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INTRODUCTION

This handbook provides detailed programming information and hardware system design informa-
tion for the Intel 80960KB processor (which is part of the 80960K series of embedded-processor
products) as well as information on other 32-bit microprocessors, peripherals and development
support tools.

Hardware designers can use this information as a guideline for developing microprocessor systems.
Applications programmers, compiler designers, and designers of operating-system kernels will also
find needed information on the software architecture, instruction set, and programming of the
80960KB processor.

All of the processors in the 80960K series of products are based on the Intel 80960 architecture. Most
of the information in this handbook also applies to the 80960KA processor. The only difference
between the 80960KB and 80960KA processors is that the 80960KA does not provide on-chip
support for floating-point operations or operations on decimal numbers.

Wherever appropriate, design examples are included. These designs are based upon functional
80960KB boards and systems, and are simplified for ease of understanding. These simplified designs
have not been tested except for examples that include part numbers.

The Programmer’s Reference provides programmers and system designers with detailed informa-
tion about the processor’s programming environment and kernel (or executive) support facilities. It
also provides detailed reference information on the 80960 architecture, beyond that found in the
architecture overview.

OVERVIEW OF THE PROGRAMMER’S REFERENCE

The following is a brief overview of the contents of each section of the Programmer s Reference
portion of the manual:

Section 7— Execution Environment. Describes the environment in which instructions are executed.
The topics discussed include the address space, registers, instruction pointer, and arithmetic calls.

Section 8 — Procedure Calls. Describes the various mechanisms available for making procedure
calls. The topics discussed include the local call/return mechanism, procedure stack, branch-and-link
procedure calls, procedure table calls, and supervisor call mechanism.

Section 9 —Data Types and Addressing Modes. Describes non-floating-point data types and how
bits and bytes are addressed. The addressing modes prov1ded for addressing data in memory are also
described in this section.

Section 10 — Instruction Set Summary. Overview of all non-floating-point instructions in the
80960KB instruction set, arranged by functional groups. The assembly language instruction format
is also described.

11
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Section 11 — Processor Management and Initialization. Describes the processor management
facilities. Included is a discussion of the system data structures required to operate the processor, the
software requirements for processor management, and the requirements for physical memory
Processor Initialization concludes the section.

Section 12 — Interrupts. Description of the interrupt mechanism, interrupt priority, interrupt table,
interrupt handling procedures, and the software requirements for handling interrupts.

Section 13 — Fault Handling. Describes the processor’s fault-handling mechanism, including the
fault-table structure, fault handling procedures, and the software requirements for handling faults.
Each fault is detailed in a reference section at the end of the section.

Section 14 — Debugging. Describes the debugging and monitoring support facﬂmes including the
trace control register.

Section 15 — Instruction Set Reference. Alphabetical listing of the complete 80960KB instruction
set, with detailed descriptions of each instruction, assembly-language syntax, examples, and
algorithms,

Section 16 — Floating Point Operation. Description of the floating-point processing facilities of the
processor. This section includes an overview of floating-point numbers as well as a description of
the 80960KB floating-point data types and their relationship to the IEEE floating pomt standard.
Floatmg-pomt instructions, exceptions, and faults are also described.

Section 17 — Interagent Communication. Describes the interprocessor communication (IAC)
mechanism, which allows several processors to communicate with one another over the bus. The
topics discussed include the IAC mechanism and software requirements for using internal IACs.
Each IAC is described in detail in a reference section at the end of the section.

Appendix A— Instruction and .Data Structure Quick Reference. Provides two lists of the 80960KB
instructions - one alphabetical by assembly-language mnemonic and one by machine language
opcode.

Appendix B — Machine-Level Instruction Formats.

Appendix C— Instruction Timing. Describes the 80960KB processor’s instruction pipeline and its
effect on instruction timing. Includes each instruction’s clock cycle requirement.

Appendix D — Initialization Code. A listing of the code to initialize the 80960KB processor.

Appendix E — Considerations for Portable Softwaré. Discusses the 80960KB architecture aspects
that should be considered if code written for the 80960KB processor is intended to be ported later
to other.implementations of the 80960 architecture.

1-2
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NOTATION AND TERMINOLOGY CONVENTIONS

The following paragraphs describe the notation style conventions used in the architectural overview
and programmer’s reference chapters, as well as terminology that has special meaning as used in this
handbook.

Integer numbers are presented in decimal format unless otherwise indicated by the subscript “H” for
hexadecimal or “B” for binary.

An active low signal is represented by a solid line over the signal name.

Reserved and Preserved

Certain fields in the processor’s system data structures are described as being either reserved fields
or preserved fields.

Areserved field is one that other implementations of the 80960 architecture can use. To help ensure
that a current software design will be compatible with future processors based on the 80960
architecture, the bits in the reserved fields should be set to 0 when the structure is initially created.
Thereafter, software should not access these fileds.

Some fields in system data structures are shown as being required to be set to either 1 or 0. These fields
should be treated as if they were reserved fields. They should be set to the specified value when the
data structure is created, and should not be accessed by software after that.

A preserved field is one that the processor does not use. Software may use preserved fields for any
function.

Set and Clear

The terms set and clear are used in this manual to refer to the value of a bit field in a system data
structure. If a bit is set, its value is 1; if the bit is clear, its value is 0. Likewise, setting a bit means
giving it a value of 1 and clearing a bit means giving it a value of 0.

OVERVIEW OF THE 80960KB ARCHITECTURE

The 80960KB processor introduces the 80960 architecture - anew 32-bit architecture from Intel. This
architecture has been designed to meet the needs of embedded apphcatlons such as machine control,
robotics, process control, avionics, and instrumentation.

The 80960 architecture can best be characterized as a high-performance computing engine. It
features high-speed instruction execution and ease -of programming. It is also easily extensible,
allowing processors and controllers based on this architecture to be conveniently customized to meet
the needs of specific processing and control applications.

1-3
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The following are some of the important attributes of the 80960 architecture:
»  Full 32-bit registers
»  High-speed, pipelined instruction execution

e A convenient program execution environment with 32 general-purpose registers and a versatile
set of special-function registers

¢ Ahighly optimized procedlire call mechanism that features on-chip caching of local variables
and parameters

»  Extensive facilities for handling interrupts and faults
« Extensive tracing facilities to support efficient program debugging and monitoring

*  Register scoreboarding and write buffering to permit efficient operation when used with lower
performance memory subsystems.

OVERVIEW OF THE SINGLE PROCESSOR SYSTEM ARCHITECTURE

The central processing module, memory module, and I/O module form the natural boundaries for the
hardware system architecture. The modules are connected together by the high bandwidth 32-bit
multiplexed L-bus, which can transfer data at a maximum sustained rate of 53M bytes per second for
an 80960 processor operating at 20 MHz.

Figure 1 shows a simplified block diagram of one possible system configuration. The heart of this
system is the 80960B processor, which fetches instructions, executes code, manipulates stored
information, and interacts with I/O devices. The high bandwidth L-bus connects the 80960KB
processor to memory and I/O modules. The 80960K B processor stores system data, instructions, and
programs in the memory module. By accessing various peripheral devices in the I/O module, the
80960KB processor supports communication to terminals, modems, printers, disks, and other I/O
devices.

80960KB Processor and the L-Bus

The 80960KB processor performs bus operations using multiplexed address and data signals, and
provides all the necessary control signals. For example, standard control signals, such as Address
Latch Enable (ALE), Address/Data Status (ADS), Write/Read Command (W/R), Data Transmit/
Receive (DT/R), and Data Enable (DEN), are provided by the 80960KB processor. The 80960
processor also generates byte enable signals that specify which bytes on the 32-bit data lines are valid
for the transfer.

The L-bus supports burst transactions, which access up to four data words at a maximum rate of one
word per clock cycle. The 80960KB processor uses the two low-order address lines to indicate how
many words are to be transferred. The 80960KB processor performs burst transactions to load thé
on-chip 512-byte instruction cache to minimize memory accesses for instruction fetches. Burst
transactions can also be used for data access.

1-4
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PROCESSOR MODULE

80960MC

PROCESSOR
MEMORY
CONTROLLER |

/0 MODULE

1/0 INTERFACE

1/0 DEVICE 1/0 DEVICE
(SLAVE) (BUS MASTER)

Figure 1. Basic 80960MC System Configuration

To transfer control of the bus to an external bus master, the 80960K B provides two afbitration signals:
hold request (HOLD) and hold acknowledge (HLLDA). After receiving HOLD, the processor grants
control of the bus to an external master by asserting HLDA.

The 80960KB processor provides a flexible interrupt structure by using an on-chip interrupt
controller, an external interrupt controller, or both. The type of interrupt structure is specified by an
internal interrupt vector register. For a system with multiple processors, another method is available,
called inter-agent communication (IAC) where a processor can interrupt another processor by
sending an IAC message.

Memory Module

A memory module can consist of a memory controller, Erasable Programmable Read Only Memory
(EPROM), and static or dynamic Random Access Memory (RAM). The memory controller first

1-5
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conditions the L-bus signals for memory operation. It demultiplexes the address and data lines,
generates the chip select signals from the address, detects the start of the cycle for burst mode
operation, and latches the byte enable signals.

The memory controller generates the control signals for EPROM, SRAM, and DRAM. Specifically,
it provides the control signals, multiplexed row/column address, and refresh control for dynamic
RAMs. The controller can be designed to accomodate the burst transaction of the 80960KB processor
by using the static column mode or nibble mode features of the dynamic RAM. In addition to
supplying the operational signals, the controller generates the READY signal to mdlcate that datacan
be transferred to or from the 80960KB processor.

The 80960KB processor directly addresses up to 4G bytes of physical memory. The processor does
notallow burst accesses to cross a 16-byte boundary, to ease the design of the controller. Each address
specifies a four-byte data word within the block. Individual data bytes can be accessed by using the
four byte-enable signals from the 80960KB processor. Chapter 5 provides design guidelines for the
memory controller.

I/0 Module

The I/O module consists of the I/O components and the interface circuit. I/O components can be used
to allow the 80960KB processor to use most of its clock cycles for computational and system
management activities. Time consuming tasks can be off-loaded to specialized slave-type compo-
nents, such as the 8259A Programmable Interrupt Controller or the 82530 Serial Communication
Controller. Some tasks may require a master-type component, such as the 82586 Local Area Network
Control.

The interface circuit performs several functions. It demultiplexes the address and data lines,
generates the chip select signals from the address, produces the I/O read or I/O write command from

. the processor’s W/R signal, latches the byte enable signals, and generates the READY signals. Since
some of these functions are identical to those of the memory controller, the same logic can be used
for both interfaces. For master-type peripherals that operate on a 16-bit data bus, the interface circuit
translates the 32-bit data bus to a 16-bit data bus.

The 80960K B processor uses memory-mapped addresses to access I/O devices. This allows the CPU
" touse may of the same instructions to exchange information for both memory and peripheral devices.
Thus, the powerful memory-type instructions can be used to perform §-, 16-, and 32-bit data
transfers.

HIGH PERFORMANCE PROGRAM EXECUTION

Much of the design of the 80960 architecture has been aimed at maximizing the processor’s
computational and data processing speed through the use of increased parallelism. The following '
paragraphs describe several of the mechanisms and techniques used to accomplish this goal.
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Load and Store Model

One of the more important features of the 80960 architecture is its performance of most operations
on operands in registers, rather than in memory. For example, all arithmetic, logic, comparison,
branching and bit operations are performed with registers and literals.

This feature provides two benefits. First, it increases program execution speed by minimizing the
number of memory accesses necessary to execute a program. Second, it reduces the memory latency
encountered when using slower, lower-cost memory parts.

To support this concept, the architecture provides a generous supply of general-purpose registers. For
each procedure, 32 registers are available, 28 of which are available for general use. Thse registers
are divided into two types: global and local. Both types of registers can be used for general storage
of operands. The only difference is that global registers retain their contents across procedure
boundaries, whereas the processor allocates a new set of local registers each time a new procedure
is called. ‘

The architecture also provides a set of fast, versatile load and store instructions. These instructions
allow burst transfers of 1, 2, 4, 8, 12, or 16 bytes of information between memory and the registers.

On-Chip Caching of Code and Data

To further reduce memory accesses, the architecture offers two mechanisms for caching code and
data on chip: an instruction cache and multiple sets of local registers. The instruction cache allows
prefetching of blocks of instruction from memory. This helps ensure that the instruction execution
. pipeline is supplied with a steady stream of instructions. It also reduces the number of memory
accesses required when performing iterative operations such as loops. The architecture allows the
size of the instruction cache to vary. For the 80960KB processor, it is 512 bytes.

To optimize the architecture’s procedure call mechanism, the processor provides multiple sets of
local registers. This allows the processor to perform procedure calls without having to write the'local
registers out to the stack in memory. The number of register sets depends on the processor
implementation. The 80960KB processor provides four sets of local registers.

Overlapped Instruction Execution

The 80960 architecture also enhances program execution speed by overlapping the execution of
some instructions. In the 80960K series of processors, this is accomplished through register
scoreboarding.

Register scoreboarding permits instruction execution to continue while data is being fetched from
memory. When a load instruction is executed, the processor sets one or more scoreboard bits to
indicate the target registers to be loaded. After the target registers are loaded, the scoreboard bits are
cleared. While the target registers are being loaded, the processor is allowed to execute other
instructions that do not use these registers.



intal | INTRODUCTION

The processor uses the scoreboard bits to ensure that the target registers are not used until the loads
complete. (Scoreboard bits are checked transparently from software.) This technique allows code to
be executed such that some instructions.can be executed in zero clock cycles (that is, executed for
free)..

Single-CIdck Instructions

The 80960 architecture is designed to let a processor execute commonly used instructions, such as
moves, adds, subtracts, logical operations, and branches, in a minimum number of clock cycles
(preferably one cycle). The architecture supports this concept in several ways. For example, the load
and store model described earlier eliminates the clock cycles required to perform memory-to-
memory operations, by concentrating on register-to-register operations.

In addition, all of the instructions in the 80960 architecture are 32 bits long and aligned on 32-bit
boundaries. This lets instructions be decoded in one clock cycle, and eliminates the need for an
instruction-alignment stage in the pipeline.

The 80960KB processor takes full advantage of these features of the architecture, resulting in more
than 50 instructions that can be executed in a single clock cycle. '

Efficient Interrupt Model

The 80960 architecture provides an efficient mechanism for servicing interrupts from external
sources. To handle interrupts, the processor maintains an interrupt table of 248 interrupt vectors, 240
of which are available for general use. When an interrupt is signaled, the processor uses a pointer to
the interrupt table to perform an implicit call to an interrupt handler procedure. In performing this
call, the processor automatically saves the state of the processor prior to receiving the interrupt,
performs the interrupt routine, then restores the state of the processor. A separate interrupt stack is
also provided to segregate mterrupt handling from application programs

The interrupt handlmg facilities also allow interrupts to be evaluated by priority. The processor is then
able to store interrupt vectors that are lower in priority than the current processor task in a pending
interrupt section of the interrupt table. The processor checks and services the pending interrupts at
defined times.

SIMPLIFIED PROGRAMMING ENVIRONMENT

Because of its streamlined execution environment, processors based on the 80960 architecture are
particularly easy to program. The following paragraphs describe some of the architecture features
that simplify programming.

Highly Efficient Procedure Call Mechanism

The procedure call mechanism makes procedure calls and parameter passing between procedures
simple and compact. Each time a call instruction is issued, the processor automatically automatically
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saves the current set of local registers and allocates a new set for the called procedure. Likewise, on
areturn from a procedure, the current set of local registers is deallocated and the local registers for
the procedure being returned to are restored. This means a program never has to explicitly save and
restore those local variables that are stored in local registers.

Versatile Instruction Set and Addressing

The selection of instructions and addressing modes also simplifies programming. A full set of load,
store, move, arithmetic, comparison, and branch instructions are provided, with operations on both
integer and ordinal data types. Operations on bits and bit strings are simplified by a complete set of
Boolean and bit-field instructions.

The addressing modes are efficient and straighforward, while at the same time providing the
necessary indexing and scaling modes required to address complex arrays and record structures. The
large 4-gigabyte address space provides ample room to store programs and data. The availabilty of
32 addressing lines allows some address lines to be memory-mapped to control hardware functions.

Extensive Fault Handling Capability

To aid in program development, the 80960 architecture defines a wide range of faults that the
processor detects, including arithmetic faults, invalid operations, invalid operands, and machine
faults. Whan a fault is detected, the processor makes an implicit call call to a fault handler routine,
in a way similar to the interrupt mechanism descrbed previously. The information collected for each
fault allows program developers to quickly correct faulting code, and allows automatic recovery
from some faults.

Debugging and Monitoring

To support debugging systems, the 80960 architecture provides a mechanism for monitoring
processor activity by means of trace events. When the processor detects a trace event, it signals a trace
fault and calls a fault handler. Intel provides several tools that use this feature, including an in-circuit
emulator (ICE) device.

SUPPORT FOR ARCHITECTURAL EXTENSIONS

The 80960 architecture provides several features that enable processors based on this architecture to
be easily customized to meet the needs of specific embedded applications, such as signal processing,
array processing, or graphics processing.

The most important of these features is the set of 32 special function registers. These registers provide
aconvenient interface to circuitry in the processor or pins that can be connected to external hardware.
They can be used to control timers, to perform operations on special data types, or to perform 1/O
functions. The special function registers are similar to the global registers. They can be addressed by
all of the register access instructions. '
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EXTENSIONS INCLUDED IN THE 80960K SERIES PROCESSORS

The 80960K series of processors provides a complete implementation of the 80960 architecture, plus
several extensions to that architecture. These extensions fall into two categories: floating-point
processing and interagent communication.

On-Chip Floating Point

The 80960KB processor provides a complete implementation of the IEEE standard for binary
floating-point arithmetic (IEEE 754-185). This implementation includes a full set of floating point
operations, including add, subtract, multiply, divide, trigonometric functions, and logarithmic
functions. These operations are performed on single precision (32-bit), double precision (64-bit), and
extended precision (80-bit) real numbers.

One of the benefits of this implementation is that the floating-point handling facilities are integrated
into the normal instruction execution environment. Single and double precision floating-point values
are stored in the same registers as non-floating point values. Four 80-bit floating-point registers are
provided to hold extended-precision values.

Interagent Communication

All of the processors in the 80960K series provide an interagent communication (IAC) mechanism,
allowing agents connected to the processor’s bus to communicate with one another. This mechanism
operates similarly to the interrupt mechanism, except that IAC messages are passed through
dedicated sections of memory. The sort of tasks handled with IAC messages are processor
reinitialization, stopping the processor, purging the instruction cache, and forcing the processor to
check pending interrupts.
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1.0 INTRODUCTION

The 80960KB is the first 32-bit microprocessor designed especially for embedded applications. At
an operating frequency of 20 MHz, this high performance processor can sustain an instruction
execution rate of seven and one-half million instructions per second (MIPS), and burst rates of 20
MIPS. The 80960KB processor enhances embedded system performance by integrating special
features to eliminate the need for additional peripheral devices and the associated software overhead.
For instance, the 80960KB processor offers an on-chip floating-point processing unit, an improved
interrupt handling capability, and support for debugging and tracing. This chapter describes the
architectural attributes and enhancements of the 80960KB processor for embedded computing.

1.1 ARCHITECTURAL ATTRIBUTES FOR EMBEDDED COMPUTING

For over a decade, Intel has designed a large variety of 8- and 16-bit microcontrollers to fit the needs
of embedded applications. Based on this experience, several architectural attributes shared by both
microcontrollers and microprocessors can be implemented that benefit embedded applications and
enhance microprocessor performance. Because the 80960K B processor incorporates these attributes
(listed below) in its architecture, embedded applications are easy to design, perform well, and get to
market fast.

*  Simple load/store design

«  Large general-purpose register sets

* Boolean and bit-field instructions

*  Small number of operations and addressing modes
»  Simplified instruction format

¢ Minimum cycle operation

1.1.1 Load/Store Design

In the 80960 family architecture, operations are register-to-register, with only LOAD and STORE
instructions accessing memory. This attribute simplifies the instruction set and shortens cycle time.
The 80960K B processor uses LOAD and STORE instructions to access memory. It further minimizes
accesses to memory by providing a 512-byte, direct-mapped instruction cache. When a memory
access is required, the processor can perform a burst transaction that accesses up to four data words
with one word transferred every clock cycle.

1.1.2 Large General-Purpose Register Sets

Because the instructions operate on operands within registers, the 80960 family uses many registers.
The 80960KB processor features large, versatile register sets. For maximum flexibility, each
processor provides 32 32-bit registers and four 80-bit floating-point registers.

2-1
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There are two types of general-purpose registers: local and global. The processor automatically
accesses the 16 local registers when a procedure call is performed. Multiple sets of local registers are
stored on-chip to further increase the efficiency of this register set, as shown in Figure 1. The register
cache holds up to four local register frames, which means that up three procedure calls can be made
without having to access the procedure stack resident in memory.

REGISTER
CACHE
ONE OF FOUR .
LOCAL v
REGISTER SETS <
T~ LOCAL REGISTER SET
\A -\
Ro
Y
Ris
31 0

Figure 1. Local Register Set

The 20 global registers retain their contents across procedure boundaries. The global registers consist
of sixteen 32-bit registers (G, through G,) and four 80-bit registers (FP, through FPO) as shown in
Figure 2. While all registers can be used for floating- pomt operations, the 80-bit registers are used
for accumulation of extended precision results.

1.1.3 Small Number of Addressing Modes

The 80960 family uses relatively few addressing modes to facilitate a fast, simple interpretation by
the control engine. The 80960KB processor provides simple, fast addressing modes, as well as a few
complex addressing modes to allow optimizations for code density.

1.1.4 Simplified Instruction Format

A simplified instruction format eases the hardw1red decoding of instructions, which again speeds
control paths. The 80960KB processor’s instruction formats are simple and word aligned; all
instructions are one word long except for one class that uses the subsequent word as a 32-bit
displacement. To further enhance performance, the instructions do not cross word boundaries. This
feature eliminates a pipeline stage (that would have to align mstructlons) and decreases instruction
execution time.
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GLOBAL REGISTERS
G!ﬁ
Go
31 [+]
FLOATING POINT REGISTER®
FP,’
FPy
79 0
NOTE: .
*ANY REGISTER CAN BE USED FOR FLOATING-POINT OPERATIONS. THE 80-BIT
REGISTERS ARE PROVIDED FOR EXTENDED PRECISION ACCUMULATION.

Figure 2. Global Register Set

1.1.5 Overlapped Execution

" To optimize performance, the 80960KB processor overlaps instruction execution by means of write
buffering and register scoreboarding. Write buffering allows a write instruction to proceed as soon
as it is placed in the buffer. It does not have to wait for the actual write operation to occur on the L-
bus. \

Similarly, register scoreboarding is a design technique that allows the 80960KB to continue
execution of instructions when it encounters a LOAD instruction. When the LOAD instruction
begins, the 80960K B sets a scoreboard bit on the target register. After the target register is loaded with
data, the processor resets the bit. While the data is being retrieved, additional instructions that do not
reference the target register can be executed.

The 80960KB ensures that these additional instructions do not reference the target register by
checking the scoreboard transparently (no software required). Thus, the scoreboard feature reduces
the effect of slow memory speed and provides a useful tool for optimizing procedures.
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1.1.6 Minimum cycle operation

The 80960KB processor executes most of the core instructions in a single clock cycle. For these
instructions, the 80960KB processor uses hardwired logic rather than microcode to execute the
instruction. '

The 80960KB also supports a number of important multicycle instructions, such as 32-bit-multiply
and divide instructions. These auxiliary functions require more than one clock cycle because it is
more efficient to use microcode than hardwired logic. On the other hand, the integration of these
functions on-chip eliminates much software overhead and the negative effects on code density that
would be otherwise required. Thus, the additional functionality of the 80960KB enhances overall
system performance while keeping code size small.

1.2 ADDITIONAL 80960KB ARCHITECTURAL ENHANCEMENTS

The 80960K B incorporates two useful features: an on-chip floating-point processing and debugging
functions. The floating-point unit can be used for applications thatrequire precision such as machine-
control operations. The debugging function significantly-decreases development time.

1.2.1 Floating-point Operation

The on-chip floating-point unit of each processor improves the performance of floating-point
calculations by eliminating bus overhead used to transfer operands to a coprocessor. The processor
provides hardware support for both mandatory and recommended portions of IEEE standard 754 for
floating-point arithmetic, exponential, logarithmic, and other transcendental functions. By integrat-
ing the floating-point unit on-chip, the 80960KB processor reduces the overall chip count for a
system, decreases power consumption, and increases overall performance and reliability.

1.2.2 Debug Capabilities

The processor provides extensive system debug capabilities, an important feature for embedded
computing where the ability to instrument an application may be limited. The 80960KB processor
allows breakpoint instructions that stop program execution on variousevents, such as procedure calls,
or certain instructions. Another debug facility traces the activity of the processor while it is executing
aprogram. Tracing is done by recording the addresses of instructions that cause trace events to occur.
For example, a trace event can occur on the execution of a specific instruction, branch, or procedure
call. To ensure that the 80960KB is operating properly, the processor performs a self-test when it is
reset. If the self-test is successful, the 80960KB begins operation, otherwise it enters the stopped
state. '

1.3 STANDARD BUS INTERFACE ‘ ’

The advanced features of the 80960KB processor are implemented using a performance optimized
bus interface. The processor uses a high bandwidth local bus (L-bus) that consists of standard signal
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groups: a 32-bit multiplexed address/data path and control signals for data transactions. Because of
the large amount of caching, the L-bus supports burst transactions that transfer up to four successive
data words. Transactions on the L-bus can use 8-, 16-, and 32-bit data types and address up to 4G bytes
of physical memory. Bus arbitration can be accomplished by simply using the hold request/hold
acknowledge protocol.

1.4 INTER-AGENT COMMUNICATION/COPROCESSOR CAPABILITIES

The 80960KB processor offers a flexible way to manage interrupts. It accepts interrupts in one of
three ways: by communicating with an external interrupt controller using the standard Interrupt/
Interrupt Acknowledge signals, by activating the on-chip interrupt controller, or by accepting an
inter-agent communication (IAC) message. This allows the 80960KB to act as a coprocessor on a
shared bus with another CPU.

1.5 SUMMARY

The 80960KB processor optimizes embedded system performance by using a new 32-bit architec-
ture. The 80960 family architecture includes a load/store design, large general purpose (register sets,
fast addressing modes, a simplified instruction format, and minimized instruction execution cycles.

To further enhance system performance, the 80960KB processor provides floating-point operation,
interrupt controller capabilities, and debug functions. By intergrating these functions on-chip, the
80960KB reduces the power requirements and overall chip count for a system. '

As aresult of the 80960 architecture, the 80960KB processor provides unprecedented performance.
For a speed selection of 20 MHz, it can sustain an instruction execution rate of over seven and one-
half MIPS and burst rates of 20 MIPS, speeds comparable to that of super minicomputers. The high
instruction execution rates are made possible through a innovative design that mcorporates an on-
chip instruction cache with burst-transfer capability.

2.0 80960KB SYSTEM ARCHITECTURE

This section illustrates the flexibility and power of the 80960KB system architecture using the
advanced 32-bit 80960KB processor. The section examines system configurations from general
perspective to explain the design concepts. Subsequent sections describe the the system design.

2.1 OVERVIEW OF A SINGLE PROCESSOR SYSTEM ARCHITECTURE

The central processing module, memory module, and I/O module form the natural boundaries for the
hardware system architecture. The modules are connected together by the high bandwidth 32-bit
multiplexed L-bus, which can transfer data at a maximum sustained rate of 53M bytes per second for
an 80960KB processor operating at 20 MHz.
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Figure 3 shows a simplified block diagram of a possible system configuration. The heart of this
system is the 80960KB processor, which fetches program instructions, executes code, manipulates
stored information, and interacts with I/O devices. The high bandwidth L-bus connects the 80960KB
processor to memory and I/O modules. The 80960KB processor stores system data and instructions
and programs in the memory module. By accessing various peripheral devices inthe I/O module, the
80960KB processor supports terminals, modems, printers, disks, and other I/O devices.

ROCESSOR MODULE MEMORY MODULE

80960MC

PROCESSOR
’ MEMORY
, CONTROLLER

170 DEVICE 1/0 DEVICE
(SLAVE) (BUS MASTER)

Figure 3. Basic 80960MC System Conﬁguratioh

2.1.1 80960KB Processor and the L-Bus

The 80960KB processor performs bus operations using multiplexed address and data signals and
provides all the necessary control signals. For example, standard control signals, such as Address-
~ Latch Enable (ALE), Address/Data Status (ADS), Write/Read command (W/R) Data Transmit/

" Receive (DT/R) and Data Enable (DEN) are provided by the 80960KB processor. The 80960KB
processor also generates byte enable signals that specify which bytes on the 32-bit data lines are valid
for the transfer.
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The L-bus supports burst transactions, which access up to four data words at a maximum rate of one
word per clock cycle. The 80960KB processor uses the two low-order address lines to indicate how
many words are to be transferred. The 80960KB processor performs burst transactions to load the
on-chip 512-byte instruction cache to minimize memory accesses for instruction fetches. Burst
transactions can also be used for data accesses.

To transfer control of the bus to an external bus master, the 80960KB processor provides two
arbitration signals: hold request (HOLD) and hold acknowledge (HLDA). After receiving HOLD,
the processor grants control of the bus to an external bus master by asserting HLDA.

The 80960KB processor provides a flexible interrupt structure by using an on-chip interrupt
controller, an external interrupt controller, or both. The type of interrupt structure is specified by an
internal interrupt vector register. For a system with multiple processors, another method is available,
called inter-agent communication (IAC) where a processor can interrupt another processor by
sending an IAC message.

Complete details of the L-bus and bus operations are discussed in Section 3.

2.1.2 Memory Module

A memory module can consist of the memory controller, Erasable Programmable Read Only
Memory (EPROM), and static or dynamic Random Access Memory (RAM). The memory controller
first conditions the L-bus signals for memory operation. It demultiplexes the address and data lines,
generates the chip select signals from the address, detects the start of the cycle for burst mode
operation, and latches the byte enable signals.

The memory controller generates the control signals for EPROM, SRAM, and DRAM. In particular,
it provides the control signals, multiplexed row/column address, and refresh control for dynamic
RAMs. The controller can be designed to accommodate the burst transaction of the 80960KB
processor by using the static column mode or nibble mode features of the dynamic RAM. In addition
to supplying the operation signals, the controller generates the READY signal to indicate that data
can be transferred to or from the 80960KB processor. '

The 80960KB processor directly addresses up to 4G bytes of physical memory. The processor does
not allow burst accesses to cross a 16-byte boundary to ease the design of the controller. Each address
specifies a four-byte data word within the block. Individual data bytes can be accessed by using the
four byte enable signals from the 80960KB processor.

Section 4 provides design guidelines for the memory controller.

2.1.3 /0 Module

The I/O module consists of the I/O components and the interface circuit. I/O components can be used
to allow the 80960KB processor to use most of its clock cycles for computational and system
management activities. Time consuming tasks can be off-loaded to specialized slave-type compo-
nents, such as the 8259A Programmable Interrupt Controller, or the 82530 Communication

2.7
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Controller. Some tasks may require a) master-type component, such as the 82586 Local Area
Network Control.

The interface circuit performs several functions. It demultiplexes the address and data lines,
generates the chip select signals from the address, produces the I/O read or I/O write command from
the processor’s W/R signal, latches the byte enable signals, and generates the READY signal.
Because these functions are the same as some of the functions of the memory controller, the same
logic can be used for both interfaces. For master-type peripherals that operate on a 16-bit data bus,
the interface circuit translates the 32-bit data bus to a 16-bit data bus.

The 80960K B processor uses memory-mapped addresses to access I/O devices. This allows the CPU
to use many of the same instructions to exchange information for both memory and peripheral
devices. Thus, the powerful memory-type instructions can be used to perform 8-, 16-, and 32-bit data
transfers.

Section 5 describes design guidelines for the I/O interface by examining representative design
examples.

2.2 SUMMARY

The basic hardware system configuration is modular and flexible. The processor, memory, and I/O
modules form the natural boundaries in the basic hardware system architecture. The high-bandwidth
L-bus that supports burst transfers is used for the data path between the 80960KB processor and other
modules.

3.0 THE 80960KB PROCESSOR AND THE LOCAL BUS

The 32-bit multiplexed local bus (L-bus) connects the 80960KB processor to memory and 1/0 and
forms the backbone of any 80960KB processor based system. This high bandwidth bus provides
burst-transfer capability allowing up to four successive 32-bit data word transfers at a maximum rate
of one word every clock cycle. In addition to the L-bus signals, the 80960KB processor uses other
signals to communicate to other bus masters. This section, which describes these signals and the
associated operations, follows the outline shown below: \

»  L-bus states and their relationship to each other

« L-bus signal groups, which consist of address/data and control
e L-bus read, write, and burst transactions

¢ L-bus timing analyses and timing circuit generation

*  Related L-bus operations such as arbitration, interrupt, and reset operations
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3.1 OVERVIEW OF THE 80960KB L-BUS

The L-bus forms the data communication path between the various components in a basic 80960KB
hardware system. The 80960KB processor utilizes the L-bus to fetch instructions, to manipulate
information from both memory and I/O devices, and to respond to interrupts. To perform these
functions at a high data rate, the 80960KB processor provides a burst mode, which transfers up to
four data words at a maximum rate of one 32-bit word per clock cycle. The 80960KB L-bus has the
following features:

»  32-bit multiplexed address/data path
»  High data bandwidth relative to the speed selection of the 80960KB processor

*  Four byte enables and a four-word burst capability that allow transfers from 1 to 16 bytes in
length

»  Support for TTL latches and buffers.

3.2 BASIC L-BUS STATES

The L-bus has five basic bus states: idle (T,), address (T ), data (T,), recovery (T)), and wait (Tw).
During system operation, the 80960KB processor continuously enters and exits different bus states
as shown in Figure 4. This state diagram assumes that only one bus master resides on the L-bus.

The processor occupies the T, state when no address/data transfers are in progress. When a new
request is received, the 80960KB processor enters the T, state to transmit the address.

Following a T state, the 80960KB processor enters a T 4 state to transmit or receive data on the
address/data lines provided that the data is (indicated by the assertion of READY at the input of the
processor). If the data is not ready, the processor enters a T state and remains in this state until data
is ready.

T, states may be repeated as many times as necessary to allow sufficient time for the memory or
I/O device to respond. )

" After a data word is transferred, the 80960KB processor exits the T, or T state for a single word
transfer or enters the T, state again to transfer another data word for a burst transaction. If the next
data word is not ready during the next clock cycle for a burst transaction, the processor enters the T,
state again.

When the 80960KB processor completes the data transfer of all the data words (one or up to four),
it enters the recovery (T)) state to allow sufficient time for devices (such as memories) on the bus to
recover. The processor returns to the T, state if no new request is pending, or enters the T; state if a
new request is pending.
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READY
* BURST

NEW REQUEST

READY NOT READY
+ BURST
NO REQUEST
READY
+NO BURST
REQUEST PENDING
READY
+NO BURST

NO REQUEST

T, — IDLE STATE READY — READY ASSERTED

T,— ADDRESS STATE NOT READY — READY NOT ASSERTED

Tq— DATA STATE BURST — MULTIPLE WORD ACCESS IN PROGRESS
T, — RECOVERY STATE NO BURST — MULTIPLE WORD ACCESS DONE, OR A
T.— WAIT STATE - ONE-WORD ACCESS

Figure 4. Basic L-Bus States

3.3 L-BUS SIGNAL GROUPS

The L-bus states are used to define some of the L-bus signals. As shown in Figure 5, the signals on
the L-bus consist of two basic groups: address/data, and control.
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Figure 5. L-Bus Signal Groups

3.3.1 Address/Data

The address/data signal group consists of 32 bidirectional lines. These signals are multiplexed and

serve a dual purpose depending upon the bus state.

LAD, -LAD, Local Address/Data,, through Local Address/Data, represent the address
. signals on the L-bus during the Ta state. LAD, is the least significant bit, and
LAD,, is the most significant address bit. LAD,, through LAD, contain a

physical word address.

LAD, and LAD, specify the number of data words to transfer for a burst
transaction. The address/data signals float to a high impedance state when

not activated.

SIZE (LAD-LAD,) The SIZE signal indicates whether one, two, three, or four words are
transferred during the current transaction. During a T, state, LAD, and
LAD, represent the word size signals. The encoding is shown in Table 1.

Table 1. SIZE Signal Decoding

Word Selection LAD, LAD,
1 Word Low Low
2 Words Low High
3 Words High Low
4 Words High High
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LAD, -LAD,

3.3.2 Control

Local Address/Data,, through Local Address/Data, represent the data
signal on the L-bus during the T,and T_ states. LAD, is the least significant
and LAD, is the most significant address bit. The address/data signals float
to a high impedance state when not activated.

The control signal group consists of 12 signals that permit the transfer of data. These signals can be
used to control data buffers, address latches, and other standard interface logic.

ALE

DT/R

DEN

W/R

BE3-BEO

The Address Latch Enable is an active low signal that can be used to latch
the address from the 80960K B processor. ALE is asserted ted during the T, state
and deasserted before the beginning of the T, state. ALE floats to a hlgh
impedance level when the processor is not operatmg on the bus (i.e., itis in
the idle state), or is at the end of any bus access.

Address/Data Status is an active low signal that is driven by the 80960KB
processor to indicate an address state. ADS is asserted during every T, state
and deasserted durmg the following T, and T states. For a burst transactlon
ADS is asserted again every T, (and T W) state where READY was asserted
in the prior cycle. The signal i 1s an open drain output.

Data Transmit/Receive indicates the direction of data flow to or from the
L-bus. For a read operation or an interrupt acknowledgement, DT/R is low
during the T , T, and T, states to indicate that data flows into the 80960KB
processor. For a write operatlon DT/R is high during the T,T,,andT,states
to indicate that data flows from the 80960KB processor DT/R never
changes states when DEN is asserted. The DT/R line is an open drain output
of the 80960KB processor.

Data Enable is an active-low signal that can be used to enable data trans-
ceivers. DEN is asserted during all T, and T_ states. The DEN line is an open
drain output of the 80960KB processor.

The Write/Read signal instructs memory or I/O device to write or read data
on the L-bus. The 80960KB processor asserts W/R during a T, state. The
signal remains valid during subsequent T, and T states. W/R 1S an open
drain output of the 80960KB processor.

The Byte Enable output signals of the 80960KB processor specify which
bytes (up to four) on the 32-bit data bus are transferred during the transac-
tion. Table 2 shows the decoding scheme.

The byte enable signals are valid from the 80960KB processor before data
is transferred, as shown in Figure 6 (assumes no wait states). The byte enable
signals that are valid for the first data word are specified during the T, state.
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For a four-word burst transaction, the byte enable signals that are valid for
the second word are asserted during the first data state (T,)) for the third word
during the second data state (T, ) and for the fourth word during the third
data state (T,,). The byte enable signals are undefined during the last data
state (T ;) ofthe last word transferred.

Table 2. Byte Enable Signal Decoding

Byte Enable Signal Address Line Selection
BE, LAD,-LAD,
BE, LAD,;-LAD,
BE, LAD,;-LAD,¢
BE, LAD;,-LAD,,

YO DATA, W DATA, | XD DATA, | X)X DATA,

Y BEs, | X BEs, |X BEs, | XUNDEFINED|
-

NN NN

Figure 6. Byte Enable Timing Diagram

Although not shown in the diagram, the byte enable signals of each word are
latched internally by the 80960KB processor and remain valid during every
data or wait state until READY is applied. After READY is applied the byte
enable signals change during the next T state or become undefined for the
last data transfer.

The 80960KB processor asserts only adjacent byte enables. For example,
the 80960K B processor does not perform a bus operation with only BE, and
BE, active.

The Byte Enable lines are open drain outputs.
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LOCK

CACHE

READY signal indicates that the data on the L-bus can be sampled (read)
or removed (write) by the 80960KB processor. If READY is not asserted
following T, state or in between T, states, a T, state is generated. The
READY is an active-low input signal to the 80960KB processor.

Bus Lock prevents other bus masters from gaining control of the L-bus
during a bus operation. It is activated by certain 80960KB processor
operations and instructions.

The 80960KB processor uses the bus LOCK signal when it performs a
RMW memory operation. When the processor performs a RMW-Read
operation, it asserts the LOCK signal during the T, staté and holds LOCK
asserted. If the signal was already asserted, the processor waits until this
signal is deasserted before performing the RMW-Read operation. The
processor deasserts the LOCK signal during the T, state when it performs
a RMW-Write operation.

The 80960KB processor asserts the LOCK signal during the interrupt
acknowledge sequence. LOCK is an input and an open drain output.

The Cacheable signal specifies whether the data is cacheable. If the
80960KB processor asserts CACHE during the T, state, then the data is
cacheable. The CACHE signal is undefined during the T,and T, states. The
CACHE signal floats to a high impedance state when the L-bus is not
acquired.. ‘ , '

Table 3 summarizes the L-bus signals.

2-14



intal

HARDWARE REFERENCE

Table 3. Summary of L-Bus Signals

Signal Signal I Active . Type of
Group Symbol Signal Function State Direction Output
Local ~ Address
Address/ (LAD,,-LAD,) 32-bit address T, (0] 3-state
Data
Data 32-bit data To T 1/0 3-state
(LAD,,-LAD,) @ v
Size Specifies number of
(LAD,-LAD,) words to transfer Ta 0 S-state
Control —= Enables address
ALE latch Ta 0 3-state
T Identifi addre! .
ADS entl leztz?e s Tar Ty T o} Open drain
: = Controls direction of .
DT/R data flow Ta Tay To (0] Open drain
== Enables data .
EN transceiver/latch To Tw 0 Open drain
W/R Read/write command Tar Tar Tw (0] Open drain
BE .BE Specifies which data 2 .
E;-BE, bytes to transfer Ta T2, T2 (0] Open drain
_Indicates data is
READY ready to transfer To Tw ! -
LOCK Locks bus Any 110 Open drain
Indicates cacheable :
Cache transaction Te (0] 3-state
Note:

1 except first T, T
2exceptlast T, T

Additional pins are used by the 80960KB processor to control the execution of instructions and to
interface to other bus masters. These pins include the arbitration, interrupt, error, and reset signals.
Each of these signal groups are explained in separate sections.

2-15



intgl HARDWARE REFERENCE

3.4 L-BUS TRANSACTIONS

The 80960KB processor uses the L-bus signals to perform transactions, which are simply L-bus
operations where data is transferred to (or from) the CPU from (or to) another component. During
a transaction, the 80960KB processor can transfer up to four words of data for a single address to
enhance system throughput. This is especially useful when loading cache memory.

3.4.1 Clock Signal

The 80960KB hardware system typically uses two clock signals, CLK2 and CLK, to synchronize the
transitions between L-bus states. CLK2 is the clock input to the 80960KB and is double the specified
processor frequency. CLK is the clock input signal to the peripheral devices, and it is the operating
frequency of the 80960K B processor. Figure 7 shows the relationship between the system CLK?2 and
CLK.

CLK2

CLK

Figure 7. Clock Relationships
3.4.2 Basic Read

The basic transaction reads or writes one data word. Figure 8 shows a typical timing diagram for a
basic read transaction (for exact timings, see the 80960KB processor data sheet). A read transaction
may be preceded and succeeded by any type of bus transaction. The following sequence of events
explains the flow of the timing diagram. For simplicity, no wait states are shown.

1. The 80960KB processor generates several signals during the T, state.

+ It transmits the address on the address/data lines. LAD, and LAD, specifiy a single word
transaction. ' '

« Itasserts ALE. An ALE signal can be used to latch the address.

e Itasserts ADS. ’

e TItasserts ﬁs-ﬁ-ﬁo to specify which bytes are used when reading the data word.
+ It brings W/R low to denote a read operation.

It brings DT/R signal low. DT/R can be used for the direction input to data transceivers.
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CLK2

CLK

LAD,,
LAD,

DEN

READY

Figure 8. 80960MC Processor Read Transaction

During the T, state, several actions occur.

The 80960KB processor reads the data on the address/data lines.
The 80960KB processor asserts DEN. DEN can be used to enable data transceivers.

READY is asserted by external timing logic and data is transmitted from the storage

devices. If READY is not asserted, the data transfer is delayed generating a T state. The
Tw state is repeated, until READY is asserted.

The T, state follows the data state. This allows the system components adequate time (one

processor clock cycle) to remove their outputs from the bus before the 80960KB processor
generates the next address on the address/data lines. During the T state W/R, DT/R, and DEN
become inactive. : '
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3.4.3 Basic Write

Figure 9 shows a typical timing diagram for a basic write transaction with one wait state. Like the
read transaction, a write operation may be preceded and succeeded by any type of bus transaction.
The following sequence of events explains the flow of the timing diagram.

Figure 9. 80960MC Processor Write Transaction

1. Similar to the read transaction, the 80960KB processor generates several signals during the T,
state. : '

It transmits the address on the address/data lines. LAD, and LAD specify a single word
transaction. ' :

It asserts ALE. An ALE signal can be used to latch the address.

It asserts ADS. S

It asserts §E3—_1§—E0 to specify which bytes are used when writing the data word.

It brings W/R high to denote a write operation.

It brings DT/R signal high. DT/R can be used for the direction input to data transceivers.
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2. During the T, state, several actions occur.
»  The 80960KB places the data on the address/data lines.
»  The 80960KB processor asserts DEN. DEN can be used to enable data transceivers.

* READY is not asserted by external timing logic. Consequently, data is held on the LAD
lines.

3. During the T state READY is asserted and the data is written to the storage device. Note that
the W/R, DT/R and DEN remain constant until the bus state after READY is asserted.

4. TheT, state follows the wait state. During the T state W/R, DT/R, and DEN become inactive.

3.4.4. Burst

The 80960K B processor supports burst transactions that read or write up to four words at a maximum
rate of one word every processor clock cycle. Burst transactions are always contained within a 16-
byte boundary. If a transaction crosses a 16-byte boundary, the 80960KB processor automatically
splits the transaction into two accesses.

The byte enable signals are valid for each word to allow partial-word write operations for a burst write
transaction. The CACHE output signal during a T state applies to all words of a burst transaction.

A burst read or write transaction is similar to a basic read or write operation. It differs primarily in
the number of data words transferred: the basic transaction always transfers one data word, the burst
transaction transfers up to four data words. For a burst transaction, the byte enable signals are applied
during the T state, and subsequently during every T, or T state before the data word is transferred.
Figure 10 shows the timing for a three-word burst read transaction without wait states. Figure 11
shows the timing for a two-word burst write transaction with a wait state occurring during the transfer
of the first word. Note that the byte enable signals remain constant until the data state after READY
is asserted.

3.5 TIMING GENERATION

In an 80960KB processor-based system, timing signals must be generated for the clock and reset
inputs. To generate these signals, discrete logic should be utilized to minimize skew and maintain the
rise and fall times as short as possible. This section describes a typical circuit that synthesizes the
clock signal. The RESET timing generation is discussed in the “RESET and Initialization” section.)

3.5.1 80960KB Processor Clock Requirements

In order to design a clock generator, the clock input specifications to the 80960KB processor are
examined first. The clock (CLK2) waveform is shown in Figure 12. The clock pulse is specified by
five parameters listed below:
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*  The clock fall time (t)
»  The clock low time (t,)
*  The clock rise time (t)

e The clock period (t_ )

cyc

2
CLK _/F\_/_\_J

X ADDRESS

Figure 10. 80960MC Processor Burst Read Transaction

The time required to go from 90% of the difference between the high and low voltage levels to (10%
of the difference (or from low to high) is defined as the clock fall (rise) time. The clock low time
specifies the time required for the clock to remain within 10% of the low voltage level. Similarly, the
clock high time specifies the required time for the clock pulse to remain within 10% of the high
voltage level. The clock period is the sum of t. +t +¢t +t,.

The clock generator must have fast enough rise and fall times to comply with the requirements for
high and low time and the overall clock period. For example, consider a clock pulse with a 50% duty
cycle at 40 MHz. The clock period is specified at minimum of 25 ns, low time at minimum of 8 ns,
and high time at minimum of 8 ns. This implies that the sum of the rise and fall time must not be greater
than 9 ns. Thus, the clock generator should be designed to have rise and fall times not greater than
4.5 ns each.

2-20



intel HARDWARE REFERENCE

Ta Ty Tw Ty Tr

S AYAYaVaAWaWalUaWaw aWaNs
ak "N /N /- Y/ \ /) /- \

LAD3{~ e P
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Figure 11. 80960KB Processor Burst Write Transaction

I Tcy c |
|-—— Th
HIGH LEVEL /
LOW LEVEL
T T T L_—
270647-30

Figure 12. System Clock Pulse
Besides specifying a maximum clock rate, the 80960KB processor requires a minimum CLK?2 rate

of 8 MHz to maintain the state of the internal dynamic cells. Due to this minimum frequency
requirement, the 80960KB processor cannot be single-stepped by disabling the clock.
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3.5.2 Clock Generation

Figure 13 shows an example of a clock generator that produces two clock pulses, one double the
frequency of the other with the skew between the pulses in the range of 1 to 3 ns. This particular circuit
produces a 40-MHz clock at 50% duty cycle with rise and fall times of less than 4 ns. The circuit
design consists of four devices: an oscillator, a pulse shaping network, a synchronous up/down
counter, and a NAND gate driver. The output of the 80-MHz hybrid clock oscillator connects to the
pulse shaping network (two NAND gates in series) which in turn feeds into the clock input of the up/
down counter. This counter produces a 40-MHz CLK?2 output signal and a 20-MHz CLK output
signal. Because the outputs of the counter are synchronous, the skew between CLK2 and CLK is
typically less than 2 ns. To provide adequate signal margin and maintain fast rise and fall times, the
two clock signals are conditioned by the NAND gate driver. The timing waveforms of the clock
circuit are shown in Figure 14.

Vee
VCC VCC 10K
10K 10K LOAD
CLKin

80-MHz c

OSCILLATOR ) ub

74AS10000 ENP

=0} ENT

COUNTER
A
B
c
D
74AS1804
V 74E169
270647-31
Figure 13. Clock Generation Circuit
CLKjn
o _\__/-—-—\-—-
270647-32

Figure 14. Clock Timing Waveforms
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If the opposite phase CLK is preferred, U/D pin can be connected to V...

The hybrid clock oscillator typically requires 5 ms to stabilize after power is applied. The 80960KB
processor cannot begin to execute instructions until after the clock and VCC have reached their DC
and AC specifications. The RESET signal can be used to control the start of the CPU execution when
power is applied. This is discussed in the “RESET and Initialization” section.

3.6 ARBITRATION

When multiple bus masters exist, an arbitration protocol is used to exchange control of the bus. The
protocol assumes that there are two bus masters: one that controls the bus by default, and the other
that requests control of the bus when it performs an operation, such as a DMA controller. More than
two bus masters may exist on the L-bus, but this requires external arbitration logic. There should be
no more than two 80960KB processors, however, on an L-bus.

Assuming that there are only two bus masters, this section examines the bus arbitration, bus states,
and timing diagrams for different combinations of bus masters, as shown in Table 4.

Table 4. Combination of Bus Masters

Bus Master Combination
Bus Master that Controls the Bus Bus Master that Requests
by Default Contol of the Bus
CASE 1 80960KB PROCESSOR 1/0 DEVICE
CASE 2 80960KB PROCESSOR 80960KB PROCESSOR
CASE 3 I/0 DEVICE 80960KB PROCESSOR

3.6.1 Single 80960KB Processor on the L-Bus

For the first case, the 80960KB processor controls the L-bus, and a master I/O peripheral, suchas a
DMA controller, requests control of the bus for operations. The 80960KB processor and the I/O
peripheral exchange control of the bus with two signals: the hold request (HOLD) and hold
acknowledge (HLDA) signals.

HOLD is an input signal of the 80960KB processor, which indicates that the master I/O peripheral
is requesting control of the L-bus. When HOLD is asserted, the 80960KB processor surrenders
control of the bus after it completes the current bus transaction. The processor acknowledges transfer
of control of the L-bus to the other bus master by asserting the HLDA.

3.6.2 State Diagram

Figure 15 shows the state diagram for a L-bus with an I/O peripheral bus master. This state diagram
consists of the hold state (T,) addition to the five basic states described in the “Basic L-Bus State”
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section. The 80960KB processor enters the T}; state when it surrenders the control of the bus.' It can
enter the T, state from the T, or T state. When the 80960KB processor regains control of the L-bus,
it enters the T, state if a new request is pending or a T, state if no new request is pending.

« REQUEST PENDING
NO HOLD "

NEW REQUEST
NOT READY
NO REQUEST READY
* NO HOLD ¢ NO BURST ’
*NO HOLD

EADY
* BURST

READY
e «NO BURST
«HOLD
HOLD NO REQUEST READY
+NO HOLD «NO BURST
_ « HOLD )
NO REQUEST
+NO HOLD :

READY
HOLD ¢ NO BURST
* NO.HOLD

T, — IDLE STATE

_ READY — READY ASSERTED
:|':'_ 32$2Es§l_i$EATE NOT READY — READY NOT ASSERTED
T‘_ RECOVERY STATE BURST — MULTIPLE WORD ACCESS IN PROGRESS
T — WAIT STATE NO BURST — MULTIPLE WORD ACCESS DONE, OR A
T:— HOLD STATE ONE-WORD ACCESS

~ Figure 3-15. L-Bus States with Arbitration
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CLK2

CLK

HOLD

HLDA

Figure 16. Arbitration Timing Diagram For A Bus Master

3.6.3 Arbitration Timing

Figure 16 shows the arbitration timing diagram. The ““T” state represents the last cycle of a transaction
in which the READY signal was asserted or a T, state. The 80960KB processor receives a request
to relinquish control of the bus when HOLD is asserted. After the 80960KB processor completes the
current transaction, it responds to this request by floating the three-state output signals and
deasserting the open drain output signals. The HLDA output signal, however, remains active and is
asserted as the 80960KB processor enters a T, state. During the T, state, the CPU ignores all input
signals except HOLD and RESET. When the HOLD input signal is deasserted, the 80960KB
processor exits the T, state and deasserts HLDA.

DAR
HOLD | DELAY HOLDA)
PRIMARY BUS SECONDARY BUS
MASTER MASTER
»| HOLDR
HLDA DELAY > heoio)

Figure 17. Arbitration Connection Between Two 80960MC Processors
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3.6.4 Two 80960KB Processors on the L-Bus

For the next case, two 80960KB processors reside on the L-bus. Durihg initialization, one is
designated as the Primary Bus Master (PBM), the other as the Secondary Bus Master (SBM).

The exchange protocol that is used guarantees that neither device is kept off the bus indefinitely. The
80960KB processors use two pins for bus arbitration: the HOLD input pin, and the HLDA output
pins. These input and output pins for the SBM are interpreted differently, however.

When the SBM is initialized, the pin normally used for HOLD input signal is interpreted as the hold
acknowledge request (HLDAR) input signal. The assertion of 45 HLDAR indicates that the PBM
relinquished control of the L-bus. Similarly, the HLDA output signal of the SBM is interpreted as
the hold request (HOLDR) output signal. The SBM asserts HOLDR to request acquisition of the L-
bus. Thus, bus arbitration between two 80960KB processors can be accomplished by connecting
HOLD of the PBM to HOLDR of the SBM, and HLDA of the PBM to the HLDAR of the SBM, as
shown in Figure 17.

When using the connection shown in Figure 17, a delay must be inserted between the input and output
signals because the minimum clock-to-output delay is less than the maximum hold time of the input
signals. The delay time must be greater than 5 ns, but less than the clock period minus the setup time

minus the maximum clock-to-output delay (5Sns < Delay <T, . T, -T

Period ~ Setup CIock-To-Outpul)’

3.6.5 Bus states for Two 80960KB Processors

The state diagram for the SBM is shown in Figure 18. Because there are two 80960KB processors,
the LOCK signal is included in the state diagram. The SBM requests control of the L-bus by asserting
HOLDR and subsequently enters the hold request (T, ) state provided that the bus is not locked
(locked means that LOCK is asserted by the PBM and the SBM has a RMW operation pending). The
SBM remains in the T, state until it acquires control of the L-bus by receiving HLDAR. The SBM
returns to the T, state by deasserting HOLDR provided that the following two conditions exist:

A RMW operation is pending
+  The PBM asserted LOCK while the SBM was in the T, state.

The SBM gains control of the bus when HLDAR is asserted provided that the bus is not locked. After -
gaining contzol of the L-bus, the SBM performs the operations, and enters a T state if necessary. At
the end of a transaction, the SBM goes to the T state and deasserts HOLDR for at least one processor
clock cycle to allow another peripheral bus master to gain access if needed. If another request is
pending, the SBM enters the T, state and asserts HOLDR provided the bus is not locked. The PBM
never forces the SBM off the bus.

3.6.6 Arbitration Timing for Two 80960KB Processors on the L-Bus

Figure 19 shows the timing diagram for acquiring and relinquishing the L-bus by an SBM. The SBM
enters into the Hold Request (T, ) state and asserts the HOLDR) signal. It remains in the T, state until
HLDAR is asserted, which indicates that the SBM can utilize the L-bus during the next state. When
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the bus is no longer required, HOLDR is deasserted during the state following the last READY signal.
Except for HOLDR, the output signals of the SBM go into a high impedance state or are deasserted
for the case of open-drain outputs.

READY
* BURST

HLDAR . READY
* NOT LOCKED

NO HLDAR
+NOT LOCKED NOT READY
READY
*NO BURST
NEW REQUEST NEW REQUEST READY
« NOT LOCKED *NoT "OCKED\ *NO BURST
LOCKED
NO
REQUEST
+ LOCKED
NO REQUEST
+ LOCKED
T, — IDLE STATE ADY — READY ASSERTED
T,— ADDRESS STATE NOT READY — READY NOT ASSERTED
T,— DATA STATE LOCKED — LOCK ASSERTED BY ANOTHER BUS MASTER AND
T, — RECOVERY STATE RMW OPERATION PENDING FOR SECONDARY BUS MASTER
T,— HOLD REQUEST STATE HLDAR — HOLD ACKNOWLEDGE REQUESTED (REQUEST FOR BUS
GRANTED)
BURST — MULTIPLE WORD ACCESS IN PROGRESS

NO BURST — MULTIPLE WORD ACCESS DONE, OR A
ONE-WORD ACCESS

Figure 18. L-Bus States For Secondary Bus Master
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CLK 2
CLK
HOLDR

HLDAR

270647-33

Figure 19. Arbitration Timing Diagram for an SBM

3.6.7 Bus Exchange Example Between Two 80960KB Processors

Figure 20 shows an example of bus arbitration between a PBM and an SBM using the arbitration
signals. Each bus master performs a one-word read and a two-word write transactlon to demonstrate
the fastest possible bus exchanges.

