—

qooqpu EH =4 em1JosS

<86l

e T

A

A ——

=i = B W 7 L

ntal Software Handbook

WILLIAM AHEARN

Order Number: 230786-002

S U = B P L W P oy

LITERATURE

In addition to the product line handbooks listed below, the INTEL. PRODUCT GUIDE (no charge,
Order No. 210846-003) provides an overview of Intel’s complete product lines and customer services.

Consult the INTEL LITERATURE GUIDE (Order No. 210620) for a listing of Intel literature. TO
ORDER literature in the U.S., write or call the INTEL LITERATURE DEPARTMENT, 3065 Bowers
Avenue, Santa Clara, CA 95051, (800) 538-1876, or (800) 672-1833 (California only). TO ORDER
literature from international locations, contact the nearest Intel sales office or distributor (see listings in
the back of most any Intel literature).

Use the order blank on the facing page or call our TOLL FREE number listed above to order literature.
Remember to add your local sales tax.

1985 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design
information.

*U.S. PRICE
QUALITY/RELIABILITY HANDBOOK (Order No. 210997-001) $15.00
Contains technical details of both quality and reliability programs and principles.
CHMOS HANDBOOK (Order No. 290005-001) $12.00
Contains data sheets only on all microprocessor, peripheral, microcontroller and
memory CHMOS components.
MEMORY COMPONENTS HANDBOOK (Order No. 210830-004) $18.00
TELECOMMUNICATION PRODUCTS HANDBOOK (Order No. 230730-003) $12.00
MICROCONTROLLER HANDBOOK (Order No. 210918-003) $18.00
MICROSYSTEM COMPONENTS HANDBOOK (Order No. 230843-002) $25.00
Microprocessors and peripherals—2 Volume Set
DEVELOPMENT SYSTEMS HANDBOOK (Order No. 210940-003) $15.00
OEM SYSTEMS HANDBOOK (Order No. 210941-003) $18.00
SOFTWARE HANDBOOK (Order No. 230786-002) $12.00
MILITARY HANDBOOK (Order No. 210461-003) $15.00
Not available until June.
COMPLETE SET OF HANDBOOKS (Order No. 231003-002) $120.00

Get a 259% discount off the retail price of $160.

*U.S. Price Only

UL MV UL Y e

ol

U.S. LITERATURE ORDER FORM

NAME: TITLE:
COMPANY:
ADDRESS:
CITY: STATE: ZIP:
COUNTRY:
PHONE NO.: ()

ORDER NO. TITLE QTY. PRICE TOTAL

[| " -

x =

X =

[
[
[| 9 -
[
[

x =

x =

POSTAGE AND HANDLING: Subtotal
Add appropriate postage
and handling to subtotal
10% U.S.

20% Canada

Your Local Sales Tax

ey
>

Allow 4-6 weeks for delivery Total

Pay by Visa, MasterCard, Check or Money Order, payable to Intel Literature. Purchase Orders
have a $50.00 minimum.

O visa Account No. Expiration

0 MasterCard Date

Signature:

Mail To: Intel Literature Distribution Customers outside the U.S. and Canada should con-
Mail Stop SC6-714 tact the local Intel Sales Office or Distributor listed in
3065 Bowers Avenue the back of this book.

Santa Glara, CA 95051.

For information on quantity discounts, call the 800 number below:
TOLL-FREE NUMBER: (800) 548-4725

Prices good until 12/31/85.

Source HB

Mail To: Intel Literature Distribution
Mail Stop SC6-714
3065 Bowers Avenue
Santa Clara, CA 95051.

intal

SOFTWARE HANDBOOK

1985

About Our Cover:

The design on our front cover is an abstract portrayal of the role Intel software plays in
systems development. The heart of systems development is surrounded by a sphere of
peripheral development through which Intel software can guide the designer to reaching
development goals.

Intel Corporation makes no warranty for the use of its products and assumes no
responsibility for any errors which may appear in this document nor does it make a
commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in
Intel’'s software license, or as defined in ASPR 7-104.9(a) (9). Intel Corporation
assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of Intel Corporation.
The following are trademarks of Intel Corporation and may only be used to identify’
Intel products: . :
BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, i, ICE, iCS, iDBP,
iDIS, IRICE, iLBX, iy, IMDDX, iMMX, Insite, Intel, intgl, intgl BOS, Intelevision,
intgligent Identifier, intgligent Programming, Intellec, Intellink, iOSP, iPDS,
iSBC, iSBX, iSDM, iSXM, KEPROM, Library Manager, MCS, Megachassis,
MICRO-MAINFRAME, MULTIBUS, MULTICHANNEL, MULTIMODULE,
OpeNet, Plug-A-Bubble, PROMPT, Promware, QUEST, QueX, Ripplemode,
RMX/80, RUPI, Seamless, SLD, SYSTEM 2000, and UPI, and the combination
of ICE, iCS, iRMX, iSBC, iSBX, MCS, or UPI and a numerical suffix.
The following are trademarks of the companies indicated and may only be used to
identify products of the owners.

CP/M is a trademark of Digital Research, Inc.

DEC, DEC-10, DEC-20, PDP-11, DECnet, DECwriter, RSTS, and VAX are trade-
marks of Digital Equipment Corporation.

MDS is an ordering code only and is not used as a product name or trademark.
MDS® is a registered trademark of Mohawk Data Sciences Corporation.
Microsoft is a trademark of Microsoft, Inc. 4

@intel Corporation, 1984 '

intel

Table of Contents

CHAPTER 1
OVERVIEW
L) (T U T3 { o7 o TN

CHAPTER 2
OPERATING SYSTEMS
INtrodUCHION . ..o e
8080/8085 Microprocessor Family
DATA SHEET
Digital Research Inc. CP/M 2.2 Operating Systemcoviiiiiniiennne.
8086/8088/80286 Microprocessor Family
DATA SHEETS
iRMX 86 Operating Systemoviuuiiiiit ittt ieiieiiieineens
iOSP 86, iIAPX 86/30, iAPX 88/30, iAPX 186/30 and iAPX 188/30 Support Package
iRMX 86 MULTIBUS Il Support Package.ccoviiiiiiiiienneiineeennnnnns
FACT SHEET
iIRMX Operating Systemsciiiiiiiiiiinetiiiiiiierieeneneeeeeoeennnnns
XENIX 3.0 Operating Systemsottt ittt i
APPLICATION NOTES

AP-130 Using Operating Systems Processor’s to Simplify Microcomputer Designs

AP-174 Optimizing the iRMX 86 Operating System Performance

on System 86/310 and System 86-330ciiiiiiiiiiiiiiiiaiian
AP-184 Writing Device Drivers for XENIX 86 and 286 - Task or Trivia?............
AP-221 An Introduction to Task Management in the iRMX 86 Operating System . .

ARTICLE REPRINTS

AR-286 Software That Resides in Siliconooiiiiiiiiiii,
AR-287 Putting Real-Time Operating SystemstoWork.........................
AR-288 Intel's Matchmaking Strategy: Marry iRMX Operating

Systemwith Hardwarettt
AR-337 Industrial PC Systems Demand Real Time Operating Systems !

CHAPTER 3
TRANSLATORS AND UTILITIES FOR PROGRAM DEVELOPMENT
INtrodUCHION . . .o e e e e
MCS-80/85 Mircroprocessor Family
DATA SHEETS
PL/M 80 High Level Programming Languagecoeviriiinneennnnenn.
FORTRAN 80 8080/8085 ANS FORTRAN 77 Intellec Resident Compiler
Microsoft, Inc. BASIC-80 Interpreter Software Package
Microsoft, Inc. BASIC-80 Compiler Software Packagecooiut.
Microsoft Multiplan Spreadsheet ...,
PASCAL-80 Software Packagecoiuuiriiiiiiiiiiniinieeennannnn.
WORDSTAR Word Processing Softwareccovviiiiiiiiiiiiiiinnn..
iAPX 86/88/186/188/286 Microprocessor Family
DATA SHEETS
iAPX 86, 88 Software Development Packages for Series II/PDS
86/88/186/188 Software Packages.............cooiiiiiiiiiiiiiiiiiiiineee..
FORTRAN 86/88 Software Packageccoviiuiiiiiiiiiiiiiiennnnennn.
Pascal 86/88 Software Package.oouuiuiiiiiiiiiiiiiiiiiiiiiininnnan.
PL/M 86/88/186/188 Software Packageooeviiiuiiiiiiiiniiinnnnnnn.
iC-86 C Compiler forthe 8086oviiiriiiiiiiiiieeiennnineeeennns
8087 SUPPOrt Library ...ttt e e
8087 Software Support Package ...t
8089 iOP Software Support Package #407200..........c.ccetiiiiiniinneeeennnn.
iAPX 286 Software Development Packageooviiiiiiiiiiiiinannnn.
PL/M 286 Software Packageoooiiiiiiiiiiiiinieennnnernnnnnnannann
iSDM 286 iAPX 286 System Debug Monitor.............coooiiiiiiiiiiiin...
80287 Support Libraryoinuiiiiiiiii i e e
Pascal-286 Software Packageoooiiiiiiiiiiiiiiiiiiiiiiiiiiiaaa
VAX/VMS Resident Software Development Packages for iAPX286..............

..... 2-123

intel

VAX/VMS Resident iAPX 86/88/186 Software Development Packages wee. 3-96

iSDM 86 System Debug Monifor.........ovuiiiiiiiiiiii i i 3-103
iVDI 720 Graphics Virtual Device Interpretercoiiiiiiiiiiiiiiennnn, eee 3-108
iPLP 720 NAPLPS Interpretero.oviitiiiiiiiiiiiiiiiiiiiiiiiieiineeennns 3-112
FACT SHEETS .
LY b I T o U Vo 1= 3-116
XENIX LANGUAGES .« ot ve ettt teneesanneennneeeanneesanneoseseennesannasenns 3-121
Single Chip Microcontrolier Software
DATA SHEETS
2920 Software SUPPOrt Packageovviiiiittitiiiniiiiineeteennnneeneasens 3-125
MCS-48 Diskette-Based Software Support Packagec.coevviiiiinneeeeennn. 3-136
8051 Software PacKagecvvtiiiiiiiiiiiiiiii ittt iiiiiiiaeeas 3-138
iRMX 51 Real-Time Multitasking Executivecoooiiiiiiiiiiiiiiiiiiinnn 3-147
MCS-96 Software Development Packagesc.cevvieiiiiiiiieieniiiinnnnnnnns 3-153
CHAPTER 4
DEVELOPMENT PRODUCTIVITY TOOLS
a1 e To [FTe2 (Y o 1 4-1
Program Development and Management Tools
DATA SHEETS
PSCOPE High-Level Program Debuggerooiiiiiiiiiit viiiiiiiiniiennnn, 4-2
Program Management TOOIScuvuriiiiiin ittt iiennnnnnnnnees 4-7
ISIS-11 Software TOOIDOX vvvi ittt i i e e e e 4-10
8086 Software Toolbox ettt 4-12
F Y = T 13 G o L] o A 4-14
CHAPTER 5
COMMUNICATION SOFTWARE
L oo LT T o 1P |
DATA SHEETS
Mainframe Link for Distributed Developmentc.coviiiiiveiiinnnnenneens 5-2
Intel Asynchronous Communications Linkccoiiiiiiiiiiiiiiiiiiiiiiininen, 5-5
iNA 960 Network Softwarecooiiiiiiiiiiii ittt iiiiiiiiiaans 5-8
NDS I EIeCtroniC Mailuveettrteii ittt ittt eitaineeaeaanans 5-20
INA 955 IRMX NDS-I LINK . ovvnt ittt eiie it nnneennnneenns 5-22
iRMX 510 iDCM Support Package.vvviiiiiniiiiiit i iiiiiiiiiiiaiseneeeeeans 5-26
CHAPTER 6
SYSTEM AND APPLICATIONS SOFTWARE
INtrodUCHiONt e el e 6-1
FACT SHEETS '
XENIX Productivity SOftWare TOOIS: «««veverentnernenreeneeieereneeneareneneanes 6-2
Third Party Software for Intel Products ... 6-10
Database Information System iDIS 715ottt 6-13
CHAPTER 7
COMPONENT SOFTWARE
DATA SHEETS
80130/80130-2 iAPX 86/30, 88/30, 186/30, 188/30 iRMX 86
Operating System ProCeSSOrsvuititiniiiiiiiiiieeeaiiniiteeenennnnnenns 71
80150/80150-2 iAPX 86/50, iAPX 88/59, 186/50, 188/50 CP/M 86
Operating System ProCeSSOrs ... iiiirniritteeiinenieeteeaninnneenes 7-23

intel®

CHAPTER 8
USER LIBRARY
INtrOAUCHION e e et e, 8-1
User Library

Insite User's Program Library

.. 8-2

Insite Submittal Requirements.ooiuttiriiiii it 8-3

Insite Index of Programottt ettt 8-5
APPENDIX A

Software Standards e e e e e A1

Software SUPPOIt ServiCesiiiiiiittiiiii i i i e e A-3

RUG ..o e et e e e e e e A-5

]
Overview 1

intel

SOFTWARE HANDBOOK OVERVIEW

Welcome to the Intel Software Handbook. This handbook is a complete guide to the software products and
services offered by Intel.

Intel’s software products follow the open systems strategy that allows Intel products to be purchased at the
customers’ desired level of integration. Hence these products are available for component, board, or systems
applications. This open systems philosophy is backed by software standards that insure that the software can
operate at numerous levels of integration. These software standards are described in the appendix.

Software for Intel’s products is available both from Intel and from Independent Software Vendors (ISVs). For a
complete listing of software available from ISVs, see the Int«i Yellow Pages which is published annually by Intel.
This handbook describes software products that are avail=: {2 through Intel, consisting of Intel-developed and
ISV-developed products. Products that are offered by Intei have all been evaluated and tested to meet Intel’s
quality standard. They are backed by an extensive support organization described in the appendix.

|
Operating Systems 2

intel

OPERATING SYSTEMS

INTRODUCTION

The ability to convert advanced microprocessor technology into solutions for modern day problems begins with
effective and efficient designs for new hardware products and architecture. However, a mostcritical element in
the success of any microcomputer solution is the availability of a high quality, reliable operating system.
Without this software counterpart, the technological advances cannot be fully implemented, nor their benefits
fully realized.

The classic role of the microcomputer operating system can be outlined by viewing its major functions and
purposes. The functions of the microcomputer operating system are threefold: 1) to manage system resources
and the allocation of these resources to users; 2) to provide automatic functions such as initialization and
start-up procedures; and 3) to provide an efficient, straightforward and consistent method for user programs to
interface with the hardware subsystems, including a simple and friendly human interface. Typically, the
operating systems have one of two main purposes. First, they can be used to develop a new software system
that runs on another machine. These systems are usually large and fairly sophisticated. ISIS and *XENIX are
examples of such developmental operating systems. The second purpose for microcomputer operating
systems is directed toward the execution of software programs for targeted application. The largest number of
operating systems are of this type, including the RMX systems. The most critical requirement is for these
systems to be effective and efficient since they are usually small, fast systems dedicated to a specific real-time
application.

This rather neat and simple categorization of microcomputer operating systems, which has been useful in the
past, is quickly becoming blurred. The rapid developments in microcomputer technology have increased the
power and decreased the cost of microcomputers, allowing them to become applicable to the solution of a
broader variety and more sophisticated set of problems. Microcomputer systems must increasingly provide
such capabilities as multiprogramming, multitasking, multiprocessing, networking, as well as scheduling and
priority determination. As systems become more complex, they must still remain responsive to real-time
applications. Operating systems must be able to capitalize on the trends toward placing more and more
software into silicon. This trend is blurring the distinction between the hardware and software subsystems.
Microcomputer systems are also evolving to encompass both the developmental and target application
purposes into one system.

These dramatic changes in technology place additional demands on operating systems. We see operating
systems undergoing changes to consider the need for: 1) modularity and ease of configurability;
2) evolutionary, not revolutionary, path of growth; and 3) standardization in languages, networks and the
operating system itself. The first need is required to allow the system to be a powerful development tool yet
configurable to more specialized applications. The last two items are needed to provide protection of a firm’s
software investment, including the option to move toward silicon software.

The operating systems and executives in this section are state-of-the-art microcomputer systems that have
taken to task the challenges posed by advancing microprocessor technology. These operating systems offer
the widest range of solutions with the highest quality and most future-oriented software available today.
Consequently, our customers can select the appropriately optimized option to achieve their price/performance
goals and give them time-to-market advantage over their competitors.

*XENIX is a trademark of Microsoft Corp.

intel

DIGITAL RESEARCH INC.
CP/M* 2.2 OPERATING SYSTEM

= High-performance, single-console
operating system

= Simple, reliable file system matched to
microcomputer resources

= Table-driven architecture allows field
reconfiguration to match a wide variety

= More than 1,000 commercially available
compatible software products

= General-purpose subroutines and
table-driven data-access algorithms
provide a truly universal data
management system

of disk capacities and needs

= Extensive documentation covers all
facts of CP/M applications

= Upward compatibility from all previous
versions

CP/M 2.2 is a monitor control program for microcomputer system and application uses on Intel 8080/8085-
based microcomputer. CP/M provides a general environment for program execution, construction, storage,
and editing, along with the program assembly and check out facilities.

The CP/M monitor provides rapid access to programs through a comprehensive file management package The
file subsystem supports a named file structure, allowing dynamic allocation of file space as well as sequential
and random file access. Using this system, a large number of distinct programs can be stored-in both source-
and machine-executable form.

CP/M also supports a powerful context editor, Intel-compatible assembler, and debugger subsystems. Nearly all
personal software programs can be bought configured to run under CP/M, several of which are available from

Intel.

. FEATURES

CP/M is logically divided into four distinct modules:

BIOS—Basic I/0 System

—Provides primitive operations for access to disk
drives and interface to standard peripherals
(teletype, CRT, paper tape reader/punch, bubble
memory, and user-defined peripherals)

—Allows user modification for tailoring to a particu-

—Uses less than 4K of memory allowing plenty of
memory space for applications programs

—Uses less than 4K of memory

—Makes programs transportable from system to
system

—Entry points include the following primitive
operations which can be programmatically
accessed:

lar hardware environment SEARCH Look for a particular disk file by
name
i . . OPEN Open a file for further operations

BDOS—Basic Disk Operating System CLOSE Close a file after processing
—Provides disk management for one to sixteen disk RENAME Change the name of a particular file

drives containing independent file directories READ Read a record from a particular file
—Implements disk allocation strategies for fully WRITE Write a record to a particular file

dynamic file construction and minimization of SELECT Select a particular disk drive for

head movement across the disk

further operations

£ INTEL CORPORATION 1983

SEPTEMBER 1984
ORDER NUMBER:210268-004

22

mte[DIGITAL RESEARCH, INC.
CP/M

CCP—Console Command Processor

—~Provides primary user interface by reading and
interpreting commands entered through the
console

—Loads and transfers control to transient programs,
such as assemblers, editors, and debuggers

—Processes built-in standard commands including:

ERA Erase specified files

DIR List file names in the directory

REN Rename the specified file

SAVE Save memory contents in a file

TYPE Display the contents of a file on
the console

TPA—Transient Program Area

—Holds programs which are loaded from the disk
under command of the CCP

—Programs created under CP/M can be checked out
by loading and executing these programs in
the TPA

—User programs, loaded into the TPA, may use the
CCP area for the program’s data area

—Transient commands are specified in the same
manner as built-in commands

—Additional commands can be easily defined by the
user

—Defined transient commands include:

PIP Peripheral Interchange Program
—implements the basic media transfer
operations necessary to load, print,
punch, copy, and combine disk files,
PIP also performs various
reformatting and concatenation
functions. Formatting options include
parity-bit removal, case conversion,
Intel hex file validation, subfile
extraction, tab expansion, line number
generation, and pagination

ED Text Editor—allows creation and
modification of ASCII files using
extensive context editing commands:
string substitution, string search,
insert, delete and block move; ED
allows text to be located by context,
line number, or relative position with a
macro command for making extensive
text changes with a single command
line

ASM Fast 8080 Assembler—uses standard
Intel mnemonics and pseudo
operations with free-format input, and
conditional assembly features

DDT Dynamic Debugging Tool—contains
an integral assembler/disassembler
module that lets the user patch and
display memory in either assembler
mnemonic or hexadecimal form and
trace program execution with full
register and status display;
instructions can be executed between
breakpoints in real-time, or run fully
monitored, one instruction at a time

Allows a group of CP/M commands to
be batched together and submitted to
the operating system by a single
command

STAT Lists the number of bytes of storage
remaining on the currently logged
disks, provides statistical information
about particular files, and displays or
alters device assignments

SuUBMIT

Converts Intel hex format to absolute
binary, ready for direct load and
execution in the CP/M environment

SYSGEN Creates new CP/M system disks for
back-up purposes

MOVCPM Provides regeneration of CP/M
systems for various memory
configurations and works in
conjunction with SYSGEN to provide
additional copies of CP/M

LOAD

BENEFITS

—Easy implementation on any computer configura-
tion which uses an Intel 8080/8085 Central Pro-
cessing Unit (see the CP/M-86 data sheet for CP/M
applications on the iAPX86 CPU)

—iPDS version supports bubble memory option as
an additional diskette drive. Also allows diskette
duplication with a single drive

—Extensive selection of CP/M-compatible programs
allows production and support of a comprehen-
sive software package at low cost

—Field programmability for special-purpose operat-
ing system requirements

—Upward compatibility from previous versions of
CP/M release 1

AFN-02111C

intel

DIGITAL RESEARCH, INC.
CP/M 2.2

—Provides field specification of one to sixteen logi-
cal drives, each containing up to eight megabytes

—Files may contain up to 65,536 records of 128 bytes
each but may not exceed the size of any single disk

—Each disk is designed for 64 distinct files—more
directory entries may be allocated if necessary

—Individual users are physically separated by user
numbers, with facilities for file copy operations
from one user area to another

;Relative-record random-access functions provide
direct access to any of the 65,536 records of an
eight-megabyte file

SPECIFICATIONS

Hardware Required

—Model 800 with 720 kit

—DS 235 kit or MDS 225 with 720 kit (integral drive
supported except as system boot device)

—iPDS Personal Development System
Optional:
RAM up to 64K
—Additional floppy disk drives
—Single density via 201 controller

—Bubble memory and optional Shugart 460 5V4"
disk drive for iPDS

Documentation Package

Title

CP/M 2.2 documentation consisting
of 7 manuals:
An Introduction to CP/M Features
and Facilities
CP/M 2.2 User's Guide
CP/M Assembler (ASM) User’s
Guide
CP/M Dynamic Debugging Tool
(DDT) User’s Guide
ED: A Context Editor for the CP/M
Disk System User’s Manual
CP/M 2 Interface Guide
CP/M 2 Alteration Guide

Shipping Media

(Specify by Aipha Character when ordering.)
A—single density (IBM 3740/1 compatible)
B—double density '

F—double-sided, double density 5%4" floppy (iPDS
format)

Order Code Product Description

; ¢ CP/M (Control Program for

See Price List Microcomputers) is a disk-based
operating system for the Intel
8080/8085-based systems. CP/M
provides a general environment for
program development, test, execution
and storage. CP/M storage is available
via a comprehensive, named-file
structure supporting both sequential
and random access CP/M support
tools include a Text Editor, a
debugger, and an 8080/8085
assembler.

SUPPORT:

Intel offers several levels of support for this product, depending on the system configuration in which it is used.
Please consult the price list for a detailed description of the support options available.

An Intel Software License required.
*CP/M is a registered trademark of Digital Research, Inc.

J

*CP/M-86, MP/M, CP/NET and MP/NET are trademarks of Digital Research, Inc

2-4

AFN-02111C

intel

iRMX™ 86 OPERATING SYSTEM

m Real-time processor management for m Configured systems for the iAPX 86 and
time-critical iAPX 86, iAPX 88, iAPX 186, iAPX 286 processors in Intel integrated
iAPX 188, and iAPX 286 (Real Address system products (iSYS 86/300 and iSYS
Mode) applications 286/300)

a On-target system development with ® Multi-terminal support with multi-user
Universal Development Interface (UDI) human interface

m Configurable system size and function m Broad range of device drivers included
for diverse application requirements for industry standard MULTIBUS®

m All iRMX™ 86 code can be (P)ROM’ed to peripheral controllers
support totally solid state designs m Complete support of 8087 and 80287

. rocessor extension
m Compatible operating system services P tensi

for iAPX 86/30, 88/30, 186/30 and 188/30 m Powerful utilities for interactive
Operating System Processors (iOSP™ 86) configuration and real-time debugging

The iRMX™ 86 Operating System is an easy-to-use, real-time, multi-tasking and multi-programming software
system designed to manage and extend the resources of iSBC® 86, iSBC 88, iSBC 186, iSBC 188, and iSBC 286
Single Board Computers, as well as other iAPX 86, iAPX 88, iAPX 186, iAPX 188, and iAPX 286 (Real Address
Mode) based microcomputers. iRMX 86 functions are available in silicon with the iAPX 86/30, 88/30, 186/30
and 188/30 Operating System Processors, in a user configurable software package. iRMX 86 functions are also
fully integrated into the SYSTEM 86/300 and SYSTEM 286/300 Family of Microcomputer Systems. The Oper-
ating System provides a number of standard interfaces that allow iRMX 86 applications to take advantage of
industry standard device controllers, hardware components, and a number of software packages developed
by Independent Software Vendors (ISVs). Many high-performance features extend the utility of iRMX 86 Sys-
tems into applications such as data collection, transaction processing, and process control where immediate
access to advances in VLSI technology is paramount. These systems may deliver real-time performance and
explicit control over resources; yet also support applications with multiple users needing to simultaneously ac-
cess terminals. The configurable layers of the System provide services ranging from interrupt management and
standard device drivers for many sophisticated controllers, to data file maintenance commands provided by a
comprehensive multi-user human interface. By providing access to the standard Universal Development Interface
(UDI) for each user terminal, Original Equipment Manufacturers (OEMs) can pass program development and
target application customization capabilities to their users.

TXTENDED 1/O SYSTER

APPLICATION
SASIC /0 SYSTEm O"De

NUCLEUS

USER APPLICATIONS

iRMX™ VLS| Operating System

The g are of Intel Corp and may be used only to describe Intel products intel, ICE, IMMX, IRMX, iISBC, 1SBX, 1SXM, MULTIBUS, MULTICHANNEL
and MULTIMODULE Intel Corp no for the use of any circuitry other than circuitry embodied in an Intel product No other circuit patent licenses
are imphed Information herein sup p y d on these devices from Intel

© INTEL CORPORATION, 1984 April, 1984
2-5 Order Number : 210885-002

intel

iRMX™ 86 6PERATING SYSTEM

The iRMX 86 Operating System is a complete set of
system software modules that provide the resource
management functions needed by computer systems.
These management functions allow Originai Equip-
ment ‘Manufacturers (OEMs) to best use resources
available in microcomputer systems while getting their
products to market quickly, saving time and money.
Engineers are relieved of writing complex system soft-
ware and can concentrate instead on their application
software.

This data sheet describes the major features of the
iRMX 86 Operating System. The benefits provided to
engineers who write application software and to users
who want to take advantage of improving microcom-
puter price and performance are explained. The first
section outlines the system resource management func-
tions of the Operating System and describes several
system calls. The second section gives a detailed over-
view of iRMX 86 features aimed at serving both the
iRMX 86 system designer and programmer, as well
as the end users of the product into which the Operat-
- ing System is incorporated.

FUNCTIONAL DESCRIPTION

To take best advantage of iAPX 86, 88, 186, 188, and
286 (Real Address Mode) microprocessors in applica-
tions where the computer is required to perform many
functions simultaneously, the iRMX 86 Operating System

Process Management

To implement multn—tasklng application systems, pro-
grammers require a method of managing the differ-
ent processes of their application, and for allowing the
processes to communicate with each other. The
Nucleus layer of the iRMX 86 System provides a num-
ber of facilities to efficiently manage these process-
es, and to effecnvely communicate between them.

These facilities are provided by system calls that
manipulate data structures called tasks, jobs, regions,
semaphores and mailboxes. The iRMX 86 System
refers to these structures as “objects’’.

Tasks are the basic element of all applications built
on the iRMX 86 Operating System. Each task is an
entity capable of executmg CPU instructions and issu-
ing system calls in order to perform a function. Tasks
are characterized by their register values (including
those of an optional 8087 or 80287 Numeric Proces-
sor Extension), a priority between 0 and 255, and the
resources assocnated with them.

Each iRMX 86 task in the system is scheduled for op-

" eration by the iRMX 86 Nucleus. Figure 1 shows the

five states in which each task may be placed, and some
examples of how a task may move from one state to
another. The iRMX 86 Nucleus ensures that each task
is placed in the correct state, defined by the events

* in its external environment and by the task issuing sys-

provides a multiprogramming environment in which

many independent, multi-tasking application programs

may run. The flexibility of independent environments

allows application programmers to separately manage
each application’s resources during both the develop-
ment and test phases.

The resource management functions of the iRMX 86

System are supported by a number of configurable

software layers. While many of the functions supplied
by the innermost layer, the Nucleus, are required by
all systems, all other functions are optional. The I/O
systems, for example, may be omitted in systems having
no secondary storage requirement. Each layer provides
functions that encourage application programmers to
use modular design techniques for quick development
of easily maintainable programs.

The components of the iRMX 86 Operating System pro-
vide both implicit and explicit management of system
resources. These resources include processor sched-

uling, up to one megabyte of system memory, up to-

57 independent interrupt sources, all input and output
devices, as well as directory and data files contained
on mass storage devices and accessed by a number
of independent users. Management of these system
resources and methods for sharing resources between
multiple processors and users is discussed in the fol-
lowing sections.

2-6

tem calls. Each task has a priority to indicate its rela-
tive importance and need to respond to its
environment. The Nucleus guarantees that the highest

‘priority ready-to-run task is the task that runs.

Jobs are used to define the operating environment of
a group of tasks. Jobs effectively limit the scope of an
application by collecting all of its tasks and other ob-
jects into one group. Because the environment for ex-
ecution of an application is defined by an iRMX 86 job,
separate applications can be efficiently developed by
separate development teams.

The iRMX 86 Operating System provides two primary
techniques for real-time event synchronization in multi-
task applications: regions and semaphores.

Regions are used to restrict access to critical sections
of code and data. Once the iRMX 86 Operating Sys-
tem gives a task access to resources guarded by a
region, no other tasks may make use of the resources,
and the task is given protection against deletion and
suspension. Regions are typically used to protect data
structures from being smultaneously updated by mul-
tiple tasks.

Semaphores are used to provide mutual exclusion
between tasks. They contain abstract “‘units” that are
sent between the tasks, and can be used to |mplement
the cooperatlve sharing of resources.

Order Number: 210885-002

intel

iRMX™ 86 OPERATING SYSTEM

(NON EXISTENT)

)

READY

5 9
@ 3) ‘7‘

@) 6)
ASLEEP RUNNING SUSPENDED]
8)

ASLEEP
SUSPENDED

(8) ’

luo»

(NON EXISTENT)

NOTES:
(1) Task s created

(2) Task becomes highest priority ready task
(3) Task gets pre-empted by one with higher priority
(4) Task calls SLEEP or task waits at an exchange

(5) Task sleep period has ended. message was sent to
waiting task or wait has ended

(6) Task calls SUSPEND on self
(7) Task suspended by other than self

(8) Task suspended by other than seif or a resume that
did not bring suspension depth to zero

(9) Task was resumed by other task
(10) Task is deleted

SYSTEM ROOT JOB

JOB A JoB B

TASK A1 TASK B1
TASK A2 TASK B2

MAIL
BOXES
TASK A3

OBJECT DIRECTORY
MAILBOX AM
MAILBOX AN
TASK A3

SEMAPHORE

OBJECT DIRECTORY
TASK B2

OBJECT DIRECTORY
MAILBOX RM JOB A
SEMAPHORE RS JOB B
TASK B2

Figure 1. Task State Diagram

Multi-tasking applications must communicate informa-
tion and share system resources among cooperating
tasks. The iRMX 86 Operating System assigns a unique
16-bit number, called a token, to each object created
in the System. Any task in possession of this token is
able to access the object. The iRMX 86 Nucleus al-
lows tasks to gain access to objects, and hence sys-
tem resources, at run-time with two additional
mechanisms: mailboxes and object directories.

Mailboxes are used by tasks wishing to share objects
with other tasks. A task may share an object by send-
ing the object token via a mailbox. The receiving task
can check to see if a token is there, or can wait at the
mailbox until a token is present.

Object Directories are also used to make an object
available to other tasks. An object is made public by
cataloging its token and name in a directory. In this
manner, any task can gain access to the object by know-
ing its name, and job environment that contains the
directory.

Two example jobs are shown in Figure 2 to demon-
strate how two tasks can share an object that was not

. Figure 2. Multiple Jobs Example

known to the programmer at the time the tasks were
developed. Both Job ‘A’ and Job ‘B’ exist within the
environment of the ‘Root Job’ that forms the founda-
tion of all iRMX 86 systems. Each job possesses a
directory'in which tasks may catalog the name of an
object. Semaphore ‘RS’, for example, is accessable
by all tasks in the system, because its name is cataloged
in the directory of the Root Job. Mailbox ‘AN’ can be
used to transfer objects between Tasks ‘A2’ and ‘A3’
because its token is accessable in the object directory
for Job ‘A’.

Table 1 lists the major functions of the iRMX 86 Nucleus
that manage system processes.

Memory Management

Each job in an iRMX 86 System defines the amount
of the one megabyte of addressable memory to be used
by its tasks. The iRMX 86 Operating System manages
system memory and allows jobs to share this critical
resource by providing another object type: segments.

Segments are contiguous pieces of memory between
16 Bytes and 64K Bytes in length, that exist within the
environment of the job in which they were created. Seg-
ments form the fundamental piece of system memory
used for task stacks, data storage, system buffers,
loading programs from secondary storage, passing in-
formation between tasks, etc.

The example in Figure 2 also demonstrates when in-
formation is shared between Tasks ‘A2’ and ‘A3’; ‘A2’
only needs to create a segment, put the information
in the memory allocated, and send it via the Mailbox
‘AM’ using the RQ$SEND$MESSAGE system call (see
Table 1). Task ‘A3’ would get the message by using
the RQ$SRECEIVE$SMESSAGE system call. The Figure
also shows how the receiving task could signal the
sending task by sending an acknowledgement via the
second Mailbox ‘AN’.

Order Number: 210885-002

intal”

iRMX™ 86 OPERATING SYSTEM .

Table 1. Process Management System Calls

System Calt Function Performed
RQ$CREATE$JOB Creates an environment for a number of tasks and other objects, as well as creating an
initial task and its stack.
' RQ$DELETES$JOB Deletes a job and all the objects currently defined within its bounds. All memcry used

RQ$OFFSPRING
RQ$CATALOGS$OBJECT
RQ$UNCATALOGS$OBJECT
RQ$LOOKUPS$OBJECT

RQ$GETS$TYPE
RQ$CREATESMAILBOX

RQ$DELETE$MAILBOX
RQ$SENDSMESSAGE

RQ$RECEIVESMESSAGE

RQ$DISABLESDELETION
RQ$ENABLESDELETION

RQ$FORCES$DELETE
RQ$CREATESTASK
RQ$DELETESTASK

RQ$SUSPENDSTASK

RQ$RESUMESTASK

RQ$SLEEP
RQ$GETSTASKSTOKENS
RQ$SETSPRIORITY
RQGETPRIORITY
RQ$CREATESREGION
RQ$DELETESREGION
RQ$ACCEPT$CONTROL
RQ$RECEIVE$SCONTROL

RQ$SEND$SCONTROL
RQ$CREATE$SEMAPHORE
RQ$DELETE$SEMAPHORE
RQ$SENDSUNITS
RQS$RECEIVESUNITS

is returned to the job from which the deleted job was created.

Provides a list of all the current jobs created by the specified job.
Enters a name and token for an object into the object directory of a job.
Removes an object’s token and its name from a job’s object directory

Returns a token for the object with the specified name found in the object directory of
the specified job.

Returns a code for the type of object referred to by the specified token.

Creates a mailbox with queues for waiting tasks and objects with FIFO or PRIORITY
discipline.

Deletes a mailbox.

Sends an object to a specified mailbox. If a task is waiting, the object is passed to the
appropriate task according to the queuing discipline. If no task is waiting, the object is
queued at the mailbox.

Attempts to receive an object token from a specified mailbox. The calling task may
choose to wait for a specified number of system time units if no token is available.

Prevents the deletion of a specified object by increasing its disable count by one.

Reduces the disable count of an object by one, and if zero, enables deletion of that
object.

Forces the deletion of a specified object if the disable count is either 0 or 1.
Creates a task with the specified priority and stack area.

Deletes a task from the system, and removes it from any queues in which it may be
waiting.

Suspends the operation of a task. If the task 1s already suspended, its suspension
depth is increased by one.

Resumes a task. If the task had been suspended multiple times, the suspension depth
is reduced by one, and it remains suspended.

Causes a task to enter the ASLEEP state for a specified number of system time units.
Gets the token for the calling task or associated objects within its env»ronment
Dynamucal!y alters the priority of the specified task.

Obtains the current priority of a specified task.

Creates a region, with an associated queue of FIFO or PRIORITY ordering discipline.
Deletes the specified region if it‘is nét currently in use.

Gains control of a region only if the region is immediately available.

Gains centrol of a region. The calling task may specify the number of system time
units it wishes to wait if the region is not immediately available.

Relinquishes control of a region.

-Creates a semaphore.

Deletes a semaphore.

Increases a semaphore counter by the specified number of units.

Attempts to gain a specified number of unifs from a semaphore If the units are not
immediately available, the calling task may choose to wait.

2-8 Order Number: 210885-002

intgl”

iRMX™ 86 OPERATING SYSTEM

Each job is created with both maximum and minimum
limits set for its memory pool. Memory required by all
objects and resources created in the job is taken from
this pool. If more memory is required, a job may be al-
lowed to borrow memory from the pool of its containing
job (the job from which it was created). In this manner,
initial jobs may efficiently allocate memory to jobs they
subsequently create, without knowing their exact re-
quirements.

The iRMX 86 Operating System supplies other memory
managment functions to search specific address ranges
for available memory. The System performs this search
at system initialization, and can be configured to ig-
nore non-existent memory and addresses reserved for
1/0 devices and other application requirements.

Table 2 lists the major system calls used to manage
the system memory.

Interrupt Management

Real-time systems, by their nature, must respond to
asynchronous and unpredictable events quickly. The
iRMX 86 Operating System uses interrupts and the
event-driven Nucleus described earlier to give real-time
response to events. Use of a pre-emptive scheduling
technique ensures that the servicing of high priority

events always takes precedence over other system
activities.

The iRMX 86 Operating System gives applications the
flexibility to optimize either interrupt response time or
interrupt response capability by providing two tiers of
Interrupt Management. These two distinct tiers are
managed by Interrupt Handlers and Interrupt Tasks.

Interrupt Handlers are the first tier of interrupt
service. For small simple functions, interrupt handlers
are often the most efficient means of responding to an
event. They provide faster response than interrupt
tasks, but must be kept simple since interrupts (except
the iAPX 86, 88, 186, 188, and 286 non-maskable in-
terrupt) are masked during their execution. When ex-
tended service is required, interrupt handlers “signal’’
a waiting interrupt task that, in turn, performs more
complicated functions.

Interrupt Tasks are distinct tasks whose priority is as-
sociated with a hardware interrupt level. They are per-
mitted to make any iRMX 86 system call. While an
interrupt task is servicing an interrupt, interrupts of
lower priority are not allowed to pre-empt the system.

Table 3 shows the iRMX 86 System Calls provided to
manage interrupts.

Table 2. Memory Management System Calls

System Call Function Performed
RQ$CREATE$SSEGMENT Dynamically allocates a memory segment of the specified size.
RQ$DELETE$SEGMENT Deletes the specified segment by deallocating the memory.

RQGETPOOLSATTRIBUTES '

RQ$GETS$SIZE
RQSETPOOLSMIN

Returns attributes such as the minimum and maximum, as well as current size of
the memory in the environment of the calling task'’s job.

Returns the size (in bytes) of a segment.

Dynamically changes the minimum memory requirements of the job environment
containing the calling task.

Table 3. Interrupt Management System Calls

System Call Function Performed
RQS$SETSINTERRUPT Assigns an interrupt handler and, if desired, an interrupt task to the specified interrupt
level. Usually the calling task becomes the interrupt task.
RQS$RESETSINTERRUPT Disables an interrupt level, and cancels the assignment of the interrupt handier for that
level. If an interrupt task was assigned, it is deleted
RQGETLEVEL Returns the number of the highest priority interrupt level currently being processed.

RQ$SIGNALSINTERRUPT
occurred

RQSWAITSINTERRUPT
occurrence of an interrupt.

