads itself with the initial count and con­
tinues counting from there.

The minimum and maximum initial count in each
counter depends on the mode of operation. They
are summarized below.

Mode Min Max

0 1 0
1 1 0
2 2 0
3 2 0
4 1 0
5 1 0

5.4 Register Set Overview

The Programmable Interval Timer module of the
82370 contains a set of six registers. The port ad­
dress map of these registers is shown in Table 5-2.

GATE Rising HIGH

No Effect Enable count
1. Initiate count No Effect
2. Reset output

after next clock
I nitiate count Enable count

Initiate count Enable count

No Effect Enable count
Initiate count No Effect

Table 5·2. Timer Register Port Address Map

Port Address Description

40H Counter 0 Register (read/write)
41H Counter 1 Register (read/write)
42H Counter 2 Register (read/write)
43H Control Word Register I

(Counter 0, 1 & 2) (write-only)

44H Counter 3 Register (read/write)
45H Reserved
46H Reserved
47H Control Word Register II

(Counter 3) (write-only)

5.4.1 COUNTER 0, 1, 2, 3 REGISTER

These four 8-bit registers are functionally identical.
They are used to write the initial count value into the
respective timer. Also, they can be used to read the
latched count value of a timer. Since they are 8-bit
registers, reading and writing of the i6-bit initial
count must follow the count format specified in the
Control Word Registers; i.e. least significant byte
only, most significant byte only, or least significant
byte then most significant byte (see Programming).

5.4.2 CONTROL WORD REGISTER I & II

There are two Control Word Registers associated
with the Timer section. One .of the two registers
(Control Word Register I) is used to control the oper­
ations of Counters 0, 1 and 2 and the other (Control
Word Register II) is for Counter 3. The major func­
tions of both Control Word Registers are listed be­
low:

4-205

inter 82370

- Select the timer to be programmed.

- Define which mode the selected timer is to oper-
ate in.

- Define the count sequence; Le. if the selected
timer is to count as a Binary Counter or a Binary
Coded Decimal (BCD) Counter.

- Select the byte access sequence during timer
read/write operations; Le. least significant byte
only, most significant only, or least significant
byte first, then most significant byte.

Also, the Control Word Registers can be pro­
grammed to perform a Counter latch Command or a
Read Back Command which will be described later.

5.5 Programming

5.5.1 INITIALIZATION

Upon power-up or reset, the state of all timers is
undefined. The mode, count value, and output of all
timers are random. From this point on, how each
timer operates is determined solely by how it is pro­
grammed. Each timer must be programmed before it
can be used. Since the outputs of some timers can
generate interrupt signals to the 82370, all timers
should be initialized to a known state.

Counters are programmed by writing a Control Word
into their respective Control Word Registers. Then,
an Initial Count can be written into the correspond­
ing Count Register. In general, the programming pro­
cedure is very flexible. Only two conventions need to
be remembered:

1. For each timer, the Control Word must be written
before the initial count is written.

2. The 16-bit initial count must follow the count for­
mat specified in the Control Word (least significant
byte only, most significant byte only, or least signifi­
cant byte first, followed by most significant byte).

Since the two Control Word Registers and the four
Counter Registers have separate addresses, and
each timer can be individually selected by the appro­
priate Control Word Register, no special instruction
sequence is required. Any programming sequence
that follows the conventions above is acceptable.

A new initial count may be written to a timer at any
time without affecting the timer's programmed mode
in any way. Count sequence will be affected as de­
scribed in the Modes of Operation section. Note that
the new count must follow the programmed count
format.

If a timer is previously programmed to read/write
two-byte counts, the following precaution applies. A
program must not transfer control between writing
the first and second byte to another routine which
also writes into the same timer. Otherwise, the read/
write will result in incorrect count.

Whenever a Control Word is written to a timer, all
control logic for that timer(s) is immediately reset
(i.e. no ClK pulse is required). Also, the correspond­
ing output in, TOUT #, goes to a known initial state.

5.5.2 READ OPERATION

Three methods are available to read the current
count as well as the status of each timer. They are:
Read Counter Registers, Counter latch Command
and Read Back Command. Below is a description of
these methods.

READ COUNTER REGISTERS

The current count of a timer can be read by perform­
ing a read operation on the corresponding Counter
Register. The only restriction of this read operation
is that the ClKIN of the timers must be inhibited by
using external logic. Otherwise, the count may be in
the process of changing when it is read, giving an
undefined result. Note that since all four timers are
sharing the same ClKIN signal, inhibiting ClKIN to
read a timer will unavoidably disable the other timers
also. This may prove to be impractical. Therefore, it
is suggested that either the Counter latch Com­
mand or the Read Back Command can be used to
read the current count of a timer.

Another alternative is to temporarily disable a timer
before reading its Counter Register by using the
GATE input. Depending on the mode of operation,
GATE = lOW will disable the counting operation.
However, this option is available on Timer 2 and. 3
only, since the GATE signals of the other two timers
are internally enabled all the time.

COUNTER LATCH COMMAND

A Counter latch Command will be executed when­
ever a special Control Word is written into a Control
Word Register. Two bits written into the Control
Word Register distinguish this command from a 'reg­
ular' Control Word (see Register Bit Definition). Also,
two other bits in the Control Word will select which
counter is to be latched. .

Upon execution of this command, the selected
counter's Output latch (Ol) latches the count at the
time the Counter latch Command is received. This

4-206

inter 82370

count is held in the latch until it is read by the 80376,
or until the timer is reprogrammed. The count is then
unlatched automatically and the OL returns to "fol­
lowing" the Counting Element (CE). This allows
reading the contents of the counters "on the fly"
without affecting counting in progress. Multiple
Counter Latch Commands may be used to latch
more than one counter. Each latched count is held
until it is read. Counter Latch Commands do not af­
fect the programmed mode of the timer in any way.

If a counter is latched, and at some time later, it is
latched again before the prior latched count is read,
the second Counter Latch Command is ignored. The
count read will then be the count at the time the first
command was issued.

In any event, the latched count must be read ac­
cording to the programmed format. Specifically, if
the timer is programmed for two-byte counts, two
bytes must be read. However, the two bytes do not
have to be read right after the other. Read/write or
programming operations of other timers may be per­
formed between them.

Another feature of this Counter Latch Command is
that read and write operations of the same timer
may be interleaved. For example, if the timer is pro­
grammed for two-byte counts, the following se­
quence is valid.

1. Read least significant byte.

2. Write new least significant byte.

3. Read most significant byte.

4. Write new most significant byte.

If a timer is programmed to read/write two-byte
counts, the following precaution applies. A program
must not transfer control between reading the first
and second byte to another routine which also reads
from that same timer. Otherwise, an incorrect count
will be read.

READ BACK COMMAND

The Read Back Command is another special Com­
mand Word operation which allows the user to read
the current count value and/or the status of the se­
lected timer(s). Like the Counter Latch Command,
two bits in the Command Word identify this as a
Read Back Command (see Register Bit Definition).

The Read Back Command may be used to latch
multiple counter Output Latches (OL's) by selecting
more than one timer within a Command Word. This
single command is functionally equivalent to several
Counter Latch Commands, one for each counter to

be latched. Each counter's latched count will be
held until it is read by the 80376 or until the timer is
reprogrammed. The counter is automatically un­
latched when read, but other counters remain
latched until they are read. If multiple Read Back
commands are issued to the same timer without
reading the count, all but the first are ignored; i.e. the
count read will correspond to the very first Read
Back Command issued.

As mentioned previously, the Read Back Command
may also be used to latch status information of the
selected timer(s). When this function is enabled, the
status of a timer can be read from the Counter Reg­
ister after the Read Back Command is issued. The
status information of a timer includes the following:

1. Mode of timer:

This allows the user to check the mode of opera­
tion of the timer last programmed.

2. State of TOUT pin of the timer:

This allows the user to monitor the counter's out­
put pin via software, possibly eliminating some
hardware from a system.

3. Null Count/Count available:

The Null Count Bit in the status byte indicates if
the last count written to the Count Register (CR)
has been loaded into the Counting Element (CE).
The exact time this happens depends on the
mode of the timer and is described in the Pro­
gramming section. Until the count is loaded into
the Counting Element (CE), it cannot be read from
the timer. If the count is latched or read before
this occurs, the count value will not reflect the
new count just written.

If multiple status latch operations of the timer(s) are
performed without reading the status, all but the first
command are ignored; i.e. the status read in will cor­
respond to the first Read Back Command issued.

Both the current count and status of the selected
timer(s) may be latched simultaneously by enabling
both functions in a single Read Back Command.
This is functionally the same as issuing two separate
Read Back Commands at once. Once again, if multi­
ple read commands are issued to latch both the
count and status of a timer, all but the first command
will be ignored.

If both count and status of a timer are latched, the
first read operation of that timer will return the
latched status, regardless of which was latched first.
The next one or two (if two count bytes are to be
read) read operations return the latched count. Note
that subsequent read operations on the Counter
Register will return the unlatched count (like the first
read method discussed).

4-207

5.6 Register Bit Definitions

COUNTER 0, 1, 2, 3 REGISTER (READ/WRITE)

Port Address Description

40H Counter 0 Register (read/write)
41H Counter 1 Register (read/write)
42H Counter 2 Register(read/write)
44H Counter 3 Register (read/write)
45H Reserved
46H. Reserved

Control Word Register I

07 06 05

SELECT COUNTER:
00 SELECT COUNTER 0
01 SELECT COUNTER 1
10 SELECT COUNTER 2
11 READ BACK COMMAND

FOR COUNTER 0-2

04

07

READ/WRITE:

03

06

02

00 COUNTER LATCH COMMAND
01 READ/WRITE LSB BYTE ONLY
10 READ/WRITE MSB BYTE ONLY

05 04 03

01 DO

0- 16-BIT BINARY
COUNTER

1 - BCD COUNTER
(4 DECADES)

11 READ/WRITE LSB, THEN MSB BYTE

MODE:
000 MODE 0

·001 MODE 1
Xl0 MODE 2
Xl1 MODE 3
100 MODE 4
101 MODES

290164-76

82370

02

Note that these 8-bit registers are for writing and
reading of one byte of the 16-bit count value, either
the most significant or the least significant byte.

CONTROL WORD REGISTER I & II (WRITE­
ONLY)

Port Address Description

43H Control Word Register I
(Counter 0, 1, 2 (write-only)

47H Control Word Register II
(Counter 3) (write-only)

01

02. LSB OF COUNT BYTE

MSB OF COUNT BYTE
290164-75

Control Word Register II

07 06 05

SELECT COUNTER:
00 SELECT COUNTER 3
01 RESERVED
10. RESERVED
11 READ BACK COMMAND

FOR COUNTER 3

04

READ/WRITE:

03 02

00 COUNTER LATCH COMMAND
01 READ/WRITE LSB BYTE ONLY
10 READ/WRITE MSB BYTE ONLY

01 DO

0- 16-BIT BINARY
COUNTER

1 - BCD COUNTER
(4 DECADES)

11 READ/WRITE LSB, THEN MSB BYTE

MODE:
000 MODE 0
001 MODE 1
Xl0 MODE 2
Xl1 MODE 3
100 MODE 4
101 MODE 5

290164-77

4-208

inter 82370

COUNTER LATCH COMMAND FORMAT

(Write to Control Word Register)

07 06 05 04 03 02 01 DO

00 COUNTER 0 (OR 3)
01 COUNTER 1
10 COUNTER 2
11 READ BACK COMMAND

x I x I

READ BACK COMMAND FORMAT

(Write to Control Word Register)

07

STATUS FORMAT

06 05 04 03 02 01

0- LATCH COUNT
1 - DO NOT LATCH

COUNT

0- LATCH STATUS
1 - DO NOT LATCH

STATUS

a - COUNTER NOT
SELECTED

1 - COUNTER IS
SELECTED

(Returned from Read Back Command)

07 06 05 04 03

0- COUNT AVAILABLE
FOR READING

1 - NULL COUNT

4-209

02 01

290164-78

DO

DO

COUNTER
MODE

290164-79

290164-80

82370

6.0 WAIT STATE GENERATOR

6.1 Functional· Description

The 82370 contains a programmable Wait State
Generator which can generate a pre-programmed
number of wait states during both CPU and DMA .
initiated bus cycles. This Wait State Generator is ca­
pable of generating 1 to 16 wait states in non-pipe­
lined mode, and 0 to 15 wait states in pipelined
mode. Depending on the bus cycle type and the two
Wait State Control inputs (WSC 0-1), a pre-pro­
grammed number of wait states in the selected Wait
State Register will be generated.

The Wait State Generator can also be disabled to
allow the use of devices capable of generating their
own READY# signals. Figure 6-1 is a block diagram
of the Wait State Generator.

6.2 Interface Signals

The following describes the interface signals which
affect the operation of the Wait State Generator.
The READY #, WSCO and WSC1 signals are inputs.
READYO# is the ready output signal to the host
processor.

6.2.1 READY #

READY# is an active LOW input signal which indi­
cates to the 82370 the completion of a bus cycle. In
the Master mode (e.g. 82370 initiated DMA transfer),
this signal is monitored to determine whether a pe­
ripheral or memory needs wait states inserted in the
current bus cycle. In the Slave mode, it is used (to­
gether with the ADS# signal) to trace CPU bus cy­
cles to determine if the current cycle is pipelined.

6.2.2 READYO #

READYO# (Ready Out#) is an active LOW output
signal and is the output of the Wait State Generator.
The number of wait states generated depends on
the WSC{0-1) inputs. Note that special cases are
handled for access to the 82370 internal registers
and for the Refresh cycles. For 82370 internal regis­
ter access, READYO# will be delayed to take into
the command recovery time of the register. One or
more wait states will be generated in a pipelined cy­
cle. During refresh, the number of wait states will be
determined by the preprogrammed value in the Re­
fresh Wait State Register.

In the simplest configuration, READYO# can be
connected to the READY # input of the 82370 and
the 80376 CPU. This is, however, not always the
case. If external circuitry is to control the READY #
inputs as well, additional logic will be required (see
Application Issues).

6.2.3 WSC(O-1)

These two Wait State Control inputs, together with
the M/IO# input, select one of the three pre-pro­
grammed 8-bit Wait State Registers which deter­
mines the number of wait states to be generated.
The most significant half of the three Wait State
Registers corresponds to memory accesses, the
least significant half to liD accesses. The combina­
tion WSC{0-1) = 11 disables the Wait State Gener­
ator.

INTERNAL WAIT STATE
REQUIREMENT

READYO#

WSCO
WSCI

M/IO#

07 04 03 DO

REGISTER MEMORY 0 I/O 0

SELECT
MEMORY 1 I/O 1 LOGIC

MEMORY 2 I/o 2

(RESERVED) REFRESH ADS#,
READY#

PROGRAMMABLE WAIT STATE
REGISTERS

Figure 6-1. Wait State Generator Block Diagram

4-210

290164-81

inter 82370

6.3 Bus Function

6.3.1 WAIT STATES IN NON-PIPE LINED CYCLE

The timing diagram of two typical non-pipelined cy­
cles with 82370 generated wait states is shown in
Figure 6-2. In this diagram, it is assumed that the
internal registers of the 82370 are not addressed.
During the first T2 state of each bus cycle, the Wait
State Control and the MIIO# inputs are sampled to
determine which Wait State Register (if any) is se­
lected. If the WSC inputs are active (Le. not both are
driven HIGH), the pre-programmed number of wait
states corresponding to the selected Wait State
Register will be requested. This is done by driving
the READYO# output HIGH during the end of each
T2 state.

The WSC (0-1) inputs need only be valid during the
very first T2 state of each non-pipelined cycle. As a
general rule, the WSC inputs are sampled on the
rising edge of the next clock (82384 ClK) after the
last state when ADS# (Address Status) is asserted.

The number of wait states generated depends on
the type of bus cycle, and the number of wait states
requested. The various combinations are discussed
below.

1. Access the 82370 internal registers: 2 to 5 wait
states, depending upon the specific register ad­
dressed. Some back-to-back sequences to the Inter­
rupt Controller will require 7 wait states.

T1 T2 T2

CLK2

CLK

2. Interrupt Acknowledge to the 82370: 5 wait states.

3. Refresh: As programmed in the Refresh Wait
State Register (see Register Set Overview). Note
that if WCS (0-1) = 11, READYO# will stay inac­
tive.

4. Other bus cycles: Depending on WCS (0-1) and
M/IO# inputs, these inputs select a Wait State Reg­
ister in which the number of wait states will be equal
to the pre-programmed wait state count in the regis­
ter plus 1. The Wait State Register selection is de­
fined as follows (Table 6-1).

Table 6-1. Wait State Register Selection

M/IO# WSC(O-1) Register Selected

0 00 WAIT REG 0 (1/0 half)
0 01 WAIT REG 1 (1/0 half)
0 10 WAIT REG 2 (1/0 half)
1 00 WAIT REG 0 (MEM half)
1 01 WAIT REG 1 (MEM half)
1 10 WAIT REG 2 (MEM half)
X 11 Wait State Gen. Disabled

The Wait State Control signals, WSC (0-1), can be
generated with the address decode and the Readl
Write control signals as shown in Figure 6-3.

T1 T2 T2 T2

A(1-23) ~ ____ ~ __ ---+------~----~----~------~----~
1.4/10#

BLE#, BHE# I'-----~-----+-----'I'----~----~-----~---~

WSC(O -1) -H:Hl:Hl~!:[=}-r----+EHm~K=)-t-----+-----+
ADS#

READYO#

TWO WAIT STATES
290164-82

Figure 6-2. Wait States in Non-Pipelined Cycles

4-211

82370

Address Decode ~ .•
W/R#--+~WSC(O-l)

290164-83

Figure 6·3. WSC (0-1) Generation

Note that during HALT and SHUTDOWN, the num­
ber of wait states will depend on the WSC (0-1)
inputs, which will select the memory half of one of
the Wait State Registers (see CPU Reset and Shut­
down Detect).

6.3.2 WAIT STATES IN PIPELINED CYCLES

The timing diagram of two typical pipelined cycles
with 82370 generated wait states is shown in Figure
6-4. Again, in this diagram, it is assumed that the
82370 internal registers are not addressed. As de­
fined in the timing of the 80376 processor, the Ad­
dress (A1-23), Byte Enable (BHE#, BLE#), and
other control signals (M/IO#, ADS#) are asserted
one T-state earlier than in a non-pipelined cycle; i.e.
they are asserted at T2P. Similar to the non-pipe­
lined case, the Wait State Control (WSC) inputs are
sampled in the middle of the state after the last state
the ADS # signal is asserted. Therefore, the WSC
inputs should be asserted during the T1 P state of
each pipelined cycle (which is one T -state earlier
than in the non-pipelined cycle).