While the PBM is performing a read transaction, the SBM requests control of the L-bus by asserting
HOLDR and entering the T, _state. It remains in this state until the PBM grants the request by asserting
HLDA after the read transaction is completed. After granting the request,the PBM enters the T, state
and remains in this state until its HOLD signal is deasserted. When the SBM completes the read
transaction, it deasserts HOLDR and gives control back to the PBM

“The PBM now performs a two word write transaction after deasserting the HLDA. The SBM requests
control of the bus again by asserting the HOLDR signal and enters the T, state. When the PBM
completes the two-word write transaction, it grants the request by asserting HLDA and enters the T,
state. The SBM receives the signal on the HLDAR input and performs a two-word write transaction.
When the SBM completes the transaction, the control of the L-bus is transferred to the PBM, and both
the PBM and the SBM enter the T, state.
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PBM BUS
STATE T, Tq T, T, T, T, T, T, Ty T. T. T T, T, T,

SBg'Tnglg T T. T. T T, T T, T, T. T, T, T, T, T T

CLK

LAD,, -h
LAD, i

N\

W/R

PBM ALE T10)

SBM ALE

READY

SBM
HOLDR

/
PBM
HoLD —*
PBM R_,
HLDA

HLDAR / \ /

Figure 20. Example of a Bus Exchange Transaction

3.6.8 A Peripheral Device As the Default Bus Master

Another case exists where a peripheral device controls the L-bus, and the 80960KB processor
requests control of the bus to perform operations. This alternative is not advisable because it hinders
system performance. The exchange protocol is identical to the one described in the previous section.
The 80960KB processor is an SBM and uses two pins for bus arbitration: the HOLDR input pin and
the HLDAR output pin. The state diagram is similar to the one shown in Figure 18. The lock
conditions are not used for this case, however.

The peripheral device grants control of the L-bus bus asserting HLDAR when the SBM requests use
of the L-bus. The peripheral device can obtain control of the L-bus again by deasserting HLDAR.
If this occurs, the 80960KB processor surrenders control of the bus after it completes the current
transaction, as shown in Figure 21. At that time, the 80960KB processor deasserts the HOLDR signal
and places the other output signals into a high impedance state or a deasserted open drain level. The
80960KB processor may request access to the L-bus by asserting HOLDR again.

3.7 INTER-AGENT COMMUNICATION (IAC)

The IAC mechanism gives 80960KB processors the capability to send and receive messages to one
another and to other bus agents. The IAC mechanism is essentially anon-maskable interrupt with pre-
defined service routines. These routines are implemented in the 80960KB processor and are used to
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perform control functions such as purging the instruction cache, setting breakpoint registers, or
stopping and starting the processor. By using IAC messages, external agents can remotely control
the 80960KB. This allows easy integration of the 80960KB into system environments.

IAC messages can also be used to generate intérrupts that behave exactly the same as hardwired
interrupts. Since the interrupt vector is encoded in the IAC message, any of the possible interrupt
service routines can be invoked.

CLK2

CLK

HLDAR

HOLDR

. Figure 21. Forced Relinquishment Timing Diagram for an SMB

3.7.1 Overview of IAC Operation

Figure 22 shows a typical example of an IAC operation. In this case, an external processor gains
control of the 80960KB by using an IAC operation. The external processor performs two functions:
it writes the message in a buffer, called the message buffer; and it asserts the IAC pin of the 80960KB
processor. Upon receipt of the TAC signal, the 80960K B processor stops executing its current process
and performs a four-word read of the message buffer. After completing the read operation, the
80960KB processor automatically performs a one-word write operation to a pre-defined address to
acknowledge the receipt of the message. The 80960KB processor then proceeds to perform the
required action.

3.7.2 IAC Messages

The IAC messages are specifically defined and behave much like machine instructions. The
80960KB processor reserves the upper 16M bytes (FF000000,, to FFFFFFFF,) of the 4M-byte
address range for IAC message operations.’
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270647-34
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Figure 22. Example Flow Chart for an IAC Operation

There are two types of IAC messages: internal and external. Internal IAC messages allow a program
to send a command to its own processor. An internal IAC message is sent by writing to address
FF000010,,. Internal IAC messages cause no L-bus activity.

External IAC messages can be used to send a command to another processor on the L-bus or to a
remote processor. A processor sends an external IAC message by writing to abufferarea and causing
the IAC pin of the receiving 80960KB to be asserted.

When the TAC pin is asserted, the recipient processor reads the reserved address to fetch the data from
its IAC message buffer. After reading the IAC message buffer, the recipient does a write operation
to another reserved address to acknowledge receipt of the IAC message. The IAC pin is deasserted
as a result of this write operation, and the processor is ready to receive another IAC.

3.7.3 Hardware Requirements for External IAC Messages

To use the external IAC feature of the 80960KB, the following items are needed: a four-word
message buffer RAM mapped to a reserved address to store the message, logic to assert the IAC pin
of the 80960KB, and decoding logic to deassert the IAC pin on command from the 80960KB.

3.7.4 Message Buffers

Each 80960KB processor that receives an IAC message must have four 32-bit words of message
buffer. This buffer can use special hardware or a reserved area in RAM. For proper operation of the
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buffer, two requirements must be met: the receiving 80960KB must be able to read this buffer at
FF000010,, if the receiving 80960KB’s Local Processor Number (LPN) is equal to zero (see the
“RESET and Initialization” section for details of the LPN), or at FFOOOO30H if the LPN is equal to
one; and the sending processor must be able to write this buffer.

3.7.51AC Pin Logic

When the IAC message buffer receives a message, logic asserts the TAC pin and keeps it asserted.
After the 80960KB processor reads the IAC message, it performs a one-word write to address
FF000000 if its LPN is zero, or FF000020 if its LPN is one. This reserved address serves two
functions: it causes external logic to deassert the TAC pin, and it maps to a register that contains the
current processor priority. If the low order three bits of the data word have a value of 100, (see Figure
23), the external logic should deassert the IAC pin on completion of the write operation.

31 2120 1615 43210

- ACKNOWLEDGE
0]110{0] |ac MESSAGE
plrlelr]r 1]o]o|o] seTPRIORITY
N SET PRIORITY AND
plrlrlrlP 117191°] ACKNOWLEDGE IAC
MESSAGE

270647-35

Figure 23. Data Settings

3.8 EXTERNAL PRIORITY REGISTER

The 80960KB contains an internal register that keeps track of the current priority (a value between
Oand 31) at which itis executing. This priority is used to decide whether or not to service interrupts
— higher priority interrupts are serviced, others are posted for later servicing. In some system
designs it may be desirable to have this priority visible outside of the processor. To allow this, the
80960KB provides support for an external priority register. Whenever the priority of the 30960KB
changes, the contents of this register are automatically updated.

This feature may be enabled in two steps. If the Write External Priority bit is set in the PRCB (see
the 80960KB CPU Programmer’s Reference Manual), then the external priority register is updated
as a result of a MODPC instruction or whenever an interrupt occurs. If external IAC messages are
enabled, then external priority is also updated whenever a result of an IAC is to change processor
priority.

3.8.1 Hardware Requirements

The 80960KB expects to write its priority into a 5-bit register mapped to address FFO00000 if its
LPN is zero, or FFO00020 if its LPN is one. To set the priority, the processor performs a one-word
write operation in the form shown in Figure 23. The priority is contained in bit,-bit, , and bit, is
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asserted to indicate that the priority is changed. It is necessary to use bit, as a qualifier to distinguish
priority write operations from IAC message acknowledgments, which use the same reserved
address.

3.8.2 External Priority and IAC Messages

The external priority register can be used to filter IAC messages. Since the processor always services
the TAC pin (i.e., it is non-maskable), a low priority IAC message can interrupt a high IAC priority
task. To prevent this, a system can associate a priority with each IAC message. This priority can then
be compared to the priority stored in the external priority register and used to decide whether or not
to accept the IAC message. One way to associate a priority with an IAC message is to encode the
message priority into the IAC message destination address as shown in Figure 24. The range of
reserved addresses shown in Figure 24 have been set aside for this purpose.

24 23 14 13 43210

HIIIIIILXIIIIIIIXIIXIIIIIIIXIXIIXIHII

[ {
PRIORITY

ADDRESS OF RECEPIENT
270647-36

Figure 24. Physical Address Interpretation for IAC Messages

3.9 INTERRUPTS

The 80960KB processor responds to external events occurring at arbitrary times by means of an
interrupt signal. Various sources, which include hardware components and special software
instructions, generate an interrupt signal that can suspend execution of the 80960KB processor’s
current instruction stream. The hardware-generated interrupts are discussed in this section. For
complete information on software-generated interrupts, see the Programmer’s Reference Chapter of
this handbook.

The 80960KB is unusual in that the interrupt controller automatically does the processor housekeep-
ing tasks that are normally left for the programmer to deal with in the interrupt handling routine. The
local registers are pushed onto the stack, state is saved, arithmetic controls are saved, priority of the
processor is changed to the interrupt priority, and stack pointers are managed. All this is done
automatically before entering the user written interrupt routine. The bottom line of this is that the
programmer can simply worry about the function of the interrupt handling routine and not processor
housekeeping, thus greatly. simplifying the programming and debugging effort.

The 80960KB processor provides a flexible interrupt structure. The 80960KB processor can be
interrupted using any of three methods below:
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*  Receipt of a signal on any or all of the four direct interrupt input signals (INT, T,, INT,,INT,, and
INT,)

» Receipt of a signal on the interrupt request (INTR) line to obtain an external interrupt vector

«  Receipt of an IAC message from a processor program or external source.

The choice of the method is determined by the setting in the on-chip Interrupt Control register.
Interrupt signals can occur during any bus state regardless of which method is implemented.

This section provides details on the multiplexed interrupt pins, the three interrupt methods, the
Interrupt Control register, synchronization, and interrupt latency.

3.9.1 Interrupt Signals

The interrupt signals are multiplexed on four pins of the 80960KB processor: INTO/I'AC, INT,, INT,/
INTR, and INT,/INTA. The on-chip Interrupt Control register determines how these pins are used
(see “Interrupt Control Register” section).

INT/IAC This pin multiplexes the Interrupt, and Inter-Agent Communication re-
quest input signals. The 80960KB processor interprets this input signal as
either INT, or TAC. The TAC signal indicates a request for interrupt service
when itis asserted The IAC signal denotes that a message is waiting when
it is asserted.

INT, ' The Interrupt, input signal indicates a request for interrupt service when it
is asserted.
INTZ/INTR ' . This pin multipiexes the Interrupt, and Interrupt Request input signals.

The 80960KB processor interprets this input signal as either INT, or INTR.
The INT, signal indicates a request for interrupt service when it is asserted.
The INTR signal indicates an interrupt request from an external interrupt
controller. The 80960KB processor responds with an 1nterrupt-acknowl—
edge sequence. To ensure an interrupt, the INTR signal must remain
asserted until the first cycle of the interrupt-acknowledge transaction,

INT,/INTA This pin multiplexes the Interrupt, input signal and Interrupt Acknowl-
edge output signal. The 80960KB processor uses this pin as the INT input
signal or as the INTA output signal. The he Interrupt Control register s settmg
selects either the combination of INTR/INTA or INT,/INT,. The INT3 input
signal indicates a request for interrupt service when it is asserted. INTA ac-
knowledges the interrupt request from an external interrupt controller. The
INTA signal is latched by the 80960KB processor and remains valid during
the T, state. This signal is open drain output.
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3.9.2 Interrupt Control Register

The 80960KB processor uses a 32-bit, on-chip Interrupt Control register to define the function of the
multiplexed interrupt pins. This 32-bit Interrupt Control register allocates eight bits for each of the
four direct interrupt signals (INT, INT , INT,, and INT,). The eight bits contain the vector number
for each interrupt signal, as shown in Figure 25. The vector number is automatically read when one
of the interrupt signals (INT,, INT , INT,, and INT,) is activated. For example, when an interrupt
is signaled on INT,, the 80960KB processor uses bit,-bit, of the Interrupt Control register as the
vector number.

31 24 23 16 15 8 7 0 BIT NUMBER

INT, | INT, I INT, IE INT, E|
vscron VECTOR 1" VECTOR VECTOR

Figure 25. Interrupt Control Register

The 80960KB processor uses the data field corresponding to INT, to determine identification of the
INTO/IAC input pin; a value of 00, signifies the IAC function. If the data field corresponding to INT,
has a value of @ﬂ_the 80960KB 3 processor interprets the INT /INTR pin as the INTR input signal,
and the INT //INTA pin as the INTA output 51gnal In other words this setting specifies that the
80960KB processor should use these two pins for communication with an external interrupt
controller. If the functions of INTR and INTA are selected, the direct interrupt pins (WTO and INT))
can still be used.

The on-chip Interrupt Control register may be read and written by the Synchronous Load (synld) and
Synchronous Move (synmov) instructions at the address FF000004,, (see the 80960KB Program-
mer’s Reference Manual). The value of the data fields in the Interrupt Control register is FF000000,,
after initialization. This setting specifies that the four interrupt pins function as INTA, INTR, INT
and TAC.

3.9.3 Using the Four Direct Interrupt Pins

The 80960KB processor can be interrupted by asserting any or all of the four interrupt input signals
(INT,, INT,, INT,, INT,). If the signals are simultaneously asserted, the 80960KB assumes that INT,
has the highest pnorrty, followed by INT,, INT,, and INT Software should follow this convenuon
when programming the Interrupt Control reglster When the interrupt input signals are asserted, the
80960KB processor utilizes a vector number specified by the Interrupt Control register as an index
to an entry in the interrupt table located in memory. For complete software information on this topic,
see the Programmer’s Reference Chapter of this handbook.
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3.9.4 Using an External Interrupt Controller

The 80960KB processor can communicate with an external interrupt controller by performing an
interrupt acknowledge sequence using the INTR and INTA signals. Figure 26 shows an example of
the timing of an interrupt acknowledge sequence using the 8259A Programmable Interrupt Control-
ler.

INTERRUPT

ACKNOWLEDGEMENT INTERRUPT
PREVIOUS IDLE ,
— CYCLE 1 ——————tr— | ACKNOWLEDGEMENT
CYCLE (5 BUS STATES) CYCLE 2
T T Ta T4 T T Ti T Ti T Ta T4 Tw T

ok Jr\_)r\_,r\_,r\_f\f\_/\_/\_,r\_)r\_f\f\)r\_‘
INTR __/ W

LADs;. ADDR
LAD, ) / ADDR. ECT

<

N

N

= -/ | /

M) A4S

iNTA / \

DT/R % : y/

BEN A L/ ~ — \ —
o T \ | /
e T \L/ \/

270647-37

Figure 26. Timing Diagram for Interrupt Acknowledge Transaction

INTR is asserted by the 8259 A and remains asserted until the 80960KB processor activates the INTA
signal for the first time. When the 80960KB processor receives an interrupt request, the CPU
completes the current transaction (or comes to some interruptible point), and asserts INTA. INTA
remains valid through the T,, T, and T states. The first assertion of INTA triggers the 8259A to
resolve priority among its interrupt requests.

To compensate for the timing of the 8259A, the 80960KB processor automatically inserts five T,
states before asserting the INTA again to read the interrupt vector. Figure 26 shows READY asserted
without a wait state during the first Interrupt Acknowledgement cycle and with one wait state during
the second Interrupt Acknowledgement cycle. In practice, the 8259A would require about four wait
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states in both cycles. The address during the T, state for both interrupt acknowledge cycles is
FFFFFFFC,,. For more details, see the “8259A Programmable Interrupt Controller” portion in
Section 5 of this chapter. ‘

The 80960KB processor services the interrupt according to its priority. If the interrupt has higher
priority than the current activity, the 80960KB processor services it immediately. Otherwise, after
reading the interrupt vector, the 80960KB processor posts the interrupt vector in the interrupt table.
Typically, the 80960KB processor responds within 4 usec for an interrupt with higher priority than
the current process (assummg CLK2 at 40 MHz). If the interrupt has lower priority than the current
activity, the interrupt is serviced when its priority is higher than the priority of the subsequent activity
of the 80960KB processor.

3.9.5 Using IAC Requests for Interrupts

The 80960KB processor can also be interrupted by an IAC message. The 80960KB processor can
send IAC messages to itself by using one of the Synchronous Move instructions. Because this
message does not utilize the L-bus when sent to the same processor, no special hardware is required.
More details are provided in the Programmer’s Reference Chapter of this manual.

3.9.6 Synchronization

The INTO/IAC INT,, INT,/INTR and INT input signals can be either synchronous or asynchronous
to the system clock (CLK2) Synchronous 1nterrupt signals mustbe setup 3 ns priorto the rising edge
of CLK2 and held for 10 ns after the rising edge of CLK?2. To properly preset the interrupt signals
for synchronous operation, INT /TAC, INT, INT,/INTR and INT, must be deasserted for at least one
processor clock cycle and asserted for at least one processor clock cycle These signals may be
deasserted and asserted individually.

If the interrupt signals are asynchronous to CLK?2, the 80960KB processor internally synchronizes
them. For the CPU to recognize the asynchronous interrupt input signals, they must be preset by
deasserting them for at least two processor clock cycles, and then asserting them for at least two
processor clock cycles.

3.9.7 Interrupt Flows

These signals may be deasserted and asserted individually. The 80960 interrupt controller intelli-
gently manages interrupts. Once an interrupt is signalled, the 80960KB interrupt mechanism
transfers control to a microcode interrupt routine. This 80960KB routine automatically allocates a
new set of local registers onto the stack, posts pending interrupts, checks priorities, and suspends or
aborts long instructions before executing the user’s interrupt handler. Once the interrupt handler has
completed, the return instruction “knows” it is areturn from interrupt and the 80960K B return routine
restores the local registers, arithmetic, and process control registers, checks for pending interrupts,
and returns to the next instruction of the interrupted code.
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There are two main stages the 80960KB goes through before it executes the interrupt handler:
hardware recognizes the interrupt and then a microcode interrupt routine executives. First the
interrupt pin is pulled. Hardware stores this in a four-bit register. One bit is assigned to each pin.
This register is used to capture subsequent interrupts once one interrupt has been recognized.
Interrupts are recognized at instruction boundaries or interruptable points in long instructions
(floating point). They are then immediately disabled. However, it is important to note that disabling
interrupts does not disable the four-bit register. Interrupts are saved in this register until microcode
reaches a point it can check the register again. When the register is read it is subsequently cleared.
The highest priority bit in the four-bit vector is cleared, which indicates that the interrupt vector
associated with it will be used. Then this vector is written back to the register by an ORing function
with the register thus maintaining any new interrupts that may have been signalled.

Next the 80960KB recognizes that an interrupt occurred by the fact that an interrupt event has been
stored in the four-bit register. At this point the interrupt microcode routine is called by a hardware
mechanism in the interrupt controller. The interrupt routine executes the action described by the
interrupt flow in Flow Chart 1. After the interrupt routine has completed, it “calls” the interrupt
handler and commences executing instructions. The interrupt handler is user supplied. All the
housekeeping needed to get into and out of the interrupt handler is completed by the 80960KB
microcode interrupt routine before the interrupt handler is “called”. No processor housekeeping
activities need to be done by the user’s interrupt handler.

The 80960KB has only one “return” instruction for all types of returns. There are three bits in the
“previous frame pointer” (local register0) called the return status bit. - See section 4 of the
Programmer’s Reference Chapter of this manual. These bits have encoded in them the type of call
and, therefore, the type of return that is to occur. The 80960KB manages this completedly.

The flow diagrams show an interrupt flow, pending interrupt flow and interrupt return flow. Each
of these are implemented as microcode routines in the hardware of the 80960KB. :

3.9.8 Pending Interrupts

Pending interrupts are checked in certain situations. If a pending interrupt exists then the “pending
interrupt” flow is executed. The four situations that pending interrupts are checked are as follows:

Return form interrupt
-OR-

MODPC instruction (if process priority is lowered)
-OR-

Test pending interrupt IAC is executed
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Flowchart 2
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Flowchart 3

3.9.9 Interrupt Latency

The 80960KB interrupt controller manages the interrupt mechanism automatically and therefore
there are many cases it deals with. Dependong on the situation, latency may vary. The 80960KB’s
interrupt latencies are comprised of a base latency and special case latencies added toit. These special
cases consist of such things as using an 8259A interrupt controller, the local register cache being full,
or an interrupt occuring while the processor is already in the interrupted state.

The base interrupt latency is 85 cycles as shown in Table 5. Table 6 describes the breakdown of the
base interrupt latency. Notice that is only takes 6 cycles for the 80960KB to respond to the interrupt.
Four cycles for hardware recognition of the interrupt and a minimum of one cycle to respond if the
interrupt occurs on an instruction boundary. The tableindicates two cycles and assumes the interrupt
is signalled at the beginning of a RISC instruction. This value will differ depending on the instruction
being interrupted and the point at which the interrupt is signalled in the instruction. Table 7 gives
values for integer execution, floating point, and transcendental floating point instruction interrupt
boundaries.
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Table 5. Interrupt Latencies

Type of Latency Cycles

Base Interrupt Latency 85
Return 78
Interrupt immediately followed by another 157

interrupt. Second interrupt posted to

interrupt table.
Return with a Pending. Interrupt Posted 157
Pendfng Interrupt : 0

Table 6. Constituent Parts of the Base Interrupt Latency.
(The total base interrupt latency is 85 cycles or 4.25 us.)

Constituent Latencies Cycles

Hardware Recognition ' 4
Stop Current Instruction Flow Assuming

a Risc Instruction 2
Determine Next IP and Save 8
Read Interrupt Vector Number 18
Check Interrupt Priority ‘ 8
Read Interrupt Table Vector 14
Check if Processor Already Interrupted 6
Save Process Control and Write Interrupt Record 10
Compute Interrupt Record Address of New

Local Register Set 10
Allocate New Local Register Set 3
Fetch New Instruction and Start Decoding 2

Other situations that add to the latency are interrupts signalled at the start of a multicycle instruction
or multiple interrupts signalled at the same time. The first may cause a resumption record to be stored
onthe stack. This records all the necessary inforamtion the 80960KB needs to resume executing the
interrupted instruction. Not all interruptable instructions cause a resumption record to be created.
If an instruction has been executing for over approximately 520 cycles then a resumption record will
be created. Less than that and the instruction is simply restarted upon return from the interrupt. This
was an engineering trade-off between the overhead to save state after less than 520 cycles and
restarting the instruction. Restarting the instruction requires fewer cycles for most cases.
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Table 7. Special Case Latencies that are Added to the Base Latency

Special Case Latencies . Cycles’
8259A Interrupt Expansion (4ws) 18
- Frame Cache Full 24
Current Process in “Interrupt” 14
Risc Instructions (Worst Case) 34
Integer Execution 10-40
Floating Point 12-96
.Transcendental Floating Point 90
Instruction Cache Miss (2 Wait State) 5

Multiple interrupts signalled at various times are handled on a first come first serve basis. Interrupts
occurring at the same time are handled on a priority scheme with INT3<INT2<INT1<INTO. The first
interrupt is handled as soon as the 80960KB reaches an interruptable state (e.g. end of instruction)
and subsequent interrupts are read from the interrupt control register and posted in the interrupt table
as soon as the microcode routine reinables interrupts. While interrupts are not enabled the event
(another interrupt) is stored in the four-bit register described earlier. Posting a pending interrupt to
the interrupt table adds about 60 cycles to the interrupt latency. This consists of comparing the
priorities of the processor and interrupt, writing a “one” to the appropriate bits in the pending
priorities field, if it is less than or equal to the current priority, and writing a “one” to the appropriate
bits in the pending interrupt field in the interrupt table. The positions in the fields are pointed to by
the index vector from the interrupt control register or an 8259A vector.

The minimum interrupt latency is 85 clocks or 4.25 usec at 20MHz. This latency assumes the
instruction handler is in the cache. If there is an instruction cache miss, five clocks for caching the
instructions must be added to the base latency (assuming a two wait state memory system). In most
cases the instruction will be cached already. A program’s typical latency would add about 3 more
clocks for non-RISC instructions. If there is a local register cache miss then 24 cycles or 1.2 usec
should be added. The worst case interrupt latency would be 181 cycles or 9.05 usec. This assumes
the interrupt is signalled at the beginning of an ediv instruction (40 cycles), there is a local register
cache miss (24 cycles), the current process is in the “interrupt” state (14 cycles), and an 8259A with
4 wait states is being used (18 cycles). '

It is important to note that during the microcode routine all of the stack manipulations, saving state,
" checking priorities, and allocating new registers is done automatically. When the 80960KB enters
the user interrupt handler this routine does not have to do any housework, it can start immediately
with useful code. The benefit is that this work is done by the processor in microcode and can be done
quickly and efficiently. Also note that the 80960KB responds to an interrupt in as little as 6 clocks.
This is from the point of interrupt pin assertion to the point that the instruction flow is stopped and
the microcode routine starts the housekeeping tasks. Normally processors do not include any of the
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housekeeping activities in the interrupt latency so care should be taken in comparing latencies.

Table 7 gives the latencies based on spemal cases that may occur. These values must be added to the
~ base latency from Table 5.

For more details on interrupts see section 8 of the Programmer’s Reference chapter of this handbook.

3.10 RESET AND INITIALIZATION

The system RESET signal provides an orderly way to start or restart the 80960KB processor. When
the 80960KB processor detects: the low-to-high transition of RESET, it terminates all external
activities and places the output pins in the high impedance state or deasserted condition. When the
RESET signal falls low again, the 80960KB processor begins the initialization process and later
starts fetching instructions from a specific address.

3.10.1 RESET Timing Requirements

To properly reset the 80960K B processor to aknown state, the low-to-high transition of RESET must
be asserted relative to any rising edge of CLK2 and remain asserted for at least 41 CLK2 cycles, as
shown in Figure 27. RESET must be deasserted after the rising edge of CLK2, but prior to the next
rising edge of CLK2. This establishes the next rising edge of CLK?2 as edge A.

Y
CLOCK
CYCLES AEDGE

RESET

270647-38

" Figure 27. RESET Timing Diagram

3.10.2 RESET Timing Generation

The RESET input signal to the 80960KB processor can easily be generated by implementing a
synchronization circuit comprised of a two D-type flip-flops, as shown in Figure 28.

The user RESET signal is synchronized with the CLK signal by applying CLK to the clock input of
both flip-flops. T protect against ametastable RESET signal, the output of the first flip-flop, SYNC,
is applied to the input of the second flip-flop. The output of the second flip-flop results in a processor
RESET signal. The timing diagram for these signals is shown in Figure 29. CLK or CLK2 can be used
instead of CLK in Figure 29. Using CLK provides an edge A corresponding to the rising edge of CLK.
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SYNC
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Figure 28. Asynchronous RESET Circuit
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USER RESET

SYNC

CPU RESET

Figure 29. Diagram for RESET Timing Generation

This circuit assumes an asynchronous user RESET signal. If the user RESET signal is already
synchronous with the CLK signal, the same circuitry can be implemented as shown in Figure 30.
In this case, however, the output from the first flip-flop is used to generate the processor RESET
signal rather than being routed to the input of the second flip-flop.

USERRESET ——>{ D [¢] SE—— RESC%LTO

Ltk —>P ¢

Figure 30. Synchronous RESET Circuit
3.10.3 Initialization

The initialization sequence of events is shown in Figure 31. When RESET is deasserted after a
minimum of 41 CLK2 cycles, several actions take place: two input pins are sampled, the FAILURE
output signal (see next 2 section for the pin description) is asserted, and the self-test is performed.

2-45




HARDWARE REFERENCE

e a
6 | DEASSERT RESET |
READ
INITIALIZATION | sampLE LPN AND START-UP INPUT PINS |
PARAMETERS
9 | ASSERT FAILURE |
Y
@ | PERFORM SELF-TEST |
PERFORM
SERFORM. < ERROR? ENTER STOPPED STATE|
¢ | DEASSERT FAILURE |
INITIALIZATION ENTER STOPPED STATE|
PROCESSOR
PERFORM < -
YES

SYSTEM CHECK

PREPARE FOR
OPERATION

| reaD 8 worDs FroM pHYsicAL ADDRESS o]

Y I PERFORM CHECKSUM ON THE 8 WORDS |

CHECKSUM oes
CHECKSUM ASSERT ;AILURE |
{enTER sTOPPED STATE]
‘ YES :
| serup For THE FiRsT INsTRUCTION |
( |_CLEAR ANY LATCHED INTERRUPT siGNALS |

EXECUTE FIRST INSTRUCTION

A Figure 31. Initialization Flow Chart

2-46




intal HARDWARE REFERENCE

CLOCK EDGES.
41 CLOCK A B C DA

el el W e N N W Wal,
—M —ﬁ-\ / | — - L_s 4,J u
e LT ;

bR

! ! T

CLK

K

INT,/IAC AND BADAC INT,/IAC AND BADAC LATCHED INTERRUPT
MUST BE SET PRIOR TO MUST BE HELD BEYOND - SIGNALS CLEARED PRIOR
THIS CLOCK EDGE. THIS CLOCK EDGE. . TO FIRST INSTRUCTION.

Figure 32. RESET Signal Timing Relationship

When RESET is deasserted, the 80960KB processor samples the signals residing on the INTO/TAC
and the BADAC pins (see the next section for the pin description of BADAC). At this time, these
pins are interpreted as the Local Processor Number (LPN) and Startup (STARTUP) signals,
respectively. The LPN input signal defines whether the 80960KB processor is a PBM (high voltage
input level) or a SBM (low voltage input level). The STARTUP input pin indicates whether the
80960KB processor performs initialization (high voltage level) or not (low voltage level). The
STARTUPsignal is used to allow one or more rocessors to perform the active initialization. The input
voltage levels for the LPN and STARTUP must be setup 3 ns before the rising CLK2 edge prior to
edge A and held 10 ns beyond edge C, as shown in Figure 32. ’

Besides sampling the two input pins, the 80960KB processor asserts the FAILURE output signal a
few cycles after RESET is deasserted. The FAILURE signal remains asserted while the CPU
performs the self-test. If a failure is detected during the self-test, FAILURE remains asserted and the
CPU enters the stopped state where the processor does nothing. If the self-test completes success-
fully, the CPU deasserts the FAILURE signal.

An 80960KB processor that is designated as the initialization processor proceeds by doing a
checksum test of eight words fetched from memory at physical address 0000 0000, to ensure that
the memory and L-bus are operating properly. If the initial checksum is incorrect, then the FAILURE
signal is asserted (and remains asserted) and the 80960KB processor enters the stopped state. After
asuccessful checksum test, the 80960KB processor uses some of the words as addresses to initial data
structures. Complete details are provided in the Programmer’s Reference chapter.

Just prior to executing the first instruction, the 80960KB processor clears any latched interrupt
signals.
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3.11 ERROR SIGNALS

The 80960KB processor provides an input signal (BADAC) for notification of an error in the system,
and provides an output signal. (FAILURE) for notification of an error within the processor.

BADAC When asserted, the Bad Access input signal indicates that an unrecoverable
error occurred during the current data transfer. If, however, BADAC was
asserted after a Synchronous Move or Synchronous Load instruction, the
error is recoverable. The 80960KB processor samples the BADAC input
signal during the cycle following the one when the last READY is asserted.

FAILURE The FAILURE signal indicates that an error occurred during initialization.
' The 80960K B processor always asserts FAILURE after the activation of the
RESET signal. If a failure is detected during a self-test, FAILURE remains
asserted. Otherwise, the processor deasserts FAILURE after a successful
self-test is performed. If the initial memory checksum is incorrect, the
initialization processor asserts FAILURE a second time, and keeps it

asserted. FAILURE is an open drain output signal.

3.12 SUMMARY

The L-bus is a high speed 32-bit multiplexed bus with burst-transfer capability and is designed to
operate with the high performance 80960KB processor. The L-bus consists of two signal groups:
address/data, and control. These signal groups are utilized by the 80960KB processor to perform
read, write, and burst transactions.

The arbitration, interrupt, and reset operations are related to the L-bus transactions. The arbitration
operation transfers control of the L-bus to another bus master. Three methods are available to handle
interrupts: by invoking the on-chip interrupt controller, by employing an external interrupt controller
using the INTR/INTA signals, by using an IAC message. The reset function sets the 80960KB
processor to aknown internal state after it successfully completes the self-test. These operations offer
power and flexibilityto hardware system design using the 80960KB processor.

4.0 MEMORY INTERFACE

The high-speed bus interface has many features that enhance high-performance designs. In
particular, the burst-transfer feature allows up to four successive 32-bit data word transfers at a
maximumrate of one word every processor clock cycle. This section outlines approaches for memory
designs that use these features, describes memory design considerations, analyzes the timing, and
‘lists anumber of useful examples. The concepts illustrated by these examples apply to a wide variety
of memory system implementations.
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4.1 BASIC MEMORY INTERFACE

Figure 33 shows the major logic blocks of the memory interface circuit. The data transceivers buffer
the data to compensate for any slow devices that may be connected to the 80960KB processor. The
address latches demultiplex the address/data signals from the 80960KB processor and latch the
address. The address decoder selects the appropriate memory device from the latched address. To
accommodate a memory burst transaction, the burst logic decrements the word count, increments:
the local address lines 3 and 2 (LAD, and LAD,), and generates a CYCLE-IN-PROGRESS signal.
The timing control generates a READY signal and other specific signals required by a particular
memory device. The byte enable latch stores the byte enable signals.

Although not part of the basic memory interface, the DRAM controller, SRAM interface, DRAM,
SRAM, and EPROM are included in Figure 33 for completeness. In a hardware system the DRAM,
SRAM, and EPROM are typically located in separate subsystems.

Although the memory interface circuit can be designed using programmable logic, gate arrays, or
other custom logic, the examples use standard components wherever possible to illustrate the design
concepts.

4.1.1 Data Transceivers

Standard 8-bit transceivers can be used to provide isolation and additional drive capability for the L-
bus. Transceivers can be used to prevent bus contention that can occur if some memories are slow
to remove data from the L-bus after a read operation. For example, if a write operation follows aread
operation, the 80960KB processor may drive the L-bus before a slow device has removed its output
data, potentially causing a current spike on the power and ground lines. Transceivers, however, can
be omitted if the data float time of the device is short enough and the load does not exceed the
80960KB device specifications. :

The data transceivers can be controlled by two signals from the 80960KB processor: data transmit/
receive (DT/R) and data enable (DEN). DT/R indicates the direction of data flow and DEN enables
the transceivers.

4.1.2 Address Latch/Demulitiplexer

Conventional transparent latches can be used to demultiplex the address/data lines of the 80960KB
processor and to hold the address constant during the memory operation. The latch is controlled by
the ALE signal from the 80960KB processor. ALE passes through an inverter, so that when ALE goes
low, the address flows through the latch. The low-to-high transition of ALE can be used to latch the
address. The output enable of the latch can be tied to ground. The lower four address lines (LAD,-
LAD,) are latched by the burst logic.
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4.1.3 Address Decoder

The 80960KB processor accesses both memory and I/O devices by supplying a 32-bit address and
a read/write command. The address decoder determines which particular memory or I/O device is
selected by decoding the address lines. The following discussion focuses on memory selection, and
the “Address Decoder” portion of Section 5 discusses I/O device selection using memory-mapped
1/O techniques.

The memory address can be divided into regions where one region can apply to EPROM or ROM,
another to RAM, and another to the I/O registers. In a 80960KB-based system the ROM address
space is likely to start at address 0000 0000H because the CPU begins execution at this address. The
RAM or I/O regions can start at any other address in the 4G-byte address range except for addresses
FF000000,, through FFFFFFFF,, which the 80960KB processor reserves for inter-agent commu-
nication.

H’

Because of the large address range of the 80960KB processor, the address can be divided into word
address bits and chip select bits. Typically the higher-order address bits are decoded to generate the
selection signal for ROM, RAM, or I/O devices.

The address decoder can be located either before or after the address latches. Usually, it is placed
after the latches, so that the chip-select signal does not need to be latched. Figure 33 shows the block
diagram of the address decoder placed behind the address latches.

4.1.4 Burst Logic

To enhance system performance, the 80960KB processor performs burst transactions that transfer
up to four data words at a maximum rate of one word every clock cycle. A DRAM controller can
be designed that takes advantage of the burst-transfer capability by using the static column mode or
nibble mode features of the DRAM (see the “DRAM Controller” in this section. This DRAM
controller requires a signal, called CYCLE-IN-PROGRESS, to identify the start and end of amemory
cycle. The burst logic generates the CYCLE-IN-PROGRESS signal.

Figure 34 shows the flow chart for the burst logic. If ADS is low and DEN is high, then the burst logic
latches LAD, through LAD , and asserts the CYCLE-IN-PROGRESS signal. The burst logic checks
the SIZE signals (LAD, and LAD,). If the value of the SIZE signals equal zero, then the burst logic
runs one memory cycle, and terminates the CY CLE-IN-PROGRESS signal. If the value of the SIZE
signals do not equal zero, the burst logic runs one memory cycle, increments the lower two latched
address’s (A2 and A3), and decrements the SIZE value. When this is finished, the burst logic checks
the value of the SIZE signals again.

The burst logic can be used with EPROM, SRAM, DRAM memories. However, it cannot be used
in the DRAM static column or nibble modes, because they do not support burst transactions. Because
the 80960KB processor ensures that a burst transaction cannot exceed four words or cross a 16-byte
boundary, incrementing LAD, and LAD, after a smgle data word transfer makes the burst transfer
transparent to the memory dev1ces
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Figure 34. Burst Logic Flow Chart

4.1.5 Timing Control Logic-

2-52

The timing control logic accommodates memory devices that cannot transfer information at the
maximum bus rate by inserting wait states until the data becomes available. The timing control logic
consists of a counter and timing logic, as shown in Figure 35. The counter produces a 4-bit binary
count. The count begins when the CYCLE-IN-PROGRESS signal is asserted. The timing logic
asserts READY at the appropriate time based upon the count, the EPROM-CS, and the SRAM-CS
signals. For abursttransfer, READY resets the counter to properly time a READY signal for the next
data transfer. When CYCLE-IN-PROGRESS is deasserted, the clock counting is terminated.

Because fhé timing of DRAM is more complicated, the DRAM controlkar generates a DRAM-RDY
signal to the timing control logic. In addition, the clock count, the W/R command, and SRAM-CS
signal can also be used to generate SRAM-WE and SRAM-OE Signals.
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Figure 35. Timing Control Logic Block Diagram

4.1.6 Byte Enable Latch

The byte enable latch holds the byte enable signals constant until the DRAM controller or SRAM
interface uses the signals. As mentioned in the “L-Bus Signal Groups” section in Section 3, the byte
enable signals specify which bytes (up to four) on the 32-bit data bus are transferred during the data
cycle. Each individual byte enable signal selects eight data lines as shown in Table 5.

Table 5. Byte Enable Signal Decoding

Byte Enable Signal Address Line Selection
BE, LAD;-LAD,
BE, LAD,;s-LAD,
BE, LAD,;-LAD,,
BE, LAD,,-LAD,,

The byte enable signals are valid from the 80960KB processor before data is transferred. These
signals are asserted during the address cycle for the first data word transfer; they are asserted again
during the first data cycle for the second word transfer; the second data cycle for the third word
transfer; and the third data cycle for the fourth word transfer. For each word, the byte enable signals
remain valid throughout every data or waitcycle until READY is asserted. After READY is asserted,
the byte enable signals change during the next processor clock cycle.

The ALE signal can be used to latch the first byte enable signals. READY can be used to latch the
other byte enable signals for each word.
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4.2 SRAM INTERFACE

* The basic memory interface can be used in conjunction with the SRAM interface to read and write
to SRAM. This section describes the SRAM interface and examines the timing.

4.2.1 SRAM Interface Logic

The SRAM interface logic uses the latched byte enable signals, the' SRAM-OE, and the SRAM-WE
signals to generate four output enable signals (SRAM-OE, through SRAM-OE,) and four write
enable signals (SRAM-WE, through SRAM- WEO) as shown in Figure 36. These 31gnals allow the
80960KB 3 processor to wnte to the data byte that is specified by the byte enable signals. SRAMs with
separate OE and CS signals require only one OE signal per bank since the 80960KB ignores
unrequested bytes in read operations.

4.2.2 SRAM Timing Considerations

This section analyzes the critical timing paths of the SRAM control signals. From the critical path,
the timing equations can be derived to determine the memory access time for no wait state operation.

When evaluating critical timing paths, the timing calculations should use worst-case data sheet
parametric specifications, rather than typical specifications. By using worst-case timing values,
reliable operation is assured over all variations in temperature, voltage and individual device
characteristics. These timing values are determined by assuming the maximum propagation delay to
latch an address, select a memory device, and pass through data buffers and transceivers.

Figure 37 shows the critical timing path for a one-word SRAM read operation. The diagram consists
of three time periods: the address setup period (T, ), the memory response period (T, ), and the
datareturn period (T, ). Note that the timing for the read command and output control signals does

not enter into the critical timing path.

During the T, et period, the 80960KB processor outputs a valid address that is latched on the low-
to-high transition of the ALE 31gna1 The address decoder generates the SRAM-CS signal from the
latched address and the Timing Control/SRAM Interface logic subsequently generates the OE
signals. During the T .. period the SRAM responds to the commands and signals and retrieves the
data. The access time of the memory determines the duration of the T, period. T___can be varied
in increments of clock cycles by delaying the READY signal.

The data must be available at the address/data pins of the CPU before the end of the data state. The
T s PETIOd must take into account the setup time requirement of the 80960KB processor and the
throughput delay of a data transcelver
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Figure 37. Critical Timing Path for SRAM Read Operation
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For a no wait state operation, the data transfer word must be completed in two system clock (CLK)
cycles. The minimum time period for a no wait state operation (T ) can be determined by
using equation 1.

mem-no-wait

mem-no-wait = 2CLK - Taddrset - Tdataset (1)
where: T~ = Memory access time for no wait state operation
2CLK » = Two system clock (CLK) cycles

= Maximum delay to valid address

+ Maximum throughput delay of address latch
+ Maximum delay to generate chip select

+ Maximum delay to generate SRAM-OEn

addrset

= Maximum delay through data transceiver
+ Maximum data setup time of CPU

dataset

A similar analysis can be done for burst transactions. Equation 1 can be used to determine the access
time for no wait state operation of the first word. For subsequent words, equation 2 can be used. In
this equation, the address setup time is replaced by delay in the burst logic to change the address
(Tburst). In this case, the data transfer of each subsequent word must be completed in one system
clock (CLK) cycle (no address state). The minimum access time for a no wait state operation (Tmem-
no-wait) can be determined by using the lesser value of equation 1 or equation 2.

mem-no-wait =CLK - Ty - Toase @
where: T = Memory access time for no wait state operation
CLK = One system clock (CLK) cycles
Ty = Maximum delay to change the address

= Maximum delay through data transceiver

dataset

+ Maximum data setup time of CPU
The memory access time can be extended by delaying the READY signal and adding wait states.

The timing analysis described for a SRAM read operation can be used for EPROM timings. If
EPROMs are only used to store initialization programs, they are seldom accessed compared to
memory devices used to store program data or instructions. Consequently, the addition of wait states
during the read cycle does not affect overall system performance.

Figure 38 shows the critical timing path for an SRAM write operation. The diagram consists of two
time periods: the address setup period (T .. ) and the memory response period (T ).

addrset mem:

During the T, . period, the 80960KB processor outputs a valid address that is latched on the low-
to-high transition of ALE. The address decoder generates the SRAM-CS signal from the latched

address.
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Figure 38. Critical Timing Path for SRAM Write Transaction

During the T _period the SRAM responds to the commands and writes the data. The access time
of the memory determines the duration of the T __period. T, canbe varied in increments of clock
cycles by delaying the READY signal.

Two timing paths should be considered during the Tmem period: the path where data is supplied to
the memory, and the path that monitors the memory write cycle time. The first path takes into account
the time for the 80960K B processor to generate valid data, the throughput delay of a data transceiver,
and the data setup time requirement of the memory. The second path is the memory write cycle
specification. The longer of the two paths is the critical timing path.

By examining the timing path required to operate the SRAM, equation 2 can be derived which
determines SRAM write cycle time for no wait state operation. The memory cycle time is determined
by the lesser value of equation 1 or equation 2.

= 20K - Ty, B
=> Maximum delay to valid data

mem-no-wait
where: T .
+ Maximum throughput delay of data transceiver
+ Maximum data setup time of memory
2CLK ' = Two system clock (CLK) cycles
ddrset = Maximum delay to valid address

+ Maximum throughput delay of address latch

+ Maximum delay to generate chip select

The memory access time can be extended by delaying the READY signal and generating wait states.
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4.3 DRAM CONTROLLER -

This section provides design guidelines for a DRAM controller. DRAMs offer static column mode
and CAS before RAS refresh features. This section shows guidelines on how to use these features
with the burst capability of the 80960KB processor to significantly enhance system throughput.

The DRAM controller multiplexes the address into a row and column address, performs the refresh
operation, arbitrates between a refresh request and memory request, and generates the necessary
control signals for the DRAM. To implement these functions, the memory controller uses an address
multiplexer, arbiter, refresh interval timer, and DRAM timing and control as shown is Figure 39.

L-BUS ADDRESS N, DRAMAg.
ADDRESS MULTIPLEXER 1) DRAMA,
~_ ROW/COL
DRAM-C§ =—————=-Qf .
ARBITER
CYCLE-IN- MEM/REF
PROGRESS ¢
CLK — -1
REF-ACK
REF-REQ
REFRESH
Gl INTERVAL
TIMER
- -

‘ O- - RAS)
= ' DRAM o > CASy
BE =0} TIMING -
== AND - - CAS,
BE —0O CONTROL o- > CAS,

—0 -
o P > CASy
8% 9 o— > WE
& DRAM-RDY

270647-42

Figure 39. DRAM Controller Block Diagram

A standard DRAM controller can be used, but it typically degrades system performance.
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4.3.1 Address Multiplexer

The address multiplexer divides the DRAM address into a row and column address. The proper
selection of a row or column address is accomplished by the row/column select signal (ROW/COL)
from the DRAM timing and control circuit.

4.3.2 Refresh Interval Timer

The refresh interval timer periodically generates a refresh request (REF-REQ) by counting enough
bus cycles to equal the refresh interval period. Since a refresh request is processed after a completed
operation, the refresh period must take into account the time required to perform a bus operation, as
well as the DRAM refresh specification. For example, a 1M-bit DRAM that requires 512 refresh
cycles within 8 ms needs arefresh cycle every 15.6 us. To meet the DRAM specification, the refresh
interval timer must generate arefresh requestin less than 15.6 us to compensate for any required time
to complete the operation with wait states. '

After the REF-REQ signal is generated, the arbiter sends a refresh acknowledge signal REF-ACK
back to the interval timer to assure that refresh occurred before generating another REF-REQ.

4.3.3 Arbiter

DRAM controller uses an arbiter to decide whether a memory cycle or refresh cycle is performed.
In a synchronous design, arbitration is easily performed because memory and refresh cycle requests
never occur at or near the same time.

The arbiter monitors memory cycle requests and refresh requests. The arbiter detects a DRAM
memory request by decoding two signals: DRAM-CS and CYCLE-IN-PROGRESS. The REF-REQ
signal indicates that a refresh cycle must be performed. The arbiter arbitrates between a memory
cycle or refresh cycle and generates a Memory/Refresh (MEM/REF) signal. The DRAM timing and
control block uses the MEM/REF signal to start the generation of the control signals. ,

When a refresh cycle is performed, the arbiter sends a REF-ACK signal to the refresh timer, whlch
uses this signal to begin another count.

4.3.4 DRAM Timing and Control

The DRAM timing and control circuit is the final logic block and core of the DRAM controller. The
functions of this circuit include the following:

*  Generating the DRAM control signals (RAS, CAS, and WE) with the proper tlmlng rela-
tionships during system operation

*  Generating the DRAM-RDY signal
Performing the refresh function by asserting CAS before RAS

¢ Performing several warm-up cycles required by the DRAM when power is first applied.
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The DRAM timing and control logic can be designed to take advantage: of the burst-transfer
capability of the 80960KB processor by implementing static column mode or nibble mode. With
nibble mode, a multiplexed address is applied to the DRAM, and up to four bits of data are quickly
transferred by successively toggling the CAS pulse. The DRAM timing and control logic can be
designed to provide the successive CAS pulses by using the CYCLE-IN-PROGRESS and DRAM-
RDY signals.

Static column mode can also be used to take advantage of the burst capability of the DRAM. Static
column mode allows fast access to the bits located in the selected row of the DRAM simply by
changing the column address after the first access.

Figure 40 shows a flow chart for the DRAM timing and control logic using static column mode. The
DRAM timing and control circuit receives a refresh request or a memory request on the. MEM/REF
and CYCLE-IN-PROGRESS input signals. For a memory request, the DRAM timing and control
determines whether a read or a write operation is desired from the W/R signal from the 80960KB
Pprocessor.

Foraread operatron the DRAM timing and control logic performs similar functions on the first word:
it asserts WE; it brings ROW/COL high to select a row address; it asserts RAS it brings ROW/COL
low to select the column address; it asserts CAS3 through CASC (derived from the four latched byte
enable signals); and it generates a DRAM-RDY signal. The DRAM-RDY signal causes the burst
logic to increment the address and informs the 80960KB processor that the data word was written.

After completing these functions the DRAM timing and control logic samples the CYCLE-IN-
PROGRESS to determine whether to transfer another data word. If so, the DRAM timing and control
logic maintains the ROW/COL signal low to select the new column address, deasserts and asserts
ma through CTSO to observe the CAS precharge specification of the DRAM, and generates another
DRAM-RDY. The DRAM timing and control logic repeats the procedure until all the data words are
transferred Then the DRAM tlmmg and control logic deasserts RAS

For a write operatron the DRAM trmmg and control logic performs srmllar functions on the first
word: it asserts WE; it brings ROW/COL high to select a row address; it asserts RAS, (derived from
the four latched byte enable signals); and it generates a DRAM-RDY signal. The DRAM-RDY
signal causes the burst logic to increment the address and informs the 80960KB processor by
- asserting READY that the data word was written. .

After completing these functions the DRAM timing and control logic samples the CYCLE-IN-
PROGRESS to determine whether the 80960KB wants to transfer another data word. If so, the
DRAM timing and control logic maintains the ROW/COL signal low to select the new column
address, deasserts and asserts CAS, through CAS to observe the CAS precharge specification of the
DRAM. and generates another DRAM-RDY. The DRAM timing and control logic repeats the
procedure until all the data words are transferred. Then the DRAM timing and control logic deasserts
RAS,.

Although only one RAS signal is l is required, four CAS signals (CAS -CAS ,) are generated to enable
each byte of the L-bus. These CAS signals are generated by the byte enable decoder and correspond
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to the byte enable signals of the 80960KB processor. For example, CAS , which is mapped directly
from BE, selects the least-significant data byte (LAD,-LAD,).
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Figure 40. Flow Chart for DRAM Timing and Control Logic
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A single WE control signal and four CAS signals ensure that only those DRAM bytes selected for
a write cycle are enabled. All'other data bytes maintain their outputs in the high-impedance state.
A common design error is to use a single CAS control signal and four WE control signals, using the
WE signals to write the DRAM bytes selectively in write cycles that use fewer than 32 bits. Although
the selected bytes are written correctly, the unselected bytes are enabled for aread cycle. These bytes
output their data to the unselected bytes of the data bus while the data transceivers output data to every
bit of the data bus. When the two devices simultaneously output data to the same bus, bus contention
occurs.

The refresh function can be performed by asserting the CAS signal before asserting RAS. The CAS
before RAS refresh feature eliminates the need for an external refresh address counter. When the
CAS pulse is activated prior to the assertion of the RAS pulse, the DRAM automatically performs
arefresh cycle on one row by employing an on-chip address counter. Upon completion of the refresh
cycle, the address counter is automatically incremented. The MEM/REF signal from the arbiter can
be used by the DRAM timing and control logic block to initiate a CAS before RAS refresh cycle.

Besides generating the RAS, CAS, and WE signals, the DRAM timing and control logic generates
a number of warm-up cycles for the DRAM after reset by issuing several refresh requests.

4.3.5 Timing Considerations for the DRAM Controller

Figure 41 shows a typical example of a timing diagram for a two-word read transaction that uses
static column mode; similarly, Figure 42 is a typical example for a two-word write transaction. The
example assumes a memory access time that requires two wait states (T, ) for the initial data word
and one wait for the second data word.

The critical timing areas for both read and write transactions are noted by circled numbers in the
diagrams, which are gnumerated below.

1. The delay for the CPU to generate a valid address.

2. The delay for the DRAM timing and control logic to generate the CYCLE-IN-PROGRESS
signal.

3. The delay to generate the DRAM row address. This time includes the address latch throughput
delay, the multiplexer throughput delay, and the address driver delay.

The delay to generate RAS, which includes the delay to generate the DRAM-CS signal.
5. The row address hold time after the high-to-low transition of RAS.

The time required to generate the multiplexer control signal (ROW/COL) after the row address
hold time is satisfied.

The time required to switch from a row to column address plus any driver delays.
The delay to generate and drive the CAS signals.

9. Foraread transaction, the throughput delay of the data transceivers. For a write transaction, the
delay by the CPU to generate valid data.
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10. For a read transaction, the data setup time of the CPU. For a write transaction, the throughput
delay of the data transceivers.

11. The time required to increment and drive the column address.

12. For a write transaction only, the delay time to bring CAS high (terminate the CAS pulse for the
first data byte), to precharge the CAS pulse (required by the DRAM), and to assert CAS again.

13. The RAS precharge time, which must be satisfied before another memory cycle can begin.
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Figure 41. Timing Diagram for Two-word DRAM Read Transaction -
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Figure 42. Timing Diagram for Two-word DRAM Write Transaction

4.3.6 DRAM Interleaving

Because the DRAM consists of dynamic nodes, a row precharge time is required to recharge the
nodes after every memory cycle. This time must be included in the timing evaluation, as noted by
the example. To avoid the precharge time delay of the DRAM, the memory array can be arranged so
that each subsequent memory access is most likely to be directed to a different bank. In this
configuration, wait time between accesses is not required because while one bank of DRAMs
performs the current access, another bank precharges and is ready to perform the next access
immediately. ‘

If DRAMs are interleaved (i.e., arranged in multiple banks so that adjacent addresses are in different

banks), the DRAM precharge time can be masked for most accesses. With two banks of DRAMs,
one for even 32-bit addresses and one for odd 32-bit addresses, all sequential 32-bit accesses can be

completed without waiting for the DRAM to precharge.

Even when random accesses are made, two DRAM banks allow 50 percent of back-to-back accesses
to be made without waiting for the DRAM s to precharge. The precharge time is also masked when
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the 80960KB processor has no bus accesses to be performed. During these idle bus cycles, the most
recently accessed DRAM bank can precharge so that the next memory access to either bank can begin
immediately.

4.0 SUMMARY

The memory interface circuit allows the 80960KB processor to communicate with the memory
devices. The basic memory interface logic can be divided into six blocks: the data transceivers, the
address latches, the address decoder, the burstlogic, the DRAM timing and control logic, and the byte
enable latch. The DRAM controllerand SRAM interface complete the memory interface circuit. The
DRAM controller can be designed to take advantage of the 80960KB processor’s burst capability to
enhance system performance.

5.0 /O INTERFACE

The 80960KB processor supports 8-bit, 16-bit, and 32-bit I/O devices by mapping them into its 4 G-
byte memory address space. This section describes the design considerations for the interface
between the 80960KB processor and I/O components. Several examples illustrate the design
concepts.

5.1 INTERFACING TO 8-BIT AND 16-BIT PERIPHERALS

The 80960KB processor accesses I/O devices by using a memory-mapped address. Consequently,
memory-type instructions can be used to perform input/output operations. For example, the
80960KB processor’s LOAD and STORE instructions can directly support 8-bit and 16-bit data
moves to or from I/O peripherals. The instructions include those listed below.

* Load Ordinal Byte (reads a byte)

*  Load Ordinal Short (reads 16-bit data)
*  Store Ordinal Byte (writes a byte)

¢  Store Ordinal Short (writes 16-bit data)

These instructions perform the transfer on the data bits specified by the two low-order lines of the
effective address. See the S0960KB CPU Programmer’s Reference Manual for complete details.

5.2 GENERAL SYSTEM INTERFACE

In a typical 80960KB processor system design, a number of slave I/O devices can be controlled -
through a general system interface. Other I/O devices, particularly those capable of controlling the
L-bus, can use the general system interface, but may require additional logic to isolate the bus. This
section describes the general system interface and assumes that the 80960KB processor does not
perform burst transactions to the I/O devices.
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Figure 43 shows the major logic blocks of the general system interface. Standard 8-bit data
transceivers add drive capability, provide bus isolation, and prevent bus conflicts that may occur with
slow I/O components. The address latch demultiplexes the address/data lines and holds the address
stable throughout the L-bus transaction. The address decoder generates the I/O chip-select signals
from the latched address lines. The timing control block provides the READY signal to the 80960KB
processor and the 1/O read and I/O write command.

This basic interface circuit is quite similar to the one used in the basic memory interface described
in section 4. For most systems the same data transceivers, address decoders, and address latches can
be used to access both memory and I/O devices. The timing control logic can be implemented to
accommodate both memory and I/O devices.

5.2.1 Data Transceivers

Standard 8-bit transceivers can be used to provide isolation and additional drive capability for the L-
bus. Transceivers prevent bus contention that can occur if some devices are slow to remove data from
the data bus after a read cycle. For example, if an I/O write cycle follows a I/O read cycle, the
80960KB processor may drive the L-bus before a slow device has removed its outputs from the bus,
potentially causing a current spike. Transceivers, however, can be omitted if the data float time of
the device is short enough and the load does not exceed the 80960KB device specifications.

The data transceiver can be controlled by two signals from the 80960KB processor: Data Transmit/
Receive (DT/R) and Data Enable (DEN). DT/R indicates the direction of data flow and DEN enables
the transceivers.

5.2.2 Address Latch/Demultiplexer

Standard transparent latches can be used to demultiplex the address/data lines of the 80960KB
processor. The latch is controlled by the ALE signal from the 80960KB processor. The ALE signal
passes through an inverter, such that when ALE goes low, the address flows through the latch. The
low-to-high transition of ALE can be used to latch the address.

If only slave-type peripherals are used in a system, the output enable of the latches can always remain
active by connecting it to ground. For systems with DMA devices, the output enable can be used to
permit the DMA device to drive a common address bus.

5.2.3 Address Decoder

The address decoder determines which particular I/O device is selected by decoding the address. The
I/O address can be any address in the 4 Gbyte address range except for the upper 16 Mbytes (addresses
FF000000,, through FFFFFFFF,), which the 80960KB processor reserves for inter-agent commu-
nication and internal I/O. Typically, a small range of address bits are reserved for accessing I/O
devices by defining certain higher-order address bits as an I/O access.
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Figure 43. Simplified I/O Interface
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As an example, consider a 32-bit address: A, through A, could indicate an 1/O access when A, is
set to zero, and A, -A ; are set to one; A, through A, could then be used to specify a particular I/O
device; and A, through A, can be used to access up to 8 registers of the I/O component. A, and A are
not used by the I/O device. This particular scheme selects up to 1,024 devices, while using only 32K
bytes of the available 4 Gbytes of address space. ‘

The address decoder can be located either before or after the address latches. Usually, it is placed
after the latches, so that the chip-select signal does not need an additional latch.

5.2.4 Timing Control Logic

The timing control logic accommodates I/O devices that cannot transfer information at the maximum
bus rate by inserting Wait States until the data becomes available. The timing control logic consists
of a counter and timing logic, as shown in Figure 44. The counter produces a 4-bit binary count. The
count is started at the beginning of the operation (determined by ADS and DEN) and is stopped by
the READY signal. The timing logic asserts the READY signal, the I/O write command (I/O-WR),
and the I/O read command (I/O-RD) based upon the clock count, the I/O chip select signal (I/0-CS),
and the W/R command.