RQSEXIT$INTERRUPT
RQSENABLE
RQ$DISABLE

Used by an interrupt handler to signal the associated interrupt task that an interrupt has
Used by an interrupt task to SLEEP until the associated interrupt handler signals the

Used by an interrupt handler to relinquish control of the System.
Enables the hardware to accept interrupts from a specified level
Disables the hardware from accepting interrupts at or below a specified level.

2-9

Order Number: 210885-002

intel

iRMX“"BS OPERATING SYSTEM

INTERRUPT MANAGEMENT EXAMPLE

Figure 3 illustrates how the iRMX 86 Interrupt System
may be used to output strings of characters to a printer.

In the example, a mailbox named ‘PRINT’ is used by
all tasks in the system to queue messages to be printed.

Application tasks put the characters in segments that
are transmitted to the printer interrupt task via the PRINT
Mailbox. Once printing is complete, the same interrupt
task passes the messages on to another application
via the FINISHED Mailbox so that an operator message
can be displayed.

PRINT CALLTO
MAILBOX | RQSRECEIVE
SMESSAGE

"l [ITT] PRINTER ..l'

PRINTER
DATA

PRINTER
INTERRUPT
TASK

EXTERNAL
CALL TO INTERRUPT
RQSSENDS

MESSAGE

FINISHED
MAILBOX

PRINTER
INTERRUPT
HANDLER

CALLTO
RQS$SIGNALSINTERRUPT

1RMX"™ 86 SYSTEM

Figure 3. Interrupt Management Example

Basic I/O System

The Basic I/0 System (BIOS) provides the direct ac-
cess to I/0 devices needed by real-time applications.
The BIOS allows I/0O functions to overlap other system
functions. In this manner, application tasks make asyn-
chronous calls to the iRMX 86 BIOS, and proceed to
perform other activities. When the /O request must
be completed before an application can continue, the
task waits at a mailbox for the result of the operation.

\

v

Some system calls provided by the BIOS are listed in
Table 4 .

The Basic 1/0 System communicates with peripheral
devices through device drivers. These device drivers
provide the System with four basic functions needed
to control and communicate with devices: Initialize I/0,
Finish I/0, Queue I/0, and Cancel I/O. Using the de-
vice driver interface, users of non-standard devices may
write custom drivers compatible with the /O System.

The iRMX 86 Operating System includes a number of
device drivers to allow applications to use standard
USART serial communications devices, multiple CRTs
and keyboards, bubble memories, diskettes, disks, a
Centronics-type parallel printer, and many of Intel’s
iSBC and iSBX™ device controllers (see Table 8). If
an application requires use of a non-standard device,
users need only write a device driver to be included
with the BIOS, and access it as if it were part of the
standard system. For most common random-access
devices, this job is further simplified by using standard
routines provided with the System. Use of this techni-
que ensures that applications can remain device inde-
pendent. ‘

Multi-Terminal Support

The iRMX 86 Terminal Support provides line editing
and terminal control capabilities. The Terminal Support
communicates with devices through simple drivers that
do only character I/O functions. Dynamic terminal re-
configuration is provided so that attributes such as ter-
minal type and line speed may be changed without
modifying the application or the Operating System.
Dynamic configuration may be typed in, generated pro-
grammatically or stored in a file and copied to a termi-
nal 1/0O connection.

Table 4. Key BIOS I/0 Management System Calls

System Call Function Performed

RQ$ASATTACHSFILE Creates a Connection to an existing file

RQ$ASCHANGESACCESS Changes the types of accesses permitted to the specified user(s) for a specific file

RQ$ASCLOSE Closes the Connection to the specified file so that it may be used again, or so that
the type of access may be changed.

RQ$ASCREATESDIRECTORY Creates a Named File used to store the names and locations of other Named Files

RQ$ASCREATESFILE Creates a data file with the specified access rights '

RQ$ASDELETE$SCONNECTION Deletes the Connection to the specified file

RQSASGETSFILESSTATUS Returns the current status of a specified file.

RQ$ASOPEN Opens a file for either read, write, or update access.

RQSASREAD Reads a number of bytes from the current position in a specified file

RQ$ASSEEK Moves the current data pointer of a Named or Physical file

RQ$ASWRITE Writes a number of bytes at the current position in a file

RQSWAITS$IO Synchronizes a 1ask with the 1/0 System by causing it to wait for I/O operation
results

2-10 Order Number: 210885-002

intel

iRMX™ 86 OPERATING SYSTEM

\

The iRMX 86 Terminal Support provides automatic
translation of control characters to specific control se-
quences for each terminai. This translation enables
applications using standard control characters to func-
tion with non-standard terminals. The transiation re-
quirements for each terminal can be stored in terminal
description files and copied to a connection, as des-
cribed above.

Disk I/0 Performance

Figure 4 shows iRMX 86 performance obtained using
the iSBC 215 Winchester Disk and iSBX 218A Dis-
kette Controllers under the specified conditions. The
vertical axis is a linear scale of throughput in units of
10,000 bytes per second. The horizontal axis is a
logrithmic scale showing the transfer size for the reads
and writes. Each data point on the graph indicates the
time required for a read/write request of 64K bytes.
Therefore each transfer size on the horizontal scale
less than 64K was repeated until a total request of 64K
was read or written.

Each device driver can be used to interface to a num-
ber of separate and, in some cases, different devices

(see Figure 5). The iSBC 215 Device Driver, supplied
with the system, is capable of supporting the iSBC 215
Winchester Disk Controller, the iSBC 220 SMD Disk
Controller, and the iSBX 218A Flexible Disk Controller
(when mounted on an iSBC 215 board). Each device
controller may, in turn, control a number of separate
device units. In addition, each driver may control a
number of like device controllers. This capability allows
the use of large storage systems with a minimum of
1/0 system code to write or maintain.

Extended I/0 System

The iRMX 86 Extended /O System (EIOS) adds a num-
ber of /0 management capabilities to simplify access
to files. Whereas the BIOS provides users with the basic
system calls needed for direct management of I/O re-
sources, many users prefer to have the system perform
all the buffering and synchronization of I/O requests
automatically. The EIOS allows users to access /0
devices without having to write procedures for buffer-
ing data, or to specify particular devices with constant

device names.

T 1N T i)
17 | -
I/C
16 | P -
I //
|
15 [| ra |
IC S S S L ? ! /ﬂ AT 2%
Co] 86W
g "r LA T
5 Pt el A SR\
% . i Vol 4/ | ! \\
& B N T : ‘T 86R
RN P "/ /V r . ll
g 1+ : - 1 v/4V, 4) ; : T
£ ; | 286R
Ny /4 | .4
T Wl
5 7+ | 7 |
4 Lo i . i _
2 °r ; : S 1
s a s .
4 286R /f/ /f % | o |
i / /? : ! |
3 3R 4 z 1
286W T ;
z 86w T i
NN il
0 I 1 L i N 1 | 1
256 512 1K 2K ax 8K 16K 32K 64K

TRANSFER SIZE

Figure 4. iRMX™ 86 Disk 1/0 Performance -

2-11

Order Number: 210885-002

iRMX™ 86 OPERATING SYSTEM

APPLICATION SOFTWARE
TASK TASK TASK TASK TASK TASK TASK TASK TASK TASK TASK
d——ih A Ci—\ 1 N d—*r\] HH
- -b LM) N D (14
- a .
: | I'| sTREAM
] |
PHYSICAL NAMED | i oRVER
FILE FILE | !
DRIVER DRIVER
STREAM © STREAM
FILE FILE
= - L L
1SBC” :
215 1SBC" 1| pEvice
DEVICE 254 DRIVER
DRIVER
- H -
1SBX™ 1SBC* .
218 215 . BBLE
DEVICE DEVICE sae e
CONT CONT-
ROLLER ROLLER
W’L“ 1818 Wle— 8
LYY Ve -
CONN | CONN CONNECTED FILE [FILE FILE FILE
DEVICE | DEVICE DEVICE FILE % MBYTE BUBBLE
UNIT UNIT UNIT CONN DEVICE UNITS | CONNECTED DEVICE UNIT

CONDUITS REPRESENT DEVICE CONNECTIONS
WIRES IN CONDUITS REPRESENT FILE CONNECTIONS

Figure 5. Device Driver and Controller Relationships

By performing device buffering automatically, the
iRMX 86 EIOS optimizes accesses to disks and other
devices. Often, when an application task asks the Sys-
tem to READ a portion of a file, the System is able to
respond immediately with the data it has read in ad-
vance of the request. Similarly, the EIOS will not de-
lay a task for writing data to a device unless it is
specifically told to, or if its output buffers are filled.

Logical file and device names are provided by the
EIOS to give applications complete file and device in-
dependence. Applications may send data to the ‘line
printer’ (:LP:) without needing to know which specific
device will be used as the printer. This logical name
may, in fact, not be a printer at all, but it could be a disk
file that is later scheduled for printing.

The EIOS uses the functions provided by the BIOS to
synchronize individual /O requests with results returned
by device drivers. Most EIOS system calls are similar
to the BIOS calls, except that they appear to suspend
the operation of the calling task until the 1/O requests
are completed. -~ . ,

Two new primitives have been added to the EIOS.
These are: RQ$HYBRID$DETACHS$DEVICE and
RQGETSLOGICAL$DEVICE$STATUS.

RQ$HYBRID$DETACHS$DEVICE allows a programmer
to temporarily detach a device physically so it can be
temporarily attached another way,

2-12

RQ$GETSLOGICALSDEVICE$STATUS provides infor-
mation about a logical device: the physical device name,
file driver, number of connections to the device, and
the owner of the device.

File Management

The iRMX 86 Operating System provides three distinct
types of files to ensure efficient management of both
program and data files: Named Files, Physical Files,
and Stream Files. Each file type provides access to
1/O devices through the standard device drivers men-
tioned earlier. The same device driver is used to ac-
cess physical and named files for a given device.

NAMED FILES

Named files allow users to access information on se-
condary storage by referring to a file with its ASCIl
name. The names of files stored on a device are stored
in special files called directories. As directories are
themselves named files, the iRMX 86 File System allows
directories to contain the names of other directories.
Figure 6 illustrates the resulting hierarchical file struc-
ture. This structure is useful for isolating file names
to particular user applications, and for tailoring system
data to the requirements of users and applications
sharing storage devices. Using different branches on
the directory tree, different users do not have to coor-
dinate in naming their files to ensure unique names.

Order Number: 210885-002

iRMX™ 86 OPERATING SYSTEM

DEPT 1
DEPT 2
DEPT 3

DEPT 1

DEPT 2

ozvral

BILL
TOM

GEO|
HARRY

RGE

SUE
BILL

GEORGE [

HARRY

= .

SIM-SOURCE
SIM-OBJECT

TEST DATA
TEST-OBJECT

N

AA

SIM SIM-
SOURCE OBJECT

TEST OBJECT

TEST-DATA

BATCH 1
BATCH 2

BATCH-1 BATCH-2

E - DIReCTORY
= NAMED
DATA FILE

Figure 6. Hierarchical Named File Structure

Whenever a request is made involving a file name, the
System will search the appropriate directory in order
to find the necessary information about the file's size,
access rights, and specific location on the storage
device.

The iRMX 86 BIOS uses an efficient format for writing
the directory and data information into secondary stor-
age. This standard iRMX 86 format is fully compatible
with the ISO Media standard, and other Intel systems
such as the iRMX 88 Operating System. This structure
enables the system to directly access any byte in afile,
often without having to do additional I/O to access
space allocation information. The maximum size of an
individual file is 4.3 billion bytes.

EASE OF ACCESS

The hierarchical file structure is provided to isolate and
organize collections of named files. To give operators
fast and simple access to any level within the file tree,
an ATTACHFILE command is provided. This command
allows operators to create a logical name to a point in
the tree so that a long sequence of characters need
not be typed each time a file is referred to.

ACCESS PROTECTION

Access to each Named File is protected by the rights
assigned to each user by the owner of the file. Rights
to read, append, update, and delete may be selectively

2-13

granted to other users of the system. In general, users
of Named Files are classified into one of two categories:
User and World. Users are used when different pro-
grammers and programs need to share information
stored in a file. The World classification is used when
rights are to be granted to all who can use the system.

PHYSICAL FILES

Physical Files allow more direct device access than
Named Files. Each Physical File occupies an entire de-
vice, treated as a single stream of individually access-
able bytes. No access control is provided for Physical
Files as they are typically used for such applications
as driving a printing device, translating from one device
format to another,.driving a paper tape device, real-
time data acquisition, and controlling analog mech-
anisms.

STREAM FILES

Stream Files provide applications with a method of us-
ing iRMX 86 file management methods for data that
does not need to go into secondary storage. Stream
Files act as direct channels, through system memory,
from one task to another. These channels are very use-
ful to programs, for example, wishing to preserve file
and device independence allowing data sent to a printer
one time, to a disk file another time, and to another
program on a different occasion.

Order Number: 210885-002

intel

iRMX™ 86 OPERATING SYSTEM

BOOTSTRAP AND APPLICATION LOADERS |
Two utilities are supplied with the System to load pro-

grams and data into system memory from secondary .

storage devices:

The iRMX 86 Bootstrap Loader can be configured to
a size of less than 1K Bytes of P(ROM), and is typically
used to load the initial system from the system disk
into memory, and begin its execution. Error reporting
and debug switch features have been added to the Boot-
strap Loader. When the Bootstrap Loader detects er-
rors such as: file does not exist or device not ready,
an error message is reported back to the user. The de-
bug switch will cause the Bootstrap Loader to load the
system but not begin its execution. Instead the Boot-
strap Loader will pass control to the monitor at the first
instruction to be executed by the system.

The Application Loader is typically used by application
programs already running in the system to load addi-
tional programs and data from any secondary storage
device. The Human Interface layer, for example, uses
the Application Loader to load the non-resident Human
Interface Commands. The Application Loader is capable
of loading both relocatable and absolute code as well
as program overlays.

Human interface

The flexibility of the interface between computer con-
trolled machines and their users often determines the
usability and ultimate success of the machines. Table'
11 lists iRMX 86 Human Interface functions giving users
and applications simple access to the file and system

- management capabilities described earlier. The pro-
cess, interrupt, and memory managment functions de-
scribed earlier, are performed automatically for Human
Interface users.

MULTI-USER ACCESS

Using the multi-terminal support provided by the BIOS,
the iRMX 86 Human Interface can support several si-
multaneous users. The real-time nature of the system
is maintained by providing a priority for each user, and
using the event-driven iRMX 86 Nucleus to schedule
tasks. High-performance interrupt response is guaran-
teed even while users interact with various application
packages. For example, multi-terminal support allows
one person to be using the iRMX 86 Editor, while an-
other compiles a FORTRAN 86 or PASCAL 86 program,
while several others load and access applications.

Each terminal attached to the iRMX 86 multi-user Hu-
man Interface is automatically associated with a user,
amemory pool, and an initial program to run when the
terminal is connected. This association is made using
a file that may be changed at any time. Changes are
effective the next time the system is initialized.

The initial program specified for each terminal can be
a special application program, a custom Human Inter-

face, or the standard iRMX 86 Command Line
Interpreter (CLI). For example, you may choose to use
the Microsoft Basic Interpreter as this initial program.
After system start-up, each terminal user would be able
to run the interpreter without asking for it to be loaded.
From the BASIC interpreter, an operator, for example,
could run a data collection program, written in BASIC,
that communicates with several laboratory instruments,
and prints charts and reports based on certain test re-
sults. When finished entering, changing, or running
a BASIC program, the terminal would remain in BASIC
for the next user.

Specifying an application program as a terminal’s
initial program makes the interface between operators
and the computer system much simpler. Each operator
need only be aware of the function of a particular appli-
cation; not needing to interact with any unfamiliar func-
tions also available on the application system.

Specifying the standard iRMX 86 Human Interface CLI
as the initial program enables users of the terminals
to access all iRMX 86 functions. This CLI makes it easy
to manage iRMX 86 files, load and execute Intel-supplied
and custom programs, and submit command files for
execution.

FEATURE OVERVIEW

The iRMX 86 Operating System is well suited to serve
the demanding needs of real-time applications execut-
ing on complex microprocessor systems. The iRMX 86
System also provides many tools and features needed
by real-time system developers and programmers. The
following sections describe features useful in both the
development and execution environments. The descrip-
tion of each feature outlines the advantages given to
hardware and software engineers concerned with over-
all system cost,.expandability with custom and industry
standard options, and long-term maintenance of iRMX
86-based systems. The development environment fea-
tures also describe the ease with which the iRMX 86
Operating System can be incorporated into overall
system designs. .

Execution Environment Features

REAL-TIME PERFORMANCE

The iRMX 86 Operating System is designed to offer
the high performance, multi-tasking functions required
by real-time systems. Designers can make use of the
latest VLSI devices such as the 8087 or 80287 Numeric
Processor Extension, and the 80130 Operating System
Firmware Component to improve their system cost/per-
formance ratio or the iIMMX™ 800 MULTIBUS® Message
Exchange software package to divide and coordinate
various system activities among multiple processors.
Typical iRMX 86 system performance characteristics
are shown in Table 5.

Order Number: 210885-002

intel

iRMX™ 86 OPERATING SYSTEM

Many real-time systems require high performance op-
eration. To meet this requirement, all of iRMX 86 can
be put into zero wait-state P(ROM). This approach elimi-
nates the possibility of disk access times slowing down
performance, while allowing system designers to take
advantage of high performance memory devices.

CONFIGURABILITY

The iRMX 86 Operating System is configurable by sys-
tem layer, and by system call within each layer. In addi-
tion all the 1/0 port addresses used by the System are
configurable by the user. This flexibility gives designers
the freedom to choose configurations of hardware and
software that best suit their size and functional
requirements. Two example configurations are shown
in Figure 7.

Table 5. iRMX™ Real-Time Performance
Using iSBC® 86/30 and iSBC® 286/10
Single Board Computers

iSBC®86/30 |iSBC®286/10

Real-Time Execution | Execution
Function Time (msec) |Time (msec)
Suspend Task 1.02 0.83
Interrupt Latency 0.29 0.20
(to handler) (Max) (Max)
Interrupt Latency 0.02 0.03
(to handler) (Typical) (Typical)
Context Switch Caused 0.84 0.78
By Interrupt (Max) (Max)
Send Message 0.32 0.25
(no context switch)
Send Message 0.58 0.49
(with context switch)
Send Control 0.21 0.16
(no context switch)
Send Control 0.64 0.54
(with context switch)
Receive Control 0.26 0.19

(no waiting)

SYSTEM BUFFERS
AND DATA
APPLICATION CODE
%?:s%:): COMMON BACKGF OUND
APPLICATIONS UTILITIES APPLICATION
RAM
HUMAN INTERFACE
€108
WINCHESTER FLOPPY
BIOS DISK P
ORIVER DRIVER
NUCLEUS
PROM BOOTSTRAP LOADER

BUILDING SECURITY
SYSTEM

I SYSTEM
RAM BUFFERS
DATA

16K BYTES
APPLICATION CODE

PROM
5K BYTES NUCLEUS CODE

10SP 86 INTERFACE

80130 OSF

DATA COMMUNICATION
CONTROLLER

Context switch time is the time between executing in the
context of a task, and the first instruction to execute in the
context of another task. .

The execution times shown in Column 2 were measured us-
ing an 8MHz iSBC Single Board Computer, 256K on-board
RAM, and all program and data stored in on-board RAM.
The execution times shown in Column 3 were measured us-

ing a 5MHz iSBC 286/10 Single Board Computer, no on-
board RAM, and all program and data stored in LBX RAM.

Figure 7. Typical iRMX™ 86 Configurations

Most configuration options are selected during system
design stages. Others may be selected during system
operation. For example, the amount of memory devoted
to queues within a Mailbox can be specified at the time
the Mailbox is created. Devoting more memory to the
Mailbox allows more messages to be transmitted to
other tasks without having to degrade system perform-
ance to allocate additional memory dynamically.

The chart shown in Table 6 indicates the actual memory
size required to support these different configurations
of the iRMX 86 System. Systems requiring only Nucleus
level functions may require no more than 13K bytes
for the Operating System. (Use of the iAPX 86/30 re-
quires only 4K bytes of RAM, 7K bytes of initialization
code in EPROM and the 16K bytes of code in the 80130.)
Other applications, needing I/O management functions,
may select portions of additional layers that fit their
needs and size constraints.

This configurability also applies to the Terminal Hand-
ler, Dynamic Debugger, and System Debugger. The
Terminal Handler provides a serial terminal interface
in a system that otherwise doesn’t need an I/O system.
Either one of the debuggers need to be included only
as debugging tools (usually only during system devel-
opment).

Order Number: 210885-002

intel

iRMX™ 86 OPERATING SYSTEM

Table 6. iRMX™ 86 Configuration Size: Chart

MII'I ROMable Max. ,Data

System Layer Size Size Size

Bootstrap Loader 1K 1.5K 6K*
Nucleus 10.5K 24K 2K
BIOS . 26K 78K 1K
‘Application Loader 4K 10K 2K
EIOS 10.5K 12.5K 1K
Human Interface 22K 22K 15K
uDI 8K 8K 0

Terminal Handler 3K 3K 0.3K
System Debugger 20K 20K 1K
Dynamic Debugger 28.5K 28.5K 1K

Human Interface Commands 116K

Interactive Configuration Utility 308K

* Usable by System after bootloading

MULTI-PROCESSING

The resources provided by a single processor are often
not enough to perform certain functions. With the stand-
ard interfaces provided by the iMMX 800 MULTIBUS

Message Exchange package, the iRMX 86 Operating ~

System supports a loosely-coupled multi-processing
environment. Task running on one processor may com-
municate with tasks running on other processors, even
if they operate under different operating systems. The
iMMX 800 software is capable of sending messages
over the MULTIBUS to tasks operating under either
the iRMX 88 Executive, or the iRMX 86 Operating Sys-
tem. Using this message exchange mechanism, appli-
cations may increase their system performance quite
easily, improve overall interrupt response, gain access
to the iISBC® 550 Ethernet Controller, and leave room
for future product enhancements..

MULTI-USER ACCESS

Many real-time systems must provide a variety of users
access to system control functions and collected data.
The iRMX 86 System provides easy-to-use support for
applications to access multiple terminals. It also en-
ables multiple and different users to access different
applications concurrently.

Figure 8 illustrates a typical iRMX 86 application si-
multaneously supporting multi-terminal data collection
and real-time environments. Shown is a group of ter-
minals used by machinists on a shop floor to commu-
nicate with a job management program, a building
security system that constantly monitors energy usage
requirements, a system operator console capable of
accessing all system functions, and a group of termi-
nals in the Production Engineering department used
to monitor job costs while developing new device con-
trol specifications instructions. The iSBC 544 Intelligent
Terminal Interface supports multiple user terminals
without degrading system performance to handle char-
acter 1/0.

2-16

SYSTEM

CONSOLE
n 8,40
> a
T TERMINALS

isec saa —)

' >

MULTIBUS

mq
CUSTOM .ssc 544
INTERFACE

DATA
LIGHTs COLLECTION
TERMINALS

NR
CONDIYION ER

Figure 8. Multi-Terminal and Multi-User
Real-Time System

EXTENDABILITY

The iRMX 86 Operating System provides three means
of extensions. This extendability is essential for support
of OEM and volume end user value added features.
This ability is provided by: user-defined operating sys-
tem calls, user-defined objects (similar to Jobs, Tasks,
etc.), and the ability to add functions later in the pro-
duct life cycle. The modular, layered structure of the
System easily facilitates later additions to iRMX 86 ap-
plications. User-defined objects are supported by the
functions listed in Table 7.

Using standard iRMX 86 system calls, users may define
custom objects, enabling applications to easily mani-
pulate commonly used structures as if they were part
of the original operating system.

Order Number: 210885-002

intel

iRMX™ 86 OPERATING SYSTEM

Table 7. User Extension System Calls

System Call Function Performed

RQ$CREATE$COMPOSITE Creates a custom object built of previously defined objects.

RQ$DELETE$SCOMPOSITE Deletes the custom object, but not the various objects from which it was built

RQS$INSPECT$COMPOSITE Returns a list of Token Identifiers for the component objects from which the specifued
composite object is built. /

RQ$ALTER$COMPOSITE Replaces a component object of a composite object.

RQ$CREATESEXTENSION Creates a new type of object and assigns a mailbox used for collecting these objects
when they are deleted.

RQ$DELETESEXTENSION Deletes an extension definition.

EXCEPTION HANDLING

The System includes predefined exception handlers
for typical I/O and parameter error conditions. The error
handling mechanism is both configurable and extend-
able.

SUPPORT OF STANDARDS

The iRMX 86 Operating System supports the many
hardware and software standards needed by most ap-
plication systems to ensure that commonly available
hardware and software packages may be interfaced
with @ minimum of cost and effort. The iRMX 86 System
supports the iISBC family of products built on the Intel
MULTIBUS (IEEE Standard 796), and a number of
standard software interfaces such as the UDI and the
common device driver interface (See Figure 9). The
procedural interfaces of the UDI are listed in Table 9.

The Operating System includes support for the pro-
posed IEEE 80-bit extended real-variable format of
the 8087 Numeric Data Processor, and the IEEE 796
(MULTIBUS) hardware interface. Other standards such

as the IMMX 800 MULTIBUS Message Exchange, and
an Ethernet communication interface are supported
by optional software packages available to run on the
iRMX 86 System.

SPECTRUM OF CPU PERFORMANCE

The iRMX 86 Operating System supports a broad range
of Intel processors. In addition to support for iAPX 86
and 88 based systems, the iRMX 86 system has been
enhanced to support iAPX 186, 188, and 286 (Real Ad-
dress Mode)-based Systems. This new support ena-
bles the user to take advantage of the faster speed
and higher performance of Intel’s 286 based micro-
processors such as the iSBC 286/10 single board
computer. By choosing the appropriate CPU, designers
can choose from a wide range of performance options,
without having to change application software.

COMPONENT LEVEL SUPPORT

The iRMX 86 System may be tailored to support specific
hardware configurations. In addition to system memory,

e

I FORTRAN

[

BASIC

1 PASCAL

[

cosotL

}

APPLICATIONS
SUPPORT

INTEL
LANGUAGES

SOFTWARE
VENDOR
LANGUAGES

APPLICATIONS

SOFTWARE ARCHITECTURE INTERFACE

LANGUAGE
SUPPORT

STANDARD 1/O
SUPPORT

ANSI
WINCHESTER
DISK

NIVERSAL DEVELOPMENT
INTERFACE

FLOPPY
DISK

RESOURCE
MANAGEMENT

MULTIPROCESSING
SUPPORT

I
REAL TIME NUCLEUS |
IMMX ™ MULTIBUS MESSAGE EXCHANGE

MULTIPROCESSING SYSTEMS BUS
MULTIBUS

“ ETHERNET 15 a registered trademark of Xerox Corp

Figure 9. iRMX™ 86 Standard Interfaces

2-17

Order Number: 210885-002

intgl”

iRMX™ 86 OPERATING SYSTEM

only an iAPX 86, iAPX 88, iAPX 186, iAPX 188, or iAPX

286 microprocessor, an 8259A Programmable Interrupt
Controller (PIC), and either an 8253, 8274,.or 82530
Programmable Interval Timer (PIT) are required as
follows:

* iAPX 86 and iAPX 88 systems need either:

- 8253 PIT and 8259A PIC (master) or
-~ 80130 firmware (PIC is master)

¢ jAPX 186 and iAPX 188 systems where 186 PIC is
slave, needs either:

- 8253 PIT and 8259A PIC (master) or
- 80130 firmware (PIC is master)

where 186 PIC is master:
- Uses 186 PIT for the system clock; no external
PIT is needed \
- Can use either
186 PIC (master) only or
8259A/80130 PIC (slave)

* jAPX 286 systems need
- 8253 PIT and 8259A PIC.

Alternatively, the iRMX 86 Operating System may be
used in conjunction with the 80130 Operating System
Firmware Component that not only provides these hard-
ware functions, but eliminates the need for approxi-
mately 16K bytes of the iRMX 86 Nucleus code (see
Figure 7). For systems requiring extended mathematics
capability, an 8087-or 80287 Numeric Data Processor
may be added to perform these functions up to 100 times
faster than equivalent software. For applications servic-
ing more than 8 interrupt sources, additional 8259A’s
may be configured as slave controllers.

BOARD LEVEL SUPPORT

The iRMX 86 Operating System includes device drivers
to support a broad range of MULTIBUS device con-
trollers. The particular boards and types of devices
supported are listed in Table 8. The device controllers
all adhere to industry standard electrical and functional
interfaces.

In addition to the on-CPU board terminal drivers, the
~ iRMX 86 BIOS includes two iSBC board-level device
drivers-to support multiple terminal interfaces:

The iSBC 544 Intelligent Four-Channel Terminal In-
terface Device Driver provides support for multiple
controllers each supporting up to four standard RS232
terminals. The iSBC 544 driver takes advantage of an
on-board 8085 processor to greatly reduce the system
processor time required for terminal I/O by -locally
managing input and output buffers. The iSBC 544
firmware provided with the operating system can off-
load the system CPU by as much as 75% when do-
ing character outputting.

The iSBC 534 Four-Channel USART Controller Device
Driver also provides support for multiple controller

boards each. supporting up to four standard RS232
terminals.

The new RAM disk feature in iRMX 86 makes a por-
tion of the memory address space look like a disk drive
to the I/O system.

Table 8. Supported Devices

iSBC® Device Description
Controller scriptio
iSBC® 86,88 | Serial Port to CRT, Parallel Port to

Centronics-type Printer, Interval Timer
and Interrupt Controller.

iSBC® 186/03 | Small Computer System Interface
(SCSI) Supporting All Random
Access “Extended Standard”
SCSI/SASI hard disk controllers.

iSBC® 204 Single Density Diskette.
iSBC® 206 Cartridge-Type Hard Disk.
iSBC® 208 Single & Double Density, Single &

Double Sided, 8" & 5.25” Diskettes.

iSBC® 215(G) | Standard Winchester Disks.

iSBX® 218 Single or Double density, Single or
double sided, 8-inch diskettes
(when used on an-iSBC 215(G)).

iSBX® 218A | Single or Double Density, Single or
Double Sided, 8” & 5.25” Diskette
(when used on an iSBC 215G Win-
chester Controller).

iSBC® 220 Standard Storage Module Board.

iSBX® 251 Bubble ‘Memory Multimodule Board.

iSBC® 254(S) | Bubble Memory Board.

iSBX® 351 1-Channel Serial Port to CRTSs,

. Modems.

iSBC® 534,544 | 4-Channel Serial Ports to CRTSs,
Modems.

1ISBX™ 270 Black and White CRTs and full

ASCII keyboards.

NOTE: (G) = optional iSBC 215, iSBC 215B,
or iSBC 215G
(S) = optional iSBC 254 or iSBC 254S

Development Environment Features

The iRMX 86 Operating System supports the efficient
utilization of programming time by providing important
tools for program development. Some of the tools nec-
essary to develop and debug real-time systems are in-
cluded with the Operating System. Others, such as
language compilers, are available from Intel and from
leading Independent Software Vendors.

LANGUAGES

The iRMX 86 Operating System supports 31 standard
system calls known as the Universal Development In-
terface (UDI). Figure 9 shows the iRMX 86 standard
interfaces to many compilers and language translators,
including the iAPX 86 and 88 Macro Assembler; the
PASCAL 86/88, PL/M 86/88, FORTRAN 86/88 and C86
compilers available from Intel. Also included are other

Order Number: 210885-002

intel

iRMX™ 86 OPERATING SYSTEM

Intel development tools, language translators and utili-
ties available from other vendors. Any application that
ran on the iRMX 86 Release 5 Universal Runtime Inter-
face (URI) will run on the iRMX 86 Release 6 UDI. The
full set of UDI calls (which includes the URI system

These standard software interfaces (the UDI) ensure
that users of the iRMX 86 Operating System may trans-
port their applications to future releases of the iRMX 86
Operating System and other Intel and independent
vendor software products. The calls available in the

calls) is required to run a compiler.

UDI are shown in Table 9.

Table 9. UDI System Calls

System Call

Function Performed

Memory Management:
DQ$ALLOCATE

DQS$FREE
DQS$GETS$SIZE™
DQS$RESERVE$IOSMEMCRY ™

File Management:
DQS$ATTACH

DQ$CHANGESACCESS*
DQ$CHANGESEXTENSION
DQ$CLOSE

DQS$CREATE ~
DQS$DELETE

DQ$DETACH

DQ$OPEN
DQ$GETSCONNECTIONS$STATUS™
DQS$FILESINFO*

DQS$READ

DQS$RENAME*

DQ$SEEK

DQ$TRUNCATE
DQSWRITE

Process Management:
DQS$EXIT

DQS$SOVERLAY*
DQS$SPECIAL

DQ$TRAP$CC

Exception Handling:
DQ$GETSEXCEPTION$SHANDLER

DQ$DECODESEXCEPTION
DQ$TRAPSEXCEPTION

Application Assistance:
DQ$DECODESTIME

DQ$GETSARGUMENT*

DQGETSYSTEMSID*
DQS$SGETSTIME*)
DQ$SWITCH$BUFFER

Creates a Segment of a specified size
Returns the specified segment to the System
Returns the size of the specified Segment.
Reserves memory to OPEN and ATTACH files

Creates a Connection to a specified file.

Changes the user access rights associated with a file or directory.
Changes the extension of a file name in memory.

Closes the specified file Connection.

Creates a Named File.

Deletes a Named File.

Closes a Named File and deletes its Connection

Opens a file for a particular type of access.

Returns the current status-of the specified file Connection
Returns data about a file Connection.

Reads the next sequence of bytes from a file.

Renames the specified Named File.

Moves the position pointer of a file.

Truncates a file.

Writes a sequence of bytes to a file.

Exits from the current application job.
Causes the specified overlay to be loaded

Performs special I/O related functions on terminals with special control
features.

Captures control when CNTRL/C is typed.

Returns a pointer to the program currently being used to process errors.
Returns a short description of the specified error code.
Identifies a custom exception processing program for a particular type of error.

Returns system time and date in binary and ASCII character format.

Returns the next argument from the character string used to invoke the ap-
plication program.

Returns the name of the underlying operating system supporting the UDI.
Returns the current time of day as kept by the underlying operating system
Selects a new buffer from which to process commands.

* Calls available only through the UDI

2-19 Order Number: 210885-002

intel

iRMX™ 86 OPERATING SYSTEM

The high performance of the iRMX 86 Operating Sys-
tem enhances the throughput of compilers and other
development utilities. Table 10 indicates the average
performance of typical development environment
functions operating in the same configuration
described in Figure 4.

Table 10. Development Environment Performance

Table 11. Major Human Interface Utilities (Con.t.)

. Command Function
TIME Set the system time-of-day clock.
VERIFY Verify the structure of an IRMX™ 86

Named File volume, and che<k for
possible disk data errors.

Function Average
Execution Time

Directory Command

(S Format with 25 files) 5.3 sec
Load the COPY Command 1.2 sec
Copy a 1K Byte File

(Winchester to Winchester) 1.0 sec
Copy a 16K Byte File 1.7 sec
Copy a 64K Byte File 3.9 sec
Copy a 1K Byte File

(Winchester to Diskette) 1.4 sec
Compile PL/M 86 393 ipm
Compile PASCAL 86 453 Ipm

Program

TOOLS

Certain tools are necessary for the development of
microcomputer applications. The iRMX 86 Human In-
terface includes many of these tools as non-resident
commands. They can be included on the system disk
of a application system, and brought into memory when
needed to perform functions as listed in Table 11.

Table 11. Major Human Interface Utilities

Command Function

BACKUP Copy directories and files from one
device to another. '

COPY Copy one or more files to one or
more destination files.

CREATEDIR Create a directory file to store the
names of other files

DIR List the names, sizes, owners, etc.
of the files contained in a directory.

ATTACHFILE Give a logical name to a specified
location in a file directory tree.

PERMIT Grant or rescind user access to a
file.

RENAME Change the name of a file

SUBMIT Start the processing of a series of
commands stored in a file.

SUPER Change operator’s ID to that of the
System Manager with global access
rights and privileges.

INTERACTIVE CONFIGURATION UTILITY

The iRMX 86 Operating System is designed to provide
OEMs the ability to configure for specific system hard-
ware and software requirements. The Interactive Con-
figuration Utility (ICU) builds iRMX 86 configurations
by asking appropriate questions and making reasonable
assumptions. It runs on either an Intellec® Series ||
development system or iRMX 86 development system
that includes a'hard disk and the UDI. Table 12 lists
the hardware and support software requirements of
different iRMX 86 development system environments.

Table 12. iRMX™ Development Environment

Intellec® Series il)
MDS 313 PL/M 86/88 Compiler
One hard disk and one diskette drive

iRMX™ 86 Development System

iRMX™ 860 ASM 86 Assembler and
Utilities

iRMX™863 PL/M 86/88 Compiler

iSDM 86 or 286 System Debug Monitor

512K Bytes of RAM

5M Byte On-Line Storage and one
double-density diskette drive

SYSTEM 86/300 or 286/300 Series
Microcomputer System Basic configuration

Figure 10 shows one of the many screens displayed
during the process of defining a configuration. It
shows the abbreviations for each choice on the left,
a more complete description with the range of possi-
ble answers in the center, and the current (sometimes
default) choice on the right. The bottom of the screen
shows three changes made by the operator (lower
case lettering), and a request for help on the Excep-
tion Mode question. In response'to a request for help,
the ICU displays an additional screen outlining pos-
sible choices and some overall system effects.

The ICU requests only information required as a result
of previous choices. For example, if no Extended I/0
System functions are required, the ICU will not ask
any further questions about the EIOS. Once a config-
uration session is complete, the operator may save all
the information in a file. Later when small changes are
necessary, this file can be modified. A completely new
ion is not required.

2-20 Order Number: 210885-002

intel

iRMX™ 86 OPERATING SYSTEM

Nucleus
(ASC) Al Sys Calls [Yes/No] Yes
PV) Parameter Validation [Yes/No] Yes

(ROD) Root Object Directory Size [0 - 0FFOh] 0014H
(MTS) Minsmum Transfer Size [0 - OFFFFH) 0040H
(DEH) Default Exception Handler [Yes/No/Deb/Use] Yes
(NEH) Name of Ex Handler Object Module 1 - 32chs)

(EM) Exception Mode [Never/Program/Environ/All] Never
(NR) Nucleus in ROM [Yes/No] No
Enter Changes [Abbreviations ?/ = new-value] ASC=N

pv=no

rod=48
em?

Figure 10. ICU Screen for iRMX™ 86 Nucleus

REAL-TIME DEBUGGING TOOLS

The iRMX 86 Operating System supports three distinct
debugging environments: Static, Dynamic, and Post-
Mortem. While the iRMX 86 Operating System does
support a multi-user Human Interface, these real-time
debugging aids are usually most useful in a single-user
environment where modifications made to the system
cannot affect other users.

System Debugger

The static debugging aid is the iRMX 86 System De-
bugger. This debugger is an extension of the iISDM 86
and the iSDM 286 System Debug Monitors. The System
Debugger provides static debugging facilities when
the system hangs or crashes, when the Nucleus is in-
advertently overwritten or destroyed, or when synchron-
ization requirements prevent the debugging of certain
tasks. The System Debugger stops the system and al-
low you to examine the state of the system at that in-
stant, and allows you to:

— Identify and interpret iRMX 86 system calls.
— Display information about iRMX 86 objects.

— Examine a task’s stack to determine system call
history.

iRMX™ 86 Dynamic Debugger

The iRMX 86 Dynamic Debugger runs as part of an
iRMX 86 application. It may be used at any time during
program development, or may be integrated into an
OEM system to aid in the discovery of latent errors.
The Dynamic Debugger can be used to search for errors
in any task, even while the other tasks in the system
are running. The iRMX 86 Dynamic Debugger com-
municates with the developer via a terminal handler
that supports full line editing.

System Crash/Dump Analyzer

The often difficult job of debugging real-time applica-
tions is made much simpler with the System
Crash/Dump Analyzer. The analyzer allows program
developers to record system memory for later analy-
sis even if the system has halted. This analysis lists
such vital information as which jobs have active tasks,
which system queues contain which tasks, and what
segments contain which data.

PARAMETER VALIDATION

Some iRMX 86 System Calls require parameters that
may change during the course of developing iRMX 86
applications. The iRMX 86 Operating System includes
an optional set of routines to validate these parameters
to ensure that correct numeric values are used and that
correct object types are used where the System expects
to manipulate an object. For systems based only on the
iRMX 86 Nucleus, these routines may be removed to
improve the performance and code size of the System
once the development phase is completed.

START-UP SYSTEMS

Two ready-to-run, multi-user start-up systems are in-
cluded in the iRMX 86 Operating System package.
These iRMX 86 start-up systems are fully configured,
multi-user iRMX 86 Operating Systems ready to be
loaded into memory by the Bootstrap Loader. Both
start-up systems are configured to include all of the
system calls for each layer and most of the features
provided by iRMX 86. iRMX start-up systems include
UDI support so that users may run languages such as
PL/M-86, Pascal, FORTRAN, and software packages
from independent vendors.