T1p T2 T2p

CLK2

ClK

A(l - 23)
M/IOH

BLE#.BHE#

WSC(O-1)

ADS#

READY#

READYOH

ONE WAIT STATE

The number of wait states generated in a pipelined
cycle is selected in a similar manner as in the non­
pipelined case discussed in the previous section.
The only difference here is that the actual number of
wait states generated will be one less than that of
the non-pipelined cycle. This is done automatically
by the Wait State Generator.

6.3.3 EXTENDING AND EARLY TERMINATING
BUS CYCLE

The 82370 allows external logic to either add wait
states or cause early termination of a bus cycle by
controlling the READY # input to the 82370 and the
host processor. A possible configuration is shown in
Figure 6-5.

80376

READY#

EXTERNAL READY#
(EARLY TERMINATION) 82370

~""--I READYO#

L---------I READY#

290164-85

Figure 6·5. External 'READY' Control Logic

Tlp T2 T2 T2p

TWO WAIT STATES
290164-84

Figure 6·4. Wait States in Pipelined Cycles

4-212

inter 82370

The EXT. ROY # (External Ready) signal of Figure 6-
5 allows external devices to cause early termination
of a bus cycle. When this signal is asserted LOW,
the output of the circuit will also go LOW (even
though the READYO# of the 82370 may still be
HIGH). This output is fed to the READY # input of
the 80376 and the 82370 to indicate the completion
of the current bus cycle.

Similarly, the EXT. NOT READY (External Not
Ready) signal is used to delay the READY # input of
the processor and the 82370. As long as this signal
is driven HIGH, the output of the circuit will drive the
READY# input HIGH. This will effectively extend the
duration of a bus cycle. However, it is important to

11 T2 11

ClK2

ClK

note that if the two-level logic is not fast enough to
satisfy the READY # setup time, the OR gate should
be eliminated. Instead, the 82370 Wait State Gener­
ator can be disabled by driving both WSC (0-1)
HIGH. In this case, the addressed memory or 1/0
device should activate the external READY # input
whenever it is ready to terminate the current bus
cycle.

Figures 6-6 and 6-7 show the timing relationships of
the ready signals for the early termination and exten­
sion of the bus cycles. Section 6-7, Application Is­
sues, contains a detailed timing analysis of the ex­
ternal circuit.

T2 T2 T2 Tx

A(1-23) ~ ____ +-____ ~ ____ -+ ______ ~ ____ +-____ ~ ____ ~
1.1/10#

BlE#, BHE# I'----+---...IJI---+----+-----l---"'I'---~

ADS#

READYO#
TWO WAIT STATES

290164-86

Figure 6-6. Early Termination of Bus Cycle By 'READY #'

11 T2 T2 T2 T2 Tx Tx

ClK2

elK

A(l - 23) ir-----+----+----+----f----lit-----+------+
1.1/10#

BlE#, BHE#
ADS#

READY# ~m~XE:m"r-I--r--1,'---~
READYO#

290164-87

Figure 6-7. Extending Bus Cycle by 'READY#'

4-213

intJ 82370

Due to the following .implications, it should be noted
that early termination of bus cycles in which 82370
internal registers are accessed is not recommended.

1. Erroneous data may be read from or written into
the addressed register.

2. The 82370 must be allowed to recover either be­
fore HLDA (Hold Acknowledge) is asserted or before
another bus cycle into an 82370 internal register is
initiated.

The recovery time, in clock periods, equals the re­
maining wait states that were avoided plus 4.

6.4 Register Set Overview

Altogether, there are four 8-bit internal registers as­
sociated with the Wait State Genertor. The port ad­
dress map of these registers is shown below in Ta­
ble 6-2. A detailed description of each follows.

Table 6-2. Register Address Map

Port Address Description

72H Wait State Reg 0 (read/write)
73H Wait State Reg 1 (read/write)
74H Wait State Reg 2 (read/write)
75H Ref. Wait State Reg (read/write)

WAIT STATE REGISTER 0,1,2

These three 8-bit read/write registers are functional­
ly identical. They are used to store the pre-pro­
grammed wait state count. One half of each register
contains the wait state count for I/O accesses while
the other half contains the count for memory ac­
cesses. The total number of wait states generated
will depend on the type of bus cycle. For a non-pipe­
lined cycle, the actual number of wait states request­
ed is equal to the wait state count plus 1. For a
pipelined cycle, the number of wait states will be
equal to the wait state count in the selected register.
Therefore, the Wait State Generator is capable of
generating 1 to 16 wait states in non-pipelined
mode, and 0 to 15 wait states in pipelined mode.

Note that the minimum wait state count in each reg­
ister is O. This is equivalent to 0 wait states for a
pipelined cycle and 1 wait state for a non-pipelined
cycle.

REFRESH WAIT STATE REGISTER

Similar to the Wait State Registers discussed above,
this 4-bit register is used to store the number of wait
states to be generated during a DRAM refresh cycle.

Note that the Refresh Wait State Register is not se­
lected by the WSC inputs. It will automatically be
chosen whenever a DRAM refresh cycle occurs. If
the Wait State Generator is disabled during the re­
fresh cycle (WSC (0-1) = 11), READYO# will stay
inactive and the Refresh Wait State Register is ig­
nored.

6.5 Programming

Using the Wait State Generator is relatively straight­
forward. No special programming sequence is re­
quired. In order to ensure the expected number of
wait states will be generated when a register is se­
lected, the registers to be used must be pro­
grammed after power-up by writing the appropriate
wait state count into each register. Note that upon
hardware reset, all Wait State Registers are initial­
ized with the value FFH, giving the maximum num­
ber of wait stales possible. Also, each register can
be read to check the wait state count previously
stored in the register.

6.6 Register Bit Definition

WAIT STATE REGISTER 0, 1, 2

Port Address Description

72H Wait State Register o (read/write)
73H Wait State Register 1 (read/write)
74H Wait State Register 2 (read/write)

L-___ ----L-+ I/o WAIT

STATE COUNT

'-----........ -+ MEMORY WAIT STATE COUNT

290164-88

REFRESH WAIT STATE REGISTER

Port Address: 75H (Read/Write)

'--------'---+ REFRESH WAIT
STATE COUNT

290164-89

4-214

inter 82370

6.7 Application Issues

6.7.1 EXTERNAL 'READY' CONTROL LOGIC

As mentioned in section 6.3.3, wait state cycles gen­
erated by the 82370 can be terminated early or ex­
tended longer by means of additional external logic
(see Figure 6-5). In order to ensure that the
READY # input timing requirement of the 80376 and
the 82370 is satisfied, special care must be taken
when designing this external control logic. This sec­
tion addresses the design requirements.

A simplified block diagram of the external logic along
with the READY # timing diagram is shown in Figure
6-8. The purpose is to determine the maximum delay

time allowed in the external control logic in order to
satisfy the READY # setup time.

First, it will be assumed that the 80376 is running at
16 MHz (Le. CLK2 is 32 MHz). Therefore, one bus
state (two CLK2 periods) will be equivalent to
62.5 ns. According to the AC specifications of the
82370 the maximum delay time for valid READYO#
Signal 'is 31 ns after the rising edge of CLK2 in the
beginning of T2 (for non-pipe lined cycle) or T2P (for
pipelined cycle). Also, the minimum READY # setup
time of the 80376 and the 82370 should be 19 ns
before the rising edge of CLK2 at the beginning of
the next bus state. This limits the total delay time for
the external READY # control logic to be 12.5 ns
(62.5-31-19) in order to meet the READY# setup
timing requirement.

EXT. READY# EXT. NOT READY

80376-16
82370

READY
READY#

l
CONTROL READYO#

LOGIC

READY#

~-------------A--------------~

CLK2

READYO# -+--------1--''-----+----;---

A = PHI1 + PH12 = 62.5 ns
B = Maximum READYO# Valid Delay = 35 ns
C = READY # Setup Time = 20 ns
D = Maximum Ready Control Logic Delay = A - B - C = 7.5 ns

Figure 6-8. 'READY' Timing Consideration

4-215

290164-90

inter 82370

7.0 DRAM REFRESH CONTROLLER

7.1 Functional Description

The 82370 DRAM Refresh Controller consists of a
24-bit Refresh Address Counter and Refresh Re­
quest logic for DRAM refresh operations (see Figure
7-1). TIMER 1 can be used as a trigger signal to the
DRAM Refresh Request logic. The Refresh Bus Size
can be programmed to be 8- or 16-bit wide. Depend­
ing on the Refresh Bus Size, the Refresh Address
Counter will be incremented with the appropriate val­
ue after every refresh cycle. The internal logic of the
82370 will give the Refresh operation the highest
priority in the bus control arbitration process. Bus
control is not released and re-requested if the 82370
is already a bus master.

7.2 Interface Signals

7.2.1 TOUT1/REF#

The dual function output pin of TIMER 1
(TOUT1/REF#) can be programmed to generate
DRAM Refresh signal. If this feature is enabled, the
rising edge of TIMER 1 output (TOUT1 #) will trigger
the DRAM Refresh Request logic. After some delay
for gaining access of the bus, the 82370 DRAM Con­
troller will generate a DRAM Refresh signal by driv­
ing REF # output lOW. This Signal is cleared after
the refresh cycle has taken place, or by a hardware
reset.

un TO
(lNT ERNAL) DRAM

REFRESH
CONTROLLER

If the DRAM Refresh feature is disabled, the
TOUT1 IREF # output pin is simply the TIMER 1 out­
put. Detailed information of how TIMER 1 operates
is discussed in section 6-Programmable Interval
Timer, and will not be repeated here.

7.3 Bus Function

7.3.1 ARBITRATION

In order to ensure data integrity of the DRAMs, the
82370 gives the DRAM Refresh signal the highest
priority in the arbitration logic. It allows DRAM Re­
fresh to interrupt DMA in progress in order to per­
form the DRAM Refresh cycle. The DMA service will
be resumed after the refresh is done.

In case of a DRAM Refresh during a DMA process,
the cascaded device will be requested to get off the
bus. This is done by de-asserting the EDACK signal.
Once DREQn goes inactive, the 82370 will perform
the refresh operation. Note that the DMA controller
does not completely relinquish the system bus dur­
ing refresh. The Refresh Generator simply "steals"
a bus cycle between DMA accesses.

Figure 7-2 shows the timing diagram of a Refresh
Cycle. Upon expiration of TIMER 1, the 82370 will try
to take control of the system bus by asserting
HOLD. As soon as the 82370 see HlDA go active,
the DRAM Refresh Cycle will be carried out by acti­
vating the REF # Signal as well as the address and
control signals on the system bus (Note that REF #
will not be active until two ClK periods HlDA is as­
serted). The address bus will contain the 24-bit ad-

INTERNAL
DMA

HANDSHAKE DMA
CONTROLLER H EDGE .~

DETECTOR

I 24- BIT ~
ARBITRATION

LOGIC
ADDRESS
COUNTER

I TO DMA

I
CONTROLLER

24- BIT (INTERNAL)
REFRESH

REF#
2-TO-l ADDRESS 1 MUX

Toun
o select TOUn/REF #

f
REFRESH ENABLE (INTERNAL)

290164-91

Figure 7·1. DRAM Refresh Controller

4-216

intJ 82370

dress currently in the Refresh Address Counter. The
control signals are driven the same way as in a
Memory Read cycle. This "read" operation is com­
plete when the READY# signal is driven lOW.
Then, the 82370 will relinquish the bus by de-assert­
ing HOLD. Typically, a Refresh Cycle without wait
states will take five bus states to execute. If "n" wait
states are added, the Refresh Cycle will last for five
plus "n" bus states.

How often the Refresh Generator will initiate a re­
fresh cycle depends on the frequency of ClKIN as
will as TIMER 1 's programmed mode of operation.
For this specific application, TIMER 1 should be pro­
grammed to operate in Mode 2 to generate a con­
stant clock rate. See section 6-Programmable In­
terv~1 Timer for more information on programming
the timer. One DRAM Refresh Cycle will be generat­
ed each time TIMER 1 expires (when TOUT1 chang­
es from lOW to HIGH).

The Wait State Generator can be used to insert wait
states during a refresh cycle. The 82370 will auto­
matically insert the desired number of wait states as
programmed in the Refresh Wait State Register (see
Wait State Generator).

Tx Tx TI

ClK2

ClK

HOLD +-__/1

7.4 Modes of Operation

7.4.1 WORD SIZE AND REFRESH ADDRESS
COUNTER

The 82370 supports 8- and 16-bit refresh cycle. The
bus width during a refresh cycle is programmable
(see Prowamming). The bus size can be pro­
wammed ~Ia the Refresh Control Register (see Reg­
Ister Overview). If the DRAM bus size is 8- or 16-bits
the Refresh Address Counter will be incremented by
1 or 2, respectively.

The Refresh Address Counter is cleared by a hard­
ware reset.

7.5 Register Set Overview

The Refresh Generator has two internal registers to
control its operation. They are the Refresh Control
Register and the Refresh Wait State Register. Their
port address map is shown in Table 7-1 below.

TI T1 T2 Ti

HlDA +-----1-~I_-~

A(1-23),MjIO# ~~~~~~XX~~--t---t==j===);----+ BlE#,DjC#
WjR#,BHE#

TOUT1

REF# +----+---+----1----1
1'---+--.....11

Figure 7-2. 82370 Refresh Cycle

4-217

290164-92

inter 82370

Table 7-1. Register Address Map

Port Address Description

1CH Refresh Control Reg. (read/write)
75H Ref. Wait State Reg. (read/write)

The Refresh Wait State Register is not part of the
Refresh Generator. It is only used to program the
number of wait states to be inserted during a refresh
cycle. This register is discussed in detailed in section
7 (Wait State Generator) and will not be repeated
here.

REFRESH CONTROL REGISTER

This 2-bit register serves two functions. First, it is
used to enable/disable the DRAM Refresh function
output. If disabled, the output of TIMER 1 is simply
used as a general purpose timer. The second func­
tion of this register is to program the DRAM bus size
for the refresh operation. The programmed bus size
also determines how the Refresh Address Counter
will be incremented after each refresh operation.

7.6 Programming

Upon hardware reset, the DRAM Refresh function is
disabled (the Refresh Control Register is cleared).
The following programming steps are needed before
the Refresh Generator can be used. Since the rate
of refresh cycles depends on how TIMER 1 is pro­
grammed, this timer must be initialized with the de-.
sired mode of operation as well as the correct
refresh interval (see Programming Interval Timer).
Whether or not wait states are to be generated dur­
ing a refresh cycle, the Refresh Wait State Register
must also be programmed with the appropriate val­
ue. Then, the DRAM Refresh feature must be en­
abled and the DRAM bus width should be defined.
These can be done in one step by writing the appro-

priate control word into the Refresh Control Register
(see Register Bit Definition). After these steps are
done, the refresh operation will automatically be in­
voked by the Refresh Generator upon expiration of
Timer 1.

In addition to the above programming steps, it
should be noted that after reset, although the
TOUT1/REF# becomes the Time 1 output, the
state of this pin in undefined. This is because the
Timer module has not been initialized yet. Therefore,
if this output is used as a DRAM Refresh signal, this
pin should be disqualified by external logic until the
Refresh function is enabled. One simple solution is
to logically AND this output with HLDA, since HLDA
should not be active after reset.

7.7 Register Bit Definition

REFRESH CONTROL REGISTER

Port Address: 1 CH (Read/Write)

8.0 RELOCATION REGISTER AND
ADDRESS DECODE

8.1 Relocation Register

All the integrated peripheral devices in the 82370
are controlled by a set of internal registers. These
registers span a total of 256 consecutive address
locations (although not all the 256 locations are
used). The 82370 provides a Relocation Register
which allows the user to map this set of internal reg­
isters into either the memory or I/O address space.
The function of the Relocation Register is to define
the base address of the internal register set of the
82370 as well as if the registers are to be memory­
or I/O-mapped. The format of the Relocation Regis­
ter is depicted in Figure 9-1.

MUST BE ZERO
00 REf. DISABLED
01 INTEL RESERVED
10 BUS SIZE = 16
11 BUS SIZE =8

290164-93

4-218

inter 82370

07 06 05 04 03 02 01 DO

FOR I/O MAPPED:AI5-A9
FOR MEMORY MAPPED: A23-A 16

o -I/o MAPPED
I-MEMORY

MAPPED
290164-94

Port Address: 7FH (Read/Write)

Figure 8·1. Relocation Register

Note that the Relocation Register is part of the inter·
nal register set of the 82370. It has a port address of
7FH. Therefore, any time the content of the Reloca­
tion Register is changed, the physical location of this
register will also be moved. Upon reset of the 82370,
the content of the Relocation Register will be
Cleared. This implies that the 82370 will respond to
its 1/0 addresses in the range of OOOOH to OOFFH.

8.1.1 I/O-MAPPED 82370

As shown in the figure, Bit 0 of the Relocation Regis­
ter determines whether the 82370 registers are to be
memory-mapped or 1/0 mapped. When Bit 0 is set
to '0', the 82370 will respond to 1/0 Addresses. Ad­
dress Signals BHE#, BLE#, A1-A7 will be used to
select one of the internal registers to be accessed.
Bit 1 to Bit 7 of the Relocation Register will corre­
spond to A9 to A 15 of the Address bus, respectively.
Together with A8 implied to be '0', A15 to A8 will be
fully decoded by the 82370. The following shows
how the 82370 is mapped into the 1/0 address
space.

Example

Relocation Register = 11001110 (OCEH)

82370 will respond to 1/0 address range from
OCEOOH to OCEFFH.

Therefore, this 1/0 mapping mechanism allows the
82370 internal registers to be located on any even,
contiguous, 256 byte boundary of the system 1/0
space.

8.1.2 MEMORY·MAPPED 82370

When Bit 0 of the Relocation Register is set to '1',
the 82370 will respond to memory addresses. Again"

Address signals BHE#, BLE#, A1-A7 will be used
to select one of the internal registers to be ac­
cessed. Bit 1 to Bit 7 of the Relocation Register will
correspond to A17-A23, respectively. A16 is as­
sumed to be '0', and A8-A15 are ignored. Consider
the following example. '

Example

Relocation Register = 10100111 (OA7H)

The 82370 will respond to memory addresses in
the range of A6XXOOH to A60XXFFH (where 'X' is
don't care).

This scheme implies that the internal registers can
be located in any even, contiguous, 2· *16 byte page
of the memory space.

8.2 Address Decoding

As mentioned previously, the 82370 internal regis­
ters do not occupy the entire contiguous 256 ad­
dress locations. Some of the locations are 'unoccu­
pied'. The 82370 always decodes the lower 8 ad­
dress signals (BHE#, BLE#, A1-A7) to determine if
anyone of its registers is being accessed. If the ad­
dress does not correspond to any of its registers, the
82370 will not respond. This allows external devices
to be located within the 'holes' in the 82370 address
space. Note that there are several unused address­
es reserved for future Intel peripheral devices.