DEN COUNTq
COUNTER COUNT, & READY
— COUNT. TIMING g
ADS START CYCLE OUNT, LOGIC O—— |/0-RD
COUNT3 O— 1|/0-WR
CLK =i

1/0-CS

YYyvYy

270647-45

Figure 44. Timing Control Block Diagram

Formany peripherals, the timing logic can be programmed to assert READY at the appropriate count
for the selected device. Specific I/O chip select signals can be used to indicate how many clock cycles
to wait before asserting READY.

For some I/O peripherals, particularly bus rhasters, READY cannot be determined by counting clock
cycles. For these I/O devices, READY can be supplied by the device and passed on to 80960KB
processor.

The timing control block can assert the I/O-RD or I/O-WR signal for I/O devices based upon the clock ,
count. The timing for these signals can be selected for the slowest device to simplify the logic circuit
or can be customized for each individual peripheral device to maximize performance.
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5.2 1/0 INTERFACE DESIGN EXAMPLES

The general system interface shown in Figure 43 can be used to connect the 80960KB processor to
many slave peripherals. The following list includes some common peripherals compatible with this
interface:

*  8259A Programmable Interrupt Controller

e 8253, 8254 Programmable Interval Timer

» 8272 Floppy Disk Controller

82062, 82064 Fixed Disk Controller

« 82510, Asynchronous Serial Controller

e 8274, 82530 Multi-Protocol Serial Controller
* 8255 Programmable Peripheral Interface

e 8041, 8042 Universal Peripheral Interface

This section provides guidelines and design considerations for interfacing the 80960KB processor
to different types of I/O configurations. Specifically, four design examples are examined. The 8259A
design example shows how to interface the 80960KB processor to a slave-type peripheral device.
The 82586 design example shows how a 16-bit bus master reads and writes to the 80960KB
processor’s system memory. The 82786 design example shows how the 80960K B processor can read
or write to graphics memory using a 16-bit data bus.

5.3.1 8259A Programmable Interrupt Controller

The 8259A Programmable Interrupt Controller is designed for use in interrupt-driven microcom-
puter systems, where it manages up to eight independent interrupts. The 8259A handles interrupt
priority resolution and returns an 8-bit vector to the 80960KB processor during an interrupt-
acknowledge cycle. Intel Application Note AP-59 contains detailed information on configurations
of the 8259A.

5.3.2 Interface

Figure 45 shows the connection of the 80960KB processor to a single 8259A Interrupt Controller.
This circuit consists of the general system interface plus a bidirectional buffer. The example assumes
that several interrupt requests occur at the same time so that priority resolution is required.

The data lines from the 8259A are not directly aligned to the 80960KB processor because of the
difference in priority resolution between the devices. Although both devices use an 8-bit interrupt
vector, the 80960KB processor implicitly defines the priority by dividing the interrupt vector by
eight. The 8259A defines the priority in the lower three bits of the interrupt vector. Furthermore,
the highest priority vector of the 80960KB processor has a value of 31 in the upper five bits of the
interrupt vector. Whereas, the highest priority interrupt of the 8259A has a value of 0 in the lower
three bits of the interrupt vector. '
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To resolve the priority difference, the interrupt vector from the 8259A can be inverted and rotated
left by three bits as shown by the data alignment between the 80960KB processor and 8259A in
Figure 45. Rotating the data bits in this manner provides two advantages: the interrupt table for the
8259A can be located by contiguous addresses, and the upper two most significant bits of the interrupt
vector remain free to group interrupt vectors if additional 8259As are needed.

Care must be exercised, however, when programming the registers of the 8259A. For example,
assume-that the second initialization command word (ICW2 register) of the 8259A requires a data
byte value of 00011111,. To transfer the correct information, the 80960KB processor needs to write
a data word with the value of 00000111 because this word is rotated left three places and inverted.

5.3.3 Operation

The 8259A starts the interrupt cycle by generating an interrupt request (INT) to the 80960KB
processor, which receives the signal at the INTR input pin. This assumes the Interrupt Control
register of the 80960KB processor is set to accommodate an external interrupt controller.

When the 80960K B processor comes to a breakpoint in its execution, it asserts the INTA signal twice.
The first INTA signal acknowledges the interrupt request and causes the 8259A to prioritize the
interrupt requests it received up to this point. The INTA, together with the 8259A-CS, are applicd
to the timing control logic to generate a READY signal.

The 80960KB processor automatically asserts the second INTA signal five clock cycles after the
assertion of READY. After the second assertion of INTA, the 80960K B processorreads the interrupt
vector from the 8259A.

The bidirectional buffer inverts and passes the 8-bit vector to the 80960KB processor with the
appropriate lines rearranged. The output enable signal for the data buffer is controlled by INTA for
this operation. After the data transfer is completed, the timing control circuit generates a second
READY signal to terminate the interrupt acknowledge cycle.

The same circuitry can be used to read or write to the 8259A registers. In this case, the 80960KB
processor selects the 8259A through a memory-mapped address. Local address line 2 (A2) selects
one of two internal registers of the 8259A. The I/O read or I/O write command is generated by the
timing control circuit. The data passes through the bidirectional data buffer to or from the selected
register of the 8259A.

The direction of data flow through the buffer is controlled by three logic gates shown in Figure 45.
For an /O write operation, the I/O Write command and 8259A-CS signal control the output enable
signal of the bidirectional buffer. Similarly, for a read operation, the I/O Read command and the
8259A-CS signal control the output enable signal of the buffer. After the data is transferred, the
timing control circuit asserts READY.
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5.3.4 82530 Serial Communication Controller

The 82530 Serial Communication Controller is a dual-channel, multi-protocol controller with on-
chip baud rate generators, digital phase locked loops, various data encoding/decoding, and extensive
diagnostic capabilities. The 82530 is designed to interface with high-speed serial communications
lines using a variety of communication protocols, including asynchronous, synchronous, and HDLC/
SDLC protocols. The 82530 contains two independent full-duplex channels.

The general system interface circuit previously described can be used to connect the 80960KB
processor to the 82530, as shown in Figure 46. The 82530 can send an interrupt request to the
80960KB processor as shown or it can send the interrupt request to an interrupt controller, which in
turn sends it to the 80960KB processor. The 80960KB processor reponds to the interrupt request and
issues an address. After the address is latched, the address lines are decoded to generate a chip- select
(82530-CS) signal to activate the 82530.

The lower two address lines, A2 and A3, are used for channel selection and command/data selection.
A2 is connected to the Channel-A/Channel-B(A/B) select input pin. This selects the channel that
performs the serial read or write operations. A3 is connected to the Data/Command (D/C) select input
pin. This siganl defines the type of information transferred to or from the 82530 on the data lines (D7
through DO). A high level means data is transferred; a low level indicates a command.

‘The timing control circuit generates an I/O read or I/O write command based on the W/R command
from the 80960KB processor. When the data transfer is completed, the timing control circuit sends
a READY signal to termiante the transaction.

The baud rate clocks can be programmed in several ways, including use of an external crystal.

5.3.5 82586 Local Area Network Coprocessor Example

The 82586 is an intelligent, high-performance communications controller designed to perform most
tasks required for controlling access to a local area network (LAN), such as Ethernet or Starlan. In
many applications, the 82586 is the communication manager for a station connected to a LAN
controller. Such a station usually includes a host CPU, shared memory, a Serial Interface Unit, a
transceiver, and LAN controller link, as shown in Figure 47. The 82586 performs all functions
associated with data transfer between the shared memory and the LAN link, including:

e Framing

*  Link management

*  Address filtering

»  Error detection

» Data encoding

°  Network management

*  Direct memory access
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¢ Buffer chaining

«  High-level (user) command interpretation

The 82586 has two interfaces: a 16-bit bus interface and a network interface to the Serial Interface
Unit. The bus interface is described here. For detailed information on using the 82586, refer to the
Local Area Networking Component User’s Manual.
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Figure 46. Block Diagram for 82530 Interface
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Figure 47. LAN Station

5.3.6 Interface

There are several ways to design an interface between the 82586 and the 80960KB processor. The
chosen design example shows how to interface the 82586 using a shared bus. In this example, the
82586 operates in minimum mode at one-half the processor clock frequency.

The primary.function of the interface circuit is to allow the 82586 to read and write 16-bit data using
the 32-bit L-bus. This is accomplished by adding the high-order address lines and translating the 16-
bit data lines to the 32-bit data lines by using byte enable signals.

Figure 48 shows the 82586 interface circuit, which includes the DRAM controller (see the “DRAM
Controller” section in Chapter 4. This interface uses the general system interface circuit plus other
logic units that specifically pertain to the 82586: the LAN data transceivers, the byte enable converter,
and the LAN address latches. These logic blocks are highlighted by the shaded boxes.
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Figure 48. Block Diagram for LAN Controller

The LAN data transceivers connect 16 data lines from the 82586 to both the upper and lower 16 bits
of the L-bus. The data transfer is controlled by converting A, A1, and the BHE to four byte enable
signals as shown in Figure 49. A selects between the upper and lower 16-bit data lines; A selects
the lower data byte for either the upper or lower 16-bit data lines; and the byte high enable signal
(BHE) selects the upper data byte for either the upper or lower 16-bit data lines. Data flows through
the buffers when the appropriate byte enable signal is asserted. The direction of the data flow is
controlled by the DT/R signal of the 82586.

The LAN address latches are used to demultiplex AD ; through AD. The address lines and BHE are
latched by the ALE signal from the 82586. The upper address lines (A, through A ) are generated
by hardware programmable DIP switches.

The 82586 begins operation when the Channel Attention (CA) input signal is asserted. This signal
is generated by gating the write command and 82586 chip select signal.
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Figure 49. Byte Enable Generation Circuit

5.3.7 Operation

The interaction between the 82586 and the 80960KB processor is described below and is summarized
in Figure 50.

The 80960KB processor invokes the 82586 by supplylng amemory-mapped address and a write
command. The memory-mapped address results in a 82586-CS signal, which is gated with a
write command to produce the CA signal.

The 82586 responds by generating a hold request and waits for HLDA.

The 80960KB processor asserts HLDA, which enables the outputs of the LAN address latches
and disables the outputs of the address latches next to the 80960KB processor. The HLDA signal
also gives control of the L-bus to the 82586.

After the 82586 takes control of the bus, it generates a 16-bit address (AD ; through AD), an ALE
signal, and a BHE signal. The upper address lines are prov1ded by the programmable DIP
switches to produce an address on the L-bus.

A, and A (from the 82586), and BHE are decoded to generate four byte enable signals (BTE3
through BE). DEN enables the output of the byte enable converter.

DT/R from the 82586 controls the direction of the data flow through the buffers.
The read or write signal from the 82586 is applied to the DRAM controller.
The 82586 accesses DRAM by using the DRAM controller.

" The DRAM-RDY is asserted by the DRAM controller. This action enables the output of the
. LAN data transceiver and terminates the 82586 memory cycle. The timing control logic passes

the DRAM-RDY signal as the READY signal to the 82586.

The 82586 deasserts HOLD and the 80960KB processor deasserts HLDA. The 80960KB
processor regains control of bus.

2-76



intel HARDWARE REFERENCE

INTERFACE CIRCUIT GENERATES CA
82586 REQUESTS CONTROL OF THE L-BUS

80960KB GRANTS CONTROL OF THE BUS BY ASSERTING
HILDA, WHICH DISABLES THE OUTPUTS OF THE 80950
ADDRESS LATCHES, AND ENABLES THE OUTPUTS OF THE
82586 ADDRESS LATCHES

82586 GENERATES A 16-BIT ADDRESS, A 16-BIT DATA
WORD, AND CONTROL SIGNALS FOR THE INTERFACE
CIRCUIT AND MEMORY CONTROLLER

INTERFACE CIRCUIT GENERATES HIGH-ORDER ADDRESS

LINES AND CONTROLS THE DATA FLOW TO OR FROM THE

DRAM CONTROLLER. BYTE ENABLE SIGNALS DETERMINE
WHICH DATA LINES ARE USED

270647-50

Figure 50. Operational Flow Diagram for 82586 Interface

5.3.8 82786 Graphics Coprbcessor Example

The 82786 is a high performance graphics coprocessor that provides high quality text and advanced
display control. It provides full support for graphics primitives at up to 25 million pixels per second
and bit-mapped text up to 25 thousand characters per second. This graphics processor supports
advanced features such as hardware windows, zooming, panning, and scrolling. Intel Application
Note AP-259 and Application Note AP-270 contain detailed information on 82786.

When using the 82786, it rhay be necessary for the 80960KB processor to write to graphics memory.
The interface design example illustrates how the 80960KB processor can transfer a 32-bit data word
to the 16-bit data bus of the 82786.
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5.3.9 Interface

There are several ways to design an interface between the 82786 and the 80960KB processor. In this
example, the 80960KB processor reads or writes to graphics memory by accessing the 82786 through
the interface logic circuit. This example assumes that the 82786 operates in the slave mode, and that
the 80960KB processor does not perform burst transfers. The 80960KB processor only performs
burst transfers for instructions that specify accesses for more than one word or for instruction fetches.

The interface circuit translates a 32-bit data bus to a 16-bit data bus by dividing the data lines into
the upper and lower 16 bits and sequencing the data transmission. When the 80960KB processor
writes to graphics memory, the bidirectional transceivers sequence the lower and the upper data bits
of the L-bus to the 16-bit data bus of the 82786.

The process is reversed when the 80960KB processor reads from graphics memory. The bidirec-
tional transceivers form a 32-bit data word by latching the first 16-bit data word on the lower data
lines, routing the next 16 bits to the upper data lines, and then passmg the 32-bit data word on the L-
bus.

Figure 51 shows the details of the graphics controller interface circuit. This interface uses the general
system interface circuit plus the following logic units: the bidirectional transceivers, the data buffer
control, the data bus controller, and the address translator. These logic blocks are highlighted by the
shaded boxes.

The bidirectional transceivers pass data to (from) a 32-bit data bus from (to) a 16-bit data bus. Data
is sequenced through the transceivers by the control signals generated by the data buffer controller.

The data buffer control logic generates the signals that operate and sequence the bidirectional
transceivers. The direction signal for data flow through the transceivers is derived from the W/R
signal of the 80960KB processor. The data buffer control logic generates four output enable signals:
GAB enables the outputs on the B side for the lower 16 bits; GBA, enables the outputs on the A side
forthe lower 16 bits; GAB,, enables the outputs on the B side for the hlgher 16 bits; and GBA,, enables
the outputs on the A side for the higher 16 bits. These output enable signals are derived from the byte
enable signals and are asserted when the slave enable signal (SEN) is activated by the 82786.

The select lines for the bidirectional transceivers allow data to flow from either the latched data or
the input pins. These lines, which are not shown, can be hardwired.

The data bus controller provides the read (RD) and write (WR) commands, memory or I/O signal (M/
I0),and a READY ;signal. This circuit generates two read or write commands for every 32-bit data
transfer to or from the 80960KB processor (one for each 16-bit data transfer). The data bus controller
starts counting clock cycles when the 82786-CS and CYCLE-IN-PROGRESS signals are asserted.
At the proper time (based upon clock counts), it asserts the read/write command. The data bus
controller produces READY  after receiving the SEN signal from the 82786. READY, resets the
count, and another read/write command is generated.
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Figure 51. Block Diagram for 82786 Interface

The address translator performs four functions: it converts the four byte enable signals to A, A , and
BHE; it increments A, after receiving READY for the first 16-bit transfer; it generates the clock
signal (CBA,) that latches the first 16-bit data word in the bidirectional transceivers when the
80960KB processor performs a read operation; and it generates the READY signal for the CPU.

Notshownis the cycle detector circuit that generates the CYCLE-IN-PROGRESS signal. This signal
can be generated by using the circuit similar to the one shown in Figure 44. The start of the cycle
can be detected by gating the ADS and DEN signals. The end of the cycle can be indicated by
READY.

5.3.10 Operation

The interaction between the 82786 and the 80960KB processor is summarized in Figure 52. The
operation is divided into two 16-bit data movements for both a read and write operation.
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‘Figure 52. Operational Flow Diagram for 82786 Interface Circuit
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The 80960KB processor generates a memory-mapped address and data for the desired graphics
memory location. It accesses the 82786 by triggering the interface circuit to generate the chip select
signal and several operational signals: the read (RD) or write (WR) command, BHE, and the memory
orI/O (M/IO) signal. The 82786 begins the memory operation after it completes the current graphics
processing activity. The 82786 acknowledges that it is performing a memory operation by asserting
SEN.

After the 82786 asserts SEN, it begins a 16-bit memory read or write operation by translating the
address inputs (A, through A) to a multiplexed DRAM address, and generating the DRAM control
signals. Note that A, and A are derived from the byte enable signals.

For a read operation, the data bus controller uses SEN to generate the READY signal. The assertion
of READY causes the address translator to increment A| and to generate CBA, , which latches the
lower 16 data bits on the B inputs of the bidirectional transceivers to the A side.

Similarly, for a write operation, the data bus controller uses SEN to generate the READY signal. The
assertion of READY causes the address translator to increment A . The data buffer control uses SEN
and the byte enable signals to produce GAB, , which enable the outputs for the lower 16 data bits of
the bidirectional transceivers.

The 82786 then deasserts SEN and the transfer of the first 16 data bits is complete. To transfer the
second 16 data bits, the interface circuit requests another memory operation by generating RD (or
WR), BHE, and M/IO (CS is already asserted). After it completes the current graphics processing
activity, the 82786 begins the memory operation and asserts SEN.

For aread operation, the data bus controller uses SEN to generate the READY signal. The data buffer
control uses SEN to assert GBA,, and GBA_, which enable the outputs for the higher and lower 16
data bits. :

For a write operation, the data bus controller uses SEN to generate the READY signal. The data
buffer control uses SEN and the byte enable signals to produce GAB,,, which enable the outputs for
the higher 16 data bits of the bidirectional transceivers.

The address translator generates READY for the 80960KB processor from the second READY to
terminate the data transfer to the graphics memory. .

5.4 SUMMARY

The 80960KB processor supports 8-bit, 16-bit, and 32-bit I/O interfaces. A general system interface
circuit can be designed that connects to many slave-type peripherals. This interface can be expanded
to accommodate a bus master peripheral or a 32-bit to 16-bit data bus translator. These interfaces
were illustrated by four design examples.
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1.0 ANEW 32-BIT ARCHITECTURE FROM INTEL

The 80960KB processor marks the introduction of the 80960 architecture—a 32-bit architecture
from Intel. This architecture has been designed specifically to meet the needs of embedded
applications such as machine control, robotics, processor control, avionics, and instrumentation. It
represents a renewed commitment from Intel to provide reliable, high-performance processors and
controllers for the embedded processor marketplace.

The 80960 architecture can best be characterized as a high-performance computing engine. It
features high-speed instruction execution and ease of programming. It is also easily extensible,
allowing processors and controllers based on this architecture to be conveniently customized to meet
the needs of specific processing and control applications.

Some of the important attributes of the 80960 architecture include:
e full 32-bit registers
« high-speed, pipelined instruction environment

*  aconvenient program execution environment with 32 general-purpose registers and a versatible
set of special-function registers

« ahighly optimized procedure call meéhanism that features on-chip caching of local variables
and parameters

» -extensive facilities for handling interrupts and faults
» extensive tracing facilities to support efficient program debugging and monitoring

+  register scoreboarding and write buffering to permit efficient operation with lower performance
memory subsystems

The following sections describe those features of the 80960 architecute that are provided to
streamline code execution and simplify programming. Also described are those features that allow
extensions to be added to the architecture.

1.1 HIGH PERFORMANCE PROGRAM EXECUTION

Much of the design of the 80960 architecture has been aimed at maximizing the processor’s
computational and data processing speed through increased parallelism. The following paragraphs
describe several of the mechanisms and techniques used to accomplish this goal, including:

« an efficient load and store memory-access model
»  caching of code and procedural data
» overlapped execution of instructions

* many one or two clock instructions
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1.1.1 Load and Store Model

One of the most important features of the 80960 architecture is that most of its operations are
performed on operands in registers, rather than in memory. For example, all the arithmetic, logic,
comparison, branching and bit operations are performed with registers and literals.

This feature provides two benefits. First, it increases program execution speed by minimizing the
number of memory accesses required to execute a program. Second, it reduces memory latency
encountered when using slower, lower-cost memory parts.

To support this concept, the architecture provides a generous supply of general-urpose registers. For
each procedure, 32 registers are available (28 of which are available for general use). These registers
are dividied into two types: global and local. Both these types of registers can be used for general
storage of operands. The only difference is that global registers retain their contents across procedure
boundaries, whereas the processor allocates a new set of local registers each time a new procedure
is called.

The architecture also provides a set of fast, versatile load and store instructions. These instructions
allow burst transfers of 1,2,4,8,12 or 16 bytes of information between memory and the registers.

1.1.2 On-Chip Caching of Code and Data

To further reduce memory accesses, the architecture offers two mechanisms for caching code and
data on chip: an instruction cache and multiple sets of local registers. The instruction cache allows
prefetching of blocks of instruction from memory, which helps insure that the instruction execution
pipeline is supplied with a steady stream of instructions. It also reduces the number of memory
accesses reugired when performing iterative operatlons such as loops. (The size of the instruction
cache can vary. With the 80960KB processor, it is 512 bytes.)

To optimize the architecture’s procedure call mechanism, the processor provides multiple sets of
local registers. This allows the processor to perform most procedure calls without having to write
the local registers out to the stack in memory.

(The number of local-register sets provided depends on the processor implementation. The
80960KB processor provides four sets of local registers.)

1.1.3 Overlapped Instruction Execution

Another technique that the 80960 architecture employs to enhance program execution speed is
overlapping the execution of some instructions. This is accomplish through two mechanisms:
register scoreboarding and branch prediction. ‘

Register scoreboarding permits instruction execution to ocntinue while data is being fetched from
memory. When a load instruciton is executed, the processor sets one or more scoreboard bits to
indicate the target registers to be loaded. After the target registers are loaded, the scoreboard bits are
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cleared. While the target registers are being loaded, the processor is allowed to execute other
instructions that do not use these registers. The processor uses the scoreboard bits to insure that target
registers are not used until the loads are complete. (The checking of scoreboard bit is carried out
transparently from software.) The netresult of using this technique is that code can often be optimized
in such a way as to allow some instructions to be executed in zero clock cycles (that is, executed for
free).

Conditional branch instructions commonly cause bottlenecks in the instruction execution pipeline,
since the instruction decoder cannot decode instructions past the branch instruction until it knows the
direction the branch is going to take. The 80960 architecture solves this problem with a technique
called branch prediction. Branch prediction allows a programmer or compiler to select conditional
branch instructions that indicate to the processor the direction a branch is likely to go. The decoder
can then continue decoding instructions beyond the branch, even though the branch condition has
not yet been tested. This technique eliminates waits between the decoder and execution unit, while
branch conditions are being evaluated.

Note
The branch prediction mechanism is not implemented in the 80960KB series of processors.

1.1.4 Single-Clock Instructions

It is the intent of the 80960 architecture that a processor be able to execute commonly used
instructions such as moves, adds, subtracts, logical operations, and branches in a minimum number
of clock cycles (preferably one clock cycle). The architecture supports this concept in several ways.
For example, the load and store model described earlier in this section (with its concentration on
register-to-register operations) eliminates the clock cycles required to perform memory-to-memory
operations.

Also, all the instructions in the 80960 architecture are 32-bits long and aligned on 32-bit boundaries.
This feature allows instructions to be decoded in one clock cycle. It also eliminates the need for an
instruction-alignment stage in the pipeline.

The design of the 80960KB processor takes full advantage of these features of the architecture,
resulting in over 50 instructions that can be executed in a single clock-cycle.

1.1.5 Efficient Interrupt Model

The 80960 architecture provides an efficient mechanism for servicing interrupts from external
sources. To handle interrupts, the processor maintains an interrupt table of 248 interrupt vectors (240
of which are available for general use). When an interrupt is signalled, the processor uses a pointer
from the interrupt table to perform an implicit call to an interrupt handler procedure. In performing
this call, the processor automatically saves the state of the processor prior to receiving the interrupt;
performs the interrupt routine; and then restores the state of the processor. A separate interrupt stack
is also provided to segregate interrupt handling from application programs.
{
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The interrupt handling facilities also feature a method of evaluating interrupts by priority. The
processor is then able to store interrupt vectors that are lower in priority than the task that the
processor is currently working on in a pending interrupt section of the interrupt table. At certain
defined times, the processor checks the pending interrupts and services them.

1.1 SIMPLIFIED PROGRAMMING ENVIRONMENT

Partly as a side benefit of its streamlined execution environment and partly by design, processors
based on the 80960 architecture are particularly easy to program. For example, the large number of
general purpose registers allows relatively complex algorithms to be executed with a minimum
number of memory accesses. The following paragraphs describe some of the other features for the
architecture that simplify programming.

1.2.1 Highly Efficient Procedure Call Mechanism

The procedure call mechanism makes procedure calls and parameter passing between procedures
simple and compact. Each time a call instruction is issued, the processor automatically saves the
current set of local registers and allocates a new set of local registers for the called procedure.
Likewise, on a return from a procedure, the current set of local registers is deallocated and the local
registers for the procedure being returned to are restored. On a procedure call, the program thus never
has to explicitly save and restore those local variables and paramters that are stored in local registers.

1.2.2 Versatile Instruction Set and Addressing

The selection of instructions and addressing modes also simplifies programming. The architecture
offers a full set of load, store, move, arithmetic, comparison and branch instructions, with operations
on both integer and ordinal data types. It also provides a complete set of Boolean and bit-field
instructions, to simplify operations on bits and bit strings. .

The addressing modes are efficient and straightforward, while at the same time providing the
necessary indexing and scaling modes required to address complex arrays and record structures.

The large 4-gigabyte address space provides ample room to store programs and data. The availability
of 32 addressing lines allows some address lines to be memory-mapped to control hardware
functions. ' : ‘

1.2.3 Extensive Fault Handling Capability

To aid in progr;m development, the 80960 architecture defines a wide selection of faults that the
processor detects, including arithmetic faults, invalid operands, invalid operations, and machine
faults. When a fault is detected, the processor makes an implicit call to a fault handler routine, using
amechanism similar to that described above for interrupts. The information collected for each fault
allows program developers to quickly correct faulting code. It also allows automatic fault recovery
from some faults.
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1.2.4 Debugging and Monitoring

To support debugging systems, the 80960 architecture provides a mechanism for monitoring
processor activity by means of trace events. The processor can be configured to detect as many as
seven different trace events, including the instruction execution, branch events, calls, supervisor
calls, returns, prereturns, and breakpoints. When the processor detects a trace event, it signals a trace
fault and calls a fault handler. Intel provides several tools that use this feature, including an in-circuit
emulator (ICE) device.

1.3 SUPPORT FOR ARCHITECTURAL EXTENSIONS

The 80960 architecture described earlier in this chapter provides a high-performance computing
engine for use as the computational and data processing core of embedded processors or controllers.
The architecture also provides several features that enable processors based on this architecture to
be easily customized to meet the needs of specific embedded applications, such as signal processing,
array processing, or graphics processing.

The most important of these features is a set of 32 special function registers. These registers provide
a convenient interface to circuitry in the processor or to pins that can be connected to external
hardware. They can be used to control timers, to perform operations on special data types, or to
perform I/O functions.

The special function registers are similar to the global registers. They can be addressed by all the
register-access instructions.

1.5 EXTENSIONS INCLUDED IN THE 80960K SERIES PROCESSORS

The 80960K series of processor offer a complete implementation of the 80960 architecture, plus
several extensions to the architecture. These extensions fall into two categories: floating-point
processoring and interagent communication. :

1.5.1 On-Chip Floating Point

The 80960KB processor provides a complete implementation of the IEEE standard of binary
floating-point arithmetic (IEEE 754-185). This implementation includes a full set of floating-point
operations, including add, subtract, multiply, divide, trigonometric functions, and logarithmic
functions. These operations are performed on single precision (32-bit), double precision (64-bit),
and extended precision (80-bit) real numbers.

One of the benefits of this implementation is that the floating-pointhandling facilities are completely
integrated into the normal instruction execution environment. Single- and double-precision floating-
point values are stored in the same registers as non- floatmg point values. The four, 80-bit floating-
point registers are provided to hold extended-precision values.
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1.5.2 Interagent Communication

All of the processors in the 80960K series provide an interagent communication (IAC) mechanism,
which allows agents connected to the processor’s bus to communicate with one another. This
mechanism operates similarly to the interrupt mechanism, except that IAC messages are passed
through dedicated sections of memory. The sort of tasks handled with IAC messages are processor
reinitialization, stopping the processor, purging the instruction cache, and forcing the processor to
check pending interrupts. '

1.6 LOOK FOR MORE IN THE FUTURE

As has been shown in the preceding discussion, the 80960 architecture offers lots of possibilities and
lots of room to grow. The firstimplementation of this architecture (the 80960K B processor) provides
average instruction processing rates of 7.5 million instructions per second (7.5 MIPS) at 20 MHz
clock rate and 10 MIPS at a 25 MHz clock rate.! This. performance places the 80960 KB at the top
of the performance range for advanced, VLSI processor architectures.

However, the 80960KB is only the beginning.” With improvements in VLSI technology, future
implementation of this architecture will offer even greater performance. They will also offer a variety
of useful extensions to solve specific control and monitoring needs in the field of embedded
applications.

2.0 EXECUTION ENVIRONMENT

This section describes how the 80960K B processor stores and executes instructions and how it stores
and manipulates data. The parts of the execution environment that are discussed include the address
space, the register model, the instruction pointer, and the arithmetic controls. The execution .
environment’s procedure stack and procedure-call mechanism are described in section 3.

2.1 OVERVIEW OF THE EXECUTION ENVIRONMENT

When the 80960KB processor is initialized, it sets up an execution environment. It then begins
executing instructions from a program, using this execution environment to store and mampulate
data. :

Figure 1 shows the part of the execution environment that the processor sets up to execute a procedure
within a program. This environment consists of 2*2-byte address space, a set of global and floating-
point registers, a set of local registers, a set of arithmetic-control bits, the instruction pointer, a set
of process-control bits, and a set of trace-controls bits. All of these 1tems except the address space
reside on the 80960KB ch1p

IMIP is equivalent to the performance of a Digital Equipment Corp. VAX 11/780.
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Note

The floating-point registers shown in Figure 1 are not defined in the 80960 architecture. They are
extensions to the architecture that have been added to the 80960KB processor to support floating-point
operations on the extended-real (floating point) data type. (The 80960KA processor does not provide
floating-point registers.) :

The 32 special-function registers (shown in Figure 1 in a dashed box) are defined in the 80960
architecture. These registers are not implemented in the 80960KB and 80960K A processors.

When the instruction stream includes a procedure call, a procedure stack and some additional
elements are added to this execution environment. These procedure-call related elements are shown
and discussed in Section 3.
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Figure 3-1. Execution Environment
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2.2 ADDRESS SPACE

From the point of view of the processor, the address space is flat (unsegmented) and byte addressable,
with addresses running contiguously from O to 2*2-1. Programs and the kernel can allocate space for
data, instructions, and the stack anywhere within this space, with the following exceptions:

» Instructions must be aligned on word boundaries.

*  Some of the addresses in the upper 16M bytes of the address space (addresses FF000000,
through FFFFFFFF ) are reserved for specific functions. In general, programs and the kernel
should not use this section of the address space.

The memory requirements to support this address space are given in Section 6 in the section titled
“Memory Requirements”.

2.3 REGISTER MODEL

The processor provides three types of dataregisters: global, floating-point, and local. The 16 global
registers constitute a set of general-purpose registers, the contents of which are preserved across
procedure boundaries. The 4 floating-point registers are provided to support extended floating-point
arithmetic. Their contents are also preserved across procedure boundaries. The 16 local registers
are provided to hold parameters specific to a procedure (i.e. local variables). For each procedure that
is called, the.processor allocates a separate set of 16 local registers.

For any one procedure within a program, 36 registers are thus available (as shown in Figure 2): the
global registers, the 4 floating-point registers, and the 16 local registers. All of these registers are
maintained on the processor chip.

2.3.1 Global Registers

The 16 global registers (g0 through g15) are 32-bit registers. Each register can thus hold a word (32
bits) of data. Registers g0 through g14 are general-purpose registers; g15 is reserved for the current
frame pointer (FP). The FP contains the address of the first byte in the current (topmost) stack frame.
(The FP and the procedure stack are discussed in detail in Section 3).

The general-purpose global registers (g0 through gl4) can hold any of the data types that the
processor recognizes (i.e. ordinals, integers, reals).

2.3.2 Floating-Point Registers

The four floating point registers (fp0 through fp3) are 80-bit registers. These registers can be accessed
only as operands of floating-point instructions. All numbers stored in these registers are stored in
extended-real format. (This formatis described in section 11). The processor automatically converts
floating-point values from real or long-real format into extended-real format when a floating-point
register is used as a destination for an instruction.
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Note

The floating-point registers are defined in the 80960 architecture as an option for processors such as the
80960KB that support floating-point operations. These registers may be omitted from implementations of
the architecture that do not support floating-point operations.
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CONTENTS OF REGISTERS
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PROCEDURE
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Figure 2. Registers Available to a Single Procedure
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2.3.3 Local Registers

The 16 local registers (10 through r15) are 32-bit registers, like the global registers. The purpose of
the local registers is to provide a separate set of registers, aside from the global and floating-point
registers, for each active procedure. Each time a procedure is called, the processor automatically sets
up anew set of local registers for that procedure and saves the local registers for the calling procedure.
The program does not have to explicitly save and restore these registers.

Local registers r3 through r15 are general-purpose registers. Register r0 through r2 are reserved for
special functions, as follows: register 1O contains the previous frame pointer (PFP); r1 contains the
stack pointer (SP); and 12 contains the return instruction pointer (RIP): (The PFP, SP, and RIP are
discussed in detail in Section 3). The processor accesses the local registers at the same speed as it
does the global registers.

2.3.4 Register Alignment

Several of the processor’s instructions operate on multiple-word operands. For example, the load-
long instruction (1dl) loads two words from memory into two consecutive registers. Here, the register
number for the least significant word is specified in the instruction and the most significant word is
automatically loaded into the next higher numbered register.

In cases where an instruction specifies a register number and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g. g0, g2) and an integral
multiple of four if three or four registers are access (e.g. g0, g4). If a register reference for a source
value is not properly aligned, the value is undefined. If a register reference for a destination value is
not properly aligned, the registers that the processor writes to are undefined.

2.3.5 Register Scoreboarding

The 80960KB provides a mechanism called register scoreboarding that in certain situations permits
instrucitons to be executed concurrently. This mechanism works as follows.. While an instruction
is being executed, the processor sets a scoreboard bit to indicate that a particular register or group
of registers is being used in an operation. If the instructions that follow do not use registers in that
group, the processor in some instances is able to execute those instructions before execution of the
prior instruction is complete. In effect, the register scoreboarding mechanism allows some instruc-
tions to be executed for free (zero clock cycles).

A common application of this feature is to execute one or more fast instructions (instructions that take
one to three clock cycles) concurrently with load instructions. A load instruction typically takes 3
to 9 clock cycles (depending on the design of system memory). Register scoreboarding allows other
instructions to be executed concurrently with the load instruction, provided that the other instructions
donot affect the registers being loaded. For example, the following group of instructions load a group
of local registers while performing some other operations on data in global registers.
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1d xyz, r6

addi g4, g6, g7
addi g9, gl0, gll
1ld abc, r8

and g0, Oxffff, gl
addi r6, r8, r7

r6 < data from address xyz
g7 < g4 + g6

gll « g9 + glo0

r6 ¢« data from address abc
gl ¢« g0 AND Oxffff

r7 ¢ r6 + r8

= o e e ok 3

Here, the two addi instructions following the first load and the and instruction following the second
load are performed for free.

The other situation where scoreboarding can be useful for procedure optimization is when floating-
point instructions are being executed. Floating-point operations are handled by a separate execution
unit in the processor. So, non-floating point instructions can often be executed concurrently with
floating-point instructions, providing that they do not use the same registers and do not use the
arithmetic-logic unit (ALU). (A detailed description of the register-scoreboarding mechanism is
given in Appendix C.)

2.4 INSTRUCTION POINTER

The instruction pointer (IP) is the address (in the address space) of the instruction currently being
executed. This address is 32 bits; however, since instructions are required to be aligned on word
boundaries in memory, the 2 least significant bits of the IP are always zero.

Instructions in the processor are one or two words long. The IP gives the address of the lowest order
byte of the first word of the instruction.

The IP is stored in the processor and cannot be read directly. However, the IP-with-displacement
addressing mode allows the IP to be used as an offset into the address space. This addressing mode
can also be used with the lda (load address) instruction to read the current value of the IP.

When a break occurs in the instruction stream (due to an interrupt or a procedure call), the IP of the
next instruction to be executed (i.e. the RIP) is stored in local register r2, which is then stored on the
stack. Refer to Section 3 for further discussion of this operation.

2.5 ARITHMETIC CONTROLS

The processor’s arithmetic controls are made up of a set of 32 bits, which are cached on the processor
chip in the arithmetic-controls register. Figure 3 shows the arrangement of the arithmetic controls
bit. The arithmetic controls bits include condition code bits; floating-point control and status bits;
integer control and status bits; and a bit that controls faulting on imprecise faults.
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Figure 3. Arithmetic Controls

The processor sets or clears. these bits to show the results of certain operations. For example, the
processor modifies the condition code bits after each comparison operation to show the result of the
comparison. Other arithmetic control bits, such as the floating-point fault masks, are set by the
currently running program to tell the processor how to respond to certain fault conditions.

Note

The arithmetic status flags and the floating-point flags and masks are not defined in the 80960
architecture. They are an extension of the architecture, which is provided in the 80960KB processor to
support floating-point operations. For implementations of the architecture that do not support floating-
point operations, these flags and masks are reserved bits.

2.5.1 Initializing and Modifying the Arithmetic Controls

The state of the processor’s arithmetic. controls is undefined at processor initialization or on a
processor reinitilize (initiated with areinitialize processor IAC). Part of the initialization code should
thus be to set the arithmetic controls to a specific state.

The arithmetic controls can be examined and modified using the modify AC (modac) instruction.
THis instruction uses a mask to allow specific bits to be checked and changes.

The processor automatically saves and restores the arithmetic controls when it services an interrupt
or handles a fault. Here, the processor saves the current state of the arithmetic controls in an interrupt
record or fault record, then restores the arithmetic controls upon returning from the interrupt or fault
handler, respectively.

The modac instruction can be used to explicitly save and restore the contents of the arithmetic
controls.
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2.5.2 Functions of the Arithmetic Controls Bit

The functions of the various arithmetic controls bits are as follows:

Note

In the following discussion, some of the arithmetic control bits are refeffered to as “sticky flags”. A sticky
flag is one that the processor never implicitly clears. Once the processor sets a sticky flag to indicate that a
particular condition has occurred, the flag remains set until the program explicitly clears it.

2.5.3 Condition Code Flags

The processor sets the condition code flags (bits 0-2) to indicate the results of certain instructions
(usually comapred instructions). Other instructions, such as conditional-branch instructions,
examine these flags and perform functions according to their state. Once the processor has set these
flags, it leaves them unchanged until it executes another instruction that uses these flags to store

results.

These flags are used to show either true or false conditions orinequalities (greater-than, equal, or less-
than conditions). To show true or false conditions, the flags are set as shown in Table 1.

Table 1. Condition Codes for True or False Conditions

Condition
Code

Condition

010

true

000

false

The condition code flags are set as shown in Table 2 to show inequalities.

Table 2. Condition Codes for Inequality Conditions

Condition | Condition
Code

000 unordered
001 greater than
010 equal

100 less than
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The terms ordered and unordered are used when comparing floating-point numbers. If, when com-
paring two floating-point values, one of the value is a NaN (not a number), the relationship is said
to be “unordered”. Reference to the portion of Section 11 entitled “Comparison and Classification”
for further information about the ordered and unordered conditions. '

2.5.4 Arithmetic Status Flags

The processor uses the arithmetic status fields (bits 3-6) in conjunction with the classify instructions
(classr and classrl) to show the class of a floating-point number. When executing these instructions,
the processor sets the arithmetic status bits as shown in Table 3, according to the class of the value
being classified.

The “s” bit is set to the sign of the value being classified.

Table 3. Encoding of Arithmetic Status Field

Arithmetic | Classification

Status

s000 Zero

s001 denormalized number
s010 normal finite number
s011 | infinity

s100 quiet NaN

s101 signaling NaN

s110 reserved operand

2.5.5 Integer Overflow Mask

The integer overflow mask (bit 12) and the integer overflow flag (bit 8) are used in conjunction with
the arithmetic integer-overflow fault. The mask bit masks the integer-overflow fault. When the fault
is masked, the processor sets the integer overflow flag whenever an integer or decimal overflow
occurs, to indicate that the fault condition has occurred even though the fault has been masked. If
the fault is not masked, the fault is allowed to occur and the flag is not set. The integer overflow flag
is asticky flag. (Refer to the discussion of the arithmetic integer-overflow fault in Section 8 for more
information about the integer overflow mask and flag.)
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2.5.6 No Imprecise Faults Flag

The no imprecise faults flag (bit 15) determines whether or not imprecise faults are allowed to be
raised. If set, faults are required to be precise; if clear, certain faults can be imprecise. (Refer to the
portion of Section 8 titled “Precise and Imprecise Faults” for more information about this flag.)

2.5.7 Floating-Point Flags and Masks

The floating-point flags (bits 16 through 20) and masks (bits 24 through 28) perform the same
functions as the integer overflow flag and mask, except they are used for operations on real (floating-
point) numbers. When a mask bit is set, its associated floating-point fault is masked. If a mask bit
is set, the processor sets the flag for the associate fault whenever the fault condition occurs. All the
floating-point flag bits are sticky bits. Refer to the portion of Section 11 titled “Exceptions and Fault
Handling” for a detailed discussion of the floating-point faults and their associated flag and mask bits
in the arithmetic controls.

2.5.8 Floating-Point Normalizing Mode Flag

The floating-point normalizing mode flag (bit 29) determines where or not floating-point instructions
are allowed to operate on denormalized numbers. If set, floating-point instructions are allowed to
operate on denormalized numbers; if clear, the processor generates a floating reserved-operand fault
when it detects denormalized numbers that are used as operantds for floating-point instructions.
(Refer to “Normalizing Mode” in section 11 for more information on the use of this flag.)

2.5.9 Floating-Point Rounding Control

The floating-point rounding control fields (bits 31-30) indicates which rounding mode is in effect for
floating point computations. These bits are set as shown in Table 4, depending on the rounding mode
to be selected.

Table 4. Encoding of Rounding Control Field

Rounding | Rounding Mode

Control

00 round to nearest (even)

01 Round down (toward negative infinity)
10 Round up (toward positive infinity)

11 Truncate (round toward zero)

(Refer to “Rounding Control” in Section 11 for more information on the use of the floating-point
rounding control bits.)

All the unused bits in the AC register are reserved and must be set to 0.
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2.6 PROCESS AND TRACE CONTROLS

The processor‘s process controls and trace controls are also cached on the processor chip. The
processor controls are a set of 32 bits that control or show the current execution state of the processor.
The process controls are described in detail in Section 6.

The trace controls are a set of 32 bits that control the tracing facilities of the processor. The trace
controls are described in Section 10.

2.7 INSTRUCTION CACHING

The processor provides a 512-byte cache for instructions. When the processor fetches an instruction
or group of instructions from memory, they are stored in this cache before being fed into the
instruction-execution pipeline. The processor manages this cache transparently from the program
being run. '

This instruction cache is a read-only cache, meaning that once bytes from the instruction stream are
written into the instruction cache, they cannot be changed. Because of this, the processor does not
support self-modified programs in a transparent fashion. The only way to change the instruction
stream once it has been written into the instruction cache is to purge the instruction cache. The IAC
message “purge instruction cache” is provided for this purpose, as described in Section 12.

Note

The purge instruction cache IAC is not defined in the 80960 architecture. It is an implementation-
dependent feature of the 80960KB processor.

3.0 PROCEDURE CALLS

This section describes the 80960KB proceésor’s proéedure call and stack mechanism. It also
describes the supervisor call mechanism, which provides a means of calling privileged procedure
such as kernel services. ‘ ’

3.1 TYPES OF PROCEDURE CALLS

The processor supports three types of procedure calls:
* Local call
¢ System call

*  Branch and link

A local call uses the processor’s call/return mechanism, in which a new set of local registers and a
new frame on the stack are allocated for the called procedure. A system call is similar to a local call,
however, it provides access to procedures through a system procedure table. The most important use
of a system call is to call privileged procedures called supervisor procedures. A system call to a
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supervisor procedure is called a supervisor call. A branch and link is merely a branch to a new
instruction with the return IP stored in a global register. :

In this section, the call/return mechanism is introduced first and is followed by a discussion of how
this mechanism is used to make local calls and system calls.

Note

The processor’s interrupt- and fault-handling mechanisms are implicit procedure calls. These implicit
calls are described in detail in Sections 7 and 8, respectively.

3.2 CALL/RETURN MECHANISM

The processor’s call/return mechanism has been designed to simplify procedure calls and to provide
a flexible method for storing and handling variables that are local to a procedure.

Two structures support this mechanism: the local registers (on the processor chip) and the procedure
stack (in memory). Figure 4 shows the relationship of the local registers to the procedure stack.

PROCEDURE STACK
IN MEMORY
n+0 —
SET OF 16 LOCAL
FPROGESSOR GHIP. LOCAL REGISTER
- SAVE AREA
’ STACK FRAME
FOR CALLING
PROCEDURE
n+64
OPTIONAL SPACE
FOR ADDITIONAL
STACK
GROWTH* VARIABLES
PADDING AREA
LOCAL REGISTER STACK FRAME
SAVE AREA FOR CALLED
PROCEDURE
*STACK GROWS FROM LOW ADDRESSES TO HIGH ADDRESSES. 2706474

Figure 4. Local Registers and Procedure Stack

For each procedure, the processor automatically allocates a set of local registers and a frame on the
procedure stack. Since the local registers are on-chip, they provide fast-access storage for local
variables. If additional space for local variables is required, it can be allocated in stack frame.

When a procedure call is made, the processor automatically saves the contents of the local registers
and the stack frame for the calling procedure and sets up a new set of local registers and a new stack
frame for the called procedure.
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This procedure call mechanism provides two benefits. First, it provides a structure for storing a
virtually unlimited number of local variables for each procedure: the on-chip local registers provide
quick access to often-used variables and the stack provides space for additional variables.

Second, a program does not have to explicitly save and restore the variables stored .in the local
registers and stack frames. The processor does this implicitly on procedure calls and on returns.

A detailed description of the call/return mechanism is given in the following paragraphs.

3.2.1 Local Registers and the Procedure Stack

For each procedure, the processor allocates a set of 16 local registers. Three of these registers (r1,
12 and r3) are reserved for linkage information to the procedures together. The remaining 13 local
registers are available for general storage of variables.

The processor maintains a procedure stack in memory for use when performing local calls. This stack
can be located anywhere in the address space and grows from low addresses to high addresses.

The stack consists of continguous frames, one frame for each active procedure. As shown in Figure
5, each stack frame provides a save area for the local registers and an optional area for additional
variables.

To increase the speed of procedure calls, the 80960KB processor provides four sets of local registers.
Thus, when a procedure call is made, the contents of the current set of local registers often donot have
to be stored in the procedure stack. Instead, a new set of local registers is assigned to the called
procedure. When procedure calls are made greater than four deep, the processor automatically stores
the contents of the oldest set of local registers on the stack to free up a set of local registers for the
most recently called procedure.

Refer to the subsection “Mapping the Local Registers to the Procedure Stack” for further discussion
of the relationship between the local register sets and the procedure stack.

3.2.2 Procedure Linking Information

Global register g15 (FP) and local registers 1O (PFP), r1 (SP) and r2 (RIP) contain information to link
procedures together and to link the local registers to the procedure stack. The following paragraphs
describe this linkage information.

3.2.3 Frame Pointer

The FP is the address of the first byte of the current (topmost) stack frame. On procedure calls, the
FP for the new frame is stroed in global register g15; on returns, the FP for the previous frame is
restored in g15. ' :
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Figure 5. Procedure Stack Structure

The 80960KB processor aligns each new stack frame on a 64-byte boundary. Since the resulting FP

always points to a 64-byte boundary, the processor ignores the 6 low-order bits of the FP and
interprets them to be zero.
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Note

The alignment boundary for new frames is defined by means of an implementation-dependent parameter
called SALIGN. The relationship of SALIGN to the frame alignment boundary is described in Appendix E.

3.2.4 Stack Pointer

The procedure stack grows upward (i.e. toward higher addresses). The SP points to the next available
byte of the stack frame, which can also be thought of as the last byte of the stack frame plus one. To
determine the initial SP value, the processor adds 64 to the FP.

If additional space is needed on the stack for local variables, the SP may be incremented in one-byte
increments. For example, the following instruction adds six words of additional space to the stack:

addo sp, 24, sp # spéesp + 24

With the Intel 80960KB Assemblér, the keyword “sp” stands for register rl.

3.2.5 Padding Area

When the processor creates a new frame on a procedure call, it will, if necessary, add a padding area
to the stack so that the new frame starts on a 64 byte boundary. To create the padding area, the:
processor rounds off the SP for the current stack frame (the value in rl) to the next highest 64 byte
boundary. This value becomes the FP for the new stack frame. ’

3.2.6 Previous Frame Pointer

The PFP is the address of the first byte of the previous stack frame. Since the 80960KB ignores the
6 low-order bits of the FP, only the 26 most-significant bits of the PFP are stored here. The 4 least-
significant bits of 10 are then used to store return status information. ‘

3.2.7 Return Status and Prereturn-Trace Information

Bits O through 2 of local register rO contain return status information for the calling procedure and
bit 3 contains the prereturn-trace flag. When a procedure call is made (either explicit or implicit), the
processor records the call type in the return status field. The processor then uses this-information to
select the proper return mechanism when returning to the calling procedure.

Table 5 shows the encoding of the return status field according to the different types of calls that the
processor supports. Of the five types of calls allowed, the fault call (described in Section 8) and the
interrupt and stopped-interrupt calls (described in Section 7) are implicit calls that the processor
initiates. The local call (described in this section) is an explicit call that a program initiates using the
call or callx instruction. The supervisor call (described at the end of this section in the portion “User-
Supervisor Protection Model”) is an explicit call that a program makes using the calls instruction.
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Table 5. Encoding of Return Status Field

Encoding Call Type Return Action
000 Local call or supervisor call made | Local return
from the supervisor mode
001 Fault call Fault return
010 Supervisor call from user mode, | Supervisor return, with the trace
trace was disabled before call enable flag in the process controls
set to 0 and the execution mode
flag set to O
011 Supervisor call from user mode, | Supervisor return, with the trace
trace was enabled before call enable flag in the process controls
set to 1 and the execution mode
flag setto O
100 reserved
101 reserved
110 Stopped-interrupt call Stopped-interrupt return
111 Interrupt call Interrupt return

The third column of Table 5 shows the type of a return action that the processor takes depending on
the state of the return status field.

The processor records two versions of the supervisor call: one for when the trace-enable flag in the
process controls is set prior to a supervisor call and one for when the flag is clear prior to the call.
The trace controls are described in detail in Section 9.

The prereturn-trace flag is used in conjunction with the call-trace and prereturn-trace modes. If the
call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag; otherwise
it clears the flag. Then, if this flag is set and the prereturn-trace mode is enabled, a prereturn trace
event is generated on a return before any actions associated with the return operation are performed.
Refer to Section 9 for a detailed discussion of the interaction of the call-trace and prereturn-trace
modes and the prereturn-trace flag.

3.2.8 Return Instruction Pointer

The RIP is the address of the instruction that the processor is to execute after returning from a
procedure call. This instruction is the instruction that follows the procedure call instruction.

Since the processor uses the same procedure call mechanism to make implicit procedure calls to
service faults and interrupts, programs should not use register r2 for purposes other than to hold the
RIP.
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3.2.9 Mapping the Local Registers to the Procedure Stack

The availability of multiple register sets cached on the processor chip and the saving and restoring
of these register sets in stack frames should be transparent to most programs. However, the following

~additional information about how the local registers and procedures stack are mapped to one another
can help avoid problems.

Since the local-register sets reside on the processor chip, the processor will often not have to access
the stack frame in the procedure stack, even though space has been allocated on the stack for the
current frame. The processor only accesses the current frame in the procedure stack in the following
instances:

1. to read or write variables other than those held in the local registers, or

2. toread local registers that were stored in the procedure stack due to the nesting of procedures
calls more than four deep.

This method of mapping the local registers to the register-save areas in the procedure stack has
several implications. First, storing information in a lcoal register does not guarantee that it will be
stored in its associated word in the current stack frame. Likewise, storing information in the first 16
words of a stack frame does not guarantee that the local registers associated with the stack frame are
modified.

Second, if you try to read the contents of the current set of local registers through a memory access
to the first 16 words of the current stack frame, you may not get the expected result. This is also true
if you try to read the contents of a previously stored set of local registers through a memory address
to its associated stack frame.

The processor automatically stores the contents of a local register set into the register-save area of
its associated stack frame only if the nesting of procedure calls (local or supervisor) is deeper than
the number of local register sets.

Occasionally, it is necessary to have the contents of all local registers sets match the contents of the
register-save areas in their associated stack frames. For example, when debugging software it may
be necessary to trace the call history back through the nested procedures. This can not be done unless
the cached local-register frames are flushed (i.e., written out to the procedure stack).

The processor provides the flushreg (flush local registers) instruction to allow volunatry flushing of
the local registers. This instruction causes the contents of all the local-register sets, except the current
set, to be written to their associated stack frames in memory.

Third, if you need to modify the previous FP in register r0, you should precede this operation with
the flushreg instruction, or else the behavior of the ret (retum) instruction is not predictable.

Fourth, local registers should not be used for passing parameters between procedures. (Parameters
passing is discussed in the following subsection.)
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Fifth, when a set of local registers is assigned to a new procedure, the processor may not clear or
initialize these registers. The initial contents of these registers are therefore unpredictable. Also, the
processor does not initialize the local register-save area in the newly created stack frame for the
procedure, so its contents are equally unpredictable.

3.3. LOCAL CALL

A local call is made using either of two local call instructions: call and callx. These instructions
initiate a procedure call using the call/return mechanism described earlier in this section.

The call instruction specifies the address of the called procedures as the IP plus a signed, 24-bit
displacement (i.e.-2% to 223-4). :

The callx instruction allows any of the addressing modes to be used to specify the procedure address.
The IP with displacement addressing mode allows full 32-bit IP relative addressing.

The ret instruction initiates a procedure switch back to the last procedure that issued a call.

3.3.1 Local Call Operation

During a local call, the processor performs the following operations:

Stores the RIP in current local-register 12.

Allocates a new set of local registers for the called procedure.

Allocates a new frame on the procedure stack.

Changes the instruction pbinter to point to the first instruction in the called procedure.
Stores the PFP in new local-register r0. ;

Stores the FP for the new frame in global register g15.

Allocates a save area for the new local registers in the new stack frame.

® N A=

Stores the SP in new local-register rl.

3.3.2 Local Return Operation

On a return, the processor performs these operations:
1. Sets the FP in global register g15 to the value of the PFP in current local-register r0.

2. Deallocates the current local registers for the procedure that initiated the return and switches to
the local registers assigned to the procedure being returned to.

3. Deallocates the stack frame for the procedure that initiated the return.

Sets the IP to the value of the RIP in new local-register r2.
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The algorithms that the call, callx, and ret instructions use are described in greater detail in Section
10. :

3.4. PARAMETER PASSING

The processor supports two mechanisms for passing parameters between procedures: global
registers and argument list. ‘

3.4.1 Passing Parameters in Global Registers

The global registers provide the fastest method of passing parameters. Here, the calling procedure
copies the parameters to be passed into global registers. The called procedure then copies the
parameters (if necessary) out of the global registers after the call.

On areturn, the called procedure can copy result parameters into global registers prior to the return,
with the callmg procedure copying them out of the global reglsters after the return.

3.4.2 Passing Parameters in an Argument List

When more parameters need to be passed than will fit in the global registers, they can be placed in
an argument list. This argument list can be stored anywhere in memory providing that the procedure
being called has a pointer to the list. Commonly, a pointer to the argument list is placed in a global
register.

Parameters can also be returned to the calling procedure through an argument list. Here again, a
pointer to the argument is generally returned to the calling procedure through a global register.

The argument list method of passing parameters should be thought of as an escape mechanism and
used only when there are not enough global registers available for passing parameters.

3.4.3 Passing Parameters Through the Stack

A convenient place to store an argument list is in the stack frame for the calling procedure. Storing
the argument list in the stack provides the benefit of having the list automatically deallocated upon
returning from the procedure that set up the list. Space for the argument list is created by incrementing
the SP, as described earlier in this chapter in the section titled “Stack Pointer”.

Parameters can also be returned to the calling procedure through an argument list in the stack.
However, care should be taken when doing this. The return argument list must not be placed in the
frame for the called procedure, since this frame is deallocated on the return. Also, if the return list
is tobe placed in the frame of the calling procedure, the calling procedure must allocate space for this
list prior to making the call.
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3.5 SYSTEM CALL

A system call is made using the call system instruction calls. This call is similar to a local call except
that the processor gets the IP for the called procedure from a data structure called the system
procedure table. (System calls are sometimes referred to in this chapter as “system procedure-table
calls”.)

Figure 6 illustrates the use of the system procedure table in a system call. The calls instruction
requires a procedure-number operand. This procedure number provides an index into the system
procedure table, which contains IPs for specific procedures.

ADDRESS
SPACE .
ENTRY IN THE SYSTEM
PROCEDURE TABLE
CONTAINS AN INSTRUCTION
POINTER TO THE CALLED
PROCEDURE
CALLED
PROCEDURE SYSTEM
PROCEDURE
TABLE
HEADER
IP. ENTRY 1

/_\ h IP ENTRY 2
CALLING 4 cal| NG PROCEDURE 1P ENTRY 3

PROCEDURE] |SSUES A calls

INSTRUCTION, WHICH . IP ENTRY 4
CONTAINS AN INDEX FOR

AN ENTRY IN THE P ENTRY 5
SYSTEM PROCEDURE

TABLE. IP ENTRY 6

270647-6

Figure 6. System Call Mechanism

The system call mechanism supports two types of procedure calls: local calls and supervisor calls.
A local call is the same as that made with the call and callx instructions, except that the processor gets
the IP of the called procedure from the system procedure table. The supervisor call differs from the
local call in two ways: (1) it causes the processor to switch to another stack (called the supervisor
stack), and (2) it causes the processor to switch to a different execution mode.

The system call mechanism offers two benefits. First, it supports portability for application software.
System calls are commonly used to call kernel services. By calling these services with a procedure
number rather than a specific IP, applications software does not have to be changed each time the
implementation of the kernel services is modified.
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Second, the ability to switch to a different execution mode and stack allows kernel procedures and
data to be insulated from applications code. This benefit is described in more detail later in “User-
Supervisor-Protection-Model” later in this chapter. '

3.6 SYSTEM PROCEDURE TABLE

The system procedure table is a general structure, which the processor uses in two ways. The first
way is as a place for storing IPs for kernel procedures, which can then be accessed through the system
call mechanism. The processor gets a pointer to the system procedure table from the initial memory
image (IMI) as described in Section 6, “System Data-Structure Pointers”.