The start-up system for the iAPX 86 processor is con-
figured for Intel SYSTEM 86/300 Series microcom-
puters with a minimum of 384K bytes of RAM. The
following devices are supported.

¢ iSBC 215/iSBX 218 or iSBC 215G/iSBX 218A

* iSBC 254(S)

e Line Printer

e 8251A Terminal Driver

¢ iSBC 544 Terminal Driver

The start-up system for the iIAPX 286 processor is con-
figured for Intel SYSTEM 286/300 Series microcom-
puters with a minimum of 512K bytes and a maximum
of 896K bytes of RAM. The following devices are sup-
ported.

* iSBC 208

e iSBC 215/iSBX 218 or iSBC 215G/iSBX 218A

* iSBC 254(S)

¢ Line Printer for iSBC 286/10

e 8274 Terminal Driver

e iSBC 544 Terminal Driver

Either system will run without hardware or software
configuration changes and can be reconfigured on a
standard system with at least 512K bytes of RAM. Def-
inition files are also included for iISBC 186/03, 186/51
and 188/48 configurations.

This start-up system may be used to run the ICU (if a
Winchester disk is attached to the system) to develop
custom configurations such as those pictured in Figure
8. As shipped, the Human Interface supports a single
user terminal. However, the Start-up System terminal

configuration file may be altered easily to support from
two to five users.

Order Number: 210885-002

intel

iRMX™ 86 OPERATING SYSTEM.

SPECIFICATIONS
Supported Software Products

iRMX 860 iRMX 86 Development Utilities
Package, including the iAPX 86
and 88 Linker, Locater, Macro
Assembler, Librarian, and the
iRMX 86 Editor.

iRMX 861 PASCAL 86/88 Compiler

iRMX 862 FORTRAN 86/88 Compiler

iRMX 863 PL/M 86/88 Compiler

iRMX 864 TX Screen-oriented Editor

iMMX 800 MULTIBUS Message Exchange
software package for iRMX 86,
and 88 application systems

iOSP 86 Support Package for iAPX 86/30,

88/30, 186/30, and 188/30 Oper-
ating System Processors

iRMX PSCOPE 86 High Level Language Debugger
Supported Hardware Products

COMPONENTS

iAPX 86 and 88 Microprocessors

iAPX 186-and 188 Microprocessors

iAPX 286 Microprocessors (Real Address Mode only)
8087 Numeric Data Processor Extension

80287 Numeric Data Processor Extension

iAPX 86/30 (80130) Operating System Firmware Com-
ponent '

8253 and 8254 Programmable interval Timers
8259A Programmable Interrupt Controller
8251A USART Terminal Controller

8255 Programmable Parallel Interface

8274 Terminal Controller

82530 Serial Communications Controller

iSBC® MULTIBUS BOARD AND SYSTEM PRODUCTS

iSBC 86/12A, 86/05, 86/14, 86/30, 86/35, 88/25, and
88/40 Single Board Computers

iSBC 186/03 Single Board Computer

iSBC 186/51 Ethernet Controller

iSBC 188/48 Communications Controller

iSBC 286/10 Single Board Computer(Real Address
Mode only) ‘

iSBC 204 Diskette Controller
iSBC 206 Hard Disk Controller
iSBC 208 Diskette Controller

2-22

iSBC 215(G) Winchester Disk Controlier

iSBX 218(A) Flexible Diskette Multi-Module
Controller

iSBC 220 SMD Disk Hard Controller
iSBC 254(S) Bubble Memory System
iSBC 534 4-Channel Terminal Interface

iSBC 544 Intelligent 4-Channel Terminal Interface
and Controller

iSBX 251 Bubble Memory Muiti-Module

iSBX 350 Parallel Port (Centronics-type Printer
Interface)

iSBX 351 Serial Communications Port

iSBX 270 CRT Light Pen and Keyboard Interface
SYSTEM 86/300 Family)
SYSTEM 286/300 Family

AVAILABLE LITERATURE

The iRMX 86 Documentation Set is comprised of the
following four volumes of reference manuals. Order
numbers are associated with these four volumes only.

iRMX 86 INTRODUCTION AND OPERATOR'’S REF-
ERENCE MANUAL FOR RELEASE 6

Order Number: 146545-001

Introduction to the iRMX 86 Operating System
iRMX 86 Operator's Manual

iRMX 86 Disk Verification Utility Reference Manual
iRMX 86 PROGRAMMERS REFERENCE MANUAL
FOR RELEASE 6, PART |

Order Number: 146546-001

iRMX 86 Nucleus Reference Manual

iRMX 86 Basic I/O System Reference Manual
iRMX 86 Extended 1/0O System Reference Manual
iRMX 86 PROGRAMMERS’S REFERENCE MANUAL
FOR RELEASE 6, PART |l

Order Number: 146547-001

iRMX 86 Application Loader Reference Manual
iRMX 86 Human Interface Reference Manual

iRMX 86 Universal Development Interface Reference
Manual

Guide to Writing Device Dri\)ers for iRMX 86 and iRMX
88 1/0 Systems

iRMX 86 Programming Techniques

iRMX 86 Terminal Handler Reference Manual
iRMX 86 Debugger Reference Manual

iRMX 86 System Debugger Reference Manual
iRMX 86 Crash Analyzer Reference Manual
iRMX 86 Bootstrap Loader Reference Manual

Order Number: 210885-002

Inte|® iRMX™ 86 OPERATING SYSTEM

iRMX 86 INSTALLATION AND CONFIGURATION
GUIDE FOR RELEASE 6 ’
Order Number: 146548-001

iRMX 86 Installation Guide

iRMX 86 Configuration Guide

Master Index for Release 6 of the iRMX 86 Operating
System

Application Notes

Ap Note 130 — Using Operating System Processors
to Simplify Microcomputer Designs. (Order Number:
230786-001

Ap Note 174 — Optimizing the iRMX 86 Operating
System Performance on System 86/310 and System
86/330 (Order Number: 230990-001)

Training Courses
The iRMX 86 Operating System

Customer Seminars

Contact local Intel Sales Office for details on available
video-tape and slide presentations.

ORDERING INFORMATION

The iRMX 86 Operating System is available under a
number of different licensing options as noted here.
Source listings are available on microfiche. Reconfig-
urable object libraries are provided on double density
ISIS-formatted diskettes or on either double density,
single sided iRMX 86-formatted 8” diskettes, or double
density, double sided, 5.25” diskettes. ISIS-format disk-
ettes may be used on Intel Intellec Development Sys-
tems. The iRMX 86-format may be used on any iRMX
86-based system supporting the appropriate compilers
and development environment.

The OEM license options listed here allow users to
incorporate the iRMX 86 Operating System into their
applications. Each use requires payment of an Incor-
poration Fee.

ORDER CODE DESCRIPTION

iRMX 86 KIT BRO: Double density, single-sided 8”
ISIS format OEM license
iRMX 86 KIT ERO: Double density, single sided 8”
: iRMX 86-Format OEM license
for use on iRMX 86-based en-
vironments. '

2-23

iRMX 86 KIT JRO: Double density, double sided
5.25" iRMX 86-Format OEM li-
cense for use on iRMX 86-based
environments.

Other licensing options include prepayment of all future
incorporation fees, single use rights for a single mach-
ine, use at a second development site, one year update
service extensions, the right to make copies for addi-
tional development systems, and source listing materials.

Each option includes 90 days of support service that
provides the quarterly iRMX 86 Technical Report, Soft-
ware Problem Report Service, and copies of System
Updates that occur during this period. Except for source
listings, all initial licenses include a complete set of
iRMX 86 Documentation.

As with all Intel software, purchase of any of these op-
tions requires the execution of a standard Intel Master
Software License. The specific rights granted to users
depends on the specific option and the License signed.

Order Number: 210885-002

intel

iOSP™ 86

iAPX 86/30, iAPX 88/30, iAPX 186/30 and
iAPX 188/30 SUPPORT PACKAGE

m Development and run-time support for
iAPX 86/30, 88/30, 186/30, and 188/30
Operating System Processors

m Total iRMX™ 86 Operating System ‘soft-
ware compatibility

m Extendable with iRMX™ 86 Operating
System calls

m Compatible with Intel® PL/M 86, PAS-
CAL 86, FORTRAN 86, and ASM86 MAC-
RO ASSEMBLER

® Supports (P)ROM or RAM based system
m Supports custom system initialization
m Interactive Configuration Utility

The Intel iOSP™ 86 Support Package for the iAPX 86/30, 88/30, 186/30, and 188/30 Operating System
Processors contains a comprehensive set of easy-to-use tools needed to develop (P)ROM or RAM-based ap-
plications that use the 80130 Operating System Firmware component. This Support Package is compatible
with all versions of the 80130 component. All of the system initialization and run-time facilities are provided
in libraries that may be configured to specific requirements, and linked to application programs written in either
ASM86 MACRO ASSEMBLER or a high level programming language such as PASCAL 86, FORTRAN 86,
and PL/M 86. The iOSP 86 Package provides users with the basic initialization ahd interface routines needed
to build application software based on the fundamental operating system functions of the iAPX 86/30, 88/30,
186/30, and 188/30 Operating System Processors. The iOSP 86 Package also enables users to add higher
level 1/O functions from the fully compatible iRMX™ 86 Operating System or to form custom, real-time

systems.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No other Circuit

Patent Licenses are implied.
O©INTEL CORPORATION, 1984

2-24

JUNE, 1984
ORDER NUMBER: 210236-002

intel

iOSP™ 86

FUNCTIONAL DESCRIPTION

The iAPX 86/30, 88/30, 186/30, and 188/30 Operat-
ing System Processors (OSPs) provide an easy-to-
use foundation on which many real-time applications
may be built. They provide the functions and system
support needed to implement both simple and com-
plex applications that require multiple tasks to run
concurrently (see Figure 1). These services are made
possible by the addition of the five new data types
integrated into the 80130 Operating System Firmware
(OSF) component. The 80130 OSF extends the bas-
ic data types of the CPU (integer, byte, character, etc.)
by adding new system data types (JOB, TASK, MAIL-
BOX, SEGMENT, and REGION), and extensive timer,
interrupt, memory, and error management designed
to give real-time response to multitasking and mul-
tiprogramming applications. As shown in the second
half of the figure, other operating system functions
such as mass storage /O services and an easy-to-
use Human Interface can be added easily, by using
modules from the iRMX 86 Operating System. The
iOSP 86 Support Package provides both an interface
between application software and the Operating Sys-
tem Processors, and development tools designed to
make the implementation and initialization of real-
time, multitasking systems much easier.

The iOSP 86 Support package provides system de-
velopers with the configuration options necessary to
tailor the iAPX 86/30, 88/30, 186/30, and 188/30 Oper-
ating System Processors to custom applications. Cen-
tral to the entire configuration process is the
Interactive Configuration Utility (ICU86). This utility
is an easy-to-use tool which allows you to make con-
figuration decisions by responding to screen-oriented
displays. Using the ICU, users can build the neces-
sary support code. The interface libraries form a sim-

ple interface between application software and the
operating system primitives of the 80130 OSF com-
ponent.

Memory and 1/0 Addressing

The 80130 OSF requires that a 16K byte block of,
memory address space be reserved for accessing in-
ternal functions. The ICU is used to specify the base
address of the 80130 and the beginning of the initiali-
zation support code.

All Interrupt and Timer management of the OSF is
controlled via a reserved 16 byte I/O address block
that may be selected by the user. In addition, from
1 to 7 slave 8259A interrupt controllers can be speci-
fied in order to provide the system with up to 57 pri-
ority interrupt sources. The 80130 baud rate generator
may also be configured to support an optional termi-
nal interface.

Extending the 80130 OSF

The 80130 OSF allows users to add their own oper-
ating system extensions. These extensions may take
advantage of the detailed and efficient intertask com-
munication and synchronization primitives already
provided by the 80130, and/or may utilize custom
functions tailored to specific applications. The Sup-
port Package also enables users to extend the OSF
with the extensive services of Intel’s iRMX 86 Oper-
ating System, thereby allowing applications to.grow
without having to change or alter application software
already written, or having to write other operating sys-
tem software.

Use of the 80130 OSF with the iRMX 86 Operating
System reduces the amount of memory needed for
the iRMX 86 Nucleus layer by 14K bytes, and ena-
bles applications to take advantage of the increased

MULTITASKING, REAL-TIME
APPLICATION SOFTWARE

COMPLEX
APPLICATION SOFTWARE

COMPILERS
HUMAN INTERFACE
EIOS
BASIC /O SYSTEM
iRMX™ 86 NUCLEUS

iOSP™ 86 INTERFACE LIBRARIES

iOSP™ 86 INTERFACE LIBRARIES

8086
8087 8088
(OPTIONAL) 80186 80130
OR
80188

8086
8088
8087 -
80186 80130
(OPTIONAL) OR
80188

Figure 1. Structure of Typical Systems

2-25 , ' 210236-002

intel

iOSP™ 86 .

performance and reduced size requirements inher-
ent in the iAPX 86/30, 88/30, 186/30, and 188/30
Operatmg System Processors. Since each of the serv-
ices provided by the 80130 component is totally com-
patible with iRMX 86, applications have an automatic
upward path to support complete file systems and
multiple processor environments.

Application Interfaces

Two interface libraries are included in the iOSP 86
Support Package. The first allows programmers to
write application software modules in the Compact
Model of computation supported by Intel’s compilers.
The second provndes an interface to program seg-
ments written in either the Medium or Large Models.
The iOSP 86 Support Package does not support pro-
gram segments written in the Small Model.

The interface libraries provide the means of access-
ing all of the primitives supported by the Operating
System Processors. With this interface, and all the
memory management primitives of the OSPs, appli-
cations have full access to 1M byte of memory, and
all of the addressing modes of the CPU.

These libraries are fully compatible with object mod-
ules produced by the ASM86 MACRO ASSEMBLER,
and the PASCAL 86, FORTRAN 86, and PL/M 86
Compllers

App!icatlon Initiélization

The iOSP 86 Support Package provides, via the ICU,
for the configuration of the system ROOT JOB, and
all user application JOBs that require initialization
when the system is started. The user also specifies
the configuration of the interrupt system (including
the optional iAPX 186/188 interrupt controller in either
master or slave modes and any slave 8259A inter-
rupt controllers) and the clock rate used for system °
timing. These choices are automatically programmed
into the various devices when the system is initialized.

Parameter Validation

Parameter validation is a configuration option of an
OSP-based system. The OSP can check the
parameters of the primitive that you invoke either on
a systemwide basis or on a per job basis.

Operating System Calls

The 80130 OSF performs a total of 38 operating sys-
tem primitives all of which are completely compati-
ble with the equivalent iRMX 86 Operating System
calls. The iOSP 86 Support Package provides user-
level.interfaces to these primitives to enable appli-
cations to create, delete, control, and exchange the
new data types provided by the 80130 OSF. In gener-
al, these interfaces allow application software to
manage all of the resources of an iAPX 86/30, 88/30,
186/30, or 188/30 OSP (and an optional 8087 Numeric
Processor Extension) system via any of the 38 sys-
tem calls shown in Figure 2.

Required Development Hérdware

Use of the iOSP 86 Support Package requires a Ser-
ies Il Intellec Development System with double den-
sity flexuble diskette drives or any iRMX 86 system
supporting a standard 5.25 inch or 8 inch flexible dis-
kette drive and the iRMX 860 Assembler and Utili-
ties Package. Use of the 80130 requires only a
minimal system including either the iAPX 86/30,
88/30, 186/30 or 188/30 Operating System Proces-
sor, and enough system memory to contain the ap-
plication programs and initialization and interface
software provided in the iOSP 86 Package.

Board Level Product Support

Intel microcomputer boards which use the 80130 OSF
include the iSBC 186/03 and the iSBC 186/51 Sin-
gle Board Computers. An iOSP 86 application may
be written specifically to run on these boards.

JOB GROUP
CREATE JOB
END INIT TASK

TASK GROUP
CREATE TASK
DELETE TASK
SUSPEND TASK
RESUME TASK
SLEEP
GET TASK TOKENS
SET PRIORITY

MAILBOX GROUP
CREATE MAILBOX
DELETE MAILBOX
SEND MESSAGE
RECEIVE MESSAGE

SEGMENT GROUP
CREATE SEGMENT
DELETE SEGMENT

REGION GROUP
CREATE REGION
DELETE REGION
SEND CONTROL

RECEIVE CONTROL ENABLE
ACCEPT CONTROL DISABLE
. i GET LEVEL
OBJECT MANAGEMENT GROUP

CATALOG OBJECT
LOOKUP OBJECT
DISABLE DELETION
ENABLE DELETION
GET TYPE

INTERRUPT MANAGEMENT GROUP
SET OS EXTENSION
SET INTERRUPT
ENTER INTERRUPT
EXIT INTERRUPT
WAIT INTERRUPT
SIGNAL INTERRUPT
RESET INTERRUPT

ERROR CONTROL GROUP
SET EXCEPTION
SIGNAL EXCEPTION
GET EXCEPTION

Figure 2. Operating System Primitives

2-26 210236002

inteF ioSP™

Part Number Description

OSP 86 B iOSP 86 Support Package con- -
tained on an ISIS-Il compatible,
single-sided, double density 8 inch
diskette.

OSP 86 E

OSP 86 J

iOSP 86 Support Package con-
tained on an iRMX 86 format,
single-sided, double density 8 inch
diskette.

iOSP 86 Support Package con-
tained on an iRMX 86 format
double-sided double density, 5.25
inch, 48 tracks-per-inch diskette.

ORDERING INFORMATION

Each of the ordering options listed below include all
the necessary initialization and interface procedures
needed to use the iAPX 86/30, 88/30, 186/30, and
188/30 Operating System processors. Purchase of the
iOSP 86 Package requires verification of an Intel
Master Software License. Each package also includes
an iOSP 86 User's Manual (Document Number
146798-001), and a 90 day update service.

2-27

inter’ « PRELIMINARY

iRMX™ 86-MULTIBUS® II
- SUPPORT PACKAGE

m MULTIBUS® Il support for iSBC® 286/100 m Automatic software configuration of
applications in Real Address Mode, memory boards
including support for the SCSI peripher-
al interface and up to 1 megabyte
addressability

a Functions in conjunction with the

iRMX™ 86 Release 6 Operating System o Eyjendable to allow addition of custom
m Interprocessor Signal Support device drivers

& Support for battery backed-up, global
time-of-day clock

The iRMX™ 86-MULTIBUS® Il Support Package, functioning with the iRMX 86 Release 6 Operating System soft-
ware, provides the ability to execute all configurable layers of the iRMX 86 software in the MULTIBUS Il environ-
ment (iRMX 86-MULTIBUS Il Operating System). Applications in Real Address Mode are supported for the iISBC®
286/100 board, including support for the SCSI peripheral interface and all iSBX™ boards supported by iRMX 86
Release 6, as well as support for iAPX 286 component applications.

HUMAN INTERFACE
EXTENDED /O SYSTEM
APPLICATIONT
"BASIC 1/0 SYSTE, £R
NUCLEUS

upI
ICU

MULTIBUS" Ii
SUPPORT

USER APPLICATIONS

NEW IN iRMX™ 86

© MULTIBUS I E]
OPERATING SYSTEM

iRMX™ VLS| Operating System

The foilcwvm'g are trademarks of Intel Corporation and may be used only to describe Intel products- Intel, ICE, IMMX, IRMX, ISBC, iSBX, iSXM, MULTIBUS,
MULTICHANNEL and MULTIMODULE. intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an intel
product. No other circurt patent licenses are implied. Information contained herein supercedes previously published specificatons on these devices from Intel.
© INTEL CORPORATION, 1984 SEPTEMBER, 1984
2-28 ORDER NUMBER: 280057-001

intel

iRMX™ 86-MULTIBUS® Il Support Package

PRELIMINARY

FUNCTIONAL DESCRIPTION

Overview

The iRMX 86 MULTIBUS |l package contains system
modules that replace portions of the iRMX 86 Release
6 Operating System, allowing the iRMX 86 Operating
System to execute in a MULTIBUS Il environment. All
the functions available in the IRMX 86 Operating Sys-
tem are available in the iRMX 86-MULTIBUS Il Oper-
ating System. For a complete description of these
functions, their value, and performance, please refer
to the Release 6 iRMX 86 Operating System Data Sheet
(order number 210885-002).

This functional description section describes the new
features provided by the iRMX 86 MULTIBUS Il pack-
age. These new features add the new capabilities re-
quired for OEMs to execute the iRMX 86 Operating
System in a MULTIBUS Il environment for iSBC 286/100
or iAPX 286 applications in Real Address Mode.

Interprocessor Signal Support

In a MULTIBUS |l system, interprocessor communi-
cation and synchronization is done via messages over
the bus. This communication includes data-less mes-
sages to signal that an event has occured. The iRMX
86 MULTIBUS Il package supports signal messages
using the Message Interrupt Controller (MIC) Com-
‘ponent. The major advantage of signal message sup-
port is the ability for a host cpu board to send or
receive signal messages from up to 254 distinct
sources, with the priorities of each message being
based on the sending or receiving task’s priority. Sig-

nal messages are not tied to hardware interrupt lev-
els and priorities as external interrupts were in the
MULTIBUS | environment.

Automatic Software Configuration of
Memory Boards

The iRMX 86-MULTIBUS Il Operating System has the
option of automatically configuring memory boards. The
addresses for each board are defined sequentially in
relation to the physical placement of each board in the
card cage. This feature allows for the swapping, ad-
ding, and deleting of memory boards in the system on
a dynamic basis.

Accurate Time-of-Day Clock Support

Resident in every MULTIBUS |l system is a Central
Services Module (iISBC CSM/001 board). The CSM
board contains a battery backed-up, global time-of-day
clock. The iRMX 86-MULTIBUS Il Operating System
uses this clock to automatically initialize the time-of-day
clock maintained by the operating system.

Custom Device Driver Support

Like the iRMX 86 Operating System, the iRMX 86-
MULTIBUS Il Operating System is extendable to sup-
port user value-added custom device drivers. This
feature allows the system to be more closely tailored
to meet a specific application requirement and expands
the list of supported hardware products. The user need
not purchase source code to write a custom driver and
can configure the driver into the system at configura-
tion time. Custom drivers can use the Message Inter-
rupt Controller (MIC) to pass signal messages.

SPECIFICATIONS

Below is the list of supported products for the iRMX
86 MULTIBUS Il Support Package.

Supported Software Products
iRMX 86 Release 6 Operating System

Supported Hardware Products

Components:

iAPX 286 Microprocessor (Real Address Mode only)
80287 Numeric Data Processor Extension

8253 and 8254 Programmable Interval Timers
8259A Programmabile Interrupt Controller (PIC)
8255 Programmable Parallel Interface (PPI)

82530 Serial Communications Controller (SCC)
82258 Advanced DMA Controller (ADMA)

Bus Arbiter Controller (BAC)

Message Interrupt Controller (MIC)

iSBC® MULTIBUS® Il Board Products:

iSBC 286/100 Single Board Computer (Real Address
Mode only)

iSBC CSM/001 Central Services Module

iSBC MEM/312, 310, 320, 340 cache-based memory
iSBX 218(A) Flexible Diskette Multi-Module Controller:
iSBX 251 Bubble Memory Multi-Module

iSBX 270 CRT Light Pen and Keyboard Interface
iSBX 350 Parallel Port (Centronics-type Printer Interface)
iSBX 351 Serial Communications Port

AVAILABLE LITERATURE

iRMX 86-MULTIBUS Il Support Package Reference
Manual (order number 147127)

There are four manual kits supplied with the iRMX 86
Release 6 Operating System and are available under
the order numbers shown in the iRMX 86 Operating
System Data Sheet (order number 210885-002)

2-29 280057-001

intel

iRMX™ 86-MULTIBUS® Il Support Package

PRELIMINARY

ORDERING INFORMATION

The iRMX 86 MULTIBUS i Package is available under
a number of different licensing options. Obtaining a
license for the iRMX 86 Release 6 Operating System
is a pre-requisite to licensing the iRMX 86 MULTIBUS
Il Package. Reconfigurable object libraries are provid-
ed on: 1) Double-density single-sided ISIS-formatted 8"
diskettes; 2) Double-density, single-sided iRMX
86-formatted 8" diskettes; 3) Double-density, double-
sided, iRMX 86-formatted 5.25” diskettes. ISIS-format
diskettes may be used on Series Il Development Sys-
tems. The iRMX 86-format may be used on Series IV
Development Systems (5.25” diskettes) or any iRMX
86-based system supporting the appropriate disk drivers,
compilers and development environment.

The OEM license options listed here allow users to in-
corporate the iRMX 86 MULTIBUS Il package into their
applications. Each use requires payment of an Incor-
poration Fee.

DESCRIPTION

ORDER CODE

iRMX 86 Il BRO: Double-density, single-
sided 8" ISIS-format OEM
license.

iRMX 86 Il ERO: Double-density, single-

sided 8" iRMX 86-formal
OEM license. :

2-30

iRMX 86 Il JRO: Double-density, double-
sided 5.25” iRMX
86-format OEM license.
Includes iRMX 86 Release
6. Double-density, single-
sided 8” ISIS format OEM
license.

Includes iRMX 86 Release
6. Double-density, single-
sided 8" iIRMX 86-format
OEM license.

Includes iRMX 86 Release
6. Double-density, double-
sided 5.25" iRMX
86-format OEM license.

iRMX 86 Il KIT BRO:
iRMX 86 Il KIT ERO: .

iRMX 86 Il KIT JRO:

Other licensing options include prepayment of all future
incorporation fees and single use rights for a single
machine. :

Each option includes 90 days of support service that
provides Software Problem Report Service and copies
of System Updates that occur during this period.

As with all Intel software, purchase of any of these op-
tions requires the execution of a standard Intel Master
Software License. The specific rights granted to users
depend on the specific option and the license signed.

280057-001

ntel

iIRMX™ ¢ High-performance, real-time, multi-
tasking operating system for Intel’s
OPERATING 86/300 and 286/300 microcomputer
SYSTEM systems

© Highly configurable, modular structure
for easy system expansion
® Wealth of design facilities and industry-

standard languages to support fast, easy
development

e Application software portable to next
generation of Intel VLSI

® Supported by Intel’s post-sales software
support organization

EXTENDED
/O SYSTEM

NUCLEUS

© INTEL CORPORATION, 1984

ORDER NUMBER 230751 -003

The Total Solution for the
Real-Time Application OEM

Intel’s iRMX™ 86 Operating System is a
real-time, multi-tasking, multiuser,
multiprogramming operating system de-
signed to support high performance,
time-critical applications such as factory
automation, industrial control and com-
munications networks. The iRMX
operating system serves as an optimized
event-driven executive for managing and
extending the resources of Intel’s 86/300
and 286/300 systems in real-time appli-
cations where high speed and low inter-
rupt latency are required. Added per-
formance for demanding numeric-
intensive tasks comes from support of
Intel’s floating point math coprocessors.

Comprised of modular layers, Intel’s
iRMX operating system is highly con-
figurable, allowing the OEM to easily
customize the system to meet the needs
of target applications. In addition, the
iRMX operating system provides OEMs
with complete development capabilities.
It has systems debuggers, crash analyz-
ers, screen editors, utilities, and an Inter-
active Configuration Utility (ICU)—
everything the development engineer
needs to design and configure efficiently.

To further reduce development time, a
complete set of industry-standard lan-
guages enables OEMs to take advantage
of existing application software. This
shaves months off development time and
is a key advantage to the competitive
OEM.

Speed, the Name of the
Real-Time Game

In a real-time system the computer must
respond to interrupts instantly; time is
always at a premium. Intel’s iRMX
Operating System delivers superior
real-time performance, thanks to ultra-
fast context switching, task synchroniza-
tion and memory-based message passing.

The iRMX 86 Operating System man-
ages the resources of the 286/300 systems
in real-address mode. iRMX 86 makes
possible the utilization of the high-'

other boards, even if they operate under
different Intel operating systems or
IMiCroprocessors.

Multiprocessing is possible due to the
hardware capabilities of Intel’s System
300 MULTIBUS System Bus and the
software support provided by iMMX™
800. Overall system performance and
flexibility can be greatly enhanced by
off-loading the main CPU with such in-
telligent I/O boards as Intel’s quad serial
communication controller, digital con-

wﬁomance capabilities of Intel’s iAl,) X troller or Ethernet communications
286 microprocessor for those demanding controller.
high-speed applications.

Modular Software for

Versatile, Easy Configuration

The iRMX operating systems shipped
with Intel’s 86/300 and 286/300 hardware
systems are preconfigured at the factory
to support a standard board set; however,
the OEM can additionally configure or

Further accelerating processing power in
number-crunching and floating point
math applications is iRMX operating
system’s support of Intel’s math
COproCessors.

Our 8087 numeric data processor in our
iRMX 86-based systems can perform
floating point operations four times faster
than competitive minicomputers with
hardware math processors. For even
greater performance, OEMs can select
the iAPX 286 and the 80287 coprocessor HUMAN
working in tandem in the iRMX 86 INTERFACE
system.

EXTENDED

/O SYSTEM

The superior price/performance ratio that
results from combining Intel’s iRMX
operating systems and the System 300
family makes the choice clear: a more
competitive Intel micro-based system
over a more expensive minicomputer-
based system.

Add More Processors for
More Power, More Speed

Need still more micro-muscle in your
application? In an iRMX-based system,
additional intelligent boards can be
added to enhance system throughput.

With the iMMX™ 800 (MULTIBUS®
Message Exchange) software package,
the iRMX 86 Operating System supports
a loosely-coupled multiprocessing
environment. Tasks running on one board

. N . USER APPLICATJONS
may communicate with tasks running on

2-32

extend the operating system to meet
specific needs.

Intel’s iRMX operating systems are con-
figurable by system layer and by system
call within each layer. Such flexibility
gives designers the ability to choose
software features that best suit their ap-
plication s size and functional require-
ments. The iRMX Operating System also
includes I/O drivers for many of Intel’s
MULTIBUS boards and industry-

BASIC

|/O SYSTEM
APPLICATION
LOADER

standard peripherals. You simply select
the ones you need.

The Interactive Configuration Utility
(ICU) is a built-in facility for assisting
the OEM in the configuration process.
The ICU prompts the user for system
parameters and requirements, then builds
a command file to compile, assemble,
link, and locate necessary files.

The net results for the OEM: fast, easy -
system configuration with quick time-
to-market benefits.

For customizing and extending your
iRMX system, Intel has provided all the
“‘hooks’’ necessary to make the job easy.
The iRMX 86 Operating System contains
extendability features that enable the
OEM to add custom operating system
calls, custom features, and custom
functionality to his application— at any
time in the application’s life. The ability
to add functions late in a product’s life is
key to an OEM’s competitive edge in a
fast-changing market.

iRMX™ Operating System
Has All the Fundamentals,
Too!

In addition to multiprocessing, Intel’s
iRMX operating systems have all the *
basics you would expect to find in a
minicomputer operating system. . .
capabilities such as multitasking,
multiprogramming, and multiterminal
support.

Multitasking requires a method of
managing the different processes of
an application and for allowing
these processes to communicate
with each other. The iRMX Nuc-
leus provides these facilities plus
task scheduling. The Basic I/O
System provides users with the
system calls for direct manage-
ment of I/O devices needed for
real-time applications. The Ex-
tended I/O System adds a number
of I/O management capabilities to
simplify access to files, such as
automatic buffering and syn-
chronization of 1/0 requests.

The Human Interface functions give
users and applications simple access to
the file and system management capa-
bilities. Using the multiterminal support
provided by the Basic 1/0 system, the
Human Interface can support several
simultaneous users. For example,
multi-terminal support allows one person
to use the iRMX Editor, while another
compiles a FORTRAN or Pascal pro-
gram, while several others load and
access applications.

On-Target Development:
One System Does It All

The beauty of Intel systems lies in their
flexibility. Engineers developing an
iRMX-based target system can use the
same iRMX-based system in the de-
velopment process; the development and
target systems are one in the same. The
bottom-line benefit is low entry-level
costs for the OEM.

On-target development contributes im-
measurably to a shorter development
curve and decreased time-to-market,
since it isn’t necessary to purchase and
learn separate development systems.
With Intel’s iRMX-based system, one
system does it all.

Tap into a Wide Range of
Languages and Utilities

An Intel iRMX-based system supports
many industry-standard and widely
available languages: FORTRAN 77,
Pascal (ISO Draft Standard) and PL/M
compilers; Intel Assemblers, and popular
independent vendor products, such as
Microsoft’s BASIC and Mark Williams®
C compiler. ’

iRMX operating systems also have a
menu-driven, screen-oriented text editor
and a variety of utilities for manipulating

object code to facilitate the development \

process.

Multiple-language support is made
possible by a set of systems calls known

as the Universal Development Interface
(UDI) which enables the iRMX sy

to interface with many compilers and
language translators. UDI ensures that
users will be able to transport applica-
tions to future releases of iRMX oper-
ating systems as well as use language and
utilities of other software vendors that
support UDI. (For more information on
Intel iRMX languages, see the iRMX
Language Fact Sheet)

As an option, a commercial extension
package iCEX is available. It provides
such useful utilities as: a Shared I/O
System (SIOS) that allows multiple tasks
to access mass storage data through
shared buffers in main storage; a Re-
entrant Program Manager (RPM) that
eliminates the need to have multiple
copies of the same program in memory to
support concurrent applications; a File
Printer; Multi-user LOG ON facilities;
and many more.

Intel’s Open Systems
Approach Means Freedom -
to Grow

At Intel, we believe that systems need to

expand in order to meet the needs of a
changing market; and that is how we -

System Bus (IEEE 796), iIMMX

design our products. .

Standards are the key to systems
that are open to future expansion,
future technology and future
markets.

Intel’s iRMX operating systems are
built from the inside-out with indus-
try standards: UDI (Universal
Development Interface), RTI
(Runtime Interface), MULTIBUS

800 Package (MULTIBUS multi
processing), Ethernet IEEE
802.3), extended math format
(IEEE P754), and industry-standard
peripheral device interfaces.

An OEM who builds his product around
one of Intel’s RMX-board systems is as-
sured of multi-vendor hardware/software
alternatives and a future upgrade path. In
today’s highly competitive markets, that
is the only kind of system to build.

Today, you'll have the ability to tap into
readily available application software
packages, languages, and utilities,
MULTIBUS boards, and peripherals.
Tomorrow, you will be able to tap into the
latest, high-performance VLSI without
sacrificing today s software investment.
Applications written on iRMX 86 will
run on Intel’s iAPX 86, iAPX 88, iAPX
186, iAPX 188 and iAPX 286-based
systems.

Not to be forgotten are the advantages of
starting from the systems level to begin
with. Intel has invested hundreds of ~ °
man-years in software and hardware de-
velopment for its systems products. For
the OEM trying to meét a market win-
dow, time-to-market is much faster when
starting with a system instead of boards
or components. It makes good business
sense to let Intel provide the ‘‘micro-
engine’’), so you can concentrate on your
area of expertise and get to market
sooner!

2-34

Worldwide Service and
Support

The iRMX 86 Operating System is a
mature proven product with thousands of
installations at the component, board and
systems levels. Post-sales software sup-
port is available to Intel iRMX 86
Operating System OEMs in the form of
software updates and routine systems
software maintenance. Software support
is extendable in one-year increments after
the initial 90-day warranty.-Hotline *
service is available separately to cus-
tomers needing quick regional software
support. All software is completely
documented, and users receive monthly
technical reports, newsletters and access
to the iRMX users group and software
libraries.

iRMX users can also take advantage

of Intel’s worldwide staff of trained
hardware and software engineers for
application design assistance. We offer
complete training for operating system
software and associated system
hardware, bringing OEM’s up to speed
and helping get their products to market
quickly.

Intel, the Technology Leader
... With the Total Solution

Intel started the microprocessor revolu-
tion with the 4004 and has been the
market leader with every generation of
advanced microprocessor VLSI since.
We not only invented the microprocessor
but MULTIBUS smgle board computers
as well. .

Intel’s technology leadershlp has, by
necesslty, extended from micro-
processors into operating system
software. iRMX is recognized as the
industry standard real-time VLSI
operating system.

OEM s can enhance their product’s mar-
ketability by leveraging their value-added
on top of the solid foundation of an
iRMX-based Intel 300 microcomputer
system. Intel’s solution offers the most
pnce/perfonnance with the least risk to
progressive OEMs . . . because we know
the real-time game from the inside out.

TMX OPERATING SYS =

Specifications

Supported Software Products

IRMX 860 IRMX 86 Development
Utiities Package including
the IAPX 86 and 88 Linker,
Locator, Macro Assembiler,
Librarian, and the IRMX 86
Editor
Pascal 86/88 Compiler
IRMX 862 FORTRAN 86/88 Compiler
IRMX 863 PL/M 86/88 Compiler
IRMX 864 TX-Screen-Oriented Editor
IRMX 865 BASIC Interpreter
IRMX 866 C Compller
IMMX 800 MULTIBUS® Message
Exchange software package

for IRMX 80, 86, 88, and 286
application systems

IRMX 861

Supported Hardware Products
iSBC® MULTIBUS® Products

1ISBC 86/12A, 86/05, 86/14, 86/30, 86/35,
88/25, 88/40, and 286/10
Single Board Computers

1SBC 186/03 Single Board Computer
1SBC 186/51 Ethernet Controller
1SBC 188/48 Communications Controller

ISBC 254 Bubble Memory System

ISBC 534 4-Channel Terminal Interface

ISBC 544 Inteligent 4-Channel
Terminal Interface and
Controller

1SBX 218 Flexible Disk Controller

1ISBX 350 Parallel Port (Centronix-type
Printer Interface)

1SBX 351 Senal Communications Port

1SBX 270 CRT, Light Pen and Keyboard
Interface

System 86/300 Family

System 286/300 Family

Available Literature

The IRMX 86 Documentation Set is
comprised of the following four volumes
of reference manuals Order numbers
are associated with these four volumes
only

iRMX 86 Introduction and Operator’s
Reference Manual for Release 6
Order Number. 146545-001

Introduction to the IRMX 86 Operating
System

IRMX 86 Operator's Manual
IRMX 86 Disk Verification Utility

IRMX 86 Programmer’s Reference
Manual for Release 6, Part Il
Order Number 146547-001

IRMX 86 Application Loader Reference
Manual

IRMX 86 Human Interface Reference
Manual

IRMX 86 Universal Development
Interface Reference Manual

Guide to Writing Device Drivers for IRMX
86 and IRMX 881/0 Systems

IRMX 86 Programming Techniques

{RMX 86 Terminal Handler Reference
Manual

IRMX 86 Debugger Reference Manual

IRMX 86 System Debugger Reference
Manual

IRMX 86 Crash Analyzer Reference
Manual

IRMX 86 Bootstrap Loader Reference
Manual

IRMX 86 Installation and Configuration
Guide for Release 6
Order Number 146548-001

IRMX 86 Installation Guide
IRMX 86 Configuration Guide
Master Index for Release 6 of the IRMX

1SBC 286/1 c() F?m]gf(j%oard ’\Cnogwputelr) Reference Manual 86 Operating System
eal ress iviode only,
1SBC 204 Flexible Disk Controller R e Freronce
1ISBC 206 'Hard Disk Controller Order Number 146546-001
iSBC 208 Flexible Disk Controller IRMX 86 Nucleus Reference Manual
1ISBC 215 Winchester Disk Controller IRMX 86 Basic I/O System Reference
1SBC220 SMD Disk Controller Manual
ISBX 251 Bubble Memory System |Rl\’\/IA>;r§3§allExtended 1/0 System Reference
iRMX™ 86 Configuration Size Chart
System Layer Min. ROMable Max. Data
Size Size Size
Bootstrap Loader 1K 1.5K 6K*
Nucleus 10.5K 24K 2K
BIOS 26K 78K 1K
Application Loader 4K 10K 2K
EIOS - 10.5K 12.5K 1K
Human Interface 22K 22K 15K
uDI 11K 11K 0
Terminal Handler 3K 3K 0.3K
Debugger 28.5K 28.5K 1K
Human Interface Commands 116K
Interactive Configuration Utility 308K

System 86/300 Memory: 348KB
Maximum Addressable Memory: imMB
Minimum Memory Required with ICU Loaded: 448KB

“Usable by System after Bootloading

2-35

el

Ordering information

Each iRMX operating system includes two startup systems
supporting Intel’s System 300 standard hardware and Intel
processor boards. Intel System customers also receive the iRMX
860 (Assembler, Linker, Locator, Libraries, Editor, Utilities) and
iRMX 863 (PL/M age) products and are entitled to one

id incorporation fee. Also included: Software Problem

ing Service (SPR), and a 90 day System Software

Subscription (new s/w release updates). Also includes System
Software documentation.

Refer to Intel's OEM price list, OEM Microcomputer System section, for
ordering information.