8.3 Chip-Select (CHPSEL#)

The Chip-Select signal (CHPSEL#) will go active
when the 82370 is addressed in a Slave bus

4-219

82370

CLK2

ADS#

82370
NOT ACCESSED

11 T2 Tl

82370
ACCESSED- 2 WAIT STATES

T2 T2 T2

CHPSEL# t==~~~rr--l~~~.u.-+---I----+
READY#

290164-95

Figure 8-2. CHPSEL# Timing

cycle (either read or write), or in an interrupt ac­
knowledge cycle in which the 82370 will drive the
Data Bus. For a given bus cycle, CHPSEL# be­
comes active and valid in the first T2 (in a non-pipe­
lined cycle) or in T1 P (in a pipelined cycle). It will
stay valid until the cycle is terminated by READY #
driven active. As CHPSEL# becomes valid well be­
fore the 82370 drives the Data Bus, it can be used to
control the transceivers that connect the local CPU
bus to the system bus. The timing diagram of
CHPSEL# is shown in Figure 8-2.

9.0 CPU RESET AND SHUTDOWN
DETECT

The 82370 will activate the CPURST signal to reset
the host processor when one of the following condi­
tions occurs:

- 82370 RESET is active;

- 82370 detects a 80376 Shutdown cycle (this fea-
ture can be disabled);

- CPURST software command is issued to 80376.

Whenever the CPURST signal is activated, . the
82370 will reset its own internal Slave-Bus state ma­
chine.

9.1 Hardware Reset

Following a hardware reset, the 82370 will assert its
CPURST output to reset the host processor. This
output will stay active for as long as the RESET input
is active. During a hardware reset, the 82370 internal
registers will be initialized as defined in the corre-
sponding functional descriptions. .

9.2 Software Reset

CPURST can be generated by writing the following
bit pattern into 82370 register location 64H.

07 DO
1111XXXO

The Write operation into this port is considered as
an 82370 access and the internal Wait State Gener­
ator will automatically determine the required num­
ber of wait states. The CPURST will be active follow­
ing the completion of the Write cycle to this port.
This signal will last for 62 CLK2 periods. The 82370
should not be accessed until the CPURST is deacti­
vated.

This internal port is Write-Only and the 82370 will
not respond to a Read operation to this location.
Also, during a software reset command, the 82370
will reset its Slave-Bus state machine. However, its
internal registers remain unchanged. This allows the
operating system to distinguish a 'war~' reset by
reading any 82370 internal register previously pro­
grammed for a non-default value. The Diagnostic
registers can be used for this purpose (see Internal
Control and Diagnostic Ports).

9.3 Shutdown Detect

The 82370 is constantly monitoring the Bus Cycle
Definition signals ·(M/IO#, D/C#, W/R#) and is
able to detect when the 80376 is in a Shutdown bus
cycle. Upon detection of a processor shutdown, the
82370 will activate the CPURST output for 62 CLK2
periods to reset lhe host processor. This signal is
generated after the Shutdown cycle is· terminated by
the READY # signal.

4-220

82370

Although the 82370 Wait State Generator will not
automatically respond to a Shutdown (or Halt) cycle,
the Wait State Control inputs (WSCO, WSC1) can be
u'sed to determine the number of wait states in the
same manner as other non-82370 bus cycles.

This Shutdown Detect feature can be enabled or dis­
abled by writing a control bit in the Internal Control
Port at address 61 H (see Internal Control andDiag­
nostic Ports). This feature is disabled upon a hard­
ware reset of the 82370. As in the case of Software
Reset, the 82370 will reset its Slave-Bus state ma­
chine but will not change any of its internal register
contents.

10.0 INTERNAL CONTROL AND
DIAGNOSTIC PORTS

10.1 Internal Control Port

The format of the Internal Control Port of the 82370
is shown in Figure 10-1. This Control Port is used to
enable/disable the Processor Shutdown Detect
mechanism as well as controlling the Gate inputs of
the Timer 2 and 3. Note that this is a Write-Only port.
Therefore, the 82370 will not respond to a read op­
eration to this port. Upon hardware reset, this port
will be cleared; Le" the Shutdown Detect feature
and the Gate inputs of Timer 2 and 3 are disabled.

Port Address: 61 H (Write only)

10.2 Diagnostic Ports

Two 8-bit read/write Diagnostic Ports are provided
in the 82370. These are two storage registers and
have no effect on the operation of the 82370. They
can be used to store checkpoint data or error codes
in the power-on sequence and in the diagnostic
service routines. As mentioned in the CPU RESET
AND SHUTDOWN DETECT section, these Diagnos­
tic Ports can be used to distinguish between 'cold'
and 'warm' reset. Upon hardware reset, both Diag­
nostic Ports are cleared, The address map of these
Diagnostic Ports is shown in Figure 10-2.

Port Address

Diagnostic Port 1 (Read/Write) 80H
Diagnostic Port 2 (Read/Write) 88H

Figure 10·2. Address Map of Diagnostic Ports

11.0 INTEL RESERVED I/O PORTS

There are nineteen I/O ports in the 82370 address
space which are reserved for Intel future peripheral
device use only. Their address locations are: 10H,
12H, 14H, 16H, 2AH, 3DH, 3EH, 45H, 46H, 76H,
77H, 7DH, 7EH, CCH, CDH, DOH, D2H, D4H, and
D6H, These addresses should not be used in the
system since the 82370 will respond to read/write
operations to these locations and bus contention
may occur if any peripheral is assigned to the same
address location.

07 06 05 04 03 02 01 00

290164-96

Figure 10·1. Internal Control Port

4-221

82370

12.0 PACKAGE THERMAL
SPECIFICATIONS

calculated from the 0jc and 0ja from the following
equations:

TJ = Tc. + P*OjC

TA= Tj - P*Oja

Tc = Ta + P*[Oja - 0jd

The intel 82370 Integrated System Peripheral is
specified for operation when case temperature is
within the range of DoC to 78°C for the ceramic
132-pin PGA package, and 68°C for the 1 ~O-pin
plastic package. The case temperature may be mea­
sured in any environment, to determine whether the
82370 is within specified operating range. The case
temperature should be measured at the center of
the top surface opposite the pins.

The ambient temperature is guaranteed as long as
T c is not violated. The ambient temperature can be

Values for 0ja and 0jc are given in Table 12.1 for the
100-lead fine pitch. 0ja is given at various airflows.
Table 12.2 shows the maximum Ta allowable (with­
out exceeding T d at various airflows. Note that T a
can be improved further by attaching "fins" or a
"heat sink" to the package. P is calculated using the
maximum hot Icc.

Table 12.1 82370 Package Thermal Characteristics
Thermal Resistances CC/Watt) Ole and 0la

I I I 3 I 3 I
Package Ole

0ja Versus Airflow-ft3/min (m3/sec)

0 200 400 600 800 1000
(O) (1.01) (2.03) (3.04) (4.06) (S.07)

1 DOL Fine Pitch 7 33 27 24 21 18 17

132L PGA 2 21 17 14 12 11 10

Table 12.282370 Maximum Allowable Ambient
Temperature at Various Airflows

Package Ole

1 DOL Fine Pitch 7

132L PGA 2

1 OOL PQFP Pkg:
Te ~ Ta + P'(Bja - Bjd
Te ~ 63 + 220 mA(33 - 7)
T e ~. 63 + 220 mA(26)
Te ~ 63 + 5.72
Te ~ 68.7

I I I 3 I 3 I
T a{c) Versus Airflow-ft3/min (m3/sec:)

0
(O)

63

74

200 400 600 800
(1.01) (2.03) (3.04) (4.06)

74 79 85

83 88 93

132L PGA Pkg:
Te ~ Ta + P'(Bja - Bjd
Te ~ 74 + 220 mA(21 - 2)
Te ~ 74 + 220 mA(19)
Te ~ 74 + 4.18
Te ~ 78.2

4-222

91

97

1000
(S.07)

92

99

infef 82370

13.0 ELECTRICAL SPECIFICATIONS

82370 D.C. Specifications Functional Operating Range:
Vee = 5.0V ± 1 0%; TeASE = O'C to 78'C for 132-pin PGA, O'C to 68'C for 100-pin plastic

Symbol Parameter Description Min Max Units Notes

VIL Input Low Voltage -0.3 0.8 V (Note 1)

VIH Input High Voltage 2.0 Vee + 0.3 V

VILe CLK2 Input Low Voltage -0.3 0.8 V (Note 1)

VI He CLK2 Input High Voltage Vee - 0.8 Vee + 0.3 V

VOL Output Low Voltage
IOL = 4 mA: 0.45 V

A1-23, 00'-15, BHE#, BLE#
IOL = 5 mA: 0.45 V

All Others

VOH Output High Voltage

IOH = -1 mA A23-A1, 015-00, BHE#, BLE# 2.4 V (Note 5)

IOH = -0.2mA A23-A1, 015-00, BHE#, BLE# Vee - 0.5 V (Note 5)

IOH = -0.9mA All Others 2.4 V (Note 5)

IOH = -0.18 mA All Others Vee - 0.5 V (Note 5)

III Input Leakage Current ±15 /-LA
All Inputs Except:

IRQ11 #-IRQ23#
EOP#, TOUT2/IRQ3#
OREQ4/IRQ9#

ILl1 Input Leakage Current 10 -300 /-LA 0< VIN < Vee
Inputs: (Note 3)

IRQ11 # -IRQ23#
EOP#, TOUT2/1RQ3
OREQ4/1RQ9

ILO Output Leakage Current ±15 /-LA 0< VIN < Vee

lee Supply Current (CLK2 = 32 MHz) 220 mA (Note 4)

CI Input Capacitance 12 pF (Note 2)

CeLK CLK2 Input Capacitance 20 pF (Note 2)

NOTES:
1. Minimum value is not 100% tested.
2. fc = 1 MHz; sampled only.
3. These pins have weak internal pull ups. They sould not be left floating.
4. Icc is specified with inputs driven to CMOS levels, and outputs driving CMOS loads. Icc may be higher if inputs are driven
to TTL levels, or if outputs are driving TTL loads.
5. Tested at the minimum operating frequency of the part.

4-223

82370

CLK2 [2V

-A·

MIN MAX

3.0V~~E]]~ VALID VALID
OUTPUT" 1.5V 1.5V OUTPUT "+1

OV

3.0V '""'~--+--_"""~

LEGEND:
A-Maximum output delay specification
8-Minimum output delay specification
C-Minimum input setup specification
D-Minimum input hold specification

290164-97

Figure 13-1. Drive Levels and Measurement Points forA.C. Specification

82370 A.C. Specifications These A.C. timings are tested at 1.5V thresholds, except as noted.
Functional Operating Range: Vee = 5.0V ± 1 0%; TeASE = O°C to 7BoCfor 132-pin PGA, O°C to 6BoC for
100·pin plastic

Symbol Parameter Description Min Max Units Notes

Operating Frequency 1 I (t1 a x 2) 4 16 .. MHz

t1 CLK2 Period 31 125 ns

t2a CLK2 High Time 9 ns At2.0V
t2b CLK2 High Time 5 ns At Vee - O.BV
t3a CLK2 Low Time . 9 ns At2.0V
t3b CLK2 Low Time 7 ns At O.BV
t4 . CLK2 Fall Time 7 ns Vee - O.BV to O.BV
t5 CLK2 Rise Time 7 ns O.BV to Vee - O.BV

t6 A1-A23, BHE#, BLE# 4 36 ns CL = 120 pF
EDACKO-EDACK2 Valid Delay

t7 A1-A23, BHE#, BLE# 4 40 ns (Note 1)
EDACKO-EDACK3 Float Delay

tB A1-A23, BHE#, BLE# Setup Time 6 ns
t9 A 1-A23, BHE #, BLE # Hold Time 4 ns

t10 W/R#, M/IO#, D/C# Valid Delay 4 33 ns CL = 75 pF
ti1 W/R#, M/IO#, D/C# Float Delay 4 35 ns (Note 1)

4-224

inter 82370

82370 A.C. Specifications These A.C. timings are tested at 1.5V thresholds, except as noted.
Functional Operating Range: V CC = 5.0V ± 10%; T CASE = O°C to 78°C for 132-pin PGA, O°C to 68°C for
100-pin plastic (Continued)

Symbol Parameter Description Min Max Units Notes

t12 W/R#, M/IO#, O/C# Setup Time 6 ns
t13 W/R#, MIIO#, O/C# Hold Time 4 ns

t14 AOS# Valid Delay 6 33 ns CL = 50 pF
t15 AOS# Float Delay 4 35 ns (Note 1)

t16 AOS# Setup Time 21 ns
t17 AOS# Hold Time 4 ns

t18 Slave Mode 00-015 Read Valid 3 46 ns CL = 120 pF
t19 Slave Mode 00-015 Read Float 6 35 ns (Note 1)

t20 Slave Mode 00-015 Write Setup 31 ns
t21 Slave Mode 00-015 Write Hold 26 ns

t22 Master Mode 00-015 Write Valid 4 40 ns CL = 120 pF
t23 Master Mode 00-015 Write Float 4 35 ns (Note 1)

t24 Master Mode 00-015 Read Setup 8 ns
t25 Master Mode 00-015 Read Hold 6 ns

t26 READY # Setup Time 19 ns
t27 READY # Hold Time 4 ns

t28 WSCO-WSC1 Setup Time 6 ns
t29 WSCO-WSC1 Hold Time 21 ns

t30 RESET Setup Time 13 ns
t31 RESET Hold Time 4 ns

t32 READYO# Valid Delay 4 31 ns CL = 25 pF

t33 CPURST Valid Delay (Falling Edge Only) 2 18 ns CL = 50 pF

t34 HOLD Valid Delay 5 33 ns CL = 100 pF

t35 HLDA Setup Time 21 ns
t36 .HLDA Hold Time 6 ns

t37a EOP# Setup (Synchronous) 21 ns
t38a EOP# Hold (Synchronous) 6 ns

t37b EOP# Setup (Asynchronous) 11 ns
t38b EOP# Hold (Asynchronous) 11 ns

t39 EOP# Valid Delay (Falling Edge Only) 5 38 ns CL = 100 pF
t40 EOP# Float Delay 5 40 ns (Note 1)

t41a DREQ Setup (Synchronous) 21 ns
t42a DREQ Hold (Synchronous) 4 ns

t41b DREQ Setup (Asynchronous) 11 ns
t42b DREQ Hold (Asynchronous) 11 ns

t43 INT Valid Delay from IRQn 500 ns

t44 NA# Setup Time 5 ns
t45 NA# Hold Time 15 ns

4-225

82370

82370 A.C. Specifications These A.C. timings are tested at 1.5V thresholds, except as noted.
Functional Operating Range: Vcc = 5.0V ± 10%; T CASE = O°C to 78°C for 132-pin PGA, O°C to 68°C for
100-pin plastic (Continued)

Symbol Parameter Description Min Max Units Notes

t46 ClKIN Frequency DC 10 MHz
t47 ClKIN High Time 30 ns 2.0V
t48 ClKIN low Time 50 ns 0.8V
t49 ClKIN Rise Time 10 ns 0.8Vto 3.7V
t50 ClKIN Fall Time 10 ns 3.7V to 0.8V

TOUT1 # IREF # Valid Delay
t51 from ClK2 (Refresh) 4 36 ns CL = 120 pF
t52 from ClKIN (Timer) 3 93 ns CL = 120 pF

t53 TOUT2# Valid Delay 3 93 ns CL = 120 pf
(from ClKIN, Falling Edge Only)

t54 TOUT2 # Float Delay 3 36 ns (Note 1)

t55 TOUT3 # Valid Delay 3 93 ns CL = 120 pF
(from ClKIN)

t56 CHPSEl# Valid Delay 1 35 ns CL = 25 pF

NOTE:
1. Float condition occurs when the maximum output current becomes less than ILO in magnitude. Float delay is not tested.
For testing purposes, the float condition occurs when the dynamic output driven voltage changes with current loads.

82370
OUTPUT~

. ~CL

CL indicates all parasitic capacitances.
290164-98

Figure 13-2. A.C. Test Load

290164-99

Figure 13-3

4-226

82370

INPUT 5ET- UP AND HOLD TIMING (CONT.)

Tx
PHil PHI2 PHil PHI2 PHil PHI2

CLK2

NA#

W5C(O-I)

PHil PHI2 PHil PHI2 PHil PHI2

CLK2

A(I-A23). BHE#. BLE# --------i==:t========1==1-----
W/R#. M/IO#. O/C# --------t==t:==========1-----

REAOY# --------i==:t==}--------------
A05#----------1==1==~----------------

HLOA---------------1==:t==)------------------------
0(0-15) (OMA Read) ---------i==t==}--------------
0(0-15) (CPU Write) --------i==!==}~-------------

EOP#------------i==:t==}--------------------
OREQ(O-7)------------{==t==}-----------------------

290164-AO

Figure 13-4. Input Setup and Hold Timing

4-227

82370

Tx

, , PHI x I PHI2 I PHil I PHIZ

CLK2 ~,'

RESET --------

Hold Setup

Tx
, PHI2 I PHil I PHI2 ,

CLK2

r- T33MIN.
CPURST -----------~~~

i- T33 MAX.
290164-Al

Figure 13-5. Reset Timing

Tx Tx Tx

CLK2 --J ~~~
A 1 - 23. BHE#. BLE#

A 1 - 23. BHE#. BLE#
EDACK(O- 2)

A 1 - 23. BHE#. BLE#

ADS#

ADS#

ADS#

HOLD

CHPSEL#

--

!---I~
J(XX
1-

T6Mox
-. T6Mln
1-
~XXX -

T6Mox
-. T7Mln
1-:xxx
1-

::::IT14Mln
T7Mox

XXXX -
T14Max

-. T14Mln
1-
:XXX
1-

T14Max
-. T15Mln 1m-
1-

T15Max
-. T34Mln

'1///

I r-T56~~n
T34Mox

i\.\\\\\.
II

,I T56Max

Figure 13-6. Address Output Delays

4-228

'1////

290164-A2

82370

290164-A3

Figure 13·7. Data Bus Output Oelays

CLK2

W/R#. M/IO#.D/C# -----------j-....I]~~I'I'_-------------

W/R#. M/IO#.D/C# :=========l~~~~-----~-------

W/R#. M/IO#.D/c# ----------+-1~~*==============

READYO# ----------~~.IJ'I~LYf'--------------

EOP#

EOP#

REF# ___________________ -j-....I]~~I'I'_--------------------

290164-A4

Figure 13-8. Control Output Oelays

4-229

inter 82370

ClKIN

TOUT1 __________________ ~,~~~-----------------------------------

TOUT2# ------------------h~'"

TOUT2# ------------------t:~__J

TOUT3# --------t~~~:s.:;;_-------------
290164-A5

Figure 13-9. Timer Output Delays

14.0 REVISION HISTORY

This 82370 data sheet, version -002, contains updates and improvements to previous versions. A revision
summary is listed here for your convenience.