The second way a system procedure table is used is as a place for storing IPs for fault handler
procedures. Here, the processor gets a pointer to the system procedure table from entries in the fault
table, as described in Section 8, “Fault-Table Entires”. ‘

-

The structure of the system procedure table is shown in Figure 7. The following paragraphs describe
the fields in this table.

3.6.1 Procedure Entries

The procedure entires specify the target IPs for the procedures that can be accessed through the
system procedure table. Each entry is made up of an address (or IP) field and a type field. The address
field gives the address of the first instruction of the target procedure. Since all instructions are word
aligned, only the 30 most-significant bits of the address are given. The processor automatically
provides zeros for the least-significant bits.

The procedure entry type field indicates the type of call to execute: local or supervisor. The encodings
of this field are shown in Table 6.

Table 6. Encodings of Entry Type Field in System Procedure Table Entry

Entry Type | Procedure Type
Field .
00 local procedure

101 g reserved
10 supervisor procedure
11 reseérved
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Figure 7. Procedure Table Structure

3.6.2 Supervisor Stack Pointer

When a supervisor call is made, the processor switches to a new stack called the supervisor stack.
The processor gets a pointer to this stack from the supervisor-stack-pointer entry (bytes 12-15, bits
2-31)inthe system procedure table. Since stack frames are word aligned, only the 30 most-significant
bits of the supervisor stack pointer are given.

3.6.3 Trace Control Flag

The trace-control flag (byte 12, bit 0) specifies the new value of the trace-enable flag when a
supervisor call causes a switch from user mode to supervisor mode. The use of this bit is described
in Section 9.
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3.6.4 System Call to a Local Procedure

When a calls instruction references a procedure entry designed as a local type (00,), the processor
executes alocal call to the procedure selected from the system procedure table. Neither amode switch
nor a stack switch occurs.

Theret instruction permits returns from either alocal procedure or a supervisor procedure. The return
status field in local register rO determines the type of return action that the processor is to take. If the
return status field is set to 000,, a local return is executed. In a local return, no stack or mode switching
is carried out. ' :

3.7 USER-SUPERVISOR PROTECTION MODEL

The processor provides a mode and stack switching mechanism called the user-supervisor protection
model. This protection model allows a system to be designed in which kernel code and data reside
in the same address space as user code and data, but access to the kernel procedures (called supervisor
procedures) is only allowed through a tightly controlled interface. This interface is provided by the
system procedure table.

The user-supervisor protection model also allows kernel procedures to be executed using a different
stack (the superviosr stack) than is used to execute applications program procedures. The ability to
switch stacks helps maintain the integrity of the kernel. For example, it would allow system
debugging software or a system monitor to be accessed, even if an applications program crashes.

3.7.1 User and Supervisor Modes

When using the user—supervisor protection model, the processor can be in eithr of two execution
modes: user or supervisor. The difference between the two modes in that when in the supervisor
mode, the processor

»  switches to the supervisor stack, and
e may execute a set of supervisor only instructions.

Note

In the 80960KB impiementation of the 80960 architecture, the only supervisor-only instruction is the
modify process control instruction (modpc).

3.7.2 Supervisor Calls

Mode switching between the user and supervisor execution modes is accomplished through a
supervisor call. A supervisor call is a call executed with the calls instruction that references a
supervisor procedure in the system procedure table (i.e. a procedure with an entry type 10,).

When the processor is in the user mode and it executes a calls instruction, the processor performs the
following actions:
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o It switches to supervisor mode
» It switches to the supervisor stack

+  Itsets the return status field in register RO of the calling procedure to 01X, indicating that a mode
and stack switch has occurred.

The processor remains in the supervisor mode until a return is performed from the procedure that
caused the original mode switch. While in the supervisor mode, either the local call instructions (call
and callx) or the calls instruction can be used to call supervisor procedures.

(The call and callx instructions call local (or user) procedures in user mode and supervisor procedures
in supervisor mode. There is no stack or processor state switching associated with these instructions.)

When a ret instruction is executed and the return status field is set to 01X, the processor performs
a supervisor return. Here, the processor switches from the supervisor stack to the local stack, and the
execution mode is wtich from supervisor to user.

3.7.3 Supervisor Stack

When using the user-supervisor mechanism, the processor maintains separate stacks in the address
space, one for procedures executed in the user mode (local procedures) and another for procedures
executed in the supervisor mode (supervisor procedures). When in the user mode, the local procedure
stack described at the beginning of this section is used. When a supervisor call is made, the processor
switches to the supervisor stack. It continues to use the supervisor stack until a return is made to the
user mode.

The structure of the supervisor stack is identical to that of the local procedure stack (shown in Figure
5). The processor obtains the SP for the supervisor stack from the system procedure table. When a
supervisor call is executed while in the user mode (causing a switch to the supervisor stack), the
processor aligns this SP to the next 64 byte boundary to form the new FP for the supervisor stack.
When a local call or supervisor call is made while in the supervisor mode, the processor aligns the
SP in the current frame of the supervisor stack to the next 64 byte boundary to form the FP pointer.
This operation allows supervisor procedures to be called from supervisor procedures.

3.7.4 Hints on Using the User-Supervisor Protection Model

The user-supervisor has three basic uses in an embedded system application:
1. to allow the modpc instruction to be used,
2. to allow kernel code to use a separate stack from the applications code, and

3. toallowanexternal memory management unit (MMU) to provide protection for kernel code and
" data.

If an application does not require any of the above features, it can be designed to not use the user-
supervisor protection model. Here, all procedure calls are to local procedures. If the system table is
used, all the entries must be the local type (i.e. entry type 00,).
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If access to the modpc instruction is required, but the other two features are not, it is suggested that
the system be designed to always run in supervisor mode. At initialization, the processor automati-
cally places itself in supervisor mode, prior to executing the first instruction. The processor then
remains in supervisor mode indefinitely, as long as no action is taken to change the execution mode
to user mode (i.e. using the modpc instruction to change the execution mode bit of the process
controls to 0). With this technique, all of the procedure calling instructions (call, callx, and calls) can
be used. The processor only uses one stack, which is considered the supervisor stack. It gets the
supervisor stack pointer from local register r2. (Prior to making the first procedure call, the supervisor
stack pointer must be loaded into 12).

The processor does not support the last use of the user-supervisor protection model directly. In other
words, the processor does not provide a pin or other device that indicates to external hardware when
a mode switch has occurred. Several techniques are available to perform this operation, which are
beyond the scope of this discussion. '

3.8 BRANCH AND LINK

The bal (branch and link) and balx (branch and link extended) instructions provide an alternate
method of making procedure calls. These instructions save the address of the next instruction (RIP)
in a specified location, then branch to a target instruction or set of instructions. The state of the local
registers and stack remains unchanged. (For the bal instruction, the RIP is automatically stored in
global register gl4; for the balx instruction, the location of the RIP is specified with one of the
instruction operands.)

A return is accomplished with a bx (branch extended) instruction, where the address of the target
instruction is the one saved with the branch and link instruction.

Branch and link procedure calls are recommended for calls to procedures that (1) do not call other
procedures (i.e. for procedure calls that do not result in nesting of procedures) and (2) do not need
many local variables (i.e. allocation of a new set of local registers does not provide any benefit). Here,
local registers as well as global registers can be used for parameter passing.

4.0 DATA TYPES AND ADDRESSING MODES

This section describes the data types that the 80960KB processor recognizes and the addressing
modes that are available for accessing memory locations.

4.1 DATA TYPES

The processor defines and operates on the following data types:
* Integer (8, 16, 32 and 64 bits)

*  Ordinal (8, 16, 32 and 64 bits)

* Real (32, 64 and 80 bits)

*  Decimal (ASCII digits)
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e BitField
»  Triple-Word (96 bit)
e Quad-Word (128 bit)

Note

The real and decimal data types are not defined in the 80960 architecture. They are supported in the
80960KB processor, but not in the 80960K A processor.

The integer, ordinal, real, and decimal data types can be thought of as numeric data types because
some operations on these data types produce numeric results (e.g. add, subtract).

The remaining data types (bit field, triple word, and quad word) represent groupings of bits or bytes
that the processor can operate on as a whole, regardless of the nature of the data contained in the
group. These data types facilitate the moving of blocks of bits or bytes.

4.1.1 Integers

Integers are signed whole numbers, which are stored and operated on in two’s complement format.
The processor recognizes four sizes of integers: 8 bit (byte integers), 16 bit (short integers), 32 bit
(integers) and 64 bit (long integers). Figure 9 shows the formats for the four integer sizes and the
ranges of values allowed for each size.

SIGN
8 BYTE
BITS INTEGER
7 0
SIGN
16 4
BITS SHORT INTEGER
15 0
SIGN
32 g
e % INTEGER
31 0
SIGN
64
BTS LONG INTEGER
63 0
DATA TYPE RANGE DECIMAL EQUIVALENT
BYTE INTEGER 27702741 -128 TO 127
SHORT INTEGER 215702151  -32,768 TO 32,767
INTEGER 231702314 -2.14x10% TO2.14x 10°
LONG INTEGER 263702631 .922x1018TO9.22x 1018
270647-8°

Figure 9. Integer Format and Range
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4.1.2 Ordinals

Ordinals are a general-purpose data type. The processor recognizes four sizes of ordinals: 8 bit (byte
ordinals), 16 bit (short ordinals), 32 bit (ordinals), and 64 bit (long ordinals). Figure 10 shows the
formats for the four ordinal sizes and the ranges of numeric values allowed for each size.

8 ¥~ BYTE
BITS ORDINAL
7 0
16 SHORT ORDINAL
BITS /)
15 0
32
BITS ORDINAL
31 0
64 LONG ORDINAL
BITS
63 - 0
DATA TYPE RANGE DECIMAL EQUIVALENT
BYTE ORDINAL 07028 -1 0TO 255
SHORT ORDINAL 0 TO 216 -1 070 65,535
ORDINAL ~ 0T0232 4 070 4.29 x 10°
LONG ORDINAL 0 TO 264 -1 070 1.84x 1019
270647-9

Figure 10. Ordinal Format and Range

The processor uses ordinals for both numeric and non-numeric operations. For numeric operations,
ordinals are treated as unsigned whole numbers. The processor provides several arithmetic instruc-
tions that operate on ordinals. For non-numeric operations, ordinals contain bit fields, byte strings,
and Boolean values.

When ordinals are used to represent Boolean values, 1, represents a TRUE and a 0, represents a
FALSE.

4.1.3 Reals

Reals are floating-point numbers. The processor recognizes three sizes of reals: 32 bit (reals), 64 bit
(long reals) and 80 bit (extended reals). The real-number format conforms to ANSI/IEEE Std. 754-
1985, the IEEE Standard For Binary Floating-Point Arithmetic. Real numbers are discussed in
greater detail in Section 11. '
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4.1.4 Decimals

The processor provides three instructions that perform operations on decimal values when the values
are presented in ASCII format. Figure 10 shows the ASCII format. Figure 11 shows the ASCII format
for decimal digits. Each decimal digit is contained in the least- significant byte of an ordinal (32 bits).

The decimal digit must be of the form 0011dddd,, where dddd, is a binary-coded decimal value from
0 to 9. For decimal operations, bits 8 through 3 1 of the ordmal containing the demmal digit are
ignored.

ASCII FORMAT |

N \o[of1f+]a]e]e]]
7 0

270647-10

Figure 11. Decimal Format

4.1.5 Bits and Fit Fields

The processor provides several instructions that perform operations on individual bits or fields of bits
within an ordinal (32 bit) operand. Figure 12 shows these data types.

NN N BIT FIELD N N

[ | 0
LENGTH :
BIT NUMBER OF
LOWEST-NUMBERED
BIT.

270647-11

Figure 12. Bits and Bit Fields

Anindividual bitis spécified forabit operation by giving its number in the ordinal in which itresides.
The least-significant bit of a 32-bit ordinal is bit 0; the most-significan bit is bit 31.

A bit field is a contiguous sequence of bits of from O to 32 bits in length within a 32-bit ordinal. A
bit field is defined by giving its length in bits and the bit number of its lowest-numbered bit.

A bit field cannot span a register boundary.

4.1.6 Triple and Quad Words

Triple and quad words refer to consecutive bytes in memory or in registers: a triple word is 12 bytes
and aquad word is 16 bytes. These data types facilitate the moving of blocks of bytes. The triple-word
data type is useful for moving extended-real numbers (80 bits).
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The quad-word instructions (ldq, stq, and movq) offer the most efficient way to move large blocks
of data.

4.2 BYTE, WORD, AND BIT ADDRESSING

The processor provides instructions for moving blocks of data values of various lengths from
memory to registers (load) and from registers to memory (store). The allowable sizes for blocks are
bytes, half-words (2 bytes), words (4 byfes), double words, triple words, and quad words. For
example, the stl (store long) instruction stores an 8-byte (double word) block of data in memory.

When a block of data is stored in memory, the least-significant byte of the block is stored at a base
memory address and the more significant bytes are stored at successively higher addresses.

When loading a byte, half-word, or word from memory to a register, the least-significant bit of the
block is always loaded in bit O of the register. When loading double words, triple words, and quad
words, the least-significant word is stored in the base register. The more significant words are then
stored at successively higher numbered registers. Double words, triple words, and quad words must
also be aligned in registers to natural boundaries as described in the section “Register Alignment”.

Bits can only be addressed in data that resides in a register. Bit O in a register is the least-significant
bit and bit 31 is the most-significant bit.

4.3 ADDRESSING MODES

The processor offers 11 modes for addressing operands. These modes are grouped as follows:

e Literal
* Register
e Absolute

«  Register Indirect
*  Register Indirect with Index
+ Index with Displacement

«  IP with Displacement

Most of the instructions use only the first two modes (hteral and reglster) The remaining modes are
used for memory related instructions.

Table 8 shows all the addressing modes, a brief description of the elements of the address in each
mode, and the assembly-code syntax for each mode.
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Table 8. Addressing Modes

Mode Description Assembler Syntax
Literal value value

Register register reg

Absolute offset | offset exp

Register Indirect | abase (reg)

Register Indirect | abase + offset exp (reg)

with offset

Register Indirect | abase + (index*scale) | (reg) [reg*scale]
with index

Register Indirect
with index and

abase + (index*scale)
+ displacement

exp (reg) [reg*scale]

displacement

Index with (index*scale) exp [reg*scale]
displacement + displacement

IP with IP + displacement + 8 | exp (IP)
displacement

4.3.1 Literals

The processor recognizes two types of literals: ordinal literal and floating-point literal. An ordinal
literal can range from 0 to 31 (5 bits). When an ordinal literal is used as an operand, the processor
expands it to 32 bits by adding leading zeros. If the instruction defines an operand larger than 32 bits,
the processor zero-extends the value to the operand size. If an ordinal literal is used in an instruction
that requires integer operands, the processor treats the literal as a positive integer value.

The processor also recognizes two floating-point literals (+0.0 and +1.0). These floating-point
literals can only be used with floating-point instructions. As with the ordinal literals, the processor
converts the floating-point literals to the operand size specified by the instruction.

A few of the floating-point instructions use both floating-point and non-floating-point operands (e.g.
the convert integer-to-real instructions). Ordinal literals can be used in these instructions for non-

floating-point operands.

Note
Floating-point literals are not defined in the 80960 architecture.
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4.3.2 Register

A register is referenced as an operand by giving the register number (e.g. g0, 15, fp3). Both floating- -
point and non-floating-point instructions can reference global and local registers in this way.
However, floating-point registers can only be referenced in conjunction with a floating-point
instruction.

4.3.3 Absolute

Absolute addressing is used to reference a memory location directly as an offset from address 0 of
the address space, ranging from -2°! to 23'-1. Typically, an assembler will allow absolute addresses
to be specified through arithmetic expressions (e.g. x + 44), symbolic labels, and absolute values.

At the machine-level, two absolute-addressing modes are provided, depending on the instruction
format (i.e. MEMA or MEMB). For the MEMA format, the offset is an ordinal number ranging from
0 to 2048; for the MEMB format, the offset is an integer (called a displacement) ranging from -2*!
to 231-1. After evaluating an absolute address, the assembler will convert the address into an offset
and select the appropriate machine-level instruction type and addressing mode. (The machine-level
addressing modes and instruction formats are described in Appendix B).

~ 4.3.4 Register Indirect

Theregisterindirect addressing modes allow an address to be specified with an ordinal value (32 bits)
in aregister or with an offset or a displacement added to a value in a register. Here, the value in the
register is referred to as the address base (abase).

Again, an assembler will allow the offset and displacement to be specified with an expression or
symbolic label, then evalute the address to determine whether an offset or a displacement is
appropriate. '

4.3.5 Register Indirect with Index

The register indirect with index addressing modes allow a scaled index to be added to the value in
‘aregister. The index is specified by means of a value placed in a register. This index value is then
multiplied by the scale factor. The allowable scale factors are 1, 2, 4, 8, and 16.

A displacement may also be added to the abase value and scaled index.

4.3.6 Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a register
and is multiplied by a scaling constant before the displacement is added to it.
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4.3.7 IP with Displacement

The IP with displacement addressing mode is often used with load and store instructions to make
them IP relative.

Note that with this mode the displacement plus a constant of 8 is added to the IP of the instruction.

5.0 INSTRUCTION SET SUMMARY

This sections provides an overview of the instruction set for the 80960KB processor. Included is a
discussion of the instruction format and a summary of the instruction groups and the instructions in
each group. '

Section 10 gives detailed descriptions of each of the instructions. The instructions are listed in this
section in alphabetical order. Included for each instruction are the assembly-language format, the
action taken when the instruction is executed, and examples of how the instruction might be used.

Appendix C provides a detailed description of the factors that affect instruction timing. It also gives
the number of clock cycles required for each instruction.

5.1. INSTRUCTION FORMATS

Instructions are described in two formats: assembly language and machine level.

5.1.1 Assembly-Language Format

The instructions are referred to by their assembly-language mnemonics. For example, the add ordinal
instruction is referred to as the addo instruction.

An assembly-language statement consists of an instruction mnemonic, followed by from O to 3
operands, separated by commas. The following example shows the assembly-language statement for
the addo instruction:

addo g5, g9, g7

Here, the ordinal operands in global registers g5 and g9 are added together and the result is stored
in g7.

A detailed description of the nomenclature used to describe assembly-language instructions is given
in Section 10.
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5.1.2 Machine Formats

At the machine level of the processor, all instructions are word aligned. Most of the instructions are
one word long, although some addressing modes make use of a two-word format.

There are four instruction formats: register (REG), compare and branch (COBR), control (CTRL),
and memory (MEM). Each instruction uses one of these formats, which is determined by the opcode
field of the instruction.

The machine-level formats for the instructions are described in detail in Appendix B.

5.2 INSTRUCTION GROUPS

The 80960KB processor implements all the instructions in the 80960 instruction set, which includes
all of the data movement, arithmetic, logical, and program control instructions commonly found in
computer architectures. The processor also includes a set of floating-point instructions and several
instructions to handle architectural extensions found in the processor.

The 80960 instruction set is made up of the following group of instructions:

¢ Data Movement

¢ Arithmetic (Ordinal and Integer)
* Logical

e  Bit and Bit Field

¢ Comparison

* Branch

+ Call/Return
e Fault

*  Debug

e Processor Management

The instruction-set extensions found in the 80960KB processor include the following groups of
instructions:

¢ Integer to Real Conversion
*  Floating Point
*  Synchronous Move and Load

¢ Decimal.

Table9 and 10 give a summary of the 80960 instructions and the 80960K B instruction-set extensions,
respectively. The actual number of instructions is greather than those shown in this list, because for
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some operations,lseveral different instructions are provided to handle different operand size, data

types, or branch conditions.

Table 9. Summary of the 80960 Instruction Set

Data Movement Arithmetic Logical Bit and Bit
. ‘ Field
Load Add And Set Bit
Store .| Subtract Not And Clear Bit
Move Multiply And Not Not Bit
Load Address Divide Or Check Bit
Remainder Exclusive Or Alter Bit
Modulo Not Or Scan For Bit
Shift Or Not Scan Over Bit
Extended Nor Extract
Multiply Exclusive Nor Modify
Extended ° Not
Divide Nand
Rotate
Comparison Branch Call/Return Fault
Compare Unconditional Call Conditional Fault
Conditional Branch Call Extended Synchronize Faults
Compare Conditional Branch | Call System '
Compare and Compare and Return
Increment Branch Branch and Link
Compare and
Decrement
Debug Processor Miscellaneous
Modify Trace Modify Arithmetic | Atomic Add
Controls Controls Atomic Modify
Mark Modify Process Scan Byte For
Force Mark Controls Equal
Flush Local
Registers
Test Condition
Code
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Table 10. Summary of the 80960KB Instructjon-Set Extensions

Conversion Floating Point Synchronous Decimal

Convert Real to Move Real Synchronous Load | Move
Integer Add Synchronous Move | Add With Carry
Convert Integer to | Subtract Subtract With Carry
Real Multiply ‘
: Divide
Remainder
Scale
Round
Square Root
Sine
Cosine
Tangent
Arctangent
Log
Log Binary
Log Natural
‘| Exponent
Classify
Copy Real Extended
Compare

The following sections give a brief overview of the instructions in each of these groups. The floating-
point mstructlons are described in Section 11.

5.3 DATA MOVEMENT

The data movement instructions include those instructions that move data from memory to the global
and local registers; that move data from the global and local registers to memory; and that move data
among these registers.

5.3.1 Load

The load instructions (listed below) copy bytes or words from meory to a selected register or group
of registers:

Id load
1dob load byte ordinal
Idos load short ordinal
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Idib load byte integer
ldis load short integer
Idl load long

1dt load triple

1dq load quad

For the 1d, Idob, ldos, 1dib, and ldis instructions, a memory address and a register are specified in
the instruction and the value at the memory address is copied into the register. Zero and sign extending
is performed automatically for byte and short (half-word) operands.

The 1d, Idl, Idt, and 1dq instructions copy 4, 8 12, and 16 bytes from memory into successive
registers.

Note

When using the load, store, and move instructions that move 8, 12, or 16 bytes at a time, the rules for
register alignment must be followed. Refer to the section 2, “Register Alignment” for a discussion of these
rules.

5.3.2 Store

For each load instruction there is a correponding store instruction (list below), which coples bytes
or words from a selected register or group of registers to memory:

st l store

stob store byte ordinal

stos store short ordinal
stib store byte integer

stis store short integer
stl store long

stt store triple

stq store quad

For the st, stob, stos, stib, and stis instructions, a register and memory address are specified-in the
instruction and the value in the register is copied into memory. For the byte and short instructions,
the value in the register is automatically reformatted for the shorter memory location. For the stib
and stis instructions, this reformatting can lead to overflow if the register value is too large to be
represented in the shorter memory locatlon

The st, stl, stt, and stq instructions copy 4, 8, 12 and 16 bytes from successive registers into memory.
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5.3.3 Move

The move instructions, listed below, copy data from aregister or group of registers to another register
or group of registers.

mov move word
movl move long word
movt move triple word
movq move quad word

These move instructions can only be used to move data among the global and local registers. A set
of move-real instructions (movr, movrl, and movre) are provided for moving real number values
between the global and local registers and the floating-point registers. The move-real instructions are
described in Section 11. :

5.3.4 Load Address

The lda instruction computes an effective address in the address apce from an operand presented in
one of the addressing modes. A common use of this instruction is to load a constant into a register.

5.4 ARITHMETIC

Table 11 lists all the arithmetic operations for which the 80960KB processor provides instructions
and the data types that the instructions operate on. An “X” in this table indicates that the 80960
architecture provides an instruction for the specified operation and data types; an “E” indicates that
an 80960KB instruction-set extension provides an instruction for the specified operation and data
types. An “E*” indicates that the specified operation can be performed on the specified data type
using 80960KB extended instructions, but that a unique instruction for this operation is not provided.
For example, a specific instruction is not provided to add two extended-real values. However, this
operation can be carried out with either the add real (addr) or the add long real (addrl) instruction.

With two exceptions, all the processor’s arithmetic operations are carried out on operands in
registers. The processor does not provide instructions that perform arithmetic operations on operands
in memory. ‘

The two instructions that are exceptions are the atadd (atomic ad) and atmeod (atomic modify)
instructions, which are discussed later in this section:

A summary of the arithmetic instructions for real (floating-point) data types is provided in Section
11. The following sections describe the arithmetic instructions for ordinal and integer data types.
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Table 11. Arithmetic Operations

Arithmetic Integer Ordinal Real Long Extended
Operations Real Real
Add X X E E E*
Subtract X X E E E*
Multiply X X E E E*
Divide X X E E E*
Remainder X X E E E*
Modulo X ’
Shift Left X X

Shift Right X X

Shift Right X

Dividing

Scale E E E*
Round E E E*
Square Root " E E E*
Sine E E E*
Cosine E E E*
Tangent E E E*
Arctangent E E E*
Exponent E E E*
Log E E E*
Log Binary E E E*
Log Epsilon E E E*
Classify E E E*
Copy Sign E
Copy Reversed E
Sign
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5.4.1 Add, Subtract, Multiply, and Divide

The following instructions perform add, subtract, multiply, or divide operations on integers and
ordinals: .

addi add integer
addo add ordinal
subi ~ subtract integer
subo subtract ordinal
muli multiply integer
mulo multiply ordinal
divi divide integer
divo divide ordinal

These instructions perform operations on one-word operands in registers and store the results in a -
register.

5.4.2 Extended Arithmetic

The following four instructions are provided to support extended arithmetic operations to be
performed (i.e. arithmetic operations on operands greater than one word in length):

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply

ediv extended divide

The addc and subc instructions add or subtract two words (contained in registers) plus a condition
code bit (used as a carry bit). If the result has a carry, the carry bit in the condition code is set. Also,
a second condition code bit is set if the operation would have resulted in an integer overflow
condition. (The three-bit condition code is contained in the arithmetic controls as described in Section
2.)

These instructions treat the operands as ordinals, however, the indication of overflow in the condition
code facilitates a software implemenetation of extended-integer arithmetic.

The emul instruction multiplies two ordinals (each contained in a register), producing long ordinal
result (stored in two registers). The ediv instruction divides a long ordinal by an ordinal, producmg
an ordinal quotient and an ordinal remainder.
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5.4.3 Remainder and Modulo

The following instructions divide one operand by another and retain the remainder of the operation:

remi remainder integer
remo remainder ordinal
modi modulo integer

The different between the remainder and modulo instruction lies in the sign of the result. For the remi
and remo instructions, the result has the same sign as the dividend; for the modi instruction, the result
has the same sign as the divisor.

5.4.4 Shift and Rotate

The processor provides the following five shift instructions:

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer-

These instructions shift the operand a specified number of bits to the left or to the right. The shlo, shli,
shro, and shrdi instructions are equivalent to multiplying (shift left) or dividing (shift right) by the
power of 2. Bits shifted beyond the register boundary are discarded.

The shri instruction performs a conventional arithmetic shift right. However, when this instruction
is used to divide an integer operand by the power of 2, it produces an incorrect quotient for negative
operands. (The shrdi instruction produces the correct quotient when this divide operation is used on
negative operands.) '

The rotate instruction rotates the bits of the operand to the left (toward higher significance) by a
specified number of bits. Bits shifted beyond the left boundary of the register (bit 31) appear at the
right boundary (bit 0).

5.5 LOGICAL

The following instructions perform bitwise Boolean operations on the specified operands:

and Aand B
notand (not A) and B
andnot A and (not B)

xor not (A=B)

3-45



intal 80960KB PROGRAMMER’S REFERENCE

or AorB

nor (not A) and (not B)

xnor - A=B

not not A

notor (not A) or B

ornot A or (not B)

nand (not A) or (not B)
5.6 COMPARISON

The processor provides several types of instructions that are used to compare two operands. The
following sections describe the compare instructions for ordinal and integer data types. The compare
instructions for real data types are discussed in Section 11.

5.6.1 Compare and Conditional Compare

The compare instructions listed below, compare two operands then set the condition-code bits in the
arithmetic controls according to the results.

cmpi compare integer
cmpo compare ordinal
concmpi  conditional compare integer
concmpo conditional compare ordinal

The condition-code bits are set to indicate whether one operand is less than, equal to, or greater than
the other operand. (Refer to Section 2, “Functions of the Arithmetic Controls Bits” for a discussion
of meanings of the condition-code bits for conditional operations.) .

The cmpi and empo instructions simply compare the two operands and set the condition-code bits
accordingly. '

The concmpi and concmpo instructions first check the status of bit 2 of the condition code. If it is
not set, the operands are compared as with the cmpi and ecmpo instructions. If bit 2 is set, no
comparison is performed and the condition-code bits are not changed.

The conditional compare instructions are provided specifically to optimize two-sided range compari-
sons to check if A is between B and C (i.e., B < A < C). Here, a compare instruction (cmpi or cmpo)
is used to check one side of the range (e.g. A > B) and a conditional compare instruction (concmpi
or concmpo) is used to check the other side (e.g., A< C) according to the result of the first comparison.
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5.6.2 Compare and Increment or Decrement

The following instructions compare two operands, set the condition-code bits according to the
results, then increment or decrement one of the operands:

cmpinci comapre and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer
cmpdeco compare and decrement ordinal

These instructions are intended for use at the end of iterative loops.

5.7 BRANCH

The branch instructions allow the direction of program flow to be changed by explicitly modifying
the IP. The processor provides three types of branch instructions:

¢ unconditional branch
e  conditional branch

*  compare and branch

Most of the branch instructions specify the target IP by specifying a signed displacement to be added
to the current IP. Other branch instructions specify the memory address of the target IP using one of
the processor’s addressing modes. This latter group of instructions are called extended-addressing
instructions (e.g., branch extended, branch and link extended).

5.7.1 Unconditional Branch

The following four instructions are used for unconditional branching:

-b Branch
bx ' Branch Extended
bal Branch and Link
balx  Branch and Link Extended

The b and bx instructions cause program execution to jump to the specified target IP. As described
in Section 10, these two instructions perform the same function; however, they use different machine-
level instruction formats.

The bal and balx instructions store the address of the next instruction in a specified register; then
jump to the specified target IP. (For the bal instruction, the RIPis automatically stored in register G14;
for the balx instruction the location of the RIPis specified with an instruction operand.) As described
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in Section 3, the branch and link instructions provide a method of performing procedure calls that
does not use the processor’s call/return mechanism. Here, the saved instruction address is used as a
return IP. .

The bx and balx instructions can be made IP-relative by using the IP with displacement addressing
mode.

5.7.2 Conditional Branch

With the conditional branch (branch if) instructions, the processor checks the condition-code bits in
the arithmetic controls. If these bits match the value specified with the instruction, the processor
jumps to the target IP. These instructions use the displacement plus IPmethod of specifying the target
IP:

be branch if equal

bn branch if not equal

bl branch if less

ble . branch if less or equal
bg branch if greater

bge branch if greater or equal
bo branch if ordered

bno branch if unordered

(Refer to Section 2, “Functions of the Arithmetic Controls Bits” for a discussion of meanings of the
condition-code bits for conditional operations.)

The bo and bno instructions refer to comparisons of real numbers. Ordered and unordered real
numbers are described in Section 11. S

5.7.3 Compare and Branch

The compare and branch instructions compare two operands, then branch according to the results.
There are three subtypes of instructions in this group: compare integer, compare ordinal and check
bit: :

cmpibe compare integer and branch if equal

cmpibne . compare integer and branch if not equal
cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal
cmpibg -.compare integer and branch if greater _
cmpibge compare integer and branch if greater or equal
cmpibo compare integer and branch if ordered
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cmpibno ccompare integer and branch if unordered |
cmpobe compare ordinal and branch if equal
cmpobne - compare ordinal and branch if not equal
cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal
cmpobg compare ordinal and branch if greater
cmpobge compare ordinal and branch if greater or equal
bbs check bit and branch if set

bbc check bit and branch if clear

With the compare-ordinal-and-branch and compare-integer-and-branch instructions, two operands
are compared and the condition-code bits are set, as with the compare instructions described earlier
in this section. A conditional branch is then executed as with the conditional branch (branch if)
instruction.

With the check-bit-and-branch instructions, one operand specifies a bit to be checked in the other
operand. The condition-code bits are set according to the state of the specified bit (i.e. 0102 if the bit

is set and 000, if the bit is clear). A conditional branch is then executed according to the setting of

the condition-code bits.
5.8 BIT AND BIT FIELD
The bit instructions perform operations on a specific bit in an ordinal operand or on a bit field.

5.8.1 Bit Operations

The following instructions operate on a specified bit:

setbit set bit

clrbit clear bit
notbit not bit
chkbit check bit
alterbit alter bit
scanbit scan for bit
spanbit span over bit

The setbit, clrbit, and notbit instructions set, clear, or complement (toggle) a specified bit in an
ordinal. ’

The chkbit instruction causes the condition-code bits to be set according to the state of a specified
bit in a register. The condition code is set to 010, if the bit is set and 000, otherwise.
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The alterbit instruction alters the state of a specified bit in an ordinal according to the condition code.
If the condition code is 010,, the bit is set; if the condition code is 000,, the bit is cleared.

The scanbit and spanbit instructions find the most significant set bit and clear bit, respectively, in
an ordinal. ‘

5.8.2 Bit Field Operations

There are two bit field instructions extract and modify. The extract instruction converts a specified
bit field, taken from an ordinal value, into an ordinal value. Inessence, this instruction shifts a bit field
in a register to the right and fills in the bits to the left of the bit field with zeros.

The modify instruction copies bits from one register, under control of a mask, into another register.
Only the unmasked bits in the destination register are modified.

5.9 BYTE OPERATIONS

The scanbyte instruction performs a byte-by-byte comparison of two ordinals to determine if any
two corresponding bytes are equal. The condition code is set according to the results of the
comparison.

5.10 CONVERSION

Data can be converted from one length to another by means of the load and store instructions. For
example, the Idis instruction loads a short integer from memory to a register and automatically
converts the integer from a half word to a full word.

The 80960KB extended instruction set provides instructions to perform conversions between integer
and real data types, These instructions are described in Section 11.

5.11 CALL AND RETURN

The processor offers an on-chip call/return mechanism for making procedure calls to local
procedures and kernel procedures. This call/return mechanism is describe in detail in Section 3. The
following four instructions are provided to support this mechanism. ‘

call call

callx ~ call extended
calls call system
ret return

The call and callx instructions call local procedures. The call instruction specifies the target
procedure (the first instruction of the procedure) by adding a signed displacement to the IP. The callx
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instruction uses extended addressing, as described for the bx and balx instructions, to specify the
target procedure. For both of these instructions, a new set of local registers and a new stack frame
are allocated for the called procedure. :

The calls instruction operates similarly to the call and callx instructions, except that it gets its target
procedure address from the system procedure table. An index number included as an operand in the
instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the procedure table, the callsinstructions can cause
a supervisor call to be executed. A supervisor call causes the processor to switch to the supervisor
stack and to switch to supervisor mode. The supervisor call is described in detail in Section 3.

The ret instruction performs a return from a called procedure to the calling procedure (the procedure
that made the call). This instruction obtains its target IP (return IP) from linkage information that was
saved for the calling procedure. The ret instruction is used to return from local and supervisor calls
and from implicit calls to interrupt and fault handlers.

5.12 ATOMIC INSTRUCTIONS

The atomic instructions perform read-modify-write operations on operands in memory. They insure
that an operation on a specified memory location is completed before another agent with access to
memory is allowed to access that memory location. These instructions are particularly useful in
systems in which several agents have access to system memory. '

There are two atomic instructions: atomic add (atadd) and atomic modify (atmod). The atadd
instruction causes an operand to be added to the value in the specified memory location. The atmod
causes bits in the specified memory location to be modified under control of a mask.

5.13 CONDITIONAL FAULTS

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling routines are then invoked to handle the various types of faults without explicit intervention
by the currently running process. (Faults are discussed in detail in Section 8).

The following conditional fault instructions permit a fault to be generated explicitly according to the
state of the condition-code bits:

faulte fault if equal
faultne fault if not equal
faultl fault if less

faultle fault if less or equal
faultg fault if greater
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faultge fault if greater or equal

faulto fault if ordered

faultno fault if unordered
5.14 DEBUG

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

modtc modify trace controls

- mark’ \ mark
fmark . force mark

The trace functions are controlled through the processor’s trace controls bits. Some of these bits allow
various types of tracing to be enabled or disabled. Other bits act as flags to indicate when an enabled
trace event has been detected. (Trace controls are described in detail in Section 9.)

The modtc instruction permits the trace controls bits to be modified.

The mark instruction causes a breakpoint trace event to be generated if the breakpoint trace mode
is enabled. The fmark instruction generates a breakpoint trace independent of the state of the
breakpoint trace mode flag. The latter two instructions allow a breakpoint to be placed anywhere in
a program.

5.15 PROCESSOR MANAGEMENT

\

The processor provides several instructions for use in controlling processor-related functions.

The modpc instruction provides a method of reading and modlfymg the contents of the process
controls.

In certain instances, it is necessary to insure that the contents of the local-register save area of the stack
frames are the same as the local registers. The flush local registers instruction (flushreg) automati-
cally stores the contents of all the local register sets, except the current set, in the register save area
of their associated stack frames.

The arithmetic controls cannot be addressed with the load, move, and store instructions or the bit
instructions. Instead, special instructions are provided for this purpose.

The modify arithmetic controls instructions (modac) permits bits in the arithmetic controls register
to be modified under the control of a mask.
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The following test instructions allow the state of the condition-code bits to be tested:

teste test if equal

testne test if not equal

testl test if less

testle test if less or equal
testg test if greater

testge test if greater or equal
testo test if ordered

testno test if unordered

These instructions cause a TRUE (010,) to be stored in a destination register if the condition code
matches the condition specified with the instruction. Otherwise, a FALSE (000,) is stored in the
register.

5.16 80960KB NON-FLOATING-POINT INSTRUCTION-SET EXTENSIONS

The following non-floating-point instructions are extensions to the 80960 architecture instruction
set. The synchronous load and move instructions are provided in both the 80960KB and 80960KA
processor; the decimal instructions are provided only in the 80960KB processor.

5.16.1 Synchronous Load and Move

The processor’s store instructions are executed asynchronously with the memory controller. Once
the processor sends data out its bus for storage in main memory, it continues with the next instruction
in the instruction stream, assuming that its bus control logic will carry out the operation.

The 80960KB processor provides four special instructions for performing memory operations that
perform store and move operations synchronously with memory.

The synchronous load instructions (synld) loads a word from a register into memory. When this
instruction is performed, the processor waits until a condition code bit is set in the arithmetic controls,
indicating that the operation has been completed, before it begins executing the next instruction.

The synchronous move instructions (synmov, synmovl, and synmovq) perform synchronous moves
of ‘data from one location in memory to another.

These instructions are used primarily for sending IAC messages, as described in Section 12.

5.16.2 Decimal

The following three instructions are provided for use in decimal-arithmetic algorithms:

3-53



mtel 80960KB PROGRAMMER’S REFERENCE

dmovt move and test decimal
daddec decimal add with carry
dsubc ‘decical subtract with carry

The instructions operate on 32-bit decimal operands that contain an 8-bit, ASCII-coded decimal in
the least-significant byte of the word (as shown in Figure 11).

The dmovt instruction moves a decimal operand from one register to another and tests the least
significant byte of the operand to determine if it is a decimal digit (0 to 9). It sets the condition code
according to the results of the test: 010, if the operand contains a decimal digit and 000, otherwise.

The daddc and dsubc instructions operate similarly to the addc and subc instructions. They add or
subtract two decimal digits plus bit 1 of the condition code (used as a carry-in bit). If the operation
produces a decimal carry, the condition code is set accordingly. The subtraction operation is carried
out in 10’s complent arithmetic.

These instructions can be used iteratively to add or subtract decimal values of any length.

With the 80960KB processor, the most efficient method of multiplying or dividing decimal numbers
isto convert them into extended-real numbers and use the mulr and divr instructions. Decimal values
of up to 18 decimal digits can be handled with this technique.

6.0 PROCESSOR MANAGEMENT AND INITIALIZATION

This section describes the facilities for initializing and managing the operation of the 80960KB
processor. Included is a description of the processor-management facilities and the steps required to
initialize the processor. Appendix D gives a listing of the necessary 80960KB code to initialize the
processor. :

6.1 OVERVIEW OF PROCESSOR MANAGEMENT FACILITIES

This section and sections 7, 8, 9, and 12 describe the 80960KB’s processor-management facilities.
These facilities are primarily software-related, although some hardware considerations are also
discussed. ‘ :

For the purpose of discussion in these sections, it assumed that the processor is going to execute a
program made up of a system kernal (or executive) and applications code. This program may be
located in ROM or RAM.

Such a program has the following facilities available to it to initialize, communicate with, and control
the processor:

¢ Instruction List

¢ System Data Structures
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e Interrupts
e IACs
¢ Faults

These facilities allow system hardware and the kernel to initialize the processor and initiate
instruction execution. They also provide software or external agents with methods of interrrupting

the processor to service external I/O devices.

The following paragraphs give an overview of these processor-management facilities.

6.1.1 Instruction List

At the most rudimentary level, the processor is controlled through a stream of instructions that the
processor fetches from memory and executes one at a time. Once the processor is initialized, it begins

executing instructions and continues until it is stopped.

6.1.2 System Data Structures

The processor defines several system data structures that reside in memory. These data structures
(shown in Figure 13) offer a means of configuring the processor to operate in a specific way.

PROCESSOR > INITIAL 1 INTERRUPT
MEMORY TABLE
IMAGE
(IM1)
INTERRUPT
STACK
FAULT TABLE
-1  SYSTEM 1 SUPERVISOR
PROCEDURE STACK
TABLE
STACK POINTER =8| | OCAL
LOCATED IN LOCAL PROCEDURE
REGISTER i STACK

270647-12

Figure 13. System Defined Data Structures
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The system data structures can be located anywhere in the processor’s address space. The processor
gets pointers to most of these data structures from the initial memory image (IMI). The IMI is
described later in this section in “Initial Memory Image”.

The interrupt table provides pointers to interrupt-handling procedures. The interrupt vector numbers
act asd indices into this table. For the purpose of handling interrupts, a separate interrupt stack is
maintained in the address space. The interrupt mechanism'is described in Section 7. :

The fault table provides pointers to fault-handling procedures. When the processor detects a fault,
it generates a fault vector number internally that provides an index into the fault table. The fault
mechanism is described in Section 8. :

The system procedure table contains pointers to the kernel procedures, which are accessed using the
system call (calls) mechanism. The system table structure is described in Section 3, “System
Procedure Table”.

The processor uses two stacks for procedures calls: the local procedure stack and the (optional)
supervisor stack. These stacks are described in Section 3.

The processor also contains a register, called the process controls register, that it uses to store
information about the current state of the processor and the program it is executing. The process
controls are described later in this section under “Process Controls”.

6.1 .3 Interrupts

The procéssor defines two methods of asynchronously requesting services from the processor:
interrupts and IAC messages. Interrupts are the more common of the two.

An interrupt is a break in the control flow of a program so that the processor can handle a more urgent
chore. Interrupt requests are generally sent to the processor from an external source, often to request
I/O services. When the processor receives an interrupt request, it temporarily stops work on its
current task and begins work on an interrupt-handling procedure. Upon completion of the interrupt-
handling procedure, the processor generally returns to the task that was interrupted and continues
work where it left off. ~

Interrupts also have a priority, which the processor uses to determme whether to service the interrupt
immediately or to postpone service until a later time.

6.1.4 IACs

The 80960KB processor provides an alternate method of communicating with other agents on the
system bus are able to communicate with the processor through messages that are exchanged in a
reserved section of memory.
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Like interrupts, IACs are used to request that the processor stop work on its current task and begin
work on another task. However, where an interrupt generally causes a temporary break in the
execution of a program, an IAC often causes a permanent change in the control flow of the processor.

The IAC mechanism is described in Section 12.

6.1.5 Faults

While executing instructions, the processor is able to recognize certain conditions that could cause
it to return an inappropriate result or that could cause it to go down a wrong and possibly disastrous
path. One example of such a condition is a divisor operand of zero in a divide operation. Another
example is an instruction with an invalid opcode. These conditions are called faults.

The processor handles faults almost the same way that it handles interrupts. When the processor
detects a fault, it automatically stops its current processoring activity and begins work on a fault-
handling procedure.

6.2 PROCESS CONTROLS

The process-controls word (shown in Figure 14) contains miscellaneous pieées of information to
control processor act1v1ty and show the current state of the processor. The various functions of this
field are described in the following paragraphs.

31 ) 21 20 1615141312 1110 9 8 10

| NENTENNSN\EE
A | I A X “LTRACE ENABLE

EXECUTION MODE
RESUME

TRACE-FAULT PENDING
STATE

PRIORITY

INTERNAL STATE

w RESERVED INITIALIZED TO 0

270647-13 v

Figure 14. Process-Controls Word

The execution mode flag determines whether the processor is operating in the user mode (clear) or
supervisor mode (set). The processor automatically sets this bit on a supervisor call and clears iton
a return from supervisor mode.

The priority field determines the priority (from 0 to 31) of the processor. When the processor is in
the executing state, it sets its priority according to this value.
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The state flag determines the state of the processor. The encoding of this bit is shown in Table 12.

Table 12. Encoding of Processor State Field

State Processor

Field State

0 Executing

1 Interrupted

This bit tells software whether the processor -
* is currently executing a program 0 or

¢ has been interrupted so it can service an mterrupt (1)

The trace-enable and trace-fault-pending flags control tracing. The trace-enable field determines
whether trace faults are to be generated (set) or not-generated (clear). The trace-fault-pending field

is aflag that the processor uses to determine if a trace event has been detected (set) or not (clear). The

use of these fields is discussed in detail in Section 9.

The resume flag signals the processor that an instruction has been suspended. The processor sets this
flag whenever it suspends an instruction to handle an interrupt or fault. On a return from the interrupt
or fault handler, the processor checks this flag and performs an instruction resumptlon action if the
flag is set.

All of the bits in the process controls are set to zero as part of the initialized procedure. Bits 2 through
8,11,13,15,and 21 through 31 are reserved. These bits should not be altered following initialization.

6.2.1 Changing the Process Controls
The kernel can change the process controls using any of the following three methods:

»  Modify-process-controls instruction (modpc)
*  Alter the saved process controls prior to a return from an interrupt handler

*  Alter the saved process controls prior to a return from a fault handler

The modpc instruction reads and modifies the process controls cached in the processor.

In the latter two methods, the kernel changes the process controls in the interrupt or fault record that
is saved on the stack. On the return from the interrupt or fault handler, the modlfled process controls

are copied into the processor’s internal process controls.

Note

Changing the saved process controls by means of a fault handler can only be used if the fault handler was
invoked by means of an implicit supervisor call.
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When the process controls are changed as described above, the processor acts on the changes as soon
as it receives the new information, except for the following situation.

If the modpc instruction is used to change the trace-enable flag, the processor does not guarantee to
act on the change until after up to four more instructions have been executed.

6.3 PRIORITIES

The processor defines a priority mechanism for determining the order in which programs, interrupts,
and IACs are worked on. Priorities range from 0 to 31, with 31 being the highest priority. Each
interrupt vector is assigned a priority. Also, when the processor is executing a program, it sets its
priority according to the priority field of the process controls.

Interrupt priorities serve two functions. First, they determine if the processor will service an interrupt
immediately or delay serv1cmg it with respect to its current prlorlty Second, they determine which
interrupt of several interrupts is serviced first.

When the processor receives an IAC, it always services it immediately (i.e., treats the IAC as if it has
apriority of 31). A mechanism is provided that allows priorities to be assigned to IACs. When using
this mechanism, external hardware is required to intercept all IACs sent to the processor and to check
their priority. This hardware then determines whether to send the IAC to the processor for servicing
or delay it according to the current priority of the processor .

6.4 PROCESSOR STATES

The processor has four different operating states: executing, interrupt, stopped, and stopped-
interrupted. The processor is placed in one of two states (executing or stopped) at initialization. After
that, the processor and software control the processor’s state.

The processor can switch between the executing and interrupted states or between the stopped and
stopped-interrupted states. However, the processor never switches from the executing state to the
stopped state, unless it detects a series of fault ocnditions that it cannot handle.

Software can change the state of the processor in either of two ways: (1) issue a reinitialize IAC or
(2) issue a freeze IAC. The reinitialize IAC forces the processor to reread the pointers from the IMI
and begin executing instructions from a new IP. The freeze IAC forces the processor into the stopped
state.

6.4.1 Executing and Interrupted State
In the executing state, the processor is executing the program.

If the processor is interrupted while in the executing state, it saves the current state of the program,
switches to the interrupt state, and services the interrupt. Upon returning from the interrupt handler,
the processor resumes work on the program.
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6.4.2 Stopped and Stopped-Interrupted States

In the stopped state the processor ceases all activity. The only tasks it can perform while in this state

are to service an interrupt or an IAC. While servicing an interrupt, the processor switches to the

stopped-interrupt state. It then switches back to the stopped state upon completion of the interrupt

routine. Likewise, while servicing an IAC, the processor switches to the stopped-interrupted state.
If the JAC handling action does not result in a change in the processor’s stte, the processor switches

back to the stopped state when it finishes the IAC handling action.

The only way to get the processor out of the stopped state (other than to service an interrupt) is to
reinitialize the processor, either with a hardware reset or by sending it an external reinitialize IAC.

6.5 INSTRUCTION SUSPENSION

When the processor is interrupted while it is in the midst of executing an instruction, it does one of
three things before it services the interrupt:

It completes the instruction.

2. It terminates the instruction and sets the processor state so that it is as if execution of that
instruction had not yet begun.

3. Itsuspends the instruction and saves the necessary resumption information so that execution of
the instruction can be continued when the processor begins work on the program again. This
course of action is generally reserved for instructions that have a long execution time and that
alter the internal and external processor state as they execute.

Which of these steps the processor takes depends on the instruction being executed. However,
whichever step it takes is transparent to the software. The processor automatically saves the
necessary state information so that work on the program can be resumed with no loss of information.

Refer to the section 7, “Interrupt Handling Action”, for more information on how resumption
information is saved when an interrupt is services.

6.6 MEMORY REQUIREMENTS

The processor provides a 232-byte address space. This address space can be mapped to read-write
memory, read-only memory, and memory-mapped I/O. (The processor does not provide a dedicated,
addressable 1/0 space.) '

The address space is linear (or flat): there are no subdivisions of the address space such as segments.
For the purpose of memory management, an external memory management unit (MMU) may
subdivide memory into pages or restrict access to certain areas of memory to protect kernel code and
data. But from the point of view of the processor, the address space is linear.
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All of the address space is available for general use except the upper 16M bytes (FF000000 , to
FFFFFFFF, ), which are reserved for special functions. (These functions are described in Section
12).

An address in memory is a 32-bit value in the range 0 to FFFFFFFF, . It can be used to reference a
single byte, 2 bytes, 4 bytes, 8 bytes, 12 bytes or 16 bytes of memory depending on the instruction
being used. (Refere to the descriptions of the load and store instructions in Section 10 for information
on multiple-byte addressing.)

6.6.1 Memory Restrictions

- The processor requires that the memory to wﬁich the address space is mapped has the following
capabilities.

» It must be byte addressable.

o It must support burst transfers (i.e., transfers of blocks of contiguous bytes up to 16 bytes in
length).

» Itmustguarantee indivisible access (read or write) for memory addresses that fall within 16-byte
boundaries.

« It must guarantee atomic access for memory addresses that fall within 16-byte boundaries.

The latter two capabilities are required to allow multiple processor to share a common memory
conveniently.

An indivisible access guarantees that a processor reading or writing a set of memory locations will
complete the operation before another processor can read or write the same location. The processor
requires indivisible access within an aligned, 16-byte block of memory.

An atomic access is read-modify-write operation. Here external logic must guarantee that once a
processor beings a read-modify-write operation on a set of memory locations, it is allowed to
complete the operation before another processor is allowed to access the same location.

As described above, the processor requires that when one processor is performing an atomic
operation within an aligned, 16-byte block, other processors are delayed from performing another
atomic operation within that block until the first operation has been completed.

The 80960KB processor provides two features to aid in implementing the memory requirements
described above: SIZE lines and a LOCK line on the local bus.

The SIZE lines indicate the length of a memory ZVICCCSS‘ in bytes. These lines can be used to specify
1-,2-,4-,8-,12-, or 16-byte lengths. When making the multiple-byte access, the processor thus sends
the memory controller a base address, on the address lines, and a length on the SIZE lines.
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The LOCK line is used to synchronize atomic operations. When a processor performs an atomic
operation, it first examines the LOCK line. If it is asserted, the processor waits until the line is not
asserted (i.e., spins on the LOCK line). If the line is not asserted, the processor asserts the LOCK line
when it is performing an atomic read and deasserts the line when it performs the companion atomic
Write.

The LOCK line mechanism allows only one atomic operation to be carried out in memory at one time.

6.7 SOFTWARE REQUIREMENTS FOR PROCESSOR MANAGEMENT

The processor-management facilities described earlier in this section allow the processor to be
configured and operated in several ways. This section lists the data structures that the kernel must
supply to operate the processor.

To use the processor, the kernel must provide the following items:

« IMI

e Other System Data Structures
e Address Space

e Stacks

+ Code

The IMI comprises the minimum data structures that the processor needs to initialize the system.

As part of the initialization procedure, a more complete set of system data structures are established
in memory. These data structures include an interrupt table and a fault table. If the system call
mechanism is going to be used, a system procedure table is required.

Two stacks are also required: an interrupt stack and a local (or user) procedure stack. The initial stack
pointer for the interrupt stack is given in the IMI. The initial stack pointer (SP) for the local-procedure
stack is given in local register rl; the initialization code is required to establish the SP value in this
register.

If the supervisor call mechanism is to be used, a supervisor stack must also be provided. The initial
stack pointer for this stack is given in the system-procedure table. The supervisor stack can be placed
anywhere in the address space.

Note

“Hints on Using the User-Supervisor Protection Model” in section 3 describes an application of the user-
supervisor protection model, in which the processor is always in supervisor mode. When using this
application, the local stack and the supervisor stack are the same. The processor gets the initial stack
pointer for this stack from register rl.
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Finally, three levels of code are required: initialization code, kernel code, and applications code. The
initialization code is part of the IMI. (Appendix D gives an initialization code example.) The starting
IP for the initialization code is also provided in the IMI.

6.8 PROCESSOR INITIALIZATION

This section describes how to initialize the 80960KB processor. It defines the mechanism that the
processor uses to establish its initial state and begin instruction execution. It also describes some
general guidelines for writing code to complete the initialization of the processor for specific
applications.

Note

The 80960 architecture does not define an initial memory image or an initialization procedure. The
following initialization requirements are specific to the 80960KB processor.

6.8.1 Initial Memory Image

The IMI performs three functions for the processor: (1) it provides check-sum words that the
processor uses in its self-test routine at start-up, (2) it provides pointers to the system data structures,
and (3) it provides scratch space that the processor uses to perform certain internal functions. Figure
15 shows the structure of the IMI.

The IMI is made up of four parts: the check-sum word, the system address table (SAT), and the
processor control block (PRCB), and the initialization code. In an embedded application, all of the
parts of this image will generally be held in ROM, except the scratch space of the PRCB. For this
reason, the PRCB should be copied from ROM to RAM after system initialization. (The reinitialize
IAC, described in Section 12, is used to give the processor the PRCB pointer for the relocated PRCB.)

6.8.2 Check-Sum Words

The check-sum words must be in memory locations 00000000, to 0000001F, . The first of these
words is a pointer to the base of the SAT. The second word is a pointer to the base of the PRCB. The
fourth word is the instruction pointer to the first instruction of the initialization code.

The remaining words (word 3 and words 5 through 8) are check words, which must be chosen such
that the one’s complement of the sum of the eight words plus FFFFFFFF  equals 0.

6.8.3 System Address Table

The SAT is 158 bytes in size and can be located anywhere in the address space. It has four required
entries. The word beginning at byte 136 must contain a pointer to the base (first byte) of the SAT. This
pointer is identical to the pointer given in the first word of the check-sum words. The word beginning
at byte 152 must contain a pointer to the base of the system procedure table. The words beginning
at byte 140 and 156 must contain 00FCOOFB . and 304400FB, , respectively.

16’

All of the other words in the SAT are preserved and can be used by software.
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Figure 15. Initial Memory Image
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6.8.4 Processor Control Block

The PRCB is 174 bytes long and can also be located anywhere in the address space. It has seven
required entries and one reserved space. '

Bits O through 30 of the word beginning at byte 4 must be zero.

The write-external-priority flag (bit 31 of the word beginning at byte 4) instructs the processor to
write the priority of the processor to the IAC message control field whenever an interrupt (not caused
by anIAC) or the execution of the modpc instruction occurs. When this bit is set, the write-external-
priority mechanism is enabled; when the bit is clear, the mechanism is disabled. The use of this flag
is described in Section 12.

The interrupt table pointer points to the first byte of the interrupt table. The interrupt stack pointer
points to the top (first available byte) of the interrupt stack.

The words beginning at bytes 32 and 36 must each contain 0000027F 6
The fault table pointer points to the first byte of the fault table.
The word beginning at byte 44 must contain all zeros.

The processor uses the scratch space in the IMI for internal functions. This field should be set to all
zeros at initialization or reinitialization of the processor and not accessed by software thereafter.

The remaining fields in the PRCB (bytes 8 through 19, bytes 28 through 31, and bytes 48 through
79) are reserved. They should be set to all zeros at initialization or restart and not accessed by software
thereafter.

6.8.5 Initialization Code

The initial instruction list that the processor begins executing following its self test can be located
anywhere in the address space.

6.8.6 Changing the Initial Memory Image

At initialization or on a reinitialize processor IAC, the processor reads the pointers from the IMI in
memory and caches them.

In general, to change any of the IMI fields that have been cached on the processor chip, the kernel
must first modify the IMI in memory, then reinitialize the processor using the reinitialize processor
IAC. The processor then rereads the IMI and reloads the cached fields in its internal cache.
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6.8.7 Building a Mémory Image

The IMI shown in Figure 15 contains the minimum data structures required for the processor to
initialize itself and begin executing code. To build a useful system, however, additional data
structures are required, such as an interrupt table, a fault table, a system procedure table, a set of kernel
procedures, a set of stacks, and a heap. Some of these data structures can be located in ROM along
with the IMI; however, others must be in RAM because they must be writable. :

Table 13 lists the various system data stfuctures and shows which can be in ROM and which must
be in RAM. The following paragraphs give the system limitations if a data structure is included in
ROM. , :

Table 13. ROM and RAM Resident Data Structures

Data Structure May Be in ROM May Be in ROM Must Be in RAM
with Limitations

IMI X

PRCB X

SAT X

Interrupt table : X

Fault table . X

Kernel Procedures X

Stacks and heap X

All of the PRCB except the scratch space area must be in ROM. The scratch space must be in RAM.

The interrupt table must be in RAM for the processor to operate properly, because it contains the
interrupt pending fields, which the processor must be able to write to.

The fault table can be in ROM, providing it will never be necessary to relocate the fault handler
routines.

The kernel procedures can be in either ROM or RAM or both, depending on tﬁc design of the kernel.