2-36

XENIX* 3.0
OPERATING
SYSTEM

© XENIX 3.0 Industry Standard
Multiuser Operating System

© Fully licensed version of the UNIX}
operating system optimized for the Intel
80286 processor

© Leading edge microprocessor imple-
mentation of UNIX, fastest floating
point performance on a microprocessor

¢ Important commercial OEM
enhancements

© Supports multiple levels of integration:
components, boards and systems

© Supported by Intel’s worldwide post-
sales service and support organizations

-a s

LY, 1

©INTEL CORPORATION 1984

*XENIX 1s a trademark of Microsoft Corporation

tUNIX s a trademark of Bell Laboratones

ORDER-NUMBER 230752-003

2-37

ry Standard
ng System

perating System for
J-licensed derivation

tgfies’ UNIX System III.

: ludes not only all the

lityof UNIX System III, but

iful enhancements from

fyand Intel that meet the needs
mercial OEM. '

¢ Best Foundation for
ilding OEM Solutions

ENIX 3.0 provides the OEM with a--
complete software base on which to build
value-added functionality. It includes the
operating system, the C language, text
processors, development tools, system
accounting and security features, and

"XENIX1s a trademark of Microsoft Corporation

commercial enhancements that make it

the optimum foundation for OEM appli-

cation software
solutions.

XENIX:

Portable,

Flexible,
Powerful

XENIX has become
the industry-standard
microcomputer operat-
ing system for inter-
active, multi-user
applications. It has
gained wide popu-
larity in applica-
tions such as distrib-
uted data processing,
business data process-
ing, word processing,
software development, sci-
entific and engineering ap-
plications, and graphics. .

XENIX has achieved this mar-
ket success through a solid com-

bination of UNIX system technol-
ogy, Microsoft value-added product
development, and Intel’s experience in
microprocessor technology. In the fu-
ture, XENIX 3.0 will benefit from ad-
vances in AT&T UNIX technology,
Microsoft software technology and Intel
semiconductor and system technology.

XENIX is also an extremely powerful
operating system, providing the applica-
tions programmer with a wealth of de-
velopment tools and utilities for bring-
ing OEM products to market quickly.

XENIX 3.0: Leading Edge
UNIX Performance on a Micro

As the first UNIX operating system de-
rivative optimized for the iAPX 286,
XENIX 3.0 alone can take full advan-

- tage of the 80286 unique features:

On-chip memory management
and protection provides two key ad-
vantages for XENIX 3.0 over other
microprocessor UNIX implementations.
First, on-chip memory management and
protection drastically reduces the over-
head in accessing system memory as
compared to the usual separate memory
management unit. With this func-
tionality right on the chip, the operating
system works more smoothly and
efficiently.

Second, on-chip memory management
and protection circuitry ensures that each
version of XENIX 3.0 will be very com-
patible with every other version. This
heretofore impossible level of compati-
bility aids OEM, software developers,
and end users due to the wider
availability of compatible software.

Advanced microprocessor
architecture provides pipeline
processing, wherein a continual flow of
instructions is kept in the CPU queue,
results in throughput several times faster
than the fastest competing
MiCTOpProcessor.

1.75x INTEL 286/3

10—

CONVERGENT TECHNOLOGY MINIFRAME

1.5x ALTOS 986
) SUN @MODEL 100

1.25x

1.0x

NSNS NSNS

NCR TOWER:

Fast floating point processing

is due to XENIX 3.0 support of the Intel
iAPX 287 math coprocessor, Floating
point processing delivers throughput that
is an order of magnitude faster than
non-floating point processing. Extra high
processing speeds are needed in applica-
tions such as data base processing,
commercial data reduction and graphics.

THITITITIITITIIITITITATIT I AIAAA I

Faster, More Reliable Still
When Teamed with Other
Intel Systems Components

The throughput enhancements in

the XENIX 3.0 software are pushed

to even greater speeds by special
hardware architecture in Intel’s systems
and board products.

MULTIBUS® System Architec-
ture is the industry-standard system
bus. It accommodates any of the special-
purpose Intel iSBC® boards, as well as a
multitude of third party Multibus boards
and standard peripherals, for easy sys-
tem expansion.

iLBX™ (Local Bus Exchange)

is an Intel hardware innovation that
increases the amount of local memory
accessible by the operating system to sig-
nificantly improve system throughput.

Error Correction Circuitry (ECC)
automatically detects and corrects soft
errors in RAM. This on-board, self-
correction facility reduces errors and
further underscores data integrity.

(7222727

See Intel benchmark series

A Faster Operating System
Means Market Leadership

The combination of the industry’s most
widely accepted operating system for
multi-user, interactive applications with
the industry s fastest and most advanced
microprocessor gives the OEM a far
superior price/performance ratio than is

ATT

s

MICROSOFT

([/{

BERKELEY

{ /4

INTEL

(L L

XENIX 286 combines UNIX technology from thesg

available through other options. The re-
sult for the OEM: market leadership due
to the ability to more attractively price
products based on superior performance.

XENIX 3.0: The Best of
Everything

The XENIX 3.0 Operating System con-
tains the best of many vendors’ UNIX/
XENIX development efforts during the
last ten years (see Fig. above). We have
taken the best features of many UNIX
versions —ease of use, flexibility, per-
formance, security, reliability—and
added our own enhancements (not the
least of which is compatibility with the
iAPX 286) to make XENIX 3.0 the op-
timum software foundation for the
commercial OEM.

Superior Date Reliability and
Integrity

XENIX 3.0 contains enhancements to
provide extremely high data reliability
and integrity, particularly important to
the OEM who is adding value to a system
product. The following enhancements in
XENIX 3.0 contribute to uniformly reli-
able data at all stages of application
development.

Automatic disk recovery is an
improvement of the UNIX file system
that allows automatic recovery of the file
system in the event of unexpected system
shutdown.

p organizations.

Record and file locks arbitrate
multiple-access requests to the same re-
cord or file, allowing the programmer to
extend locks to a single record, group of
records or the entire file. This is im-
portant in multi-user applications to pre-
vent two or more users accessing and
updating the same information
simultaneously.

XENIX System Analysis Test
(XSAT) is a complete hardware-
software diagnostic package included
with all Intel integrated system products.
XSAT provides a total analysis of a
XENIX-based system, ensuring relia-
bility even after the OEM configures
new drivers into the system.

Tools for Easy System
Configuration

In addition to increased data relia-
bility measures, XENIX 3.0 has
been functionally enhanced for
easier system configuration.
An interactive configura-
tion utility allows the

user to specify device
drivers, disk buffers,
memory size, etc., making
it easy for the OEM to meet unique?®
design requirements. XENIX 3.0
includes over 12 device drivers for hlgh-
speed controllers.

Friendlier Interface

The standard UNIX human interface has
been enhanced in XENIX 3.0, with the

TSI SSSESa

7

addition of vi, a full-screen editor, for

easier and faster application development.

The XENIX C shell augments the capa-
bilities of the standard UNIX shell with
the ability to maintain histories of in-
voked processes and provide the alias
feature, saving re-keying of often-used
commands.’XENIX 3.0 also provides
the visual shell, a menu driven com-
mand interpreter which makes full use of
the screen to display status and environ-
mental information to the user. It has a
built-in HELP facility and allows users
to add new applications to the menu.

Intel’s Open Systems
Approach

Intel believes that system components —
hardware or software—should be fully
compatible with other family members
at any level of integration and open to
future VLSI advancements. XENIX 3.0
was designed to be part of the Open
Systems concept.

Portability from Chip to
Board to System

Intel’s XENIX 3.0 Operating System is
available for and fully compatible across
Intel component, board and system de-
signs, something that no other XENIX
version offers.

Such portability gives OEMs the flexi-

bility to choose the most appropriate and

profitable level of integration for their

applications. Component-level integra-

tion allows the OEM to meet unique

~ design requirements; board and

system-level integration afford

reduced time to market.

“::""6/ There is no loss in

software development

¢ investment as your

I needs change, since

¢ you can port XENIX-

" based applications from the

. chip to the system level or
even from one Intel processor to

another. '

Open to Still Greater
Configurability through
Third-Party Software and
Hardware

XENIX 3.0 users can tap into an exten-
sive base of existing third-party lan-
guages and application packages for
almost endless versatility in system
configurability. There are hundreds of
such packages available today with
many more on the way. To assure the -
availability and quality of these pack-
ages on our systems, we have the Inde-
pendent Software Vendor Program.
Through this activity, software vendors
are given Intel systems as well as techni-
cal assistance to aid them in porting their
packages. The resulting product is
thoroughly evaluated by Intel prior to
certification for operation on our system
products.

Superior Documentation

In line with the OEM orientation of the
Intel hardware and software combina-
tion, the documentation for Intel’s
XENIX 286 product provides excellent
support for system builders. In addition
to the mature UNIX documentation from
AT&T and the value-added feature
documentation by Microsoft, Intel adds
a wealth of publications aimed at help-
ing the OEM to successfully launch
XENIX 3.0 based products.

Worldwide Support and
Service

XENIX 3.0 customers can take advan-
tage of Intel’s worldwide staff of trained
hardware and software engineers in
contracting for application design assis-
tance. A liberal warranty, including
software updates and a technical news-
letter, follows the sale. Once the war-

ranty expires customers can choose from
a variety of support contracts.

Intel offers complete training on the
XENIX 3.0 Operating System as well as
the iAPX 286 processor and associated
hardware.

Intel, The Technological
Leader

Intel is committed to pushing the fron-
tiers of VLSI design to their ultimate
limits. In the process, we move our
customers along the technology curve
without interruptions in application

‘development or expensive mid-stream

architecture changes.

Intel started the micro revolution with
the 4004 and has been the market leader
with every generation of advanced pro-
cessors since.

Systems and system software are a
natural for us: who better knows the
pieces and how to make them work
together?

...In Total Solutions

The XENIX 3.0 Operating System fully
exploits the iAPX 286, the fastest and
most sophisticated microprocessor on
the market. No other processor/operat-
ing system combination will give OEMs
a faster and more economical path to
getting systems and applications on the
market.

Intel has always been first with the latest
and most advanced VLSI and now with
system software tailor-made for Intel
VLSI. Because we're there first, our
customers are first in their respective
markets with state-of-the-art OEM and
end-user products.

VAVAYAAVAA XENIX'30

XENIX 3.0 includes support for the following intel

Systems, single board computers and processors.

® System 286/310
® System 286/380

® iSBC® 286/10 Processor Board
—16mb of addressing
—On-chip memory protection
® CX Series RAM board
—ECC (Error Correction Circuitry)
—iLBX™ (Local Bus Extension)
® iSBC 215 Winchester Controller
® iSBX 218 Floppy Controller
® iSBC 534 Serial I/O Expansion Board
® iSBC 544 Intelligent Serial I/O Expansion Board
® iSBC 188/48 8-channel Serial I/O Expansion Board
® iSBC 552 Ethernet Controller Board
@ iSBX 217 Tape Controller Board

® 80286 Central Processor
® 80287 Fast Floating Point Processor

Documentation

Documentation Includes:

® Overview of the XENIX 286 Operating System
® XENIX 286 Installation and Configuration Guide
® XENIX 286 System Administrator’s Guide

® XENIX 286 Communications Guide

® XENIX 286 Visual Shell User’s Guide

® XENIX 286 User’s Guide

® XENIX 286 Reference Manual

o XENIX 286 C Library Guide

® XENIX 286 Programmer’s Guide

© XENIX 286 Device Driver Guide

® XENIX 286 Text Formatting Guide

Text Books

The UNIX Book—Banahan & Rutter
The UNIX System—Bourne
The UNIX Operating System—Kaare

Understanding UNIX: A Conceptual Guide—Groff & Weinberg

The UNIX Programming Environment—Kernighan & Pike
Introducing the UNIX System—McGilton & Morgan

A Practical Guide to the UNIX System—Sobell

A User Guide to the UNIX System— Yates & Thomas

A Business Guide to the UNIX System— Yates and Emerson

2-41

intel

Ordering Information

XNX 286 HRO XENIX Object Software (8" double side, double density) plus license rights
XNX 286 KRO XENIX Object Software (5%" double-sided, double density) plus license rights
XNX 286 RF Software Incorporation Fee

SYS 310-17X System Kit including System 310-17 and XENIX Software

SYS 310-17MX System Kit including System 310-17, XENIX Software, 6 user support

SYX 286 RO License rights extension for system customers

SYX 286 RF System incorporation fee

2-42

intel

Ordering Information

XNX 286 H

XNX 286K

XNX 286 RO
XNX 286 RF
173258

CTW 14PP
SPRTECHREP
HOTLINE

SP86 330 XINSTALL
CONSULT-FIELD
CONSULT-LT

XENIX Object Software (8” double side, double density)
XENIX Object Software (5%" doyble-sided, double density)
Software License Rights Extension

Software Incorporation Fee

XENIX Documentation Package

XENIX Customer Training

XENIX Support Subscription Services

XENIX Hotline Phone Service

XENIX Software Installation

XENIX Onsite Field Consulting

XENIX Onsite Field Consulting for extended time periods.

2-43

Inter Gg?élcmon AP130
&'
- Fe
°<~9%:°& S
R
>
? o

©INTEL CORPORATION, 1982 2-44

AP-130

INTRODUCTION

Intel recently introduced a new set of extensions to its
microprocessor product line. The iAPX 86/30 and
iAPX88/30 Operating System Processors (OSPs) aug-
ment the general-purpose instruction set of the well-
known 8086/8088 architecture to include common,
real-time, operating system capabilities. A single
device, the 80130 Operating System Firmware compo-
nent (OSF), now provides hardware support for func-
tions previously relegated to software.

The 80130 introduces new concepts in the areas of both
hardware and software. At first glance, traditional
component-level hardware designers could feel some-
what intimidated by the esoteric concepts and un-
familiar buzzwords encountered in the software world.
Even the experts in conventional operating system
(OS) design may initially find it strange that what used
to be “‘soft’’ software routines are now cast in silicon.

This application note is intended for readers at both
levels. The first section reviews the development of
processor extensions in general and operating system
firmware in particular. Later sections should help you
understand what a real-time operating system can do,
how the 80130 provides these capabilities, and how to

2-45

design system hardware and software to take advantage
of such features.

The note also documents a complete (albeit simple)
system, including schematics and listings. The reader
may wish to reconstruct this system to get started with
OSPs. Finally, a step-by-step description of the so-
called ‘‘configuration” process shows how physical
system parameters are incorporated into the software
as the software is ‘‘installed” in memory. Through-
out the note are a number of ‘‘exercises’’—questions
relating to concepts just presented. Please take a
few moments to think about these questions before
reading on.

The reader need not have worked with operating sys-
tems previously, though such background would be
helpful. The reader should also know something about
microprocessor hardware—at a minimum, how the
8086 or 8088 devices operate. For simplicity, most of the
software examples are written in PL/M-86, so the
reader should be familiar with PL./M-80 or some other
block-structured language. Finally, be forewarned that
the configuration steps make use of several ISIS utility
programs, including EDIT, SUBMIT, ASM86,
LINK86, and LOC86. Readers who wish to brush up on
any of the above should consult the appropriate Intel
reference manuals.

Vss

AD14 E
AD13 E

ADIZ‘E:

AD11 E
AD8 l:
AD7 E
ADS E
ADS E
AD4 l:
AD3 [:
AD2 E
AD1 E
ADO [:

MEMCS E

5 [

CLK E
Vss E

80130
OSF

. AD10 E

MAX
MODE

MAX
MODE

Vss E
AD14 [:
ao13[]
ao12[]
ao11 []

ans []
ADS E
ao7 []
aos [
ans [
a0s []
a3 [
a0z]
a0t]
ano []
ni [
e [
ek []
Vss [:

I A Y

3 Vee
] ams
] averss
] Ap171sa
[atsiss
j A19/S6
j BHE/S7 (HIGH)
j MN/MX
[o

] roaTo
[] Ra/GTi
] ock
BE
s
BE]

[aso

[J s
[)7est
:] READY

1 |] meser.

Figure 1. 8086 and 80130 Pinout Diagrams

2-46

AFN-02058A

AP-130

EVOLUTION OF PROCESSOR
EXTENSIONS

In the early days of microcomputing (circa 1974), things
were simple. The first microprocessors comprised just
the central processing unit of a simple computer. Sys-
tems built up from these processors were generally
small, dedicated-purpose device controllers—often
replacing the random logic of an earlier design. The
system designer had responsibility for the development
of the hardware and all application software.

Semiconductor technology has progressed rapidly
since then. Devices have become more sophisticated,
as have the applications in which they are used. System
functions today are more complex than they used to be,
and are demanding more in the way of both system
hardware and software.

To help designers cope with this complexity, semicon-
ductor vendors are building increasingly more
‘‘functionality’ into their standard product lines.
Whereas the general arithmetic functions of the 8080
and 8085 were limited to addition and subtraction of
eight-bit unsigned (ordinal) values, for example, the
Intel® 8088 and 8086 now add, subtract, multiply, or
divide eight- or 16-bit, signed or unsigned variables
—an obvious improvement.

The evolution of floating-point arithmetic provides an-
other example of technology growth. Initially, design-
ers of numeric and process-control systems each
developed the floating-point arithmetic routines they
needed. Intel eased this task considerably in 1977 when
it introduced a standard floating-point format and a
floating-point arithmetic software library, FPAL-80. In
1978, the iSBC 310 High-Speed Mathematics Unit im-
plemented these same functions with dedicated hard-
ware and executed them an order-of-magnitude faster.

The 8231A Arithmetic Processor Unit (introduced in
1979) provided similar functionality in one chip at much
lower cost. To accommodate the needs of today’s
world, the Intel RealMath™ software standard and the
8087 numeric coprocessor perform 80-bit floating-point
arithmetic for high-performance 8088 and 8086
systems.

This evolution of floating-point hardware illustrates two
recurring themes in the microcomputer industry. First,
there is a natural trend toward componentization:

1. New applications reveal a need for new types of
functionality (in this case, floating-point arithmetic).

2. As common requirements become evident, vendors
develop software to serve these needs.

3. Specialized hardware is developed to support the
established functions more simply and effectively
than software alone.

In time, everything ends up in silicon.

The second theme is this: different functions should be
implemented in different ways to fit the customer’s
needs. ‘‘Universal’’ requirements—like 16-bit
multiplication—are best incorporated into the CPU.
Functions needed only by certain applications—like
high-speed, extended-precision square roots—should
be provided as optional Processor Extensions so that
their expense is incurred only by those who need them.
In keeping with this philosophy, Intel currently offers
several processor extension products (see ‘“What’s in a
Name?”’).

What’s in a Name?

The 80130 Operating System Firmware (OSF) device is
only the latest member of an extremely flexible family
of Intel microprocessors. Its siblings include the 8086
and 8088 Central Processing Units (CPUs), the 8089 I/O
Processor (IOP), and a floating-point math coproces-
sor, the 8087 Numeric Processor Extension (NPX).
These individual standard components may be mixed
and matched in numerous ways to create combinations
optimized for widely varying applications.

To make it easier to discuss the most common con-
figurations, Intel has defined an ‘“‘Advanced Processor
Series’’ (iIAPX) numbering scheme, something akin to
those used in the minicomputer and mainframe worlds.
The 8086 CPU by itself, for instance, is called the iAPX
86/10. The 8086/8087 combination is dubbed the iAPX
86/20. An 8086/80130 pair has the name iAPX 86/30. The
8086, 8087, and 80130 together would form an iAPX
86/40.

When each of these combinations uses an 8088 in lieu
of the 8086, each of the numbers above substitutes
‘88> for the ‘“86’°. An 8088 teamed with an 80130 is
therefore called the iAPX 88/30. Finally, adding an 8089
to any system changes the final zero to a one. So, an
iAPX 88/41 system would be one using the 8088/8087/
8089/80130 chip set.

Real-Time Operating Systems

Let’s turn our attention now to the subject of micro-
computer operating system software—an area steadily
growing in importance. The trends toward standardized
functions with specialized implementations will be-
come evident.

AFN-02058A

AP-130

But first, what is an operating system? The phrase
means different things to different people. In 20 words
or less: An OS is a tool, a set of programs or routines
which reduce and simplify the problem of managing
system resources. (Well, 21, actually . . .)

Most microcomputer programmers have encountered
single-user diskette operating systems, Intel’s ISIS-II®,
and CP/M® and CP/M-86® from Digital Research Incor-
porated among them. In essence, an OS of this sortis a
collection of run-time subroutines which perform
device I/O operations and give application programs
access to a disk-based file system. Along with these are
routines to supervise the loading and execution of ap-
plication programs. Historically, this type of OS is
oriented toward user-interactive applications: software
development, business computing, and the like.

In the mainframe world, the goal of an operating system
is to use expensive equipment as efficiently as possible.
Batch processing systems ensure that programs waste
as little CPU time as possible, though each monopolizes
the CPU until it has completed. A time-sharing OS
allots short periodic “‘slices’’ of time to each of several
independent users, during which each has access to the
CPU, memory, and other system resources.

A step above the traditional time-sliced OS are ‘‘real-
time, multitasking operating systems.” But what is a
‘“‘real-time”’ application? (‘“‘Don’t all programs execute
in real time?”’)

A real-time system is one in which the CPU must do
many different things (tasks), all more-or-less simulta-

neously. Unlike the sequential time-sharing of
mainframe OSs, though, the tasks are prioritized. Low-
priority tasks are preempted if any of higher priority
have work to do. The higher-priority task then runs
until it must wait for some external event to occur or no
longer needs the CPU for some other reason. Thus, the
CPU services tasks in their order of importance.

A computer controlling factory machinery, for in-
stance, might perform five separate tasks:

1. Monitor input switches to detect emergency condi-
tions, determine intended operating mode, or update

indicator lights showing machine status;
2. Drive a stepper motor to position a tool;
. Keep track of the time of day;

. Send output to the console (e.g., CRT), either in
response to explicit commands or as part of some
other task;

. Read and process characters entered from a console
keyboard.

These tasks seem largely unrelated, though the first few
may be more important to system operation
than the others. Let’s consider some alternate
ways to accomplish these functions with today’s
microcomputers.)

Conceptually, the most straightforward approach might
be to dedicate a separate computer to each. The pro-
gram for each would then be quite simple: an initializa-
tion phase followed by an endless loop pérforming the
dedicated function. Algorithms for the first four tasks
are flowcharted in Figure 2.

I

| —

MONITOR STATUS CONTROL MOTOR CKEEP TRACK OF TIME) (CONSOLE OUTPUT)
INITIALIZE CURRENT SET INITIAL INITIALIZE COUNTERS INITIALIZE CONSOLE
STATUS MOTOR POSITION WITH CURRENT TIME INTERFACE DEVICE
Y
DELAY TIME INTER- WAIT UNTIL ONE DELAY ONE WAIT UNTIL A
VAL CORRESPONDING STEP TIME HAS SECOND MESSAGE IS READY
TO SAMPLING RATE EXPIRED .
- INCREMENT TIME- OUTPUT MESSAGE
READ STATE OF OF-DAY COUNTERS TO CONSOLE
INPUT SIGNALS 5]
MOTOR AT DESIRED!
* POSITION?] |
WRITE MACHINE
STATUS TO INDI-
CATOR LIGHTS STEP IN APPRO-
PRIATE DIRECTION

Figure 2. Flowcharts for Concurreht Machine-Tool Tasks

2-48

AFN-02058A

AP-130

What’s wrong with this approach? Ignoring cost, the
need for multiple CPUs becomes physically unrealistic
for more than a few tasks—60, say, or 600. And tasks
are rarely fully independent; note that the switches

monitored by task 1 could affect task 2, and that tasks 4 -

and § interact with the rest of the system in as yet
undefined ways. So, some sort of communications
would have to be set up between the micros.

Exercise 1. Suppose five tasks are all interrelated.
How many communications channels would have
to be set up between different processors? If each
channel requires two dedicated communication

chips, how would the number of peripheral
devices compare with the number of CPUs?

In each task, the CPU spends most of its time waiting
for time to pass or for something to happen. One CPU
would be able to implement all five tasks if its time were
properly divided among them. An alternate approach,
then, might be for a single processor to attend to each
task in turn, performing the actions called for by each.
Figure 3 shows a flowchart for this scheme. Only one
CPU is required and the tasks can communicate be-
tween themselves and share physical resources like the
console.

(COMBINED TASKS j
!

INITIALIZE CURRENT
STATUS

'

SET INITIAL MOTOR
POSITION

!

INITIALIZE COUNTERS
WITH TIME

'

INITIALIZE CONSOLE
INTERFACE

READ STATE OF
INPUT SIGNALS

WRITE MACHINE STATUS
TO INDICATOR LIGHTS

HAS
STEPPING INTERVAL
EXPIRED?

1S
MOTOR AT DESIRED
POSITION?

STEP IN APPRO-
PRIATE DIRECTION

HAS
INCREMENT TIME- —
o:ﬁ:l%‘éobgn OF-DAY COUNTERS
OUTPUT MESSAGE —
TO CONSOLE

Figure 3. Machine-Tool Tasks implemented Via Polling Scheme

2-49

AFN-02058A

AP-130

The problem here is the heavy interaction between
tasks. Before it can be serviced, an important task may
have to wait for many other less critical tasks to com-
plete This imposes a constramt that each task release
the CPU as quickly as posmble Also, lumping tasks
together obscures the boundaries between them. In-
itialization sequences must be grouped with each other,
rather than with the sections of code affected. Adding to
or deleting any task may affect the others It’s not clear
how to structure the program such that programmers
could cooperate on such a program.

Moreover, the various tasks can interfere with each
-other. Suppose on a given pass through the processor
loop, three tasks each send one new character of a
message to the console display screen. The resulting
output would be most interesting.

The third, and optimal approach, would be one which
combined the advantages of the first two approaches,
while avoiding the pitfalls. Each function of the overall
system could be designed, written, and tested sepa-
rately, as in the first approach, yet all the ‘software
would run on a single computer system as in the
second. Tasks could therefore communicate with each
other easily, and share peripherals such as CRTs. This
multitask control and communication function could be
performed largely through software.

The key is finding a way to properly budget CPU time
between the various tasks. Early pioneers of complex,
real-time, control system design found that they needed
special routines, apart from the application tasks them-
selves, to supervise the execution of application tasks.
It was (at best) an inconvenience for so many engineers
to independently define, design, document, test and
debug software with the same general purpose. At
worst, schedules slipped or pro_lects were cancelled for
the lack of reliable executive software.

To help avoid these hazards and free up the designers to
concentrate on more immediate goals, Intel developed
iRMX 80, the first real-time, multitasking, executive
operating system for microprocessors. iRMX 86 was
introduced to the 16-bit world two years later in 1980.

Because of the critical real-time nature of such operat-
ing systems, they require certain hardware capabilities
in the host system, such as special timer logic clocked at
certain frequencies to measure the passing of time, and
interrupt controllers to monitor assorted asynchronous
events. Combine all this with a handful of memory
chips to house just the OS software, and the address

. decode and control logic needed by all of the above, and
~you’ll find you need the equivalent of a single-board
computer system just to support a mulutaskmg
environment.

v

Until now, that is. The current trend is to integrate OS
software and hardware functions mto silicon. Intel’s
iAPX 432 32-bit MicroMainframe™ system does this
within the CPU. For the 16-b1t world, however, Intel
provides a separate chip, the 80130, which contams
operating system firmware as well as tlmer and inter-
rupt control functions.

What is the 80130 OSF? It is an extremely sophisticated
integrated circuit, fabricated using Intel’s high-
performance HMOS technology, which contains over
160,000 devices. In one 40-pin package (Figure 4), the
80130 combines several timers, multiple-mode inter-
rupt control logic, and a large control store memory
—plus buffers, decoders and the like—to form the in-
tegrated. heart of a multitasking operating system.
Compared with the iRMX 86 Nucleus, for example, the
80130 replaces an 8259A PIC, an 8253 PIT, a special
oscillator, 16K bytes’ worth of memory, and associated
control logic.

The 80130 operates in conjunction with the 8086 CPU.
Together, the two chips are called the iAPX 86/30 OSP.
The same device may be paired just as easily with an

‘8088 forming the iAPX 88/30. From here on, though,

references to the 8086 or “‘host processor’” apply to
both CPUs. Due to the high speed of HMOS, the 80130
currently runs at system clock rates up to 8 MHz with-
out inserting any wait states. Firmware in the 80130
supports the 35 primitive functions listed in Table 1.
Many of these are discussed in Chapter IV.

SYSTEM HARDWARE DESIGN

The 80130 supports a wide range of system architec-
tures, from compact to quite complex. Most, however,
have in common the functional blocks represented in
Figure 5. After a brief review of iAPX 86/30 systems in
general, we’ll examine 80130 requirements in greater
detail.

Basic Functional Blocks

In addition to the 80130, the central processing ‘“core’
of a typical OSP system would include an 8088 or 8086
operating in maximum mode, an 82843A clock
generator, and an 8288 system controller, all connected
according to the standard rules. More on the 80130-
specific interconnects later.

Address latches (e.g., 8282s or 8283s) are generally
needed to demultiplex the processor address bus for
standard memory devices and for memory and I/O
device-select logic. The number (from zero to three
octal latches) depends on the host processor,
meémories, and the addressing scheme employed. Data

AFN-02058A

AP-130

Table 1. Operating System Primitives Supported by 80130

Task Management

Interrupt Management

Send Control
Create Region
Delete Region

Suspend Task Set Interrupt
Resume Task Signal Interrupt
Sleep Reset Interrupt
Create Task Enter Interrupt
Delete Task Wait Interrupt
Set Priority Exit Interrupt
Get Task Tokens Enable

Disable

Get Level

Intertask C ications and Synchr ti Free M y M /System Partitioning
Send Message Create Segment
Receive Message Delete Segment
Create Mailbox Create Job
Delete Mailbox
Mutual Exclusion Control Misc. Support

Receive Control Signal Exception
Accept Control Get Type

Disable Deletion
Enable Deletion

Set O.S. Extension
Get Exception Handler
Set Exception Handler

transceivers (8286s or 8287s) may also be needed for
increased bus buffering.

Any complete microprocessor system must also have
some combination of I/O peripherals and memory, col-
lectively indicated by the box labeled ‘‘Local Re-
sources.’”’ As we shall see, some of the system RAM
and ROM (or EPROM) must be reserved for OSP itself.
Additional logic decodes the latched address lines to
generate chip-select signals for the memory and I/O
devices.

This note only discusses simple, single-processor sys-
tems. More sophisticated architectures may incor-
porate a multimaster system bus, in addition to a local

' processor bus. This would require additional system
controllers, address latches, and bus transceivers for
bus isolation, and address mapping logic (not shown) to
select between the various busses, enable the respec-
tive transceivers, generate a System Ready signal, and
so forth. For design information on such techniques,
refer to application note AP-67 in theiAPX 86,88 User’s
Manual.

80130 Pin Functions

Back to the 80130. Certain pins on the 80130 (in particu-
lar, AD15-AD0) attach directly to the CPU. The AD
pins are bidirectional, accepting addresses from the
host and returning instructions or data. By monitoring
the system clock and status signals, S2-S0, the 80130
can decode the processor status internally and respond
automatically to the appropriate bus cycles. The BHE
input lets the 80130 determine the width of data trans-
fers and distinguishes an 8088 host from an 8086. If you
refer back to Figure 1, you’ll notice that these 80130 pin
assignments were selected to simplify P.C. board
layout.

Because of the 80130’s location on the CPU side of any
latches or data transceivers (on what is sometimes
called the “‘pin bus’’), the transceivers (if used) must be
disabled when the 80130 is driving the processor bus.
Whenever the 80130 is responding to any type of bus
cycle, it generates an ACK signal. As Figure 4 suggests,
one way to avoid contention is to simply disable the
transceivers when ACK is active. ACK can also be used
to prevent the insertion of wait states.

AFN-02058A

AP-130

T T T T T T e e e e e e =
| OPERATING SYSTEM UNIT |
' |
I i
| D0-7 \
I | 7
ll PROGRAMMABLE ;
INTERRUPT
| Loato | INTERRUPT INPUTS
| |
e
! 1
' l
I KERNEL ! INTERRUPT OUT
| CONTROL H
i STORE |
! C— ‘
| 1
} SYSTEM H——» SYSTEM
| nd TIMER |
| . > |
| |
| |
| D8-15 |
DELAY [— DELAY
I| K TIMER |
| > |
! |
| !
! |
| BAUD RATE - TE
| GENERATOR | BAUD RA
! |
! I
P ————— i e e - ——————— -
| |
| I
| <,:_ [+—— cLock
|
I3
| DATA BUS
TATUS
% BUFFER < J l INTERFACE ?zﬂ s
< 'I:i:" > a AND 4
| ADDRESS L CONTROL kb Bus contaoL
ADDRESS/ | LATCH Y
DATA BUS | . oca
|] INTERRUPT
IL CONTROL UNIT —} (UTR)

Figure 4. 80130 Internal Block Diaéram

Additional pins on the 80130 include eight interrupt-
request inputs. Internal interrupt control logic provides
many of the functions of the 8259A. During system
configuration (Chapter V), each of the eight may be
individually defined as a direct level-sensitive or edge-
triggered interrupt request, or each may be cascaded
with a standard 8259A in slave mode.

The INT output must be connected to the host CPU to
inform it of an enabled interrupt request. In very large
systems with multiple, cascaded interrupt controllers,
Local Interrupt Request (LIR) indicates to the bus
contention logic whether a requesting slave is local, or
must be accessed via a multimaster bus. :

The 80130 also contains dedicated timer logic to provide
the OS time base, which is output on SYSTICK.
Software operating in conjunction with the 81030 as-
sumes one of the interrupt inputs (INT2 in this case) is

driven by SYSTICK, so this.connection must be made
externally. Routines within the 80130 initialize and per-
form all bit-level control of the interrupt and timer
logic, according to options and parameters specified
during the configuration process. Freeing the program-
mers from this tedium allows them to devote more
thought to solving their own unique problems.

An additional, independent timer generates a’ user-
programmable, square-wave output signal called
BAUD to clock an off-chip USART.

Since the 80130 displays some of the characteristics of
both memory and I/O, it requires chip-select signals for
both the memory (MEMCS) and I/O (IOCS) address
spaces. These are discussed at length below. Finally,
Intel has reserved one output pin (called “DELAY’")
for use in future designs. Leave it unconnected iniAPX
86/30 systems.

2-52

AFN-02058A

V85020-N4V

+5

SSfZ

+5

B264A Ve & CLK I\
(A1) CLK LK 3 $2- (CONTROL BUS) — CONTROL
READY| READY 65 4 / SIGNALS
ROY1 peser . (A3
Y ALE |+
AEN2 BHE BHE BHE
AENi_RDV2] A9 N s282 As
= Als »a | Alg
LOCAL (ON-BOARD)
?gg? o RESOURCES
= B0 (PROM, PERIPHERALS, RAM
N.C.-{ RD ACCORDING TO APPLICATION))
Nc-jas1 ADIS 8282 || '\ Ass
| (AS) Ay
Ncaso 0o -
Jrock] _
NC. o8
N.C.4{RQ/GT1 _:1:
N c.{ rRa/GTo =5
NMI
TEST 8282 [| \
mD/ Ar-Ag
INT GND MAX Lol = H / ' heapy oY D15-D0
N N
[+5 DT/R
T_ INT DEN
v __
L »fcik Acx 1 l p———
80130 \}
“n AT9-A16 M
OE
BHE D15
" 8286
§2 DECODE (A8)
5 LOGIC D8
NC OR FIABK ats-as
TO SERIAL INT ~<——{ BAUD T
NG DELAY 6;5“
— sysTick wV oo pres
A4 Do
INT?
INT6
INTS
INT4
PERIRHERALS AD15 ADDITIONAL BUFFERING REQUIRED]
INT3 ! PROCESSOR DATA BUS x(ron MULTI-MASTER SYSTEM)
Lafint2 ADO
—INT1 .
——»|INT
“vss vss

ol 0ol

8289 I
(A10)
SYSTEM
CONTROL
BUS
8288 >
(A1)
7
8283 3
(A12)
8293 SYSTEM
(A13) ADDRESS
BUS
8283 J
(A18)
T
OE
8287
(A15)
SYSTEM
DATA
T BUS
OE
8287
(A16)

Figure 5. Basic iAPX 86/30 Microcomputer System Block Diagram

0€l-dv

AP-130

Additional System Requirements

The OSP requires a certain amount of off-chip memory
for its own operation. The system must provide at least
1K bytes of RAM at address 00000H for the CPU
interrupt vectors, plus another 1500, bytes for OSP
system variables, data structures, stacks, and the like.
This RAM may reside anywhere in the 8086 megabyte
address space, although it is often contiguous with the

. interrupt vector up front. Application tasks must each
have their own stack, so allow at least an additional 300
bytes of RAM for each.

Any iAPX 86 system must have ROM or EPROM at the
upper end of memory to hold the CPU restart vector.
About 3400 more bytes are consumed by code to initial-
ize and access the OSP. This code is generated auto-
matically from libraries on a diskette provided with a
product called the itAPX 86/30 and iAPX 88/30 Operat-
ing System Processor Support Package (iOSP 86).
Space left in the initialization EPROMs is available for
application tasks. N

As code is being written, the system designer should
count on another 1500 bytes of code from the support

libraries being added to his application during the link-
ing and system configuration steps. These memory re-
quirements are shown in Figure 6. In practice, the
separate blocks in this figure would be grouped together
for more efficient use of RAM and EPROM chips.
The 80130 occupies a 16K-byte block of addresses in the
host-processor memory space, so external logic should
decode address bits Ajg-A;4 to generate MEMCS.
Similiarly, the timer and interrupt control logic occupy
a 16-byte block of addresses in the I/O space; at least
some of the bits A;5—~A, must be decoded to generate
TOCS. The 80130 decodes all the lower-order address
bits (14 for memory, four for I/O internally).

Firmware in the 80130 leaves a great deal of flexibility in
decoding the chip-select signals, to be compatible with
whatever decode logic is already present in the system.
The I/O starting address may be on any 16-byte bound-
ary in the full CPU /O space. The memory block has
only two restrictions: the off-chip initialization and in-
terface code memory must be placed immediately
above the MEMCS block, so the 80130 may not occupy
the extreme top of memory, nor may the 80130 reside at
address 00000H since this area is reserved for interrupt
vectors.

THTT

OFFFFOH

MUST BE
CONTIGUOUS

iAPX 86/30 SYSTEM MEMORY REQUIREMENTS

POWER ON-LOCATION

80130 INITIALIZATION AND CONFIGURATION
CODE (ROM/EPROM)

16K FOR 80130 ON 16K BOUNDARY

} 1.5K CODE BYTES SYSTEM INITIALIZATION (ROM/EPROM)

} 1.5K RAM BYTES FOR IAPX 86/30 STACK AND DATA (RAM)

1K BYTES
RESERVED FOR
INTERRUPTS (RAM)

Figure 6. Operating System Processor System Meméry Requirements

2-54 R

AFN-02058A

AP-130

Timing Requirements

System timing analysis is often the most tedious part of
digital hardware design. This discussion can be rela-
tively short, though, because the 80130 timing is quite
simple: by design, the part is compatible with the timing
of the host processor. Since it interfaces directly with
the CPU pins, traditional set-up, hold, and access times
no longer matter.

There are really only two areas of concern in analyzing
the timing of most OSP systems, both of which relate to
the user-generated chip-select signals. Figure 7 il-
lustrates the relevant timing signals of a standard 8086
four-state Read cycle (memory or I/0), along with the
timing responses of the 80130. I/O Write cycle timing is
the same. (Full timing diagrams are part of the respec-
tive data sheets.)

respond during T3 . In each case, the chip-select signals
must be active Tggep, before the end of state Ty,
Assuming wait states aren’t desired, addresses
generated by the CPU must propagate through the ad-
dress latches and be decoded during Ty or Ts.

How much time does this leave the decode logic? As
we’ll see, ample.

By convention, T¢p oy is the delay from the start of
T; until address information is valid on the CPU pins;
Tivov is the propagation delay through an 8282 latch;
and Tcgcy is the 80130 chip-select set-up time. The
mnemonic Tgy cg represents the chip-select logic prop-
agation delay, after the latch outputs are stable. The
sum of these four delays must be less than two system
clock cycles, reduced by the clock transition time.