The sections significantly revised since version -001 are:

- Section 12.0 Electrical Characteristics renumbered Section 13.0.

- Section 12.0 Package Thermal Specifications added.

- Section 13.0 Electrical Specifications updated T CASE, VOH, Icc, T 33, T 39, Figure 13.6.
- Appendix C, Programming the 82370 Interrupt Controllers, added.

- Appendix 0, System Notes, added.

- Section 14.0 Revision History added.

4-230

inter 82370

APPENDIX A
PORTS LISTED BY ADDRESS

Port Address
Description (HEX)

00 Read/Write DMA Channel 0 Target Address, AO-A 15
01 Read/Write DMA Channel 0 Byte Count, BO- B 15
02 Read/Write DMA Channel 1 Target Address, AO-A 15
03 Read/Write DMA Channel 1 Byte Count, BO-B15
04 Read/Write DMA Channel 2 Target Address, AO-A 15
05 Read/Write DMA Channel 2 Byte Count, BO-B15
06 Read/Write DMA Channel 3 Target Address, AO-A 15
07 Read/Write DMA Channel 3 Byte Count, BO-B15
08 Read/Write DMA Channel 0-3 Status/Command I Register
09 Read/Write DMA Channel 0-3 Software Request Register
OA Write DMA Channel 0-3 Set-Reset Mask Register
OB Write DMA Channel 0-3 Mode Register I
OC Write Clear Byte-Pointer FF
00 Write DMA Master-Clear
OE Write DMA Channel 0-3 Clear Mask Register
OF Read/Write DMA Channel 0-3 Mask Register
10 Intel Reserved
11 Read/Write DMA Channel 0 Byte Count, B16-B23
12 Intel Reserved
13 Read/Write DMA Channel 1 Byte Count, B16-B23
14 Intel Reserved
15 Read/Write DMA Channel 2 Byte Count, B16-B23
16 Intel Reserved
17 Read/Write DMA Channel 3 Byte Count, B16-B23
18 Write DMA Channel 0-3 Bus Size Register
19 Read/Write DMA Channel 0-3 Chaining Register
1A Write DMA Channel 0-3 Command Register II
1B Write DMA Channel 0-3 Mode Register II
1C Read/Write Refresh Control Register
1E Reset Software Request Interrupt
20 Write Bank B ICW1, DCW2 or DCW3

Read Bank B Poll, Interrupt Request or In-Service
Status Register

21 Write Bank B ICW2, ICW3, ICW4 or DCW1
Read Bank B Interrupt Mask Register

22 Read Bank B ICW2
28 Read/Write IR08 Vector Register
29 Read/Write IR09 Vector Register
2A Reserved

4-231

82370

Port Address Description (HEX)

2B Read/Write IRQ11 Vector Register
2C Read/Write IRQ12 Vector Register
20 Read/Write IRQ13 Vector Register
2E Read/Write IRQ14 Vector Register
2F Read/Write IRQ15 Vector Register
30 Write Bank A ICW1, OCW2 or OCW3

Read Bank A Poll, Interrupt Request or In-Service
Status Register

31 Write Bank A ICW2, ICW3, ICW4 or OCW1
Read Bank A Interrupt Mask Register

32 Read Bank A ICW2
38 Read/Write IRQO Vector Register
39 Read/Write IRQ1 Vector Register
3A Read/Write IRQ1.5 Vector Register
3B Read/Write IRQ3 Vector Register
3C Read/Write IRQ4 Vector Register

.30 Reserved
3E Reserved
3F Read/Write IRQ7Vector Register
40 Read/Write Counter 0 Register
41 Read/Write Counter 1 Register
42 Read/Write Counter 2 Register
43 Write Control Word Register I-Counter 0, 1, 2
44 Read/Write Counter 3 Register
45 Reserved
46 Reserved
47 Write Word Register II-Counter 3
61 Write Internal Control Port
64 Write CPU Reset Register (Data-1111 XXXOH)
72 Read/Write Wait State Register 0
73 Read/Write Wait State Register 1
74 Read/Write Wait State Register 2
75 Read/Write ·Refresh Wait State Register
76 Reserved
77 Reserved
70 Reserved
7E Reserved
7F Read/Write Relocation Register
80 Read/Write Internal Diagnostic Port 0
81 Read/Write DMA Channel 2 Target Address, A 16-A23
82 Read/Write DMA Channel 3 Target Address, A 16-A23
83 Read/Write DMA Channel 1 Target Address, A16-A23
87 Read/Write DMA Channel 0 Target Address, A16-A23
88 Read/Write Internal Diagnostic Port 1
89 Read/Write DMA Channel 6 Target Address, A 16-A23
8A Read/Write DMA Channel 7 Target Address, A 16-A23
8B Read/Write DMA Chanliel 5 Target Address, A 16-A23
8F Read/Write DMA Channel 4 Target Address, A16-A23

4-232

intJ 82370

Port Address
Description

(HEX)

90 Read/Write OMA Channel 0 Requester Address, AO-A 15
91 Read/Write OMA Channel 0 Requester Address, A 16-A23
92 Read/Write OMA Channel 1 Requester Address, AO-A 15
93 Read/Write OMA Channel 1 Requester Address, A 16-A23
94 Read/Write OMA Channel 2 Requester Address, AO-A 15
95 Read/Write OMA Channel 2 Requester Address, A 16-A23
96 Read/Write OMA Channel 3 Requester Address, AO-A 15
97 Read/Write DMA Channel 3 Requester Address, A 16-A23
98 Read/Write OMA Channel 4 Requester Address, AO-A 15
99 Read/Write DMA Channel 4 Requester Address, A 16-A23
9A Read/Write DMA Channel 5 Requester Address, AO-A 15
9B Read/Write OMA Channel 5 Requester Address, A16-A23
9C Read/Write DMA Channel 6 Requester Address, AO-A 15
90 Read/Write OMA Channel 6 Requester Address, A16-A23
9E Read/Write DMA Channel 7 Requester Address, AO-A 15
9F Read/Write OMA Channel 7 Requester Address, A16-A23
AO Write Bank C ICW1, OCW2 or OCW3

Read Bank C Poll, Interrupt Request or In-Service
Status Register

A1 Write Bank C ICW2, ICW3, ICW4 or OCW1
Read Bank C Interrupt Mask Register

A2 Read Bank C ICW2
A8 Read/Write IRQ16 Vector Register
A9 Read/Write IRQ17 Vector Register
AA Read/Write IRQ18 Vector Register
AB Read/Write IRQ19 Vector Register
AC Read/Write IRQ20 Vector Register
AD Read/Write IRQ21 Vector Register
AE Read/Write IRQ22 Vector Register
AF Read/Write IRQ23 Vector Register
CO Read/Write OMA Channel 4 Target Address, AO-A15
C1 Read/Write OMA Channel 4 Byte Count, BO-B15
C2 Read/Write OMA Channel 5 Target Address, AO-A15
C3 Read/Write OMA Channel 5 Byte Count, BO-B15
C4 Read/Write OMA Channel 6 Target Address, AO-A15
C5 Read/Write OMA Channel 6 Byte Count, BO-B15
C6 Read/Write DMA Channel 7 Target Address, AO-A 15
C7 Read/Write OMA Channel 7 Byte Count, BO-B15
C8 Read DMA Channel 4-7 Status/Command I Register
C9 Read/Write DMA Channel 4-7 Software Request Register
CA Write DMA Channel 4-7 Set-Reset Mask Register
CB Write OMA Channel 4-7 Mode Register I
CC Reserved
CD Reserved
CE Write DMA Channel 4-7 Clear Mask Register
CF Read/Write DMA Channel 4-7 Mask Register
DO Intel Reserved
01 Read/Write OMA Channel 4 Byte Count, B16-B23
02 Intel Reserved
03 Read/Write OMA Channel 5 Byte Count, B16-B23

4-233

inter 82370

Port Address . Description
(HEX)

04 Intel Reserved
05 Read/Write OMA Channel 6 Byte Count, B16-B23
06 Intel Reserved
07 Read/Write OMA Channel 7 Byte Count, B16-B23
08 Write OMA Channel 4-7 Bus Size Register
09 Read/Write OMA Channel 4-7 Chaining Register
OA Write OMA Channel 4-7 Command Register II
OB Write OMA Channel 4-7 Mode Register II

4-234

inter 82370

APPENDIX B
PORTS LISTED BY FUNCTION

Port Address
Description

(HEX)

DMA CONTROLLER

00 Write DMA Master-Clear
OC Write DMA Clear Byte-Pointer FF

08 Read/Write DMA Channel 0-3 Status/Command I Register
C8 Read/Write DMA Channel 4-7 Status/Command I Register
1A Write DMA Channel 0-3 Command Register II
DA Write DMA Channel 4-7 Command Register II

OB Write DMA Channel 0-3 Mode Register I
CB Write DMA Channel 4-7 Mode Register I
1B Write DMA Channel 0-3 Mode Register II
DB Write DMA Channel 4-7 Mode Register II

09 Read/Write DMA Channel 0-3 Software Request Register
C9 Read/Write DMA Channel 4-7 Software Request Register
1E Reset Software Request Interrupt

OE Write DMA Channel 0-3 Clear Mask Register
CE Write DMA Channel 4-7 Clear Mask Register
OF Read/Write DMA Channel 0-3 Mask Register
CF Read/Write DMA Channel 4-7 Mask Register
OA Write DMA Channel 0-3 Set-Reset Mask Register
CA Write DMA Channel 4-7 Set-Reset Mask Register

18 Write DMA Channel 0-3 Bus Size Register
08 Write DMA Channel 4-7 Bus Size Register

19 Read/Write DMA Channel 0-3 Chaining Register
09 Read/Write DMA Channel 4-7 Chaining Register

00 Read/Write DMA Channel 0 Target Address, AO-A 15
87 Read/Write DMA Channel 0 Target Address, A16-A23
01 Read/Writs DMA Channel 0 Byte Count, BO-B15
11 Read/Write DMA Channel 0 Byte Count, B16-B23
90 Read/Write DMA Channel 0 Requester Address, AO-A 15
91 Read/Write DMA Channel 0 Requester Address, A 16-A23

4-235

intJ 82370

Port Address Description (HEX)

DMA CONTROLLER (Continued)

02 Read/Write OMA Channel 1 Target Address, AO-A15
83 Read/Write OMA Channel 1 Target Address, A16-A23
03 Read/Write OMA Channel 1 8yte Count, 80-815
13 Read/Write OMA Channel 1 8yte Count, 816-823
92 Read/Write OMA Channel 1 Requester Address, AO-A 15
93 Read/Write OMA Channel 1 Requester Address, A 16-A23

04 Read/Write OMA Channel 2 Target Address, AO-A15
81 Read/Write OMA Channel 2 Target Address, A 16-A23
05 Read/Write OMA Channel 2 8yte Count, 80-815
15 Read/Write OMA Channel 2 8yte Count, 816-823

.94 Read/Write OMA Channel 2 Requester Address, AO-A 15
95 Read/Write OMA Channel 2 Requester Address, A 16-A23

06 Read/Write OMA Channel 3 Target Address, AO-A 15
82 Read/Write OMA Channel 3 Target Address, A16-A23
07 Read/Write OMA Channel 3 8yte Count, 80-815
17 Read/Write OMA Channel 3 8yte Count, 816-823
96 Read/Write OMA Channel 3 Requester Address, AO-A15
97 Read/Write OMA Channel 3 Requester Address, A 16-A23

CO Read/Write OMA Channel 4 Target Address, AO-A 15
8F Read/Write OMA Channel 4 Target Address, A 16-A23
C1 Read/Write OMA Channel 4 8yte Count, 80-815
01 Read/Write OMA Channel 4 8yte Count, 816-823
98 Read/Write OMA Channel 4 Requester Address, AO-A 15
99 Read/Write OMA Channel 4 Requester Address, A16-A23

C2 Read/Write OMA Channel 5 Target Address, AO-A 15
88 Read/Write OMA Channel 5 Target Address, A 16-A23
C3 Read/Write OMA Channel 5 8yte Count, 80-815
03 Read/Write OMA Channel 5 8yte Count, 816-823
9A Read/Write OMA Channel 5 Requester Address, AO-A 15
98 Read/Write OMA Channel 5 Requester Address, A16-A23

C4 Read/Write OMA Channel 6 Target Address, AO-A 15
89 Read/Write OMA Channel 6 Target Address, A 16-A23
C5 Read/Write OMA Channel 6 8yte Count, 80-815
05 Read/Write OMA Channel 6 8yte Count, 816-823
9C Read/Write OMA Channel 6 Requester Address, AO-A 15
90 Read/Write OMA Channel 6 Requester Address, A16-A23

C6 Read/Write OMA Channel 7 Target Address, AO-A 15
8A Read/Write OMA Channel 7 Target Address, A 16-A23
C7 Read/Write OMA Channel 7 8yte Count, 80-815
07 Read/Write OMA Channel 7 8yte Count, 816-823
9E Read/Write OMA Channel 7 Requester Address, AO-A 15
9F Read/Write OMA Channel 7 Requester Address, A 16-A23

4-236

intJ 82370

Port Address
Description

(HEX)

INTERRUPT CONTROLLER

20 Write Bank B ICW1, OCW2 or OCW3
Read Bank B Poll, Interrupt Request or In-Service
Status Register

21 Write Bank B ICW2, ICW3, ICW4 or OCW1
Read Bank B Interrupt Mask Register

22 Read Bank B ICW2
28 Read/Write IRQ8 Vector Register
29 Read/Write IRQ9 Vector Register
2A Reserved
2B Read/Write IRQ11 Vector Register
2C Read/Write IRQ12 Vector Register
2D Read/Write IRQ13 Vector Register
2E Read/Write IRQ14 Vector Register
2F Read/Write IRQ15 Vector Register

AO Write Bank C ICW1, OCW2 or OCW3
Read Bank C Poll, Interrupt Request or In-Service
Status Register

A1 Write Bank C ICW2, ICW3, ICW4 or OCW1
Read Bank C Interrupt Mask Register

A2 Read Bank C ICW2
A8 Read/Write IRQ16 Vector Register
A9 Read/Write IRQ17 Vector Register
AA Read/Write IRQ18 Vector Register
AB Read/Write IRQ19 Vector Register
AC Read/Write IRQ20 Vector Register
AD Read/Write IRQ21 Vector Register
AE Read/Write IRQ22 Vector Register
AF Read/Write IRQ23 Vector Register

30 Write Bank A ICW1, OCW2 or OCW3
Read Bank A Poll, Interrupt Request or In-Service
Status Register

31 Write Bank A ICW2, ICW3, ICW4 or OCW1
Read Bank A Interrupt Mask Register

32 Read Bank A ICW2
38 Read/Write IRQO Vector Register
39 Read/Write IRQ1 Vector Register
3A Read/Write IRQ1.5 Vector Register
3B Read/Write IRQ3 Vector Register
3C Read/Write IRQ4 Vector Register
3D Reserved
3E Reserved
3F Read/Write IRQ7 Vector Register

4-237

Intel 82370

Port Address
Description

(HEX)

PROGRAMMABLE INTERVAL TIMER

40 Read/Write Counter 0 Register
41 Read/Write Counter 1 Register
42 Read/Write Counter 2 Register
43 Write Control Word Register I-Counter 0, 1, 2
44 Read/Write Counter 3 Register
47 Write Word Register II-Counter 3

CPU RESET

64 Write CPU Reset Register (Data-1111 XXXOH)

WAIT STATE GENERATOR

72 Read/Write Wait State Register 0
73 Read/Write Wait State Register 1
74 Read/Write Wait State Register 2
75 Read/Write Refresh Wait State Register

DRAM REFRESH CONTROLLER

1C Read/Write Refresh Control Register

INTERNAL CONTROL AND DIAGNOSTIC !;,ORTS

61 Write Internal Control Port
80 Read/Write Internal Diagnostic Port 0
88 Read/Write Internal Diagnostic Port 1

RELOCATION REGISTER

7F Read/Write Relocation Register

INTEL RESERVED PORTS

10 Reserved
12 Reserved
14 Reserved
16 Reserved
2A Reserved
3D Reserved
3E Reserved
45 Reserved
46 Reserved
76 Reserved
77 Reserved
7D Reserved
7E Reserved
CC Reserved
CD Reserved
DO Reserved
D2 Reserved
D4 Reserved
D6 Reserved

4-238

82370

APPENDIX C
PROGRAMMING THE 82370 INTERRUPT CONTROLLERS

This Appendix describes two methods of programming and initializing the Interrupt Controllers of the 82370. A
simple interrupt service routine is also shown which provides compatibility with the 82C59 Interrupt Controller.

The two methods of programming the 8237° Interrupt Controllers are needed to provide simple initialization
procedures in different software environments. For new applications, a simple initialization and programming
sequence can be used. For PC-DOS or other applications which expect 8259s, an interrupt handler for
initialization traps must be provided. Once the handler is in place, all three 82370 Interrupt Controller banks
can be programmed or initialized in the same manner as an 8259.

The ICW2 interrupt is generated by the 82370 when writing the ICW2 command to any of the interrupt
controller banks. This interrupt is supplied to provide compatibility to existing code that expects to be program­
ming 82C59s. The ICW2 value is stored in the ICW2 register of the associated bank, but is ignored by the
controller. It is the responsibility of the ICW2 interrupt handler to read the ICW2 register and use its value to
program the individual vector registers accordingly.

NEW APPLICATIONS

New applications do not generally require compatibility with previous code, or at least the code is usually easily
modifiable. If the application fits this description, then the ICW2 interrupt can be ignored. This is done by
initializing the interrupt controller as necessary, and before enabling CPU interrupts, removing the ICW2
interrupt request by reading the ICW2 register. Listing 1 shows the code for doing this for bank A. The same
procedure can be used for the other banks.