6.8.8 Typical Initialization Scenario

Initialization of the 80960KB processor typically is handled in two stages. In the first stage of
initialization the processor performs a self test and reads pointers from the IMI. During the second
stage, the processor executes initialization code designed to build the remainder of the memory image
so that execution of applications code can begin.
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6.8.9 First Stage of Initialization

The following procedure shows the steps that system hardware and the processof go through in the
first stage of initialization. The algorithm in Figure 16 gives the details of this procedure.

assert FAILURE pin;
perform self test;
if self test fails
then enter stopped state;
else
deassert FAILURE pin;
enter predefined state;
if STARTUP pin =0
then enter stopped state;
else
x ¢~ memory(0); read 8 words beginning
at address 0
AC.cc < 000,;
temp <~ FFFFFFFF, c add_with_carry x(0);
temp « temp add_with_carry x(1);
temp < temp add_with_carry x(2);
temp ¢« temp add_with_carry x(3);
temp <— temp add_with_carry x(4);
~ temp ¢« temp add_with_carry x(5);
temp ¢ temp add_with_carry x(6);
temp < temp add_with_carry x(7);
if temp #0
then »
assert FAILURE pin;
enter stopped state;
else
prcb_address < memory(4);
IP < memory (12)
fetch IMI;
processor.priority « 31;
processor.state < interrupted;
FP < IML.interrupt_stack_pointer;
clear any latched external interrupt/IAC
signals;
begin execution;
endif;,
endif;
endif;

Figure 16. Algorithm for First Stage of Initialization Procedure
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Hardware asserts the RESET pin on the processor.

2. The processor samples LPN to get its locals processor (1 or 0). (LPN and STARTUP are signals
that come from multiplexed information received on several processor pins.)

3. Theprocessor asserts the FAILURE pin and performs a self test. If the processor passes the self
test, it deasserts the FAILURE pin.

4. The processor samples START“UP to determine whether it is the initializing processor (1) or not
(0). If the processor is the initializing processor, it continues with the initialization procedure;
if it is not, it goes into the stopped state. (In multiprocessing systems, all processors except the
initializing processor are put in the stopped state.)

The processor reads the 8 check-sum words and checks that the check sum is 0. .

Using the contents of the check-sum words, the processor determines the location of the SAT,
the PRCB, and the first instruction to be executed.

The processor sets its process priority to 31 (highest possible) and its state to interrupted.

8. The processor clears any latched external interrupt or IAC signals. This means that the processor
will not service any interrupts or IACs prior to beginning instruction execution.

9. The processor begins execution of the initialization instruction list.

After self test, the processor establishes its own state. For the initializing processor this state is
interrupted; for any other processors in the system this state is stopped. Also atinitialization, the trace
controls are set to zero; the process controls are set to zero (except for the execution mode, which is
set to supervisor, and the priority, which is set to 31); and the breakpoint registers are disabled.

Since the processor places itself in the interrupted state during the first stage of initialization, the
initialization code is essentially a special interrupt-handler procedure.

6.8.10 Second Stage of Initialization

The processor activity during the second stage of initialization, which occurs once the processor
begins instruction execution, is up to software. In general, this stage of initialization is used to copy
to create additional date structure in memory, such as the interrupt table, the system-procedure table,
and the fault table (if not in the initial memory image), and the kernel procedures.

Once these jobs are completed, the processor can then begin executing applications code.

Appendix D gives an example of the 80960KB code that mlght be used to carry out this second stage
of initializatin.

A common initialization technique is to create a new PRCB and interrupt table in RAM along with
the other system data structures that are placed in memory in the second stage of initialization. The
processor is then reinitialized to point to the PRCB and interrupt table. (The code in Appendix D uses
this technique.)

3-68



intel 80960KB PROGRAMMER'S REFERENCE

The processor is reinitialized using the reinitialize IAC. This reinitialize IAC message includes new
pointers to the SAT and PRCB. The processor reads the new PRCB, then begins instruction execution
according to the control information contained in the PRCB.

7.0 INTERRUPTS

This section describes the 80960KB processor’s interrupt handling facilities. It also describes how
interrupts are signaled.

7.1 OVERVIEW OF THE INTERRUPT FACILITIES

An interrupt is a temporary break in the control stream of a program so that the processor can handle
another chore. Interrupts are generally request. from an external source. The interrupt request either
contains a vector number or else points to a vector that tells the processor what chore to do while in
the interrupted state. When the processor has finished servicing the interrupt, it generally returns to
the program that it was working on when the interrupt occurred and resumes execution where it left
off.

The processor provides a mechanism for servicing interrupts, which uses an implicit procedure call
to a selected interrupt handling procedure, called an interrupt handler.

When an interrupt occurs, the current state of the program is saved. If the interrupt occurs during an
instruction that requires many machine cycles, the instruction state is also saved and execution of the
" instruction is suspended.

The processor then creates a new frame on the interrupt stack and executes an implicit call to the
interrupt handler selected with the interrupt vector.

Upon returning from the interrupt handler, the processor switches back to the program that was
running when the interrupt occurred, restores it to the state it was in when the interrupt occurred, and
resumes work on it.

Another feature of this interrupt handling mechanism is that it allows interrupts to be prioritized. If
an interrupt is signaled that has the same or a lower priority than the processor ’s current priority, the
processor will save the interrupt vector and service the interrupt at a later time. Interrupts that are
waiting to be serviced are called pending interrupts.

7.2 SOFTWARE REQUIREMENTS FOR INTERRUPT HANDLING

To use the processor’s interrupt handling facilities, software must provide the following items in
memory:

¢ Interrupt Table
*  Interrupt Handler Routines

e Interrupt Stack
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These items are generally established in memory as part of the initialization procedure. Once these
items are present in memory and pointers to them have been entered in the appropriate system data
structures, the processor then handles interrupt automatically and independent from software.

The requirements for these items are given in the following sections.

7.3 VECTORS AND PRIORITY

Each interrupt vector is 8 bits in length, which allows up to 256 unique vectors to be defined. In
practice, vectors 0 through 7 cannot be used, and vectors 244 through 251 are reserved and should
not be used by software.

Each vector has a predefined priority, which is defined by the following expression:
priority = vector/8

Thus, at each priority level, there are 8 possible vectors (vectors 8 through 15 have a priority of 1,
vectors 16 through 23 a priority of 2, and so on to vectors 246 through 255, which have a priority of
310).

The processor uses the priority of an interrupt to determine whether or not to service the interrupt
immediately or to delay service. If the interrupt priority is greather than the processor’s current
priority, the processor services the interrupt immediately; if the interrupt priority is equal to or less
than the processor’s current priority, the processor saves the interrupt vector as a pending interrupt
so that it can be serviced at a later time.

A priority-31 interrupt is always serviced immediately.

Note that the lowest program priority allowed is 0. If the current program has a 0 priority, a priority-
0 interrupt will never be accepted. This is why vectors 0 through 7 cannot be used. In fact, there are
no entries provided for these vectors in the interrupt table.

7.4 INTERRUPT TABLE

The interrupt table contains instruction pointers (addresses in the address space) to interrupt handlers.
It must be aligned on a word boundary. The processor determines the location of the interrupt table
by means of a pointer in the IML

As shown in Figure 17, the interrupt table contains one entry (i.e., one pointer) for each allowable
vector. The structure of an interrupt-table entry is given at the bottom of Figure 17. Each interrupt
procedure must begin on a word boundary, so the two least-significant bits of the entry are set to 0.

The first 36 bytes of the interrupt table are used to record pending interrupts. This section of the table
is divided into two fields: pending priorities (byte-offset O through 3) and pending interrupts (byte-
offset 4 through 35).
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Figure 17. Interrupt Table

The pending priorities field contains a 32-bit string in which each bit represents an interrupt priority.
The bit number in the string represents the priority number. When the processor posts a pending
interrupt in the interrupt table, the bit corresponding to the interrupt’s priority is set. For example,

if an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set.

The pending interrupt field contains a 256-bit string in which each bit represents an interrupt vector.
For example, byte-offset 4 is reserved, byte-offset 5 is for vectors 8 through 15, byte-offset 6 is for
vectors 16 through 23, and so on. When a pending interrupt is logged, its corresponding bit in the

pending interrupt field is set.
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This encoding of the pending priority and pending interrupt fields permits the processor to first check
if there are any pending interrupts with a priority greater than the current program and then to
determine the vector number of the interrupt with the highest priority. Software should set these fields
to 0 at initialization and not access these fields after that.

Note
Refer to the section, “Handling Pending Interrupts”, later in this section for a description of the
processor’s pending interrupt mechanism.

7.5 INTERRUPT HANDLER PROCEDURES

An interrupt handler is a procedure that performs a specific action that has been associated with a
particular interrupt vector. For example, a typical job for an interrupt handler is to read a character
from a keyboard.

The interrupt handler procedure can be located anywhere in the address space. Each procedure must
begin on a word boundary.

The processor execution mode is always switched to supervisor while an interrupt is being handled.

When an interrupt-handler procedure is called, the states of the processor controls and arithmetic
controls for the interrupted program are saved. However, the interrupt handler shares the other
resources of the interrupted program, in particular the global registers and the address space. This
sharing of resources imposes one important restriction on the interrupt handler procedures.

The interrupt handler procedures must preserve and restore the state of any of the resources that it
uses. For example, the processor allocates a set of local registers to the interrupt handler, just as it
does on an explicit procedure call. If the interrupt handler needs to use the global or floating-point
registers, however, it should save their contents before usmg them and restore them before returning
from the interrupt handler.

7.6 INTERRUPT STACK

The interrupt stack can be located anywhere in the address space. The processor determmes the
location of the interrupt stack by means of a pointer in the IMI.

The interrupt stack has the same structure as the local procedure stack described in Section 3,
“Procedure Stack”.

7.7 INTERRUPT HANDLING ACTIONS

When the processor receives an interrupt, it handles it automatically. The processor takes care of
saving the processor state, calling the interrupt-handler routine, and restoring the processor state once
the interrupt has been serviced. Software support is not required.
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The following section describes the actions the processor takes while handling interrupts. It is not
necessary to read this section to use the interrupt mechanism or write an interrupt handler routine.
This discussion is provided for those readers who wish to know the details of the mtermpt handling
mechanism.

7.7.1 Receiving an Interrupt
Whenever the processor receives an interrupt signal, it performs the folfowing action:

1. It temporarily stops work on its current task, whether it is working on a program or another
interrupt procedure.

2. Itreads the interrupt vector.
It compares the priority of the vector with the processor’s current priority.

4. If the interrupt priority is higher than that of the processor, the processor services the interrupt
immediately as described in the next sections.

5. If the interrupt priority is equal to or less than that of the processor, the processor sets the
appropriate priority bit and vector bit in pending interrupt record and continues work on its
current task.

7.7.2 Servicing an Interrupt

The method that the processor uses to service an interrupt depends on the state the processor is in
when it receives the interrupt. The following sections describe the interrupt handling actions for
various states of the processor. In all of these cases, it is assumed that the interrupt priority is higher
than that of the processor and will thus be serviced immediately after the processor receives it. The
handling of lower priority interrupts is described later in “Pending Interrupts®.

7.7.3 Executing State Interrupt

When the processor receives an interrupt while it is in the executing stae (i.e. executing a program),
it performs the following actions to service the interrupt; this procedure is the same regardless of
whether the processor is in the user or the supervisor mode when the interrupt occurs:

1. The processor saves the current state of process controls and arithmetic controls in an interrupt
record on the stack that the processor is currently using. This stack can be the local- -procedure
stack or the supervisor stack. (The interrupt record is described in the followmg section. )

2. Ifthe execution of an instruction was suspended, the processor includes a resumption record for
the instruction in the current stack and sets the resume flag in the saved process controls. (Refer
to section 7, “Instruction Suspension”, for a discussion of the criteria for suspending instruc-
tions. '

3. The processor switches to the interrupted state.

4. The processor sets the state flag in the process controls to interrupted, its execution mode to
supervisor, and its priority to the priority of the interrupt. Setting the processor priority to that
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of the interrupt insures that lower priority interrupts can not interrupt the servicing of the current
interrupt. :

5. - Also in its internal process controls, the processor clears the trace-fault-pending and trace-
enable flags. Clearing these flags allows the interrupt to be handled without trace faults being
raised.

The processor allocates a new frame on the interrupt stack and switches to the interrupt stack..
The processor sets the frame return status field (associated with the PFP) to 111,.

The processor performs an implicit call-extended operation (similar to that performed for the
callx instruction). The address for the procedure taht is called is that which is specified in the
interrupt table for the specified interrupt vector. ‘

Once the processor has completed the interrupt procedure, it performs the following action on the
return:

1. The processor deallocates the stack frame from the interrupt stack and switches to the local or
supervisor stack (whichever one it was using when it was interrupted).

2. The processor copies the arithmetic controls field from the interrupt record into its arithmetic
controls register.

3. Theprocessor copies the process controls field from the interrupt record into its internal process
controls.

4. If the resume flag of the process controls is set, the processor copies the resumption record from
the interrupt record to the resumption record field of the PRCB.

5. The processor checks the interrupt table for pending interrupts that are higher then the priority
of the program being returned to. If a higher-priority pending interrupt is found, it is handled as
if the interrupt occurred at this point.

6. Assuming that there are not pending interrupts to be serviced, the processor switches to the
executing state and resumes work on the program.

7.7.4 Interrupt State Interrupt

If the processor receives an interrupt while it is servicing an interrupt, and the new interrupt has a
higher priority than the interrupt currently being serviced, the current interrupt-handler routine is
interrupted. Here the processor performs the same action to save the state of the interrupted interrupt-
handler routine as is described at the beginning of this section. Here, the interrupt record is saved on
the top of the interrupt stack prior to the new frame that is created for use in servicing the new
interrupt.

7.7.5 Interrupt Record

The processor saves the state of an interrupted program (or interrupt-handler) routine in an interrupt
record. Figure 18 shows the structure of this interrupt record.
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Figure 18. Storing of an Interrupt Record on the Stack
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The resumption record within the interrupt record is used to save the state of a suspended instruction.
If no instruction is suspended, the resumption record is not created.

7.7.6 Stopped State Interrupt

The processor can also be interrupted while in the stopped state. The processor handles such
interrupts in essentially the same way that it handles interrupts that occur while the processor is in
the executing state, with the following exception. When the processor allocates the new frame on the
interrupt stack, it sets the frame return field to 1102. This causes the processor to revert to the stopped
state when the processor returns from the interrupt-handler procedure.

7.7.7 Stopped-Interrupted State Interrupt

If the processor receives an interrupt while it is in the stopped-interrupted state, it handles the
interrupt just as it would if it occurred in the interrupted state.

7.7.8 Pending Interrupts

As was described earlier in this section, the processor provides amechanism for evaluating interrupts
according to their priority. If the interrupt priority is equal to or lower than the processor’s current
priority, the processor does not service the interrupt immediately. Instead, it posts the interrupt in the
pending interrupt section of the interrupt table. The processor checks the interrupt table at specific
times and services those interrupts that have a higher priority than its current priority. This pending
interrupt mechanism provides two benefits.

1. The ability to delay the servicing of low priority interrupts (by posting them in the pending
interrupt section of the interrupt table) allows the processor to concentrate its processing activity
on higher priority tasks.

2. In a system that uses two or more 80960KB processors, both processors can share the same
interrupt table. This interrupt-table sharing allows the processors to share the interrupt handling
load.

The following paragraphs describe how the processor handles pending interrupts.

Note
The 80960 architecture defines the section of the interrupt table for storing pending interrupts and a
mechanism for checking the interrupt table for pending interrupts. The method used.for posting interrupts
to the interrupt table and circumstances under which the processor check the interrupt table for pending
interrupts is not defined.

In the following description of the pending interrupt mechanism, the information given in the sections
titled “Posting Pending Interrupts” and “Checking for Pending Interrupts” is specific to the 80960KB
processor. The information given in the section titled “Handling Pending Interrupts” is defined in the
80960 architecture and should be common in all processors that implement this part of the architecture.
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7.7.9 Posting Pending Interrupts

An interrupt can be posted in the pending-interrupt record of the interrupt table in either of the
following two ways: ’

1. The processor receives an interrupt with a priority equal to or lower than that of the program the
processor is currently working on. The processor then automatically posts the interrupt in the
pending-interrupt record.

2. Thekernel can set the desired pending-interrupt and pending-priority bits in the interrupt table.

Using the first method, the processor performs an atomic read/write operation thatlocks the interrupt
table until the posting operation has been completed. Locking the interrupt table prevents other
agents on the bus from accessing the interrupt table during this time.

The second method of posting an interrupt is risky, because it does not use this locking technique.
(The processor’s atomic instructions are not able to perform a locking operation that spans several
instructions.) This method will work only if the kernel can insure the following:

« that no external 1/O agent will attempt to post a pending interrupt simultaneously with the
processor, and

«  thataninterrupt cannot occur after one bit (e.g. the pending priority bit) of the pending-interrupt
record is set but before the other bit (the pending interrupt vecor) is set.

7.7.10 Checking for Pending Interrupts
The processor automatically checks the interrupt table for pending interrupts at the following times:

e After returning from an interrupt-handler procedure

e While executing a modify-process-controls instruction (modpc), if the instruction causes the
program’s priority to be lowered.

e After receiving a test pending interrupts IAC message.

7.7.11 Handling Pending Interrupts

The processor uses the same type of atomic read/write operation to check the interrlipt table for
pending interrupts as it does for posting pending interrupts. Again, this technique prevents other
agents on the bus from accessing the interrupt table until the pending-interrupt check has been
completed. ' '

‘When the processor finds a pending interrupt, it handles it as if it had just received the interrupt. The
handling mechanism is the same as is described earlier in this chapter for interrupts that are serviced
as soon as they are received.

3-77



|nte| 80960KB PROGRAMMER’S REFERENCE

If the processor finds two pending interrupts at the same priority, it services the interrupt with the
highest vector number first.

7.8 SIGNALING INTERRUPTS

Note

The 80960 architecture does not define a mechanism for signaling interrupts to the processor. The
methods of signaling interrupts described in the following section are specific to the 80960KB processor.
i

The 80960KB processor can be interrupted in any of the following five ways:

*  Signal on its interrupt pins

*  Singal on its interrupt pins from an external interrupt controller
*  AnIJAC message from external source

* AnIAC message from a program in the processor

+ A pending interrupt (described earlier in this chapter)

7.8.1 Interrupts From Interrupt Pins

The processor has four interrupt pins, called INTO, INT1, INT2, and INT3. These pins can be
~ configured in either of the following three ways:

~« as four interrupt-signal inputs;

+ astwointerruptinputs and two pins for handshaking with an interrupt controller such as the Intel
8259A Programmable Interrupt Controller; or

« as one IAC input and three interrupt inputs.

A 32-bit, interrupt-control register in the processor determines how these pins are used. Each
interrupt pin is associated with one 8-bit field in the register, as shown in Figure 19.

31 2423 16 15 87 0
L INT3 VECTOR INT2 VECTOR INT1 VECTOR INTO VECTOR |

270647-17

Figure 19. Interrupt-Control Register

If the interrupt pins are to be used as four inputs, a different interrupt vector is stored in each of the
four fields in the interrupt-control register. Then, when an interrupt is signaled on one of the pins, the
processor reads the vector from the pin’s associated field in the register. For example, if an interrupt
is signaled on pin INTO, the processor reads the vector from bits O through 7.

3-78



intel 80960KB PROGRAMMER’S REFERENCE

The processor assumes that the interrupt vectors in the interrupt register are arranged in déscending
order from the INTO field to the INT3 field (e.g., the priority of INTO = INT1 = INT2 > INT3). To
insure that interrupts are handled in the proper order, software should follow this convention.

If the INTO vector field is set to 0, the function of the INTO pin is changed to IAC, and it is used to
signal the processor that an external IAC message has been sent to it. In fact, the INTO pin must be
configured in this manner for the processor to service external IAC messages.

If the INT?2 vector field is set to 0, the functions of the INT2 and INT3 pins are changed to INTR and
INTA, respectively. Here, the INTR pin is used to receive signals from an interrupt controller and the
INTA pin is used to send acknowledge signals back to the controller. When the processor receives
a signal on the INTR pin, it reads an interrupt vector from the least significant 8 bits of its bus, then
sends an acknowledge signal to the controller through INTA. When the INT2 and INT3 pins are
configured in this manner, the processor ignores the INT3 vector field.

Note

Refer to the 80960KB Hardware Designer’s Reference Manual for more information on the use of INT2
and INT3 pins with an interrupt controller.

The interrupt-control register is memory mapped to addresses FF000004,, through FF000007 .
Only the processor can read or write this register using the synchronous load (synld) and synchronous
move (synmov) instructions. External agents on the bus cannot access this register.

The value in the interrupt-control register after the processor is initialized is FF000000, .

7.8.2 IAC Interrupts

The processor can also receive an interrupt request by means of the IAC mechanism. (The IAC
mechanism is described in detail in Chapter 13.) The interrupt IAC message can be sent to the
processor either from an external bus agent, such as an I/O processor or another 80960K B processor,
orinternally as part of the currently running program. The interrupt vector is contained in the interrupt
IAC message. :

As with any other IAC message, the processor receives notice of an external interrupt-IAC message
through the INTO pin, which has been configured as an IAC pin, as described in the previous section.
The processor then reads the IAC message to get the interrupt vector.

A program running on the processor can signal an interrupt through an internal interrupt-IAC
message. An internal IAC is sent to the processor by means of a synchronous move instruction. When
the processor executes a synchronous move to its IAC message space, it signals an IAC message
internally. The processor then reads the IAC message as it would for an external IAC.

8.0 FAULT HANDLING

This section describes the fault handling facilities of the 80960KB processor. The subjects covered
include the fault-handling data structures, the software support required for fault handling, and the
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fault handling mechamsm A reference section that contains detailed information on each fault type
is provided at the end of the section.

8.1 OVERVIEW OF THE FAULT-HANDLING FACILITIES

The processor is able to detect various conditions in code or in its internal state (called “fault
conditions”) that could cause the processor to deliver incorrect to inappropriate results or that could
cause it to head down an undesirable control path. For example, the processor recognizes divide-by-
zero and overflow conditions on integer calculations. It also detects inappropriate operand values,
uncompleted memory accesses, or references to incomplete or non-existent system-data structures.

The processor can detecta fault whileitis executin gaprogram, an interrupt handler, or a faulthandler.
(In this section, when a program is referred to, it generally also means any interrupt handler or fault
handler that may have been invoked while the processor was workmg on the program )

‘When the processor detects a fault, it handles the fault immediately and independently of the program
or handler it is currently working on, using a mechanism similar to that used to service interrupts.

A fault is generally handled with a fault-handling procedure (called a fault handler), which the
processor invokes through an implicit procedure call. Prior to-making the call, the processor saves
the state of the current program and in some cases the state of an incomplete instruction. It also saves
information about the faults, Wthh the fault handler can use to correct or recover from the condition
that caused the fault. ,

If the fault handler is able to recover from the fault, the processor can then restore the program to its
state prior to the fault and resume work on the program. If the fault handler is not able to recover from
the fault, it can take any of several actions to gracefully shut down the processor.

8.2 FAULT TYPES

All of the faults that the processor detects are predefined. These faults are divided into types and
subtypes, each of which is given a number. The processor uses the type number to select a fault
handler. The fault handler then uses the subtype number to select a spec,iﬁc fault-handling procedure.

Table 14 lists the faults that the processor detects, arranged by type and subtype. For convenience,
individual faults are referred to in this chapter by their fault-subtype name. Thus a machine bad-
access fault is referred to as simply a bad-access fault, or an arithmetic mteger over ﬂow fault is
referred to as an znteger overflow fault :

The fifth column of Table 14 shows each fault as it appears in the fault record (the word at offset 40
of the fault record is shown later in this section). :
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Table 14. Fault Types and Subtypes

Fault Type Fault Subtype Fault Record
No./Bit
No. |Name Position | Name
1 Trace Bit 1 Instruction Trace 0xXX01 0002
Bit2 Branch Trace 0xXX01 0004
Bit3 Call Trace 0xXX01 0008
Bit 4 Return Trace 0xXX01 0010
Bit 5 Prereturn Trace 0xXX01 0020
Bit6 Supervisor Trace 0xXX01 0040
Bit 7 Breakpoint Trace 0xXX01 0080
2 Operation 1 Invalid Opcode 0xXX02 0001
2 Unimplemented 0xXX02 0002
4 Invalid Operand 0xXX02 0004
3 Arithmetic 1 Integer Overflow 0xXX03 0001
, 2 Arithmetic Zero-Divide 0xXX03 0002
4 Il-;'lqating Bit0 Floating Overflow 0xXX04 0001
oint
Bit 1 Floating Underflow 0xXX04 0002
Bit2 Floating Invalid-Operation 0xXX04 0004
Bit3 Floating Zero-Divide 0xXX04 0008
Bit4 Floating Inexact 0xXX04 0010
Bit 5 Floating Reserved-Encoding 0xXX04 0020
5 Constraint 1 Constraint Range 0xXX05 0001
2 Privileged 0xXX05 0002
7 Protection Bit 1 Length 0xXX07 0001
8 Machine 1 Bad Access 0xXX08 0001
9 Structural 3 IAC 0xXX09 0003
Note

The 80960 architecture defines a basic set of fault types and subtypes. Processors that provide extensions
to the architecture may recognize additional fault conditions. The encoding of fault types and subtypes
allows any of these extensions to be included in the fault table along with the basic faults. Space in the
fault table will be reserved in such a way that processors that recognize the same fault types and subtypes
will encode them in the same way.

For example, the floating-point faults (fault type 4) are an extension provided in the 80960KB processor
(but not in the 80960K A processor). Any other processors based on the 80960 architecture that also
recognize floating-point faults will also encode them as fault type 4.
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8.3 FAULT-HANDLING METHOD

The processor handles all faults through an implicit procedure call to a fault handler. When a fault
occurs while the processor is executing a program, the processor creates a fault record on its current
stack. This record includes information on the state of the program and data on the fault. If the fault
occurred while the processor was in the midst of executing an instruction, a resumption record for
the instruction may also be saved on the stack.

Following the creation of the fault and resumption records, the processor selects a fault handler from
asystem-data structure called the fault table. It then invokes the fault handler (by means of an implicit
call) and begins executing the handler procedure. As is described later in this section, the fault handler
call can be a local call (call-extended operation), a local system-procedure-table call (local system-
call operation), or a supervisor call.

This same procedure call method is used to handle faults that occur while the processor is servicing
an interrupt or that occur while the processor is working on a fault handler.

8.3.1 Multiple Fault Conditions

It is possible for multiple fault conditions to occur simultaneously. For certain fault types, such as
trace faults or protection faults, bit positions in the fault-subtype field are used to indicate the
occurrence of multiple faults of the same type. As a general rule, however, the processor does not
indicate situations where multiple faults occur. Instead, it records one of the faults and does not report
on the faults that were not recorded.

If a fault occurs while the processor is executing a fault handling routine, the operating of the
processor is not predictable.

8.3.2 Faults and Interrupts

If an interrupt occurs during an instruction that will fault, that has just faulted, or that has faulted while
the processor is in the midst of selecting the fault handler, the processor will handle the fault in either
of the following ways:

e It includes the fault information as part of its interrupt record and services the interrupt
immediately. After it has serviced the interrupt, it handles the fault.

» Itcompletes the selection of the fault handler, then services the interrupt just prior to executing
the first instruction of the fault handler. ‘ :

8.4 SOFTWARE REQUIREMENTS FOR HANDLING FAULTS

To use the processor’s fault-handling facilities, the following system-data structures and procedures
must be present in memory:.
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e Fault Table

e Fault-Handler Procedures
e Interrupt Table

e Interrupt Stack

Software should generally load these items in memory as part of the initialization procedure. Once
they are present in memory and pointers to them have been included in the IMI, the processor then
handles faults automatically and independently from software.

Requirements for the fault table and fault-handler procedures are given in the following sections.

8.5 FAULT TABLE

The fault table provides the processor with a pathway to the fault handlers when the processor is using
the implicit procedure-cal method of handling faults. As shown in Figure 20, there is one entry in the
fault table for each fault type. When a fault occurs, the processor uses the fault type to select an entry
in the fault table. From this entry, the processor then obtains a pointer to the fault handler for the type
of fault that occurred.

The fault handler reads the fault subtype or subtypes from the fault record to determine the
appropriate fault recovery action.

8.5.1 Location of the Fault Table in Memory

The fault table can be located anywhere in the address space. The processor obtains a pointer to the
fault table from the IMI.

8.5.2 Fault-Table Entries

Each entry in the fault table is two words long. As shown in Figure 20, there are two types of fault-
table entries allowed: local-procedure entry and system-procedure-table entry. The entry-type field
determines the entry type.

A local-procedure entry (entry type 00,) provides an instruction pointer (address in the address space)
for the fault handler procedure. Using this entry, the processor invokes the specified fault handler by
means of an implicit call-extended operation (similar to that performed for the callx instruction). The
second word of a local-procedure entry is reserved. It should be set to zero when the fault table is
creted and not accessed after that.

A system-procedure-table entry (entry type 10,) provides a procedure number in the system
procedure table. Using this entry, the processor invokes the specified fault handler by means of an
implicit call-system operation (similar to that performed for the calls instruction).
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Fault-handling procedures in the system procedure table can be local procedures or supefvisor
procedures. A fault handler can thus be invoked through the fault table in any of three ways: implicit
local-procedure call, implicit local procedure-table call, or implicit supervisor call.

31 0
OVERRIDE ENTRY . 0
TRACE FAULT ENTRY 8
OPERATION FAULT ENTRY 16
ARITHMETIC FAULT ENTRY 24
FLOATING-POINT FAULT ENTRY 32
CONSTRAINT FAULT ENTRY 40
VIRTUAL-MEMORY FAULT ENTRY 48
PROTECTION FAULT ENTRY 56
MACHINE FAULT ENTRY 64
STRUCTURAL FAULT ENTRY 72
TYPE FAULT ENTRY 80
/ 88
PROCESS FAULT ENTRY 96
DESCRIPTOR FAULT ENTRY 104
EVENT FAULT ENTRY 12
120
>
/ 252

FAULT-TABLE ENTRIES
. AL-PROCEDURE ENTRY
a1 LOCAL-PRO 210
FAULT-HANDLER PROCEDURE ADDRESS {olo]n
n+4
a1 SYSTEM PROCEDURE-TABLE ENTRY 210
"FAULT-HANDLER PROCEDURE NUMBER [1]o] n
0000 027F g ‘ n+d
51 TRACE - FAULT — PROCEDURE — TABLE ENTRY 210
TRACE-FAULT-HANDLER PROCEDURE NUMBER [1]o] n
0000 02BF g n+4

/] RESERVED (INITIALIZED T00)

. ’ 270647-18

§ .

Figure 20. Fauit Table and Fault-Table Entries
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8.6 FAULT-HANDLER PROCEDURES

The fault-handler procedures can be located anywhere in the address space. Each procedure must
begin on a word boundary.

The processor can execute the procedure in the user mode or the supervisor mode, depending on the
type of fault table entry.

Note

To resume work on a program at the point where a fault occurred (following the recover action of the
fault handler), the fault handler must be executed in the supervisor mode. The reason for this requirement
is described in “Program and Instruction Resumption Following a Fault” in this section.

Many of the faults that occur can be recovered from easily. When recovery from the fault is possible,
the processor’s fault-handling mechanism allows the processor to automatically resume work on the
program or interrupt thatit was working on when the fault occurred. The resumption action is initiated
with a ret instruction in the fault-handler procedure.

If recovery from the fault is not possiblé or not desirable, the fault handler can take one of the
following actions, depending on the nature and severity of the fault condition (or conditions, in the
case of multiple faults):

e . Return to a point in the program or interrupt code other than the point of the fault
e Save the current state of the processor and call a debug monitor

»  Save the current state of the processor and place the processor in the stopped state (using freeze
IAC)

«  Explicitly write the processor state, fault record, and instruction resumption record into memory
and place the processor in the stopped state

¢ Place the processor in the stopped state without explicitly saving the processor state or the fault-
information.

When working with the processor at the development level, a common action of the fault handler is
to save the fault and processor state information and make a call to a debugging device such as a
debugging monitor. This device can then be used to analyze the fault.

8.6.1 Program and Instruction Resumption Following a Fault

The processor allows work on a program to be resumed at the point where the fault occurred following
a return from a fault handler. If an instruction was suspended to handle the fault execution of the
instruction can also be resumed on the return.

This resumption mechanism is similar to that provided by returing from an interrupt handler. Itis only
useful, however, for faults from which recovery is possible, such as the trace faults.
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To use this mechanism, the fault handler must be invoked using an implicit supervisor procedure-
table call. This method is required because to resume work on the program and a suspended
instruction at the point where the fault occurred, the saved process controls in the fault record must
be copied back into the processor on the return from the fault handler. The processor only performs
this action if the processor is in the supervisor mode on the return.
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If the fault handler is invoked with an implicit local-procedure call or an implicit local-procedure-
table call, the return IP determines where in the program the processor resumes work, following a
return from a fault handler. Here, the return is handled in a similar manner to a return from an explicit
call with a call or callx instruction.

_ Thereturn IP (referred to later in this section as the saved IP) is saved in the RIP register (r2) of the
stack frame that was in use when the fault occurred. This IP may be the instruction the processor
faulted on or the next instruction tht the processor would have executed if the fault had not occurred.
Ineither case, the resumption record is not used, so the processor might continue work on the program
without completing the instruction that the fault occurred on.

A fault handler should thus be invoked with an implicit local-procedure or local-procedure-table call
only if it is not required or desirable to resume the program at the point of the fault. The section,
“Return Without Resumption”, discusses returning to a point in the program code other than the point
of the fault.

8.7 FAULT CONTROLS

Certain fault types and subtypes have masks or flags associated with them that determine whether
or not a fault is signalled when a fault condition occurs. Table 15 lists these flags and masks, the
system data structures in which they are located, and the fault subtype they affect.

Table 15. Fault Flags or Masks

Flag or Mask Name

Location Fault Affected
Integer Overflow Mask Arithmetic Controls Integer Overflow
Floating Overflow Mask Arithmetic Controls | Floating Overflow
Floating Underflow Mask Arithmetic Controls | Floating Underflow
Floating Invalid Operation Mask | Arithmetic Controls | Floating

Invalid Operation

Floating Zero-Divide Mask

Arithmetic Controls

Floating Zero-Divide

Floating-point Inexact Mask

Arithmetic Controls

Floating Inexact

No Imprecise Faults Flag Arithmetic Controls | All Imprecise Faults
Trace-Enable Flag Process Controls = | All Trace Faults
Trace-Mode Flags Trace Controls All Trace Faults
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The integer and float-point mask bits inhibit faults from being raised for specific fault conditions (i.e.,
integer overflow and floating-point overflow, underflow, zero divide, invalid operation, and inexact).
The use of these masks is discussed in the fault-reference section at the end of this section. Also, the
floating-point fault masks are described in Chapter 11 in “Exceptions and Fault Handling”.

The no-imprecise-faults (NIF) flag controls the synchronizing of faults for a category of faults called
imprecise faults. This flag should be set to 1. The function of this flag is described later in the section
“Precise and Imprecise Faults”.

The trace-mode flags (in the trace controls) and trace-enable flag (in the processor controls) support
trace faults. The trace-mode flags enable trace modes; the trace-enable flag enables the generation
of trace faults. The use of these flags is described in the fault reference section on trace faults. Further
discussion of these flags is provided in Section 9, “Trace-Enable and Trace-Fault-Pending Flags”.

8.8 SIGNALING A FAULT

" The processor generates faults implicitly when fault conditions occur and explicitly at the request of
software. Most faults are generated implicitly. The fault control bits described in the previous section
allow the implicit generation of some faults to be either enabled (as with the trace faults) or masked
(as with the floating-point faults).

8.8.1 Fault-If Instructions

The fault-if instructions (faulte, faultne, faultl, faultle, faultg, faultge, faulto, and faultno) allow
afaultto be generated explicitly anywhere within an application program, kernel procedure, interrupt
handler, or fault handler. When one of these instructions is executed, the processor checks the
condition code bits in the arithmetic controls, then signals a constraint-range fault if the condition
specified with the instruction is met.

8.9 FAULT RECORD

When a fault occurs, the processor records information about the fault in a fault record. The fault
handler and processor use this information to recover from or correct the fault condition and resume
execution of the process. Figure 21 shows the structure of the fault record. The use of the fields in
this record are described in the following paragraphs.

The type number (byte ordinal) of a fault is stored in the fault-type field; the subtype number or bit
positions (byte ordinal) is stored in the fault-subtype field.

The fault-flags field provides a set of general-purpose flags that the processor uses to indicate
additional information about a particular fault subtype. Most of the faults do not use these flags, in
which case the flags Have no defined values.

The address-of-the-faulting-instruction field contains the IP of the instruction that caused the fault
or that was being executed when the fault occurred.
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31 0
0
4
12
16
FAULT DATA
24
28
PROCESS CONTROLS 32
ARITHMETIC CONTROLS 36
FAULTFLAGS | FAULTTYPE |7 / FAULT SUBTYPE | 40
ADDRESS OF FAULTING INSTRUCTION ‘44
(/23 "SR 270647-19

Figure 21. Fault Record

The states of the process controls and arithmetic controls at the time that a fault is generated are stored
in their respective fields in the fault record. This information is used to resume work on the program
after the fault has been handled.

Finally, a three-word fault data field is provided for the fault. The information that is stored in these
fields depends on the type of fault that occurs. Any part of a fauli-data field that is not used for a
particular fault has no defined value. The information that is stored in these fields for each fault type
is given in the fault reference section at the end of this section.

8.9.1 Saved Instruction Pointer

The saved IP (the RIP that is saved in r2 of the stack frame in use when the fault occurred) is also
part of the fault information that the processor saves when a fault occurs. This IP generally points
to the next instruction that the processor would have executed if the fault had not occurred, although
itmay pointto the faulting instruction. It is this instruction that the processor begins working on when
the return from the fault handler is initiated.

8.9.2 Resumption Record

If the processor suspends an instruction as the result of a fault, it creates a 48-byte resumption record.
The criteria that the processor uses to determine whether or not to suspend an instruction and the
structure of the resumption record are the same as are used when an interrupt occurs.
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8.9.3 Location of the Fault and Resumption Records

The fault and resumption records are stored in the stack that the processor is using when the fault
occurs. This stack can be the local stack, the supervisor stack, or the interrupt stack.

8.10 FAULT HANDLING ACTION

Once a fault has occurred, the processor saves the program state, calls the fault handler, and restores
the program state (if this is possible) once the fault recovery action has been completed. No software
other than the fault-handler procedures is required to support this activity.

Three different types of implicit procedure calls can be used to invoke the fault handler according
to the information in the selected fault-table entry: local call, local call through the system procedure
table, and supervisor call (also through the system procedure table).

8.10.1 Implicit, Local Call/Return

When the selected fault-handler entry in the fault table is an entry type 00, (local procedure) the
processor performs the following action:

1. The processor stores a faultrecord as shown in Figure 21 on the top of the stack that the processor
is currently using. The stack can be the local stack, the supervisor stack, or the interrupt stack.

2. If the fault caused an instruction to be suspended, the processor includes an instruction
resumption record on the current stack and sets the resume flag in the save process controls.

3. The processor creates a new frame on the current stack, with the frame-return status field set to
- 001,
4. Using the procedure address from the selected fault-table entry, the processor performs an
implicit call-extended operation to the fault handler.

If the fault handler is not able to perform a recovery actlon, it performs one of the actions.described
under “Possible Fault-Handler Actions”.

If the handler action results in a recovery from the fault, a ret instruction in the fault handler allows
processor control to return to the program that was being worked on when the fault occurred. On the
return, the processor performs the following action:

The processor deallocates the stack frame created for the fault handler.

2. The processor copies the arithmetic controls field from the fault record into the arithmetic
controls register in the processor.

3. The processor then resumes work on the program it was working on when the fault occured at
the instruction in the return IP register.
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8.11.2 Implicit, Local Procedure—TébIe Call

When the fault-handler entry selects an entry in the system procedure table (entry type 10,) and the
system-procedure-table entry is for local procedure, the processor performs the same action as is
described in the previous section for a local procedure call/return. The only difference is that the
processor gets the address of the fault handler from the system procedure table rather than from the
fault table.

8.11.3 Implicit, Supervisor Call/Return

When the fault-handler entry selects an entry in the system procedure table (entry type 10,) and the
system-procedure-table entry is for a supervisor procedure, the processor performs the same action
as is described in the previous section for a local procedure call and return, with the exceptions
described in the following paragraphs.

On a supervisor fault-handler call, the processor performs the following additional actions:

1. If the processor is in user mode when the fault occurs, the fault record and resumption record
are stored in the local stack. The processor then takes the stack pointer from the procedure table
and switches to the supervisor stack. The execution mode is then set to supervisor.

2. If the processor is already in supervisor mode when the fault occurs, the fault record is stored
in the current stack (which is the supervisor stack). The processor then creates a new frame on
the current stack and begins work on the fault-handler procedure selected from the procedure
table.

3. Inboth of the above cases, the processor copies the state of the trace-control flag (byte 2, bit 1)
of the procedure table into the trace-enable flag field of the process controls.

On a return from the fault handler, the processor performs the following additional actions:

1. Ifthe processor isin supervisor mode prior to the return from the fault handler (which it should
be), it copies the saved process controls into its internal process controls.

2. If the resume flag of the process controls is set, the processor reads the resumption record from
the stack.

3. The processor then resumes. work on the program at the point it was working on when the fault
occurred.

The restoration of the process controls causes any changes in the process controls through the action
of the fault handler to be lost. In particular, if the ret instruction from the fault handler caused the
trace-fault-pending flag in the process controls to be set, this setting would be lost on the return.
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8.11.4 Program State After a Fault

As has been described earlier in this section, faults can occur prior to the execution of the faulting
instruction (i.e., the instruction that causes the fault), during the instruction, or after the instruction.
When the fault occurs before the faulting instruction is executed, the instruction can theoretically be
executed on the return from the fault handler. So, the fault is not accompanied by a change in the
control flow of the program.

When a fault occurs during or after the instruction that caused a fault, the fault may be accompanied
by a change in the program’s control flow such that the faulting instruction cannot be reexecuted.
For example, when an integer-overflow fault occurs, the overflow value is stored in the destination.
If the destination register was the same as one of the source registers, the source value is lost, making
it impossible to reexecute the faulting instruction.

In general, changes in the program’s control flow never accompany the following fault types or
subtypes:

«  All Operation Subtypes

*  Arithmetic Zero-Divide

+  All Floating-Point Subtypes Except Floating Inexact
*  All Constraint Subtypes

«  Prereturn Trace

‘ Changes in the program’s control flow always accompany the following fault types and subtypes:

*  All Trace Subtypes Except Prereturn Trace
* Integer Overflow

»  Floating Inexact

Changes in the program’s control flow may or may not accompany the following fault types and
subtypes: '

»  Structural
 Bad Access

The effect that specific fault types have on a program is given in the fault reference section at the end
of this section under the heading “Program State Changes.”

8.11.5 Return Without Resumption

There may be situations where the fault handler needs to return to a point in the program other than
where the fault occurred. This can be done by altering the return IP in the previous frame. However,
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if resumption information was collected with the fault (resulting in the resume flag being set in the
saved process controls), such a return can cause unpredictable results.

To predictably perform a rétum from a fault handler to an alternate point in the program, the fault
handler should clear the following information in the process-controls field of the fault record before
the return: the resume and trace-fault-pending flags; the internal state field.

Note

A return of this type can only be performed if the processor is in supervisor mode prior to the return.

8.12 PRECISE AND IMPRECISE FAULTS

As described in the Section 2, “Register Scoreboarding,” the 80960KB processor is, in some
instances, able to execute instructions concurrently. When two instructions are being executed
concurrently, it is possible for them to generate faults simultaneously. When this occurs, one of the
faults may not be signaled or may be signaled out of order, making it impossible to recover from that
fault.

The processor provides two mechanisms to allow the circumstances under which faults are signaled
to be controlled. These mechanisms are the no imprecise faults flag (NIF flag) in the arithmetic
controls and the synchronize faults instruction (syncf). The following paragraphs describe how these
mechanisms can be used.

Faults are grouped into the following categories: precise, imprecise, and asynchronous.

Precise faults are those that are intended to be recoverable by software. For any instruction that can
generate a precise fault, the processor will (1) not execute the instruction if an unfinished prior
instruction will fault and (2) not execute subsequent out-of-order instructions that will fault. The
following faults are always precise:

e trace

e protection

- Imprecise faults are those that in some instances are allowed to occur and not be 51gnaled or be
s1gnaled out of order. These faults include the following:

e operation

» arithmetic

* floating point

e constraint

b type
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Asynchronous faults are those whose occurrence has no direct relationship to the i instruction pomter
This category includes the machine fault.

The NIF flag controls whether or not imprecise faults are allowed. When this flagis set, all faults must
be precise. In this mode, the ability to execute instructions concurrently is essentially disabled. All
faults that occur are signaled.

‘When the NIF flag is clear, faults in the imprecise category can in some instances occur and not be
signaled. In this mode, the following conditions hold true: ‘

1.  When an imprecise fault occurs, the saved IP is undefined (but the address of the faulting
instruction in the fault record is valid)

2. [Ifinstructions are executed concurrently when an imprecise fault occurs, the results produced
by these instructions are undefined.

3. If instructions are executed out-of-order and multiple imprecise faults occur, only one of the
faults is generated. The one that is selected is not predictable.

The syncf instruction forces the processor to complete execution of all instructions that occur prior
to the syncf instruction and to generate all faults, before it begins work on instructions that occur after
the syncf instruction. This instruction has two uses. One use is to force faults to be precise when the
NIF is clear. The other use is to insure that all instructions are complete and all faults signaled in one
block of code before execution of another block of code (for example, on Ada block boundaries when
the blocks have different exception handlers).

The intent of these fault-generating modes is that compiled code should execute with the NIF clear,
using the syncf instruction where necessary to ensure that faults occur in order. In this mode,
imprecise faults are considered as catastrophic errors from which recovery is not needed.

If recovery from one or more of the imprecise faults is required (for example, a program that needs

to handle unmasked floating-point exceptions and recover from them) and the fault handler cannot
* be closely coupled with the application to perform recovery even if the faults are imprecise, the NIF
should be set. Executing with the NIF set will likely lead to slower execution times.

8.13 FAULT REFERENCE

This section describes each of the fault types and subtypes and gives detailed information about what
is stored in the various fields of the fault record. The section is organized alphabetically by fault type.

8.13.1 Fault Reference Notation

The following paragraphs describe the information that is provided for each fault type.
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8.13.2 Fault Type and Subtype

The fault-type section gives the number entered in the fault-type field of the fault record for the given
fault type. The fault-subtype section lists the fault subtypes and their associated number or bit
position in the fault-subtype field of the fault record.

8.13.3 Function

The function section gives a general description of the purpose of the fault type, then describes the
purpose of each of the fault subtypes in detail. It also descrlbes how the processor handles each fault
subtype.

8.13.4 Fault Record

The faultrecord section describes how the flags, fault-data, and address-of-faulting-instruction fields
of the fault record are used for the fault type and subtypes.

8.13.5 Saved IP

‘The saved IP section describes what value is saved i in the RIP register (r2) of the stack frame the
processor was using when the fault occurred.

8.13.6 Program State Changes

The program state changes section describes the effects that the fault subtypes have on the control '
flow of a program.
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Arithmetic Faults
Fault Type:
Fault Subtype:

Function:

Fault Record:

Saved IP:

Prog. State Changes:

316

Number Name

0 Reserved

1 Integer Overflow

2 Arithmetic Zero-Divide
3-F Reserved

Indicates that there is a problem with an operand or the result of an
arithmetic instruction. This fault type applies only to ordinal and
integer instruction, not floating-point instructions.

The integer-overflow fault occurs when the result of an integer in-
struction overflows the destination and the integer-overflow mask in
the arithmetic-controls register is cleared. Here, the n least sig-
nificant bits of the result are stored in the destination, where 7 is the
destination size.

The arithmetic zero-divide fault occurs when the divisor operand of
an ordinal or integer divide instruction is zero.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted.

IP for the instruction that would have been executed next, if the
fault had not occurred.

A change in the program’s control flow accompanies the integer-

overflow fault, because the result is stored in the destination before
the fault is signaled. The faulting instruction can thus not be
r;:executed.

A change in the program’s control flow does not accompany the
arithmetic zero-divide fault, because the fault occurs before the ex-
ecution of the faulting instruction.
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Constraint Faults

Fault Type: 516
Fault Subtype: Number Name
0 Reserved
1 Constraint Range
2-F Reserved
Function: Indicates that the processor is either in or not in the required state

for the instruction to be executed.

The constraint-range fault occurs when a fault-if instruction is ex-
ecuted and the condition code in the arithmetic controls matches the
condition required by the instruction.

Fault Record: Flags: Not used.
Fault Data: Not used.
Addr. Fault. Inst.: IP for the instruction on which the processor
faulted
Saved IP: Not used. ‘
Prog. State Changes: No changes in the program’s control flow accompany the

constraint-range fault. This fault occurs after the fault-if instruction
has been executed, but the instruction has no effect on the program
state.
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Floating-Point Faults

Fault Type: 416
Fault Subtype: Bit Number Name
Bit0 Floating Overflow
Bit 1 Floating Underflow
Bit 2 Floating Invalid-Operation
Bit3 Floating Zero-Divide
Bit4 . Floating Inexact
Bit 5 Floating Reserved-Encoding
Bits 6 and 7 Reserved
Function: Indicates that there is a problem with an operand or the result of a

floating-point instruction. Each floating-point fault is assigned a bit
in the fault-subtype field. Multiple floating-point faults can only
occur simultaneously, however, with the floating-overflow,
floating-underflow, and floating-inexact faults.

The floating-point faults. are described in detail in the section in
Chapter 12 titled "Exceptions and Fault Handling." The following
paragraphs give a brief description of each floating-point fault.

A floating-overflow fault occurs when (1) the floating-point over-
flow mask is clear and (2) the infinitely precise result of a floating-
point instruction exceeds the largest allowable finite value for the
specified destination format. This fault interacts with the floating-
inexact fault (as described in Chapter 12).

A floating-underflow fault occurs when (1) the floating-point under-
flow mask is clear and (2) the infinitely precise result of a floating-
point instruction is less than the smallest possible normalized, finite
value for the specified destination format. This fault interacts with
the floating-inexact fault (as described in Chapter 12).

The floating invalid-operation fault occurs when (1) the floating-
point invalid-operation mask is clear and (2) one of the source
operands for a floating-point instruction is inappropriate for the type
of operation being performed.

The floating zero-divide fault occurs when (1) the floating-point
Zero-divide mask is clear and (2) the divisor operand of a floating-
point divide instruction is zero.

The floating-inexact fault occurs when (1) the floating-point inexact
mask is clear and (2) an infinitely precise result cannot be encoded
in the format specified for the destination operand. This fault inter-
acts with the floating-overflow and floating-underflow faults (as
described in Chapter 12).

The floating reserved-encoding fault occurs when a denormalized
value is used as an operand in a floating-point instruction and the
normalizing-mode bit in the arithmetic controls is clear.
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Fault Record:

Saved IP:

Prog. State Changes:

Flags: F0 — Used if inexact fault occurs in conjunc-
tion with overflow or underflow fault. If set,
FO indicates that the adjusted result has been
rounded toward +oo; if clear, FO indicates that
the adjusted result has been rounded toward

=00,

F1 — Used with overflow and underflow
faults only. If set, F1 indicates that the ad-
justed result has been bias adjusted, because
its exponent was outside the range of the
extended-real format.

Fault Data: Used only with overflow and underflow
faults. Adjusted result is stored in this field
in extended-real format (as shown in Figure
12-5).

Addr. Fault. Inst.: IP for the instruction on which the processor
faulted

IP for the instruction that would have been executed next, if the
fault had not occurred.

Changes in the program’s control flow accompany the floating-
overflow, floating-underflow, and floating-inexact faults, because a
result is stored in the destination before the fault is signaled. The
faulting instruction can thus not be reexecuted.

Changes in the program’s control flow do not accompany the float-
ing invalid-operation, floating zero-divide, and floating reserved-
encoding faults, because the faults occur before the execution of the
faulting instruction.
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Machine Faults

Fault Type:
Fault Subtype:

Function:

Fault Record:

Saved IP:

Prog. State Changes:

8 16

Number Name

0 Reserved

1 Bad Access
2-F Reserved

Indicates that the processor has detected a hardware or memory-
system error.

The bad-access fault is the only one of this fault type. This fault
occurs whenever an unrecoverable memory error occurs on a
memory operation. In the 80960KB processor, the processor
receives a signal on its bad access pin (BADAC) to indicate an
unrecoverable memory error. Upon receiving this signal, the
processor signals a machine bad access fault. There is one excep-
tion to this action. The processor will not signal a machine bad
access fault while executing any of the synchronous load or move
instructions. Instead, it sets the condition code bits to indicate
whether or not the memory access was completed successfully.

Flags: Not used.
Fault Data: Not used.
Addr. Fault. Inst.:  Not used.
Not used.

This fault may occur at any time. When it does occur, the accom-
panying state of the program’s control flow is undefined. As a
result, the processor is not able to return predictably from the fault
handler to the point in the program where the fault occurred.

If this fault occurs during an atomic operation, there is no guarantee
that the locking mechanism that memory uses for synchromzatlon is
unlocked.
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Operation Faults

Fault Type:
Fault Subtype:

Function:

Fault Record: .

Saved IP:

Prog. State Changes:

216

Number ‘Name

0 Reserved

1. Invalid Opcode
2 Unimplemented
3 Reserved

4 Invalid Operand
5-F Reserved

Indicates that the processor cannot execute the current instruction
because of invalid instruction syntax or operand semantics.

The invalid-opcode fault occurs when the processor attempts to ex-
ecute an instruction that contains an undefined opcode or addressing
mode. :

The unimplemented fault occurs when unaligned memory accesses
are not allowed and the processor attempts to access an unaligned
word or group of words in memory. (The 80960KB processor does

* allow unaligned memory accesses, so this fault never occurs.)

The invalid-operand fault occurs when the processor attempts to
execute an instruction for which one or more of the operands have
special requirements and one or more of the operands do not meet .
these requirements. This fault subtype is not generated on floating-
point instructions.

Flags: - Not used.
Fault Data: Not used. ‘
Addr. Fault. Inst.: IP for the last instruction executed in the

process.

+ IP for the instruction that would have been executed next, if the

fault had not occurred.

A change in the program’s control flow does not accompany the
operation faults, because the faults occur before the execution of the
faulting instruction.
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Protection Faults

Fault Type: Ti6
Fault Subtype: Bit Number Name
Bit0 Reserved
Bit1 Length
Bit 2-7 Reserved
Function: Indicates that the index operand used in a calls instruction points to
an entry beyond the extent of the system procedure table.
Fault Flags: Not used.
Fault Data: Not used.
Addr. Fault. Inst.: IP for the instruction on which the processor faulted.
Saved IP: Same as the address-of-faulting-instruction field.

Prog. State Changes: A change in the program’s control flow does not accompany the
. protection length fault.
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Trace Faults

Fault Type:

Fault Subtype:

Function:

L

Bit Number Name

Bit0 Reserved

Bit1 Instruction Trace
Bit 2 Branch Trace

Bit 3 Call Trace

Bit4 Return Trace

Bit 5 . Prereturn Trace
Bit6 Supervisor Trace
Bit7 Breakpoint Trace

Indicates ‘that the processor has detected one or more trace events.
The processor’s event tracing mechanism is described in detail in
Chapter 10.

A trace event is the occurrence of a particular instruction or type of
instruction in the instruction stream. The processor recognizes
seven different trace events (instruction, branch, call, return,
prereturn, supervisor, and breakpoint). It detects these events,
however, only if a mode bit is set for the event in the trace controls
word, which is cached in the processor chip. If, in addition, the
trace-enable flag in the process controls is set, the processor
generates a fault when a trace event is detected.

The fault is generated following the instruction that causes a trace
event (or prior to the instruction for the prereturn trace event).

The following trace modes are available:

o Instruction — Generate trace event following any instruction.

e Branch — Generate trace event following any branch instruc-
tion when branch is taken. ’

o Call — Generate trace event following any call or branch-and-
link instruction, or implicit procedure call (i.e., call to fault or
interrupt handler).

¢ Return-— Generate trace event following any return instruc-
tion.

e Prereturn — Generate trace event prior to any return instruc-
tion.

o  Supervisor — Generate trace event following any call-system
instruction.

o Breakpoint — Generate trace event following any processor
action that causes a breakpoint condition.

There is a trace fault subtype and a bit in the fault-subtype field
associated with each of these modes. Multiple fault subtypes can
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Fault Record:

Saved IP:

Prog. State Changes:

occur simultaneously, with the fault-subtype bit set for each subtype
that occurs.

When a fault type other than a trace fault occurs during the execu-
tion of an instruction that causes a trace event, the non-trace-fault is
handled before the trace fault. An exception to this rule is the
prereturn trace fault. The prereturn trace fault will occur before the
processor has a chance to detect a non-trace-fault, so it is handled
first.

Likewise, if an interrupt occurs during an instruction that causes a
trace event, the interrupt is serviced before the trace fault is handled.
Again, the prereturn trace fault is an exception. Since it occurs
before the instruction, it will be handled before any interrupt that
might occur during the execution of the instruction.

Flags: Not used.
Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction that caused the trace
event, except for the prereturn trace fault.:
For the prereturn trace fault, this field has no
defined value.

IP for the instruction that would have been executed next, if the
fault had not occurred.

A change in the program’s control flow accompanies all the trace
faults (except the prereturn trace fault), because the events that can
cause a trace fault occur after the faulting instruction is completed.
As a result, the faulting instruction cannot be reexecuted upon
returning from the fault handler.

Since the prereturn trace fault occurs before the return instruction
is executed, a change in the program’s control flow does not accom-
pany this fault and the faulting instruction can be executed upon
returning from the fault handler.
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Type Faults
Fault Type:
Fault Subtype:

Function:

Fault Record: E

Saved IP:

Pi'og. State Changes:

Ajg

Number Name

0 Reserved

1 Type Mismatch
2-F Reserved '

Indicates that an attempt was made to execute the modpc instruc-
tion while the processor was in the user mode.

Flags: Not used.

Fault Data: Not used.

Addr. Fault. Inst.: IP for the instruction on which the processor
. faulted

Not used.

When a type mismatch fault occurs, the accompanying state of the
program is undefined. The processor is thus not able to return
predictably from the fault handler to the point in the program where
the fault occurred.
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9.0 DEBUGGING

This section describes the tracing facilities of the 80960KB processor, which allow the monitoring
of instruction execution.

9.1 OVERVIEW OF THE TRACE-CONTROL FACILITIES

The 80960KB processor provides facilities for monitoring the activity of the processor by means of
trace events. A trace event in the 80960KB is a condition where the processor has just completed
executing a particular instruction or type of instruction, or where the processor is about to execute
a particular instruction.

By monitoring trace events, debugging software is able to display or analyze the activity of the
processor or of a program. This analysis can be used to locate software or hardware bugs or for general
system monitoring during the development of system or applications programs.

The typical way to use this tracing capability is to set the processor to detect certain trace events either
by means of the trace-controls word or a set of breakpoint registers. An alternate method of creating
a trace event is with the mark and force mark (fmark) instructions. These instructions cause an
explicit trace event to be generated when the processor detects them in the instruction stream.

If tracing is enabled, the processor signals a trace fault when it detects a trace event. The fault handler
for trace faults can then call the debugging monitor software to display or analyze the state of the
processor when the trace event occurred.