Terav + Tivov + Toves + Tescr = Teen + Tencw

Toves = Terer + Terer — Terav = Tivov — TescL
The first concern is that MEMCS and IOCS must be =125 +125 -60 —30 — 20 (nsec.)
active early in a memory or I/O cycle if the 80130 is to =140 nsec.
T4 T T2 I T3 | T4
T™W
ToHeL TeLeH '—"“—\—__/—"“—\ —\ —
CLK
_1 TCHSV TSVCH TeLeL TCLSH TSHCL
I e —
S§2,81. S0

/

\ I
TCLAH

TASCH
i

(BHE, A;5-Ag VALID X____

BHE, AD,5-AD,

MEMCS, 10CS . L

TCSCL

I'._.____. TCHCS

WRITE CYCLE

| TDSCL

WRITE DATAVALID |

ADDRESS VALID XNM

AD5-ADy
I<‘1'csm(|1 TCSAK /
AR : /__.
TSACK | -
READ CYCLE] TeLov TCLDX TcuAKl
- —\ FLOAT F
VALID { READ DATAVALID LOAT
AD5-AD, [\
- , TCLVE
ACK TCHEH
TSACK \

Figure 7. Operating System Processor Timing Diagrams

2-55

AFN-02058A

AP-130

The propagation delay numbers plugged into the equa-
tion are worst-case values from the appropriate Intel
data sheets. The CPU is an 8086-2 operating at 8 MHz.
This means the address decode logic must produce
stable CS outputs within 140 nanoseconds.

Exercise 2. Using standard, low-power Schottky
TTL, does it make sense for a circuit to take
longer than 140 nsec. to decode 6 program or 12
1/0.address bits? Even if the rather liberal setup
specs are not met, the 80130 would still work fine.
Wait states would be needed until the chip-select
signal was active, however, so performance
would degrade some. ’

The second point of concern relates to ready signal
timing. The 80130’s acknowledge output signal, ACK,
can be used to control the CPU’s ready signal. For this
case, the chip-select signal must be active early in a
memory or I/O cycle to allow activation of ACK early
enough to prevent wait states. There are two schemes
for implementing ready signals; ‘‘normally ready” and
““normally not ready.”” (For more details, refer to AP-
67, ‘8086 System Design.’’) Chip-select timing is more
critical in some ‘‘normally not ready’’ systems.

In a “normally not ready” design, acknowledge signals
are generated when each resource is accessed. The
individual acknowledgements are combined to form a
system-wide ready signal which is synchronized by the
8284A clock generator via the RDY and AEN inputs.
The 8284A can be strapped to accept asynchronous
ready signals (asynchronous operation) or to accept
synchronous ready signals (synchronous operation).
Synchronous 8284A operation provides more time for
address latch propagation and chip-select decoding. In
addition, inverting ACK off chip produces an active-
high ready signal compatible with the 8284A RDY in-
puts, which have shorter set-up requirements than
AEN inputs. (As a side benefit, a NAND gate used like
this can combine ACK with the active-low acknowl-
edge signals from other parts of the system.) Based on
these assumptions, the time available for address latch
propagation and chip-select decoding at 8 MHz is:

Terav + Toves + Tesak + Rriver = Terer + Tewen

Toves = 2 Terer — Tewav — Tesak — Triver
= 250 - 60 - 110 - 35
= 45 nsec.

The circuit in Figure 8 which uses Schottky TTL com-
ponents leaves about 15 nsec. to produce MEMCS from

8288
80130
8086
See ALE OSF
1
At9 0% sa a1 v7jo—
At8 ™ 710 e YO~
Y5~ | memory
. a1z 6D 6Q Olaza va[o—) MEMORY
At6 D 50 ¢ Wip—
20—
ADI5 o B yijo—
AD14 3D 3Q A YOO O MEMCS
745373 745138 K
(@)
READY
w | o w nzoae
Al
o« AENI
| 8284A
ASVNCG =
READY :

Figure 8. High-Speed Address Decoding Circuit

2-56

AFN-02058A

AP-130

fhe high-order address bits—more than enough for the
74S138 one-of-eight decoder shown.

Granted, this does not leave much leeway to fully
decode the I/O address bits. A 12-input NAND gate on
AD15-AD4 could be used, introducing only a single
propagation delay but forcing the I/O register block to
start at OFFFOH. Incomplete decoding is also legal: it is
safe to drive IOCS with the (latched) AD15 signal di-
rectly, provided all other ports in the system are dis-
abled when this bit is low. In this case, the effective
address of the I/O block (which must be specified dur-
ing the system configuration step) could be 0000H, or
any other multiple of 16 between 0000H and 7FFOH.

Again, the OSP system will still operate even if the
memory or I/O decoding is slow. The acknowledge
signal returned to the host CPU would just be delayed
accordingly, so unnecessary wait states would be in-
serted in access cycles, but the 80130 would not mal-
function. Only rarely does the OSP access resources in
its I/O space. Even if slow decode logic were to insert
several wait states into every I/O cycle, the overall
effect on system performance would be insignificant.
A few words of caution, though. If the 8284A is strap-
ped for synchronous operation, external circuitry must
guarantee that ready-input transitions don’t violate the
latch set-up requirements. Also, the chip-select signal
must not remain low so long after the address changes
that the 80130 could respond to a non-80130 access
cycle.

Exercise 3. Suppose the typical timing values for
a particular decoder would easily meet the ready-
input set-up requirements presented above for
asynchronous 8284A operation, but pathological
worst-case figures were just a little slow. Could
that circuit still be used safely in most applica-
tions? What would happen if the worst-case com-
bination of worst-case conditions ever actually
did occur? These occasional extra wait states
would probably not cause a hard system failure.

Exercise 4. Earlier it was mentioned that the ac-
knowledge signal could also be used to avoid bus
contention. Prove that with any decode logic
which meets the above requirements, ACK would

" disable the bus transceivers before the host CPU
samples the bus.

Example System Design

Appendix A includes full schematics for a complete
iAPX 86/30 system providing considerable function-
ality with only 27 chips. In addition to the OSP, the

system has 4K bytes of 2114 RAM (with sockets for
another 4K), from 8K to 32K bytes of 2732A or 2764
EPROM, an 8251A USART operating at 9600 baud, and
an 8255A Programmable Peripheral Interface with 24
parallel I/O lines. Eight of the inputs read logic values
off DIP switches; eight outputs drive small LEDs. Four
more outputs connect to the coil drivers of a four-phase
stepper motor. A layout diagram of the prototype ap-
pears in Figure 9.

The system is even simpler than the discussion of
“‘typical”’ requirements implied. The 8086 direct-bus
drive capability is adequate to make the data trans-
ceivers unnecessary. (To equalize the bus loading, the
8255A is connected to the upper half of the bus.) Ad-
dress decoding logic was minimized by making the
high-order address bits ‘‘don’t-cares.”” Moreover, the
part count could have been reduced to 16 using an 8088
and multiplexed-bus 8185 RAMs and 8755A EPROMs.
(The reader may be surprised to learn that, except for
wire-wrapping mistakes, the prototype system hard-
ware worked when it was first powered up. The author
certainly was!)

APPLICATION SOFTWARE

~ DEVELOPMENT

Like other well-structured programs, application
software to run on the iAPX 86/30 is written as a num-
ber of separate procedures or subroutines. In conven-
tional programs, though, execution begins with a
section of code (the program body) at the outermost
level. The program calls application procedures, which
may call other procedures, but which eventually run to
completion and return to the program body.

In an OSP application, though, there is no *‘outermost
level” in the traditional sense; rather, the procedures
are started, suspended, and resumed as situations war-
rant under the control of the OSP. The term “‘task”
refers to the execution of such a procedure in this way.
While an instruction stream is suspended, the OSP
keeps track of the task state (instruction counter, CPU
register contents, etc.) so that it may be resumed later.

Each task is assigned a relative priority by the program-
mer, on a scale of 0 (high priority) to 255 (fow). Tasks
with higher (numerically lower) priority are given pref-
erential treatment by the OSP; the task actually control-

. ling the CPU at any given instant will be the one with the

highest priority which is not waiting for some event to
occur. (If all this sounds confusing, examples coming
later may help.) ‘

A task which operates independent of other tasks can
be written without knowing anything about the others.

AFN-02058A

A

P-130

— L

I)
2732] 2732]

RESET _ 8086 . : 8288 BYTE1
— VTE
B1 D1 F| [e1]. [w] [n
'Ls 1s| |Ls
73A 19| [139
— s282 '
8284 [E2 |
Lsa4 © 2732 . 273y BYIEM
D2 - 2764 2764 12
F2 H2
8282 HI LO —
E3 BYTE 0
80130 LS02 o]
B4 D3
LJ L r— ™ |
L:zl BYTE 0
LS08 Hi Low 14
D4
D

L.

RESISTORS SWITCHES
8255A 'LED:

' S
u)

J1 K

K2

J3 K3

1489

8251A
M4

[3a] [xa

1488

s
L L [& [2
L =L s o[4

16X 2114

2764 2764
A

/

Figure 9. Example System Prototype Layout

This makes it easy to divide a very large programming
job among a team of programmers, each writing the
code for some of the tasks. Moreover, a task need not
even know if other tasks exist. They may be tested and
debugged before others have even been written. As an
application evolves, new tasks may be added or un-
necessary ones removed without affecting the rest.

The number of tasks in an application may need to be
quite large. The number of tasks allowed in one applica-
tion is essentially unlimited, as is the number of other
objects—regions, mailboxes, segments, and the like.
(The term ‘“‘object” relates to different types of data
structures maintained internally by the OSP.) Each ob-
ject is internally identified by a unique 16-bit ‘‘token,”

which means the theoretical maximum total is over _

65,000. The more pragmatic issue ‘of physical memory
consumption limits the number of simultaneous concur-
rent tasks to “‘only’’ several thousand.

(When a number of tasks cooperate to accomplish some
common goal, the collection of tasks is referred to as an
application ‘‘job.”” The OSP also allows for an unlimited
number of application jobs, though only one is il-
lustrated in the example discussed here. A second
similar machine, with different status switches, a differ-

ent motor, and a different console might make up a
second job.)

All OSP application jobs must have one special in-
itialization task (often called INIT$TASK) just to get
- started; this one may, in turn, create other tasks as. it
executes. The initialization task for this example is
discussed at the end of this chapter.

Hardware Initialization

The life of any task can be broken into three phases:
start-up, execution, and termination, The start-up
phase initializes variables, data structures, and other
objects needed by the task. During the execution phase
the task performs its useful work. Depending on the
application, this may be a single sequence of actions, or
aloop executed repeatedly. When the task completes, it
must terminate itself so as not to use any more CPU
time. One or more phases may be omitted. For exam-
ple, some tasks are intended to execute ‘‘forever,” in
which case the termination phase is not required.

This life cycle is suggested by Example 1, a segment of
code called HARDWARESINIT$TASK. This task first

-2-58 -
AFN-02058A

AP-130

programs the 80130 internal timer logic to generate a
square-wave cycle on the BAUD pin every 52 system
clock cycles, which corresponds to a system console
data rate of 9600 baud. The task then sets the system’s
8255A PPI and 8251A USART devices to operate in the
desired modes, and outputs a short sign-on message to
the CRT. For the sake of reader’s unfamiliar with the
protocol for interfacing with the 8251A, simple input
and output routines (C$IN and C$OUT) are reproduced
in Example 2.

HARDWARE$INIT$TASK PROCEDURE,
DECLARE HARDSINITS$EXCEPT$CODE WORD,
DECLARE PARAM$S1 (%) BYTE DATA (40H, 8DH, OOH, 40H, 4EH, 27H),
DECLARE PARAM$S51$INDEX BYTE,
DECLARE SIGNSONSMESSAGE (#) BYTE DATA
(CR,LF, "1APX 86/30 HARDWARE INITIALIZED’,CR,LF),
DECLARE SIGNONINDEX BYTE.
QUTPUT (PP I$CMD)=90H,
OUTPUT (TIMER$CMD)=0Bé&H,
OUTPUT(BAUDS$TIMER)=33, /#GENERATES 9600 BAUD FROM 5 MHZ*/
OUTPUT (BAUD$TIMER) =0,
DO PARAM51INDEX=0 TO (SIZE(PARAM$51)-1),
OUTPUT (CMD$51) =PARAM$51 (PARAM51INDEX),
END, /#0F USART INITIALIZATION DO-LOOP:/
DO SIGNONINDEX=0 TO (SIZE(SIGN$ONSMESSAGE)-1),
CALL C$DUT(SICN$ONSMESSAGE (SIGNONINDEX)),
END, /#0F SIGN-ON DO-LOOP#/
CALL RQSRESUMESTASK(INIT$TASK$TOKEN, @HARDS$ INIT$EXCEPT®CODE),
CALL RQGSDELETE$TASK (0, @HARD$INIT$EXCEPT$CODE) .,
END HARDWARESINIT$TASK,

Example 1. System Hardware Initialization Task

C$0UT PROCEDURE (CHAR),
DECLARE CHAR BYTE, B
DO WHILE (INPUT(STAT$51) AND 01H)=0,.
/% NOTHING #/

END,
QUTPUT (CHAR$51) =CHAR,
END C$0UT,

C$IN PROCEDURE BYTE,

DO WHILE (INPUT(STAT$51) AND 02H)=0,
/% NOTHING #/
END,

RETURN INPUT(CHAR$51),

END CS$IN.

Example 2. Simple 8251A Input and Output

Routines

The baud timer should be initialized by a code sequence
like that shown here. The 80130 logic is actually com-
patible with the initialization sequence which would be
needed to configure timer 2 of an 8253A as a program-
mable rate generator. The baud rate parameter loaded
into the timer is simply the system clock frequency
divided by the desired output frequency. No other
timers should be affected by user programs.

When the hardware has been initialized, the task
calls an operating system procedure called RQ$
RESUMESTASK. This signals the OSP that the task’s
start-up phase has completed, and that the initialization
task (which in this case suspended itself after creating
HARDSINIT$TASK) may continue. Since its function
is hardware initialization only, HARD$INIT$TASK
has no execution phase per se. It terminates by calling

the procedure RQ$DELETES$TASK, suicidally
specifying itself as the task to be deleted.

Exercise 5. Beginners may make two common
programming errors when developing OSP tasks.
The first is when a task deletes itself without ever
resuming the suspended task that created it. The
second is to not terminate a task properly, with the
result that the processor executes a return in-
struction when the task’s work is done. (However,
execution of the task did not originate with a call
from the OS.) As with all computers, an OSP will
do exactly what it is told. How do you suppose the
system would react in each case? (Hint: only one
of the two failure modes is predictable.)

You may have noticed three things from this short ex-
ample and Table 1. First, every OSP call begins with
the letters RQ. (PL/M compilers totally ignore dollar
signs within symbols; they serve only to split long sym-
bol names to make them easier for humans to read.) The
letters RQ don’t mean anything in particular; their pur-
pose is to make sure OSP routine names don’t conflict
with any user symbols. These particular letters were
chosen to be compatible with the historical naming
convention used by iRMX 86. It may be useful, though,
to think of RQ as an abbreviation for REQUEST, imply-
ing that the OSP provides useful services at the bidding
of application code.

The second thing to notice is that the OSP routine
names imply pretty well what each routine does. On the
one hand, long procedure names take a little longer to
type; on the other, they make code listings much easier
to read and understand. In effect, the long names help
make OSP code self-documenting. The long names
shouldn’t hinder code development; rarely can pro-
grammers think faster than they can type. If they could,
programmer productivity would be measured in
thousands of lines per day.

The third thing is that the last parameter in every OSP
system call points to a word in which the OSP proce-
dure will return an exception code to the application
task. The procedure will return a non-zero exception
code in this word if it cannot do its job correctly. This
does not always imply that an error occurred; some-
times it just means another task isn’tready to cooperate
yet. Sometimes an exception value indicates whether
the OSP request was processed immediately or delayed
for some reason. In fact, some OSP routines are guaran-
teed never to return a non-zero exception code, yet the
pointer is still required for the sake of consistancy. For
a full explanation of the other parameters for the OSP
procedures and details on what the different exception
codes mean, consult the iAPX 86/30, 88/30 User’s
Manual .

AFN-02058A

AP-130

To illustrate how the OSP procedures are used, the
following code examples implement the machine con-
troller tasks introduced earlier. Appendix B puts all the
code examples together, though not in the exact order
discussed. Be Forewarned: the examples border on
trivial. They are in this note to demonstrate how to call
system routines with as few lines of code as possible,
not to tax the capabilities of the OSP. In fact, none of the
tasks even check for exception codes returned by the
OSP, under the naive assumption that nothing will go
wrong in a debugged program. If you're interested in
more elaborate software examples, consult application
notes AP-86 and AP-110. These notes focus specifically
on iRMX 86, but their methods and much of the code
apply equally to the OSP systems.

Simple Time Delays

The STATUSS$TASK routine simply monitors eight
switches through an input port, and updates eight
LEDs with a pattern determined by the switch settings
and task status. Specifically, the LEDs display the bit-
wise Exclusive-OR function of the inputs and an eight-
bit software counter maintained by the task. This action
will repeat twice per second. The task does nothing
between iterations.

The RQ$SLEEP routine gives application tasks a way
to release the CPU when it is not needed. Any task
calling this routine is ‘‘put to sleep’” for the amount of
time it specifies (from 1 to 65,000 SYSTICK intervals),
releasing the CPU to service other tasks in the mean-
time. After the requested time has transpired, the OSP
task will reawaken the task and resume its execution,
provided a more important task is not then executing.

The 80130 timer logic generates the fundamental Sys-
tem Tick by dividing the system clock frequency by
two, then subdividing that frequency by a 16-bit value
specified during the configuration process. The period
used here is 5 msec., which'would result in an 5§ MHz
system by dividing the 2.5 MHz internal frequency by
12,500. .

Exercise 6: At this rate, what’s the longest nap
that would result from a single call to
RQS$SLEEP? How could this duration be
extended?

PL/M listings for the complete STATUS$TASK routine
appear in Example 3.

2-60

STATUS$TASK PROCEDURE.
DECLARE STATUS$COUNTER BYTE,
DECLARE STATUS$SEXCEPT$CODE WORD,

STATUS$COUNTER=0,
CALL RQ$RESUMESTASK(INIT$TASK$TOKEN, @STATUSSEXCEPTS$CODE) ,
DO FOREVER,
OUTPUT(PPISB)=INPUT(PPI$A) XOR STATUS‘CDUNTER
STATUS$COUNTER=STATUSSCOUNTER+1,
CALL RQG$SLEEP (100, @STATUSSEXCEPT$CODE),

END,
END STATUS$TASK,

Example 3. Status Polling and Reporting Task

Stepper Motor Control

Conceptually, a stepper motor consists of four coils
spaced evenly around a rotating permanent magnet. By
energizing the coils in various combinations, the mag-
net can be induced to alignitself with the coils, individu-
ally or in pairs. A microcomputer can make a stepper
motor rotate, step-by-step, in either direction, by emit-
ting appropriate coil control signal patterns at intervals
corresponding to the step rate.

The stepper-motor sequencer (Example 4) is an embel-
lished version of STATUS$TASK. The OSP calls are
intermixed with a few more statements of application
code, and the task uses global variables as delay
parameters. The reader may wish to adapt the com-
mand interpreter task at the end of this chapter to let the
operator modify (read: ‘‘play with”) these parameters
to adjust the motor speed as the program runs.

DECLARE CW$STEP$DELAY BYTE,
CCW$STEP$DELAY BYTE,
CW$PAUSES$DELAY BYTE,
CCWSPAUSESDELAY BYTE.

MOTORS$TASK PROCEDURE,
DECLARE MOTORSEXCEPT$CODE WORD.
DECLARE MOTOR$POSITION BYTE,
MOTOR$PHASE BYTE,
DECLARE PHASE$CODE (4) BYTE
DATA (00000101B, 00000110B, 00001010B, 00001001B),
CWS$STEP$DELAY=50, /#INITIAL STEP DELAYS = 1/4 SECOND#/
CCW$STEP$DELAY=50,
CW$PAUSESDELAY=200,
CCW$PAUSESDELAY=200,
CALL RQ$RESUMESTASK(INIT$TASK$TOKEN, @MOTORSEXCEPT$CODE),
DO FOREVER.
DO MOTOR$POSITION=0 TO 100,
MOTOR$PHASE=MOTOR$POSITION AND OOO3H,
OUTPUT (PP 1$C)=PHASE$CODE (MOTOR$PHASE) ,
CALL RQ$SLEEP (CW$STEP$DELAY, @MOTORS$EXCEPT$CODE),

/#PAUSES AFTER ROTATION = 1 SECOND#/

CALL RQ$SLEEP (CW$PAUSESDELAY: @MOTORSEXCEPT$CODE),

DO MOTOR$POSITION=0 TO 100,
MOTOR$PHASE=(100-MOTOR$POSITION) AND OOO03H,
OUTPUT (PP I$C)=PHASESCODE (MOTORSPHASE)

CALL RQ$SLEEP (CCW$BTEPSDELAY, !HOTOR‘EXCEPTQCDDE i

CALL RQA$SLEEP (CCW$PAUSESDELAY, @MOTOR$EXCEPT$CODE),

END,
END MOTORS$TASK.

Example 4. Stepper-Motor Controller Task

Real—vTime Interrupt Processing

The 80130 supports a two-tiered hierarchy of interrupt
processing. The lower-level tier corresponds to the

AFN-02058A

AP-130

traditional concept of hardware interrupt servicing; a
routine called an ‘‘Interrupt Handler’’ is invoked by the
80130 internal interrupt control logic for immediate
response to asynchronous external events. A short
routine like this might, for example, move one charac-
ter from a USART to a buffer. Interrupt handlers oper-
ate with lower-priority interrupts disabled, so it is a
good idea to keep these routines as quick as possible.

“Interrupt Tasks,”” on the other hand, are higher-level
tasks which sit idle until ‘‘released’’ by an interrupt
handler. The task then executes along with other active
tasks, under the control of the OSP. Such a task should
be used to perform slower but less time-critical pro-
cessing when occasions warrant, such as when the
aforementioned buffer is full. Moving such additional
processing outside the hardware-invoked interrupt
handler reduces the worst-case interrupt processing
time.

This hierarchy also decreases interrupt latency. Most
OSP primitives execute in their own, private
‘“‘environment”’ (e.g., with their own stack and data
segments) rather than that of the calling task. Interrupt
handlers, on the other hand, run in the same environ-
ment as the interrupted task. (In fact, the 80130
primitives may themselves be interrupted!) Leaving the
CPU segment registers unchanged minimizes software
overhead and interrupt response time, but also means
that interrupt handlers may not call certain OS:
routines. An interrupt task, on the other hand, is in-
itiated and suspended by the OSP itself, with no such
restrictions.

Let’s see how these capabilities would be used. The
time delays introduced by the RQ$SLEEP call are only
as accurate as the crystal frequency from which they
are ultimately derived. This may not be exact enough
for critical time-keeping applications, since oscillators
vary slightly with temperature and power fluctuation.

To keep track of the time of day, the example system
uses a 60-Hz A.C. signal as its time base. (Most power
utility companies carefully regulate line frequency to
exactly 60 Hz, averaged over time.) A signal from the
power supply is made TTL-compatible to drive one of
the 80130 interrupt request pins. An interrupt handler
responds to the interrupts, keeping track of one
second’s worth of A.C. cycles. An interrupt task counts
the seconds by incrementing a series of variables.

Example 5 illustrates the former routine. AC$
HANDLER simply increments a variable on each 60-
Hz interrupt. Upon reaching 60, it clears the counter
and signals TIME$TASK (Example 6).

DECLARE AC$CYCLESCOUNT BYTE,

ACSHANDLER PROCEDURE INTERRUPT 59,
DECLARE AC$EXCEPT$CODE WORD,

/%VECTOR FOR 80130 INT3#/

CALL RGS$ENTER$INTERRUPT(AC$INTERRUPTSLEVEL., @ACSEXCERTS$CODE) .,
ACS$CYCLESCOUNT=ACSCYCLESCOUNT+1,
IF AC$CYCLE$COUNT >= 60
THEN DO,
ACS$CYCLESCOUNT=0,
CALL RQG$SIGNALSINTERRUPT(AC$INTERRUPTSLEVEL,
@ACSEXCEPT$CODE)

END,
ELSE CALL RQ$EXIT$INTERRUPT(AC$INTERRUPTS$LEVEL,

@ACSEXCEPT$CODE),
END AC$HANDLER,

Example 5. 60-Hz A.C. Interrupt Handler

In its initialization phase, TIME$TASK sets up the
interrupt handler by calling the RQ$SETS$
INTERRUPT routine. The body of TIME$TASK (the
execution phase) is just a series of nested loops count-
ing hours, minutes, and seconds. When TIME$TASK
calls RQSWAITSINTERRUPT inside its inner-most
loop, the OSP suspends execution of the task until
AC$HANDLER signals that another second’s worth
of A.C. cycles has elapsed. Thus, interrupt handlers
can serve to ‘‘pace’’ interrupt tasks. After a day,
TIMESTASK completes and deletes itself.

DECLARE SECOND$COUNT BYTE.
MINUTE$COUNT BYTE,
HOURSCOUNT BYTE,

TIMESTASK PROCEDURE,
DECLARE TIMESEXCEPT$CODE WORD,

ACSCYCLE$COUNT=0,

CALL RG$SETS$INTERRUPT (ACSINTERRUPTSLEVEL, O1H,
INTERRUPT$PTR(AC$HANDLER), DATASEGSADDR BASE,
@TIMESEXCEPT$CODE) .

CALL RQ$RESUMESTASK (INIT$TASK$TOKEN, @TIMESEXCEPT$CODE),

DO HOUR$COUNT=0 TO 23,

DO MINUTE$COUNT=0 TO 59,
DO SECOND$COUNT=0 TO 59,
CALL RQ$WAITSINTERRUPT (AC$INTERRUPTS$LEVEL,
@TIME$EXCEPT$CODE),
IF SECOND$COUNT MOD 5 = O
THEN CALL PROTECTEDSCRTOUT(BEL).
END, /# SECOND LOOP #/
END, /% MINUTE LOOP #/
» /% HOUR LOOP %/
CALL RQ$RESET$INTERRUPT(ACS$INTERRUPTSLEVEL,
@TIME$EXCEPT$CODE)
CALL RQ$DELETE$TASK(0, @TIMESEXCEPT$CODE),
END TIMESTASK,

Example 6. Interrupt Task to Maintain Time of Day

Exercise 7: The time maintained by TIMESTASK
is consistently wrong, unless the system resets at
midnight. Aside from that, how much error would
accumulate per month had TIME$TASK paced its
inner loop by calling RQ$SLEEP if the system
oscillator was 00.01% off? How does this com-
pare with a cheap digital watch? How much error
will accumulate from the 60-Hz time base
described?

TIMES$TASK incorporates another gimmick: every five
seconds it sends an ASCII ““BEL’’ character (07H) to
the console to make it beep, by calling a routine called
PROTECTED$OUTPUT. This lead-in gives us a
chance to discuss OSP provisions for task synchroniza-
tion and mutual exclusion.

AFN-02058A

AP-130

Mutual Exclusion

Whenever system resources (e.g., the console) are
shared among multiple concurrent tasks, the software
designer must be aware of the potential for conflicts. In
single-threaded (as opposed to multitasking) programs,
the easiest way to transmit characters is by calling a
console output routine (written by the user or supplied
by the OS) which outputs the character code.
(Remember the examples following the hardware in-
itialization routine?)

This approach preserits two problems in a multitasking
system. One is efficiency: a high-priority task could
‘hang up the whole system while it waits for a printer
solenoid to energize, induce a magnetic field, accelerate
the hammer, contact a daisy-wheel spoke, move it up to
the ribbon, and press them both against the paper. This
waste of time is termed ‘‘busy waiting,” and should
always be avoided. By OSP standards, even 1/30 of a
second can seem interminable; if the printer is other-
wise occupied, the whole system could shut down
indefinitely.

Aside from efficiency, though, there is a more serious
synchronization problem here. Assume Task A has a
higher priority than Task B. Task A is asleep. Task B
calls a subroutine to poll the USART and transmit a
character. The USART becomes ready. When this is
detected, the subroutine prepares to output the charac-
ter to the USART

Time out! Task A just woke up and starts running. Task
A wants to transmit its own character. It calls its own
output routine, checks the USART, finds it available,
sends it a new character, and goes back to sleep
(or suspends itself, or awaits another interrupt—
whatever).

Now Task B continues. It “‘knows” the USART is
available, having dutifully monitored it earlier. Task B’s
character goes out to the USART. The USART goes out
to lunch. (In practice, the USART will probably just
transmit corrupted data; still, its operating. require-
ments have been violated.)

InTask B’s output routine, the sequence of statements
from when the peripheral is found to be ready to when
the next character is written constitutes-a ‘‘critical
region” (a.k.a. “‘critical section” or ‘‘non-interruptable
sequence”). Recognizing such regions and handling
them; correctly is an important concern in any multi-
tasking system, so-the OSP provides several facilities
—interrupt control, regions and mailboxes—to help
‘handle general synchronization and mutual exclusion
problems. Which one to choose depends on the
circumstance.

Exercise 8: In this example, would it be better if
Tasks A and B shared a single output routine, so
that only ‘one section of code sent data to the
USART? Convince yourself that the same (or
worse!) problems could still arise.

Sometimes critical sections can be protected by just
disabling interrupts at appropriate points in the applica-
tion software. To maintain the integrity of an iAPX
86/30 system, application code must never execute the
STI, CLI, or HLT instructions (ENABLE, DISABLE,
or HALT statements in PL/M), nor can it access the
interrupt control logic directly. Instead, the interrupt
status should be controlled with the OSP
RQSENABLE and RQ$DISABLE procedures;
routines should be halted via RQ$SUSPEND or
RQ$SWAITSINTERRUPT.

Back toTIME$TASK: we want to transmit BELs to the
console every five seconds. The console output task
will be transmitting other characters. A “‘clever” pro-
grammer may recognize that this will lead to a critical
section and analyze the situation as follows:

1. A hazard would arise if TIME$TASK sends out a
beep when CONSOLE$SOUTSTASK is using the
USART;

2. TIMESTASK will only execute after being signaled
by ASCSHANDLER;

3. ASCSHANDLER only reponds to an external
interrupt.

““Therefore, all CONSOLESOUTS$TASK has to do to
be safe is disable the 60-Hz interrupt around its output
routine.” . ‘
Not quite. There are still potential hazards. Suppose
CRTSOUTS$TASK has the same priority as
TIMESTASK. TIMESTASK may already have been
signaled by ASCSHANDLER and be ready to run when
CRT$OUTSTASK completes. An otherwise unrelated
event—another interrupt, for instance-—could mo-
mentarily suspend CRTSOUTS$TASK during the criti-
cal region with A.C. interrupts disabled. When the OSP
returns to that level, it might resume with
TIMES$TASK, not CRTSOUTS$TASK. This could lead
to the same malfunctions as before, so disabling 60-Hz
interrupts didn’t help. This series of worst-case as-
sumptions is admittedly convoluted, but the resulting
sporadic errors are among the hardest of all bugs to-
squash. ‘

The problem is that this attempted solution involves too
much interaction between tasks, making it confusing
and error-prone. Even if some scheme of priority-level

‘assignments and task interactions could be made to

work, later modifications or simple additions to the job

AFN-02068A

AP-130

could cause bugs to reappear. (The analogy of an unex-
ploded time bomb comes to mind.)

A simpler solution would be one corresponding more
closely with the problem. Accordingly, the OSP sup-
ports several primitives just to supervise and control
access to critical regions.

One of the OSP *‘data types’’ is a data structure called a
‘‘Region,” which can be used by application code to
control access to a shared port or some other resource.
A task wishing access to the resource should call the
OSP procedure RQSRECEIVESCONTROL before
trying to access that resource; when done it must call
RQ$SEND$CONTROL.

The OSP keeps track of which regions are in use. As
long as a region is busy (i.e., has been entered but not
yet exited), the OSP will prevent other tasks from enter-
ing the region by putting them to sleep. The OSP keeps a
queue of all tasks waiting for the busy region. When the
region later becomes-available (i.e., when the task con-
trolling the region calls RQSSEND$SCONTROL), one
of the sleeping tasks—either the highest priority or the
most patient—will be awakened, granted control of the
region, and sent on its way. (When a region is created,
the OSP is told whether to awaken tasks waiting for the
region based on their priority or how long they
have been waiting.) Effectively, a call to RQ$
RECEIVE$CONTROL will not return to the applica-
tion task until the resource in question becomes
available.

The PROTECTEDCRTOUTPUT (Example 7) dem-
onstrates this protocol. The routine is declared
reentrant which means (by definition) the routine may
be interrupted and restarted safely. A reentrant routine
may be shared by a number of tasks, instead of replicat-
ing the same code throughout the application.

PROTECTEDSCRTSOUT PROCEDURE (CHAR) REENTRANT,
DECLARE CHAR BYTE,
DECLARE CRTSEXCEPTS$CODE WORD.
CALL RQ$RECEIVE$CONTROL (CRTSREGIONSTOKEN, @CRT$EXCEPT$CODE),
DO WHILE (INPUT(STAT$51) AND 01H)=0,
/# NOTHING #/

OUTPUT(CHARS51) =CHAR.,

CALL RGS$SEND$CONTROL (@CRTSEXCEPT$CODE).
END PROTECTEDCRTOUT,

Example 7. CRT Output Routine Protected by
Region Protocol

As a concession to simplicity, PROTECTEDS$
CRT$OUTPUT does use a form of the busy waiting
method described earlier. The maximum delay at 9600

baud is only one millisecond, however, much shorter
than a system tick. Besides, tasks performing character
/O will all have low priority levels, so the OSP would
just delay them if anything more urgent comes up.

Exercise 9: Decide whether this explanation is a
feeble attempt at rationalization, or a well-
justified engineering trade-off.

Inter-Task Communication

But what if a high priority task must output a string of
characters, or the peripheral response time is too long?
Busy-waiting may not be acceptable. Alternatively, the
output routine could buffer the data and service the
USART within an interrupt routine. Another would be
to simply pass the data off to a special (low-priority)
output task and continue.

Tasks pass information to each other via something
called a ‘“message.” A message may be the token for
any type of OSP object, but the most common and most
flexible type is called a ‘“memory segment.”’ In our
example, segments will be used to carry strings of
ASCII characters between tasks, so we’ll examine seg-
ments first. Message formats are defined by the individ-
ual application programmer—make sure the sending
and receiving tasks assume the same format!

A memory segment is just a section of contiguous-sys-
tem RAM allocated (set aside) by the OSP at the re-
quest of an executing task. The OSP keeps track of a
free memory ‘‘pool,”” which is initially all unused RAM
in the system. When a task needs some RAM, it tells the
RQ$CREATE$SEGMENT procedure how much it
wants. The OSP finds a suitable memory block in the
pool, and returns a 16-bit token defining its location. (If
not enough memory is available, the procedure returns
an exception code.) .

The token is the base portion of pointer to the first
usable byte of the segment, with the offset portion
assumed to be zero. (The token values for all other
objects have no physical significance.) Knowing this,
it’s possible to access elements of the segment as the
application warrants.

The subroutine in Example 8 shows how to request a
segment and construct a message. PRINT$TIME sends
the ASCII values of the time-of-day counters
(maintained in TIME$TASK) to the CRT output task
described later. The message format adopted for these
examples will consist of a byte giving the message

AFN-02058A

AP-130

‘.

i length, followed by that number of ASCII characters.

Figure 10 shows this format.

’

PRINTSTOD PROCEDURE,
DECLARE TOD$MESSAGE$TOKEN WORD,
DECLARE TODSEXCEPT$CODE WORD:
DECLARE TODS$SEGMENT$OFFSET WORD,
. TOD$SEGMENT$BASE WORD,
DECLARE TOD$SEGMENTSPNTR POINTER AT (@TOD$SEGMENT$OFFSET),
DECLARE TODSTEMPLATE (28) BYTE
DATA (27, ‘THE TIME IS NOW hh mm ss. /, CR,LF),
DECLARE TOD$STRING BASED TODS$SEGMENTSPNTR (28) BYTE,
DECLARE TOD$STRINGSINDEX BYTE,

TOl TOl
TC T$BASE=TO)
TODS$SECMENTS$OFFSET=0,
DO TOD$STRING$INDEX=0 TO 27,
TOD$STRING(TOD$STRINGS INDEX)=
TODSTEMPLATE (TOD$STRINGS INDEX)

T(28, RTODSEXCEPT$CODE)
TOKEN,

END.
TODS$STRING (17)=ASCII$CODE(HOURSCOUNT/10).
TODS$STRING (18)=ASCII$CODE (HOURSCOUNT MOD 10),
TODSSTRING(20)=ASCII$CODE(MINUTESCOUNT/10),
TOD$STRING (21)=ASCII$CODE (MINUTE$COUNT MOD 10),
TOD$STRING (23)=ASCII$CODE (SECOND$COUNT/10),
TOD$STRING (24)=ASCII$CODE (SECOND$COUNT MOD 10),
CALL RQ$SEND$MESSAGE (CRTSMAILBOX$TOKEN,

TODSMESSACESTOKEN, O, @ TODSEXCEPT$CODE),
RETURN,

END PRINTS$TOD:

Example 8. Subroutine to Send Time-of-Day
Message to Output Task

We're coding PRINT$TIME here (see Example 8),
while TIMESTASK is fresh in our minds. It will actually
be called by (and is therefore considered a part of)
KEYBOARDSTASK. Note that while tasks are written
as individual procedures, they need not be fully self-
contalned outside procedures should be used to help
organize and structure the code.

The first thing PRINTS$TIME does is have the OSP
create a segment of suitable length, and copies a
‘‘message template’ into'the segment, byte by byte.
Then it converts the TIME$TASK counter values to
ASCII, filling in blanks in the template. Finally, it sends
the token for the message to the CRT mailbox.

To repeat, these examples are intended to illustrate use
of the OSP routines assuming minimum familiarity with
PL/M. Better programming practices might take advan-
tage of PL/M literals, structures and the array
LENGTH function to build the message, rather than
the inflexible constants shown here. Some of these
techniques are suggested by PRINT$STATUS
(Example 9), which indicates the binary status of the
input switches.

PRINT$STATUS. PROCEDURE;

DECLARE STATUSSMESSAGESTOKEN WORD,

DECLARE STATUSSEXCEFTSCODE WORD;

DECLARE STATUS$SEGMENTSOFFSET WORD,
STATUS$SEGMENTSBASE WORD:

DECLARE STATUSSSECMENTSPNTR POINTER
AT (@STATUSSSEGMENTSOFFSET);

DECLARE STATUSSTEMPLATE (40) BYTE DATA
(39, ‘THE SWITCHES ARE NOW SE'

DECLARE STATUSS$STRING BASED STM’USOSEGMENT‘PNTR (40) BVTE.

DECLARE STATUS$STRINGSINDEX BYTE,

DECLARE BITSPATTERN BYTE: .

STATU TC TE! T(40,
@STATUSSEXCEPT$CODE),
_STATL T TATUS
STATUSSSEGMENT$OFFSET=0,
DO STATUSSSTRINGSINDEX=0 TO 39,
STATUS$STRING (STATUSSSTRINGS INDEX)=
STATUSSTEMPLATE (STATUSSSTRINGS INDEX),

TOKEN,

END.
BIT$PATTERN=INPUT(PPI$A),
DO STATUS$STRINGS INDEX=29 TO 36
STATUSSSTRING (STATUSSSTRINGS INDEX) =
ASCIISCODE(BIT$PATTERN AND O1H),
BIT$PATTERN=ROR (BIT$PATTERN, 1))
ENDy
CALL RQ$SENDSMESSAGE (CRT$MAILBOX$TOKEN,
STATUSSMESSAGE$TOKEN, O, @STATUSSEXCEPT$CODE) ;
END PRINT$STATUS,

Example 9. Subroutine to Send Status Report
’Message to Output Task

Exercise 10: One input port is read by both
STATUSS$TASK and PRINT$STATUS. Does this
constitute a shared resource? A critical region?

‘Exercise 11: PRINT$TIME reads the counts

" maintained by TIME$TASK, but doesn’t alter
them. Forced mutual exclusion is generally
mandatory when multiple tasks perform
read/modify/write sequences on a given variable.
Can PRINT$TIME make TIME$TASK malfunc-
tion? What about the opposite case? If this failure
mode was deemed unacceptable, how could it be
protected?

Mailboxes

The data in a message doesn’t actually move or get
copied from source to destination when the message is
sent; this would be too slow with long messages.
Rather, the OSP ‘‘carries’ the message’s token from

‘task to task via a data structure cleverly termed a

mailbox. If one task must send messages to another, a
mailbox must be created to hold them. The sender calls
the RQ$SSENDSMESSAGE to put a message
token into the mailbox. If the receiver isn’t ready for
the message yet, the OSP puts the message token
into an ordered queue. When the receiver calls RQ$

OFFSET= 0 1t 2 3 4 5 6 7 8 9 10 N

12

13

14 15 16 17 18 19 20 21 22 23 24 25 26 27

I Lo o e = L 1]

SEGMENT STARTING ADDRESS = TOD$MESSAGESTOKEN:0000H

Figure 10. Message Formats Expected by Output Task

2-64

) AFN-02058A

AP-130

RECEIVE$SMESSAGE later, the OSP will give it the
tokens one at a time.

What happens if a task tries to receive a message when
the mailbox is empty? (This is quite possible, since
tasks do run asynchronously.) What token would the
OSP return?