4-239

Intel 82370

Listing 1.
Initialization of an 82370 Interrupt Controller Bank

Without ICW2 Interrupts

cli ;disable all interrupts

;initialize controller
mov al,ICWl
out 30h,al
mov al,ICW2
out 31h,al
mov al,ICW3
out 31h,al
mov al,ICW4
out 31h,al

mov al,BANK_A_MASK
out 31h,al

logic
;begin sequence

;send dummy ICW2

;send ICW3 if necessary

;send ICW4

;write to mask register (OCWl)

;program vector registers

mov al,ICW2
out 38h,al
mov al,ICW2+1
out 39h,al
mov al,ICW2_VECTOR
out 3Ah,al
mov aI, ICW2+3
out 3Bh,al
mov aI, ICW2+4
out 3Ch,al
mov al,ICW2+7
out 3Fh,al

:remove ICW2 interrupt

in al,31h

in al,32h

;IRQO

:IRQl

;IRQ1.5 (probably never used in
: this system)

;IRQ3

;IRQ4

:IRQ7

request

:read mask register to work around
; A-step errata

;read ICW2 register to clear
interrupt request

;return to calling program

sti
ret

:re-enable interrupts

4-240

82370

OLD APPLICATIONS

In applications where 8259 compatibility is required, the ICW2 interrupt handler must be invoked whenever an
interrupt controller is initialized (ICW1-ICW2-ICWn sequence). The handler's purpose is to read the ICW2
value from the ICW2 read register and write the appropriate sequence of vectors to the vector registers. Listing
2 shows the typical initialization sequence (this is not changed from the 8259), and the required initialization for
operation of the ICW2 interrupt handler. Listing 2 shows the ICW2 interrupt handler.

Listing 2.
Initialization of Bank A for ICW2 Interrupts

cli ;disable all interrupts

;initialize controller logic

mov al,ICWl
out 30h,al
mov al,ICW2
out 31h,al

;*******
mov al,ICW3
out 31h,al

;*******

mov al,ICW4
out :31h,al

;begin sequence

;send dummy ICW2

;send ICW3 if necessary
note that using ICW3 for
cascading bank B is not required
and will affect the way EOls are
required for nesting. It is
advised that ICW3 not be used.

;send ICW4

mov al,Bank_A_Mask ;write to mask register (OCW1=7Bh)
out 31h,al ;don't mask off IRQ1.5 or Default

interrupt (IRQ7)

;program necessary vector registers

mov al,ICW2~VECTOR ;IRQ1.5
out 3Ah,al

mov al,IRQ7_DEFAULT_VECTOR
out 3Fh,al

;remove ICW2 interrupt request for bank A

in al,31h

in a1.32h

;read mask register to work around
: A-step errata

:read ICW2 register to clear
: interrupt request

:at this point install interrupt. call vector for ICW2, if
:not already done somewhere else in the code

sti :re-enable interrupts

4-241

push ax
push cx
push dx

service bank B

in al,2lh

in al,22h
mo,v cx,8
mov dX,28h

out
inc
inc
loop

dX,al
al
dx
BANK_B_LOOP

;service bank C

in al,OAlh

in al,OA2h
mov cx,8
mov dX,OA8h

out dX,al
inc al
inc dx
loop BANK_C_LOOP

pop dx
pop cx
pop ax
iret

82370

Listing 3.
ICW2 Interrupt Service Routine

proc near

;save registers

;read mask register for A-step errata

;read ICW2
;count vectors
;point to vectors

;write vector
;next vector
;next vector I/O address

;read mask register for A-step errata

;read ICW2
;count vectors
;point to vectors

;wri te vector
;next vector
;next vector i/o address

;restore registers

;return

4-242

inter

Bank A:

Bank B:

Bank C:

82370

Table 1. Interrupt Controller Registers

30H write
read

ICWl, OCW2, OCW3
Poll, IRR, ISR

3lH write
read

ICW2, ICW3, ICW4, OCWl
IMR

32H read ICW2 read register
38H read/write IRQO vector
39H read/write IRQl vector
3AH read/write IRQl.5 vector
3BH read/write IRQ3 vector
3CH read/write IRQ4 vector
3DH RESERVED
3EH RESERVED
3FH read/write IRQ7 vector

20H write ICWl, OCW2, OCW3
read Poll, IRR, ISR

2lH write ICW2, ICW3, ICW4, OCWI
read IMR

22H read ICW2 read register
28H read/write IRQ8 vector
29H read/write IRQ9 vector
2AH RESERVED
2BH read/write IRQll vector
2CH read/write IRQl2 vector
2DH read/write IRQl3 vector
2EH read/write IRQl4 vector
2FH read/write IRQl5 vector

AOH write ICWI, OCW2, OCW3
read Poll, IRR, ISR

AIH write ICW2, ICW3, ICW4, OCWI
read IMR

A2H read ICW2 read register

A8H read/write IRQl6 vector
A9H read/write IRQl7 vector
AAH read/write IRQl8 vector
ABH read/write IRQl9 vector
ACH read/write IRQ20 vector
ADH read/write· IRQ2l vector
AEH read/write IRQ22 vector
AFH read/write IRQ23 vector

4-243

intJ

1. BHE# IN MASTER MODE.

82370

APPENDIX D
SYSTEM NOTES

In Master Mode, BHE# will be activated during DMA tolfrom a·bit devices residing at even locations when
the remaining byte count is greater than 1.

For example, if an 8-bit device is located at 00000000 Hex and the number of bytes to be transferred is > 1,
the first address/BHE# combination will be 00000000/0. In some systems this will cause the bus controller
to perform two 8-bit accesses, the first to 0000000 Hex and the second to 00000001 Hex. However, the
82370's DMA will only read/write one byte. This mayor may not cause a problem in the system depending
on what is located at 00000001 Hex.

Solution:

There are two solutions if BH # active is unacceptable. Of the two, number 2 is the cleanest and most
recommended.

1. If there is an 8-bit device that uses DMA located at an even address, do not use that address + 1. The
limitation of this solution is that the user must have complete control over what addresses will be used in
the end system.

2. Do not allow the Bus Controller to split cycles for the DMA.

2. RESET OUTPUT OF 82370:
The 80376 requires its RESET line to be active for 80 clock cycles. The 82370 generates holds the RESET
line active for 62 clock cycles.

The following design example shows how the user can extend the active high of the RESET line to 80 clock
cycles.

Extending the RESET Output of the 82370

This section describes a hardware solution for using the 82370's CPURST output and the software reset
command to cause the 80376 to enter into a self·test.

The 80376 requires two simultaneous events in order to initiate the self-test sequence. The RESET input of
the processor must be held active for at least 80 CLK2 periods and the BUSY # input must be Iowa CLK2
periods prior to and 8 CLK2 periods subsequent to RESET going inactive.

A system which does not have an 80387SX will simply have the BUSY # input to the 80376 tied low. A system
which contains the 80387SX will require extra logic between the BUSY # output of the 80387SX and the
BUSY # input of the 80376 in order to force self-test on reset. The extra BUSY # logic required will not be
described here.

The 82370 CPURST output is intended to be retimed with faster TTL components in order to meet the RESET
input setup time requirements of the 80376 and 80387SX. This requires a 74F379 (quad flip-flop with enable)
or equivalent. The flip-flops required are described in TECHBIT (Ed Grochowski, April 10, 1987).

The 82370 does not meet the RESET pulse duration requirements for causing self-test of the 80376 when a
software reset command is issued to the 82370. The 82370 provides a RESET pulse width of 62 CLK2
periods, the 80376 requires 80 CLK2 periods as mentioned earlier.

In order to cause the 80376 to do a self-test after a software reset, the CPURST output pulse of the 82370
must be lengthened. Figure 1 shows a circuit which will do this.

4-244

inter 82370

Note that the CPURST output is the OR of the 82370 RESET input and the output of the software reset
command logic, and thus will have the same duration as the RESET input during power-on.

The additional circuitry required consists of an OR gate, a one-shot, a capacitor, and a resistor more than is
found in a system without the 82370. The one-shot (74121) is inserted between the CPURST output of the
82370 and the input of the retiming flip-flops (74F379). The period of the one-shot should be long enough to
guarantee the 80 CLK2 periods that the 80376 requires.

The OR gate (74F32) is required to guarantee that the 80376 is held in a RESET state while the 82370 is being
reset. This is done to be sure that BE3# is held low when the RESET input to the 82370 goes inactive. BE3#
is used during the reset to determine whether it is necessary to enter a special factory test mode. It must be
low when the RESET input goes inactive, and the 80376 drives it low during reset.

osc ClK2

-- 74F'109

J
PR

_J a ClK

.- K 82370
ClR

I RESET CPURST

-- I - -,-

IN4148 100k 74F379 J 10k .. 74121

1":>...- 10 10 -RiC B

7~1: - 20 20 0.01 JO' 1::..
0-

pOOP' C A1 A2

- 3D 30 -
'" r- 40

40

47.0.

G RESET

80376
74.32

.If-
290164-A7

Figure 0-1. Extending 82370 Reset Output

4-245

Development Support Tools 5

80960 DEVELOPMENT SIJPPORT

fJlJlflftlEHENSIJ'E AIlfJHI'1EC'1IJIIE DEJ'EWPIfIEN'1 SIJPPOII'1
I'fJIl BOBSO EIfIBEDDED APPUtJA'1I0NS
Inrel's 80960 Development Starrer Kits provide a quick. easy and economic way to evaluare Inrel's
80960 architecture. benchmark 80960 performance. and begin Initial application code development
and debug. Tools were designed specifically for the 80960 microprocessor. allowing developers to
take full advantage of the performance and ease-of·programmlng features built Into the 80960'8
RISC·based design. The 80960 Development Starrer Kits are oonvenlently hosted on the IBM PeAT.
meaning developers of 32·blt embedded microprocessor applications can get started with minimal
hardware investment.

I'EA'1IJIlES
• ASM·960 macro assembler for developing

and tuning speed-critical code.
• iG-960 highly optimizing C language oompiler

for high·level language software development.
• EVA·960KB plug-in software execution board

for benchmarking performance. evaluating
architecture. and developing and debugging
application code.

• Many starter kit oonfigurations for
supporting a wide range of development
needs.

• OOS-hosted on IBM PC/AT. and oompatibles.
• VAXIVMS··hosted ASM·960 and iC·960 on

VAXIVMS and MicroVAXlVMS· in 04. 1988
• Sun 3···hosted ASM·960 and iG-960 in

04.1988.

nJ---------------• \lAXl\'MS and MkruVAXlVMS are lradcmarks uI Dlgltsl ~UlpmcnL Cmp .

•• Sun 3 is a Lradcmark rJ Sun MIcros)'1ilCIlI&
II'IIt:I Cnrl'lIl'alinn assumes no l'l'SpOnslbllil), for 1.00 \IIC c1any ClrcuiLry IthCr than drculLry embodied In an IIIeI pmdUt1. No 11th.'/' cil'f'\ll~ pale'" 11a.'IlID an:
Implied. InfurmnLkIl1 rontalncd hcrcln supcnmcs pl'lMolllly pubHllhed tlpOOncauUfls on Ul:tIc dtovlCCII (rum !r&d and bll>\lbjc.'tt t.n C'ha113! wlLhrM ~.

&.~r,l988
ClII'ICI Corplll'aUon 1988 Unlet ~hcr: 281l1U600:l

5-1

~SM-960M~CRO~SSEMB£ER

The :\S~I·960 macro asspmbler is used to fine·tunc sections
of mde for top program exerution speed on the 80960KA.
80960KB. and 80960MC. :\81.1·960 doL'S this hy giving
prilgralllllwrs ahsolute cuntroloVt'r program instructions. In
addition to the assemhler and macro preprocessor.
:\S~I·960 includes sl'\"l'ral utilities for application progl'alll
maintl'llan('(' and d('hug:

• L1\1KER/LOAD~R allows multiple and increml'ntal
program fill' links.

·;RCIII\BR allows dt'\l'lopers to huild applimtions
functioll lilJr(lril~.

• DIS:\SS~MBL~R IJro\ ides 118Sl'mhl('I' mnemonil's.
• S\ ~IB()L DLMP~R provides 8ymilOlil' Inf<lrmatinn from a

IJI'ogralll fiI(' for facilitating d('hug.
• I'Ro\l BUILD~;R product'S a hl'x fiI(, suitahle for PROM

11I·llgl'i1IIIIII\'I'S.

itJ-960 C £~NGIJ~GE COMrl£ER
iC·900 is a highly opt.imizing C language mmpil('e for till'
80960KB ami 80900~IC microprocessors. iC·9UO supports
till' 11111 C language as des('l'ibed in thl' K(,l'Ilighllll ancl
Ritchi(' hook. The C Programming Language (prenticl'·llal!.
1978). iC·960 is used in mnjunction wit.h ,\SM·960 for
outputting ohlertl'Ode l"iIes and includl's standard ANSI
extensions to the C language and the following
enhancements for rmlll'ddl'd application dl'velopment:

• Constants allO\I high·lt'll'! language definitions and ('aSI'
or pmgram maintl'llalll'l'.

• ~emor)'-mapped 1/0 allows high·hwllanguage m'('('ss
to application speci[jc input allIloutpul.

• Inlloo assembly Simplifies the integl'atiollof mnvenil'llt
C language and sperd critical Functions.

• Floatllll!polnlsupporl prodm'I's In-lInl' ('odl' to l<Ikt'
full adlantagc of thl' floating point capahliity of thl'
R0960Kfl and 80960~IC.

The DOS·hosted I'ersion requires a 2MB .A.howhoard"'. Thl'
pXl'('lltion l'l'hirle hostell version requires tht' 4\1B hoarll
(~\:.\960KB4MB) and provides a 5X compile·time speed
improl'ementover the DOS-hosted version.

EI'~-960llB SO""'W~RE EXECIJ'I'ION
I'EH'Ca
The E\A·960Kflls a software execution vchicle for thl'
80960K:VKB micropro('essor. It is a singk' PC AT plug·in
board which provides eas~' and convt'nicnt architecture
evaluation and henchmarking as well as software
dt'lelol)lIIent. The F,\:A,·960t\fl mntains the Following:
• I \1 byte or -1M byte of one wait·state program ml'mory

(DRA\II
• 6-1K hytes of zero wail·statr program IIlCIIlI'Oy (SRAM)
• Thret' application program accessible timers
• Hosted debug munitor which supports: 2 program

breakpoints. single step program execution, register and
memory access, program duwnload and upload

• DOS a('('es.~ lihraries that allow: screen display, keyboard
input. read and IIrite disk files. ability to spawn a DOS
pmcess whirh muld mlllmunirate to serial or paralil'! I/O

• 20~IH~ opl'ration

~RCHI'I'EC'I'IJRE EI'~£IJ~'I'ION:
S'I'~R'I'ER IIII' I
Tht' B0960 Dt'vplopmt'nt Starter Kit # I is designed for
immediate arl'hit('l'tun' t'VHluHtion anel ('ode Ill'vt'!opnwnt IiiI'
80960KA and 809(lOKR It includl's the E\/I·9UOKB
eXt'culion whicll' and :\S\HJ(iO :\sseml!It'r [or developing
and dl'l!ugging sj!t"ti'I'l'itii'al sortwaJ'(' anti performing hasit'
performam,' Ill'nchlllarking.

COlflra'l'E ~rr£lC~'I'ION
IJEI'EWPIfIEN'I': S'l'~RI'ER "''1' Z
Thr 80960 f)('Vt'lopml'nt Startt'!' Kit "2 is U l'OIllI)letl'
annllration dl'wlopml'nt toolkit for dl'v\'loping und
dt'hu~ging hot.h spt'I'd'I'('ilil'al anti high·It'Il'! so[twurl" as
1'11'11 as lJl'rrorming rull hl'l1chmarking on thl' 809tlOKB. Thl'
kit inl'lutit's thl' ~:vMJ()O"B Softwarl' ~xeculion Vehicle. th('
ASM·D60 .~ssl'mhll'r. and tht' iC·9tlO C Lunguage O)(npill'r.

SOFl'W~RE IJEI'ELOrIflEN'I':
ST~R'I'ER 1&1'1' 3
'l'hl' HOfJ60 ill'wlopml'nt Startl'r Kit ":l !lrolidl'S all the
softwarl' 11l"cil't!to gl't start I'd Oil all phasl's. both Spt't'd
('('iti('al anti high·iI'w!. of solhlm,' d('Il'lopnlt'nt. The kit
inl'ilJdl's tht' :\S~HIHO .\sst'lIIhll'l' ant! thl' iC·fl60 C
Language COl1lpill'l'.

SOFl'W~RE DEI'EUIrIflEN'I':
SI'~R'I'ER 1&,'1' "
Thl' son wan' J)('ll'IoPIII('1Il Stal'tl'r Kit #~ Inclulil's
:\SM!l60M :\sS('lIIhll'l' 11I1i1 Cfl(iO\1 C Compiil'l' hoSI"tlon 11
\1Icro\!i\X/\"~IS. It proliill'S all or thl' softwar(' nwill'd til get
stal'Let! t!lwlopillg an BOHflO ~llpll('at.lon.

SOFl'W~RE DEVELOPMEN'I':
S'I'~R'I'ER "''1' 5
Tht' SlIftwart' Ill'wlopment Stal'lt'l' Kit #fi includl'S
ASM960V :\ss('(Ilhll'r alit! Cfl()()\ c: Complh'r hostf.'d on
VAX/VMS. It providt's all of" thl' softwarl' nt'l'clt'd to gl't
startet! dt'vl'ioping an 1l09(iO application.

F~S'I' ~rr£lC~'I'ION DEI'E£OrMEN'I':
S'I'~R'I'ER "''1' 6
The Fast Dt'wlopmt'nt Stmt('1' Kit. Start('r Kit #6. providl's a
dt'Vl'lopnlt'nt t inll' SPl't'ti imlll'III'('ment for customers that
already own :\S~If)(lOll. Thl' kit inl'lud('s thr 4M hytl'
I'XI'('ution Ivhi('lt'. ~;\:\f)()OKIl·I~IIl, and the t'xl'Cution vehicl('
hosted G Compilt'I'. C960~a~

COlflrl.E'I'E "~S'I' ~rr£lC~'I'ION
DEVE£OrIflEN'I': S'I'~R'I'ER "''1' 7
'1'111' Comllit'll' Fast lli'wlol)ml'nt Starter Kit, Starter Kit #7,
prol itil'S a ('llllpil~(' anti fast liI'I'l'lopment toolkit. The kit
inclutil's till' ~~I hyll' I'XI'cution whlrll'. r;vA9aOKB4MB,
:\S~1f)6()D :\xxl'mhil'l' anti tht' I'w('utlon vehicle hosted G
COml)ilt'r, CfJ(lO~:I~

5-2

SOITWARE DEJ'EUJPMENT:
STARTER «IT B
The Sortware Development Starter Kit "8 'includes
ASM960U Assembler and C960U C Compiler hosted on a
Sun 3 workstation. It provides all of the software needed to
get started developing an 80960 application.

SERJ'If:E, SIfPrtJRT AND TIlA.ININ6
Intel augments its 80960 development tools with a full
array of seminars. classes and workshops: field application
engineering expertise: and telephone and on·site support at
all stages of development.