9.2 REQUIRED SOFTWARE SUPPORT FOR TRACING

To use the processor’s tracing facilities, software must provide trace-fault handling procedures,
perhaps interfaced with a debugging monitor. Software must also manipulate several control flags
to enable the various tracing modes and to enable or disable tracing in general. These control flags
are located in the system-data structures described in the next section.

9.3 TRACE CONTROLS
The following flags or fields control tracing:

. Trace controls

e Trace-enable flag in the process controls

e Trace-fault-pending flag in the process controls

e Trace flag (bit 0) in the return-status field of register rQ

»  Trace-control flag in the supervisor-stack-pointer field of the system table or a procedure table
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9.3.1 Trace-Controls Word
The trace-controls word is cached internally in the processor.

The trace controls allow software to define the conditions under which trace events are generated.
Figure 22 shows the structure of the trace-controls word.

31 232221201918 17 76543210
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\ LINSTF!UCTION TRACE MODE
=== BRANCH TRACE MODE
CALL TRACE MODE

RETURN TRACE MODE
PRERETURN TRACE MODE
SUPERVISOR TRACE MODE
BREAKPOINT TRACE MODE
INSTRUCTION TRACE EVENT
BRANCH TRACE EVENT
CALL TRACE EVENT
RETURN TRACE EVENT
PRERETURN TRACE EVENT
SUPERVISOR TRACE EVENT
BREAKPOINT TRACE EVENT

R\N RESERVED (INITIALIZE TO 0)

270647-21

Figure 22. Trace-Controls Word

This word contains two sets of bits: the mode flags and the event flags. The mode flags define a set
of trace modes that the processor can 66 W use to generate trace events. A mode represents a subset
of instructions that will cause trace events to be generated. For example, when the call-trace mode
is enabled, the processor generates a trace event whenever a call or branch-and-link operation is
executed. To enable a trace mode, the kernel sets the mode flag for the selected trace mode in the trace
controls. The trace modes are described later in this section.

The processor uses the event flags to keep track of which trace events (for those trace modes thathave
been enabled) have been detected.

A special instruction, the modify-trace-controls (modtc) instruction, allows software to set or clear
flags in the trace controls. On initialization, all the flags in the processor’s internal trace controls are
cleared. The modtc instruction can then be used to set or clear trace mode flags as required.

Software can access the event flags using the modtc instruction, however, there is no reason to. The
processor modifies these flags as part of its trace-handling mechanism.

Bits 0, 8 through 0 6, and 24 through 31 of the trace controls are reserved. Software should initialize
these bits to zero and not modify them.
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9.3.2 Trace-Enable and Trace-Fault-Pending Flags

The trace-enable flag and the trace-fault-pending flag, in the process controls (shown in Figure 14),
control tracing. The trace-enable flag enables the processor’s tracing facilities. When this flag is set,
the processor generates trace faults on all trace events.

Typically, software selects the trace modes to be used through the trace controls. It then sets the trace-
enable flag when tracing is to begin. This flag is also altered as part of some of the call and return
operations that the processor carries out, as described at the end of this section.

The trace-fault-pending flag allows the processor to keep track of the fact that an enabled trace event
has been detected. The processor uses this flag as follows. When the processor detects an enabled
trace event, it sets this flag. Before executing an instruction, the processor checks this flag. If the flag
is set, it signals a trace fault. By providing a means of recording the occurrence of a trace event, the
trace-fault-pending flag allows the processor to service an interrupt or handle a fault other than a trace
fault, before handling the trace fault. Software should not modify this flag.

9.3.4 Trace Control on Supervisor Calls

The trace flag and the trace-control flag allow tracing to be enabled or disabled when a call-system
instruction (calls) is executed that results in a switch to supervisor mode. This action occurs
independent of whether or not tracing is enabled prior to the call.

When a supervisor call is executed (calls instruction that references an entry in the system procedure
table with an entry type 11,), the processor saves the current state of the trace-enable flag (from the
process controls) in the trace flag (bit 0) of the return-status field of register 0.

Then, when the processor selects the supervisor procedure from the procedure table, it sets the trace-
enable flag in the process controls according to the setting in the trace-control flag in the procedure
table (bit O of the word that contains the supervisor-stack pointer).

On a return from the supervisor procedure, the trace-enable flag in the process controls is restored
to the value saved in the return-status field of register r0.

9.4 TRACE MODE
The following trace modes can be enabled through the trace controls:

« Instruction trace
e Branch trace

e  Call trace

*  Return trace

¢ Prereturn trace
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*  Supervisor trace

*  Breakpoint trace

These modes can be enabled individually or several modes can be enabled at once. Some of these
modes overlap, such as the call-trace mode and the supervisor-trace mode. The section “Handling
" Multiple Trace Events” describes what the processor does when multiple trace events occur.

The following sections describe each of the trace modes.

9.4.1 Instruction Trace

When the instruction-trace mode is enabled, the processor generates an instruction-trace event each
time an instruction is executed. This mode can be used within a debugging monitor to single-step the
processor. :

9.4.2 Br_anch Trace

[

When the branch-trace mode is enabled, the processor generates an branch-trace event any time a
branch instruction that branches is executed. A branch-trace event is not generated for conditional-
branch instructions that do not branch. Also, branch-and-link, call, and return instructions do not
cause branch-trace events to be generated.

9.4.3 Call Trace

When the call-trace mode is enabled, the processor generates a call-trace event any time a call

instruction (call, callx, or calls) or a branch-and-link instruction (bal or balx) is executed. An implicit

call, such as the action used to invoke a fault handler or an interrupt handler; also causes a call-trace
- event to be generated. ‘ '

‘When the processor detects a call-trace event, it also sets the prereturn-trace flag (bit 3 of register r0)
in the new frame created by the call operation or in the current frame if a branch-and-link operation
was performed. The processor uses this flag to determine whether or not to signal a prereturn-trace
event on a return instruction.

9.4.4 Return Trace

When the return-trace mode is enabled, the processor generates a return-trace event any time a ret
instruction is executed.

9.4.5 Prereturn Trace

'

The prereturn-trace mode causes the processor to generate a prereturn-trace event prior to the
execution of any ret instruction, providing the prereturn-trace flag in 10 is set. (Prereturn tracing
cannot be used without enabling call tracing.)
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The processor sets the prereturn-trace flag whenever it detects a call-trace event (as described above .
for the call-trace mode). This flag performs a prereturn-trace-pending function. If another trace event
occurs at the same time as the prereturn-trace event, the prereturn-trace flag allows the processor to
fault on the non-prereturn-trace event first, then come back and fault again on the prereturn-trace
event. The prereturn trace is the only trace event that can cause two successive trace faults to be
generated between instruction boundaries.

9.4.6 Supervisor Trace

When the supervisor-trace mode is enabled, the processor generates a supervisor-trace event any time
(1) a call-system instruction (calls) is executed, where the procedure table entry is a supervisor
procedure, or (2) when aret instruction is executed and the return-status field is set 010, 0or 011, (i.e.,
return from supervisor mode).

This trace mode allows a debugging program to determine the boundaries of kernel procedure calls
within the instruction stream.

9.4.7 Breakpoint Trace

The breakpoint-trace mode allows trace events to be generated at places other than those specified
with the other trace modes. This mode is used in conjunction with the mark and force-mark (fmark)
instructions, and the breakpoint registers.

The mark and fmark instructions allow breakpoint-trace events to be generated at specific points
in the instruction stream. When the breakpoint-trace mode is enabled, the processor generates a
breakpoint-trace event any time it encounters a mark instruction. The fmark causes the processor
to generate a breakpoint-trace event regardless of whether the breakpoint-trace mode is enabled or
not. .

The processor has two, one-word breakpoint registers, designated as breakpoint 0 and break-point
1. Using the set-breakpoint-register IAC, one instruction pointer can be loaded into each register. The
processor then generates a breakpoint trace any time it executes an instruction referenced in a
breakpoint register.

9.5 TRACE-FAULT HANDLER

A fault handler is a procedure that the processor calls to handle faults that occur. The requirements
for fault handlers are given in Section 8, “Fault-Handler Procedures.” :

A trace-fault handler has one additional restriction. It must be called with an implicit supervisor call,
and the trace-control flag in the system-procedure-table entry must be clear. This restriction insures
that tracing is turned off when a trace fault is being handled, which is necessary to prevent an endless
loop.
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9.6 SIGNALING A TRACE EVENT

To summarize the information presented in the previous sections, the processor signals a trace event
when it detects any of the following conditions:

‘e Aninstruction included in a trace-mode group is executed or about to be executed (in the case
of a prereturn trace event) and the trace mode for that instruction is enabled.

e Animplicit call operation has been executed and the call-trace mode is enabled.
¢ A mark instruction has been executed and the breakpoint-trace mode is enabled.
* An fmark instruction has been executed.

* An instruction specified in a breakpoint register is executed and the breakpoint-trace mode is
enabled. '

When the processor detects a trace event and the trace-enable flag in the process controls is set, the
processor performs the following action:

1. The processor sets the appropriate trace-event flag in the trace controls. If a trace event meets
the conditions of more than one of the enabled trace modes, a trace event ﬂag is setforeach trace
mode condition that is met.

2. The processor sets the trace-fault-pending flag in the process controls.

Note

The processor may set a trace-event flag and the trace-fault-pending flag before it has completed execution
of the instruction that caused the event. However, the processor only handles trace events in between the
execution of instructions.

If, when the processor detects a trace event, the trace-enable flag in the process controls is clear, the
processor sets the appropriate event flags, but does not set the trace-fault-pending flag.

9.7 HANDLING MULTIPLE TRACE EVENTS

If the processor detects multiple trace events, it records one or more of them based on the following
precedence, where 1 is the highest precedence:

Supervisor-trace event

2. Breakpoint- (from mark or fmark instruction, or from a breakpoint register), branch-, call- or
return-trace event

3. Instruction-trace event

When multiple trace events are detected, the processor may not signal each event; however it will
signal at least the one with the highest precedence. :
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9.8 TRACE HANDLING ACTION

Once a trace event has been signaled, the processor determines how to handle the trace event,
according to the setting of the trace-enable and trace-fault-pending flags in the process controls and
to other events that might occur simultaneously with the trace event such as an interrupt or a non-
trace fault.

The following sections describe how the processor handles trace events for various situations.

9.8.1 Normal Handling of Trace Events
Prior to executing an instruction, the processor performs the following action regarding trace events:

1. The processor checks the state of the trace-fault pending flag. If this flag is clear, the processor
begins execution of the next instruction. If the flag is set, the processor performs the following
actions.

2. The processor checks the state of the trace-enable flag. If the trace-enable flag is clear, the
processor clears any trace event flags that have been set, prior to starting execution of the next
instruction. If the trace-enable flag is set, the processor performs the following action.

3. The processor signals a trace fault and begins the fault handling action, as described in Section
8.

9.8.2 Prereturn Trace Handling

The processor handles a prereturn-trace event the same as described above except when it occurs at
the same time as a non-trace fault. Here, the non-trace fault is handled first.

On returning from the fault handler for the non-trace fault, the processor checks the prereturn-trace
flag in register r0. If this flag is set, the processor generates a prereturn-trace event, then handles it
as described above.

9.8.3 Tracing and Intefrupt Handlers

When the processor invokes an interrupt handler to service an interrupt, it disables tracing. It does
‘this by saving the current state of the process controls, then clearing the trace-enable and trace-fault-
pending flags in the current process controls.

On returning from the interrupt handler, the processor restores the process controls to the state they
were in prior to handling the interrupt, which restores the state of the trace-enable and trace-fault-
pending flags. If these two flags were set prior to calling the interrupt handler, a trace fault will be
signaled on the return from the interrupt handler.
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9.8.4 Tracing and Fault Handlers

The processor can invoke a fault handler with either an implicit local call or an implicit supervisor
call. On a local call, the trace-enable and trace-fault-pending flags are neither saved on the call nor
restored on the return. The state of these flags on the return is thus dependent on the action of the fault
handler.

On a supervisor call, the trace-enable and trace-fault-pending flags are saved, as part of the. saved
process controls, and restored on the return. So, if these two flags were set prior to calling the fault
handler, a trace fault will be signaled on the return from the fault handler.

Note

On a return from an interrupt handler or a fault handler (other than the trace-fault handler), the trace-fault-
pending flag is restored. If this flag is set as a result of the handler’s ret instruction, the detected trace
event is lost.

10. INSTRUCTION SET REFERENCE

This section provides detailed information abouteach of the instructions for the 80960KB processor.
To provide quick access to information on a particular instruction, the instructions are listed
alphabetlcally by assembly language mnemonic. An explanatlon of the format and abbreviations
used in this section is given later.

10.1 INTRODUCTION

The information in this section is oriented toward programmers who are writing assembly—language
code for the 80960KB processor. The information provided for each instruction includes the
following: :

e Alphabetic reference

*  Assembly-language mnemonic and name
¢ Assembly-language format

e Description of the instruction’s operation

» Action the instruction carries out when executed (generally presented in the form of an
algorithm)

«  Faults that can occur during execution
-« Assembly-language example
¢ Opcode and instruction format

» Related instructions

\

Additional information about the instruction set can be found in the following sectlons and
appendices in this chapter: :
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*  Section 5— Summary of the instruction set by group and description of the assembly-language
instruction format :

»  Appendix A — Instruction Quick Reference

* Appendix B — Machine-Level Instruction Formats

10.2 NOTATION

To simplify the presentation of information about the instructions, a simple notation has been adopted
in this section. The following paragraphs describe this notation.

10.2.1 Alphabetic Reference

The instructions are listed alphabetically by assembly-language mnemonic. If several instructions
are related and fall together alphabetically, they are described as a group on a single page.

The reference at the top of each page gives the assembly-language mnemonics for the instructions
covered on that page (e.g., subc). Occasionally, there are so many instructions covered on the page
that it is not practical to give all the mnemonics in the page reference. In these cases, the name of the
‘instruction group is given in capital letters (e.g., BRANCH or FAULT IF). A box around the
alphabetic reference indicates that the instruction or group of instructions are extensions to the 80960
architecture instruction set.

10.2.3 Mnemonic

The Mnemonic section gives the complete mnemonic (in bold-face type) and instruction name for
each instruction covered on the page, for example:

subi Subtract Integer

10.2.4 Format

The Format section gives the assembly-language format of the instruction and the type of operands
allowed. The format is given in two or three lines. The following is an example of a two line format:

sub* srcl src2,  dst
reg/lit reg/lit reg

The first line gives the assembly-language mnemonic (bold-face type) and the operands (italics).
When the format is used for two or more instructions, an abbreviated form of the mnemonic is used.
The “*” sign at the end of the mnemonic indicates that the mnemonic has been abbreviated.

The operand names are designed to describe the functions of the operands (e.g., src,len, mask).

3-113



intal 80960KB PROGRAMMER’S REFERENCE

The second line of the format shows what is allowed to be entered for each operand. The notation
used on this line is as follows:

reg - Global (g0 ... g5) or local (10 ... r5) register

freg Global (g0 ... g5) or local (10 ... 15) register, or floating-point (fp0 ... fp3)
register, where the registers contain floating-point numbers

lit Integer or ordinal literal of the range O ... 31

flit ' Floating-point literal of value 1.0 or 0.0

disp - Signed displacement of range -2%2 ... (2?2 - 1)

mem Address defined with the full range of addressing modes

In some cases, a third line will be added to show specifically what will be in a register or memory
location. For example, it may be useful to know that a register is to contain an address. The notation
used in this line is as follows:

addr Address
efa Effective address
10.2.5 Description

The Description section describes what the instruction does and the functions of the operands. It also
gives programming hints when appropriate.

10.2.6 Action

The Action section gives an algorithm written in a pseudo-code that describes in detail what actions
the processor takes when executing the instruction and the precise order of these actions. The main
purpose of this section is to show the possible side effects of the instruction. The following is an
example of the action algorithm for the alterbit instruction:

if (AC.cc and 2#010#) =0

then dist .« src and not (2(bitpos mod 32));
else dst <« src or 27 (bitpos mod 32);

end if;

In these action statements, the term AC.cc means the condition-code bits in the arithmetic controls.
The notation 2#value# means that the value enclosed in the “#” signs is in base 2.

10.2.7 Faults

The Faults section lists the faults that can be signaled as the result of execution of the instruction.
Faults listed with all-capital letters refer to a group of faults; faults listed with initial-capital letters
refer to a specific fault.
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All instructions can signal a group of general faults which are referred to as STANDARD FAULTS.
The standard faults include the trace-instruction and machine-bad-access faults. In addition, for all
instructions have a MEM machine-format (such as load, store, call extended), the invalid-opcode and
operation-unimplemented faults are standard faults.

The following list shows the various fault groups and the individual faults in each group:

TRACE FAULT
Instruction Trace
Branch Trace
Call Trace
Return Trace
Prereturn Trace
Supervisor Trace

Breakpoint Trace

OPERATION
Invalid Opcode
Unimplemented

Invalid Operand

ARITHMETIC
Integer Overflow
Arithmetic Zero-Divide

FLOATING-POINT
Floating Overflow
Floating Underflow
Floating Invalid-Operation
Floating Zero-Divide
Floating Inexact

Floating Reserved-Encoding

CONSTRAINT
Constraint Range

Privileged
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PROTECTION
Segment Length

MACHINE
Bad Access

TYPE
Type Mismatch

10.2.8 Example

The Example section gives an assembly-language example of an application of the instruction.

10.2.9 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and machine language instruction
format for each instruction, for example:

subi 593 REG
The opcode is given in hexadecimal format.

The machine language format is one of four possible formats: REG, COBR, CTRL, and MEM. Refer
to Appendix B for more information on the machine-language instruction formats.

10.2.10 See Also

The See Also section gives the mnemonics of related instructions, which can then be looked up
alphabetically in this section for comparison. For instructions that are grouped on one page (such as
addr and addrl) only the first mnemonic is given.

10.2 INSTRUCTION

This section contains reference information on the processor’s instructions. It is arranged alphabeti-
cally by instruction or instruction group.
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

addc

addc Add Ordinal With Carry
addc srcl, src2, dst

reg/lit reg/lit reg

Adds the src2 and srcl values, and bit 1 of the condition code (used here as a
carry in), and stores the result in dst. If the ordinal addition results in a carry,
bit 1 of the condition code is set; otherwise, bit 1 is cleared. If integer
addition results in an overflow, bit O of the condition code is set; otherwise,
bit 0 is'cleared. Regardless of the results of the addition, bits 0 and 1 of the
arithmetic controls are always written.

The addc instruction can be used for either ordinal or integer arithmetic. The
instruction does not distinguish between ordinal and integer source operands.
Instead, the processor evaluates the result for both data types and sets bits 0
and 1 of the condition code accordingly.

An integer overflow fault is never signaled with this instruction.

# Let the value of the condition code be xCx.

dst < src2 + srcl + C;

AC.cc « 2#0CV#,

# C is carry from ordinal addition.

#V is 1 if integer addition would have generated an overflow.

STANDARD

# Example of double-precision arithmetic
# Assume 64-bit source operands
# in g0,gl and g2,93
cmpo 1, O # clears Bit 1 (carry bit) of
# the AC.cc
# add low-order 32 bits;
# g0 ¢« g2 + g0 + Carry Bit
addc gl, g3, gl # add. . high-order 32 bits;
# gl ¢ g3 + gl + Carry Bit
# 64-bit result is in g0, gl

addc g0, g2, g0

addc 5BO REG

addo, subc
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addLaddo

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

addi Add Integer
addo Add Ordinal
add* srcl,

reg/lit

sre2,
reg/lit

dst
reg

Adds the src2 and src/ values and stores the result in dst.

dst « src2 + srcl;
STANDARD

Integer Overflow

addi r4, g5, r9

addi 591
addo 590

addc, addr, subi, subo

REG
REG
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Refer to discussion of faults at the begin-
ning of this chapter.

Result is too large for destination format.
This fault is signaled only when execut-
ing the addi instruction and if both of the
following conditions are met: (1) the
integer-overflow mask in the arithmetic-
controls registers is clear and (2) the
source operands have like signs and the
sign of the result operand is different
than the signs of the source operands.

# r9 <« g5 + r4
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addr, addrl

Mnemonics: addr Add Real
addrl Add Long Real
Format: addr* srcl , sre2, dst

freg/flit freg/flit freg

Description:  Adds the src2 and srcl values and stores the result in dst.

For the addrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when adding various classes.
of numbers, assuming that neither overflow nor underflow occurs.

Srel
-0 -F -0 +0 +F +o | NaN
- -0 -0 -0 -0 -00 * NaN
-F -00 -F sre2 | sre2 |fFor £0 | + NaN
-0 -00 srel | -0 | £0 srcl +o | NaN
Src2| +0 -00 srcl t0 +0 srel + 00 NaN
| #F | -« [*Forto0|src2 [sre2| +F [+® | NaN
4o * +o 4o | 4o 4o +o | NaN
NaN NaN NaN NaN | NaN NaN NaN | NaN

Notes:

F  Means finite-real number
*  Indicates floating invalid-operation exception

When the sum of two operands with opposite signs is zero, the result is +0,
except for the round toward -e- mode, in which case, the result is -0. When
zero is added to itself (e.g. srcl + srcl, where srcl is 0), the result retains the
sign of the source.

Action: = dst < src2 + srcl;
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Faults:

Example:

Opcode:

. See Also:

addr, addrl

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow Result is too large for destination format.

Floating Underflow Normalized result is too small for des-
tination format.

Floating Invalid Operation Source operands are infinities of unlike
sign.

One or more operands is an SNaN value.

Floating Inexact - Result cannot be represented exactly in
destination format.

Floating overflow occurred and the over-
flow exception was masked.

addrl g6, g8, fp3 #fp3 ¢« g6,g7 + g8,99

addr 78F REG
addrl 79F REG
addi, subr
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alterbit

Mnemonic:

Format:

Description:

Action:

Faults:
Example:
’Obt‘:ode:

See Also:

alterbit  Alter Bit

alterbit ' bitpos, src, dst
reg/lit reg/lit . reg

Copies the src value to dst with one bit altered. The bitpos operand specifies
the bit to be changed; the condition code determines the value the bit is to be
changed to. If the condition code is X1X,, the selected bit is set; otherwise,
it is cleared. ‘

if (AC.cc and 2#010#) =0
then dst < src and not 2 (bitpos mod 32));
else dst < src or 2M\(bitpos mod 32);
end if; ‘

STANDARD

~# assume condition code is 2#010#

alterbit 24, g4, g9 # g9 « g4, with bit 24 set

alterbit - 58F . REG

checkbit,‘ clearbit, notbit, setbit
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Mnemonics:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

and, andnot

and Ahd
andnot And Not

and srcl, sre2, dst
reg/lit reg/lit reg
andnot srcl, sre2, dst
reg/lit reg/lit reg

Performs a bitwise AND (and instruction) or AND NOT (andnot
instruction) operation on the src2 and srcl values and stores the result in dstz.
Note in the action expressions below, the src2 operand comes first, so that
with the andnot instruction the expression is evaluated as

{src2 andnot (srcl))
rather than

{srcl andnot (src2)}.

and: dst < src2 and srcl;
andnot: dst < src2 and not (srcl);
STANDARD

and 0x17, g8, g2 # g2 < g8 AND 0x17
andnot r3, rl2, r9 # r9 « rl2 AND NOT r3

and 581 REG
andnot 582 REG

nand, nor, not, notand, notor, or, ornot, xnor, xor
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atadd

Mnemonic: atadd Atomic Add

Format: atadd srcldst, src, dst
reg reg/lit reg
addr

Description:  Adds the src value (full word) to the value in the memory location specified
with the src/dst operand. The initial value from memory is stored in dsz.

The read and write of memory are done atomically (i.e., other processors are
prevented from accessing the word of memory specified with the src/dst
operand until the operation has been completed).

The memory location in src/dst is the address of the first byte (least sig-
nificant byte) of the word. The address is automatically aligned to a word
boundary.

Action: tempa <« src/dst and not (3); # force alignment to word boundary
temp < atomic_read (tempa);
atomic_write (tempa) < temp + src;

dst < temp;

Faults: STANDARD

Example: atadd r8, r2, rll # r8 « r2 + address rs8,
# where r8 specifies the
# address of a wdrd in
# memory; rll ¢« initial
# value stored at address
# r8 in memory

Opcode: atadd 612 REG

See Also: atmod
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atanr, atanrl

Mnemonics: atanr Arctangent Real
atanrl Arctangent Long Real
Format: atanr# srcl, src2, dst
freg/flit freg/flit freg
Description: Calculates the arctangent of the quotient of src2/srcl and stores the result in
dst. The result is returned in radians and is in the range of -m to +m, in-
clusive. The sign of the result is always the sign of src¢2.
For the atanrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).
These instructions are commonly used as part of an algorithm to convert
rectangular coordinates to polar coordinates. They can also be used to imple-
ment the FORTRAN intrinsic functions ATAN and ATAN2. If src/ is the
floating-point literal value +1.0, then these instructions return a result in the
range of -7t/2 to +7/2.
The following table gives the range of results for various values of src2 and
srcl, assuming that neither overflow nor underflow occurs.
Srcl
-00 -F -0 +0 +F +o |NaN
-0 -3n/4 -n/2 -n/2 -n/2 -n/2 -n/4 |NaN
-F -n -nto-n/2 |-n/2 -n/2 -n/2to -0 -0 |NaN
-0 -n -n -n -0 -0 -0 |NaN
Src2 +0 +n +n +n +0 +0 +0 |[NaN
+F +n |+nto+n/2 Hn/2 | +0/2 |+0w/2t0o +0 | +0 |NaN
+o |+3n/4 +n/2 +n/2 | +0/2 +n/2 +n/4 |NaN
NaN | NaN NaN NaN | NaN NaN NaN |NaN

Notes:

F  Means finite-real number.
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atanr, atanrl

Action: dst < arctan (src2/srcl);
Faults: STANDARD Refer to the discussion of faults at the
beginning of this chapter.
Floating Reserved Encoding One or more operands is an unnormal-

ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow Result is too small for destination format.
Floating Invalid Operation One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented -exactly in

destination format.

Example: atanrl g8, gl0, fp3 # fp3 «
# arctan (gl0,gll/g8,99)
atanrl 1.0, g0, gO # g0,gl ¢« arctan (g0,gl)

Opcode: atanr 680 REG
atanrl 690 REG
Seé Also: " tanr
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

atmod
atmod Atomic Modify
atmod src, mask, srcldst
reg reg/lit = reg
addr

Copies the src/dst value into the memory location specified in src. The bits
set in the mask operand select the bits to be modified in memory. The initial
value from memory is stored in src/dst.

The read and write of memory are done atomically (i.e., other processors are
prevented from accessing the word of memory specified with the src/dst
operand until the operation has been completed).

The memory location in src is the address of the first byte (least significant
byte) of the word to be modified. The address is automatically aligned to a
word boundary.

tempa < src and not (3); # force alignment to word boundary
temp < atomic_read (tempa);
atomic_write (tempa) <— (src/dst and mask)
or (temp and not(mask));
srcldst < temp;

STANDARD

atmod g5, g7, gl0 # g5 « g5 masked by g7,
" # where g5 specifies the
# address of a word in

# memory;

# gl0 ¢« initial value

# stored at address g5

#

in memory.
atmod 610 REG

atadd
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bal, balx

Mnemonic:

Format:

Description:

b:il Branch And Link
balx Branch And Link Extended
bal targ
disp
balx targ, dst
mem reg

Stores the address of the next instruction (the instruction following the bal or
balx instruction) and branches to the instruction specified with the targ
operand.

With the bal instruction, the address of the next instruction is stored in
register gl4. The targ operand can be either a label or an absolute address
that specifies the IP of the target instruction. This value can be no farther
than -223 to (223 - 4) from the current IP. :

The balx instruction performs almost the same operation as the bal instruc-
tion except that the target instruction can be farther than -223 to (223 - 4)
from the current IP. With the balx instruction, the address of the next
instruction is stored in dst. The targ operand is a memory type, which
allows the full range of addressing modes to be used to specify the IP of the
target instruction. Here, the "IP + displacement” addressing mode allows the
instruction to be IP-relative. Indirect branching can be performed by placing
the target address in a register and then using one of the register-indirect
addressing modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail-
able with memory-type operands.

Note

At the machine level, the bal instruction uses the CTRL instruction format.
With this format, the target instruction for the branch is specified by means
of a word-displacement (represented by displacement in the following ac-
tion statement for the bal instruction), which can range from 221 4o (221 -
1). To determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP.
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bal, balx

To allow labels or absolute addresses to be used in the assembly-language
version of the bal instruction, the Intel 80960KB Assembler performs the
following calculation to convert the targ value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen-

dix B.

Action: | bal: G14 < IP + 4; # destination next IP is always gl4

IP < IP + targ; # resume execution at the new IP

balx: dst < IP + inst length; # instruction length
#1is 4 or 8 bytes
" IP < targ; # resume execution at the new IP

Faults: STANDARD
Example: bal xyz # IP « xyz;

IP « (g2);

balx (g2), g4 #

: # address of return instruction
#
#

is stored in g4; example of
indirect addressing.

Opcode: bal 0B CTRL
balx 85 MEM

See Also: b, bx
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b, bx

Mnemonic:

Format:

Description:

b . Branch
bx Branch Extended
b targ
bx targ
mem

Branches to the instruction specified with the farg operand.

With the b instruction, the targ operand can be either a label or an absolute
address that specifies the IP of the target instruction. This value can be no
farther than -223 to (223 - 4) from the current IP. -

The bx instruction performs the same operation as the b instruction except
that the target instruction can be farther than -223 to (223 - 4) from the current
IP. With the bx instruction, the targ operand is a memory type, which allows
the full range of addressing modes to be used to specify the IP of the target
instruction. Here, the "IP + displacement" addressing mode allows the in-
struction to be IP-relative. Indirect branching can be performed by placing
the target address in a register and then using one of the register-indirect
addressing modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail-
able with memory-type operands.

Note

At the machine level, the b instruction uses the CTRL instruction format.
With this format, the target instruction for the branch is specified by means
of a word-displacement (represented by displacement in the following ac-
tion statement for the b instruction), which can range from -22! to (22! - 1).
To determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP.

To allow labels or absolute addresses to be used in the assembly-language
version of the b instruction, the Intel 80960KB Assembler performs the
following calculation to convert the farg value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen-
dix B.
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Action:

Faults:

Example:

Opcode:

See Also:

b, bx
b: IP < IP + displacement; # resume execution at the new IP
bx: IP < targ; # resume execution at the new IP
STANDARD

b xyz # IP ¢ xyz;
bx 1332 (ip) # IP « IP + 1332;

# this example uses ip-relative
# addressing.

b 08 CTRL
bx 84 MEM

bal, balx, BRANCH IF, COMPARE INTEGER AND BRANCH, COM-
PARE ORDINAL AND BRANCH
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bbc, bbs

Mnemonic:

Format:

Description:

bbc Check Bit and Branch If Clear

bbs Check Bit and Branch If Set

bb* bitpos, src, targ
reg/lit reg

Checks the bit in src (designated by bitpos) and sets the condition code in the
arithmetic controls according to the value found. The processor then per-
forms a conditional branch based on the value of the condition code.

For the bbc instruction, if the selected bit in src is clear, the processor sets
the condition code to 010, and branches to the instruction specified with the
targ operand; otherwise, it sets the condition code to 000, and goes to the
next instruction.

For the bbs instruction, if the selected bit is set, the processor sets the con-
dition code to 0102 and branches to farg; otherwise, it sets the condition code
to 000, and goes to the next instruction.

When using the Intel 80960KB Assembler, the targ ogerand can be either a
label or an absolute address that is no farther than -2!2 to (212 - 4) from the
current IP.

Note

At the machine level, the bbe and bbs instructions use the COBR instruc-
tion format. With this format, the target instruction for the branch is
specified by means of a word-displacement (represented by displacement in
the following action statement), which can range from 21049 (210 -1). To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the IP of the next instruction.

To allow labels or absolute addresses to be used in the assembly-language
versions of the bbe and bbs instructions, the Intel 80960KB Assembler
performs the following calculation to convert the targ value in an assembly-
language instruction to the displacement value required by the machine
instruction format: :

displacement = (targ/4) - (IP + 4)

For further information about the COBR instruction format, refer to Appen-
dix B.
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Action:

Faults:

Example:

Opcode:

See Also:

bbc:

if (src and 27 (bitpos mod 32)) =0
then AC.cc « 2#010#;
IP « IP + 4 + (displacement * 4);
# resume execution at the new IP
else AC.cc « 2#0004#;
IP-«— IP + 4; # resume execution at the next [P
end if;

bbs:

if (src and 2/ (bitpos mod 32)) = 1
then AC.cc « 2#010#;
IP « IP + 4 + (displacement * 4),
# resume execution at the new IP
else AC.cc « 2#000#;
IP « IP + 4; # resume execution at the next IP
endif; ’

STANDARD

# assume bit 10 of r6 is clear

bbc, bbs

bbc 10, r6, xyz # bit 10 of r6 is checked

# and found clear;
# AC.cc « 2#010#
"# IP ¢« xyz;

bbe 30 COBR
bbs 37 COBR

chkbit
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BRANCH IF

Mnemonics: be
"~ bne
bl
ble
bg
bge
bo
bno

Format: b

Description:  Branches to a new instruction according to the state of the condition code in

Branch If Equal

Branch If Not Equal
Branch If Less o
Branch If Less Or Equal. -
Branch If Greater

Branch If Greater Or Equal
Branch If Ordered

Branch If Unordered

targ
disp

the arithmetic controls.

For

all branch-if instructions exbept the bno instruction, the processor
branches to the instruction specified with the farg operand, if the logical
AND of the condition code and the mask-part of the opcode is not zero.

Otherwise, it goes to the next instruction.

For the bno instruction, the processor branches to the instruction specified
with targ, if the logical AND of the condition code and the mask-part of the

opcode is zero. Otherwise, it goes to the next instruction.

When using the Intel 80960KB Assembler, the targ operand can be either a
label or an absolute address that specifies the IP of the target instruction.

This value can be no farther than -223 o (223 -4) from the current IP.

Note

At the machine level, the branch-if instructions use the CTRL instruction
format. With this format, the target instruction for the branch is specified
by means of a word-displacement (represented by displacement in the
following action statements), which can range from 22040 221 - 1), To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the current IP.

3-134



- &

n

80960KB PROGRAMMER’S REFERENCE

Action:

BRANCH IF

To allow labels or absolute addresses to be used in the assembly-language
version of the branch-if instructions, the Intel 80960KB Assembler per-
forms the following calculation to convert the farg value in an assembly-
language instruction to the displacement value required by the machine

instruction format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen-

dix B.

The following table shows the condition-code mask for each instruction:

Instruction

Mask

Condition

bno

000

Unordered

bg

001

Greater

be

010

Equal

bge

011

Greater or equal

bl

100

Less

bne

101

Not equal

ble

110

Less or equal

bo

111

Ordered

For the bno instruction (unordered), the branch is taken if the condition code

is equal to 000,.

The mask is in bits 0-2 of the opcode.

For All Instructions Except bno:

if (mask and AC.cc) # 2#000#
then IP « IP + displacement; # resume execution at new IP

end if;

bno:

if AC.cc = 2#000#

then IP < IP + displacement; # resume execution at new IP

end if;
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BRANCH IF
Faults: ‘ STANDARD
Exampleﬁ - # assume AC.cc AND 2#100# are # 0

bl xyz # IP « xyz;

Opcode: be 12 CTRL
bne 15 CTRL
bl 14 CTRL
ble " 16 CTRL
bg 11 CTRL
bge 13 CTRL
bo 17 CTRL
bno 10 ' CTRL

See Also: b, bx
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Mnemonic:
Format:

Description:

call
call Call
call targ

Calls a new procedure. The processor performs a local call operation as
described in Chapter 4 in the section titled "Local Calls." As part of this
operation, the processor allocates a new set of local registers and a new stack
frame for the called procedure. The processor then goes to the instruction
specified with the targ argument and begins execution of the new procedure.

When using the Intel 80960KB Assembler, the tfarg operand can be either a
label or an absolute address that specifies the IP of the first instruction in the
called procedure. This value can be no farther than 223 10 (223 - 4) from the
current IP.

Note

At the machine level, the call instruction uses the CTRL instruction format.
With this format, the first instruction of the called procedure is specified by
means of a word-displacement (represented by displacement in the follow-
ing action statement), which can range from 221 ¢o (22! - 1). To determine
the IP of the target instruction, the processor converts this displacement
value to a byte displacement (i.e., multiplies the value by 4). It then adds
the resulting byte displacement to the current IP.

To allow labels or absolute addresses to be used in the assembly-language
version of the call instruction, the Intel 80960KB Assembler performs the
following calculation to convert the targ value in an assembly-language
instruction to the displacement value required by the machine instruction
format:

displacement = (targ/4) - IP

For further information about the CTRL instruction format, refer to Appen-
dix B.

3-137



intgl

80960KB PROGRAMMER'’S REFERENCE

call

Action:

Faults:
Example:
Opcode:

See Also:

wait for any uncompleted instructions to finish;
temp ¢« (SP + 63) and not (63); # round to next boundary
RIP « IP;
if register_set_available

then allocate as new frame;

else save a register_set in memory at its FP;

allocate as new frame;

# local register references now refer to new frame
IP « IP + displacement;
PFP « FP;
FP ¢ temp; _
SP « temp + 64;

STANDARD
call xyz # IP ¢ xyz
call 09 : CTRL

bal, calls, callx
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Mnemonic:

Format:

Description:

calls
calls Call System
calls targ
reg/lit

Calls a system procedure. The targ operand gives the number of the proce-
dure being called.

For this instruction, the processor performs the system call operation
described in Chapter 4 in the section titled "System Calls." The targ operand
provides an index to an entry in the system procedure table. From this entry,
the processor gets the IP of the called procedure.

The procedure called can be either a local procedure or a supervisor proce-
dure, depending on the entry type in the procedure table. If it is a supervisor
procedure, the processor also switches to supervisor mode (if it is not already
in this mode).

As part of this operation, the processor allocates a new set of local registers

and a new stack frame for the called procedure. If the processor switches to
the supervisor mode, the new stack frame is created on the supervisor stack. -
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calls
Action: if targ > 259 then raise Protection Length Fault;
wait for any uncompleted instructions to finish;
temp_p_e <— memory (SPT, 48 + (4 * targ));
# SPT is pointer to system procedure table from IMI
RIP « IP;
IP « temp_p_e.address; if (temp_p_e.type = local) or
execution_mode = supervisor ‘
then temp < (SP + 63) and not(63);
tempRRR < 2#000#;
else temp < memory (SPTSS, 12); # supervisor call
tempRRR « 2#01T#; #T is process_controls.T
execution_mode ¢ supervisor; '
process_controls.T « temp.T;
endif; .
if frame_available
then allocate as new frame; .
else save a frame in memory at its FP;
allocate as new frame;
# local register references now refer to new frame
endif; '
PFP « FP; _
LO.RRR « tempRRR;
FP « temp;
SP « temp + 64;
Faults: STANDARD
Example: calls rl2 # IP ¢« value obtained from
i # procedure table for procedure
# number given in rl2
Opcode: calls 660 REG
See Also: bal, call, callx
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intel

Mnemonic:

Format:

Description:

Action:

callx
callx Call Extended
callx targ
mem

Calls a new procedure. The processor performs a local call operation as
described in Chapter 4 in the section titled "Local Calls." As part of this
operation, the processor allocates a new set of local registers and a new stack
frame for the called procedure. The processor then goes to the instruction
specified with the farg argument and begins execution of the new procedure.

This instruction performs the same operation as the call instruction except
that the target instruction can be farther than 2223 to (223 - 4) from the current
IP.

The targ operand is a memory type, which allows the full range of address-
ing modes to be used to specify the IP of the target instruction. The "IP +
displacement” addressing mode allows the instruction to be IP-relative. In-
direct calls can be performed by placing the target address in a register and
then using one of the register-indirect addressing modes.

Refer to Chapter 5 for a complete discussion of the addressing modes avail-
able with memory-type operands.

wait for any uncompleted instructions to finish;
temp < (SP + 63) and not (63); # round to next boundary
RIP « IP;
if register_set_available
then allocate as new frame;
else save a register_set in memory at its FP;
allocate as new frame;
# local register references now refer to new frame
endif;,
IP « targ;
PFP « FP;
FP « temp;
SP « temp + 64;
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callx

Faults: .

Example:

Opcode:

See Also:

STANDARD

callx (g5) # . IP « (g5), where the address
# in g5 is the address of the new
# procedure

bal, callx 86 MEM -

call, calls
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Mnemonic:

Format:

Description:

Action:

Faults:
Example:
Opcode:

See Also:

chkbit
chkbit Check Bit

chkbit bitpos, src
reg/lit reg/lit

Checks the bit in src designated by bitpos and sets the condition code accord-
ing to the value found. If the bit is set, the condition code is set to 0102; if
the bit is clear, the condition code is set to 0002.

if (src and 27 (bitpos mod 32)) =0
then AC.cc « 2#000#;
else AC.cc « 2#010#;

end if;

STANDARD
chkbit 13, g8 # checks bit 13 in g8
chkbit " 5AE REG

alterbit, clrbit, notbit, setbit
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classr, classrl

Mnemonic: classr
classrl

Format: classr

Classify Real
Classify Long Real

src

freg/flit

Description:  Checks the classification of the real number in src and stores the class in
arithmetic-status bits (3 through 6) of the arithmetic controls.

For the classrl instruction, if the src operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the setting of the arithmetic-status bits dependmg
on the classification of the operand. : :

AStatus | Classification

s000 Zero ‘

s001 Denormalized number
s010 Normal finite number
s011 Infinity

-s100 Quiet NaN

s101 Signaling NaN

s110 Reserved operand

The "s" bit is set to the sign of the src operand.

© Refer to Chapter 7 for a discussion of the different real number classifica-

tions.
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classr, classrl

Action: s « sign_of(src)

ifsrc=0

then arithmetic_status <« s000;
elseif src = denormalized

then arithmetic_status « s001;
elseif src = normal finite

then arithmetic_status < s010;
elseif src = oo

" then arithmetic_status < s011;

elseif src = QNaN

then arithmetic_status « s100;
elseif src = SNaN |

then arithmetic_status < s101;
elseif src = reserved operand

then arithmetic_status « s110;
end if

Faults: STANDARD ' Refer to the discussion of faults at the
beginning of this chapter.

None of the floating-point exceptions can be raised.

Example: classrl gl2 # classifies long real in gl2,gl3

Opcode: classr 68F REG
classrl 69F REG
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cirbit

Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

See Also:

clrbit Clear Bit
clrbit bitpos, src, dst
reg/lit “reg/lit reg

Copies the src value to dst with one bit cleared. The bitpos operand specifies
the bit to be cleared.

dst « src and not(2(bitpos mod 32));
STANDARD

clrbit 23, g3, g6 # g6 <« g3 with bit 23
# cleared :

clrbit 58C REG

alterbit, chkbit, notbit, setbit
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cmpi, cmpo

Mnemonics: cmpi - Compare Integer

cmpo Compare Ordinal

Format: cmp# srel, sre2
reg/lit reg/lit

Description: - Compares the src2 and src! values and sets the condition code according to
the results of the comparison. The following table shows the setting of the
condition code for the three possible results of the comparison.

Condition | Comparison
Code ‘

100 srcl < src2
010 srcl = sre2
001 |\ srel > sre2

The cmpi instruction followed by one of the branch-if instructions is equiv-
alent to one of the compare-integer-and-branch instructions. The latter
method of comparing and branching produces more compact code; however,
the former method can result in faster running code because it takes advan-
tage of the processor’s pipelined architecture. The same is true for the comp
instruction and the compare-ordinal-and-branch instructions.

Action: if srcl < src2 then AC.cc « 2#100%#;
elseif srcl = src2 then AC.cc « 2#010#;
else AC.cc « 2#001#,
end if;
Faults: STANDARD
Example: cmpo 0x10, r9 # compare values in r9 and 0x10

# and set condition code

Opcode: cmpi 5A1 ‘REG
cmpo SA0 REG
See Also: cmpibe, cmpr, cmpdeci, cmpdeco
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cmpdeci, cmpdeco

Mnemonics:

Format:

Description: -

Action:

Faults:

Example:

Opcode:

See Also:

cmpdeci Compare and Decrement Integer
cmpdeco  Compare and Decrement Ordinal

cmpdect  srcl, src2, dst
: reg/lit reg/lit reg

Compares the src2 -and srcl values and sets the condition code according to
the results of the comparison. The src2 operand is then decremented by one

.and- the result is stored in dst. -

The following table shows the setting' of the condition code for the three
possible results of the comparison.

Condition | Comparison
Code

100 srcl < src2
010 srcl = src2
001 - srcl > sre2

. These instructions are intended for use in ending iterative loops. For the

cmpdeci instruction, interger overflow is 1gnored to allow looping down
through the minimum.integer values.

if srcl < src2 then AC.cc « 2#1004#;

elseif srcl = src2 then AC.cc « 2#0104#;

elseif srcl > src2 then AC.cc « 2#001#;

end if;

dst « src2 - 1; #overflow suppressed for cmpdeci
# instruction

STANDARD

cmpdeci 12, g7, gl # g7 and 12 are compared;
, # gl < g7 -1

cmpdeci  5A7 - REG
cmpdeco  5A6 REG

cmpinco, cmpo
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Mnemonics:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

cmpinci, cmpinco

cmpinci Compare and Increment Integer
cmpinco  Compare and Increment Ordinal

cmpinc# srcl, sre2, dst
reg/lit reg/lit reg

Compares the src2 and srcl values and sets the condition code according to
the results of the comparison. The src2 operand is then incremented by one
and the result is stored in dst.

The following table shows the setting of the condition code for the three
possible results of the comparison.

Condition | Comparison
Code

100 srcl < src2
010 srcl = src2
001 srcl > src2

These instructions are intended for use in ending iterative loops. For the
cmpinci instruction, integer overflow is ignored to allow looping up through
the maximum integer values. '

if srcl < src2 then AC.cc < 2#100#;

elseif srcl = src2 then AC.cc « 2#010%;

elseif srcl > src2 then AC.cc « 2#001#;

end if;

dst « src2 + 1; # overflow suppressed for cmpinci
# instruction

STANDARD

cmpinco r8, g2, g9 # g2 and r8 are compared;
# g9 ¢« g2 + 1

cmpinci 5A5 REG
cmpinco 5A4 REG

cmpdeco, cmpo
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cmpor, cmporl

Mnemonics:
Format:

Description:'

Action:

cmpor Compare'Ordered Real
cmporl Compare Ordered Long Real

cmpors srel, src2
freg/flit freg/flit

Compares the src2 and srcl values and sets the condition code according to
the results of the comparison.

For the cmporl instruction, if the srcl or src2 operand references a global or
local register, this register is the first (lowest numbered) of two successive.
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the setting of the condition code for the four
possible results of the comparison.

Condition | Comparison

Code

100 srel < sre2

010 srcl = sre2

001 | srcl > src2 ,

000 if either srcl or src2
is a NaN

The algorithm for these instructions checks the classification of the operands.
If either is in the NaN class, the condition code is set to 000, and a floating
invalid-operation exception is raised. The cmpor and cmporl instructions
operate the same as the cmpr and cmprl instructions, except that the latter.
instructions do not signal an exception if a NaN value is detected.

If a floating-reserved-encoding fault occurs, the condition code results are
undefined. ‘

if srcl < src2

then AC.cc « 2#1004#;

elseif srcl = src2
then AC.cc « 2#010#,
elseif srcl > src2
then AC.cc < 2#001#;

else AC.cc « 2#000#; # indicates one number is a NaN

raise floating invalid operation fault
end if
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~ Faults:

Example:

Opcode:

See Also:

cmpor, cmporl

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls. '

Floating Invalid Operation One or more operands are a NaN value.

cmporl g6, gl2 # compare value in gl2,gl3
# with value in g6,g7

cmpor 684 REG
cmporl 694 REG
cmpr, cmpi, BRANCH IF
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cmpr, cmprl

Mnemonics:
Format:

Description:

Action:

cmpr Compare Real

cmprl Compare Long Real
cmpr* srel, src2

freg/flit freg/flit

-Compares the src2 and srcl values and sets the condition code according to

the results of the comparison. For the cmprl instruction, if the srcl or src2
operand references a global or local register, this register is the first (lowest
numbered) of two successive registers.

The following fable shows the setting of the condition code for the four
possible results of the comparison.

Condition | Comparison

Code

100 srcl < sre2

010 srcl = sre2

001 srcl > src2

000 if either srcl or src2
is a NaN )

The algorithm for these instructions checks the classification of the operands.
If either is in the NaN class, the condition code is set to 000,, but no fault is
raised. The cmpr and cmprl instructions operate the same as the cmpor and
cmporl instructions, except that the latter instructions raise an invalid-
operand exception if a NaN value is detected.

If a floating-reserved-encoding fault occurs, the condition code results are
undefined.

if srcl < src2
then AC.cc « 2#1004#;
elseif srcl = src2 ‘
then AC.cc « 2#0104#;
elseif srcl > src2
then AC.cc « 2#001#;
else AC.cc « 2#000#; # indicates one number is a NaN
end if}
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Faults:

Example:

Opcode:

See Also:

cmpr, cmprl

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Invalid Operation One or more operands are an SNaN
value.

cnprl g2, g6 # compare values in g6,g7

# and 92,93
cmpr 685 REG
cmprl 695 REG

cmpor, cmpi, BRANCH IF
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COMPARE AND BRANCH

Mnemonics:

Format:

Description:

cmpibe Compare Integer And Branch If Equal

cmpibne  Compare Integer And Branch If Not Equal
cmpibl Compare Integer And Branch If Less

cmpible Compare Integer And Branch If Less Or Equal
cmpibg Compare Integer And Branch If Greater
cmpibge Compare Integer And Branch If Greater Or Equal
cmpibo Compare Integer And Branch If Ordered
cmpibno  Compare Integer And Branch If Unordered

cmpobe Compare Ordinal And Branch If Equal

cmpobne  Compare Ordinal And Branch If Not Equal
cmpobl Compare Ordinal And Branch If Less

cmpoble Compare Ordinal And Branch If Less Or Equal
cmpobg Compare Ordinal And Branch If Greater
cmpobge  Compare Ordinal And Branch If Greater Or Equal

cmpib#* srcl, src2, “targ
reg/lit reg

cmpob=* srel, src2, targ.
reg/lit reg disp

Compares the src2 and srcl values and sets the condition code according to
the results of the comparison. If the logical AND of the condition code and
the mask-part of the opcode is not zero, the processor branches to the instruc-
tion specified with the farg operand; otherwise, the processor goes to the
next instruction.

When using the Intel 80960KB Assembler, the targ O}Z)erand can be either a
label or an absolute address that is no farther than -2!2 to (2!2 - 4) from the
current IP.

Note

At the machine level, the compare-and-branch instructions use the COBR
instruction format. With this format, the target instruction for the branch is
specified by means of a word-displacement (represented by displacement in
the following action statement), which can range from 2104 (210 -1). To
determine the IP of the target instruction, the processor converts this
displacement value to a byte displacement (i.e., multiplies the value by 4).
It then adds the resulting byte displacement to the IP of the next instruction.
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To allow labels or absolute addresses to be used in the assembly-language
versions of these instructions, the Intel 80960KB Assembler performs the
following calculation to convert the targ value in an assembly-language
instruction to the displacement value required by the machine instruction

format:

COMPARE AND BRANCH

displacement = (targ/4) - (IP +4)

For further information about the COBR instruction format, refer to Appen-

dix B.

The following table shows the condition-code mask for each instruction:

Instruction | Mask | Branch Condition
cmpibno 000 No Condition
cmpibg 001 srcl > src2
cmpibe 010 srcl = src2
cmpibge 011 srcl 2 src2
cmpibl 100 | srcl <src2
cmpibne 101 srcl # src2
cmpible 110 | srcl £src2
cmpibo 111 | Any Condition
cmpobg 001 srcl > src2
cmpobe 010 srcl = src2
cmpobge 011 srcl 2 src2
cmpobl 100 srcl < src2
cmpobne 101 srcl # src2
cmpoble 110 srcl < src2

The cmpibo instruction always branches; the cmpibno instruction never

branches.

The functions that these instructions perform can be duplicated with a cmpi
instruction followed by a branch-if instruction, as described in the descrip-

tion of the cmpi instruction in this chapter.
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COMPARE AND BRANCH

Action: if srcl < src2 then AC.cc = 2#100#;
elseif srcl = src2 then AC.cc « 2#010#
else AC.cc « 2#001#
end if;
if mask and AC.cc # 2#000#
then IP < IP + 4 + (displacement * 4);
# resume execution at the new IP

else IP — IP +4; =
# resume execution at the next IP
end if;
Faults: STANDARD
Example: # assume g3 < g9

cmpibl g3, g9, xyz # g9 is compared with g3;
o . # IP « xyz.

# assume r7 = 19 _
cmpobge . r7, 19, xyz # 19 is compared with r7
. # IP « xyz.

Opcode: cmpibe 3A COBR
cmpibne 3D COBR
«cmpibl  3C - - COBR
cmpible 3E . COBR
cmpibg 39 COBR
cmpibge. = 3B COBR
cmpibo 3F COBR
cmpibne 38 COBR
cmpobe 32 COBR
cmpobne 35 COBR
cmpobl 34 . COBR
cmpoble 36 COBR
cmpobg 31 COBR
cmpobge 33 COBR

See Also: BRANCH IF, cmpi
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Mnemonics:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

concmpi, concmpo

concmpi Conditional Compare Integer
concmpo  Conditional Compare Ordinal

concmp*  srcl, src2
reg/lit reg/lit

Compares the src2 and srcl values if bit 2 of the condition code is not set. If

. the comparlson is perfmmed the condition code is set according to the

results of the comparison.

These instructions are provided to facilitate bounds checking by means of
two-sided range comparisons (e.g., is A between B and C?). They are
generally used after a compare instruction to test whether a value is in-
clusively between two other values.

The example below illustrates this application by testing whether the value in
g3 is between the values in g5 and g6, where ‘g5 is assumed to be less than
g6. First a comparison (cmpo) of g3 and g6 is performed. If g3 is less than
or equal to g6 (i.e., condition code is either 0102 or 001), a conditional
comparison (concmpo) of g3 and g5 is then performed. If g3 is greater than
or equal to g5 (indicating that g3 is within the bounds of g5 and g6), the
condition code is set to 0102; otherwise, it is set to 001,.

if (AC.cc and 2#100#) =0 then
if srcl < src2
then AC.cc « 2#010

else AC.cc « 2#001;
endif;

endif;

STANDARD

cmpo g6, .93 # compares g6 and g3 and sets
# condition code

concmpo g5, g3 # i1f condition code is not

' # 2#1xx#, g5 is compared

# with g3

concmpi  5A3 REG

concmpo  5A2 REG

cmpo, cmpi
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cosr, cosrl |

Mnemonics:

Format:

Description:

Action:

cosr Cosine Real
cosrl Cosine Long Real
cosr sre, dst

freg/flit freg

Calculates the cosine of the value in src and stores the result in dst. The src
value is an angle given in radians. The resulting dst value is in the range -1
to +1, inclusive. :

For the cosrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when taking the cosine of
various classes of numbers with neither overflow nor underflow.

Src Dst
-00 *
-F -1to +1
-0 +1
+0 +1
+F |-1to +1
+ 0 *
NaN NaN
Notes:
F Means finite-real number

b Indicates floating invalid-operation exception

In the trigonometric instructions, the 80960KB uses a value for ® with a
66-bit mantissa which is 2 bits more than are available in the extended-real
format. The section in Chapter 12 titled "Pi" gives this 7 value, along with
some suggestions for representing this value in a program.

dst < cosine (src);
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Faults:

Example:

Opcode:

See Also:

STANDARD

Floating Reserved Encoding

|cost, cosrl

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Invalid Operation

Floating Inexact

The src operand is oo.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

cosrl r8, g2 # cosine of value in r8,r9 is
# stored in g2,g3

cosr 68D REG
cosrl 69D REG

sinr, sinrl, tanr, tanrl
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|Cpyrsre, cpysre

Mnemonics:

Format:

Description:

Action:

Faults:

Example:

Opcode:

cpysre Copy Sign Real Extended
cpyrsre - Copy Reversed Sign Real Extended

cpy* srcl,  sre2 , dst
freg/flit freg/flit freg

Copies the absolute value of srcl into dst. For the cpysre instruction, the
sign of src2 is copied to dst; for the cpyrsre instruction, the opposite of the
sign of src2 is copied to dsst. '

If the srcl, src2, or dst operand references a global or local register, this
register is the first (lowest numbered) of three successive registers. Also, the
number of this register must be a multiple of four (e.g., g0, g4, g8).

These instructions only operate on values in the extended-real format. The
same operations can be performed on real- and long-real values using the
setbit and clearbit instructions, or a combination of the chkbit and alterbit
instructions.

cpysre if src2 is positive
then dst < abs (srcl) .
else dst « -abs (srcl)

cpyrsre if src2 is negative
then dst < abs (srcl)
else dst < -abs (srcl)

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is a denormalized
value and the normalizing-mode bit in
the arithmetic controls is set.

cpysre fp0, fpl, fp2
# absolute value from fp0 is copied to
# fp2; sign from fpl is copied to fp2

cpysre 6E2 REG
cpyrsre 6E3 REG
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Mnemonics:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

cvtilr, cvtir

cvtilr Convert Long Integer to Real
cvtir Convert Integer to Real
cvti sre, C dst

reg/lit freg

Converts the integer in src to a real and stores the result in dst. For the cvtilr
instruction, the src operand references the first (lowest numbered) of two
successive registers. Also, this register must be even numbered (e.g., g0, g2,

g4).

Converting an integer to long real format requires two instructions. First, the
integer is converted to extended real format by using the cvtir or cvtilr
instruction with a floating-point register as a destination. Then the movrl
instruction is used to move the value from the floating-point register to two
global or local registers, causing an explicit conversion to long real format.
(Note that this conversion is always exact.) The example section below
illustrates this conversion.

dst « real (src);
STANDARD ‘ Refer to the discussion of faults at the

beginning of this chapter.

The following floating-point exception can be raised. Whether or not the
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Inexact Can only be signaled when converting an
integer to real (32-bit) format

# Conversion of an integer to a long real value
cvtir g6, fp3
movrl fp3, g8 # result stored in g8,g9

cvtir 674 REG
cvtilr 675 REG

cvtri, movr
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cvtri, cvtril, cvtzri, cvizril

Mnemonics:

Format:

Description:

Action:

cvtri ~ Convert Real To Integer

cvtril Convert Real To Integer Long

cvtzri Convert Truncated Real To Integer
cvtzril Convert Truncated Real To Long Integer
cvtri* src, dst

freg/flit reg

Converts the real value in src to an integer and stores the result in dst.

For the cvtril and cvtzril instructions, the dst operand references the first
(lowest numbered) of two successive registers. Also, this register must be
even numbered (e.g., g0, g2, g4). :

The nontruncated versions of these instructions round according to the cur-
rent rounding mode in the Arithmetic Controls register. The truncated ver-
sions always round toward zero. -

Converting a long real value to an integer requires two instructions. First,
the long real value is converted to extended real format by using the movrl
instruction with a floating-point register as a destination. (Note that this
operation is always exact.) Then one of the convert real-to-integer instruc-
tions is used to move the value from the floating-point register to one or two
global or local registers. The example section below illustrates this conver-
sion.