In the simple case . . . it doesn’t! Instead of returning
right away with no data, the OSP will wait until data is
available. In the meantime, the OSP puts the receiving
task to sleep, remembering that it is waiting for a
message at that mailbox. The next time a message is
sent to that mailbox, the OSP will awaken the receiving
task, give it the token, and—if its priority is high
enough—resume its execution. Alternatively, receiving
tasks may elect to not wait if the mailbox is empty, or to
wait only a specified time.

Many tasks may actually send and receive messages
through a single mailbox, with messages being queued
in the order that the RQ$SEND$SMESSAGE calls are
executed. The OSP also maintains a list of tasks waiting
to receive messages from an empty mailbox, analogous
to the queued tasks waiting for region control. As each
message is sent to the mailbox, it is passed immediately
to a waiting task, either the one waiting the longest or
the one with the highest priority (likewise determined
by a parameter specified when the mailbox is created).

Exercise 12: Under what conditions could a mail-

box’s message queue contain messages waiting to

'be received, while the task queue contains tasks

waiting for messages? Ignore the possibility that

this may happen momentarily during the imple-

mentation of either routine. If you think of any"
such circumstances, please contact the author.

Example 10 shows a task which prints the messages
sent above. Upon receiving a message token,
CRT$OUTSTASK determines the message length from
the first two bytes, and sequentially prints each element
of the string through the PROTECTEDS$CRTS
OUTPUT routine explained earlier. When done, the
segment containing the message is deleted, returning its
RAM to the free-memory pool.

A few words are in order about the segment accessing
techniques demonstrated here. PL/M-86 has a special
data type, called a ‘“‘pointer,” used to indirectly access
other PL/M variables. OSP application programs must
be compiled with the ‘“‘compact’ or *‘large’” model spe-
«cified. This tells the compiler to implement pointers as
32-bit double words corresponding to the two parts
(base:offset) of the 8086 machine-segmented address-
ing scheme. PL/M-86 tries to shield the programmer

2-65

CRT$OUTSTASK

DECLARE MESSAGESLENGTH BYTE,

DECLARE MESSAGE$TOKEN WORD,

DECLARE RESPONSE$TOKEN WORD,

DECLARE MESSAGESEXCEPT$CODE WORD,

DECLARE MESSAGESSEGMENTSOFFSET WORD,
MESSAGESSEOMENTSBASE WORD;

DECLARE MESSAGCESSEGMENTSPNTR POINTER AT
(@MESSAGES$SEGMENTS$OFFSET)

DECLARE TRI BASED

PROCEDURE,

IENT$PNTR BYTE,

CALL RQ$RESUMESTASK (INITSTASK$TOKEN, @MESSAGESEXCEPT$CODE),

DO FOREVER; B

(CRT$MAILBOX$TOKEN, OFFFFH,
@RESPONSESTOKEN, @MESSAGESEXCEPT$CODE) »

MESSAGESSEGMENTSOFFSET=0)

TOI 1

1ENT TOKEN,
MESSAGESLENGTH=MESSAGESSTR INGSCHAR,
Do TSOFFSET=1 TO ENGTH,
CALL PROTECTEDSCRTSOUT (MESSAGESSTRINGSCHAR);
END;
CALL RGS$DELETE T TOl
D, /# OF FOREVER-LOOP #/
END CRTSOUT$TASK)

KEN, XCEPT$CODE) .,

Example 10. Task to Transmit Messages
to the CRT

from the details, yet at times the two parts must be
manipulated separately (for instance, to access data in
an OSP segment knowing only the segment token/base
value).

To get around this, these examples assign a pair of word
variables to the same address as a PL/M pointer vari-
able. Each representation is then an alias for the other.
To determine the base or offset value of an item of data,
load the pointer variable with a pointer to the item and
then reference the appropriate field of the overlayed
pair of word variables. To ‘‘build’’ an arbitrary pointer,
assign computed values to the base and offset fields and
then access the data item via the composite pointer.

Exercise 13: PL/M 86 does not have built-in func-
tions to separate the high and low-order words of a
pointer variable. Does this seem to be a weakness
in the language? Bear in mind that the machine
representation for pointers varies depending on
which programming model is specified at compila-
tion time. When the ‘‘small”’ modelis selected, the
compilers take advantage of a 16-bit pointer
representation for faster and more compact code.

Console Command Interpreter

If a system has a console keyboard, it’s probably used
to accept and interpret operator commands. For this
demonstration system, the lowest priority of all tasks is
a simple-minded routine which polls the USART until a
character has been received, and immediately echoes it
by calling—you guessed it!—PROTECTED
$CRTSOUTPUT. Thus, the keyboard is ‘‘alive’; it
responds immediately to keystrokes, so the operator
can type whatever nonsense he desires while every-
thing else is going on.

Ten of the keys (digits 0 through 9), invoke special
commands which illustrate interactions between the

AFN-02058A

AP-130

multiple tasks. Commands 0 and 1 print out the time
and status messages; the rest suspend and'resume
various tasks, as shown by Table 2. The code for
COMMANDSTASK appears in Example 11.

Initialization Task

Now that the application tasks have been written, we
can write the initialization task.

All applications require a special type of task to initial-
ize system variables and peripherals and create tasks
and other objects used by the application. It, too, is
written as a PL/M procedure, and can thus be divided
conceptually into the same three phases.

Example 12 shows such a task for the demonstration
system. The first thing INIT$TASK does is determine
the base address of the job data segment by assigning
pointer DATA$SEGS$PTR with its own address. Next it
calls the RQSGET$TASKSTOKENS routine, which
tells the task what token value the OSP.assigned it at
run time. It then initializes the system peripherals by
creating the hardware initialization task discussed
above; this code could have been integrated into
INIT$TASK itself just as easily. During its own
“‘execution”” phase, INIT$STASK calls routines to
create the OSP data structures shared by the applica-
tion tasks: the REGION controlling access to the
USART, and the MAILBOX repository for output mes-
sages. INIT$TASK creates the application tasks them-
selves by calling RQSCREATESTASK.

Though not always required, it is common practice for
the overall initialization task to suspend itself after
creating each offspring, to let the newborn task get
started. Under this convention, each offspring task
must resume the initialization task by calling the

COMMAND$TASK PROCEDURE,
DECLARE CONSOLE$CHAR BYTE,
DECLARE COMMAND$EXCEPT$CODE WORD.

CALL RO$RESUME$TASK (INIT$TASK$TOKEN, @COMMANDS$EXCEP T$CODE)
DO FOREVER.
CONSOLE$CHAR=C$IN AND 7FH:
CALL PROTECTEDCRTOUT (CONSOLE$CHAR),
IF CONSOLE$CHAR=CR
THEN CALL PROTECTEDSCRTOUT(LF)7
“IF (CDNSdLE!CHAR >= ‘0‘) AND (CONSOLE$CHAR <= ‘9')
THEN

CALL PROTECTEDCRTOUT(CR),
CALL PROTECTEDCRTOUT(LF),
DO CASE (CONSOLE$CHAR-’0'),
CALL PRINT$TOD,
CALL PRINT$STATUS,
CALL RQ$SUSPEND$TASK (CRTSOUTSTASKSTOKEN,
@COMMANDSEXCEPT$CODE),
CALL RQ$RESUMES$TASK (CRTOUTTASKS$TOKEN,
@COMMANDSEXCEPT$CODE)
CALL RQ$DISABLE (AC$INTERRUPT$LEVEL.,
@COMMANDSEXCEPT$CODE) »
CALL RQ$ENABLE(AC$INTERRUPT$LEVEL,
@COMMANDS$EXCEPT$CODE) »
CALL RG$SUSPEND$TASK (MOTOR$TASK$TOKEN,
@COMMANDS$EXCEP T$CODE) »
CALL RQ$RESUMESTASK (MOTOR$TASKSTOKEN,
. @COMMANDS$EXCEP T$CODE) » .
CALL RQ$SUSPENDS$TASK (STATUSSTASKSTOKEN,
@COMMANDSEXCEPT$CODE)
' CALL RQG$RESUMESTASK (STATUS$TASK$TOKEN,
@COMMAND$EXCEPT$CODE), -
END, /% OF CASE-LIST #/
END, /# OF COMMAND PROCESSING #/

ND,
END COMMAND$TASK.

Example 11. Task to Accept and Process Keyboard
Commands

INIT$TASK FRUCEDURE‘PUBLIC.
DECLARE INIT$EXCEPT$CODE WORD,

DATASSECPTR=@RINIT$TASKSTOKEN, /#LOAD DATA SEGMENT BASE*/
CRT$MAILBOXS$TOKEN=RQ$CREATE$MAILBOX (0, @INIT$EXCEPT$CODE),
CRT$REGION$STOKEN=RQ$CREATESREGION(O, @INITSEXCEPT$CODE),
INIT$TASK$TOKEN=RQ$CETSTASKSTOKENS (0, @INIT$SEXCEP T$CODE),
HARDWARES$ INIT$TASK$TOKEN=RQ$CREATES$TASK
(110, @HARDWARESINITSTASK, DAT(\QSEGSADDR BASE, 0, 300,
0, @INIT$EXCEPT$CODE),
CALL RQA$SUSPENDS$TASK (0, @INIT$SEXCEPT$CODE),
STATUSSTASK$ TOKEN=RQ$CREATESTASK (110, @STATUS$TASK,
DATASEGADDR BASE. 0, 300, 0, @INIT$EXCEPT$CODE)
CALL RQ$SUSPEND$TASK (O, @INIT$EXCEPT$CODE),
MOTOR$TASK$TOKEN=RQ$CREATE$TASK (110, @MOTORSTASK,
DATASEGADDR BASE, 0. 300, 0, RINITSEXCEPT$CODE),
CALL RQ$SUSPEND$TASK(O, @INITS$EXCEPT$CODE),
TIME$TASK$TOKEN=RQ$CREATESTASK (120, @TIMESTASK,
DATASEGADDR BASE, 0, 300, 0, @INIT$EXCEPT$CODE),
CALL RQ$SUSPEND$TASK (0, @INIT$EXCEPT$CODE),
CRT$0UT$TASK$TOKEN=RAG$CREATE$TASK (120, RCRTSOUT$TASK,
DATA$SEGSADDR BASE, 0, 300, 0, @INIT$EXCEPT$CODE),
CALL RQ$SUSPEND$TASK(O, @INIT$EXCEPT$CODE),
COMMAND$TASK$TOKEN=RQ$CREATESTASK (130, @COMMANDSTASK,
DATASEGADDR BASE, 0, 300, 0: @INITSEXCEPT$CODE),
CALL RG$SUSPENDS$TASK(O, @INITSEXCEPT$CODE),
CALL RQSENDINIT$TASK,
CALL RQ$DELETE$TASK(O, @INIT$SEXCEPTSCODE),
END INIT$TASK,

Example 12. Task to Initialize Systém Software

Table 2. Special Console Commands

Key Function

0 ' Send Time-of-day message to CRT.
Send status update message to CRT.

2 Suspend CRT output task. The OSP will automatically save messages to the task
in the CRT mailbox queue.

3 Resume CRT output task. Queued messages will be displayed.

4 Disable 60-Hz interrupt-driven time base. Time-of-day clock will stop.

5 Enable 60-Hz time base to resume clock execution.

6 Suspend motor control task. Motor will stop.

7 Resume motor control task. Note that if task was suspended 17 times, it must be
resumed 17 times.

8 Suspend status polling task. Lights indicating system status will freeze in current state.

9 Resume status polling task.

AFN-02058A

AP-130

RQSRESUMESTASK routine when its own local in-
itialization is complete. This convention is called
synchronous initialization; its purpose is to ensure that
each task is allowed to complete its own start-up phase
before the next task is created. Otherwise, there’s a risk
that higher-priority tasks created later could start exe-
cuting before earlier tasks were ready for them, with (at
best) unpredicatable results.

When all the tasks have been created, INIT$TASK has
served its purpose. It must then call RQ$SENDS$
INIT$TASK. This short procedure (actually self-
contained in an OSP Support Package interface library,
not built into the 80130) tells the OSP that all the off-
spring tasks have been created for a given job. At this
point, INIT$TASK could continue with non-initializa-
tion activities. The code for KEYBOARDS$TASK might
have been implemented here, for example. Since this
example has nothing more to do, INIT$TASK deletes
itself with a final call to RQSDELETE$TASK.

Code Translation

That’s all, folks. Mix together the above code frag-
ments, declare literals and global variables, and com-
pile until done (about four minutes). The source file
name selected for this example is AP130.PLM. The
compiler will produce two files: an annotated source
listing (named AP130.LST) reproduced in toto in Ap-
pendix B, and a relocatable object file (AP130.0BJ)
which will be used in the installation procedure dis-
cussed next.

High-Level Parameter Passing
Conventions

Well-designed programs generally rely on subprograms
(‘“‘procedures’” in PL/M terminology) for often-
repeated instruction sequences, or- to perform
machine-level operations within High-Level Language
programs. PL/M-86 and other Intel high-level languages
use a standard set of conventions to pass parameters
and results between procedures; assembly language
programmers are advised to adhere to these conven-
tions for software compatibility.

Before calling a subroutine or function, input
parameters must be pushed sequentially onto the stack,
in the order (left-to-right) they appear in the procedure
parameter list. When eight-bit parameters are pushed,
the high-order byte associated with them is undefined.
Thirty-two-bit pointer values are pushed in two steps,
offset word before base word. The stack ‘‘grows”
down, so the left-most parameter will have highest-
numbered address. /

Functions which return a byte or word value (i.e., typed
procedures) do so in the CPU AL or AX registers.
Pointers are returned through the ES: AX register pair.
The PL/M Programming Manual explains these con-
ventions more fully. .

‘One way to see how an assembly language routine
would interface with PL/M is to first write a dummy
PL/M procedure using the same parameter sequence as
the desired assembly language routine. Compile this
procedure with the compiler CODE switch set. The
listing will then include the appropriate assembly lan-
guage instruction sequence, and may be followed as a
pattern for the final routine.

SOFTWARE CONFIGURATIONS &
INTEGRATION

When the application code has been written and com-
piled, the hardest part of program development is over.
Before the code may be executed, though, the OSP
must be told various things about the system hardware
environment, desired software options, application job
characteristics, and so forth.

This information is conveyed during a multi-phase se-
quence of steps collectively called the Configuration
process. Though the process is somewhat lengthy and
time-consuming, it is also very ‘‘mechanical’’; the per-
son doing the work does not need to understand any of
the application code or even know what it does. Nor-
mally, configuration would be performed by a techni-
cian or a single member of the programming team, aided
by appropriate SUBMIT command files. This chapter
shows the full configuration and installation process for
the demonstration system. For more details, refer to
the OSP User’s Manual.

The three phases of the configuration are:

1. Generating, linking, and locating OSP support code
required for the EPROM immediately above the
80130 address space;

2. Linking and locating the object file for the applica-
tion job developed in Section IV;

3. Creating," linking, and locating a short module
(called the Root Job) which initializes the OSP and
application jobs when system is reset.

Finally, of course, the aibsolute code resulting from each
phase must be programmed into EPROMs or loaded
into a test system before it can be executed.

Before starting, though, it is beneficial to draw up a
memory map for host system hardware, to determine
what sections of memory are available. This map will be
filled in as each module is linked and located.

AFN-02058A

- AP-130

The prototype system memory space has two areas of

_interest: addresses 00000H through 01FFFH contain
RAM, while OFC000H through OFFFFFH contain
EPROM. Since the CPU uses the first 1K bytes of RAM
for the CPU interrupt pointers, and the last 16 bytes for
the restart sequence, these areas should be recorded on
the map. For reference purposes, Figure 11 also indi-
cates that addresses 0F8000H through OFBFFFH
enable the 80130 firmware. All this is shown in
Figure 11.

Generating the QSP Support Code

The OSP support code *‘customizes’ the OSP firmware
for a particular hardware environment, initializes the
system, and supports extended software capabilities.

To define the hardware environment, the user creates a
source file which invokes a series of Intel-supplied
macros. Parameters for these macros specify the 80130
I/O base address, SYSTICK interval (in system clock
cycles), and how the interrupt request pins will be used.

For instance, the code example in Figure 12 defines the
prototype system hardware. This source file must be
assembled, linked with several libraries from the OSP
support disk, and Jocated to produce the actual OSP
support code. Figure 13 shows the actual sequence of
commands needed. The DATA starting address speci-
fied within the LOC86 parameter list (00400H) is the
first free byte of system RAM (see Figure 11); the
CODE address (0F8000H) is simply the 80130 firmware
starting address.

STARTING ENDING
_ MEMORY MODULE ADDRESS ADDRESS
8086 RESTART VECTOR OFFFF:0 | OFFFFF
EPROM
(2x2764)
L 0FC00:0
80130 MEMORY SPACE 0F800:0 | OFBFFF
[OIFFF
RAM
| (8086 INTERRUPT VECTOR 0000:0 | O03F:F
APPLICATION JOB STARTING ADDRESS:
ROOT JOB STARTING ADDRESS:

Figure 11. Example System Memory Map

NAMEODEVCF
$INCLUDE(F1 NDEVCF MAC)

ZMASTER_PIC(80130, 2000H, 0. 0)

» NDP._SUPPORT(ENCODED_LEVEL
END

$TITLE(80130 DEVICE CONFIGURATION TABLE)

»SLAVE_PIC(SLAVE_TYPE, BASE_PORT, EDGE_VS_LEVEL, MASTER_LEVEL)

%TIMER (80130, 2008H, 28H, 12500)

)

Figure 12. 80130 Device Configuration Table

2-68

AFN-02058A

AP-130

MACRO(B0) PAGEWIDTH(132)

FO LINKBG &

F1 OSX LIB(DSXB&, OSXCNF), &
F1 NUC1 LIB(NBEGIN), ¥
F1 ODEVCF OBV, &
F1 O0SX LIB, &
F1 NUCt 'LIB, 2
F1 0SX LIB, &
F1 NUC2 LIB, &
F1 0SX LIB, &
F1 NUC4 LIB, &
F1 0SX LIB, &
F1 WURSLV LIB, &
F1 0SX LIB

FO LOCB&
SEGSIZE(STACK(0))

ORDER (CLASSES (DATA, STACK))

FO ASMB6 F1 SUP130 AB6 PRINT(F1 SUP130 LST) ERRORPRINT

TO F1 SUP130 LNK MAP FHINT(F1 SUP130 MP1) NAME(MINIMAL 80130)

&
F1 SUP130 LNK TO F1 SUP130 MAP PRINT(F1 SUF!BO MP2) SC(3) &
ADDRESSES (CLASSES (CODE (OF8000H) » DATA(00400H))) &
&

OBJECTCONTROLS (NOL INES, NOCOMMENTS, NOSYMBOLS)

Figure 13. Support Code Configuration Commands

A reliable and relatively straightforward way to per-
form this step is to create a file containing the exact
command sequence shown in Figure 13 and execute
this file using the SUBMIT utility program. Of course,
the example assumes SUBMIT, ASM86, LINKS86,
and LOCS6 are all on drive :F0:, and that the various
libraries have been copied from the support disk to
drive :F1:.

(An alternate, support-code configuration scheme lets
the user modify the OSP software characteristics in
special situations. A programmer working with iRMX
86, for instance, may wish to augment the OSP
firmware to support all the iRMX Nucleus primitives.
This would be done by editing and assembling file
0TABLE.A86 to select from a menu of software op-
tions, and modifying the linkage step slightly to include
one of the iRMX 86 libraries. The OSP built-in features
are more than sufficient for the purposes of this note,
though, so only the first approach is illustrated.)

Appendix D reproduces the Locate map file produced
during this phase. Near the end of file SUP130.MP2 is a
table of memory usage, showing that the last bytes of
RAM and ROM consumed are 00A6: FH and OFC61:
FH, respectively. Update Figure 11 with this informa-
tion. (The final version of the demonstration-system
memory map appears in Appendix C.) This phase
needn’t be repeated unless the system hardware char-
acteristics change.

Application Code Configuration

After compiling the application job, it must be linked
with a library of interface routines from the support
diskette, and located within available memory. Use
RPIFC.LIB or RPIFL.LIB, depending on whether the
job was compiled with the Compact or Large software
model. Figure 14 is a command sequence file suggested
for this purpose. Again, the starting addresses specified
for LOC86 are taken from the system memory map.

Whenever the support code is reconfigured, check
SUP130.MP2 to see if its memory needs have changed.
If so, the application-job-configuration command file
will need to be edited. This is still a-lot simpler (not to
mention more reliable) than retyping the whole se-
quence each time application jobs are revised. Readers
familiar with the capabilities of the SUBMIT program
may prefer to represent these variables by parameters,
such that they may be easily specified each time the
command file is invoked.

As in the first phase, examine the locate map
(“‘AP130.MP2”, reproduced in Appendix E) after the
application code has been configured and update the
memory map. Also, note the segment and offset values
assigned to the initialization task. These will be needed
later.

AFN-02058A

AP-130

Creating the Root Job

By now, all of the code needed to execute the applica-
tion program has been prepared and is ready to run
—except it has no way to get it started! The OSP hard-
ware and system data structures must be initialized
before INITSTASK can be created. A short module
called the Root Job performs this function.

The process closely resembles the one which produced

the OSP support code. First, determine various system

characteristics. Then create a file defining these charac-

Figure 15 is the Root Job source file for the demonstra-
tion system, dubbed RYB130.A86. It consists of just five
macro calls. The %JOB macro defines certain charac-
teristics of the application job; for a full description see
the OSP User’s Manual. One of these parameters is the
initialization-task starting address (noted in the last
step), which will likely change with each iteration of the
application software.

The two %SAB macros define ‘‘System Address
Blocks”’—sections of the overall memory space which
the OSP should not consider ““free space.” Note that
the first invocation blocks off the RAM addresses con-

teristics as macro input parameters. Finally, assemble,
link, and locate the file to produce the final code.

sumed so far in the memory map, plus an extra 140H
bytes reserved for the Root Job initialization stack.

SUBMIT FILE TO LINK APPLICATION JOB TO INTERFACE LIBRARY
AND LOCATE RESULTING OUTPUT.
REVISED 10/23/81 - JHW

R

INK86 -F1 AP130. 0BJ, :F1 RPIFC LIB TO F1 AP130 LNK
MAP PRINT(F1.AP130 MP1)

LOC86 F1 AP130.LNK TD F1i AP130 '
ORDER (CLASSES(DATA, STACK, MEMORY))
SEGSIZE (STACK (0))
ADDRESSES (CLASSES (DATA (00A70H),
CODE (OFC620H)))
MAP PRINT ('F1:AP130 MP2) '
OBJECTCONTROLS (NOLINES, NOCOMMENTS, NOPUBL ICS, NOSYMBOLS)

R o

OHB6 F1 AP130 TO F1i'AP130 HB&
COPY .F1.AP130 MP1 TO LP

COPY F1 AP130 MP2 TO LP

Figure 14. Job Configuration Commands

, SOURCE PROGRAM DEFINING CHARACTERISTICS OF ROOT JOB FOR
» AP-130 DEMONSTRATION PROGRAM (JHW - 10/25/81)

SINCLUDE(- F1.CTABLE MAC)

%SAB (0, 00C0O, U)

%SAB (0200, FFFF, U)

%JOB (0, OCOH, 100H, OFFFFH, OFFFFH, 1, 0 0, 1, 0, 100, OFC42: 06BS5, 0, 0 0, 200H, 0)
%0SX (OF8000H, N)

%SYSTEM(FB800, 0. 4> N, N, 1)

END

Figure 15. Root Job Configuration File

2-70
AFN-02058A

AP-130

(After completing this phase, examine RJB130.MP2 to
confirm that 140H is the correct number.) The second
%S AB invocation excludes addresses 02000H through
OFFFFFH, all of which is non-RAM, either EPROM,
80130 firmware, or non-existent. The %#SYSTEM
macro defines system-wide software parameters.

Figure 16 is a command file to translate, link, and locate
the root job. Once again, the LOC86 parameters come
from Figure 11. The listings produced during this phase
are reproduced in Appendix E The final memory map
appears in Appendix C.

EPROM Programming

We are now ready to program EPROMs with the pro-
gram modules linked and located above. Intel’s Univer-
sal PROM Programmer (UPP) and a control program
called the Universal Prom Mapper (UPM) will be used
in this step. Particular commands to the UPM will vary
with program size, memory location, and EPROM type,
but the general sequence should resemble that shown
here. :

The first step is to invoke UPM and initialize the pro-
gramming system, following a command sequence
similar to that in Figure 17. The example system incor-
porates two 2764 devices, so 16K bytes of memory
buffer are cleared.

Next, all the final code modules produced above (e.g.,
SUP130, AP130, and RJB130) must be loaded into the

UPM memory buffer. The three commands in Figure 18
perform this function.

When the final system is reset, execution must branch
into the root job initialization sequence. When the abso-
lute code modules have finished loading, manually
patch a jump instruction into the buffer area corres-
ponding to the CPU reset vector. The opcode for the
8086 or 8088 intersegment jump is OEAH; the instruc-
tion’s address field must contain the address assigned to
label RQSSTART$ADDRESS (read from the root job
locate map), the 16-bit segment offset (low byte first)
followed by the segment base address (ditto). The UPM
CHANGE command should be used to make this
patch, as illustrated in Figure 19.

The UPM memory buffer now contains a complete
image of the code needed for the system EPROMs. Up
until now, all software-related steps—source code
preparation, translation, linking and locating—have
been the same for 8086- or 8088-based systems. At this
point, however, the software installation procedures
diverge slightly.

Recall that the 8086 fetches instructions 16 bits at a
time, from coordinated pairs of EPROMs. One contains
only even-numbered program bytes, the other, odd. To
separate the linear UPM buffer into high- and low-order
bytes for iAPX 86/30 designs, use the UPM STRIP
command as shown in Figure 20.

Now ‘“‘burn’’ the EPROMs with the PROGRAM com-
mand in Figure 21.

LINK8S

£1 RJB130 oby,
f1 croot lab

Locaée f£1 RJUB130 1lnk

TO F1 RJBLI30

SEGSIZE(stack(0))

OHB6
COPY F1 RJB130 LST TO
COPY F1 RJB130 MP1 TO

COPY F1 RJB130 MP2 TO

LINK AND LOCATE THE 1RMX 86 ROOT JOB

MODIFIED FOR TWO-DRIVE OPERATION
REVISED 10/25 - JHW

ASMBS f1 RJUB130 AB6 MACRO(75)
f1 croot laib(root).

TO £1 RJUB130 1nk
MAP PRINT(f£1 RJB130 mp1)

MAP PRINT(£1 RJUB130 mp2)
“ 0OCt(noli, nopl, nocm
PC(nola, pl, nocm, nosb)

ORDER(classes(data
ADDRESSES(classes(code (OFD180H),
data(00ADOH)))

stack, memory)) &
&

\
F1 RJB130 TO F1 RJB130 HB&

LE e

nosb)

L o

Figure 16. Root Job Configuration Commands

2-71

AFN-02058A

AP-130

fill from 0 to 3ffth with Ofth

Figure 17. UPM Initialization Sequence

read 86hex file : f1: ap130.

read 86hex file : f1: sup130. h86 from 0 to 3fffh start 0fc000h
read 86hex file : f1 : rjb130. h86 from 0 to 3ftth start 0fc000h

h86 from 0 to 3ffth start 0fc000h

Figure 18. UPM Commands to Load Hex Files

* change 3ff0h=0eah, 11h, 00h, 18h, Ofdh

Figure 19. UPM Command to Patch Restart Vector

v

strip low from 0 to 3fffh into 4000h
strip hi from 0 to 3fffh into 6000h

Figure 20. UPM Commands to Strip High and Low Bytes

program from 4000h to Sfffh start 0
program from 6000h to 7fffh start 0
exit

Figure 21. UPM Commands to Program EPROMs

To save some trouble, the UPM invocation and all com-
mands except the manual patch can be combined into a
SUBMIT command file. Replace the CHANGE com-
mand with a control-E character so the operator can
adjust the starting address for the iteration. Also place
control-Es before each PROGRAM step to give the
operator time to socket the next memory device.

SUMMARY

The development of the 80130 marks a major milestone
in the evolution of microcomputer systems. For the

first time, a single VLSI device integrates the hardware

facilities and operating system firmware needed by
real-time multitasking applications. The 80130 offers
the system hardware designer the advantages of higher

‘integration—reduced device count, smaller boards,

greater reliability—along with faster design cycles and
optimal system performance.

The 80130 gives the software engineér built-in support
for 35 standard operating system primitives. Applica-
tion problems may now be solved at a higher level than

-

before. It is now possible for concurrent tasks to be
dispatched, memory segments allocated, and messages
relayed through mailboxes nearly as easily as sub-
routines, dynamic variables, and I/0 ports were used in
the past. In effect, Jobs, Tasks, Segments, Mailboxes,
and Regions become new OSP data types, manipulated
entirely by firmware in the 80130.

Yet despite standardizing these functions, the OSP does
not restrict the user’s flexibility. The device can accom-
modate a variety of hardware environments, and both
the hardware and software capabilities are desired.

ACKNOWLEDGEMENTS

The author would like to thank Peter Pederson for
designing and implementing the demonstration system
breadboard discussed in this note, Pam Johnson for her
assistance in typing the manuscript, and Hal Kop,
Lionel Smith, George Alexy, Chuck McMinn, and
Sandy Wharton for their help in reviewing the drafts
and providing many thoughtful comments and
criticisms.
2-72°

AFN-02058A

AP-130

APPENDIX A
EXAMPLE SYSTEM SCHEMATICS

2-73
AFN-02058A

vlc

: — T
~N
— Veerls 2 a
100k0 l D ax 3 af—ne. - PBO-7 OUT PORT
: Voc>{K § CLRpVcc cs
RES « RDY?1 >CLK « —>]A1 > pco-7}—N.C
L btk & AEN1{<GND giowel— A0
1uF RESET RDY2j=Vic Vcc»{CEN _IORC RD
RESET L1 Jecik AEn2lecenD GND>{AEN AIOWC — WR po-7 <A:93.AD15>
= = | |reany §0 WRDC N
x1 FiC S1 AmwC NC—a 2
x2 CSYNC 52 ALE}— a §ok -
. -
D GND ClR G K
51008 e GND->{3E STB S
2 L e >1°F - 7
= = READY 8 MRDC —
REseT A1G-A190 A16-A19 > 8 AMWC (3 XD —CDO-‘ ~{3]
g BHE BHE RESET
GND —3{ NMI S0 —1-4 CLK
ano—ulrest & i ~—anp [— g G
GND MN/MX s2 >|OE STBj<{ 8 WR & perl e GND
A\ 8 —MEmes B 190 > ersle—ann
- ADO-AD15 /ADO-AmS :> s 1'% & D
e inTR \r - —] (EPCS 9 i L
4 HEPCS © Do-7 =
OE STB | { 2 ﬁ E 2
= CLK B"E e’ 2 »
INT 50 | :> 2 ADDRESS-BUS A H
GND>IR0 @ > »
aho»jiR1 2 &2 ' i il b
8
1R2 BAUD 2 2
60 Hz»{IR3 MEMCS
GND>IR4 iocs
GND > IR5 A N -
GND > IR6 .
AD15{ ADO-AD15
anp iy APTADISK
SYSTICK

(vazeeese-z| ™

2

o
S

101-1/04

ADO-AD7 AD8-AD15 AD8-AD15 AD8-AD15

DATA-BUS

' v85020-N4V

Figure A-1. Example System Schematics

0€l-dv.

AP-130

1
Uenie vecPe+s
AN 2ls1a EN2G |2
A2 s saafd
ERTCS Hivo 3 sef
ER2CS : w1 2 avo :f ORICS
ERICS vz 8 oni OR2CS
» ERICS : 13 2v2 ;° OR3CS
S oR4CS
13 7
a2
8
EDEE
AMWC °
F
Ats Uene voc e s
A13 ; S1A EN2G ::’——:L_
A1a s1B s2A A4
—Hivo 3 s —a1s
(80130) 1OCS vt & 2vol2
USART C§ Sliva 8 avii [EPCS (2764)
! PIOPCS Zliva 2v2 |12 MEMCS (80130)
Slano avaf? WMEPCS (2764)

Figure A-1. Example System Schematics (continued)

2-75

AFN-02058A

AP-130

APPENDIX B
'SOURCE CODE LISTINGS

2-76

AFN-02058A

AP-130

ISIS-11 PL/M-86 V2 O COMPILATION OF MODULE DEMO130
OBJECT MOCDULE PLACED IN "F1-AP130. OBJ
COMPILER INVOKED BY' PLM86 .F1:AP130.PLM DATE(12/21)

299

2230

301

1

L

$DEBUG COMPACT ROM TITLE(’AP-130 APPENDIX B - 12/21/81")

DEMO$130. DO,

/# BYSTEM-WIDE LITERAL DECLARATIONS: #/
DECLARE FOREVER LITERALLY ‘WHILE O1H’,

/# I1/0 PORT DEFINITIONS. %/

DECLARE CHAR$51 LITERALLY ‘4000H’,
CMD$51 LITERALLY ‘4002H’,
STAT451 LITERALLY ‘4002H‘,

DECLARE PPI$A LITERALLY ‘6001H’,
PPI$B LITERALLY ‘&6003H’,
PPI$C LITERALLY ‘&6005H’,
PPI$CMD LITERALLY ‘&6007H’,
PPI$STAT LLITERALLY ‘6007H’,

DECLARE TIMER$CMD LITERALLY ‘200EH’,
BAUD$TIMER LITERALLY ‘200CH’;

DECLARE ACHINTERRUPTSLEVEL LITERALLY ‘Q0111000B°',
DECLARE CR LITERALLY ‘ODH’,

LF LITERALLY ‘OAH’,

BEL LITERALLY ‘O7H’,

DECLARE ASCII$CODE (1&6) BYTE DATA ('0123456789ABCDEF ‘);

$EJECT

$INCLUDE (.FiI NUCLUS, EXT)
$SAVE NOLIST
$INCLUDE ¢ F1 NEXCEP LIT)
$save nolist

/% GLOBAL VARIABLE DECLARATIONS. */

DECLARE DATASSEG$PTR POINTER,
DATASEGADDR STRUCTURE (OFFSET WORD, BASE WORD)
AT (@DATASEGPTR),

DECLARE HARDWARESINITSTASK$TOKEN WORD,
STATUSSTASK$TOKEN WORD,
MOTORSTASK$TOKEN WORD,
TIME$TASKETOKEN WORD.
ACSHANDLERSTOKEN WORD,
CRT$OUTHTASKSTOKEN WORD,
COMMAND4TASK$TOKEN WORD,
INITSTASK$TOKEN WORD,

DECLARE CRT$MAILBOX$TOKEN WORD,
~ CRT$REGION®TOKEN WORD;

2-77

» AFN-02058A
\

. AP-130

202
3073
304

305
304
307

308
jelals

210
31!
31

312
214
31
31¢
317

318

319
420
221
322
3273

274

28
27
R
w29
730
pel]

332
333
334

335
226
337
o3e
309
340
341
340

LA

AR ARA]

P) o=

AR A

LR

MU RBRR

$EJECT,
/# CODE EXAMPLE 2 SIMPLE CRT INPUT AND OUTPUT ROUTINES. #/

C$0UT: PROCEDURE (CHAR);
DECLARE CHAR BYTE;
DO WHILE (INPUT(STAT$51) AND O1H)=0;
/% NOTHING #/
END;
OQUTPUT(CHAR$S51) =CHAR;
END C$0QUT: :

CHIN: PROCEDURE BYTE;
DO WHILE (INPUT(STAT®51) AND 02H)=0; -
/% NOTHING %/
END;
RETURN INPUT(CHAR$51);
END CHIN;

SEJECT
/% CODE EXAMPLE 1. HARDWARE INITIALIZATION TASK. #/

HARDWARES$ INIT$TASK. PROCEDURE;
DECLARE HARD$INIT$EXCEPT$CODE WORD;
DECLARE PARAM$51 (#) BYTE DATA (40H, 8DH, OOH, 40H, 4EH. 27H),
DECLARE PARAM$S51$INDEX BYTE;
DECLARE SIGNSONSMESSAGE (%) BYTE DATA
(CR, LF, "iAPX B86/30 HARDWARE INITIALIZED’,CR,LF);
DECL.ARE SIGNONINDEX BYTE;

OUTPUT(PPI$CMD)=90H, R
OUTPUT(TIMERS$CMD)=0B&H;

QUTPUT(BAUDSTIMER)=33; /#GENERATES 9600 BAUD FROM 5 MHZ#/

QUTPUT(BAUD$TIMER) =0,

DO FARAM$S1SINDEX=0 TO (SIZE(PARAM$51)-1);
OQUTPUT(CMD$51)=PARAM$51 (PARAME51$INDEX);
END, /#0F USART INITIALIZATION DO-LOOP*/

DO SIGN$ONSINDEX=0 TO (SIZE(SIGN$SON$MESSAGE)-1);
CAal.L CSOUT(SIGNSONSMESSAGE (SIGNSONSINDEX));
END; /#0F SIGN-ON DO-LOOP#/

CALL RA$RESUMESTASK (INIT$TASK$TOKEN, @HARD$ INIT$EXCEPT$CODE) ;

CALL RQ$DELETE$TASK (0O, @HARD$INIT$EXCEPT$CODE);
END HARDWARESINITSTASK;

$SEJEC]

/% CODE EXAMPLE 3. STATUS POLLING AND REPORTING TASK. */

STATUSSTASK PROCEDURE;.
DECL ARE STATUS$COUNTER BYTE;
DECLARE STATUS$EXCEPT$CODE WORD:

STATUS$COUNTER=0;
CALL RG$RESUME$TASK(INITsTASKsTUKEN.QSTATUSSEXCEPT$CDDE).
' DO FOREVER.,
OUTPUT (PPI$B)=INPUT(PPI1$A) XOR STATUS$COUNTER:
STATUS$COUNTER=STATUSSCOUNTER+1;
CALL RQ$SLEEP (100, @STATUS$SEXCEPT$CODE) ;
END;
END STATUS$TASK;:

2-78

AFN-02058A

AP-130

343

344
345
346

347

348
349
350
351
352
353
354
355
356
357
358
359
380
361
362
363
364
365
366
367

368

389
370
271
372
373

375

376

377
378

379

e

"y

NWR’PPLPREPLOWRAEADPLOINRULLDUM

PY e -

RN

oW [ARA]

n

SEJECT
/% CODE EXAMPLE 4. STEPPER MOTOR CONTROL TASK. */

DECLARE CW$STEP$DELAY BYTE,
CCW$STEPSDELAY BYTE,
CW$PAUSESDELAY BYTE,
CCW$PAUSESDELAY BYTE:

MOTOR$TASK: PROCEDURE;
DECLARE MOTORSEXCEPT$CODE WORD;
DECLARE MOTOR$POSITION BYTE,
MOTOR$PHASE BYTE; |
DECLARE PHASE$CODE (4) BYTE
DATA (00000101B, 000001108, 000010108, 00001001B);

CWS$STEP$DELAY=50; /#INITIAL STEP DELAYS = 1/4 SECOND#/
CCWSSTEPS$SDELAY=50;

CW$PAUSE$DELAY=200, /#PAUSES AFTER ROTATION = 1 SECOND#/
CCW$PAUSE$DELAY=200;

CALL RQ$SRESUMESTASK(INITS$TASK$TOKEN, @MOTOR$EXCEPT$CODE) ;
DO FOREVER;

DO MOTOR$POSITION=0 TO 100;
MOTOR$PHASE=MOTOR$POSITION AND OO0O3H;
OUTPUT(PP1I$C)=PHASE$CODE (MOTOR$PHASE);

CALL RQO$SLEEP (CW$STEP$DELAY, @MOTOR$EXCEPT$CODE);
END;

CALL RQ$SLEEP (CW$PAUSESDELAY. @MOTOR$EXCEPT$CODE);

DO MOTOR$POSITION=0 TO 100;
MOTOR$PHASE=(100-MOTOR$POSITION) AND OOQO3H; '
OUTPUT (PP I$C)=PHASE$CODE (MOTOR$PHASE);

CALL RQO$SLEEP (CCW$STEP$DELAY, @MOTOR$SEXCEPT$CODE),
END;
CALL RQ$SLEEP (CCW$PAUSES$DELAY, @MOTOR$EXCEPT$CODE);
END;
END MOTOR$TASK;

SEVECT
/% CODE EXAMPLE 5. INTERRUPT HANDLER TO TRACK &40 HZ INPUT. %/
DECLARE AC$CYCLE$COUNT BYTE;

AC$HANDLER. PROCEDURE INTERRUPT 59; /#VECTOR FOR 80130 INT3#/
DECLARE ACSEXCEPT$CODE WORD;

CALL RQ$ENTERS$SINTERRUPT (ACSINTERRUPT$LEVEL, @ACSEXCEPT$CODE);
ACSCYCLESCOUNT=ACSCYCLE$COUNT+1;
IF ACSCYCLESCOUNT >= &0
THEN DO;
ACSCYCLE$COUNT=0;
CALL RQ$SIGNALSINTERRUPT(ACSINTERRUPTSLEVEL.,
@ACSEXCEPTSCODE)
~ END,
ELSE CALL RQG$EXIT$INTERRUPT(AC$INTERRUPT$LEVEL.,
@ACS$EXCEPT$CODE),
END AC$HANDLER;

2-79
AFN-02058A

-AP-130

SEJECT

/# CODE EXAMPLE 7. PROTECTED CRT OUTPUT SUBROUTINE. #/

380 1 PROTECTEDCRT0UT. PROCEDURE (CHAR) REENTRANT; .
381 2 DECLARE CHAR BYTE;
382 2 DECLARE CRT$EXCEPT$CODE WORD;
383 2 CALL RQ$RECEIVE$CONTROL (CRT$REGIONS$TOKEN, @CRT$EXCEPT$CODE);
3e4 2 DO WHILE (INPUT(STAT$51) AND O1H)=0
/% NOTHING #/
385 3 END;
1386 2 OUTPUT (CHAR$51) =CHAR;
387 2 CALL RQ$SEND$CONTROL (@CRT$EXCEPT$CODE);
388 & /END PROTECTEDCRT0UT,
SEJECT
/# CODE EXAMPLE 6. INTERRUPT TASK TO MONITOR CLOCK TIME. =/
389 1 DECLARE SECOND$COUNT BYTE,
MINUTE$COUNT BYTE,
HOURSCOUNT BYTE;
390 1 TIME$TASK: PROCEDURE;
391 2 DECLARE TIME$EXCEPT$CODE WORD;
392 2 ACSCYCLE$COUNT=0;
393 2 CALL RQSETINTERRUPT (ACSINTERRUPTSLEVEL, O1H,
INTERRUPT$PTR (AC$HANDLER), DATASECADDR. BASE,
@TIME$EXCEPT$CODE)
394 2 CALL RGQRESUME%TASK(INIT*TASK$TOKEN:@TIME$EXCEPT§CDDE),
T 395 2 DO HOUR$COUNT=0 TO 23;
396 3 DO MINUTE$COUNT=0 TO 5%9; ,
397 4 DO SECOND$COUNT=0 TO 59;
398 S CALL RASWAITSINTERRUPT(AC$INTERRUPT$LEVEL,
@TIME$SEXCEPT$CODE);
399 5 IF SECOND$COUNT MOD 5 = O
THEN CALL PRDTECTEDCRTUUT(BEL).
401 'S END; /# SECOND LOOP #/
402 4 END; /# MINUTE LOOP #/
403 2 END; /% HOUR LOOP %/
404 2 CALL RQ$RESET$INTERRUPT(AC$INTERRUPT$LEVEL.,
- @TIME$EXCEPT$CODE);
405 2 CALL RG$DELETE$TASK(O:@TINE$EXCEPT$CDDE):
406 2 END TIME$TASK;

2-80
AFN-02058A

AP-130

407
408
409
410

413
114

415
416
417
418G
419

420
421
422
423
424
425
426
427

428
429

430
431
432
433

434

435

436
437
438

439

340
441
442
443

444
444
445
447

448
449
450

n AR RN I

"

o

WP

[SEARANARNEAN V&)

IV

LRV AN

P

LAN XN L&)

I

[I LR

W W

LSRN

LA

SEJECT

/#

CODE EXAMPLE 8. SUBROUTINE TO CREATE TIME-OF-DAY MESSAGE.