OIlIJERING INftJRIfIATItJN
ASM·960D ASM·960 Assembler contains the

assembler. linkerlloader. macro
preprocessor. archiver. PROM builder. and
other object module utilities. DOS hosted.
Requires a class I software license
agreement plus addendum.

ASM900M Same as above. MicroVAX/VMS hosted.
Requires a class I software license
agreement plus addendum.

ASM960V Same as above. VAX/VMS hosted. Requires
a class I software license agreement plus
addendum.

ASM9S0U Same as above, Sun 3 hosted. Requires a
class I software license agreement plus
addendum.

C960DP IC·9oo optimizing C compiler, with ANSI
extensions for the embedded appllcations.
contains standard STDIO libraries and in·
line assembly capability, DOS hosted.
Requires a 2M byte Above'"Board.

C960EP Same as ahove, execution vehicle
(EVA9OOKB4MB) hosted.

C960M Same as above. MlcroVAXIVMS hosted.
C960V Same as above. VAX/VMS hosted.
C960U Same as above. Su n 3 hosted.
EVA900KB Software development and execution

vehicle for the B0960KA and 80960KB
microprocessors, contains 1 M byte DRAM
program memory.

EVA960KB4MB Software development and execution
vehicle for the 80960KA and 80960KB
microprocessors, contains 4 M byte DRAM
program memory.

960SKITl Architecture Evaluation Kit Includes
EVA960KB execution vehicle plus
ASM·960D Compiler.

960SKIT2 Same as .above plus ic;.9S0DP Compiler
(requires Above'"Board)

9S0SKIT2AB Same as SKIT2 plus Intel Above'"Board
with 2M byte memory

960SKIT3 Contains ASM·960D and ie-960DP
Compiler

960SKIT3AB Same as above plus Intel Above'!'Board
with 2 M byte memory

960SKIT4 Contains ASMOOOM Assembler and C960M
C Compiler. hosted on MicroVAXIVMS.

96DSKIT5 Contains ASM960V Assembler and C96DV
C Compiler. hosted on VAX/VMS.

960SKIT6 Fast development kit contains
EVA960KB4MB execution vehicle and
C9S0EP execution vehicle hosted C
Compiler.

960SKlT7 Same as above plus ASM960D Assembler.
9OOSKlT8 Contains ASM960U Assembler and C960U

C Compiler. hosted on Sun 3.

5-3

1\D1\-960 DEVEI.OPMENT ENVIRONMENT FOR TBE 80960 I

JI (JIJIflPUf'B.tIM SlJW'I'IIJN mR IlBJI£-f'IIflB BIfIBBlIDBD
JlPPUfJJlf'IfJNS
Ada·960 from Intel is a complete Ada development environment for B0960MC based real-tIme,
embedded applications.

The 80960MC is a high performance, 32·blt military embedded processor especially designed to
support Ada in fault-tolerant, shared·memory multiprocessor applications.

Ada·960 is hosted on VAXNMS.· The cross-deVelopment environment inlcudes a highly optimizing
Ada cross-compiler. a linker. a librarian, a source-level symbolic debugger. a target monitor,
predefined packages and subprograms, the Ada run·tlme system, a user guide, and a ~etailed run·
time system implementor's guide. The run·tlme system makes optimal use of the Ada support built
Into the 80960MC processor and is carefully designed for real·tlme embedded applications.

1'E1If'1J1lBS
• Complete VAXNMS· hosted Ada cross

development environment
• Makes optimal use of the Ada support offered

by the 80960 MC
• Run·tlme system is small. fast and

predictable for real-time applications

• Designed for embedded applications with a
highly optimizing compiler. selective linking,
highly modular roconfigurable run·time, and
source level symbolic debugger interfacing to
a target monitor, or an emulator

~--------------~-----­
hie! Q)rpori&lon ISBIIIDIII no responlllbililf for the use d all)' c::Ireullry oUlIIr Ulan drcultrY embodied In an InLeI product. No other drculL patem llama are
Implled.1nronnatIon mII8IIIed herein 8U]3er'8IIde8 previoQIIy publIShed specUk:aUons on thcaedericcsfrom 1'*-1 and II subJect. to dlange wII.bou& IdICe.

. 0cI0ber.1988 o , CoqxnIIoo 1988 Order Number> 28082Il001

5-4

rIlE _tJ_JlC ,tN" ,tIM: ,t 60fHJ
/IIA'I'QI
The Intel B0960MC embedded processor Is designed to
support applications written in Ada. Ada·Boo [rom Intel Is
implemented to make optimal use of the Ada support. built
Into the 8096OMC.
• Ada-9oo maps Ada tasks directly to B0960MC processes.
• Ada-BOO uses the B0960MC embedded processor

hardware to dispatch and manage Ada tasks.
• Ada-BOO maps Ada task priorities directly to 80960MC

process priorities.
• Ada-BOO uses the 80960MC memory managment unit to

provide Inter-task protection.
• Ada-B60 uses 80960MC semaphores to implement run­

ttme system critical sections.
• Ada-960 uses the 80900MC on-chlp floating point unit to

perform Ooatlng point operations.

The unique architecture o[the 80960MC allows Ada-9oo 10
use the processor hardware to provide functionality
normally Implemented In software on other architectures.
This includes automatic dispatching and pre-emptive
priority scheduling of Ada tasks.

Ada-960's use of the B0900MC makes the run-time casily
extensible to support fault-tolerant shared-memory
multiprocessor configurations supported by the 80900MC
embedded processor.

AIH-8_1'fHl JlEJI~rIIfIE
.4PrU£4rlONS
Ada-960 is carefully desigl1l'.d for use In the development of
real-time applications. Some of the real-time Ceatures oC
Ada-960 include:

~_. "1IIIa7w",. 011" "'-e: The Ada-9oo
run-time system disables interrupts Cor a minimal amount of
time. The "Interrupts orr time does not vary with the size of
the application.

rre-e..""re I'rferIIy SdIefI.".: Ada-960
provides a fully pre-emptive. priority-driven tasking run­
time. The 80960MC hardware is used to ensure that the
highest priority task is always the one that is running. The
run-time system uses the B0960MC hardware to switch to a
higher priority task (than the one currently executing)
whenever such a task becomes ready to run.

1"reIIIdIIMe~: Ada-B60 provides
predictable performance that is insensitive to target system
load. System response time remains constant and fully
deterministic as the number of tasks etc. grows.
• Ada-960 ensures that scheduling latency Is Independent

of system load.
• Ada-960 guarantees response-tlme to interrupts.
• Ada-960 provides predictable memory allocation times.

Memory allocation Is Implemented through effiCient
algorithms that ensure 11 constant upper bound on the
time taken to allocate memory.

II.II-U_ ~""I8I'UlI Ada-960 provides a run-time
system extenSion package that gives applications dynamic
control over tasking. scheduling. critical sections and other
run-time functions.

,t1M-8'. FOIl BItlBBIHJED
.tPrUC,tr,ONS
Ada-960 is designed for embedded applications and
provides:

s..11 •. "" ... -11_ Sy8Ie.: Ada-B60 provides a
compact. high performance run-time system. The run-lime
system 15 very modular to support selective linking by the
Ada-B60 linker. The modularity of the run-time and the
selective linking features of the linker ensure that all unused
Ada language features are automatically omitted Crom Ule
appllcatlon's final executable Image.

llelllrfldllltle 11.".,,_ S;rsre.: Ada-BOO
provides an easily retargetable run-time system. The run­
time system Is designed to be easily retargeted to custom
80960MC boards and comes with all the necessary source
mes and documenLaLion for on-site eustomization to specific
interrupt and UO requirments.

".4X11'BS IIo8Ia lie_ie DeN.: Ada-9oo
provides a VAXNM8-hosted source-level. symbolic Ada
debugger. The debugger allows users to debug applications
on a remote B0960MC target via Its Interface to either the
standard Intel B0960MC monitor or the standard Intel
B0960MC in-circuit-emulator .

llerarseratle 'Drofd "",r: Ada-960 provides
an casily retargetable target monitor. The target monitor
resides on the target board. The monitor communicates with
and supports the Ada debugger hosted on VAXNMS. The
target monitor is easily retargetable to custom boards. This
allows the Ada debugger to be used in debugging
applications on non-standard 80960MC hardware
configurations.

__ "Ie Ce4e • ." BfllIEX: The Ada-960 compiler
produces ROMable code. 'l'he Ada linker can produce an
application's executable Image In B6Hex so that the
application may be easily burnt into PROM·s.

C •• ,,'4u •• " __ -.4u Ce4e: Ada-9oo
provides implementation-deflnedpragma FOREIGN-BODY
and pragma LINKAGE-NAME 10 support the combination of
Ada and non-Ada code.

C"'1fII,ft' 13 811""...,: Ada-960 provides chapter 13
support Including representation specifications. machine­
code insertion. intcrrupt entries. and so on.

5-5

FEATURES

UlOS8-DEJ'E£fJPIfIENT ENJ'lIltJNIfIENT
The Ada-960 cross development environment includes tools
for compiling, linking, and debugging, along with libraries
and a complete set of documentation_ The Ada-g60 cross
development environment from Intel makes the following
support, documentation, tools, and software available:

C"."lIer: A fast, highly optimizing Ada-960 compiler
that generates efficient, compact 80960MC code_

The compiler performs virtually all optimizations that are
"traditional", as well as several that are Ada-specific_ Each
optimization is carefully tuned to the 80960MC architecture_

Optimizations performed include transformations that atTect
value and variable handling, code motion and elimination,
tall recursion elimination, and loop strength reduction. Ada­
spccific data packing and code transformations such as
constraint check elimination, overOow check elimination, and
parameter binding al'e also performed. The Ada-960 code
generator schedules generated machine Instructions to make
optimal use of parallel execution opportunities available on
the 80960MC embedded prooessor.

U""""'".: An Ada-960 librarian to manage the Ada
program library. The librarian controls the Interaction of
compilation units and the linking of executable images. The
Ada-9oo librarian supports the Ada separate compilation
and dependency control requirement.

U.ker: An advanced Ada-960 linker to support enhanced
selective linking at the subprogram level. Subprograms that
are not used in an Ada application are not linked unless
specifically requested, ~'ull control over memory layout and
mapping is supported with a rich command language,

~~: A very powerful Ada-960 source-level,
symbolic Ada debugger that supports the debugging of both
pure Ada and combined Ada code, The Ada-960 debugger is
hosted on VAXlVMS and interfaoes with target 80960MC
boards through either the standard Intel 80960MC target
monitor or the standard 80960MC in-cireuit-emulator.

The Ada-960 debugger allows users to examine and modify
their applications using the same names that appear in the
souroe program. Users can evaluate Ada expressions, set
breakpoints and tracepoints, and debug multi-tasking Ada
programs.

Program breakpoints can be made conditional on arbitrary
conditions, and debugger commands can be executed
automatically at br~,akpoints.

The Ada-960 debugger can call functions and pf'OC(',(jures in
an Ada application. This fp,ature can be used to extend the
set of dcbugger facilities or to test parts of the application
interactively.

The Ada-960 debugger allows users to display Ada
variables in formats appropriate to each of their types.
Users can also specify formats appropriate to the current
application. Special browsing features within the debugger
eliminate the need for paper listings during debugging
sessions.

The Ada-960 debugger provides a Oexible display of the
state of Ada tasks and can display the current callstack
within any task. The debugger can list tasks on various run,
time queues and can suspend or change the priority of
tasks.

The source level features of the Ada-960 debugger are
complemented by a complete set of machine-level
commands.

Script files containing debugger commands may be created
in and executed by the debugger. The Ada-960 debugger can
record a log of ali debugging actions for later analysis or
replay,

ror better programmer productivity, the debugger has a
multlwlndow interface with separate windows for debugger
commands, Ada source and program output. Thc Ada-9oo
debugger provides "scoreboard windows" for real-time
display of user-selected program information.

The debugger is usable from all types of terminals and has
special features to support bit·mapped displays,

Use of the debugger is possible at all optimization levels
without recompilation of the Ada program.

Jar8t't Me.lter: A standard Intel 80960MC target
monitor that is easily retargetable to custom 80960MC
boards. The target monitor eomes With all the nccessary
source files and documentation for on-site customization to
specific interrupt and 1/0 requirements.

fCE"': A standard Intel 80960MC in-circuit-emulator. The
in-cireuit-emulator delivers real-time emulation at prooessor
speed, and allows non-intrusive debugging of applications
under development.

PredefllHJfl l"adilllfeS allfl S.6PI'Olfl'll-": An
Ada-960 library containing precompiled predefined Ada
packages and suhprograms.

R •• -U.e Sysu_: An Ada-960 library containing the
Ada run-time system. The run-time system is small, fast,
arid predictable. TheAda-9oo run-time is re-targetable to
different 80960MC boards and is especially designed for
real-time embedded applications, The run-time system is
carefully designed to make optiinal use of the Ada support
provided by the 80960MC embedded processor.

5-6

FEATlJRES

The run-time system comes with all the necessary source
files and documentation for on-site customization to specific
interrupt and 1/0 conventions_ Most of the run-time system
is written in Intel Ada-9OO with a small portion written in
Intel ASM-960 assembler_

" •• ..".e Syste. Exteasloa: A run-time system
extension package to allow Ada applciations dynamic
control over the tasking, scheduling, critical sections, and
other run-time functions.

So.~ Cede: Source code for both the run-time system
and the run-time system extension.

1IfJc •• earaUoa: High quality documentation including
a User Guide and a detailed Run-time System Implementor's
Guide. The Run-time System Implementor's Guide provides
full documentation of the Interface between the Ada-9OO
compiler and the run-time system. It also documents the
design or. and provides guidance to, modifying the run-time
system.

WORUJWIDE SERVICE AND SIJProllT
Intel augments its 80960 architocturc family development
rools with a full array of seminars. classes, and workshops:
on-site consulting services: field application engineering
expertise; telephone hot-line support; and software and
hardware maintenance contracts. This full line of services
will ensure your design suocess.

This is preliminary Inrormatlon. Changes tnlhc product can be made at any tlmt'.

·VAXlVMS 18 a trademark. 0(DigItal Equipment COrp.

5·7

I C: I': "-~' b 0 I, Ie I \ - f I II f, I I 'I' I', 11 I Ii \ 'I' 0 II

IN-CIRCIlI'l' EMIlLA'l'OR FOR 'l'HE B0960ltA AND B0960ltB
MICROPROCESSORS
The ICETM-960KB In-Circuit Emulator delivers real-time hardware and software debugging
capabilities for 80960KA/KB-based designs. The capabilities include emUlation of the 80960KA/
KB microprocessor, hardware and software breakpoint specification, fastbreaks, two types of
trace capability, large trace buffering and sophisticated human interface. The ICE-960KB In­
Circuit Emulator gives you unmatched control over all phases of hardware/software debug,
including developing, integrating and testing, which improves the developers productlvity and
speeds time to market.

FEA'l'IlRES
• Real-Time Emulation of the 80960KNKB

microprocessors up to 20MHz
• 256K bytes of memory in Standalone Self

Test Unit
• Zero wait-state operation from user system

memory
• Examine and modify memory and the

80960 Registers
• 2 hardware and 32 software Breakpoints

settable on any Instruction Address, and
break on Trace Buffer Full

• Hosted on IBM PC-AT* running DOS
(version 3.3)

• Assembly and Disassembly of code in
80960 instruction mnemonics

• Dynamically monitor or update program
variables or memory with Fastbreaks

intJ

• Real-time BuS Trace with Time-Tags for
tracking code execution times

• Execution Trace for tracking instruction
execution inside on-chip Instruction Cache

• Stores 1024 frames of program execution
history or bus cycles or both

• Versatile software featuring Color,
Pulldown Menus, Forms, Command Line
with Syntax Guidance and Editing, Control
Constructs, Debug Procedures and DOS
Command Input (shell)

Intel Corporation assumes no responsibility ror the use of any circuitry other than circuitry embodied In an Intel product. No other circuit patent licenses
are Implied. Inrormatlon contained herein supersedes previously published specifications <.on these devices from Intel and Is sublect to change without
notice.

© Intel Corpor~tlon 1988 5-8
November, 1988

Order Number, 280852.(J()1

REAL-TIME EMIJLATION
The ICE-960KB In-Circuit Emulator provides emulation
of the 80960KA/KB at speeds up to 20 MHz, thus
providing early detection of subtle timing problems that
may arise at full speed. Intel's intimate knowledge of the
component makes possible the tightest conceivable
conformance between timing parameters of the emulator
and the target microprocessor.

PROCESSOR/MEMORY EXAMINATION
AND MODIFICATION
The 80960KNKB registers can be accessed
mnemonically (e.g. gl2, r5, fp3) with the ICE-960KB
emulator software. Data can be displayed or modified in
one of four bases (hexadecimal, decimal. octal, or
binary). Program memory contents can be disassembled
and displayed as 80960 assembly instruction
mnemonics. Additionally, 80960 assembly instruction
mnemonics can be assembled and stored into program
memory.

PROGRAM TRACING
The ICE-960KB emulator can store 1024 frames of
program execution history or 5120 cycles of the
80960KNKB address/data bus activity in the trace
buffer. Each frame of program execution contains a
discontinuity address (branch, call, return, etc.), and a
time-tag. This information can be used to reconstruct a
history of the program execution. With the execution
trace option enabled, the ICE-960KB will run at less than
full speed; typically 70-90% of full-speed. Each trace
frame of bus cycles contains one complete bus burst
access, the address cycle followed by the four data
cycles, and a time-tag. While using bus trace, the
ICE-960KB runs at the full-speed of the 80960KA/KB
microprocessor.

HOSTREQIJIREMENTS
IBM PC-AT* (minimum requirements) with 640KB of

conventional memory
1MB of RAM (Lotus, Intel. Microsoft expanded memory

specification)
(Intel's Above™board with 1.0MB RAM is required)
20 MB Fixed Disk
At least one 51,4 1/ Floppy Disk drive
A serial interface
80287 Numerics Coprocessor
DOS Operating System (version 3.3) 5-9

EVENT RECOGNITION (BREAKPOINT
CONTROL) AND EMIJLATION CONTROL
Two hardware and thirty-two software breakpoints can
be active at any time. The ICE-960KB emulator allows
any number of breakpoints to be defined and then
activated when needed. The breakpoints can be set on
any instruction address. Additionally, emulation can be
automatically stopped when the trace buffer is full.
Besides the ability to execute program code at full speed
between specified pOints, the ICE-960KB emulator
provides the capability to single-step through program .
code. Fastbreaks are short pauses in program execution
to examine or modify memory or 80960 registers.

STANDALONE OPERATION
Product software can be developed and debugged prior
to and independent of hardware availability with the
Standalone Self Test unit (SAST), which contains 256K
bytes of two wait-state program memory. The SAST also
provides diagnostic testing to assure full functionality of
the ICE-960KB emulator.