If the magnitude of the result cannot be represented in the destination, an
integer-overflow fault is raised, and the maximum positive or maximum
negative value is stored in the destination (depending on whether the real .
value was positive or negative, respectively).

dst « integer (srcl);
# srcl is rounded to integer value
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Faults:

Example:

Opcode:

See Also:

cvtri, cvtril, cvtzri, cvizril

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

The following exception can be raised. Whether or not the exception results
in a fault being raised depends on the state of its associated mask bit in the
arithmetic controls register.

Integer Overflow Result is too large for destination format.

# Conversion of long real value to an integer
movrl g4, £fp2 # long-real source is
' # converted to extended-real
# format and moved to fp2

cvtril fp2, gl2 # extended-real value is
# converted to long integer

cvtri 6CO REG
cvtril 6C1 REG
cvtzri 6C2 REG
cvtzril 6C3 REG
cvtir, movr
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daddc

Mnemonic:

Format:

Description:

Action: '

Faults:

Example:

Opcode:

See Also:

daddc Decimal Add With Carry
daddc srel, sre2, dst
reg reg reg

Adds bits 0 through 3 of src2 and srcl and bit 1 of the condition code (used.
here as a carry bit).. The result is stored in bits O through 3 of dst. If the
addition results in a carry, bit 1 of the condition code is set. Bits 4 through
31 of src are copied to dst unchanged.

This instruction is intended to be used iteratively to add binary-coded-
decimal (BCD) values in which the least-significant four bits of the operands
represent the decimal numbers O to 9. The instruction asssumes that the least
significant 4 bits of both operands are valid BCD numbers. If these bits are
not valid BCD numbers, the resulting value in dst is unpredictable.

# Let the value of the condition code be xCx.

dst < src2 + srcl + C;

AC.cc « 2#0CO#;

# C is carry from addition of bits O through 4 of operands
# Bits 4 - 31 of dst are same as bits 4 - 31 of src2

STANDARD

daddc g5, g9, gl0 # gl0 « g9 + g5 + Carry Bit,
# where arithmetic is
# carried out only on bits 0
# through 3 of the operands

daddc 642 REG

dsubc, dmovt
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

divi, divo

divi Divide Integer

divo Divide Ordinal

div* srcl, src2, dst
reg/lit reg/lit reg

Divides the src2 value by the srcl value and stores the result in dst.

For the divi instruction, and integer-overflow fault can be signaled.
dst « src2 [ srcl;

STANDARD : Refer to discussion of faults at the begin-
ning of this chapter.

Arithmetic Zero Divide The srcl operand is 0.

The following fault condition can be raised with the divi instruction.
Whether or not a fault is raised depends on the state of its associated mask bit
in the arithmetic-controls register.

Integer Overflow Result is too large for destination format.

divo r3, r8, rl3 # rl3 « r8/r3

divi 74B - REG
divo 70B REG
ediv, mulo.
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divr, divrl

Mnemonic: divr Divide Real —
divrl Divide Long Real
Format: divr* srcl, sre2, dst

freg/flit freg/flit freg

Description:  Divides the src2 value by the srcl value and stores the result in dsz.

For the divrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The sign of the result is always the exclusive-OR of the source signs, even if
one or more of the source values is 0, =, or a NaN.

The following table shows the results obtained when dividing various classes
of numbers, assuming that neither overflow nor underflow occurs.

Srel
-0 -F -0 +0 +F + o NaN
- * iy +o | -0 * NaN
-F +0 +F T ** -F -0 NaN
-0 +0 +0 * * -0 -0 NaN
Src2| +0 -0 -0 * * +0 +0 NaN
+F -0 -F ** ** +F +0 NaN
400 | * -00 -00 + o0 + * NaN
NaN NaN NaN NaN | NaN NaN NaN NaN

Notes:

F  Means finite-real number.
*  Indicates floating invalid-operation exception.
**  Indicates floating zero-divide exception.

Action: dst « src2 [ srcl;
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Faults:

Example:

Opcode:

See Also:

STANDARD

- Floating Reserved Encoding

divr, divrl

i

* Refer to the discussion of faults at the

beginning of this chapter.

One or more operands is an unnormal,
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow
Floating Underflow
Floating Zero Divide

Floating Invalid Operation

Floating Inexact

Result is too large for destination format.
Result is too small for destination format.

The srcl operand is 0 and the src2
operand is numeric and finite.

Both source operands are O or both are
OO_

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

divrl gl0, g0, fpl # fpl « g0,gl / gl0,gll

divr 78B
divrl 79B

ediv, mulr, mulrl

REG
REG
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dmovt

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

dmovt Decimal Move And Test
dmovt sre, dst
reg reg

Copies the src value into dst. The least-significant eight bits of the src value
are tested to determine whether or not they constitute a valid ASCII decimal
(00110000, .. 00111001,), and the condition code is set accordingly. If the
value is a valid ASCII decimal, the condition code is set to 0002; otherwise,
itis set to 010,.

“This instruction is intended to be used iteratively to validate decimal strings.

dst « src; ;
if src = 2#0011000# .. 2#00111001#
then AC.cc « 2#0004#;
else AC.cc « 2#0104#;
end if; :

STANDARD

dmovt gl, g6 # g6 « gl;
# gl tested for decimal value

dmovt 644 REG

daddc, dsubc
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dsubc
Mnemonic: dsubc Decimal Subtract With Carry
Format: dsubc srcl, src2, dst
reg reg reg

Description:  Subtracts bits O through 3 of src2 and srcl and bit 1 of the condition code
(used here as a carry bit). The result is stored in bits O through 3 of dst. If
the subtraction results in a carry, bit 1 of the condition code is set. Bits 4
through 31 of src are copied to dst unchanged.

This instruction is intended to be used iteratively to subtract binary-coded-
decimal (BCD) values in which the least-significant four bits of the operands
represent the decimal numbers O to 9. The instruction asssumes that the least
significant 4 bits of both operands are valid BCD numbers. If these bits are
not valid BCD numbers, the resulting value in dst is unpredictable.

Action: # Let the value of the condition code be xCx.
dst < src2 -srcl -1+ C; '
AC.cc « 2#0CO0#;
# C is carry from subtraction of bits O through 4 of operands
# Bits 4 - 31 of dst are same as bits 4 - 31 of src2

Faults: STANDARD

Example: dsubc rl, r2, rl2 # rl2 « r2 - rl -1 + Carry
# Bit, where arithmetic is
# carried out only on bits 0
# through 3 of the operands

Opcode: dsubc 643 REG

See Also: daddc, dmovt
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ediv
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

ediv Extended Divide
ediv srcl, sre2, dst
reg/lit reg/lit reg

Divides src2 by srcl and stores the result in dsz. The src2 value is a long
ordinal (i.e., 64 bits), which is contained in two adjacent registers. The src2
operand specifies the lower numbered register, which contains the least sig-
nificant bits of the operand. The src2 operand must be an even numbered
register (i.e., 0, 12, r4, ... or g0, g2, ...). The srcl value is a normal ordinal
(i.e., 32 bits).

The remainder is stored-in the register designated by dst and the quotient is
stored in the next highest numbered register. The dst operand must be an
even numbered register (i.e., 10, 12, 4, ... or g0, g2, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (i.e., the quotient or remainder do not fit in 32-
bits), no fault is raised and the result is undefined.

dst « (src2 - (src2 [ srcl) * srcl); # remainder
dst+ 1 « (src2 [ srcl); # quotient

STANDARD, Arithmetic Integer Divide

ediv g3, g4, gl0 # gl0 « remainder of g4,g5/g3
# gll « quotient of g4,g5/g3

ediv 671 REG

emul
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Mnemonic:

Format:

Description:

Action:

Faults:
Example:
Opcode:

See Also:

emul
emul Extended Multiply
emul srcl, src2, dst
reg/lit reg/lit reg

Multiplies src2 by srcl and stores the result in dst. The result is a long
ordinal (i.e., 64 bits), which is stored in two adjacent registers. The dst
operand specifies the lower numbered register, which receives the least sig-
nificant bits of the result. The dst operand must be an even numbered
register (i.e., 10, 12, r4, ... or g0, g2, ...).

This instruction performs ordinal arithmetic.

dst « (srcl * scm) mod 2/32;
dst + 1 « (src * src2)/mod 2/A32;

STANDARD
emul r4, r5, g2 # g2,93 ¢« r4 % r5
emul 670 REG

ediv
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expr, exprl

Mnemonic: expr Exponent Real
exprl Exponent Long Real
Format: exp# sre, dst

freg/flit freg

Description: Calculates an approximation of the exponential value of 2 to the src power,
minus 1, and stores the result in dsz. The src value must be within the range
of -0.5 to +0.5, inclusive. If the src value is outside this range, the result is
undefined. ‘

For the exprl instruction, if the src or dst 6perand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when computing the exponent
of various classes of numbers.

Sre Dst

-0.5t0-0 -(1/V2)-1t0 -0
-0 4 -0

+0 +0

+0to +0.5 +0toV2-1

Notes:
*¥* Results are unpredictable

Action: dst « (27src) - 1;
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Faults:

Example:

Opcode:

See Also:

expr, exprl

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls'is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow Result is too small for destination format.
Floating Invalid Operation One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented exactly in

destination format.

#y=2"x (y and x in g0)

# uses identity

# 27x = 27 (I+f)

# = 2T * ((2°f - 1)+1)

# where: I integer, -0.5 <= f <= +0.5

# assumes round-to-nearest

# does not handle infinities or NaNs

_pow2x:
roundr g0, fp0 # I in fp0
subr fp0, 90,90 # £ in g0

expr g0,g0

addr 0£1.0,g90,g0
cvtri fp0,gl
scaler gl,fp0,g0

expr 689 REG
exprl 699 REG

scaler, logr
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extract
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

extract Extract
extract bitpos, len, srcldst
reg/lit reg/lit reg

Shifts a specified bit field in src/dst right and fills the bits to the left of the
shifted bit field with zeros. The bitpos value specifies the least significant bit
of the bit field to be shifted, and the len value specifies the length of the bit
field.

srcldst « (srcldst [ 2M(bitpos mod 32))
and (2Mlen - 1);

STANDARD

extract 5, 12, g4 # g4 « g4 with bits 5
# through 16 shifted right

extract 651 REG

modify
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Mnemonic: faulte

faultne -

faultl
faultle
faultg
faultge
faulto
faultno

Format: fault*

Fault If Equal

Fault If Not Equal

Fault If Less
Fault If Less Or Equal
Fault If Greater
Fault If Greater Or Equal
Fault If Ordered

Fault If Unordered

FAULT IF

Description:  Raises a constraint-range fault if the logical AND of the condition code and
the mask-part of the opcode is not zero.

The following table shows the condition-code mask for each instruction:

Instruction | Mask | Condition
faultno 000 Unordered
faultg 001 Greater

faulte 010 Equal

faultge 011 Greater or equal
faultl 100 Less

faultne 101 Not equal
faultle 110 Less or equal
faulto 111 Ordered

For the faultno instruction (unordered), the fault is raised if the condition

code is equal to 2#000#.

" Action: For all instructions except faultno:

if (mask and AC.cc) # 2#000#
then raise constraint-range fault;

end if;

faultno:

if AC.cc = 2#000# _
then raise constraint-range fault;

end if;
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Faults: . STANDARD, Constraint Range
Example: = # assume 2#110# AND AC.cc # 2#000#
faultle # raises Constraint Range Fault
Opcode: faulte 1A CTRL
+ faultne 1D CTRL
faultl 1C CTRL
faultle 1E CTRL
faultg 19 CTRL
faultge 1B -~ CTRL
faulto 1F CTRL
faultno 18 CTRL
See AISO: be, teste
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Mnemonic:
Format:

Description:

Action:

Faults:
Example:

Opcode:

flushreg
flushreg Flush Local Registers
flushreg

Copies the contents of all the cached local-register sets into their associated
register-save areas in the procedure stack. The contents of all the local-
register sets except for the current set are then marked as invalid. On a
return, the local registers for the frame being returned to are then loaded from
the stack.

The flushreg instruction is provided to allow a compiler or applications
program to circumvent the normal call/return mechanism of the processor.
For example, a compiler may need to back up several frames in the stack on
the next return, rather than using the normal return mechansim that returns
one frame at a time. Here, the compiler uses the flushreg instruction to
update the stack with the current states of the saved register sets. The
compiler can then return to any frame in the stack without losing the contents
of the saved local-register sets. To return to a frame other than the frame

- directly below the current frame, the complier merely modifies the PFP in-

register 10 of the current frame to point to the frame that it wishes to return
ito.

Each register set except the current set is flushed to its associated stack frame
in memory and marked as purged, meaning that they will be reloaded from
memory if and when they become the current local register set.

STANDARD
flushreg

flushreg 66D ~ REG
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fmark
Mnemonic:
Format:

Description:

Action:

~Faults:

Example:

Opcode:

See Also:

fmark Force Mark
fmark

Generates a breakpoint trace-event, regardless of the setting of the breakpoint

trace mode flag.

When a breakpoint trace event is detected, the trace-fault-pending flag (bit
10) of the process controls word and the breakpoint-trace-event flag (bit 23)
of the trace controls are set. Before the next instruction is executed, a trace
fault is generated.

For more information on trace-fault generation, refer to Chapter 12.

if process.trace_controls and breakpoint_trace_flag
then

' raise trace breakpoint fault
endif '

STANDARD, Breakpoint Trace

1d xyz, r4
addi r4, r5, ré6
fmark

# Breakpoint trace event is generatedvat
# this point in the instruction stream.

fmark 66C REG

mark
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Mnemonic:

Format:

Description:

Action:
Faults:

Example:

LOAD

1d Load

ldob Load Ordinal Byte

ldos Load Ordinal Short

1dib Load Integer Byte

Idis Load Integer Short

1dl Load Long

ldt Load Triple

ldq Load Quad

(i E3 SFC, dst
mem reg

Copies a byte or string of bytes from memory into a register or group of
successive registers. The src operand specifies the address of the first byte to
be loaded. The full range of addressing modes may be used in specifying
src. (Refer to Chapter 5 for a complete discussion of the addressing modes
available with memory-type operands.)

The dst operand specifies a register or the first (lowest numbered) register of
successive registers.

The ldob and ldib, and ldos and ldis instructions load a byte and half word,
respectively, and convert it to a full 32-bit word. The 1d, 1dl, 1dt, and ldq
instructions copy 4, 8, 12, and 16 bytes, respectively, from memory into
successive registers.

For the l1dl instruction, dst must specify an even numbered register (e.g., g0,
g2, ..., g12). For the 1dt and ldq instructions, dst must specify a register
number that is a multiple of four (e.g., g0, g4, g8). If the data extends
beyond register g15 or r15 for the 1dl, 1dt, or ldq instruction, the results are
unpredictable. .

dst <— memory (src);
STANDARD

1dl 2456 (r3), rl0 # rl0, rll ¢« value of two
# words beginning at offset
# 2456 plus the address in
#

r3 in memory
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LOAD

Opcode: Id 90 MEM
Idob 80 MEM
1dos 88 MEM
Idib Co MEM
Idis - C8 MEM
1dl 98 MEM
1dt A0 MEM
1dq BO MEM

See Also: MOVE, STORE
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Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:.

lda

lda Load Address

1da src ' dst
mem reg
efa

Computes the effective address specified with src and stores it in dst. The
src address is not checked for validity.

An important application of this instruction is to load a constant longer than
5 bits into a register. (To load a register with a constant of 5 bits or less, the
move instruction (mov) can be used with a literal as the src operand.)

dst « efa (src);
STANDARD

lda 58 (g9), gl # Computes the effective
# address specified with
# 58 (g9) and stores it in gl
lda 0x749, r8 # loads the constant 16#7494#
4 !

in r8

lda 8C MEM
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logbnr, logbnrl

Mnemonic:
Format:

Descriptioh:

logbnr Log Binary Real
logbnrl Log Binary Long Real

logbnr* src, dst
freg/flit freg

Calculates the log, (src) and stores the integral part of this value (i.e., the
part to the left of the binary point) as a real number in dsz. The result of this
operation is an unbiased exponent. When src is a denormalized number, dst
is the unbiased exponent that src would have if the format had unlimited
exponent range.

(The fractional part of log, (src) is ignored. If the fractional part is needed,
use the logr or logrl instruction.)

This instruction implements the IEEE recommended function logh. It is
useful for calculating the order of magnitude of a number.

For the logbnrl instruction, if the src2 or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when taking the log binary of
various classes of numbers, assuming that neither overflow nor underflow

- occurs.
Src Dst
-00 + o0
-F *+F
-0 *¥
+0 .
+F *F
+ 00 + 00
NaN NaN
Notes:

F Means finite-real number

wok Indicates floating zero-divide exception
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Action:

Faults:

Example:

Opcode:

See Also:

Iogbnnlogbnﬂ

Note that the significand of the src operand can be extracted by using the
scaler or scalerl instruction.

dst < (log, (unbiased exponent (src)) - fraction);
# the integral part of the unbiased exponent of src
# is stored in dst as a biased real

STANDARD ‘ Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow Result is too small for destination format.
Floating Invalid Operation One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented exactly in

destination format.

Floating Zero Divide The src operand is 0.

logbnrl gl2, fp3 # fp3 ¢« integral part
# of log2 (gl2,gl3)

logbnr 68A REG
logbnrl 69A REG

logr, scaler
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logepr, logeprl |

Mnemonic: logepr _ Log Epsilon Real
logeprl Log Epsilon Long Real
Format: logepr+ srel , src2, dst
freg/flit freg/flit freg
Description:  Calculates (src2 * log, (srcl + 1)), and stores the result in dst.
For the logeprl instruction, if the srcl, src2, or dst operand references a
global or local register, this register is the first (lowest numbered) of two
successive registers. Also, this register must be even numbered (e.g., g0, g2,
g4.
The following table shows the results obtained when taking the log epsilon of
various classes of numbers, assuming that neither overflow nor underflow
occurs. :
. Srcl
(1/V2)-1to-0| -0 +0 | +0tov2-1 NaN
- - * * - NaN
-F  +F +0 -0 -F NaN'
-0 +0 +0 -0 -0 NaN
Src2 +0 -0 -0 +0 +0 NaN
+F -F -0 +0 +F NaN
+o 4o * * + oo NaN
NaN ‘NaN NaN | NaN NaN NaN
Notes:

F  Meansfinite-real number.
*  Indicates floating invalid-operation exception.

This instruction offers optimal accuracy for values of srcl + 1 close to 1 (i.e.,
for values of srcl close to 0). This cxpression is commonly found in com-
pound interest and annuity calculations. The result can be simply converted
into a value in another logarithm base by including a scale factor in src2.
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Action:

Faults:

logepr, logeprl

The following equation is used to calculate the scale factor for a particular
logarithm base, where n is the logarithm base desired for the result stored in

dst:

scale factor = log 2

The range of src! is restricted to the following:

1/sqrt (2) < srel + 1 < sqrt (2)

When the srcl operand is outside this range, the logr or logrl instruction can
be used with very insignificant loss of accuracy by adding 1.0 to srcl.

dst = src2 * log, (srcl + 1);

STANDARD Refer to the discussion of faults at the
beginning of this chapter.

. Floating Reserved Encoding One or more operands is an unnormal-

ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow Result is too large for destination format.
Floating Underflow Result is too small for destination format.
Floating Invalid Operation The srcl operand is 0 and the src2

operand is oo.

The srcl operand does not fall within the
range defined in the above description
section.

One or more operands are an SNaN
value.

Floating Inexact Result cannot be represented exactly in
destination format.
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logepr, logeprl

Example: logepr g8, g4, fp2 Lo
# fp2 « g4,g5 * log2 (g8,g9 + 1)

Opcode: logepr 631 REG
logeprl 691 REG
See Also: logr
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logr, logrl

Mnemonic: logr Log Real
logrl Log Long Real
Format: logr# srel, src2, dst

freg/flit freg/flit freg

Description:  Calculates (src2 * log, (srcl)), and stores the result in dst. (The logbnr and
logbnrl instructions perform this function more efficiently, if only an es-
timate is needed.)

For the logrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when taking the log of
various classes of numbers, assuming that neither overflow nor underflow

occurs.
Srcl

-00 -F -0 +0 +F +o | NaN

00 * * *¥ ** + o0 0 NaN

-F * * *% *x +F -0 NaN

-0 * * * * *0 * NaN

Src2| +0 * * * * +0 * NaN

+F * * ** ** tF +o | NaN

+ o * * ** ** too +o | NaN

NaN | NaN [ NaN | NaN | NaN | NaN | NaN | NaN

Notes:

F  Means finite-real number.
*  Indicates floating invalid-operation exception.
**  Indicates floating zero-divide exception.

The logr instruction combined with the expr instruction forms the basis for
the power function xY.
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logr, logrl

Action:

Faults:

Adding 1.0 to a number to be used as the srcl operand will cause infor-
mation to be lost. To perform this function, use the logepr or logeprl
instruction.

These instructions provide a simple method of converting the result of the
log, arithmetic into a value in another logarithm base by including a scale
factor in src2. The following equation is used to calculate the scale factor for
a particular logarithm base, where n is the logarithm base desired for the
result stored in dst;

scale factor = log,, 2

dst « src2 * log, (srcl);

'STANDARD ‘ ‘ Refer to the discussion of faults at the

beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow Result is too large for destination format.

Floating Underflow Result is too small for destination format.

Floating Zero Divide ' The srcl operand is 0 and src2 is non-
- Zero. »

Floating Invalid Operation The srcl and src2 operands are both 0.

The srcl operand is o and the src2
operand is 0. ~

The srcl operand is 1 and the src2
operand is oo,

The srcl operand is negative and non-
zero.

One or more operands are an SNaN
value. ‘

Floating Inexact Result cannot be represented exactly in
destination format.
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logr, logrl

Example: logrl r2, g8, g2 # g2,93 ¢« 98,99 * log2(r2,r3)
Opcode: logr 682 REG

logrl 692 REG
See Also: expr, logepr
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mark
Mnemonic: mark Mark
Format: . mark

Description:  Generates a breakpoint trace event if the breakpoint trace mode has been
enabled. The breakpoint trace mode is enabled if the trace-enable bit (bit 0)
of the process controls and the breakpoint-trace mode bit (bit 7) of the trace
controls have been set. Both these words are located in the PCB. .

When a breakpoint trace event is detected, the trace-fault-pending flag (bit
10) of the process controls and the breakpoint-trace-event flag (bit 23) of the
trace controls are set. Before the next instruction is executed, a trace fault is
generated. ’

If the breakpoint-trace mode has not been enabled, the mark instruction
behaves like a no-op.

For more information on trace-fault generation, refer to Chapter 12.

Action: raise trace breakpoint fault
Faults: STANDARD, Breakpoint Trace
Example: # Assume that the breakpoint trace mode is
# enabled.
1d xyz, r4
addi r4, r5, r6
mark :

- # Breakpoint trace event is generated at
# this point in the instruction stream.

Opcode:  mark 66B REG

See Also: fmark, modpc, modtc
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

modac
modac Modify AC

modac mask, Sre, dst
reg/lit reg/lit reg

Reads and modifies the arithmetic controls. The src operand contains the
value to be placed in the arithmetic controls and the mask operand specifies
the bits that may be changed. Only the bits set in mask are modified in the
arithmetic controls. Once the arithmetic controls have been changed, their
initial state is copied into dst.

temp < AC
AC & (src and mask) or

(AC and not (mask));
dst < temp;

STANDARD

gl, g9, gl2 # AC <« g9, masked by gl
# gl2 ¢« initial value of AC

modac 645 REG

modpc, modtc
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modi
Mnemonic:

Format:

“Description:

Action:

Faults:
Example:
Opcode:

See Also:

modi Modulo Integer
modi srcl, src2, dst

reg/lit reg/lit reg

Divides src2 by srcl, where both are integers, and stores the modulo
remainder of the result in dsz. If the result is nonzero, dst is given the same
sign as srcl. :

dst « src2 - ((src2/srcl) * srcl);
if sre2 = srel <0

then dst « dst + srcl;
end if;

STANDARD, Arithmetic Zero Divide
modi r9, r2, r5, # r5 ¢« modulo (r2/r9)
modi 749 . REG

div, remi
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Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

modify
modify Modify
modify mask, src, srcldst
reg/lit reg/lit reg

Modifies selected bits in src/dst with bits from src. The mask operand
selects the bits to be modified: only the bits set in the mask are modified in
srcldst.

srcldst « (src and mask) or (src/dst and not (mask));
STANDARD

modify g8, glO, r4 # r4d < gl0 masked by g8
modify 650 REG

alterbit, extract
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modpc
Mnemonic:

Format:

Description:

Action:

modpc Modify Process Controls
modpc Sre, mask, srcldst
reg/lit reg/lit reg

Reads and modifies the processor’s internally cached process controls as
specified with mask and src/dst. The src/dst operand contains the value to be
placed in the process controls and the mask operand specifies the bits that
may be changed. Only the bits set in the mask are modified in the process
controls. Once the process controls have been changed, their initial value is
copied into src/dst. The src operand is a dummy operand that should be set
equal to the mask operand.

The processor must be in the supervisor mode to modify the process controls
using this instruction. If the mask operand is set to O, this instruction can be
used to read the process controls, without the processor being in the super-
visor mode.

If the action of this instruction results in the priority of the processor being
lowered, the interrupt table is checked for pending interrupts.

Changing the state, resume, internal state, and trace enable fields of the
process controls can lead to unpredictable behavior, as described in Chapter
7 in the section titled "Changing the Process-Controls Word."

if mask #0
then if process.process_controls.execution_mode # supervisor
then raise type-mismatch fault;
end if;
temp < process.process_controls;
process.process_controls ¢—
(mask and src/dst) or
(process.process_controls and not (mask));
. srcldst < temp;
if (temp.priority > process.process_controls.priority
then check_pending_interrupts;
# if continue here, no interrupt to do
end if;
else src/dst <— process.process_controls;
end if;
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Faults:

Example:

Opcode:

See Also:

STANDARD, Type Mismatch

modpc g9, g9,

modpc 655

modac, modtc

g8

# process controls ¢« g8
# masked by g9

REG
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modtc
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

modtc Modify Trace Controls
modtc mask, sre, dst
reg/lit reg/lit reg

Reads and modifies the trace controls for the current process. The processor
changes its internally cached trace controls as specified with mask and src.
The src operand contains the value to be placed in the trace controls and the
mask operand specifies the bits that may be changed. Only the bits set in the
mask are modified in the trace controls. Once the trace controls have been
changed, their initial state is copied into dst.

This instruction only affects the trace controls cached in processor. The trace
controls in the PCB for the current process are not affected.

Since bits 8 through 15 and 24 through 31 of the trace-controls word are
reserved, the mask operand is ANDed with OOFFOOFFl ¢ to insure that these
bits are not set in the mask.

The changed trace controls take effect on the first non-branching instruction
fetched from memory. Since instructions are prefetched four at a time, the
trace controls may not take effect for up to the next four instructions ex-
ecuted.

For more information on the trace controls, refer to Chapters 12 and 16.

temp ¢« process.trace_controls;
templ < 16#00FFOOFF# and mask;
process.trace_controls ¢
(temp1 and src) or
(process.trace_controls and not(temp1));
dst < temp; :

STANDARD

- modtc gl2} gl0, g2

# trace controls < gl0 masked by gl2;
# previous trace controls stored in g2

modte 654 REG

modac, modpc
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Mnemonic:

Format:

Description:

Action:
Faults:
Example:

Opcode:

See Also:

MOVE

mov Move

movl Move Long

movt Move Triple

movq Move Quad

mov: src, dst
reg/lit reg

Copies the content of one or more source registers (specified with the src¢
operand) to one or more destination registers (specified with the dst
operand).

For the movl, movt, and movq instructions, the src and dst operands specify
the first (lowest numbered) register of several successive registers. The src
and dst registers must be even numbered (e.g., g0, g2) for the movl instruc-
tion and an integral multiple of four (e.g., g0, g4) for the movt and movq
instructions. .

When the src and dst operands overlap, the value moved is unpredictable.

dst « src;

STANDARD

movt g8, r4 # r4, r5, r6 <« g8, g9, glo

mov 5CC REG
movl 5DC REG
movt SEC REG
movq 5FC REG
Id, movr, st

3-197



intel

80960KB PROGRAMMER'’S REFERENCE

movr, movre, movrl

Mnemonic:

Format:

Description:

Action:

movr Move Real

movrl Move Long Real
movre Move Extended Real
movr* sre, dst

freg/flit freg

Copies a real value from one or more source registers (specified with the src
operand) to one or more destination registers (specified with the dst
operand).

For the movrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. For the movre instruction, if the src or dst operand references a
global or local register, this register is the first (lowest numbered) of three
successive registers. :

When copying real numbers.between global or local registers and floating-
point registers, conversion between real or long-real format to extended-real
format is performed implicitly. Conversion between real and long-real for-
mats must be done through floating-point registers and requires two instruc-
tions, as illustrated in the example below.

When the movre instruction moves an operand from global or local registers
to a floating-point register, it automatically truncates the most-significant 16
bits of the word in the third register (refer to Figure 12-5). Likewise, when
this instruction is used to move an operand from a floating-point register to
global or local registers, it adds 16 zeros to the third word. The movre
instruction is not a numeric instruction; it merely manipulates bits.

The movr and movrl instructions can cause a floating-point exception to be
raised, which might result in a fault being raised, as is explained in the

section below on faults. The movre instruction can never raise an exception
and thus never faults.

dst « src;
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Faults:

Example:

Opcode:

See Also: '

STANDARD

Floating Reserved Encoding

movr, movre, movrl

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.
Floating Overflow

Floating Underflow

Floating Invalid Opération
Floating Inexact

Result is too large for destination format.
Result is too small for destination format.
Source operand is an SNaN value.

Result cannot be represented exactly in
destination format.

# Conversion of real value in g3 to a

# to a long real value,
# in g4,95

movr g3, fp2

movrl fp2, g4

movr 6C9 REG
movrl 6D9 REG
movre 6E9 REG
mov
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muli, mulo

Mnemonic: muli Multiply Integer
. mulo Multiply Ordinal
Format: mul* srcl, sre2, dst
reg/lit reg/lit reg

Description:  Multiplies the src2 value by the srcl value and stores the result in dst.

Action: dst < src2 * srcl;
-Faults: STANDARD, Integer Overflow
Example: muli r3, r4, r9 # r9 <« r4 TIMES r3
Opcode: muli 741 REG
~mulo 701 REG
See Also: emul, mulr
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mulr, mulrl

Mnemonic: mulr Multiply Real
mulrl Multiply Long Real
Format: mulr* srcl, src2, dst

freg/flit freg/flit freg

Description:  Multiplies the src2 value by the src! value and stores the result in dst.

Src2

Action:

For the mulrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The sign of the result is always the exclusive-OR of the source signs, even if
one or more of the source values is 0, o, or a NaN.

The following table shows the results obtained when multiplying various
classes of numbers together, assuming that neither overflow nor underflow

oceurs.
Srel

- -F -0 +0 +F + o NaN’

-® + + 00 * * -0 . -0 NaN

-F + +F +0 -0 -F -0 NaN

-0 * +0 +0 -0 -0 * NaN

+0 * -0 -0 +0 +0 * NaN

+F -0 -F -0 +0 +F +o | NaN

+ o -0 - * * + 00 +o | NaN

NaN NaN | NaN | NaN | NaN | NaN | NaN | NaN

Notes:

F Means finite-real number.
* Indicates floating invalid-operation exception.

When you need to multiply by the power of 2, the scaler and scalerl instruc-
tions can also be used.

dst < src2 * srcl,;
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mulr, mulrl

Faults: STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set. :

The following floating-point exceptibns can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow
Floating Underflow
Floating Invalid Operation

Floating Inexact

Example: mulrl gl2, g4, fp2
Opcode: mulr 78C

mulrl 79C
See Also: emul, muli, scaler

Result is too large for destination format.
Result is too small for destination format.

One source operand is O and the other is

oo,

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

# fp2 & g4,g5 * gl2,gl3

REG
REG
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Mnemonic:

Format:

Description:

Action:
#aults:
Example:
Opcode:

See Also:

nand
nand Nand
nand srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NAND operation on the src2 and srcl values and stores
the result in dst.

dst < (not (src2)) or not (srcl);
STANDARD
nand g5, r3, r7 # r7 <« r3 NAND g5

nand " 58E REG

-and, andnot, nor, not, notand, notor, or, ornot, xnor, xor

3-203



80960KB PROGRAMMER’S REFERENCE

intal
nor

Mnemonic:

Format:

Descriptioni‘

Action:
Faults:
Example:
Opcode:

See Also:

nor Nor
nor srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NOR operation on the src2 and src/ values and stores the
result in dst. ‘

dst < not (src2) and not (s)‘c] );

STANDARD

nor g8, 28, r5 # r5 « 28 NOR g8
nor 588 REG

and, andnot, nand, not, notand, notor, or, ornot, xnor, xor
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not, notand

Mnemonic: not Not
notand Not And

Format: not sre, dst
reg/lit reg

notand srcl, sre2, dst

reg/lit reg/lit reg

Description:  Performs a bitwise NOT (not instruction) or NOT AND (notand instruction)
operation on the src2 and src/ values and stores the result in dst.

Action: not: dst < not (srcl);

notand: dst < (not (src2)) and srcl,
Faults: STANDARD
Example: not g2, g4 # g4 « NOT g2

notand r5, r6, r7 # r7 ¢« NOT r6 AND r5

Opcode: not 58A REG
notand 584 REG
See Also: and, andnot, nand, nor, notor, or, ornot, xnor, xor
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notbit

Mnemonic:

Format:
Description:

Action:
Faults:

Example:

Opcode:

See Also:

notbit Not Bit
notbit bitpos, sre, dst
reg/lit reg/lit reg

Copies the src value to dst with one bit toggled. The bitpos operand
specifies the bit to be toggled.

dst « src xor 2/(bitpos mod 32);
STANDARD

notbit r3, rl2, r7 # r7 ¢« rl2 with the bit
‘ # specified in r3 toggled

notbit 580 REG

alterbit, chkbit, _clr},bit, setbit
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Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

hotor
notor Not Or
notor srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NOT OR operation on the src2 and srcl values and stores
the result in dst.

dst < (not (src2)) or srcl;

STANDARD

notor gl2, g3, gb # g6 < NOT g3 OR gl2
notor 58D REG |

and, andnot, nand, nor, not, notand, or, ornot, xnor, xor
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or, ornot

Mnemonic:

Format:

Description:
Action:
Faults:
Example:
Opcode:

See Also:

or Or
ornot Or Not
or srcl, sre2, dst
reg/lit reg/lit reg
ornot srcl, src2, dst
reg/lit reg/lit reg
Performs a bitwise OR (or instruction) or ORNOT (ornot instruction) opera-

tion on the src2 and srcl values and stores the result in dst.

or: dst < src2 or srcl;

ornot: dst < src2 or not (srcl);"
STANDARD

or 14, g9, g3 # g3 &« g9 OR 14
ornot r3, r8, rll # rll < r8 OR NOT r3

or 587 REG
ornot 58B REG

and, andnot, nand, nor, not, notand, notor, xnor, xor
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remi, remo

Mnemonic: remi Remainder Integer
remo Remainder Ordinal
Format: rems srcl, sre2, dst
reg/lit reg/lit reg

Description: Divides src2 by srcl and stores the remainder in dst. The sign of the result
(if nonzero) is the same as the sign of src2.

Action: dst « src2 - ((src2 [ srcl) * srcl);

Faults: STANDARD Refer to discussion of faults at the begin-
ning of this chapter.

Integer Overflow Result is too large for destination format.
This fault is signaled only when execut-
ing the remi instruction and if both of
the following conditions are met: (1) the
integer-overflow mask in the arithmetic-.
controls registers is clear and (2) the
source operands have like signs and the
sign of the result operand is different
than the signs of the source operands.

Example: remo r4, r5, r6 # r6 ¢« r5 rem r4
Opcode: remi 748 REG

remo 708 REG
See Also: remr, modi
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remr, remrl

Mnemonic: remr Remainder Real
remrl Remainder Long Real
Format: remr# srel, src2, dst

freg/flit freg/flit freg

Description:  Divides src2 by srcl and stores the remainder in dst. The sign of the result
(if nonzero) is the same as the sign of src2.

For the remrl instruction, if the src/, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when computing the
remainder of various classes of numbers, assuming that neither overflow nor
- underflow occurs.

Srcl
- -F 0 | +0 | +F |+e | NaN
-0 * * * * * 1 * NaN
-F src2 | -For -0 | ** k¥ -For -0 |src2 | NaN
-0 -0 -0 * + | .0 -0 | NaN
Src2| +0 +0 +0 * * +0 +0 NaN
+F src2 |+For +0]| ** ** |+For +0 |sre2 | NaN
o * * * * * * NaN
NaN | NaN NaN NaN | NaN | NaN NaN | NaN

Notes:
F  Means finite-real number.
*  Indicates floating invalid-operation exception.
**Indicates floating zero-divide exception.

/
When the result is 0, its sign is the same as that of src2. When the srcl is oo,
the result is equal to the src2.

The result of this operation is always exact if the destination format is at least
as wide as the src2 and srcl.
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Action:

remr, remrl

The remainder provided with the remr and remrl instructions is different
from the remainder described in the IEEE floating-point standard. The dif-
ference is related to how the quotient (N) of the expression (src2/srcl) is
determined.

As shown below in the action statement, N for the remr and remrl instruc-
tions is the nearest integer value obtained when the exact result (E) of the
expression (src2/srcl) is truncated toward zero. N will always be less than
or equal to the absolute value of E.

For the IEEE standard, N is simply the nearest integer value to E. Here, N
may be less than, equal to, or greater than the absolute value of E.

To help determine the IEEE remainder from the result given by the remr and
remrl instructions, the following information about the quotient is given in
the arithmetic-status field in the arithmetic:

Arithmetic Meaning
Status Bit
6 Ql1, the next-to-last quotient bit
5 QO, the last quotient bit
4 QR, the value the next quotient bit

would have if one more reduction were
performed (the "round" bit of the
quotient)

3 QS, set if the remainder after the QR
reduction would be nonzero (the
"sticky" bit of the quotient)

The information can then be used to determine the IEEE standard remainder,
as shown in the example below.

dst « src2 - (N * srcl);

# where N = truncate (src2/srcl.

# Here, (src2/srcl) is truncated

# toward zero to the nearest integer.
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remr, remrl

Faults: STANDARD Refer to the discussion of faults at the
beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Overflow Result is too large for destination format.
Floating Underflow Result is too small for destination format.
Floating Zero Divide The srcl operand is 0.
Floating Invalid Operation The src2 operand is oo.

The srcl operand is 0.

One or more operands are an SNaN
value. '

Floating Inexact Result cannot be represented exactly in
: destination format.

Example: remrl g6, g8, fpl
# fpl <« 98,99 rem g6,g7

Opcode: remr 683 REG
. remrl 693 REG
See Also: remi, modi
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Mnemonic:

Format:

Description:

Action:

ret

ret Return
ret

Returns process control to the calling procedure. The current stack frame
(i.e., that of the called procedure) is deallocated and the FP is changed to
point to the stack frame of the calling procedure. Instruction execution is
continued at the instruction pointed to by the RIP in the calling procedure’s
stack frame, which is the instruction immediately following the call instruc-
tion.

As shown in the action statement below, the action that the processor takes
on the return is determined by the return status and prereturn trace bits.
These bits are contained in bits 0, through 3 of register r0 of the current set of
local registers.

Refer to Chapter 4 for further discussion of the return instruction.

wait for any uncompleted instructions to finish;
case frame_status is

2#000#: FP « PFP;
free current register_set;
if register_set (FP) not allocated
then retrieve from memory(FP);
end if;
IP < RIP;

2#001#: x < memory(FP-16);
y - memory(FP-12);
do case 000 action;
arithmetic_controls < y;
if execution_mode = supervisor
then process_controls < x;
end if;

2#010#: if execution_mode # supervisor
then go to case 000;
else process_controls.T < 0;
execution_mode ¢ user;
go to case 000;
end if;
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ret

Faults:

Example:

Opcode:

See Also:

2#011#:

2#100#:
2#1014#:

2#110#:

2#111#:

if execution_mode # supervisor
then go to case 000;
else process_controls.T « 1;
execution_mode < user;
go to case 000;
end if;

undefined
undéfined

if execution_mode = supervisor
then free current register set;
check_pending_interrupts;
# if continue here, no interrupt to do
do case 000 action;
end if;

x ¢— memory(FP-16);

y < memory(FP-12);

do case 000 action;

arithmetic_controls « y;

" if execution_mode = supervisor
then process_controls < x;
check_pending_interrupts;
end if;

STANDARD

ret

ret

# process control returns to
# calling procedure
# environment

0A CTRL

call, calls, callx
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Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

See Also:

rotate
rotate Rotate
rotate len, . src, dst
reg/lit reg/lit reg

Copies src to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). (The bits shifted off the left end of the word
are inserted at the right end of the word.) The len operand specifies the
number of bits that the dst operand is rotated. The len operand can range
from O to 31.

This instruction can also be used to rotate bits to'the right. Here, the number
of bits the word is to be rotated right is subtracted from 32 to get the len
operand.

dst < rotate (len mod 32 (src))

STANDARD

rotate r4, r8, rl2 # rl2 < r8
# with bits rotated
# r4 bits to left

rotate 59D REG

SHIFT
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Refer to the discussion of faults at the

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-

Result is too large for destination format.
Result is too small for destination format.

One or more operands are an SNaN

Result cannot be represented exactly in

roundr, roundrl
Mnemonic: roundr Round Real
roundrl Round Long Real
Format: roundr* src, dst
freg/flit freg
Description: Rounds src to the nearest.integral value, depending on the rounding mode,
and stores the result in dst.
For the roundrl instruction, if the src or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
- registers. Also, this register must be even numbered (e.g., g0, g2, g4).
If the src operand is o the result is src. If the src operand is not an integral
value, a floating-inexact exception is raised.
Action: dst < round_to_integral_value (src/);
Faults: STANDARD
beginning of this chapter.
Floating Reserved Encoding
metic controls is set.
The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.
Floating Overflow
Floating Underflow
Floating Invalid Operation
_ value.
Floating Inexact
destination format.
Example: roundrl r4, rl0
# rl10,rll <« r4,r5 rounded
Opcode: roundr 68B REG
roundrl 69B REG

3-216



intel

80960KB PROGRAMMER’S REFERENCE

Mnemonic:

Format:

Description:

scaler, scalerl

scaler Scale Real

scalerl Scale Long Real

scaler* srcl, src2, dst
reg/lit freg/flit freg

Multiplies src2 by 2 to the power of src/ and stores the result in dst. The
srcl operand is an integer; whereas, src2 and dst are reals.

For the scalerl instruction, if the src2 or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when scaling various classes
of numbers, assuming that neither overflow nor underflow occurs.

Srel
-N 0 | +N
«00 -00 ~-00 -00
-F -F -F -F
-0 -0 -0 -0

Sre2| +0 +0 | +0 | +0
+F +F +F +F
+o + o + + o0
NaN NaN NaN NaN

Notes:

F  Meansfinite-real number.
N Meansinteger.

In most cases, only the exponent is changed and the mantissa (fraction)
remains unchanged. However, when the src/ operand is a denormalized
value, the mantissa is also changed and the result may turn out to be a
normalized number. Similarly, if overflow or underflow results from a scale
operation, the resulting mantissa will differ from the source’s mantissa.
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scaler, scalerl

Action:

Faults:

Example:

Opcode:

See Also:

Refer to the sections titled "Floating Overflow Exception” and "Floating
Underflow Exception” in Chapter 12 for further discussion of how overflow

and underflow are handled.
dst < src2 * (2Q0srcl)
STANDARD

Flo.ating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One . or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow

Floating Underflow
Floating Zero Divide
Floating Invalid Operation

" Floating Inexact

scalerl g6, g2, £fp0
# fp0 < g2,93 * 27g6

scaler 677 REG
scalerl 676 REG
mulr
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

scanbit
scanbit Scan For Bit
scanbit src, dst
reg/lit reg

Searches the src value for the most-significant set bit (1 bit). If a most-
significant 1 bit is found, its bit number is stored in dst and the condition
code is set to 010,. If the src value is zero, all 1’s are stored in dst and the
condition code is set to 000,.

dst < 16#FFFFFFFF#,
AC.cc « 2#0004#;
for iin 31..0 reverse loop
if (src and 27i) = 0

then
dst « i,
AC.cc « 2#0104,
exit;
end if}
end loop;
STANDARD

# assume g8 is nonzero
scanbit g8, gl0

# gl0 < bit number of

# most-significant set bit
# in g8; AC.cc « 2#010#

scanbit 641 REG

spanbit
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scanbyte
Mnemonic: scanbyte  Scan Byte Equal ‘

Format: scanbyte  srcl, src2
reg/lit reg/lit

Description:  Performs a byte-by-byte comparison of srcl and src2 and sets the condition
- code to 2#010# if any two corresponding bytes are equal. If no correspond-
ing bytes are equal, the condition code is set to 000,.

Action: if (srcl and 16#000000FF#) = (src2 and 16#000000FF#) or
(srcl and 16#0000FF00#) = (src2 and 16#0000FF00#) or
(srcl and 16#00FF0000#) = (src2 and 16#00FF0000#) or
(srcl and 16#FF000000#) = (src2 and 16#FF000000#)

then AC.cc « 2#010#,
else AC.cc « 2#000#;
endif;,
Faults: STANDARD
Example: # assume r9 = 0x11AB1100

scanbyte 0x00ABO0O011, r9
# AC.cc « 2#010#

Opcode: scanbyte  5AC REG
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Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

See Also:

setbit
setbit Set Bit
setbit bitpos, sre, dst
reg/lit reg/lit reg

Copies the src value to dst with one bit set. The bitpos operand specifies the
bit to be set.

dst < src or 2(bitpos mod 32);
STANDARD

setbit 15, r9, rl
# rl <« r9 with bit 15 set

setbit 583  REG

alterbit, chkbit, clrbit, notbit,
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SHIFT

Mnemonic:

Format:

Description:

Action:

shlo Shift Left Ordinal

shro Shift Right Ordinal

shli Shift Left Integer

shri Shift Right Integer

shrdi Shift Right Dividing Integer

shs* len, src, dst
reg/lit reg/lit reg

Shifts src left or right by the number of digits indicated with the len operand
and stores the result in dst. This operation (with the exception of the shri
instruction, as described below) is equivalent to multiplying (shift left) or
dividing (shift right) the src value by 2"

The shri instruction performs a conventional arithmetic right shift, which,
when used as a divide, produces an incorrect quotient for negative src values.
To get a correct quotient for a negative src value, use the shrdi instruction,
which performs correct rounding of negative results.

shlo: if len <32
then dst < src* 2Mlen
else dst < 0;
end if;

shro: if len <32
then dst < src/2Mlen
else dst < 0;
end if;

shli: dst « srcx 2Nlen

shri: if sre20
: then if len < 32

then dst < src/2Men
else dst « 0;

else if len < 32
then dst < (src - 2Men + 1)/2Nlen
else dst « -1;
end if;

end if;

shrdi: dst < src/2Nlen
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SHIFT

Faults: STANDARD, Integer Overflow

Example: shli 13, g4, r6
# g6 < g4 shifted left 13 bits

Opcode: shlo 59C REG
shro 598 REG
shli 59E REG
shri 59B REG
shrdi 59A REG

See Also: divi, muli, rotate
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sinr, sinrl

Mnemonics:

Format:

Description:

Action:

sinr Sine Real
sinrl Sine Long Real
sinr* sre, dst

freg/flit freg

Calculates the sine of src and stores the result in dst. The src value is an
angle given in radians. The resulting dst value is in the range -1 to +1,
inclusive.

For the sinrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when taking the sine of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Sre Dst

—® *

-F -1to +1
-0 -0

+0 +0

+F -1to +1
+ 00 *

NaN _ NaN
Notes:

F Means finite-real number
* Indicates floating invalid-operation exception

In the trigonmetic instructions, the 80960KB uses a value for T with a 66-bit
mantissa which is 2 bits more than are available in the extended-real format.
The section in Chapter 12 titled "Pi" gives this w value, along with some
suggestions for representing this value in a program.

dst « sin (src);
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Faults:

Example:

Opcode:

See Also:

sinr, sinrl

STANDARD ‘ Refer to the discussion of faults at the
: beginning of this chapter.

Floating Reserved Encoding One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated
mask bit in the arithmetic controls.

Floating Underflow Result is too small for destination format.
Floating Invalid Operation The src operand is oe.
One or more operands is an SNaN value.

Floating Inexact Result cannot be represented exactly in
destination format.

sinrl g6, g0
# sine of value in g6,g7
# is stored in g0,gl

sinr 68C REG
sinrl 69C REG
cosr, tanr
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spanbit
Mnemonic:

Format:

Description:

Action:

Faults:

'Example:

Obcode:

See Also:

spanbit Span Over Bit

spanbit src, dst
' reg/lit reg

Searches the src value for the most-significant clear bit (0 bit). If a most-
significant O bit is found, its bit number is stored in dst and the condition
code is set to 0102. If the src value is all 1°s, all 1°s are stored in dst and the
condition code is set to 000,.

dst < 16#FFFFFFFF#;
AC.cc « 2#000#;
for i in 31..0 reverse loop
if (src and 2/) =0
then
dst < 1i;
AC.cc « 2#010#;
exit;
end if;
end loop;

STANDARD

# assume r2 is not 16#FFFFFFFF#
spanbit r2 r9

# r9 « bit number of

# most-significant clear bit

# in r2; AC.cc « 2#010#

spanbit 640 REG

scanbit
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sqrtr, sqrtrl

Mnemonic: - sqrtr Square Root Real
sqrtrl Square Root Long Real

Format: sqrtr sre, dst
. . freg/flit freg

Description:  Calculates the square root of src and stores it in dst.

For the sqrtrl instruction, if the sic or dst operand references a global or
local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when taking the square root
of various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst
-00 *

-F *

-0 -0
+0 +0
+F +F
+ + ©
NaN NaN
Notes:

F Means finite-real number
* Indicates floating invalid-operation exception

With these instructions, it is not possible to raise a floating overflow or
floating underflow fault unless the src operand is in a floating-point register
and the dst operand is not.

Action: dst « sqrt (src);
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sqrtr, sqrtrl

Faults:

Example:

Opcode:

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow
Floating Underflow
Floating Invalid Operation

Floating Inexact

sgqrtrl g6, £fp0
# fp0 « sqgrt of g6,g7

sqrtr 688 REG
sqrtrl 698 . REG
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Mnemonic:

Format:

Description:

Action:
Faults:

Example:

STORE

st Store

stob Store Ordinal Byte

stos Store Ordinal Short

stib Store Integer Byte

stis Store Integer Short

stl Store Long

stt Store Triple

stq Store Quad

st src, dst
reg/lit mem

-Copies a byte or string of bytes from a register or group of registers to

memory. The src operand specifies a register or the first (lowest numbered)

-register of successive registers.

The dst operand specifies the address of the memory location where the byte
or the first byte of a string of bytes is to be stored. The full range of
addressing modes may be used in specifying dst. ‘(Refer to Chapter 5 for a
complete discussion of the addressing modes available with memory-type -
operands.)

The stob and stib, and stos and stis instructions store a byte and half word,
respectively, from the low order bytes of the src register. The st, stl, stt, and
stq instructions copy 4, 8, 12, and 16 bytes, respectively, from successive
registers to memory.

For the stl instruction, dst must specify an even numbered register (e.g., g0,
g2, ..., g12). For the stt and stq instructions, dst must specify a register
number that is a multiple of four (e.g., g0, g4, g8).

memory (dst) « src;
STANDARD, Integer Overflow Fault (stib and stis instructions only)

st g2, 1256 (go)
# word beginning at offset
# 1256 + (g6) ¢« g2
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STORE

Opcode: st 92 . MEM
stob 82 MEM
stos 8A MEM
stib C2 MEM
stis CA MEM
stl 9A MEM
stt A2 MEM
stq B2 MEM

See Also: LOAD, MOVE
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Mnemonic:

Format:

Description:

Action:

" Faults:

Example:

Opcode:

See Also:

subc
subc Subtract Ordinal With Carry
subc srcl, src2, dst
reg/lit reg/lit reg

Subtracts (srcl - 1) from src2, adds bit 1 of the condition code (used here as
a carry bit), and stores the result in dsz. If the ordinal subtraction results in a
carry, bit 1 of the condition code is set.

This instruction can also be. used for integer subtraction. Here, if integer
subtraction results in an overflow, bit O of the condition code is set.

The subc instruction does not distinguish between ordinals and integers: it
sets bits 0 and 1 of the condition code regardless of the data type.

# Let the value of the condition code be xCx.

dst « src2 - (srcl - 1)+ C;

AC.cc « 2#0CV#,

# C is carry from ordinal subtraction.

# V is 1 if integer subtraction would have generated
# an overflow.

STANDARD

subc g5, g6, g7
# g7 < g6 - (g5 - 1)
# + Carry Bit

subc 5B2 REG

addc
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subi, subo

Mnemonic: subi Subtract Integer
subo Subtract Ordinal
Format: subs srel, src2, dst
reg/lit reg/lit reg

Description:  Subtracts src/ from src2 and stores the result-in dst. The binary results from
these two instructions are identical. The only difference is that subi can
signal an integer overflow.

Action: dst « src2 - srcl;
Faults: STANDARD, Integer Overflow (subi instruction only)
Example: subi g6, g9, gl2 # gl2 « g9 - g6
Opcode: subi 593 REG

subo 592 REG
See Also: addi, addr, subc, subr
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subr, subrl

Mnemonic: subr Subtract Real
subrl Subtract Long Real
Format: subr srcl, src2, dst

freg/flit freg/flit freg

Description:  Subtracts srcl from src2 and stores the result in dst.

For the subrl instruction, if the srcl, src2, or dst operand references a global
or local register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when subtracting various
classes of numbers, assuming that neither overflow nor underflow occurs.

Srcl
-0 -F -0 +0 +F +o | NaN
- * -0 -0 -0 -0 -0 NaN
-F +o |tFor £0| src2 | src2 -F -0 NaN
-0 + srcl 0 -0 srcl -0 NaN
Sre2| +0 + 00 srel +0 10 srel -00 NaN
+F +o +F src2 | sre2 |TFort 0] -w NaN
+ + 0 + 00 +o | 4o + o0 * NaN
NaN | NaN NaN NaN | NaN | NaN NaN | NaN

Notes:

F  Meansfinite-real number.
* Indicates floating invalid-operation exception.

When the difference between two operands of like sign is zero, the result is
+0, except for the round toward -o> mode, in which case the result is -0. This
instruction also guarantees that +0 - (-0) = +0, and that -0 - (+0) = -0.

When one source operand is o, the result is oo of the expected sign. If both

source operands are oo of the same sign, an invalid-operation exception is
raised.
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subr, subrl

Action:

Faults:

Example:
Opcode:

See Also:

dst « src2 - srcl;
STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter. ‘

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow

. Floating Underflow

Floating Invalid Operation

Floating Inexact

subrl g6, fp0, fpl

. # fpl « fpO - g6,g97

subr 78D
subrl 79D

REG
REG

subi, subc, addr
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syncf
Mnemonic: syncf Synchronize Faults
Format: syncf

Description:  Waits for any faults to be generated associated with any prior uncompleted
instructions.

Action: if arithmetic_controls.nif
then;
else wait until no imprecise faults can occur
associated with any uncompleted instructions;
end if;

Faults: STANDARD

Example: 1d xyz, g6
addi r6, r8, r8
synct
and g6, OxFFFF, g8
# the syncf instruction insures that any faults
# that may occur during the execution of the
# 1d and addi instructions occur before the
# and instruction is executed

Opcode: syncf 66F REG

See Also: mark, fmark
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synid

Mnemonic: synld Synchronous Load

Format: synld sre, dst
reg reg
addr addr

Description: Copies a word from the memory location specified with src into dst and
waits for the completion of all memory operations, including those initiated
prior to the synld instruction. When the load has been successfully com-
pleted, the condition code is set to 2#0104#.

+The primary function of this instruction is for reading IAC messages, the
IAC Message Control word, or the IAC Interrupt Control Register.
However, this instruction is not restricted to IAC applications. It may be
used when it is important to guarantee the completion of the load operation
before proceeding or to avoid a bad-access fault. ’

The setting of the condition code indicates whether or not the load was
completed successfully. If the load operation results in a bad access con-
dition (e.g., reading an AP-bus interconnect register), the condition code is
set to 000,, but the bad-access fault is not raised.

Action: if PRCB.addressing_mode = physical
then tempa « src;
else tempa « physical_address (src);
end if;
tempa < tempa and 16#FFFFFFFC#; # force alignment
if tempa = 16#FF000004#
then dst < interrupt_control_reg;
AC.cc « 2#010#;
else dst < memory (tempa);
if bad_access
then AC.cc « 2#0004#;
else AC.cc « 2#0104#;
end if},
end if;

Faults: STANDARD
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Example:

Opcode:

See Also:

lda 16#FF000010#, g8

synld g8, g9 # g9 ¢« word from IAC
# message buffer;
# AC.cc = 2#010#

synld 615 REG

synmov
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synmov, synmovl, synmovq

Mnemonic:

Format:

Description:

synmov | Synchronous Move
synmovl Synchronous Move Long
synmovq  Synchronous Move Quad

synmov: a’si, src
reg reg
addr addr

Copies 1 (synmov), 2 (synmovl), or 4 (synmovq) words from the memory
location specified with src to the memory location specified with dst and
waits for the .completion of all memory operations, including those initiated
prior to this instruction. When the move has been successfully completed,
the condition code is set to 010,.

The src and dst operands specify the address of the first (lowest address)
word. These addresses should be for word boundaries (synmov), double-
word boundaries (synmovl), or quad-word boundaries (synmovq). If not,
the processor forces alignment to these boundaries.

The primary function of these instructions is for sending IAC messages.
However, this instruction is not restricted to IAC applications. It may be
used when it is important to guarantee the completion of the move operation
before proceeding or to avoid a Bad Access Fault.

The setting of the condition code indicates whether or not the move was
completed successfully. If the move operation results in a bad access con-
dition (e.g., sending an IAC message to a non-existent agent on the AP-bus),
the condition code is set to 000,, but the Bad Access Fault is not raised.