PRINT$TOD. PROCEDURE;

DECLARE TOD$MESSAGE$TOKEN WORD;
DECLARE TOD$EXCEPT$CODE WORD;,
DECLARE TOD$SEGMENT$OFFSET WORD,
TOD$SEGMENT$BASE WORD; .
DECLARE TOD$SEGMENT$PNTR POINTER AT (@TOD$SEGMENT$OFFSET);
DECLARE TOD$TEMPLATE (28) BYTE)
DATA (27, ‘THE TIME IS NOW hh:mm:ss. /. CR,LF);
DECLARE TOD$STRING BASED TOD$SEGMENT$PNTR (28) BYTE;
DECLARE TOD$STRING®INDEX BYTE;

TOD$MESSAGE$ TOKEN=RQ$CREATES$SEGMENT (28, @TOD$EXCEPT$CODE) i
TOD$SEGMENT$BASE=TOD$MESSAGE$TOKEN;
TOD$SEGMENT$0FFSET=0;
DO TOD$STRING$INDEX=0 TO 27;

TOD$STRING(TOD$STRING$INDEX)=

TODSTEMPLATE (TOD$STRING$ INDEX) ;

END;
TOD$STRING(17)=ASCII$CODE (HOUR$COUNT/10);
TOD$STRING(18)=ASCII$CODE (HOUR$COUNT MOD 10);
TOD$STRING(20)=ASCII$CODE(MINUTE$COUNT/10);
TOD$STRING(21)=ASCII$CODE(MINUTE$COUNT MOD 10);
TOD$STRING(23)=ASCII$CODE (SECOND$COUNT/10);
TOD$STRING (24)=ASCII1$CODE(SECOND$COUNT MOD 10);
CALL RQ$SEND$MESSAGE (CRT$MAILBOX$TOKEN,

TOD$MESSAGE$TOKEN, 0, @ TOD$EXCEPT$CODE) ;i
RETURN;
END PRINT$TOD;

SEJECT

/#

CODE EXAMPLE 9. SUBROUTINE TO CREATE SWITCH STATUS MESSAGE.

PRINT$STATUS: PROCEDURE,

DECLARE STATUS$MESSAGE$TOKEN WORD:;
DECLARE STATUS$EXCEPT$CODE WORD:;
DECLARE STATUS$SEGMENT$OFFSET WORD,
STATUS$SEGMENT$BASE WORD;
DECLARE STATUS$SEGMENT$PNTR POINTER
AT (@STATUS$SEGMENTSOFFSET);
DECLARE STATUS$TEMPLATE (40) BYTE DATA
. (39, ‘THE SWITCHES ARE NOW SET TOB’,CR,LF);
DECLARE STATUS$STRING BASED STATUS$SEGMENT$PNTR (40) BYTE;
DECLARE STATUS$STRING$INDEX BYTE:
DECLARE BIT$PATTERN BYTE;

STATUSSMESSAGES TOKEN=RQ$CREATE$SEGMENT (40,
@STATUS$EXCEPT$CODE);
STATUS$SEGMENT$BASE=STATUS$MESSAGE$TOKEN;
STATUS$SEGMENT$0FFSET=0;
DO STATUS$STRINGS$INDEX=0 TO 39;
STATUS$STRING (STATUS$STRINGSINDEX)= .
STATUSSTEMPLATE (STATUS$STRING$INDEX)
END;
B1T$PATTERN=INPUT(PPI$A);
DO STATUS$STRINGSINDEX=29 TO 36;
STATUSSSTRING (STATUS$STRINGSINDEX)=
ASCII$CODE(BIT$PATTERN AND O1H);
BIT$PATTERN=ROR(BIT$PATTERN, 1);
END;
CALL RQ$SEND$MESSAGE (CRT$MAILBOX$TOKEN,
STATUS$MESSAGES$TOKEN, 0, @STATUSSEXCEPT$CODE) ;
END PRINT$STATUS,

2-81

*/

*/

AFN-02058A

AP-130

SEJECT . N

/% CODE EXAMPLE 10. TASK TO RECEIVE MESSAGES AND TRANSMIT THEM TO CRT. #/

anz 1 CRT$0OUT$TASK. PROCEDURE:;
453 @ DECI.ARE MESSAGE$LENGTH BYTE:
454w DECLARE MESSAGE$TOKEN: WORD;
45 R DECLARE RESPONSE$TOKEN WORD,
498 @ DECLLARE MESSAGESEXCEPT$CODE WORD:
437 2 DECLARE MESSAGE$SEGMENT$OFFSET WORD,

MESSAGES$SEGMENTS$BASE 'WORD:)
asg @ DECLARE MESSAGE#SEGMENT$PNTR POINTER AT (@MESSAGE$SEGMENTS$OFFSET);
ame e DECLARE MESSAGE$STRING$CHAR BASED MESSAGE$SECMENT$PNTR BYTE;
460 D CAlLL RQ$RESUME$TASK(INIT$TASK$TOKEN, @MESSAGESEXCEPT$CODE);
agy 2 DO FOREVER, . }
62 3 MESSAGE$TOKEN=RQ$RECE I VE$MESSAGE (CRT$MAILBOX$TOKEN, OFFFFH,

@RESPONSES$TOKEN, @MESSAGESEXCEPT$CODE) ;
doi 3 MESSAGE$SEGMENT$OFFSET=0, i
4éh o . MESSAGE$SEGMENT$BASE=MESSAGE$TOKEN;
48y 3 MEGSACESLENG TH=MESSAGE$STR INGSCHAR;
A66 3 DO MESSAGE$SEGMENT$OFFSET=1 TO MESSAGE$LENGTH;
467 4 CALL PROTECTEDCRT0UT (MESSAGE$STRING$CHAR);
i68 4 END,
agy A CALL RQ$DELETE$SEGMENT (MESSAGE$TOKEN, @MESSACESEXCEPT$CODE)
470 3 END; /% OF FOREVER-LOOP #/
7y o2 END CRT$OUTSTASK: =~
SEJECT
/% CODE EXAMPLE 11. TASK TO POLL KEYBOARD AND PROCESS COMMANDS. #/ ‘

472 COMMAND$TASK. PROCEDURE,

1
4773 2 DECLARE CONSOLE$CHAR BYTE;

474 DECLARE COMMAND$EXCEPT$CODE WORD;
4;5 2 CALL RQ$RESUME$STASK (INIT$TASK$TOKEN, @COMMANDS$EXCEP T$CODE) ;
476 2 DO FOREVER;
a7’ 3 CONSOLE$CHAR=C$IN AND 7FH;
478 2 CAlL. PROTECTEDCRT0UT (CONSOLE$CHAR) ;
479 3 IF CONSOLE$CHAR=CR
THEN CALL PROTECTEDCRTOUT(LF);’
431 3 IF (CONSOLE$CHAR >= ‘O‘). AND (CONSOLE$CHAR <= ‘9’)
THEN DO; -
48 4 CALL PROTECTEDCRTOUT(CR);
484 4 CALL . .PROTECTEDSCRTOUT(LF);
40y 4 DO CASE (CONSOLE$CHAR-'0’);.
486 o CALL PRINT$TOD;:
487 9 CALL PRINT$STATUS;
488 9 CALL RQ$SUSPEND$TASK(CRT$OUTHTASK$TOKEN,
@COMMANDSEXCEPT$CODE) ;
489 3 CALL RQ$RESUMES$TASK(CRT$OUTSTASK$TOKEN,
@COMMANDS$EXCEPT$CODE)
490 5 CALL RQ$DISABLE(AC$INTERRUPT$LEVEL.,
@COMMAND$EXCEPT$CODE) ;
431 5 CALL RQ$ENABLE(AC$INTERRUPTSLEVEL.,.
, @COMMAND$EXCEPT$CODE) ;
492 5 CALL RQA$SUSPEND$TASK (MOTOR$TASKSTOKEN,
@COMMANDSEXCEPT$CODE) ;
493 5 CALL RQ$RESUMES$TASK (MOTORSTASKSTOKEN,
@COMMANDS$EXCEPT$CODE) ;)
494 5 CALL RQ$SUSPEND$TASK(STATUSSTASK$TOKEN,
‘) RCOMMANDS$EXCEPT$CODE) ;
495 5 CALL RG$RESUMES$TASK(STATUS$TASK$TOKEN,
@COMMAND$EXCEPT$CODE) ;
494 5 END; /# OF CASE-LIST #/
497 4 ‘ END, /# OF COMMAND PROCESSING #/
498 3 END, -
499 2 END COMMAND$TASK;

2-82

AFN-02058A

AP-130

$EJECT

/% CODE EXAMPLE 12. TASK TO INITIALIZE OSP SOFTWARE. */

500 1 INIT$TASK: PROCEDURE PUBLIC;

501 2 DECLARE INIT$EXCEPT$CODE WORD;

502 2 DATASEGPTR=RINIT$TASKSTOKEN;: /#LOAD DATA SEGMENT BASE#*/

03 2 CRT$MAILBOX$TOKEN=RQ$CREATE$SMAILBOX (0, @INIT$EXCEPT$CODE);

504 2 CRT$RECIONS$TOKEN=RQ$CREATE$REGION(O, RINITSEXCEPT$CODE);

505 2 INIT$TASK$TOKEN=RQGETTASK$TOKENS (0, RINIT$EXCEPT$CODE) ;

506 2 HARDWARE®INIT$TASK$TOKEN=RQ$CREATES$TASK
(110, @HARDWARES$INIT$TASK, DATASEGADDR. BASE, 0, 300,
0, @RINIT$EXCEPT$CODE);

90/ 2 CALL RQ$SUSPEND$TASK (O, @RINITS$EXCEPT$CODE) ;

50R 2 STATUSSTASK$TOKEN=RQ$CREATE$TASK (110, @STATUSSTASK,
DATA$SEGSADDR. BASE, 0, 300, 0, RINIT$SEXCEPT$CODE) ;

509 2 CALL RQ$SUSPEND$TASK (0, @INIT$EXCEPT$CODE) ;

510 2 MOTOR$TASK$TOKEN=RQ$CREATE$TASK (110, @MOTOR$TASK,
DATASEGADDR. BASE, 0, 300, 0, @INIT$EXCEPT$CODE) ;

511 2 CALL RQ$SUSPEND$TASK (0, @INIT$EXCEPT$CODE)

512 2 TIME$TASK$TOKEN=RQ$CREATE$TASK (120, @TIME$TASK,
DATASEGADDR BASE, 0, 300, 0, @INIT$EXCEP T$CODE);

512 2 CALL RQ$SUSPEND$TASK (O, @INIT$EXCEPT$CODE);

014 2 CRTOUTTASK$TOKEN=RQ$CREATESTASK (120, @CRT$OUTS$TASK
DATASEGADDR. BASE, 0, 300, 0, @INIT$EXCEPT$CODE);

915 2 CALL RQ$SUSPEND$TASK (O, @INITSEXCEPT$CODE);

516 2 COMMAND$TASK$TOKEN=RQ$CREATE$TASK (130, @ COMMAND$TASK,
DATASEGADDR BASE, 0, 300, 0, @INIT$EXCEPT$CODE);

917 2 CALL RQ$SUSPEND$TASK(O, @INIT$EXCEPT$CODE);

518 2 CALL RQENDINITETASK;

519 2 CALL RQ$DELETE$TASK(O, @INITSEXCEPT$CODE);

520 2 END INIT$TASK;

521 i END DEMO%$130,

MODULE INFORMATION

CODE AREA SIZE = 084CH 2124D ’
CONSTANT AREA SIZE = OQOOH oD
VARIABLE AREA SIZE = 0052H 82D
MAXIMUM STACK SIZE = 0026H 38D

848 LINES READ
0 PROGRAM ERROR(S)

END OF PL/M-8& COMPILATION

2-83 AFN-02058A

AP-130

APPENDIX C
SYSTEM MEMORY MAP

2-84
AFN-02058A

AP-130

EXAMPLE SYSTEM MEMORY MAP

EPROM
(2x2784)

_ MEMORY MODULE

STARTING ENDING

ADDRESS ADDRESS

8086 RESTART VECTOR OFFFF:0 | OFFFFF
ROOT JOB CODE AREA OFD18:0 | OFD36:6
APPLICATION JOB CODE AREA O0FC62:0 | OFD17:8
| [OSP SUPPORT CODE AREA OFC00:0 | OFCB1F
80130 MEMORY SPACE 0F800:0 | OFBFFF
([(FREE SYSTEM RAM) 00C0:0_| OIFFF
ROOT JOB DATA AREA 00AD:0_| 0OBFF
APPLICATION JOB DATA AREA 00A7:0 | 00AC:1
OSP SUPPORT DATA AREA 0040:0__| 00AGF
8086 INTERRUPT VECTOR 0000:0__| 003FF

INITIALIZATION TASK STARTING ADDRESS: __FC62:06B5

ROOT JOB STARTING ADDRESS:

2-85

FD18:0011

AFN-02058A

. AP-130

~ APPENDIX D
SUPPORT CODE LOCATE MAP

2-86
AFN-02058A

AP-130

ISIS-II MCS-86 LOCATER, V1 2 INVOKED BY
FO LOCB6 &

&
F1 SUP130 LNK TO F1 SUP130 MAP PRINT(F1 SUP130 MP2) SC(3) &

SEGSIZE(STACK(0)) &

ADDRESSES (CLASSES (CODE (OFB000H) , DATA(0Q0400H))) &

ORDER (CLASBES(DATA, STACK)) &

OBJECTCONTROLS (NOL INES, NOCOMMENTS, NOSYMBOLS)
WARNING 26 DECREASING SIZE OF SEGMENT
SEGMENT STACK

SYMBOL TABLE OF MODULE MINIMAL_B80130
READ FROM FILE ‘F1 SUP130 LNK
WRITTEN TO FILE F1 SUP130

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL
0040H O000OH PUB INTERRUPTTASKVEC 0040H 0120H PUB DEFAULT_HANDLER 0040H 0144H PUB READYLISTROOT
0040H 0148H PUB INTERRORENTRY O040H 014CH PUB SYSTEMEXCEPTIONH 0040H 0130H PUB DELETIONTASKTOKE
~ANDLERPTR -N
0040H 01%2H PUB EXTENSIONLISTROO 0040H O0154H PUB DELETION_OBUECT_ 0040H 0156H PUB SYSTEMPOOLTOKEN'
-T -BASE
0040H 0158H PUB RODTJOBTOKEN 0040H O015AH PUB MINTRANSSIZE 0040H O15CH PUB LAST_NDP_TASK
0040H O13EH PUB NDP_INTERRUPT_LE 0040H O0160H PUB PARAM_VALIDATION 0040H 0162H ' PUB REGION_FLAGS
~VEL_VAR ~_VECTOR
0040H 0164H PUB TASK_WAITING_FLA 0040H 0164H PUB REGION_TOKEN_TAB 0040H 0176H PUB SIGNAL_Q_INDEX
-68 -LE
0040H 0178H PUB SIGNAL_G 0040H O1EBH PUB KERNEL_FLAG 0040H O1ESH PUB ACTIVATE_SIGNAL_
- -a
0040H O1EAH PUB FILLCHAR 0040H O1EBH PUB NUM_SLAVES 0040H O1ECH PUB OLD_SLAVE_NUM
0040H OIEDH PUB INTMASK 0040H O1F6H PUB DISABLEMASK 0040H OIFFH PUB LEVEL_SET_TABLE
0040H 0208H PUB IMR_PORT 0040H 021AH PUB EOI_PORT 0040H 022CH PUB ISR_PORT
0040H O023EH PUB PIC_INFO 0040H 0247H PUB CLOCK_SPEC_EOI 0040H 0248H PUB CLOCK_ON
0040H 0249H PUB CLOCK_OFF 0040H 024AH PUB CLOCK_LEVEL 0040H OSDOH PUB END_OF_DATA
FBOOH 45CCH PUB NDP_INTERRUPT_LE FBOOH 45C2H PUB VALIDATE_PARAMS_ FBOOH 4342H PUB OETDESCRTOKEN
~VEL. -BODY_DUMMY
FBOOH 4536H PUB GETDESCRPOINTER FBOOH 4567H PUB GETPOINTER FBOOH 433DH PUB SCANMEMORY
FHOOH 4538H PUB OVERFLOW FBOOH 4533H PUB NENTRY_BODY FBOOH 452EH PUB KSUSPEND
FBOOH 4529H PUB KINITIALIZE FBOOH 4524H PUB KENABLELEVELNS FBOOH 451FH PUB KENABLELEVEL
FBOOH 451AH PUB KCREATEREGIONNS FBOOH 4515H PUB KCREATEOBJECTNS FBOOH 4510H PUB KCREATEOBJECT
FBOOH 4S0BH PUB INITNDP FBOOH 4506H PUB INITIALIZE _ FBOOH 4501H PUB FINISHINITIALIZA
-TION
FBOOH 44FCH PUB EOI_ROUTINE FBOOH 44F7H PUB DIVIDEBYZERD FBOOH 44F2H PUB DECODE_LEVEL
FBOOH 44EDH PUB COMMON_ERROR FBOOH 44EBH PUB CLOCKENTRY_BODY FBOOH 44ESH PUB ARRAYBOUNDS
FBOOH 44DOH PUB SYSTEMEXCEPTIONH FBOOH 4472H PUB INITIALIZE_TIMER FBOOH 43AEH PUB INITIALIZE_PICS
~ANDLER
FBOOH 435CH PUB INIT_INTERNAL_RE FBOOH 434EH PUB NDP_INTERRUPT_HA FBOOH 433FH PUB CLOCKENTRY
~CIONS . ~NDLER)
FBOOH 4336H PUB NENTRY FBOOH 40FEH PUB INITIALIZENUCLEU FHOOH 40B&H PUB RGWAITINTERRUPT_
-5 -BODY
FBOOH 40BIH PUB RQGSIGNAL INTERRUP FBOOH 40ACH PUB RGGETLEVEL_BODY FBOOH 40A7H PUB RGEXITINTERRUPT_
-T_BODY -BODY
FBOOH 40A2H PUB RGENTERINTERRUPT FBOOH 409DH PUB RGDISABLE_BODY FBOOH 4094H PUB RGWAITINTERRUPT
-_BODY
FBOOH 40BAH PUB RGSIGNAL INTERRUP FBOOH 40BOM PUB RGGETLEVEL FBOOH 4076H PUB RGENTERINTERRUPT
-7 ,
FBOOH 406CH PUB RGEXITINTERRUPT FBOOH 4062H PUB RQDISABLE FBOOH 405DH PUB NUNLOCK_DELETION
~_OBJECT
FBOOH 4058H PUB NUNLOCKNS FBOOH 4053H PUB NUNLOCK . FHOOH 404EH PUB NOPEN_DELETION_O
. ~BUECT
FBOOH 4049H PUB NOPENNS FBOOH 4044H PUB NOPEN FBOOH 403FH PUB NLOCK_DELETION_O
~BJECT
FBOOH 403AH PUB NLOCKNS FBOOH 4035H PUB NLOCK FBOOH 4030H PUB NCLOSE_DELETION_
~OBJECT
FBOOH 402BH PUB NCLOSENS FBOOH 4026H PUB NCLOSE FBOOH 4021H PUB DELETERUNNINGTAS
K
FBOOH 401CH PUB DELETEOBJECT FBOOH 400AH PUB COPYRIGHT FBOOH 4000H PUB NBEGIN
FBOOH 4000H PUB INIT_NUCLEUS_JUM FCSDH 0004H PUB IMR_START FCSCH O000EH PUB
-p
FCS5CH OOOFH PUB INIT_CMD1 FCSCH 0010H PUB INIT_CMD5_MASTER FCS5CH 0011H PUB
FCSCH 0012H PUB INIT_CMD4_MASTER FC61H OOOEH PUB SLAVE_TABLE FC&41H 0003H PUB
FC61H O00SH PUB CLOCK_O_PORT FC61H O0007H PUB CLOCK_COUNT FC61H OVOAH PUB
FC61H OOOBH PUB C_CLOCK_SPEC_EOI FC61H 000CH PUB C_CLOCK_ON FC61H 0009H PUB
FBOOH 4576H PUB LEVEL7_HANDLER FBOOH 4574H PUB PARAM_VALIDATION
~_PATH
MEMORY MAP OF MODULE MINIMAL 80130
READ FROM FILE F1-SUP130 LNK
WRITTEN TO FILE F1 SUP130
SEGMENT MAP
START sTOP LENGTH ALIGN NAME CLASS
00000H OO3FFH 0400H A (ABSOLUTE)
00400H OO9EFH OSFOH W DATA DATA
009FOH OOFFFH 0010H G INTVEC_REG_SEG DATA
O0AOOH OOAOFH 0010H G EXT_REG_SEG DATA
OOA10H O0OALFH 0010H 6 JOB_REG_SEG DATA
O0A20H OOAZFH 0010H G SEM_REG_SEG DATA
00A30H OOA3JFH 0010H ¢ MAIL_REG_SEG DATA
00A40H OOA4FH 0010H G OD_REG_SEG DATA
O0ASOH OOASFH O010H ¢ PODL_REG_SEG DATA
2-87

AFN-02058A

. AP-130

OOALOH 00A&FH 0010H G _ggLETIDN_REG_S DATA]‘___ LAST RAM BYTE USED

00A70H 00A7OH 0000H W STACK STACK
00A70H QOA7OH 0000H G ~7SEG

FBOOOH FC5CDH 45CEH W CODE CODE
FCSCEH FC5D2H 0005H W PIC_CNF_SEG CODE
FCSD4H FCSESH 0012H W _IMR_PORT CODE
FCSEGH FCSF7H 00124 W _EOI_PORT CODE
FCSFBH FC6O9H 00124 W _ISR_READ_PORT CODE
FC60AH FCo12H 0009H B _PIC_INFO CODE
FC613H FCEICH 000AH B TIMER_CNF_SEG CODE
FC6IEM FC61EH 0000H W CSEG CODE
[FCeien FcaiFn 0002H W SLAVE_SEG CODE [<&———— LAST EPROM BYTE USED
FC620H FC6ROH 0000H W MEMORY " MEMORY
GROUP MAP

ADDRESS GROUP OR SEGMENT NAME
00400H DGROUP
DATA
INTVEC_REG_SEG
EXT_REG_SEG
JOB_REG_SEG
SEM_REC_SEG
MAIL_REG_SEG
OD_REG_SEG
POOL_REG_SEG : ‘
DELETION_REC_SEG
FB000H CGROUP
CODE
PIC_CNF_SEG g
_IMR_PORT
“EOI_PORT
_ISR_READ_PORT
PIC_INFO
TIMER_CNF_SEC
CSEG

SLAVE_SEG

2-88
AFN-02058A

AP-130

APPENDIX E
APPLICATION JOB LOCATE MAP

2-89
AFN-02058A

AP-130

ISIS-I1 MCS-8& LOCATER.

LOCB6 F1i AP130 LNK TO F1 AP130

ORDER (CLASSES(DATA, STACK, MEMORY))

SEGSIZE (STACK (0))

ADDRESSES (CLASSES (DATA (00A70H),
CODE (OFC620H)))

MAP PRINT (F1 AP130 MP2)
OBJECTCONTROLS (NOLINES, NOCOMMENTS, NOPUBLICS, NOSYMBOLS)

WARNING 26 DECREASING SIZE OF SEGMENT

SEGMENT STACK

SYMBOL TABLE OF MODULE DEMO130
READ FROM FILE F1 AP130 LNK
WRITTEN TO FILE F1 AP130

BASE OFFSET TYPE SYMBOL

FC&2H OB3AH PUB
FC&2H OBOOH PUB
FC62H O0ACBH PUB
FC62H 0AS0H PUB
FC62H OAS8H PUB
FCé62H 0A28H PUB

FCé62H O9FOH PUB
FC62H 09D4H PUB
FCé62H 09B8H PUB

FCé62H O9ACH PUB
FC62H 0%A0OH PUB
FCé62H 0994H PUB
FC62H 0988H PUB
FCé2H 097CH PUB

FC62H 0970H PUB
FC62H 0938H PUB
FC62H 092CH PUB
FC62H 0920H PUB

FC62H 0914H PUB
FC62H 0908H PUB
FC62H OBFCH PUB

FC62H OBFOH PUB
FC62H 08D4H PUB
FC62H 08C8H PUB
FC62H OBACH PUB
FC62H OBAOH PUB

FC62H 0894H PUB
FC62H 0888H PUB

FC62H 087CH PUB
FC62H 0870H PUB
FCé62H 0864H PUB

FCé62H 0858H PUB
FC62H 084CH PUB

DEMO130 SYMBOLS
FD17H OOOCH SYI
O0A7H OOOOH SYM
00A7H 0004H SYM

00A7H 0008H SYM
00A7H 000CH SYM
00A7H OO010H SYM
DJ0A7H 0014H SYM
FC62H 00B4H SYM
FC62H O0ALH SYM
00A7H 0018BH S8SYM

O0A7H 0040H SYM
00A7H 0041H SYM
O0A7H 0042H SYM
00A7H O0043H SYM
00A7H 0045H SYM
FC62H 0172H SYM
00A7H 0047H SYM
FC62H 003%9H SYM
FCe2H 0256H SYM
FC62H 029CH SYM
STACK 0002H SYM
O00A7H OO04BH SYM
FCé62H O2CFH SYM
FC62H O038BH SYM
O0A7H 0024H SYM
O0A7H 0028H SYM
FC62H OO3DH SYM
O0A7H OO04DH SYM
00A7H 002AH SYM

RGENDINITTASK
RG_N_C_RETURN_20
RG_N_C_RETURN_12
RG_N_C_RETURN_8
RETURN_4

RQ_N_(
RGBETLEVEL

RGWAITINTERRUPT

RQDELETESEMAPHOR
-E
RGEXITINTERRUPT

RQSENDUNITS
RGSETPRIORITY
ROSETOSEXTENSION
RGSLEEP
RQSETEXCEPTIONHA
~NDLER
RGRECEIVEUNITS
RGRECE IVEMESSAGE
RQRECEIVECONTROL
RGLOOKUPOBJECT

RGGETTASKTOKENS
RQGETSIZE
RGGETPOOLATTRIB

RQFORCEDELETE
RGENTERINTERRUPT
RQDELETETASK
RGDISABLE
RGDELETEJOB

RGDISABLEDELETIO
-N
RQCREATETASK

RQCREATESEGMENT
RQGCATALOGOBJECT
RGCREATEJOB

RGCREATECOMPOSIT

-E

RGACCEPTCONTROL

AND LINES
MEMORY
DATASEGPTR
HARDWARE INITTASK
~TOKEN
MOTORTASKTOKEN
ACHANDLERTOKEN
COMMANDTASKTOKEN
CRTMAILBOXTOKEN
couT
CIN
HARDINITEXCEPTCO
~DI
PARAM51 INDEX
SIGNONINDEX
STATUSCOUNTER
CWSTEPFDELAY
CWPAUSEDELAY
MOTORTASK
MOTORPOSITION
PHASECODE
ACHANDLER
PROTECTEDCRTOUT
CRTEXCEPTCODE
MINUTECOUNT
TIMETASK
PRINTTOD
TODEXCEPTCODE
TODSEGMENTBASE
TODTEMPLATE
TODSTRINGINDEX
STATUSMESSAGETOK
-EN

V1 2 INVOKED BY

BASE

FC62H
FC62H
FC62H
FC62H
FC62H

FCo2H-

FC62H
FCo62H
FC62H

FC62H
FC62H
FC&2H
FCe2H
FCé2H

FC62H
FC&2H
FC62H
FC&62H

FC62H
FC62H
FC62H

FC62H
FC62H
FC62H
FCo62H
FC62H

FC&62H
FC&2H

FC&62H
FC62H
FC&2H

FC&62H

FC&2H

FC&2H
00A7H
00A7H

00A7H
00A7H
00A7H
00A7H
STACK
FC62H
FC62H

FC&62H

FCo62H .

00A7H
00A7H
00A7H
00A7H
00A7H
O0A7H
00A7H
STACK
00A7H
O0A7H
O0A7H
00A7H
00A7H
00A7H
00A7H
FC62H
00A7H

OFFSET

OB1CH
QAE4H
OAACH
0A74H
OA3EH
OAOEH

09DAH
09CEH
09B2H

09A6H
099AH
098EH
0982H
0976H

QF6AH
0932H
0926H
091AH

090EH
0902H
O8F 6H

OBEAH
08BCEH
08C2H
08A6H
osal

0BBEH
o882H

0876H
0B86AH
0B5EH

0852H

06B5H

0000H
0000H
0006H

000AH
O0OEH
0012H
0016H
0004H
00B9H
0010H

0016H
013BH
001AH
0044H
0046H
001CH
0048H
0049H
001EH
0006H
004AH
004CH
0020H
0022H
0026H
0026H
0026H
0489H
002CH

TOBEEe

TYPE SYMBOL

PUB
PUB
PUB
PUB
PUB
PUB

PUB
PUB
PUB
PUB
PUB

PUB
PUB

PUB "

PUB.

PUB
PUB
PUB

PUB
PUB
PUB

PUB
PUB
PUB
PUB
PUB

PUB
PUB

PUB
PUB
PUB

PUB

PUB

8YM
sYM
sYM

SYM
sYM
SYM
sYM
SYM
sYM
sYM

SYM
SYM
SYM
SYM
SYM
SYM
sYM
SYM
SYM
8SYM
SYM
SYM
SYM
SYM
SYM
SYM
BAS
sSYM
sYM

RG_N_C_RETURN_40
RG_N_C_RETURN_14
RG_N_C_RETURN_10
RQ_N_C_RETURN_&
RGERROR
RQSIGNALEXCEPTIO

RQSIGNAL INTERRUP

RADELETEMAILBOX

RQUNCATALOGOBJEC _

-T
RQSUSPENDTASK
RQSETPOOLMIN
RQSENDMESSAGE
RQSETINTERRUPT
RASENDCONTROL

RQRESUMETASK

RGRESETINTERRUPT

RQOFFSPRING
RQINSPECTCOMPOSI
~-TE
RQGETTYPE
RQGETPRIORITY
RQGETEXCEPTIONHA
-MDLER
RQENABLE
RQENABLEDELETION
RQDELETESEGMENT
RQDELETEREGION
RQDELETEEXTENSIO
-N
RQDELETECOMPOSIT

E
RQCREATESEMAPHOR

-E
RQCREATEREGION
RQCREATEMAILBOX
RQCREATEEXTENSIO

-N
RQALTERCOMPOSITE

INITTASK

ASCIICODE
DATASEGADDR
STATUSTASKTOKEN

TIMETASKTOKEN
CRTOUTTASKTOKEN
INITTASKTOKEN
CRTREGIONTOKEN
CHAR
HARDWAREINITTASK
PARAMS1

SIGNONMESSAGE
STATUSTASK
STATUSEXCEP TCODE
CCWSTEPDELAY
CCWPAUSEDELAY
MOTOREXCEPTCODE
MOTORPHASE
ACCYCLECOUNT
ACEXCEPTCODE
CHAR

SECONDCOUNT
HOURCOUNT
TIMEEXCEPTCODE
TODMESSAGETOKEN
TODSEGMENTOFFSET
TODSEGMENTPNTR
TODSTRING
PRINTSTATUS
STATUSEXCEPTCODE

2-90

AFN-02058A

AP-130

00A7H
00A7H
00A7H

00A7H
00A7H
O0A7H

00A7H
00A7HI

FC62H

00A7H

00A7H
FC62H
FC62H
FC&62H
FC62H
FC62H
FC62H
FC&62H
FC62H
FC&62H
FC62H
FC62H
FC&62H
FC&62H
FC62H
FC&62H
FCé62H
FC62H
FC62H
FC&62H
FC&62H
FC&62H
FC&62H
FC&2H
FC62H
FC62H
FC&62H
FC62H
FC&62H
FC&62H
FC&62H
FC&2H
FC&62H
FC&62H
FCé62H
FC&62H
FC&62H
FC62H
FC&2H
FC&2H
FCé62H
FC62H
FC62H
FC62H
FC&2H
FC62H
FC62H
FC62H
FC&2H
FC&62H
FCo62H
FC&62H
FC62H
FC&62H
FC62H
FC&62H
FCé2H
FC&2H
FC&62H
FCé62H
FC62H
FC&62H
FC&62H
FC62H
FC62H
FC62H
FC62H
FC62H
FC62H
FC62H
FC&62H
FC62H
FC&62H
FC&62H
FC62H
FC62H
FC62H
FC62H

002EH
002EH
002EH

004FH
0050H
0034H

0038H

0038H

05AFH

003CH

O03EH
0087H
0096H
00A1H
O0BOH
00B?H
QO0BCH
00C8H
00OD1H
O0EFH
010CH
011FH
0139H
013EH
0150H
015CH
016DH
0172H
017AH
0184H
0196H
01A5H
01BDH
01D&H
01FSH
020FH
0228H
023BH
0259H
0270H
027DH
028DH
029CH
02ACH
02BBH
02CAH
02D2H
02F3H
0O30FH
032DH
034EH
035SDH
036FH
0389H
038EH
03A7H
O3BEH
03D9H
040EH
0440H
0472H
048%H
048CH
04ASH
04BCH
04D7H
04EEH
O50FH
052DH
0532H
053FH
0560H
0573H
0592H
0SAAH
05AFH
0OSBFH
05CHH
05DAH
05F4H
0600H
0616H
062CH
064CH
066CH
068CH
06BOH
06BSH

SYM
SYM
BAS
SYM
sSYM
sYM
5YM

3

X

sSYM

SYM

SYM
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN
LIN

STATUSSEGMENTOFF
-SET

STATUSSEGMENTPNT
-R

STATUSSTRING

BITPATTERN
MESSAGELENGTH *
RESPONSETOKEN

MESSAGESEGMENTOF
-FSET

MESSAGESEGMENTPN
-TR

COMMANDTASK

COMMANDEXCEPTCOD
-E

INITEXCEPTCODE

306
308
310
312
319
321
323
325
327
329
331
335
337
339
341
344
349
3s1
353
355
357
359
361
363
365
367
371
373
376
378
380
384
386
3ge
392
394
396
398
400
402
404
406
415
417
419
421
423
425
427
429
439
441
443
445
447
449
451
460
462
464
466
468
470
472
476
478
480
483
a8s
487
489
491
493
495
498

/500

00A7H O0O030H SYM STATUSSEGMENTBAS

-E
FC62H O0059H SYM STATUSTEMPLATE

O00A7H OO0O4EH SYM STATUSSTRINGINDE

=X

FC62H OS2FH SYM CRTOUTTASK
O00A7H 0032H SYM MESSAGETOKEN
00A7H 0036H SYM MESSAGEEXCEPTCOD

~E
O0A7H O0O03AH SYM MESSAGESEGMENTBA

SE
O0A7H 003BH BAS MESSAGESTRINGCHA

-R

O0A7H 00S1H SYM CONSOLECHAR

[FceaH oeBsH syM

INI TfAéKV}‘—— INITIALIZATION TASK STARTING ADDRESS

FC62H 0084H LIN 302
FC62H O0093H LIN 305
FC&42H 009DH LIN 307
FC62H 00A4H LIN 309
FC62H OOB3H LIN 311
FC62H OO0B9H LIN 313
FC62H 00C2H LIN 320
FC62H OOCEH LIN 322
FC62H OOE4H LIN 324
FC62H OOF8H LIN 326
FC62H O0116H LIN 328
FC62H 012CH LIN 330
FC62H O13BH LIN 332
FC62H O0143H LIN 336
FC62H O0150H LIN 338
FC62H 0160H LIN 340
FC62H O0170H LIN 342
FC62H 0175H LIN 348
FC62H O17FH LIN 350
FC62H 0189H LIN 352
FC62H 0196H LIN 354
FC62H O01BOH LIN 356
FC62H O1CDH LIN 358
FC62H O1E&H LIN 360
FC62H 0202H LIN 362
FC62H O21FH LIN 364
FC62H 0238H LIN 366

FC62H 0256H LIN 369
FC62H 0266H LIN 372
FCé62H 0278H LIN 375
FC62H 028AH LIN 377

FC62H 029AH LIN 379
FC62H O02A0H LIN 383

FC62H O02BBH LIN 385
FC62H 02C2H LIN 387
FC62H O02CFH LIN 390
FC62H 02D7H LIN 393

FC62H O0300H LIN 395
FC62H O31EH LIN 397
FC62H 033AH LIN 399
FC62H 0354H LIN 401
FCé62H 0366H LIN 403
FC62H O037CH LIN 405
FCé2H O038BH LIN 407
FC62H O39FH LIN 416

FC62H 03ADH LIN 418
FC62H O03DOH LIN 420
FC62H O3FSH LIN 422
FC62H 0427H LIN 424
FC62H 0459H LIN 426
FC62H 0487H LIN 428

FC62H 0489H LIN 430
FC62H O049DH LIN 440
FC62H 04ABH LIN 442
FCé2H O04CEH LIN 444
FC62H O04DFH LIN 446
FC62H O090BH LIN 448
FC62H 0518H LIN 450
FC62H O0S2FH LIN 452
FC62H OS53FH LIN 461
FC62H 055AH LIN 463
FC62H 0568H LIN 465
FC62H 0588H LIN 467
FCé62H O0S9DH LIN 469
FC62H O0S5SADH LIN 471
FC62H O0SB2H LIN 47%
FC62H OSBFH LIN 477
FC62H OSDOH LIN 479
FC62H ODEOH LIN 481
FC62H OS5FAH LIN 484
FC62H O0610H LIN 486
FC62H O061CH LIN 488
FC62H 063CH LIN 490
FC62H 0&5CH LIN 492

FC62H 067CH LIN 494
FC62H 069CH LIN 496
FC62H O06B3H LIN ' 499
FC62H O06BBH LIN 502
2-91

AFN-02058A

AP-130

DATA |agg——— LAST DATA BYTE OF APPLICATION JOB

CODE_fa———— LAST CODE BYTE OF APPLICATION JOB

FC&2H 06C4H LIN 503 FC&2H O&DSH LIN
FC62H OLEGH LIN 3505 FC&2H O&F&H LIN
FC62H O7IFH LIN %07 FC&2H O72CH LIN
FC62H O758H LIN 509 FC&2H 0762H LIN
FC62H O78BH LIN 511 FC&2H O798H LIN
FC&2H O7CIH LIN 513 FC&2M O7CEH LIN
FC62H O7F7H LIN 515 FC&2H 0BO4H LIN
FC42H OH2DH LIN S17 FC&2H O0B3AH LIN
FC62H OB3DH LIN 519 FC&2H OB4AH LIN
FC62H 00B4H LIN 521
'MEMORY MAP OF MODULE DEMO130
READ FROM FILE F1.AP130. LNK '
WRITTEN TO FILE ‘F1.AP130
SEGMENT MAP }
START sToP LENGTH ALIGN NAME cLAss
[ooa7on ™ ooacin 0052H W DATA
O0ACZH OOACZH 0000H W STACK STACK
OOADOH OOADOH 0000H & ~?SEG
[Fceaon FD178H OBSCH W CODE
FD17CH FD17CH 0000H W MEMORY MEMORY
GROUP MAP
ADDRESS GROUP OR SEGMENT NAME
FC620H CGROUP

CODE
O0A70H DGROUP

DATA

504
506
508
510
512

516

318
520

2-92

AFN-02058A

AP-130

APPENDIX F
ROOT JOB LOCATE MAP

2-93

AFN-02058A

AP-130

ISIS-1I MCS-86 LOCATER: V1.2 INVOKED BY.