VERSATILE AND POWERFIJL HOST
SOFTWARE
The easy to use ICE-960KB emulator software takes
advantage of color and pull-down menus to complement
its already powerful' command set. The software includes:
an on-line help facility, a dynamic command entry and
syntax guide, screen oriented editor, assembler and
disassembler, input/output redirection, command piping,
DOS command entry, and the ability to customize the
command set via debug procedures and literal
definitions.

DEBIJG PROCEDIJRES AND LITERALS
Debug procedures (PROCs) are user-defined groups of
ICE-960KB emulator commands. They can be stored on
disk and recalled during later de~ugglng sessions. PROCs
can be used to simplify the process of debugging by
grouping repetitive or a required ordering of emulator
commands, which can then be accessed by typing the
name of the PROC. Literals are user-defined
abbreviations for whole or partial ICE-960KB emulator
commands. Literals are a shorthand method of
customizing the emulator commands to fit your needs
and preferences.

REQIJIRED SYSTEM RESOIJRCES
The ICE-960KB emulator requires the following: a)
exclusive use of the 80960KA/KB's on-chip debug
registers and b) 304 bytes of target system RAM in the
register save area of the stack, 256 bytes for flushing the
80960 local registers, and 48 bytes for saving the
processor control block (PRCB).

4i Ii Ii I i iii i ii'hi'
MECHANICAL SPECIFICA'l'lONS

TABLE 1. ICE-960KB Emulator Physical Characteristics

Width Height Length Weight

lJnit Inches cm Inches cm Inches cm Ihs kg

Control unit iO.5
Processor module* 3.8
SAST 6.0
OIB 3.8
Power supply 2.8
User cable
Serial cable

*measurement includes target adaptor

I' I

TOPVIEW

o oT

PROCESSOR MODULE

Figure 1: Processor Module

ELECTRICAL SPECIFICA'l'lONS
SYNC Line Specification

1.300

26.7
9.6

15.2
9.6
7.1

The SYNCIN line must be valid for at least one
instruction cycle because it is only sampled on
instruction boundaries. The SYNCIN line is a standard
TTL Input. The SYNCOUT line is driven by a TTL open
collector with a 4.75K-ohm pull-up resistor.

ADIDC Specifications
The following tables describe the DC specification
differences between the ICE-960KB emulator and the
80960KAIKB microprocessor, for more details refer to
the User Guide.

5-10

1.5 3.8 16.0 40.6 6.0 2.72
1.5 3.8 5.0 12.7
2.0 5.1 8.0 20.3 3.5 1.59

.9 2.3 5.1 13.0
4.2 10.7 11.0 27.9 4.7 2.14

22.0 55.9
12.0' 3.66m

SIDEVIEW

I
r- WCI .80~EF

TOPYIEW

r o o o 0

Uf+---'--O _0 _0--f-~
.15_1-

OPTIONAL ISOLATION BOARD

Figure Z: Optional Isolation

TABLE 2. AC Specifications With The OIB Installed
Symbol' Parameter Minimum IJlax#mum

t2 clock low lime t2+ In8
t:l clock high time t:l+ Ins
t6 output valid delay

AID 0:31 t6 + 8ns t6+16Ns
DT/RN.DIINN.1l1l0-3N,

AD8N .W/R# t6+7n8 t6+ 14n8
HI.DA,CACHE,LOCK N.INTA # t6+ 6n8 t6+8n8
ALliN t6+ IOn8 t6+20n8

t7 AL~;# width t7·6.5n8
t8 ALII# disable delay t8+ 8n8 t8+ 14n8
t9 output float delay

AID 0::11 t9+ 5n~ t9+22n8
DTlR#,DIIN#,1l1l0<1#,

ADS#.W/R# t9+7n8 t9+ 15ns
HI.DA,CACHII,LOCK #,IN'1'A # t9+6nS t9+8n8

tlO Input setup 1
AID 0:31 tl0+2nS
BADAC#,INTO·3# deassertion tlO+ 14n8

til input hold
AID 0:31. HOLD til + 6nS
IlADAC#.INTO·3#,RIIADY# til +7nS

tl6 reset setup time t16+ 6

'symbol refers to 80960KIl spcci£ication

TABLE 3 ICE-960KB Emulator DC Specifications
Symbol Paramefel' Maximum

PM-Icc Supply current with B0960KB-20 1400rnA
OIB-Icc Supply current PM-Icc + 1l00rnA

TABLE 4 Additional DC Loading
(without OIB installed) (with OIB installed)

IIh III IIh III
SIl:oal Max/mum Itlax/mum Itlax/mum Max/mum

AD(0:31) 100l'-A 0.6 rnA 2Ol'-A -I rnA
DEW 4Ol'-A 1.0 rnA 2Ol'-A -I rnA
W/R# 14Ol'-A 1.6 rnA 2Ol'-A -I rnA
ADS# 14Ol'-A 1.6mA 2Ol'-A -I rnA
CLK2 8Ol'-A 2.2 rnA 5Ol'-A -2 rnA
RESET 5Ol'-A -2 rnA
BE(0:3)# 2Ol'-A -I rnA
DT/R# 2Ol'-A -I rnA
INTO#,INT3# 2Ol'-A -I mA
INTI,INT2 2Ol'-A -I rnA
BADAC# 2Ol'-A -I mA
ALE# 20 Jl-f\ -I rnA
LOCK# 2Ol'-A -I rnA
READY# 2Ol'-A -I rnA
HOLD 2Ol'-A -I mA
FAlLURE# 2Ol'-A -I mA

Power Supply
100-120V or 220-240V (Selectable)
50-60 Hz
2 amps (AC Max) @ 120V
1 amp (AC Max) @ 240V

Eu'f'iroulUeutal Characteristics
Operating Temperature 10 C to 40 C (50 I' to 104 F)
Operating Humidity Maximum 85% Relative

Humidity, non-condensing

iii II II i Ii '''f1'k' iii 1'\' Ii i "ik-
Order Code
ICE960KB

ICE960KBAB

ICE960KBOI

Descriptiou
The complete ICE-960KB emulator
system including control unit,
processor module, power supply, SAST,
OIB, SAB, serial communications cable
(SCOM4), IE o IT, software version 1. x,
and upgrade certificate for version 2.0
software. (Requires software license,
Class I)

The complete ICE-690KB emulator
system including control unit,
processor module, power supply, SAST,
OIB, serial communications cable
(SCOM4), IEDIT, software version l.x,
upgrade certificatc for version 2.0
software, and 2MB Aboveboard.
(Requires software license, Class I)

The complete ICE-960KB emulator
system including control unit,
processor module, power supply, SAST,
OIB, serial communications cable
(SCOM4), IEDIT, software version 1.x
(version 2.0 software is not included).
(Requires software license, Class I)

*IIlM I'C/81' is a lrad!'mark or IIlM
5-11

ASM960D

C960D

DOS hosted assembler, linkeriIoader,
macro preprocessor, archiver
(librarian), PROM builder, and other
object module utilities. (Requires
software license, Class I, plus
addendum I)

DOS hosted optimizing C compiler, with
ANSI extensions for embedded

. applications, contains standard STOIO
libraries and has inline assembly
capability. Requires a 2M byte
Above"board. (Requires software
license, Class I)

For direct information on Intel's Development Tools, or
for the number of your nearest sales office or distributor,
call 800-874-6835 (U.S.). For information or literature on
additional Intel products, call 800-548-4725 (U.S. and
Canada).

UNITED STATES, Intel Corporation
3065 Bowers Ave., Santa Clara, CA 95051
Tel: (408) 765-8080

JAPAN, Intcl Japan K.K.
5-6 Tokodai, Tsukuba-shi.
Ibaraki, 300-26
Tel: 029747-8511

UNITED KINGDOM, Intel Corporation (U.K.) Ltd.
Pipers Way, Swindon, Wiltshire, England SN3 lRJ
Tel: (0793) 696000

imer
ALABAMA

~b~I~I~r~~ord Or., *2
Huntsville 35805
Tel: (205) 830-4010

ARIZONA

l~ni~~ ~~C8th Or.
,Suite 0-214
Phoenix 85029
Tel: (602) 869-4980

gnJ~1 ~oErDorado Place
Suite 301
Tucson 85715
Tel: (602) 299·6815

CALIFORNIA

~~~~~ ~~~owen Street 
Suite 116 

~:1~(31a8f~~~~a: 

tlntel Corp. 

k~~~a~~~ro ~~K1 ~uite 101 
Tel: (916) 920-8096 

tlnlel Carp. 
4350 Executive Drive 
Suite 105 

~:~ (~~e~o4~~~~J80 
tlnlel Corp: 
400 N. Tustin Avenue 
Suite 450 
Santa Ana 92705 

~:~;J~b~5~~~ 
tlnteICorp." 
San Tomas 4 
2700 San Tomas Expressway 

COLORADO 

m;'~g~~park Drive 
Suite 100 

~~:ObBf9) ~~~~~0907 

~~~Z~i~~ St., Suite 915 

~~~~~3idl-~O:869 
CONNECTICUT 

~n~:I~I~n Road 
2nd Floor 

~1~~i?:~~\~9 
FLORIDA 

tntelCarp. 
Ft.~a~d~rd~t~ ~o:uile 100 

~2Rn?;J6-O:4og7 
FAX: 305·772-8193 

!~Jgl.f.&~PLee Blvd. 
Suite 340 
Orlando 32822 

~~~~~i.~!g:~~ 

tSales and Service Office
"Field Application location

DOMESTIC SALES OFFICES

GEORGIA

!~nJ81 ~~~e Parkway
Suite 200
Norcross 30092
Tel: (404) 449·0~1

ILLINOIS

INDIANA

lW~1 ~U~~8 Road
Suite 125

~:r~(3~~~~:~~~~
IOWA

Intal Corp.
193051. Andrews Drive N.E.
2nd Floor
Ceder Rapids 52402
Tei: (319) 393-5510

~ANSAS

tlntel Corp.

1:!51~~~1~~. D
Overland Park 66210
Tel: (913) 345-2727

MARYLAND

tlntel Corp."
7321 Parkway Drive South
SuiteC
Hanover 21076

~~~nb?i~?159~ 
tlnlal Corp. 
7833 Walker Drive 
Suite 550 
Greenbelt 20770 
Tel: (301) 441·1020 

MASSACHUSETTS 

tlnteICorp.* 
Westford Corp. Center 
3 Carlisle Road 
2nd Floor 
Westford 01886 

~~~~l:iltii£ 
MICHIOAN

%ni~18~'ifard laka Road
Suite 100
West Bloomfield 48322
Tel: (313) 651·8096

MINNESOTA

MISSOURI

360

1~~~' ~a~'Clty Expressway
Suite 13'

f:rr3~~7 ~~bo
NEW JERSEY

~~':1~~rfo; Office Center
328 Newman Springs Road
Red Bank 07701
Tal: (201) 747·2233

~~ote6~~'ata Center
75 Livingston Avenue
First Floor
Roseland 07068

~~~~~~11. ~ !g:g~~~ 

HI!!WMI!!XICO 

!~n~1 ~~~UI Boulevard N.E. 
SUite B 295 

*~:u(~~~)9;;2~lJJ: 
N!WYOAK 

Intel Corp. 
127 Main Street 
Binghamton 13905 

~~~e:}.~tg~~ 

~Intal Corp.-
s~Tt~ ~3gressway Dr., South

Islandia 11722

~~~~~~~~j"~2C1Jl6 

NORTH CAROLINA 

~~~gl~x~gUtive Center Dr. 
Suite 105
Charlotte 26212

~~IX~77~.~~~~~

It:lf;i~ff Road

~:II:et8r9~~~~~8022
OHIO

~~~I~a~1f6enter Drive 
Suite 220 

~~J;~5~52~208 
~~~g~ ~"6i~~C9 Park Dr., Suite 100 
Beachwood 44122

~~Jn~e:i~l9~
OKLAHOMA

t~nJ~1 ~B~OadWay
Sulta 115
Oklahoma CI~ 73162
Tel: (405) 848·6086

OREGON

t~nJ~ ~UJ: Greenbrier Parkway

~~~e~~o~ 97006 

~;~~g~b~65i~8o;.11 
PENNSYLVANIA 

Intel Corp: 
400 Penn Center Blvd., Suite 610 

~~:s(~~rSh8~~370 
PUERTO RICO 

t~~ ~~~~~;i~~~~r Corp. 
P.O. Box 910 
Las Piedras 00671 
Tel: (809) 733·8616 

TEXAS 

~~~~.C.f~~er80n Lllne 
Suite 314
Austin 78752
Tel; (512) 454·3626

n~~~~··Roed
Suite 400
Dallas 75234

~~l~1~~~t~~b

UTAH

l~~teJ~~rG4oo South
Suite 104

~e~~;bf:J:.8051
VIROINIA

tlnlel Corp.
1504 Santa Rosa Road
Sulle 106
Richmond 23288
Tel: (604) 282-5668

WASHINGTON

tlnlal Corp.
1551081h Avenua N.E.
Suite 386
Bellevue 98004

~~~g~~~5433~~62 
tlnlel Corp. 
408 N. Mullan Road 
Suila 102 
Spokane 99206 
Tel: (509) 928-8086 

WISCONSIN 

!~nJ~.'if:~utiva Dr. 
Suite 102 
Brookl!eid 53005 
Te!: (414) 784·8067 
FAX: (414) 796·2115 

CANADA 
BRITISH COLUMBIA 

ONTARIO 

~~nJgI8~:I~~~I:C~~v~ Canada, Ltd. 
Suite 250 
Ottawa K2B 6H6 

i~~~1~.~fis9714 
tlntal Semiconductor of Canada, Ltd. 
190 Attwell Drive 
Suite 500 
ReKdala M9W 6H8 
Tel: (416) 675-2105 
TLX: 06983574 
FAX: (416) 675·2438 

QUEBEC 

lintel Semiconductor 01 Canada, Ltd. 
20 SI. John BOUlevard 

Pointe Claire H9R 3K2 

~~~J~~~99~?911~ 

CGjSAlEJ1 11 088

inter
DOMESTIC DISTRIBUTORS

ALAIAIIA

.........

CAUFORMA

~lr."'.t::-
0ntar108178t
Til: (714) 989-9411

CAUFORNIA. CCoAt'd.)

rg;. DIstribution Group
~4M~~eet
T"~3) 322"'00

=~tri::.~"c:~
Garden Grove 92841

~~~~V,1foor7111 

~. Distribution Group 
178'72 Cowan Avenue 
IrvlneS2714 

~~1~ 

COLORADO 

CONNEcncuT 

t===.' Inc. 

~~:sr,~ 

FLORIDA 

torrow EJectronIcl, Inc. 
sutt!~rDrlve 
DeerfIeIcI Beach 33441 

~~8 
AnowEJectronIcs, Inc. 
~:=DrIYe 
Lake Marv 32748 

~~~ 

tMlCrOCOmputer Syllem Technical Dlltrlbutcr Center

fLORIDA (Cont'd.)

GEORQIA

!~~;ap!:w.y
Suite A
NarctOSI30071

~.r.~~

IWHOIe

INDIANA

IOWA

Hamllton/Avnet ElectronIcs
91533rd Avenue, S.W.

~J1~=j?~
KANSAS

AnoW......., ..
8208 Melrose Dr., Suite 210
Lenexa 68214
Tal: (913) 541-9542

KENTUCKY

~~I~n~=Ep':FlCI
~1_2~U75

MARYLAND

MT1 Systems SIIII

ru~8f~'
PIoneerEJectroniCs
44 HartweR Avenue
Le>d=02173

~:m,~7
MICHIGAN

MINNESOTA

MISSOURI

HEW HAIIPSHIRI!

HEW JERSEY

~:r~~=~~nc.
Unit 11
Mlrtton08053

~~"=

t~=::nJ:'1net Electronics
Fairfield 07006

~~~~l= 

HEW MEXICO 

HEW YORK 

tHarnlltOn/Avnet Electronics 
$33 Metro Partc 
Rochester 14623 

~Alf~~~ 



intJ 
DOMESTIC DISTRIBUTORS (Cont'd.) 

NORTH CAROLINA. 

01110 

011...-. 

Arrow Electronics, Inc. 
1211 E.51&tStrflet 
Suite 101 
Tulaa74148 
Tel: (918) 252-7537 

OREGON 

PENNSYLVANIA 

ArrrYNElectronlcs,lnc. 
650 seco Road 
MonroevUle 15146 
Tel: (412) 868-7000 

PioneerErectronics 
259 Kappa Drive 
PitIsI>u~'5238 Tel: 141 782-2300 
TWX: 71 795-3122 

TEXAS 

tArrow 8_. Inc. 
10899 K1nghurst 
SuIte'OO 
Houstonn099 

~J~~ 

tMlcrocomputel' System Technical Distributor Center 

TEXAS (Con,'d.) 

lPioneerElectronlc:s 
8260Kmner 

Austin 78758 

~~J~,~ 

~=~= Richardson 75081 
Tel: (2'4) 235-9953 

UTAH 

Arrow Electronics 

~~~~9 T~, 1801) 97'U:'3 

=~:==p
SulteE

:f~B~~~=
WASHINGTON

WYle Distribution Group
15385 N.E. 90th Street
Redmond 98052
Tel: (206)881.1150

WISCONSIN

CANADA
A.LBERTA.

BRITISH COLUIIBIA

·1~~:m8ectron'CS
T=437~

Roacl

MANITOBA

Zentronlcs
60-1313 Border Unit 60

~~=~,~~
ONTARIO

~~:~~=,ronlC&
UnJts3-4·5
Mlsslsaau,a L4T lR2

~~~~~: 
Hamilton/Avnet Electronics 
6845 RexWOOCl Road 
Unit 6 

~:i=Jk~X~R2 

tZentronlcs 
155 ColOnnade Road 
Unit 17 

=3)~ 
ZentronlCs 
60-1313 Bord8r' St 

~~(tJf:7DJ:7 
QUEBI!C 

tArrow Electronics Inc. 
4050 Jean Talon Quest 
Montreal H4PlWl 

~~~~5~'1 

CGJSAlZ/l11088

inter
DENMARK

Intel
Glentevej 61, 3rd Floor

~~4~)ranh"6~ ~
TLX: 19567

FINLAND

Inlel
Ruosilantie 2
00390 Helsinki
Tel: (358) 0 544 644
TLX: 123332

FRANCE

Intel
I, Rue Edison-BP 303
76054 St. Quentin-en-Yvelines CedeK

i~~W~~:O 57 70 00

Intal
4, Qual des Etrolls
69321 Lyon Cedex 05

+~~~M~~ 784240 89

EUROPEAN SALES OFFICES .