Address FF000010, is used to send an IAC message to the processor upon

which the instruction is executed. Refer to Chapter 11 for further infor-
mation about sending internal IAC messages.
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Action:

synmov, synmovl, synmovq

synmov:

if PRCB.addressing_mode = physical
then tempa « dst;
# dst is used as a physical address
else tempa < physical_address (dst);

# dst translated int
end if;
tempa < tempa and
# force alignment

o0 a physical address

16#FFFFFFFCH#,

if tempa = 16#FF000004#
then interrupt_control_reg ¢— memory (src)
AC.cc « 2#010#;
else temp < memory (src);
memory (tempa) <— temp;
# write operations into memory (tempa) are

# interpreted as noncacheable
wait for completion;
if bad_access ,
then AC.cc « 2#0004#;
else AC.cc « 2#0104#;
end if;
end if;
synmovl:
if PRCB.addressing_mode = physical

then tempa « dst;
#dstisusedasap

hysical address

else tempa « physical_address (dst);

# dst is translated i
end if;
tempa < tempa and

nto as a physical address

16#FFFFFFF8#; # force alignment

temp ¢ memory (src);
memory (tempa) ¢ temp;
# write operations into memory (tempa) are interpreted

# as noncacheable
wait for completion;
if bad_access

then AC.cc « 2#0004#;
else AC.cc < 2#010#;

end if’
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synmov, synmovl, synmovq

Faults:

Example:

Opcode:

See Also:

synmovq:

if PRCB.addressing_mode = physical
then tempa « dst;
# dst is used as a physical address
else tempa <« physical_address (dsr);
# dst is translated into as a physical address
end if;
tempa < tempa and 16#FFFFFFFO#; # force alignment
temp <— memory (src);
if tempa = 16#FF000010#
then AC.cc « 2#010#;
use temp as a received iac message;
else memory (tempa) <— temp;
# write operations into memory (tempa) are interpreted
# as noncacheable ' '
wait for completion;
if bad_access _
then AC.cc « 2#000#;
else AC.cc « 2#010#:;
end if; :
end if;

STANDARD

lda 16#FF000010#, g7

# g7 < 16#FF000010

synmovqg g7, g8

# g7 < IAC message from g8

Ssynmov 600 REG
synmovl 601 REG
synmovq 602 REG
synld
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Mnemonics:

Format:

Description:

tanr, tanrl

tanr Tangent Real
tanrl Tangent Long Real
tanr# src, dst

freg/flit freg

Calculates the tangent of src and stores the result in dst. The src value is an
angle given in radians. The resulting dst value is in the range of -co to +eo,
inclusive; a result of -eo or +oo will result in a floating invalid-operation
exception being signaled.

For the tanrl instruction, if the src or dst operand references a global or local
register, this register is the first (lowest numbered) of two successive
registers. Also, this register must be even numbered (e.g., g0, g2, g4).

The following table shows the results obtained when taking the tangent of
various classes of numbers, assuming that neither overflow nor underflow
occurs.

Src Dst

-0 *

-F -Fto+F

-0 -0

+0 +0

+F -Fto+F

+ o *

NaN NaN
Notes:

F Means finite-real number

* Indicates floating invalid-operation exception

If the source operand is a finite value, the result will be finite, unless the src
operand is in a floating-point register and the dst operand is not.

In the trigonmetic instructions, the 80960KB uses a value for 1t with a 66-bit
mantissa which is 2 bits more than are available in the extended-real format.
The section in Chapter 12 titled "Pi" gives this ® value, along with some
suggestions for representing this value in a program.
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tanr, tanrl

Action:

Faults:

Example:

Opcode:

See Also:

dst « tangent (src);

STANDARD

Floating Reserved Encoding

Refer to the discussion of faults at the
beginning of this chapter.

One or more operands is an unnormal-
ized (including denormalized) value and
the normalizing-mode bit in the arith-
metic controls is set.

The following floating-point exceptions can be raised. Whether or not an
exception results in a fault being raised depends on the state of its associated

mask bit in the arithmetic controls.

Floating Overflow
Floating Underflow

Floating Invalid Operation

Floating Inexact

Result is too 'large for destination format.
Result is too small for destination format.
The src operand is oo.

One or more operands are an SNaN
value.

Result cannot be represented exactly in
destination format.

tanrl g4, fpO # tangent of value in g4,g5 is
# stored in £fp0

tanr 68E
tanrl 69E
cosr, sinr

REG
REG
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TEST

Mnemonic: teste Test For Equal

testne Test For Not Equal

testl Test For Less

testle Test For Less or Equal

testg Test For Greater

testge Test For Greater or Equal

testo Test For Ordered

testno Test For Unordered
Format: test: dst

reg

Description:  Stores a true (1) in dst if the logical AND of the condition code and the
mask-part of the opcode is not zero. Otherwise, the instruction stores a false
(0) in dst. :

The following table shows the condition-code mask for each instruction:

Instruction [ Mask | Condition
testno 000 Unordered
testg 001 Greater

teste 010 Equal

testge 011 Greater or equal
testl 100 Less

testne 101 Not equal

testle 110 Less or equal
testo 111 Ordered

For the testno instruction (Unordered), a true is stored if the condition code
is 2#000#; otherwise a false is stored.
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TEST

Action:

Faults:

Example:

Opcode:

See Also:

For All Instructions Except testno:

if (mask and AC.cc) # 2#000#
then dst < 1; # dst set for true
else dst < O; # dst set for false -
end if;

testno:
if AC.cc = 2#000#
then dst < 1; # dst set for true

else dst < Q; # dst set for false
end if; ’

STANDARD

# assume AC.cc = 2#100#
testl g9 # g9 « 164000000014

teste 22 COBR
testne 25 COBR
testl 24 . COBR
testle 26 COBR
testg 21 COBR
testge 23 COBR
testo 27 ‘COBR
testno 20 COBR

cmpi, cmpdeci, cmpinci
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Mnemonic:

Format:

Description:

Action:

Faults:

Example:
Opcode:

See Also:

xnor Exclusive Nor

xor Exclusive Or

xnor srcl, src2,
reg/lit reg/lit

xor srcl, src2,
reg/lit reg/lit

dst
reg

dst
reg

Xnor, xXor

Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and srcl values and stores the result in dst.

XNOor: dst < not (src2 or srcl) or

(src2 and srcl);

XOr: dst < (src2 or srcl) and
not (src2 and srcl);

STANDARD

xnor r3, r9, rl2
xor gl, g7, g4

xnor 589
xor 586

and, andnot, nand, nor, not, notand, notor, or, ornot

# rl2 < r9 XNOR r3
# g4 < g7 XOR gl)

REG
REG
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11.0 FLOATING-POINT OPERATION

This section describes the floating-point processing capabilities of the 80960KB processor. The
subjects discussed include the real number data types, the execution environment for loating-point
operations, the floating-point instructions, and fault and exception handling.

11.1 INTRODUCING THE 80960KB FLOATING-POINT ARCHITECTURE

The floating-point architecture used in the 80960KB processor is designed to allow a convenient
implementation of the IEEE Standard 754-1985 for Binary Floating-Point Arithmetic. This hardware
architecture, along with a small amount of software support, conforms to the IEEE standard and
provides support for the following data structures and operations:

» Real (32-bit), long real (64-bit), and extended real (80-bit) ﬂoéting-point number formats.
e Add, subtract, multiply, divide, square root, remainder, and compare operations

*  Conversion between integer and floating-point formats

»  Conversion between different floating-point formats

* Handling of floating-point exceptions, including non-numbers (NaNs)

The software to support the 80960KB floating-point architecture is needed primarily to handle
conversions between real numbers and decimal strings.

In addition, the 80960KB floating-point architecture supports several functions that go beyond the
IEEE standard. These functions fall into two categories:

*  functions recommended in the appendix to the IEEE standard, such as copy sign and classify,
and

+  commonly used transcendental functions, including trigonometric, logarithmic, and exponen-
tial functions.

11.2 REAL NUMBERS AND FLOATING-POINT FORMAT

This section provides an introduction to real numbers and how they are represented in floating-point
format. Readers who are already familiar with numeric processing techniques and the IEEE standard
may wish to skip this section.

11.2.1 Real Number System

As shown at the top of Figure 23, the real- number system comprises the continuum of real numbers
from minus infinity (-eo) to plus infinity (+eo).
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Because the size and number of registers that any computer can have is limited, only a subset of the
real-number continuum can be used in real-number calculations. As shown at the bottom of Figure
23, the subset of real numbers that a particular processor supports represents an approximation of the
real number system. The range and precision of this real-number subset is determined by the format
that the processor uses to represent real numbers.

BINARY REAL NUMBER SYSTEM

SUBSET OF BINARY REAL-NUMBERS THAT CAN BE REPRESENTED WITH
IEEE SINGLE-PRECISION (32-BIT) FLOATING-POINT FORMAT

-~
-100 -10 -1 0 1 ,/ 10 \\ 100
- - F .........I-.....-.-l.........l..-.[....' wede o e e o e . . (g

10.000000000000000000000

LR ARRARRNARARRRARRARRARY
PREClSION:l—-—— 24 BINARY DIGITS

NUMBERS WITHIN THIS RANGE
CANNOT BE REPRESENTED

270647-22

Figure 23. Binary Number System

11.2.2 Floating-Point Format

To increase the speed and efficiency of real number computations, computers or numeric processors

" typically represent real numbers in a binary floating-point format. In this format, a real number has
three parts: a sign, a significand, and an exponent. Figure 24 shows the binary floating-point format
that the processor uses. This format conforms to the IEEE standard.

The sign is a binary value that indicates whether the number is positive (0) or negative (1). The
significand has two parts: a one-bit binary integer (also referred to as the j-bit) and a binary fraction.
The j-bit is often not represented, but instead is an implied value. The exponent is a binary integer
that represents the base-2 power that the significand is raised to.
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SIGN
[ | EXPONENT | SIGNIFICAND |

L‘ l FRACTION J

INTEGER OR J-BIT

270647-23

Figure 24. Binary Floating-Point Format

Table 16 shows how the real number 201.187 (in ordinary decimal format) is stored in floating-point
format. The table lists a progression of real number notations that leads to the format that the
80960KB processor uses. In this format, the binary real number is normalized and the exponent is
biased.

Table 16. Real Number Notation

NOTATION : VALUE
ORDINARY DECIMAL | 201.187
SCIENTIFIC DECIMAL 2.01187E152
SCIENTIFIC BINARY 1.100]00100101111152111
SCIENTIFIC BINARY 1.1001001001011111E,10000110
(BIASED EXPONENT)
32-BIT SIGN BIASED EXPONENT SIGNIFICAND
FLOATING-POINT
FORMAT 1 o 10000110 1001001001011111
(NORMALIZED) : A 1. (MPLIED)

11.2.3 Normalized Numbers

In most cases, the processor represents real numbers in normalized form. This means that except for
zero, the significand is always made up of an integer of 1 and a fraction as follows:

1.fff.. ff
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For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the exponent
is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can be
accommodated in a significand of a given width. To summarize, a normalized real number consists
of anormalized significand that represents a real number between 1 and 2 and an exponent that gives
the number’s binary point.

11.2.4 Biased Exponent

The processor represents exponents in a biased form. This means that a constant is added to the actual
exponent so that the biased exponent is always a positive number. The value of the biasing constant
depends on the number of bits available for representing exponents in the floating-point format being
used. The biasing constant is chosen so that the smallest normalized number can be reciprocated
without overflow.

11.2.5 Real Number and Non-Number Encodings

The real numbers that are encoded in the floating-point format described above are generally divided
into three classes: +0, +nonzero-finit number, and +o-. Encodings for non-numbers (NaNs) are also
defined. The term NaN stands for “Not a Number.” Figure 25 shows how the encodings for these
numbers and non-numbers fit into the real number continuum. The encodings shown here are for the
IEEE single-precision (32-bit) format, where the term “s” indicates the sign bit, “e” the biased
exponent, and “f” the fraction. (The exponent values are given in decimal.)

11.2.6 Signed Zeros

Zero can be represented as a +0 or a -0 depending on the sign bit. Both encodings are equal in value.
The sign of a zero result depends on the operation being performed and the rounding mode being
used. Signed zeros have been provided to aid in implementing interval arithmetic. The sign of a zero
may indicate the direction from which underflow occurred, or it may indicate the sign of an oo that
has been reciprocated.

11.2.7 Signed, Nonzero, Finite Values

The class of signed, nonzero, finite values is divided into two groups: normalized and denor-malized.
The normalized finite numbers comprise all the nonzero finite values that can be encoded in a
normalized real number format from zero to oe. In the 32-bit form shown in Figure 25, this group of
numbers includes all the numbers with biased exponents ranging from 1 to 254, (unbiased, the
exponent range is from -126, to +127 ).
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NaN : ' k B ‘NaN.
. ‘ p—{
-DENORMALIZED FINITE +DENORMALIZED FINITE
<o .NORMALIZED FINITE 0 +0 +NORMALIZED FINITE ~ +o
—t - —t— +—t—t } +—
REAL NUMBER AND NaN ENCODINGS FOR 32-BIT FLOATING-POINT FORMAT

s E . F s E F
Ll o [ o ]- , wofe] o | o |
L1[ 0 l NONZERd ;?E#gFfMAL'ZED ;?bﬁ'T‘gRMA“ZED [o| 0 [ NONZERO l
[1] 1250 [ anvvae | NORMALIZED O ENRMALZED [T 254 [ ANYVALUE'.'I
[T e | o |- wo [0 25 | o]
Ixt] 255 | 1oxx® | -snan : wonan (X ass [ oo, ]
HEIEREEEEEE o sanan I e | x|

' | 27064724

NOTES:
1. SIGN BIT IGNORED .
2. FRACTIONS MUST BE NONZERO

Figure 25. Real Numbers and NaNs

11.2.8 Denormalized Numbers

When real numbers become very close to zero, the normalized-number format can no longer be used
to represent the numbers. This is because the range of the exponent is not large enough to compensate
for shifting the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the integer
bit (and perhaps other leading bits) of the significand zero. The numbers in this range are called
denormalized numbers. The use of leading zeros with denormalized numbers allows smaller
numbers to be represented. However, this denormalization causes a loss of precision (the number
of significant bits in the fraction is reduced by the leading zeros).

‘When performing normalized floating-point computations, a processor normally operates on nor-
malized numbers and produces normalized numbers as results. Denormalized numbers represent an
underflow condition.

A denormalized number is computed through a technique called gradual underflow. Table 17 gives
an example of gradual underflow in the denormalization process. Here the 32-bit format is being
used, so the minimum exponent (unbiased) is -126,,. The true result in this example requires an
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exponent of -129,  in order to have a normalized number. Since -129 is beyond the allowable
exponent range, the result is denormalized by inserting leading zeros until the minimum exponent
of -126 , is reached.

Table 17. Denormalization Process

Operation Sign | Exponent” | Significand

True Result 0 -129 1.01011100...00
Denormalize 0 -128 0.101011100...00
Denormalize 0 -127 0.0101011100...00
Denormalize 0 -126 0.00101011100...00
Denormal Result | 0 -126 0.00101011100...00

In the extreme case, all the 51gn1ﬁcant bits are shifted out to the right by leading zeros, creatmg azero
result.

11.2.9 Signed Infinities

The two infinities, +eo and -eo, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-point format. Infinity is always represented by
a zero fraction and the maximum biased exponent allowed in the spec1f1ed format (e.g., 255 o for the
32-bit format).

Whereas denormalized numbers represent an underflow condition, the two infinity numbers
represent the result of an overflow condition. Here, the normalized result of a computation has a
biased exponent greater than the largest allowable exponent for the selected result format.

11.2.10 NaNs

Since NaNs are non-numbers, they are not part of the real number line. In Figure 25, the encoding
space for NaNs in the 80960KB floating-point formatsis shown above the ends of the real number
line. This space includes any value with the maximum allowable biased exponent and a non-zero
fraction. (The sign bit is ignored for NaNs.)

The IEEE standard defines two specific NaN values: a quiet NaN (QNaN) and a signaling NaN
(SNaN). AQNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN with the most
significant bit clear. QNaNs are allowed to propagate through most arithmetic operations without
signaling an exception. SNaNs signal an invalid-operation exception whenever they appear as
operands in arithmetic operations. Exceptions are discussed later in section titled “Exceptions and
Fault Handling.”
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The section “Operations on NaNs” provides detailed information on how the processor handles
NaNs.

11.3 REAL DATA TYPES

The processor supports three real-number data formats: real, long real, and extended real. These
formats orrespond directly to the single-precision, double-precision, and double-extended precision
formats in the IEEE standard. Figure 26 shows these data formats and gives the resolution that each
provides.

SIGN REAL
32 WY EXPONERT FRACTION
BITS !
3130 23 22 ONINTEGER O
IMPLIED
SIGN LONG REAL
64
BITS EXPONENTW FRACTION %
63 62 52 51 “ INTEGER IMPLIED 0
SIGN EXTENDED REAL
80
BITS EXPONENT W FRACTION
79 78 64 63 62 o~ INTEGER .0
DATA TYPE RANGE
REAL 2-126 70 2127 (.10-45 7O -1038)
LONG REAL 2-1022 70 21023 (.10-324 70 -10308)
EXTENDED REAL 2-16382 7 216383 (.10-4950 70 .10+4932)
g 270647-25

Figure 26. Real Number Formats

For the real and long-real formats, only the fraction is given for the significand. The mteger is
assumed to be 1 for all numbers except 0 and denormalized finite numbers.

For the extended- real format, the integer is contained in bit 63 and the most-significant fraction bit
is bit 62. Here, the integer is explicitly set to 1 for normalized numbers, infinities, and NaNs and
to O for zero and denormalized numbers.

Table 18 shows the encodings for all the classes of real numbers (i.e., zero, denormalized finite,
normalized finite, and o) and NaNs, for each of the three real data-types.
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Table 18. Real Numbers and NaN Encodings

Class Sign Biased Exponent Integer’ Fraction
+ oo 0 11...11 1 00...00
0 11...10 1 11..11
+ NORMALS . . .
0 00...01 1 00...00
POSITIVE
0 00...00 0 11...11
+ DENORMALS . . . .
0 00...00 0 00...01
+ ZERO 0 00...00 0 00...00
- ZERO 1 00...00 0 00...00
1 00...00 0 00...01
- DENORMALS . . . .
1 00...00 0 11...11
NEGATIVE
1 00...01 1 00...00
- NORMALS . . .
1 11...10 1 11...11
- 1 11...11 1 00...00
SNaN X 11...11 1 0X...XX?2
NaN
QNaN X 11...11 1 1X...XX
REAL: «——— 8BITS ——| «—23BITS—
LONG REAL: <+———11 BITS —— «—52 BITS —
EXTENDED REAL: +~——15BITS ——— «—63 BITS —
Notes:

1. Integer is implied for real and long real formats and is not stored.
2. Fraction for SNaN must be non-zero.
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11.4 EXECUTION ENVIRONMENT FOR FLOATING-POINT OPERATIONS

An important feature of the 80960KB processor is that the floating-point processing capabilities
have been integrated into the execution environment of the processor. Operations on floating-point
numbers are carried out using the same registers that are used for ordinals and integers. In addition,
four floating-point registers have been provided for extended-precision floating-point arithmetic.

The following sections describe how floating-point operations are handled in the processor’s
execution environment.

11.4.1 Registers

All of the registers in the processor’s execution environment, (i.e., global, local, and floating point)
can be used for floating-point operations. When using global or local registers, real values (i.e., 32
bits) are contained in one register; long-real values (i.e., 64 bits) are contained in two successive
registers; and extended-real values (i.e., 80 bits) are contained in three successive registers.

Figure 27 shows how the three forms of the real data type are encoded when stored in global and local
reglsters Note that long-real values must be aligned on even-numbered register boundaries (e.g., g0,

...). Extended-real values must be aligned on register boundaries that are an integral multiple
of four (e.g., 20, g4, ..).

REGISTER
REAL DISPLACEMENT
31 23 22 0
EXPONENT FRACTION n
SIGN
LONG REAL
31 20 19 0
FRACTION (LEAST SIGNIFICANT BITS) ) nl
EXPONENT FRACTION (MOST SIGNIFICANT BITS) N+t
SIGN
EXTENDED REAL
31 16 15 14 . 0
FRACTION (LEAST SIGNIFICANT BITS) . n2
+~ FRACTION (MOST SIGNIFICANT BITS) n+t
W ' EXPONENT , n+2
\ I
INTEGER SIGN
N
m RESERVED (INITIALIZED TO 0) s

NOTES:
.1. REGISTER NUMBER MUST BE EVEN.
2. REGISTER NUMBER MUST BE AN INTEGRAL MULTIPLE OF FOUR.

Figure 27. Storage of Real Values in Global and Local Registers
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Real values in the floating-point registers are always in the extended-real format. When a real or
long-real value is moved from global or local registers to floating-point register, the processor
automatically reformats it for the extended-real format.

11.4.2 Loading and Storing Floating-Point Values

Floating-point values are loaded from memory into global or local registers using the load (1d), load
long (Idl), and load triple (1dt) instructions. Likewise, floating-point values in global or local registers
are stored in memory using the store (st), store long (stl), and store triple (stt) instructions.

Loading a floating-point value into a floating-point register requires two steps (two instructions).
First, a floating-point value must be loaded from memory into one or more global or local registers.
Then, the value must be moved to the floating-point register using a move real (movr), move long-
real (movrl), or move extended-real (movre) instruction.

A similar two-step procedure is required to store a value from a floating-point register into memory.
The value must first be moved into one or more global or local registers (using a movr, movrl, or
movre instruction), then stored in memory.

This two-step method for moving values from memory into floating-point registers and vice versa
may seem a little cumbersome; however, in practice it generally is not. Floating-point registers are
most often used to store and accumulate intermediate results of computations. The contents of these
registers are not normally stored in memory.

For example, the following instruction
divr r3, r4, £fp2

causes the real value in local register r4 to be divided by the value in r3, with the extended-real result
stored in floating-point register fp2. Here, a move operation from the local registers to the floating-
point registers is not required, since it is implicit in the divide operation.

11.4.3 Moving Floating-Point Values

Either the move instructions (mov, movl, or movt) or the move-real instructions (movr, movrl, or
movre) can be used to move real values among global and local registers. The move real instructions
are ‘generally used to convert a real value from one format to another or for moving real values
between the global or local registers and floating-point registers. The move instructions are used to
move real values while keeping them in the same format.

When using the movr and movrl instructions to move floating-point numbers between the global or
local registers and the floating-point registers, the processor automatically converts values from real
- and long-real format, respectively, into the extended-real format and vice versa.
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For example, the following instruction
) movrrg3, fpl

causes a 32-bit, real value in global register g3 to be converted to 80-bit, extended-real format and
placed in floating-point register fp1. :

Going the opposite direction, the instruction
movrl fpO, r4

causes an extended-real value in ﬂoating-point register fp0 to be converted to 64-bit, long-real format
and placed in local registers r4 and rS5.

The movre instruction moves 80-bit, extended-real values between registers, without.format
conversion. When this instruction is used to move a value from three global or local registers to a
floating-point register, the processor extracts the 80-bit value from the three word extended-real
format. When moving a value from a floating-point register to global or local registers, the processor
inserts the 80-bit value into the three registers in the three-word format. '

11.4.4 Arithmetic Controls

The arithmetic controls are used extensively to control the arithmetic and faulting properties of
floating-point operations. Table 19 shows the bits in the arlthmetlc controls that are used in floatmg-
point operations.

The condition code flags are used to indicate the results of comparisons of real numbers, just as they
are for integers and ordinals.

The arithmetic status field is used to record results from the classify real (classr and classrl) and
remainder real (remr and remrl) instructions. These instructions are discussed later in this section.

The floating-point flags indicate exceptions to floating-point operations. Here, the term exception
refers to a potentially undesirable operation (such as dividing a number by zero) or an undesirable
result (such as underflow). The flags provide a means of recording the occurrence of specific
exceptions.

The floating-point masks provide a method of inhibiting the processof from in{/oking a fault handler
when an exception is detected.

Useofthe floatmg-pomt flag and mask bits are dlscussed laterin th1s sectionin “Exceptions and Fault
Handling.” :
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Table 19. Arithmetic Controls Used in Floating-Point Operations

Arithmetic | Function

Control

Bits

0-2 Condition code

3-6 Arithmetic status field

8 Integer overflow flag

12 Integer overflow mask

16 Floating overflow flag

17 Floating underflow flag

18 Floating invalid-operation flag
19 Floating zero-divide flag

20 Floating inexact flag

24 Floating overflow mask

25 Floating underflow mask

26 ' Floating invalid-operation mask
27 Floating zero-divide mask

28 Floating inexact mask

29 Normalizing mode flag
30-31 Rounding control -

11.4.5 Normalizing Mode

The normalizing-mode flag specifies whether the processor operates in normalizing mode (set) or
not (clear).

Normalizing mode is the most common mode of operation. Here, the processor operates on valid
floating-point operands, regardless of whether they are normalized or denormalized values.

When the processor is not operating in normalizing mode, it signals a reserved-encoding exception
whenever it encounters a denormalized floating-point value as a source operand. In either mode,
denormalized numbers are be produced if the underflow exception is masked.

There are no flag or mask bits in the arithmetic controls for this exception. When areserved-encoding
exception is detected, the processor generates a floating reserved-encoding fault and leaves the
destination operand unchanged (i.e., no result is stored). »

The unnormalized mode of operation is provided to allow unnormalized arithmetic to be simulated
with software. Here, a fault handler routine can be used to perform unnormalized arithmetic
whenever a reserved-encoding exception is signaled.
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11.4.6 Rounding Control

Often the infinitely precise result of an arithmetic operation cannot be encoded exactly in the format
of the destination operand. For example, the following value has a 24-bit fraction. The least-
significant bit of this fraction (the underlined bit) cannot be encoded exactly in the real (32-bit)
format:

1.0001 0000 1000 0011 1001 001E, 101
The processor must then round the result to one of the following two values:

1.001 0000 1000 0011 1001 011E, 101
1.001 0000 1000 0011 1001 100E, 101

A rounded result is called an inexact result. When an inexact result is produced, the floating-point
inexact flag bit in the arithmetic controls is set.

The processor rounds results according to the destination format (real, long real, or extended real)
and the setting of the rounding-mode flags of the arithmetic controls. Four types of rounding are
allowed, as described in Table 20. ‘

Table 20. Rounding Methods

Rounding Mode Description

Round up (toward +eo) Rounded result is close to but no
less than the infinitely precise
result

Round down (toward -o) Rounded result is close to but no
greater than the infinitely precise
result

Round toward zero (Truncate) | Rounded result is close to but no
greater in absolute value than the .
infinitely precise result

Round to nearest (even) Rounded result is close to the in-

‘ finitely precise result. If two
values are equally close, the result
is the even value (i.e., the one with
the least-significant bit of zero).

When the infinitely pfecise result is between the largest positive finite value allowed in a particular
format and +oo, the processor rounds the result as shown in Table 21.
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Table 21. Rounding of Positive Numbers

Rounding Mode Description
Round up (toward +o0) +o0
Round down (toward -co) Maximum, positive finite value

Round toward zero (Truncate) | Maximum, positive finite value

Round to nearest (even) +oo0

When the infinitely precise result is between the largest negative finite value allowed in a particular
format and -oo, the processor rounds the result as shown in Table 22.

Table 22. Rounding of Negative Numbers

Rounding Mode Description
Round up (toward +eo) Maximum, negative finite value
Round down (toward -o0) -00

Round toward zero (Truncate) | Maximum, negative finite value

Round to nearest (even) -c0

The rounding modes have no effect on comparison operations, operations that produce exact results,
or operations that produce NaN results.

The floating-point instructions allow a result to be stored in a shorter destination than the source
operands. For example, the instruction
addr fpl, fp2, g5

produces a real (32-bit) result from two extended-real (80-bit) source operands. In all such
operations, only one rounding error occurs: the error that occurs when rounding the infinitely precise
result to the size of the destination format.

Technically, an operation which computes a narrow result from wide operands is in violation of the
IEEE standard. However, systems that are designed to conform to the IEEE standard do not need
to use this capability of the processor.

11.5 INSTRUCTION FORMAT

The instruction format for floating-point instructions is the same as for the other processor
instructions. When programming in assembly language, an assembly language statement begins
with an instruction mnemonic and is followed by from one to three operands. For example, the
multiply-real instruction mulr might be used as follows:

mulr r8, r9, fp3
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Here, real operands in local registers r8 and r9 are multiplied together and the result is stored in
floating-point register fp3.

From the machine level point of view, all floating-point instructions use the REG format. Refer to
Appendix B for details on the REG format instructions.

11.6 INSTRUCTION OPERANDS

Operands for floating-point instructions can be either floating-point literals or registers. The
processor recognizes two encodings for floating-point literals: +0.0 and +1.0.

All of the registers in the processor’s execution environment (global registers g0 through g15,local
registers r0 through r15, and floating-point registers fpO through fp3) can be used as operands in
floating-point instructions. (Of course, registers g15, 10, r1, and r2 would generally not be used for
storing floating-point numbers, since they are reserved for stack management functions.)

When global or local registers are specified as operands, the instruction mnemonic (or opcode)
determines how the values in these registers are interpreted. For example, there are two floating-
point divide instructions: divide real (divr) and divide long real (divrl). When using the divr
instruction, the processor assumes that global- or local-register operands contain real (32-bit) values.
When using the divrl instruction, global- or local-register operands are assumed to contain long-real
(64-bit) values.

With either instruction, floating-point registers (containing extended-real values) can also be used
as operands.

Using floating-point registers as operands allows mixed format or mixed precision arithmetic to be
performed with either real and extended-real values or long-real and extended-real values. Mixed-
format operations with real and long-real values are not supported.

11.7 SUMMARY OF FLOATING-POINT INSTRUCTIONS

The processor’s floating-point instructions consist of all instructions for which as least one operand
is a real data type.

These instructions can be divided into the following groups:

e Data Movement

»  Data Type Conversion

»  Basic Arithmetic

e Comparison and Classification
e Trigonometric

¢ Logarithmic and Exponential
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The following sections give a brief overview of the instructions in each group. Detailed descriptions
of the operations of these instructions are given in Section 10.

11.7.1 Data Movement

As has been described earlier in this section, the non-floating-point load and store instructions are
used to move real values between registers and memory. Once in registers, the non-floating-point
move instructions (mov, movl, and movt) are used to move real values between global and local
registers without format conversion; whereas, the floating-point move instructions (movr, movrl,
and movre) are used to move real values between global and local registers and floating-point
registers.

The copy-sign-real extended (cpysre) and copy-reverse-sign real-extended (cpyrsre) instructions
provide a means of copying the sign of one extended-real value to another, if one of the values is in
a floating-point register. This operation is best performed on real and long-real values using the bit
instructions chkbit and alterbit.

11.7.2 Data Type Conversion

Two types of data type conversions are provided: conversion from one floating-point format to
another (e.g., real to extended real) and conversion between integer and real.

Conversion between floating-point formats is handled in either of two ways: explicitly by move
instructions or implicitly by using the floating-point registers as operands in instructions.

As described earlier in this section, the movr instruction implicitly converts values from real to
extended real, and vice versa, when moving values between global or local registers and floating-
pointregisters. Likewise, the movrl instruction implicitly converts values from long real to extended
real, and vice versa.

Conversion between real and long-real formats requires the use of both instructions. For example,
the following two instructions convert a real value in global register g6 to along-real value contained
in g6 and g7, using a floating-point register for intermediate storage of the value:

movr g6, fpl
movrl fpl, g6

Implicit format conversion is also provided through the arithmetic, trigonometric, logarithmic, and
exponential instructions. For example, the instruction

addr r4, r5, fp2

adds two real values together and produces an extended-real result.
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The following six instructions allow conversion between integers and reals:

cvtir convert integer to real

cvtilr convert long integer to long real
cvtri convert real to integer

cvtril convert real to long integer

cvtzri convert truncated real to integer
cvtzril convert truncated real to long integer

Both the cvtir and cvtilr instructions can be used to convert an integer to an extended-real value by
specifying that the result be placed in a floating-point register.

The convert real-to-integer instructions round off the real value to the nearest integer or long-integer
value. For the cvtri and cvtril instructions, the rounding mode determines the direction the real’
number is rounded. For the convert truncated real-to-integer instructions (cvtzri and cvtzril),
rounding is always toward zero. The latter two instructions are provided to allow efficient
implementation of FORTRAN-like truncation semantics.

Extended-real values can be converted to integers by using a floating-point register as a source
operand in either of the convert real-to-integer instructions.

Converting long-real values to integers requires two instructions, as in the following example:
movrl g6, fp3
cvtzri fp3, g6

The first instruction moves the long-real value to a floating-point register. The second instruction
converts the extended-real value to an integer.

11.7.3 Basic Arithmetic

The following instructions perform the basic arithmetic operations specified in the IEEE standard:

addr add real

addrl add long real
"subr subtact real

subrl subtract long real

mulr multiply real

mulrl multiply long real

divr divide real

divrl divide long real

remr remainder real
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remrl remainder long real
roundr round real

roundrl round long real
sqrtr square root real
sqrtrl square root long real

The round instructions round the floating-point operand to its nearest integral (i.e., integer) value,
based on the current rounding mode. These instructions perform a function similar to the convert
real-to-integer instructions except that the result is in floating-point format.

11.7.4 Comparison, Branching, and Classification

Comparison of floating-point values differs from comparison of integers or ordinals because with
floating-point values there are four, rather than the usual three, mutually exclusiverelationships: less
than, equal to, greater than, and unordered.

The unordered relationship is true when at least one of the two values being compared is aNaN. This
additional relationship is required because, by definition, NaNs are not numbers, so they cannot have
greater than, equal, or less than relationships with other floating-point values.

The following instructions are provided for comparing floating-point values:

cmpr compare real

cmprl compare long real

cmpor compare ordered real
cmporl compare ordered long real

All of these instructions set the condition code flags in the arithmetic controls to indicate the results
of the comparison. With the compare instructions (cmpr and cmprl), the condition code flags are
set to 000, for the unordered condition. With the compare ordered instructions (cmpor and cmporl),
the condition code flags are set to 000, and an invalid-operation exception is signaled for the
unordered condition.

Two branch instructions (bo and bno) allow conditional branching to be performed on an ordered
or unordered condition, respectively. With these instructions, the processor checks thel condition
code flags for unordered (000,) or ordered (111,) and branches accordingly.

The classify-real instructions (classr and classrl) provide a means of determining the class of a
floating-point value (i.e., zero, denormalized finite, normalized finite, .o, SNaN, or QNaN). The
result of this operation is stored in the arithmetic status field of the arithmetic controls.
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11.7.5 Trigonometric

The following instructions provide four common trigonometric functions:

sin sine real

sinrl sine long real

cosr cosine real _
cosrl . cosine long real
tanr tangent real

tanrl tangent long real
atanr arctangent real
-atanrl arctangent long real

The arctangent instructions facilitate conversion from rectangular to polar coordinates.

11.7.6 Pi
The processor uses the following value for 7 in its computations:
m=0.f%2°

where
f=C90FDAAA?2 2168C234 C,,
e=2 if significand is O.

(The spaces in the fraction above indicate 32-bit boundaries.)

This value has a 66-bit mantissa, which. is 2 bits more than is allowed in the significand of an
extended-real value. (Since 66 bits is not an even number of hex digits, two additional zeros have
been added to the value so that it can be represented in a hexadecimal format. The least-significant .
hex digit (C16) is thus 1100,, where the two least significant bits represent bits 67 and 68 of the
mantissa.)

If the results of computations that explicitly use 7 are to be used in the sine, cosine, or tangent
instructions, the full 66-bit fraction for 7 should be used. This insures that the results are consistent
with the argument reduction algorithms that these instructions use. Using arounded version of 7t can
cause inaccuracies in result values, which if propagated through several calculations, might result
in meaningless results. '

A common method of representing the full 66-bit fraction of 7 is to separate the value into two
numbers. For example, the following two long-real values added together give the value forrm shown
above with the full 66-bit fraction:

3-264



inta 80960KB PROGRAMMER’S REFERENCE

7 = higher © + low &t

where
highern=400921FB 54400000,
lown=3DD0B461 1A600000

Here high 7t gives the most significant 33 bits of T and low 1t gives the least significant 33 bits. Similar
versions of T can also be written in the extended-real format.

‘When using this two-part &t value in an algorithm, parallel computations should be performed on each
part, with the results kept separate. When all the computations are complete, the two results can be
added together to form the final result.

11.7.7 Logarithmic, Exponential, and Scale

The following instructions provide three different logarithmic functions, an exponential function,
and a scale function:

logbnr log binary real
logbnrl log binary long real
logr log real

logrl log long real

logepr log epsilon real
logeprl log epsilon long real
expr exponent real

exprl exponent long real
scaler scale real

scalerl scale long real

These instructions are described in detail in Section 10. The following is a brief desbription of their
functions.

The log binary instructions compute the IEEE recommended function logb (X). The result is an
integral value that is the binary log of X.

The log instructions compute the function Y * log (X), where the log of X is the base-logarithm.

The log epsilon instructions compute the function Y * log (X + 1), where the log of X + 1 is a base-
2 logarithm.

The exponent instructions compute the value 2* - 1.

The scale instructions perform a multiplication of a ﬂoating;point value by a power of 2.
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11.7.8 Arithmetic Versus Nonarithmetic Instructions

The floating-point instructions can be divided into two groups: arithmetic and nonarithmetic.
Arithmetic instructions are those that are sensitive to real values, meaning that they distinguish
among NaN, e, normalized finite, denormalized finite, and zero values.

All but five of the floating-point instructions are arithmetic. The five nonarithmetic instructions are
move-real extended (movre), copy-sign real extended (cpysre), copy-reversed-sign real extended
(cpyrsre), and classify real (classr and classrl). These nonarithmetic instructions are insensitive to
real values and cannot generate floating-point exceptions or faults.

This distinction between arithmetic and nonarithmetic instructions is important because floating-
point exceptions and faults can be signaled only during the execution of arithmetic instructions.

11.8 OPERATIONS ON NANS

As was described earlier in this section, the processor supports two types of NaNs: QNaN and1
SNaN. An SNaN is any NaN value with its most-significant fraction bit set to 0 and at least one other
fraction bit set to 1. (If all the fraction bits are set to 0, the value is an «.) A QNaN is any NaN value
with the most-significant fraction bit set to 1. The sign bit of a NaN is not interpreted.

In general, when a QNaN is used in one or more arithmetic floating-point instructions, it is allowed
to propagate through a computation. An SNaN on the other hand causes a floating invalid-operation
exception to be 31gnaled

The ﬂoating invalid-operation exception has a flag and a mask bit associated with it in the arithmetic
controls. The mask bit determines how the processor handles an SNaN value. If the floating invalid-
operation mask bit is set, the SNaN is converted to a QNaN by setting the most significant fraction
bit of the value to a 0. The result is then stored in the destination and the floating invalid-operation

flagis set. If the invalid operation mask is clear, a floating invalid-operation fault is signaled and no
result is stored in the destination.

When the result is a QNaN, the format of the result is as shown in Table 23, depending on the form
of the source operands. .

In some cases, a QNaN result is returned when none of the source operands are NaNs. Here, a
standard QNaN is returned. The significand for the standard QNaN is as follows:

1.1000...00
" (For real and long-real destinations, the integer bit will be an implied 1.)

Other than the rules specified above, software is free to use the other bits of a NaN for any purpose.
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Table 23. Format of QNaN Results

Source Operands QNaN Result

Only one operand is NaN, destina- | QNaN version of NaN source
tion is same width

Only one operand is NaN, destina- | QNaN version of NaN source, with

tion is longer fraction extended with zeros

Only one operand is NaN, destina- | QNaN version of NaN source, with
tion is shorter fraction truncated

Both operands are NaNs QNaN version of source whose

fraction field has greatest mag-
nitude, with fraction extended or
truncated as described above

11.9 EXCEPTIONS AND FAULT HANDLING

Occasionally, a floating-point instruction can result in an exception being signaled. The processor
recognizes six floating-point exceptions:

* Floating Reserved Encoding
»  Floating Invalid Operation

¢ Floating Zero Divide

e Floating Overflow

¢ Floating Underflow

*  Floating Inexact
These exceptions can be divided into two categories:

1. Situations in which one or more source operands are inappropriate for an operation and would
cause an exception to be signaled. ‘

2. Situations in which the result of an operation is exceptional.

The reserved encoding, invalid operation, and division-by-zero exceptions fall in the first category;
the overflow, underflow, and inexact exceptions fall in the second category.

Except for the floating reserved-encoding exception, each of these exceptions has a flag and a mask
bit associated with it in the arithmetic controls. When an exception condition occurs, the processor
performs one of the following operations:

» Ifthe mask bit for the exception is set, the flag for the exception is set and instruction execution
continues, substituting a default value in place of the result.
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»  Ifthe mask bit for the exception is clear, the flag for the exception is not set and a floating-point
arithmetic fault is raised. The processor then stores diagnostic information in the fault
information area and diverts instruction execution to a fault handler.

Since the floating reserved-encoding exception does not have a flag or mask bit, it always results
in a fault. :

Note

The ﬂbating-point exception flags are “sticky,” which means that the processor does not implicitly clear
them while carrying out floating-point operations. They may be cleared by software.

11.9.1 Fault Handler

As is described in Section 9, when a floating-point fault is signaled, the processor calls a single fault
handler. This fault handler determines how to handle the specific fault subtype by interpreting the
floating-point exception flags and the information in the fault record.

11.9.2 Fldating Reserved-Encoding Exception
A reserved encoding exception occurs as a result of either of the following two conditions:

¢ When areserved encoding is used as an operand in a floating-point instruction, or

¢ When a denormalized value is used as an operand in a floating-point instruction and the
normalizing-mode bit in the arithmetic controls is clear.

‘The first condition is rare. It can only occur if a program presents an extended-real value to the
processor that has a zero j-bit (integer part) and a non-zero biased exponent.

The second condition was discussed earlier in the section titled “Normalizing Mode.” This condition
is also rare, since the vast majority of programs run with the normalizing mode enabled.

There is neither a flag nor a mask bit for this exception. When a reserved-encoding exception occurs,
the processor raises a floating reserved-encoding fault and does not store a result.

11.9.3 Floating Invalid-Operation Exception

Theinvalid-operation exception indicates that one of the source operands is inappropriate for the type
of operation being performed. The following conditions cause this exception.to be signaled:

*  Any arithmetic operation on an SNaN
e Addition of infinities of unlike sign
¢ Subtraction of infinities of like sign

e Multiplication of zero by oo
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* Division of zero by zero or oo by oo
e Remainder of x by y, if y is zero or x is oo
»  Square root of a negative, nonzero value
»  Conversion of a NaN from floating-point format to integer format
»  Sine, cosine, or tangent of co
o y*log (x),if:

X is negative and nonzero,

y is zero and X is oo

y and x are zero, or

yisecandxis 1
* Logepsilon of (y, x),if yis e and x is 0

*  Compare ordered, if a source operand is a NaN
When a floating invalid-operation exception occurs and its mask is set, the following occurs:

*  When the result is a floating-point value, the standard QNaN value is stored in the destination
and the floating invalid-operation flag is set. (A discussion of how the processor handles NaNs
was provided earlier in the section titled “Operations on NaNs.”)

*  When the result is an integer, the maximum negative integer is stored in the destination and the
floating invalid-operation flag is set.

When the mask is clear, no result is stored; the floating invalid-operation flag is not set; and the
floating invalid-operation fault is signaled.

11.9.4 Floating Zero-Divide Exception

The floating zero-divide exception is signaled when an exact non-finite result would be produced
from finite operands. (Note that a different exception, overflow, is signaled when an infinite result
is produced inexactly from finite operands.) The most common example of this exception is a
“division operation, where the divisor is zero and the dividend is a nonzero, finite value.

When the floating zero-divide mask is set: a correctly signed e is stored in the destination and the
floating zero-divide flag is set. When the mask is clear, no result is stored; the floating zero-divide
flag is not set; and a floating zero-divide fault is signaled. '

11.9.5 Floating Overflow Exception

The overflow exception occurs when the infinitely precise result of a floating-point instruction
exceeds the largest allowable finite value for the specified destination format. For example, if the
destination format is real (32 bits), overflow occurs when the infinitely precise result falls outside
the range -1.0 * 226 to 1.0 * 2!? (exclusive), where 126 is the unbiased exponent of the result.

3-269



intal 80960KB PROGRAMMER'S REFERENCE

When the floating overflow mask is set, a rounded result is stored in the destination and the floating
overflow flag is set. The current rounding mode determines the method used to round the result.

When the mask is clear: no result is stored in the destination and the floating overflow flag is not set.
Instead, the processor stores the result in extended-real format in the fault information area. The
fraction of the extended-real value is rounded to the instruction’s destination precision. For example,
if the destination operand’s format is real (32 bits), the extended-real fraction is rounded to 23 bits,
with the 40 least-significant bits filled with zeros.

- If the exponent exceeds the range of the extended-real format (16383 unbiased), then the exponent
is divided by 2%7¢ and a flag (bit 1 of the fault flags byte or override flags byte) is set in the fault
information area to indicate that the exponent has been bias adjusted. After this fault information
is stored, a floating overflow fault is signaled.

When using the scale instructions (scaler or scalerl), massive overflow can occur, where the
infinitely precise result is too large to be represented, even with a bias adjusted exponent. Here, a
properly signed oo is stored in the fault record.

The floating overflow exception cannot occur on a conversion from floating-point format to integer
format (although an integer overflow exception can occur).

11.9.6 Floating Underflow Exception

An underflow condition occurs when the infinitely precise result of a floating-point instruction is less
than the smallest possible normalized, finite value for the specified destination format. For example,
for the real (32-bit) format, underflow occurs when an infinitely precise result falls in the range -1.0
* 2126 0 1.0 * 2!% (exclusive), where -126 is the unbiased exponent.

When a floating underflow condition occurs, the setting of the floating underflow mask determines
how the processor handles the condition.

If the mask is set when an underflow condition occurs, the processor goes ahead and denormalizes
the result. Then if the result is exact, it is stored in the destination and the floating underflow
exception is not signaled, nor is the floating underflow flag set. If, on the other hand; the
denormalized result is inexact, the floating underflow flag is set and the processor goes on to handle
the inexact condition as described in the next section.

If the floating underflow mask is clear when an underflow-condition occurs, no result is stored in the
destination and the floating underflow flag is not set. Instead, the processor stores the result in
extended-real format in the fault information area, with the fraction of the extended-real value
rounded to the instruction’s destination precision. For example, if the destination precision is real
(23-bit fraction) the 40 least-significant bits of the fraction are set to 0.

If the exponent of the value stored is less than the minimum allowable value in the extended-real
format (16,382 unbiased), then the exponent is multiplied by 2**’ and a flag (bit 1 of the fault or
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override flags byte) is set in the fault information area to indicate that the exponent has been bias
adjusted. After this information is stored, a floating underflow fault is signaled.

The scale instructions can cause massive underflow to occur, where the infinitely precise result is too
small to be represented, even with a bias adjusted exponent. Here, a properly signed zero is stored
in the fault record.

Refer to the section later titled “Floating-Point Underflow Condition” for more information on the
interaction of the floating underflow and inexact exceptions.

11.9.7 Floating Inexact Exception

The floating inexact exception occurs when an infinitely precise result cannot be encoded in the
format specified for the destination operand. Either of the following two conditions can cause an
inexact exception to be signaled:

¢ When a result is rounded and the result is not exact

*  When overflow occurs and the floating overflow mask is set

If the floating inexact mask is set when an inexact condition occurs and an unmasked overflow or
underflow condition does not occur, the rounded result is stored in the destination and the floating-
point inexact flag is set. The current rounding mode determines the method used to round the result.

If the floating inexact mask is clear when an inexact condition occurs, the floating inexact flag is not
set and one of the following operations is carried out:

« Ifonly the inexact condition has occurred, the processor stores the rounded result in the specified
destination, then raises a floating-inexact fault.

« If the inexact condition occurs along with overflow or underflow, no result is stored in the
destination. Instead, the processor stores the result in extended-real format in the fault
information area, as described for the floating overflow and underflow exceptions, then1 raises
a floating inexact fault.

Refer to the following section for more information on the interaction of the floating underflow and
inexact exceptions. '

11.9.8 Floating-Point Underflow Condition

Two aspects of underflow are important in numeric processings: the “tininess” of anumber and “loss
- of accuracy.” Aresult is tiny when it is nonzero and its exponent is between +2"", where Emin is
the smallest unbiased exponent allowed in the destination format. For example, if the destination
format is long-real (64-bit format), a result is tiny if it is nonzero and in the range of +1 * 212 to - -
1 * 221922 The ability to detect a tiny result is important because such a result may cause an exception
to be signaled in a later operation (e.g., overflow on a division).
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Loss of accuracy occurs when a tiny result is approx1mated as part of the denormalization process
so that it will fit into the destination format.

In the 80960KB processor, tininess is detected after rounding as an underﬂow condition. Loss of
accuracy is detected as an inexact condition. .

The algorithm in Figure 27 shows how the processor responds to these two conditions, when a
floating-point operation produces a tiny result.

An important point to note in this algorithm is that if the underflow mask is set, an underflow
exception is signaled only if the denormalized result is inexact. If the denormalized number is exact,
no flags are set and no faults are signaled.
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generate infinitely precise result # exponent and significand,;
if exponent < underflow threshold
then
if underflow fault mask clear
then
goto underflow fault handler;
exit algorithm;
else generate denormalized number
if denormalized significand equals infinitely precise significand
then
store denormalized result in destination;
# no underflow is signaled;
else
set underflow flag in AC;
if inexact fault mask is clear
then
goto inexact fault handler;
exit algorithm;
else
set inexact flag in AGC;
store denormalized result in destination;
end if;
end if;
end if;
else
if infinitely precise result is inexact
then
if inexact fault mask is clear
then
goto inexact fault handler;
exit algorithm;
else
set inexact flag in AC;
store normalized result in destination;
end if;
else
store normalized result in destination;
end if}
end if;
exit algorithm

Figure 27. Ihteraction of Floating Underflow and Inexact Exceptions
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12.0 INTERAGENT COMMUNICATION

This section describes the interagent communication (IAC) mechanism of the 80960KB processor.
Included is a description of the IAC message structure, the IAC message sending and receiving
mechanism, and reference information on the available IAC messages.

Note

The 80960KB processor’s interagent communication mechanism is an extension to the architecture and
may not be supported in other processors based on this architecture.

12.1 INTRODUCTION TO IAC MESSAGES

The IAC facilities provide a mechanism for agents connected to the processor’s bus to communicate
with the processor by means of messages. The agents that use these facilities may be other 80960KB
processors, I/O processors, or special purpose hardware. Programs running on the 80960KB
processor can also use this message-passing mechanism to send messages internally to the processor.

The primary function of these facilities is to provide an alternative to the interrupt mechanism for
external hardware to communicate with the processor. Also, certain processor functions like
reinitialization, purging the instruction cache, and setting breakpoint registers can only be carried out
with this mechanism.(

IAC messages (referred to here as IACs) are four words in length and are exchanged by means of
message buffers that are mapped to memory. All the usable IACs are predefined. The processor
handles an IAC in much the same way as it handles an instruction.

The processor provides two mechanisms for exchanging IACs: external and internal. The external
TAC mechanism is used to pass IACs between two agents on the processor’s bus. A processor uses
the internal IAC mechanism to pass an IAC to itself.

12.2 IAC MESSAGE FORMAT

Figure 28 shows the format for an IAC message. Each message consists of a message-type field and
up to five parameter fields.

31 24 23 " 1615 0
MESSAGE TYPE FIELD 1 FIELD 2 0
FIELD 3 ' 4
FIELD 4 8
FIELD 5 ) 12
270647-27

Figure 28. IAC Message Format
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The message type is an 8-bit binary code. Each IAC has a unique message type.

The parameters can be 8, 16, or 32-bits in length, depending on the specified field. Many of the IACs
donotrequire parameters. When a message type does require one or more parameters, the processor
only looks at the required parameter fields. Those fields not used are ignored.

12.3 SOFTWARE REQUIREMENTS FOR HANDLING IACS

No special software, such as dedicated data structures or stacks, are required to handle IACs. AnIAC
is sent with a quad synchronous move instruction (synmovq). When the processor receives an IAC,
it handles it independently from the program execution environment. It does not use the instruction
execution unit, the registers (global or local), the stack, or memory. Thus, the state of the processor
when the IAC is received does not need to be saved.

Some IACs, such as the purge instruction cache IAC, do not affect the processor’s state. The
processor treats these IACs as if they were an instruction inserted in the control flow of the process.
When the IAC action is complete, the processor resumes work on the program it is currently running.

Other IACs, such as the reinitialize processor IAC, cause the state of the processor or the control of
the currently running program to be permanently changed. In these instances, the processor resumes
activity in its new processor state, following the execution of the IAC.

Al TACs are assumed to have a priority of 31, so the processor executes the action requested in the
IAC message immediately, even if the processor’s current priority is 31. While the processor is
handling an IAC, it will not respond to interrupts signaled on the interrupt pins.

12.4 INTERNAL IACS

Internal IACs are used for functions such as setting breakpoint registers, purging the instruction
cache, or sending software initiated interrupts.

To send an internal IAC, software must perform the following steps:

1. Load the message into four consecutive words in memory, with the first word aligned on a word
boundary.

2. Executea synmovq instruction to move the message from its source address to destination11
address FF000010,.

When the destination operand of al synmovq instruction is FF000010,, the processor interprets the
instruction as a send internal-IAC instruction. The processor then receives the IAC by moving the
message from memory into an internal message buffer.

The action of the synmovq move instruction insures that the loading of the message into the processor
is completed before the processor is allowed to perform any other chores.
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Note

The address range of FF000000,, through FFFFFFFF  is reserved for interrupt handling and IAC
message passing.

12.5 EXTERNAL IACS

External IACs are used by agents external to the processor to initiate processor actions such as testing
for pending interrupts or freezing the processor. External IACs can be sent between two 80960KB
processors that are connected to the same bus or by external logic that duplicates the external IAC
sending mechanism. The following sections describe how one processor sends an IAC to another -
processor. The 80960KB Hardware Designer’s Reference Manual describes the requlrements that
external logic must meet to perform these same functions.

12.5.1 Sending External IACs

Sending an external IAC message is similar to sending an internal IAC message, except that the
address of the receiving agent is specified in a slightly different way. Figure 29 shows the required
encoding of the address for the receiving-agent.

31 24 23 , 14 13 43 0
Ll lefefeofe] Lefofr]t]o | Loofo]o]
1 PRIORITY
ADDRESS OF IAC
RECIPIENT
270647-28

Figure 29. Encoding of Address for Processor Receiving an IAC

At initialization each agent on the bus is assigned a unique address in the range of FF000C00,, to
FFFFCCO0,. To send an IAC to an agent, the sending agent sends the message to the address assigned
to the receiving agent. As shown in Figure 29, only bits 14 through 23 of this address are interpreted
to determine the address of the receiving agent. Bits 4 through 8 of this address are used to encode
the priority of the message.

For example, to send a priority 25, IAC to the agent at address 0000000001, the message address
would be FF004D90, . :

To send an external IAC from one 80960KB processor to another, software must perform the
following steps:

1. Load the message into four consecutive words in memory, with the first word aligned on a word
boundary.

2. Execute a synmovq instruction to move the message from its source address to the address of
the receiving agent (encoded in the form shown in Figure 29).
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3. Check the condition code in the arithmetic controls to determine if the message was received
(010,) or rejected (000,).

The action of the synmovq move instruction insures that the sending processor does not execute any
other instructions until the synmovq instruction is complete. It also sets the condition code bits to
indicate whether or not the move was successful. A successful move is interpreted as the IAC being
received by the processor.

12.5.2 Receiving and Handling an External IACs

A processor receives and handles an external IAC in somewhat the same manner as it receives and
handles an interrupt. To configure a processor to receive external IACs, vector INTO of the interrupt-
control register (shown in Figure 19) is set to 0. The INTO pin on the processor chip then becomes
the TAC pin. (Refer to Section 7, “Interrupts From Interrupt Pins” for further discussion of the
interrupt pins and interrupt-control register.)

When the processor receives a signal on the TAC pin, it handles it initially as if it were receiving an
interrupt. Itreads the vector number associated with this pin (bits O through 7 of the interrupt-control
register). If it is zero, the processor recognizes that it is receiving an external IAC. It then reads the
four-word IAC message from the bus and performs the requested IAC.

The processor acts immediately on any IAC thatitreceives. For efficient system operation, external
logic must thus be provided to insure that low priority IAC messages do not interrupt the processor
while it is handling a higher priority task. The handshaking for this operation is provided by the write-
external-priority mechanism described in Section 6.

Using the write-external-priority mechanism, the processor keeps the external logic updated
regarding the processor’s current priority. When an IAC is sent to the processor, the external logic
intercepts it and reads the priority. The external logic then determines whether the IAC priority is
above that of the processor or not. If the IAC has a higher priority, the external logic sends an
acknowledge signal to the sending processor, then signals the receiving processor by asserting the
IAC pin. Ifthe IAC has an equal or lower priority, the external logic sends a non-acknowledge signal
to the sending processor.

The sending processor uses the acknowledge or non-acknowledge signals to set the condition codes
to complete the synmovq instruction.

While the processor is servicing an IAC, it performs some handshaking with the external logic so that
the logic knows when the processor has finished work on an IAC. The external logic is then able to
reject any IAC that it receives while the processor is servicing another IAC.

12.6 SUMMARY OF IAC MESSAGES

Table 24 gives a list of the IAC messages that the processor can send either internally or externally.
The following section provides detailed reference information on these messages.
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Table 24. IAC Messages

Interrupt Handling | Processor Management
Interrupt Purge Instruction Cache
Test Pending Interrupt | Set Breakpoint Register

' Store System Base
Freeze

Continue Initialization
Reinitialize Processor

12.7 IAC MESSAGE REFERENCE

The following section provides detailed descriptions of the operations carried out for each of the
IACs. This section is organized alphabetically by IAC title for easy reference.
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Continue Initialization

Message Type: 92,6

Function: Carries out the initialization procedure that follows the processor
self test. The processor executes the initialization procedure begin-
mng with reading the initial memory image from ROM. The self

" test is not performed.

Refer to the section in Chapter 7 titled "Processor Initialization" for
further details on the initialization process.

3-279



intelo 80960KB PROGRAMMER'’S REFERENCE

Freeze
Message Type: 9146
Function: Stops the processor. The processor puts itself in the stopped state.
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Interrupt
Message Type: 40,4
-Parameters: Field 1 Interrupt vector
Fields 2 - 5 Not Used
Function: Generates an interrupt request. The interrupt vector is given in field

1 of the IAC message. The processor handles the interrupt request
just as it does interrupts received from other sources. If the inter-
rupt priority is higher than the processor’s current priority, the
processor services the interrupt request immediately. Otherwise, it
posts the interrupt in the pending interrupts section of the interrupt
table.

Refer to Chapter 8 for further information on the servicing of inter-
rupt IACs.
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Purge Instruction Cache

Message Type: - 8946

Function: Invalidates all entries in the processor’s internal instruction cache.
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Reinitialize Processor

Message Type: 936
Parameters: Fields 1 - 2 Not Used
Field-3 Address of System Address Table
Field-4 Address of Processor Control Block
Field 5 Start Instruction IP
Function: Reestablishes the processor state. In reinitializing itself, the proces-

sor first locates the system address table and the processor control
block in the IMI from the addresses given in fields 3 and 4.

The processor then begins executing the instruction list beginning
with the IP given in field 5.
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Set Breakpoint Register

Message Type: 8F ¢
Parameters: " Fields 1-2 Not Used
Field 3 . Breakpoint IP
Field 4 Breakpoint IP
Field 5 Not Used
F unctioﬁ: » Enables or disables two breakpoints. When the processor recéives

this IAC, it conditionally loads the parameters from fields 3 and 4
into breakpoint registers 0 and 1, respectively. Field 3 provides a
breakpoint IP for breakpoint register 0, and field 4 provides a break-
point IP for breakpoint register 1. Bit 1 in each of these fields is a
breakpoint disable flag.

If the disable flag in one of these fields is set, the breakpoint for the
corresponding breakpoint register is disabled. Otherwise, the IP
value in the field 