WEST GERMANY

Intel'
Darnaehar Strasse 1
6016 Feldkirchen bei Muenchen

i:1~ ~~~g~~?90992-a
FAX: 904-3948

Intel
HonenzoliernStrasse5
3000 Hannover 1
Tel: (49) 0511/344081
TLX: 9-23625

Intel
Abraham lincoln Strasse 16-18
6200 WI9sbaden
Tel: (49) 06121f760S-0
TLX: 4-186183

Inlel
Zettachnng IDA

~m~1~Jaffga72a.o

ISRAEL

Inlel'
Atidlm Industrial Pario;-Neve Share!
P.O. Box 43202
Tel-Aviv 61430
Tel: (972) 03-498060
TLX: 371215

ITALY

IntelO
Mllanofiorl Palazzo E
20090 Assago
MIlano

i~~~,~~! 8244071

NETHEflLANDS

Intel'
Marten Mee5weg 93
3068 AV Rot1erdam

i~~~~2}g.407 .11.11

HOflWAY

Intal
Hvamveian 4-PO Box 92
2013Skjetten

~~~fJo(f~ 842 420 

SPAIN 

Inlel 
Zurbaran,28 
28010 Madrid 

~~:(!"Ja~O 40 04 

SWEDEN 

Intel" 

~:~v~~"ofn~ 
~~:(~~2~J34 01 00 

SWITZERLAND 

Intel 
Zuerichslrasse 
81 S5 Winkel·Rueb bei Zuerich 

~~~~~5~¥?60 62 62 

UNITED KINGDOM

Inlel'

~~~Jo~,a*lItshire SN3 1 RJ 

~~!~m 696000 

EUROPEAN DISTRIBUTORS / REPRESENTATIVES 

AUSTRIA 

Bacher Electronics G m.b.H. 
Rolenmuehlgasse 26 
1120Wien 
Tel: (43) (0222) 83 56 4fM) 
TLX: 131532 

BELGIUM 

Inalec Belgium SA 
Av. des Croix de Guerre 94 
1120 Bruxelles 

?l~~~~~lenlaan, 94 

~~~~~)2160160 

DEHUAflK

ITI·Multikomponent
Naverland29
2600Glostrup

+~~}~ rJs2 45 66 45

FINLAND

OY Fintronic AS
Malkonkatu24A
00210 Helsinki

i~~~~2~16926022

FRANCE

Generim

~C:~~!~ieres
4, avo Laurent·Caly
92606 Asnieres C8dex
Tel: (33) (1) 47 90 62 40
TLX: 611448

Tekelec-Airtronic
Rue Carle Vernel· BP 2
92315 Sevres Cedex

~!~d..~l:5 34 75 35

'Field Application location

WEST GERMANY

Electronic 2000 AG

~::J~~'::;~~~~ ~
Tel: (49) 089/4200Hl
TLX:522561

Jermyn GmbH
1m Dachsstueck 9

~~r~4~)g~81/508-0
TLX: 415257·0

Proelectron Vartriebs GmbH
Max Planck Strasse 1·3
6072 Dreieich
Tel: (49) 061 03/3040
TLX: 417903

IRELAND

Micro Marketing lid.
Glenagaary OffIce Park
Glenageary
Co. Dublin
Tel: (21) (353) (01) 85 63 25
TLX: 31584

ISflAEL

EastronicsLtd.
11 Rozams Street
P.O.B. 39300
Tel-Aviv 61392

f~~~~3-475151

ITALY

IntaSi
Divisione ITI Industries GmbH
Vla!e Miianofiori
PalazzoE/5
20090 Assago
Milano

+~~~~)1~~:24701

b~j~ ~~lerci~~:ti~'f2~'
20092 Clnlsello Balsamo
MIlano

f~!~2~440012

NETHERLANDS

Koning en Hartman

16~~e.we~~
Tel: (31) 15609906
TLX:38250

NORWAY

Nordisk Elaktronikk (Norge) A/S
Postboks 123
Smedsvingen 4
1364 Hvaistad
i~:(WJ!ll) 84 6210

POflTUQAL

Ditram
Avenlda Marques de Tomar, 46-A
1000 Usboa
Tal: (351) (1) 73 48 34
TLX: 14182

SPAIN

ATD Electronica, S.A.
Plaza eiudad de Viena. 6
28040 Madrid

i~~~7~4000

ITI·SESA

r:3roM~a~~\:nga', 21-3

iti~:W4~;9 09 57

SWEDEN

Nordlsk Elektronik AB
Huvudstagatan1
Box 1409
17127 Selna
Tel: (46) 08-734 97 70
TLX: 105 47

SWITZERLAND

Industrade A.G.
Hertistrssse31
6304 Wallisetien

i~n~7~3') 83 05 04 0

TURKEY

EMPA Electronic
Undwurmstrasse 95A
8000 Muanchen 2

~~n~~~53 80 570

UNITED KINGDOM

Accent Electronic Components ltd.
Jubilee HOU38, Jubilee Road
Letchworth. Herts SG6 tTL
i~:(~1~~2) 686666

Jermyn
Vestry Eslata
Otford Road
Sevenoaks
Kent TN14 5EU

i~~~d,~I32J 450144

MMO
Umt 8 Southview Park
Caversham

::~~~h?re AG4 OAF

i~~mlr)481666

Rapid Silicon
Rapid House
Denmark Street
Hlgh~combe

~~17~~~~~~~i~~:6~1 2EA
TLX: 637931

Rapid Systems
Rapid House
Denmark Street
High Wycombe

~~7~~~~~~9s~i~~~:~ 2ER
TLX: 837931

YUGOSLAVIA

Rapido Electronic Components S.p.a.
Via C. Beccaria. 8
34133 Trieste
ltalia

i~:(~g~/360555

CG/SAlE/111088

INTERNATIONAL SALES OFFICES

AUSTRALIA

BRAZIL

CHINA/HONG KONG

Intel Semiconductor Ltd.'
10/F East Tower
Bond Center
Q

JAPAN

~!~~~~~~9~~ld9.
1-8889 Fuchu-cho

~~F~~~7klr,' sa
FAX: 0423-80-0315

Intel Japan K.K"
Flower-Hill Shln-machl Bldg.
1-23-9 Shlnmachl

~1~~~~~~~kYO 154
FAX: 03-427-7620

Intel Japan K.K:

~~g8'HKoUn~ca~~ya
~~~g,p:r2tJ8~fltama 360 
FAX: 0485-24-7518 

~~~~~~~~i~:sashl-kOSUgl Bldg. 
915 Shlnmaruko, NBkahara-ku

~:~8:::t~7~:ragawa 211
FAX: 044-733-7010

JAPAN (Conl'd.)

~i~~~:~~'~isugl Bldg.
1-2-1 Asahl-machl

~~:ua.r:~!~~~awa 243
FAX: 0462-29-3781

560

Intel Japan K.K.
Shlnmaru Bldg.
1-5-1 MarunoUchf
Chl~a-ku, Tokyo 100
Tel: 03-201-3621
FAX: 03-201-6650

~~~~a~~.K.K. 
1-16-20 Nishlkl 
Naka-ku. Nagoya-shl 
Alchl450 
Tel: 052-204-1261 
FAX: 052-204-1285 

KOREA 

SINGAPORE 

TAIWAN 

INTERNA TIONAL 
DISTRIBUTORS/REPRESENTATIVES 

ARGENTINA 

DAFSYS S.R.L. 
Chacaboco, 90-4 PISO 
1069-Buenos Aires 
Tel: 54-1-334-1871 

54-1-334--n26 
TLX: 25472 

AUSTRALIA 

BRAZIL 

Elebra Mlcroelectronlca 
R. Geraldo Flauslna Gomes, 78 
9Andar 
04575 - Sao Paulo - S.P. 
Tel: 011-55-11-534-9637 
TLX:3911125131 ELBA SR 
FAX: 55-11-534-9424 

CHILE 

DIN Instruments 
Suecla 2323 
C4sllia 6055, Corrao 22 

~:1~~~-225-8139 
TlX: 440422 AUDY CZ 

CHINA/HONG KONG 

~1~r~,p~~1':f~cr~~';JI~" Ltd. 
Phase " 261("wal Hel Street 
N.T., Kowloon 

~:'is~~~23-222 
1WX:39114JINMI HX 
FAX: 852-0-261-602 

"FIeld AppliCation Locatton 

INDIA 

Mlcronic Davices 
Arun Complex 
No. 65 O.V.G. Road 
BasavanagUdI 

~:I~i~~2:r~, 
011-91-812-621-455 

Tl.X: 0845-833.2 MD BG IN 

Micronlc Davlces 
Flat 403, Gagan Deep 
12. Rajendra Place 
New Deihl 110 008 
Tel: 91-58-97-71 

011-91-57-23509 
TLX: 03163235 MONO IN 

hembur 

~~,~~;~?l-1 
TLX: 9531171447 MDEV IN 

5&5 Corporation 
Camden Business Center 
Suite 6 
1610 Blossom Hili Rd. 
San Jose, CA 95124 
U.S.A. 

+~~~~2i.~8-6216 
JAPAN 

Asahl ElectronIcs Co. Ltd. 
KMM Bldg. 2-14-1 Asano 
Kokurakrt8-ku 

~~~~~~;~~2 
FAX: 093-551-7861

C.l1oh Techno-Science Co., Ltd.
4-8-1 Dobashl, Mlyamae-ku

~:~g::~-3;!5~:,nagawa 213

FAX: 044-877-4268

JAPAN (Cont'd.1

W:::~~~W:~~Jaya
¥:i:aM!asa~~kyO 1
FAX: 03-467·8088

~~¥g ~~~~e
~:I~~t~_~~~6shr 460
FAX: 052-204-2901

Ryoyo Electro Corp.
Konwa Bldg.
1-12-22 TsuklJI

~~1~'6t~~~6f,'04
FAX: 03-546-5044

KOREA

MEXICO

DrcopsIS.A.
Tochtll 368 Frace. Ind. San Antonio

~~~~~~c,seXlco, D.F. 
Tel: 52-5-561-3211 
TUC: 1773790 DICOME 

NEW ZEALAND 

Switch Enterpflses 
36 Olive Road 
Penrose, Auckland 
ATTN: Dean Danford 
Tel: 64-9-591155 
FAX: 64-9-592681 

~NGAPORE 

SOUTH AFRICA 

Electronic Building Elements, Pty. Ltd. 
P.O. Box 4609 

TAIWAN 

Sertek 
5FL, 135 Sec. 2 
Chlen-Kuo N. Rd. 

~~~.'0479 
Tel: (O~ 5010055

FAX: ~021 ~oill~l
VENEZUELA

P. Benavides S.A.
Avllanes a Rio
ResklencJa Kamarata

4"'7

vc

CO/SALE/111088

intJ
ALABAM"

Intel Corp.
15015 Bnidford Dr., #2
Huntsville 35805
Tel!(205)~10

ARIZONA

Intel Corp.
11225 N. 28th Or.
Suite P.214
Phoenix 65029
Tel: (602) 869-4980

Intel Corp.
500 E. Fry Blvd., Suite M·15
Sierra Vista 85635
Tel: (802)459-501 0

~~t:~ ~~~i Oorado Place
Suite 301
Tucson 85715
Tel: (602) 299-6815

CAUFORNIA

Intel Corp.
21515 Vanowen Street
5ult8116

i:'~1aBr~~
~nJ~::tt.rfn;perial Highway
Suite 216

~mf;ld=o

Intel Corp,"
400 N. Tustin Avenue
Suite 450
Santa Ana 92705

MJt~~~
Intel Corp!
San Tomas 4
2700 San Tomas Expressway
2nd Floor
Santa Clara 95051

~~r.~5
COl.ORADO

Intel Corp.
4445 Northpark Orlve
Su1t8100

~I:O{~~ ~ct;~0907

St .. Suite 915

8086
-2'"

CONNECTICUT

~~~~inAoad 
2nd Floor 
OanbU~ 06811 

~~71b?t~1,3Jlg 

CAUFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 970-1700 

CAUFORNIA 

2700 San Tomas Expressway 
Santa Clara 95051 
Tel: (408) 986-8086 

DOMESTIC SERVICE OFFICES 
FLORIDA MICHIGAN NORTH CAROLINA 

WJ~ 9rre: 6th Way 
Intel Corp. Intel Corp. 
7071 Orchard lake Aoad 5700 Executive Drive 

Suite 100 SuUe 100 Sulle 213 
Ft. lauderdale 33309 Wesl Bloomfield 4B033 Charlotte 28212 

~J~~~l:l5tO~0Jl7 Tel: (313) B51-6096 Tet: (704) 568·6988 

FAX: 305·772-8193 MtNNESOTA Intel Corp. 
2306 W. Meadowview Aoad 

knJ;b ~~8\8G Blvd. 
Intel Corp. Sulle 206 
3500 W. BOth St., Suile 360 Greensboro 27407 

Suite 340 Bloomln~on 55431 Te1: (919) 294·1541 
Orlando 32822 ~812 835-8722 

~:I~f~~J.~:~:~ ! 91 ·576·2867 Intel Corp. 

MISSOURI 
~~~ ~diljff Road 

~nlt~~~~. Street North Intel Corp. ~:!:ei8r 9r7~~~8022
SuIte 170 4203 Earth City Expressway
SI. Petersburg 33716 SUite 131 OHIO

~~f~113J.;~~~~~~ Earth City 63045
Tel: (314) 291-1990 InlElICorp.'

3401 Park Center Drive
GEORGIA NEW JERSEY Suite 220

Dayton 45414
Intel Corp. ~!~!t~~F!1aza III ~~~~~b~95°G.5li208 3280 Pointe Parkway
Suite 200 Raritan Center
Norcross 30092 Edison 08617 Intel Cor~.·
Tel: (404) 449-0541 Tal: (201) 225-3000 25700 SCience Park Dr.

Suite 100
IWNOIS Intel Corp. Beachwood 44122

~rigl~~~ingale Road

385 Sylvan Av.enue ~~~~~~S:i~l968 Englewood CllNs 07632

SUite 400 mJt~~~9~~:t9\ . OKLAHOMA

~;ri3~~arf~JJ~ Intel Corp: knJ9\ ~~rg~oadway
INDIANA

Parkway 109 Office Center
328 Newman Springs Road SUite 115
Red Bank 07701 Oklahoma City 73162

Intel Corp. Tel: (201) 747·2233 Tel: (405) 646--8086
6777 PurdUe Road
Suite 125 tlntel Corp. OREGON

~~~(~~W~jt~~ 280 ~rporate Center 
Intel Corp. 75 liVingston Avenue 

First Floor 15254 N.W. Greenbrier Parkway 
IOWA Roseland 07068 BUilding B 

~:~f~':il.j!~~~~ Beaverton 97006 
Intel Corp. Tel: (503) 645-8051 
1930 SI. Andrews Drive N.E. TWX: 910-467-6741 
2nd Floor NEW MEXICO 
Cedar Rapids 52402 
Tel: (319) 393-5510 Intel Corp. 

6500 Menaul Boulovard N.E. 
~J6b C:~'Elam Young Parkway 
Hillsboro 97123 

KANSAS Suite B 295 Te[: (503) 661·8080 

Intel Corp. ~::U&O~'ku:2~JJJg PENNSYLVANIA 
6400W.l10th Street 
Suite 170 NEW YORK Intel Corp: 
Overland Park 86210 455 Pennsylvania Avenue 
Tel: (913) 345-2727 Intel Corp. SUIte 230 

127 Main Street ~~17 (~a5st~1~~Origo34 MARYLAND Binghamton 13905 

~~~~~~i.gt~~~ TWX: 510-661-2077 
Intel Corp:
7321 Parkway Drive South Intel Corp:
Suilee Intel Corp: 400 Penn Center Blvd.
Hanover 21076 ~~~~~~~E~s Office Park Suite610

~P~~~6~~59~ Tel: (716) 425·2750 ~~~:s~~r~h81~~~~70
TWX: 510-253·7391

Intel Corp. PUERTO RICO
7833 Walker Drive Intel Corp.'
Suite 550 300 Motor Parkway Intel Microprocessor Corp.
Greenbelt 20770

~JCJa~~~i~i08
South Industrial Park

Tel: (301) 441·1020 P.O. Box 910
Las Piedras 00671

MASSACHUSETTS Tel: (809) 733·8816
Intel Corp.

TEXAS Intel Corp: :~~~aj~o~~~~?es~ Center Westford Corp. Center
3 CarliSle Aoad Fishkill 12524 Intel Corp.
2nd Floor ~~f~~~.~~j:~~~~ 313 E. Anderson lane
Westford 01888 Suite 314

~~~~~~ Austin 78752 
Tel: (512) 454-3626 

CUSTOMER TRAINING CENTERS 
ILLINOIS 

~!.~~rtin~8~i!;l300 
Tel: (312)3rpO.57oo 

MASSACHUSETTS 

3 Carlisle Roac:l 
Westford 01 aaa 
Tel: (506) 692-1000 

MARYLAND 

7833 Walker Or .• 4th Floor 
Greenbelt 20770 
Tel: (301) 220-3380 

SYSTEMS ENGINEERING OFFICES 
ILLINOIS NEW YORK 

~!:;m~~7inB3~~s*3OO 
Tol, (312) 3fO-<1031 

300 Motor Parkway 

~:I~rcla~gi31 ~80 

TEXAS (Cont'd.) 

Intel Corp: 
12000 Ford Road 
Suite 400 
Dallas 75234 

~~~f22"~~~:~~~~ 

~i~t~ ~:~6'FreeWay
Houston 77074

~Jr~ib:::;~2O:960
UTAH

Intel Corp.
426 East 6400 South
Suite 104

~~~(~~,fi~6051 
VIRGINIA 

Intel Corp. 
1504 Santa Rosa Road 
Suite 106 
Richmond 23288 
Tel: (804) 282·5668 

WASHINGTON 

Intel Corp. 
15510Bth Avenue N.E . 
Suite 366 
Bellevue 98004 

:~~·!lg~~3~:a82 

WISCONSIN 

Intel Corp. 
330 S. Executive Or. 
Suite 102 
Brookfield 53005 
Tel: (414) 764-6087 
FAX: (414) 796-2115 

CANADA 
BRITISH COLUMBIA 

Intel Semiconductor of Canada, Ltd. 

~~~~a~~n.:g~ ~~l' Suite 202 
Tel: (604) 298-0387
FAX; (604) 298-8234

ONTARIO

Intel Semiconductor of Canada, LId.
2650 Queensview Drive
Suite 250
Ottawa K2B 8H6
Tel: (613) 629·9714
TL.X: 053-4115

OUEBEC

Intel Semiconductor of Canada, ltd.
620 51. John Boulevard
Pointe Claire H9R 3K2

~~~J~~~~4~~,s~ 

CGfSAlE/l110B8 