LOC86 . f1 RJB130 Ink &
TO :F1 RJUB130 &
MAP PRINT(. f1.RJB130 mp2) &
OC(noli, nopl, nocm, nasb) &
PC(noli, pl, nocm, nosb) &
SEGSIZE(stack(0)) & .
ORDER(classes(data, stack. memory)) &
ADDRESSES(classes(code(OFD180H), &

data(00ADOH)))
WARNING 26 DECREASING SIZE OF SEGMENT
SEGMENT STACK

SYMBOL TABLE OF MODULE ROOT

READ FROM FILE F1 RJUB130 LNK

WRITTEN 7O FILE F1 RJUB130

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYM3OL

FD1BH 0180H PUB NUC_INIT_ENTRY FD18H 0184H PUB CODEDATA

[FpiBH ©CO11H PUB RGSTARTADDRESS jei——t ROOT JOB STARTING ADDRESS FDiBH 0010H PUB INTERROR

FD18H OO000H PUB CRASH FD1BH O002AH PUB RGROOTJOBVERSION
FD18H OO30H PUB ROOTTASK FD18H O010CH PUB SYSTEMSUICIDE
FD18H 0118H PUB RQGCREATEJOB FD18H O11EH PUB RQGETTASKTOKENS
FD18H 01244 PUB RQSUSPENDTASK FD18H O012AH PUB RG_N_C_RETURN_6&
FD1BH O0146H PUB RQ_N_C_RETURN_40 FDI8H 0162H PUB RQERROR

00ADH 0000H PUB JOBNUMBER 00ADH 0Q002H PUB ROOTTASKSTATUS

MEMORY MAP OF MODULE ROOT v '
READ FROM FILE F1 RUB130 LNK
WRITTEN TO FILE F1 RVB130

MODULE START ADDRESS PARAGRAPH = FD18H OFFSET = O0011H
SEGMENT MAP -

START STOP LENGTH ALIGN NAME CLASS °
00ADOH OOAD3H 00044 W DATA DATA

-~ —— S—
[00AD4H OOBFFH 012CH W INIT_STACK s*mcﬂq.___: LAST DATA BYTE OF ROOT JOB
OOCOOH 00COOH 0000H W STACK , STACK
00COOH 00COOH O0OOH € ~7SEG
FD180OH FD339H O1BAH W CODE CODE
FD33AH FD345H 000CH W SAB_DESCRIPTOR CODE

-5

IT’DBMSH FD366H 0021H W _:_J_DESCR IPTOR CODE | " LAST CODE BYTE OF ROOT JOB

FD368H FD368H 0000H W MEMORY MEMORY

GROUP MAP

ADDRESS GROUP OR SEGMENT NAME .
00ADOH DGROUP

DATA '
FD180H CGROUP

CODE

SAB_DESCRIPTORS

U_J_DESCRIPTORS

2-94
AFN-02058A

inter APPLICATION AP-174
NOTE

January 1984

Optimizing the iRMX ™ 86
Operating System
Performance on System
86/310 and System 86/330

CATHERINE LUNDBERG
ISO APPLICATIONS MARKETING

® INTEL CORPORATION, 1984 ‘ 2-95 Order Number: 230990-001

a7

Optimizing the IRMX™ 86 CONTENTS

Operating Systeg\

Performance on System \
86/31 (o) and‘ system INTRODUCTIONcovvene
86/330 OVERVIEW OF THE iRMX™ 86

OPERATING SYSTEM

PERFORMANCE TUNING
The Size Of The Loader Buffers
The Volume Granularity Of Devices
The Number Of BIOS Buffers
The Interleave Factor Of Devices

PERFORMANCETESTS
RSAT Maximum Transfer Rate
iRMX™ 86 Operating System Generation
iRMX™ 86 BIOS Generatlon
COPY Test
DIR Test
Boot Disk Generation
Boot Test
BACKUP And RESTORE Test

EVALUATION SEQUENCE

SYSTEM 86/330A PERFORMANCE
RESULTScv0vvnennn

SYSTEM 86/310 PERFORMANCE
RESULTS ...c.ovvvneneenenennnnn

CONCLUSIONoc0vennnn.

APPENDIX A: SYSTEM
CONFIGURATIONS

APPENDIX B: DEFINITION FILE FOR AN

~ OPTIMUM iIRMX™ 86 OPERATING
SYSTEMcovvnnnnnn.

1 2-96 . 230990-001

AP -174

INTRODUCTION

The Intel iRMXT™ 86 Operating System is one of the most widely used real-time operating systems. Because it
is intended for real-time applications it must respond immediately to the event that has the highest priority.
Most users of the iRMX 86 Operating System are application program oriented and their programs use the real-
time capabilities fully.

The Release 5 version of the iRMX 86 Operating System has the capability of supporting program
development. This means that a system can be used for application code development, and later as the target
system. Development costs can be decreased within a company, since there is no need to have separate systems
for program development and for target systems. In addition, programs do not have to be downloaded from
the development system to the target system.

Since there are many possible software configurations for mixes of real time applications and program develop-
ment work, the purpose of this application note is to identify system configuration options which will improve
the overall performance of the iRMX 86 Operating System from the Human Interface level, which is the level
that the user sees while doing development work. The results of this application note could also be applicable to
the user who is optimizing a target system configuration, since most of the parameters discussed in this study
would affect the performance of the target system. Although the Release 5.0 operating system is faster and
more optimized than previous versions of the iRMX 86 Operating System, further optimization has been
found possible, especially when a specific hardware configuration is known.

OVERVIEW OF THE iRMX™ 86 OPERATING SYSTEM

The iRMX 86 Operating System is composed of layers. The layers in the iRMX 86 Release 5.0 Operating
System are the Nucleus, the Basic I/0 System, the Extended I/0 System, the Application Loader, the Human
Interface, and the Universal Development Interface (See Figure 1.) A layer provides a specific subset of operat-
ing system function. For instance, the Nucleus provides management of iRMX 86 objects such as tasks and
jobs, the BIOS provides device independent I/0 services, and the UDI provides the interface software to allow
applications to be operating system independent.

Different layers are added according to the requirements of the application. Lower layers may be used without
upper layers, but upper layers must have the lower layers as their groundwork. Using fewer layers of the operat-
ing system usually means that the application can execute faster. The UDI layer is required to run the utilities
(such as PL/M 86, ASM86, and LINK86) since all the languages products are based on the UDI. The code pro-
duced by running these utilities may not need all the layers.

Most layers of the iRMX 86 Operating System have user configurable parameters. The values given to these
parameters can be changed to allow the operating system to perform efficiently. Some parameters should be
left at their default values, or the operating system will not function properly. For other parameters, the opti-
mum value depends on the application, and the hardware configuration being used.

The System 86/310 and System 86/330A have different requirements because of their hardware
implementations. The major difference is their Winchesters and flexible disks. Parameters that affect disk per-
formance have the most effect on the systems. This application brief deals with those parameters which can be
changed to provide optimal values for disk performance.

PERFORMANCE TUNING

A number of parameters can affect the system performance. The parameters which are configurable in the
iRMX 86 Operating System don’t change the actual speed at which the processor works. The variables that can
improve performance affect how fast information can be given to the processor, or how much time must be
spent to maintain system integrity. There are two ways to change the values of these parameters.

One way is to reconfigure the operating system using the ICU. The ICU is an interactive configuration utility

which uses a screen oriented list of parameters to allow changes in an operating system. While using the ICU,
different values are given to particular parameters to change the system performance. The ICU also allows the

2-97 ‘ 230990-001

AP -174

DEVELOPMENT /NTEH
FAC
&

WTERF rCE

USER APPLICATIONS x-257

Figure 1 Model of the IRMXTV86 Operating System

addition or deletion of individual layers of the operating system. The ICU creates a submit file from the infor-
mation contained in the definition file. When this file is submitted, it generates a new operatmg system which
uses the new values that were given to the parameters.

The second way parameters can be changed to affect system performance is to format the random access
devices differently. Changing the interleave factor while using the FORMAT cusp makes a great dlfference in
the disk I/0 performance.

The SIzé of the Loader Buffers

The iRMX 86 Application Loader has two configurable buffer sizes. The Loader internal buffer is the Loader’s
working buffer for converting Object Module Formats (OMFs) to executable code. The default value for the
Loader internal buffer is'400H, or 1K. Increasing this will not improve petformance, but is sometimes
necessary. OMFs are usually smaller than 1K, but the Fortran 86 compiler can sometimes generate records
that are longer than 1K. Trying to load these records will cause an “ESREC_LENGTH” error, which can be
eliminated by increasing the Loader internal buffer size. This parameter is found in the ICU screen titled
“Application Loader”. The variable is called “Internal Buffer Size (IBS)”.

The Loader read buffer is used as a caching buffer when reading data from secondary storage. The Loader read
buffer size influences the system performance. The Loader read buffer size is found in the ICU screen labeled
“Application Loader”. The parameter is labeled “Read Buffer Size (RBS)”. The default value of the Loader
read buffer size is 400H, or 1K. Increasing the Loader read buffer size will improve system performance.

2-98 230990-001

AP-174

The Volume Granularity of Deyices

File fragmentation happens when a file is written into a space that is not large enough to hold the whole file.
Portions of the file must then be stored somewhere else on the disk to finish writing the file. This means that
the disk controller must seek to several places on the disk to read the whole file, or to write the file, and the
speed of disk I/0 will be decreased. There are three different characteristics the user can vary to control file
fragmentation on a device: device granularity, volume granularity, and file granularity. Device granularity is
both the minimum allocation size, the minimum transfer size and is usually the sector size of a device. Volume
granularity is the minimum file allocation size for all files on the device. The volume granularity is a multiple of
the device granularity. Finally, file granularity is the minimum allocation size for a particular file and is a multi-
ple of the volume granularity. By increasing the volume granularity and file granularity the files on a device
should be forced to be contiguous. If the Winchester is fragmented, the smallest contiguous chunk of data for
any one file will be the volume granularity.

Volume granularity on Winchester drives does not appear to affect system performance, so that parameter can
be left at its default value of 400H, or 1K. This parameter is found in the screen titled “Intel iSBC® 215/iSBX
218 Device-Unit Information”. The field is labeled “Granularity”.

The diskette media which is used most frequently on the System 86/330A is a double sided double density disk
with a device granularity of 256 bytes (100H). The physical name of the first such device is “wfdd0” in the stan-
dard definition file. With a device granularity of 256 bytes, a volume granularity of 256 bytes is the most
effective. Using a device with a device granularity of 1024 bytes will improve the performance of the diskette.
The physical name of the first double sided double density diskette with 1 K byte device granularity is “wfdx0”.
The device tested for this application note was “wfdd0” the diskette with device granularity of 256 bytes. The
diskette device used in the System 86/310 has the physical name of “wmfdx0”. It is a double sided, double
density diskette with a device granularity of 512 bytes.

The Number of BIOS Buffers

The BIOS buffers are internal caching buffers which are used to hold data which is written to or read from
secondary storage. The BIOS will only transfer the number of bytes that are a multiple of the device
granularity. The device granularity is 1024 for the Winchester, and it varies for flexible disks. The most com-
monly used values are 512 for the System 86/310’s diskette, and 256 for the System 86/330A’s standard
diskette. ‘ .

Increasing the number of buffers for each device usually has a positive effect on disk performance, but only. up
to a certain point. Buffers must be updated, or flushed to the device, after a certain amount of time to ensure a
reliable system. There are two parameters that control flushing buffers. They are called “Update Timeout]” and
“Fixed Update” or “Common Update Timeout”. Update timeout is a variable for each device. A value of 64H
(100) for update timeout means that when a device has not been accessed for 1 second, the buffers associated
with that device will be written to the device. If the device is in constant use, this timeout limit may never be
reached, especially if the value given to update timeout is large. For this reason, there is a second update
parameter which can also be used.

The second parameter is called “Common Update Timeout” in the BIOS screen, and “Fixed Update” in the in-
dividual device screens. Common update timeout has one value for all devices in the operating system, but it is
specified on an individual unit basis if it will be invoked. A value of 3E8H (1000) for common update timeout
means that buffers associated with devices where common update timeout was invoked will be flushed at the
end of 10 seconds. The buffers will be flushed if they have been used since the last time the system wide
common update timeout happened. This ensures that even buffers for devices which have been continuously
in use will be written to their device.

Increasing the amount of time between updating system buffers would improve performance, but it degrades

_ reliability. If a system failure occurs, for instance, a power failure, the disks would have incorrect data on them
if the buffers hadn’t been written to disk. Using update timeout and common update timeout values that are ap-
propriate reduces the damage caused by a system failure.

Different values of update timeout and common update timeout were not tested for the systems. These
parameters were left at their default values for each device.

2-99 230990-001

AP-174

The time necessary to update the buffers causes a decrease in performance if there are too many buffers. Buf-
fers also use memory when the device is connected. Careful usage of memory is necessary especially when the
amount of memory available is limited, as is frequently the case for the target system.

Since diskettes are usually used only to transfer files between systems or for backups, the performance of the
flexible disks is not as important as the performance of the Winchester device. Since increasing the number of
" buffers for a device increases the amount of memory required to attach the device, adding buffers for diskettes
does not usually outweigh the need to conserve memory.

The BIOS number of buffers parameter is found in the ICU screen titled “Intel iSBC 215/iSBX 218 Device
Unit Information”. Each device has its own Device Unit Information screen. The field is labeled “Number of
Buffers”. The default number of buffers for Winchester devices is 4. The default number of buffers for flexible
disk devices is usually 2.

The Interleave Factor of Devices

One of the parameters of the FORMAT command is “Interleave”. If the consecutively-accessed sectors of a
disk are staggered (that is, if they are not consecutive physical sectors), disk access time can decrease
considerably. The reason for this decrease is that although a controller cannot read a sector and issue another
read command in the time it takes for the next sector to be positioned under the head, the controller can per-
form this operation in less time than it takes for the disk to revolve once. Therefore, if the consecutively-
accessed sectors are staggered correctly, the next accessed sector will be positioned under the read head just as
the controller becomes ready to read it.

The amount of staggering is called the interleave factor. An interleave factor of two means that as the disk .
rotates, the controller consecutively accesses every second sector. Note that a properly set interleave factor also
implies the number of disk rotations necessary to access all the sectors on a given track. An interleave factor of
two implies that it takes two rotations of the disk to access all the sectors on a track.

The interleave factor is important when large transfers of consecutive data take place at speeds that approach
the maximum transfer rate of the disk. Most information put on a disk will be stored in sectors that are con-
secutively accessed, if that is possible. If a disk has been heavily used so that few logically adjoining blocks are
available, then the information will be stored in nonconsecutively accessed blocks, wherever there is space
available. Naturally, this will slow down data transfer speed, since seeks must be done frequently to find where
the next block of data is located. System performance will be best if the most frequently used utilities, programs
and data are written onto the disk first, after formatting the disk with the optimum interleave factor.

There are three distinct cases where large amounts of data are transferred.
1) When the operating system is bootstrap loaded from disk
2) When the Application Loader is used to load an application program from disk

3) When programs are invoked that perform large transfers of consecutive data, such as the Human Inter-
face COPY command

Each of these operations does a different amount of processing to the data which is belng transferred. This
means that the turnaround time between sector accesses is dlfferent

The Bootstrap Loader instructs the disk controller to read one sector at a time. Thus, the turnaround time
depends on the execution overhead of the Bootstrap Loader and is comparatively long. A large interleave
factor is optimal for flexible disks that are used with the Bootstrap Loader. For hard disks however, the |
Bootstrap Loader has no effect on the turnaround time because revolution speed is so great that more than one
disk revolution occurs between sector reads.

The Application Loader reads several sectors at a time into its internal read buffer. Then it takes a relatively
long time to process the object records in this buffer. The ideal interleave factor here is one that optimizes for

2-100 230990-001

AP-174

the object record processing time between disk accesses. For flexible diskettes, this interleave factor is some-
what smaller than that for the Bootstrap Loader. However, the Application Loader is not affected by the inter-
leave factor on hard disks.

Applications which transfer large amounts of consecutive data (such as the COPY command) can initiate data
transfers involving many sequential sectors. Thus, the controller accesses sectors on a given track as fast as
possible. Here, the ideal interleave factor is one that optimizes for the turnaround speed of the disk controller.

The ideal interleave factor depends heavily on the application. However, because the revolution sbeed of hard
disks is so high, they should be formatted with interleave factors that are optimized for the turnaround speed
of the disk controller.

It is more important to match the interleave factor to the application with diskettes. They are usually smaller
devices and are usually used for one major type of access. Flexible disks are much more sensitive to varying in-
terleave factors, since the controllers for flexible devices are not as fast as the Winchester controllers. Different
types of flexible disks will have different optimum values for the interleave factor. So optimum values for 8
inch diskettes will not be the same as optimum values for 5% inch diskettes.

The default value for the interleave factor in the FORMAT command is 5. The recommended Winchester in-
terleave factor for the iRMX 86 Release 5.0 operating system was 4. This was evaluated to verify if this was the
best interleave factor for the Winchester. Then flexible disks were evaluated to find out which interleave factor
was best for each type of application.

PERFORMANCE TESTS

Since the goal of this application note was to determine optimum values of parameters when systems were
being used for development, benchmarks which measure CPU performance were not used. Instead, all the
tests used involved a lot of disk I/0. Some of them also involved building tables in memory. These tables could
have been built on disk if there had been insufficient memory available for them, but that would have degraded
performance markedly.

The languages and system utilities were used extensively, as well as the DIR, COPY, BACKUP and RESTORE
cusps. These are the kinds of things that are done most frequently while using the system for development
purposes. Descriptions of each of the tests used follow.

RSAT Maximum Transfer Rate:

The RSAT test (iRMX 86 System Acceptance Test) measures the number of bytes transferred every 60
seconds from a secondary storage device. It also keeps track of the maximum number of bytes transferred in a
60 second time period. If RSAT is invoked with a large buffer size, a good approximation of the maximum
transfer rate of a device is obtained. A larger buffer size will increase the transfer rate. The largest buffer size
that RSAT allows is 63K. This is a multiple of both the Winchester device granularity and the diskette device
granularity, so it allows the maximum transfer rate.

The RSAT test is a composite of reads, writes, seeks, and truncates. The results are a good indication of overall
performance during disk I/0. The RSAT test was run for both the Winchester and the diskette evaluations.
The RSAT performance data contributed heavily in the analysis of the performance data.

iRMX™ 86 Operating System Generation:

The generation of an iRMX 86 Operating system from an Interactive Configuration Utility created submit file
consists of a number of compilations and assemblies, and extensive use of the utilities. The generation of an
iRMX 86 Operating System gives a very good indication of the performance that can be expected when using
these utilities. The time necessary to complete the iRMX 86 Operating System generation was weighted heavily
in the analysis of the performance data. This test involved I/0 only on the Winchester.

210 230990-001

AP-174

iRMX™ 86 BIOS Generation

Because the BIOS generation has fewer steps in it than a full iRMX 86 Operating System generation, it was
used -to zero in on the best configuration quickly. It assembles two modules, and then links two groups of li-
braries together ThlS test mvolved 1/0 only on the Wmchester

COPY Test:

The Human Interface COPY cusp was invoked to copy a large file (greater than 128K) from secondary storage.
This test was used to see what the normal throughput of the system was. This was done for both Winchester
and flexible disk devices.

DIR Test:

This test listed a directory with a large number of files in it to the terminal. The short file format was used to dis-
play the directory. This test was of some interest but was not weighted heavily in the analysis of the perfor-
mance data. The time required to access a directory is extremely dependent on the locatlon of the directory on
the device. Thns test was done for the Wmchester and flexible disk devnces

Boot Disk Generation:

The boot disk generatlon test formatted a diskette and then copied the files need for a bootable system onto
the diskette. This test gave a good indication of the performance when writing to a diskette. Thls test was per-
formed to determine diskette performance with different interleave factors.

Boot Test:

The amount of time it took the iRMX 86 Operating System to boot from a diskette was recorded to determine
the best interleave factor for booting. This test was performed only on diskettes to determine the optimum in-
terleave factor.

BACKUP And RESTORE Test:

The time to BACKUP and RESTORE from the Winchester to one flexible disk was gathered to determine the
best interleave factor for the diskette when it is being used as a backup device. The iRMX 86 Release 5 versions
of BACKUP and RESTORE were used in the evaluation. The volume granularity and BIOS buffer sizes were
not a factor, since the diskette is formatted physical. BACKUP and RESTORE perform 1K reads and writes to
the diskette. BACKUP and RESTORE use both Winchester I/0 and diskette I/0, but the diskette was the only
device which had the interleave factor changed as part of the evaluation with this test.

EVALUATION SEQUENCE

Since all possible permutations of variables could not be tested, the evaluation was performed by varying one
parameter at a time. The research started with the default configurations of the operating system. The first
parameter was varied to find the best value, and then its best value was used to determine the next parameter’s
optimum value. This method continued until all optimum values had been found The parameters were tested
in the following sequence.

1) The best Winchester interleave factor was found for the standard system. Values from 1 to 9 were tested
for the System 86/330A, and interleave factors from 1 to 8 were tested for the System 86/310.

2) The best Application Loader read buffer size was determined. Buffer sizes from 1K to 8K bytes were
tested for both systems in 1K byte increments.

2-102 230990-001.

AP -174

3)

4)

5)

6)

)]

8)

The best number of Winchester BIOS buffers was determined. The systems were tested with 1 to 8 BIOS
buffers for the Winchester.

The best Winchester volume granularity was found. Volume granularities of 1K and 2K bytes were
tested for each system.

The best Winchester interleave factor was determined. Again, Winchester interleaves from 1 to 9 were
tested for the System 86/330A, and Winchester interleaves from 1 to 8 were tested for the System
86/310.

The best number of BIOS buffers was determined for the diskettes. The systems were tested with 1 to 6
BIOS buffers.

The best diskette volume granularity was determined. Values of 256, 512 and 1024 bytes were tested for
the System 86/330A diskette. Values of 512 and 1024 bytes were tested for the System 86/310 diske{e.

The best flexible disk interleave factor was determined for each operation. Interleave factors from 1 tﬁh“
were tested for the System 86/330A diskette. Interleave factors from 1 to 7 were tested for the System
86/310 diskette.

SYSTEM 86/330A PERFORMANCE RESULTS

Performance data was collected on a production System 86/330A using the iRMX 86 Release 5.0 Operating
System in its standard configuration. Tests were run to determine the best configuration parameter values. Per-
formance data was again collected with the best configuration of the iRMX 86 Operating System to determine
the improvement in performance. The results for both configurations of the operating system using the 8"
Priam Winchester using the iSBC 215 controller are shown in Tables 1 and 2 for the S MHz system and the 8

MHz system.
Table 1. System 86/330A Winchester Performance
(5 MHz iISBC® 86/30 Single Board Computer)
Test > Execution Time
Standard Optimum Improvement
(min:sec) (min:sec) (percent)
iRMX 86 Generation 17:22 16:08 7%
BIOS Generation 4:20 4:05 6%
DIR of 171 files 0:25 0:25 0%
COPY 128 K byte file 0:10 ’ 0:10 0%
Bytes per Second
Standard thimnm Improvement
~ RSAT max transfer rate 80,640 90,316 12%

2-103 230990-001

AP-174

Table 2. System 86/ 330A Winchester Performance
(8 MHz iSBC® 86/30 Single Board Computer) .

Test B ' " "Execution Time
Standard | Optimum Improvement
(min:sec) . (min:sec) * (percent)
iRMX 86 Generation 13:26 12:29 7%
BIOS Generation ‘ 3:21 - 3:09 ‘ 6%.
DIR of 171 files 0:22 0:19 14%
COPY 128 K byte file 0:10 ‘ 0.08 20%
Bytes per Second
Standard Optimum Improvement
- RSAT max transfer rate 92,467 105,370 12%

Note that the granularity of the measurements was 1 second. In a test that takes 10 seconds to run, the real
amount of time necessary to run a test could be 10% off of the result shown. This can account for the dif-
ferences shown between the 5 and 8 MHz systems, especially in the DIR and COPY command tests. The tests
which took greater quantmes ‘of time are a more accurate reflection of the actual system performance that can
be expected. ‘

The optimum values of the parameters are listed below These were the parameter values which were used in
the optimal iRMX 86 operating system configuration.

® The Application Loader read buffer size was increased from 1K to 7K.

® The volume granularity of-the Wlnchester was left 4t 1K which is the device granularity for the
Winchester. . ‘ .

The number of Winchester BIOS buffers was increased from 4 to 8.
A Winchester interleave factor of 3 instead of 4 was used.

The volume granularity of the diskette was left at 256 bytes. This was the 8 diskette’s device
granularity.

® The number of diskette BIOS buffers was increased from 2 to 4

Performance data was collected on the 8” DS/DD diskette drive using the iSBX™ 218 controller after finding
the optimum values of the parameters for the rest of the System 86/330A. The best interleave factor for the dis-
kette was determined for each type of use. The results are shown in Table 3.

The fastest boot time was found when the diskette was formatted with an interleave factor of 7. For transferring
files between systems by using the COPY cusp the interleave factor should be 3. This is shown in Table 4 by the
results of the Boot Disk Generation test, the DIR test, and the COPY test. When treating an 8* diskette as a
physical device, as in BACKUP and RESTORE, the interleave factor should be 2.

SYSTEM 86/310 PERFORMANCE RESULTS

Performance data was collected on a System 86/310 using the iRMX 86 Release 5.1 Operating System in its
standard configuration. Tests were run to determine the best configuration parameter values. Performance
data was again collected with the best configuration of the iRMX 86 Operating System to determine the im-
provement in performance. The result for both configurations of the operating system at 5 MHz using the 5%
CMI Winchester with the iSBC 215 controller is shown in Table 5. The result for the optimum configuration of
the operating system at 8 MHz using the 5%"” CMI Winchester is shown in Table 6.

B 2-104 230990-001

AP -174

Table 3. System 86/330A DS/DD Diskette Performance

Test Execution Time
(min:sec)
Interleave Factor 7 3 2
Boot Time 1:02 2:42 2:36
Boot Disk Generation 6:34 6:18 6:43
DIR of 14 Files 0:22 0:21 0:22
COPY 187, 768 Byte File 1:01 0:45 1:03
BACKUP 4:15 2:43 2:25
RESTORE 4:40 2:43 2:25
Bytes per Second
RSAT Max Transfer Rate 5,376 9,677 12,902
Table 4. Optlﬁmm Interleave Factors for System 86/330A Diskettes
Tylie of Application Optimum Interleave Factor
Using Bootstrap Loader 7
Transferring Named Files 3
BACKUP and RESTORE 2
Table 5. System 86/310 Winchester Performance
(5MHz iSBC® 86/30 Single Board Computer)
Test Execution Time
Standard Optimum Improvement
(min:sec) (min:sec) (percent)
iRMX 86 Generation 19:16 17:57 7%
BIOS Generation 4:26 4:22 1%
DIR of 171 Files 0:27 0:24 11%
COPY 128 K Byte File 0:14 0:13 7%
Bytes per Second
Standard _Optimum Improvement
RSAT Max Transfer Rate 72,038 69,888 —-3%
2-105 230990-001

o AP-174

Table 6. System 86/310 Winchester Performance
(8 MHz iSBC® 86/30 Single Board Computer)

Test ‘ Execution Time
Optimum
(min:sec)
iRMX 86 Generation . 14:35
BIOS Generation ' 3:32
DIR of 171 Files 0:20
COPY 128 K Byte File 0:11
Bytes per Second
Optimum
RSAT Max Transfer Rate . 78,490

The best performance of the System 86/310 was found with the following configuration of the parameters.

The Application Loader read buffer size was increased from 1K to 7K bytes.
The volume granularity of the Winchester was left at 1K bytes.

The number of Winchester BIOS buffers was increased from 4 to 8.

A Winchester interleave factor of 4 was used.

The volume granularity of the diskette was left at 256 bytes.

The number of diskette BIOS buffers was increased from 2 to 4.

After the optimum values were found for the variables affecting Winchester performance, performance data
was collected on the 5.25” DS/DD diskette drive using the iSBX 218A controller to determine the best inter-
leave factor for the diskette. Again, different interleave factors were best for different uses of the flexible disk.
The results are shown in Table 7.

Table 7. System '86/31 0 DS/DD Diskette Performance

Test Execution Time
(min:sec)

Interleave Factor 5 2 1
Boot Time ‘ 1:20 1:55 1:55
Boot Disk Generation 12:50 10:59 11:20
DIR of 14 Files 0:24 0:27 0:24 .
COPY 181,784 Byte File 1:17 1:01 1:16
BACKUP 2:02 . 1:20 1:10
RESTORE 2:04 1:11 1:00

' Bytes per Sgcond.
RSAT Max Transfer Rate 3,226 6,451 9,677

2-106 230990-001

AP-174

As the data shows, the best interleave factor for booting was 5. For ordinary use in transferring files between -
systems with the COPY cusp the interleave factor should be 2. This was demonstrated by the Boot Disk Gener-
ation Test, the DIR test and the COPY test. For BACKUP and RESTORE from the Winchester to the flexible
disk the best interleave factor was 1. These numbers are shown in Table 8 below.

Table 8. Optimum Interleave Factors for System 86/310 Diskettes

Type of Application Optimum Interleave Factor
Using Bootstrap Loader 5
Transferring Named Files 2
BACKUP and RESTORE ! 1
CONCLUSION

The parameters changed generally affected I/0 performance the most. The Application Loader read buffer size
was changed from 1K to 7K bytes. The number of BIOS buffers was changed from 2 to 4 for flexible diskettes,

-and from 4 to 8 for Winchester devices. The interleave factor was set to 3 for the System 86/330A Winchester,
and to 4 for the System 86/310 Winchester. The optimum interleave factor for each system’s flexible diskette
varied according to how the diskette was to be used.

By reconfiguring the system with different values for the configuration parameters and no changes to the
hardware, a performance improvement of up to 20% may result. Performance may also be improved by chang-
ing the interleave factor when formatting random access disk devices. An application that used disk 1/0 would
benefit by using the optimum values found in this application note.

2-107 230990-001

AP-174

APPENDIX A
SYSTEM CONFIGURATIONS

2-108 230990-001

AP-174

APPENDIX A

SYSTEM CONFIGURATIONS
Both systems used in the performance testing were production model systems. The software used on them was

the iRMX 86 Release 5.0 Operating System for the System 86/330A, and the iRMX 86 Release 5.1 Operating
System for the System 86/310. Hardware and software configurations of each system are shown in Table A-1.

Table A-1. System Configurations

System 86/330A System 86/31Q
iSBC 86/30 Single Board Computer iSBC 86/30 Single Board Computer
384 K Memory 640 K Memory
iSBC 215/218 Disk Controller iSBC 215/218 Disk Controller
iRMX 86 Release 5.0 Operating System iRMX 86 Release 5.1 Operating System

Note: More memory was required to run the ICU than was available in the System 86/330A. The ICU requires
448K bytes of RAM to run.

2-109 230990-001

AP -174

APPENDIX B
DEFINITION FILE
OF AN OPTIMIZED iRMX™
86 OPERATING SYSTEM

2-110

230990-001

AP-174

APPENDIX B

Definition File of an Optimized iRMX™ 86 Operating System

Hardware

(OSP) 80130 Operating System Extension [Yes/No]
(OTU) 80130 Timer Used [Yes/Nol

(OPU) 80130 PIC used [Yes/Nol

(OCD) 80130 Coypright = 1981 [Yes/Nol

(BL) 80130 Base Address Location [40h-OFFFFh]
(BP) 80130 Base Port Address [0-OFFFFH]

(MP) 8259A Master Port [0-OFFFFH]

(MPS) Master PIC Port Separation [0-OFFH]
(SIL) Slave Interrupt Levels [1-7/None]

(LSS) Level Sensitive Slaves [1-7/None}

(LSP) Local slave PICS [1-7/None]

(TP) 8253 Timer Port [0-OFFFFH]

(CIL) Clock Interrupt Level [0-7]

(CN) Timer Counter Number [0,1,2]

(CI) Clock Interval [0-O0FFFFH msec]

(CF) Clock Frequency [0-OFFFFH khz]

(TPS) Timer Port Separation [0-OFFH]

(NPX) Numeric Processor Extension [Yes/No]
(NIL) NPX Interrupt Level [Encoded]

Memory

Type : RAM = low, high

Type : ROM = low, high

Type : RAM = 0104H, 239FH
Type : RAM = 28CDH, F7FFH

Sub-systems

(UDD) Universal Development Interface [Yes/No]
(HI) Human Interface [Yes/No]

(AL) Application Loader [Yes/No)

(EIO) Extended 1/0 System [Yes/No]
(BIO) Basic I/0 System [Yes/No]

(DB) Debugger [Yes/No]

(TH) Terminal Handler [Yes/No]

(CA) Crash Analyzer [Yes/No)

(UIR) UDI in ROM [Yes/No]

(CAR) Crash Analyzer in ROM [Yes/No]
(RIR) Root Job in ROM [Yes/Nol

Human Interface

(ICL) Initial Command Line Size [0-0FFFFH]
(CNM) Command Name Length [0-255]

(SYS) System Directory [1-45 characters]

(DRP) Default Resident Initial Program [Yes/No]
(RIP) Resident Initial Program [1-45 characters]
(CDN) Configuration Device Name [1-14 chars]

(PMI) Human Interface Pool Minimum [0-OFFFFH]
(PMA) Human Interface Pool Maximum [0-OFFFFH]

(HIR) Human Interface in ROM [Yes/No)

No

No

No
Yes
0000H
0000H
00COH
0002H
None
None
None
00DOH
0002H
0000H
000AH
04CDH
0002H
Yes
0008H

Yes
Req
Req
Req
Req
No
No
No
No
No
No

0100H

0030H
:SD:SYSTEM
Yes

Default

SD:

0100H
FFFFH

No

230990-001

AP-174

Hl Jobs ‘
(MIN) Jobs Minimum Memory [0-OFFFFH pages]

(MAX) Jobs Maximum Memory [0-OFFFFH pages]
(NPX) Numeric Processor Extension Used [Yes/No]

Resident User

(TDN) Terminal Device Name [1-12 characters]

(MTP) Maximum Task Priority [0-OFFH]

(UID) User ID Number [0-OFFFFH]

(MIN) Minimum Memory Required [0-OFFFFH]

(MAX) Maximum Memory Required [0-0FFFFH]

(IPP) Initial-Program Pathname [RESIDENT/1-45 characters]
(DEF) Default Directory [1-45 characters]

Prefixes

Prefix: 1-45 characters
Prefix: :$:

Prefix: :PROG:
Prefix: :UTILS:
Prefix: :SYSTEM:
Prefix: :LANG:
Prefix:

HI Logical Names

Logical Name: logical_name,path_name .
Logical Name: LANG, :SD:WORK
Logical Name: WORK, :SD:WORK
Logical Name: SYSTEM, :SD:SYSTEM
Logical Name: UTILS, :SD:UTILS

Application Loader

(IBS) Internal Buffer Size [0-OFFFFh]

(RBS) Read Buffer Size [0-0FFFFh]

(LJT) Load Job Type [None/Async/Sync]
(DMP) Default Memory Pool Size [0-OFFFFh]
(CT) Code Type [Abs/Pic/Ltl/Ovr] Y
(ALR) Application Loader in ROM [Yes/No]

EIOS

(ASC) All Sys Calls in EIOS

(ABR) Automatic Boot Device Recognition [Yes/No]

(DLN) Default System Device Logical Name [1-12 characters]
(DPN) Default System Device Physical Name [1-12 characters]
(DFD) Default System Device File Driver [Phys/Str/Named]
(DO) Default System Device Owners ID [0-OFFFFH]

(EBS) Internal Buffer Size [0-0FFFFh]

(DDS) Default IO Job Directory Size [5S-OFFOh]

(ITP) Internal EIOS Task’s Priorities [0-0FFH]

(PMI) EIOS Pool Minimum [0-OFFFEH]

(PMA) EIOS Pool Maximum [0-OFFFFH]

(EIR) Extended I/0 System in ROM [Yes/No]

1/0 Users
User: user name,Owner-ID [,ID,ID,ID,ID]

2-112

0100H
0000H
Yes

TO

00AOH
FFFFH
0100H
FFFFH
RESIDENT
:sd:user/world

[1-12 Chars, 1-45 Chars]

0400H

1C00H

Synchronous and Asynchronous
0100H

Overlay, LTL, PIC and Abs

No ’ ‘

2309890-001

AP -174

Logical Names

Logical Name: logical name,device_name,file_driver,owners-id

Logical Name: BB, BB, Physical, 0000H
Logical Name: STREAM,STREAM, Stream, 0000H
Logical Name: LP,LP, Physical, 0000H

BIOS

(ASC) All Sys Calls in BIOS [Yes/No]

(ADP) Attach Device Task Priority [1-0FFH]
(TF) Timing Facilities Required [Yes/No]
(TTP) Timer Task Priority [0-OFFH]

(CON) Connection Job Delete Priority [0-OFFH]
(ACE) Ability to Create Existing Files [Yes/No]
(SMI) System Manager ID [Yes/No]

(CUT) Common Update Timeout [0-OFFFFH]
(CST) Control-Sequence Translation [Yes/No]
(PMI) BIOS Pool Minimum [0-OFFFFH]
(PMA) BOIS Pool Maximum [0-0FFFFH]
(BIR) Basic I/0 System in ROM [Yes/No]

Intel Terminal Driver

(IIL) Input Interrupt Level [Encoded]

(OIL) Output Interrupt Level [Encoded]

(UDP) USART Data Port [0-OFFFFH]

(USP) USART Status Port [0-OFFFFH]

(IRP) 8253 Input Rate Port [0-OFFFFH]

(ICP) 8253 Input Control Port [0-OFFFFH]
(IRC) 8253 Input Counter Number [0-2]

(IRM) Input Rate Maximum [0-OFFFFFFFFH]
(ORP) 8253 Output Rate Port [0-OFFFFH]
(OCP)8253 Output Control Port [0-OFFFFH]
(ORC) 8253 Output Counter Number [0-2]
(ORM) Output Rate Maximum [0-0FFFFFFFFH]

Intel Terminal Driver Unit Information
(NAM) Unit Info Name [1-17 Chars]

(LEM) Line Edit Mode [Trans/Normal/Flush]
(ECH) Echo Mode [Yes/No]

(IPC) Input Parity Control [Yes/No]

(OPC) Output Parity Control [Yes/No]
(OCC) Output Control in Input [Yes/No]
(OSC) OSC Controls [Both/In/Out/Neither]
(DUP) Duplex Mode [Full/Half]

(TRM) Terminal Type [CRT/Hard Copy]
(MC) Modem Control [Yes/No]

(RPC) Read Parity Checking [See Help/0-3]
(WPC) Write Parity Checking [See Help/0-4]
(BR) Baud Rate [0-OFFFFH]

(SN)Scroll Number [0-0FFFFH]

Intel Terminal Driver Device-Unit Information
(NAM) Device-Unit Name [1-13 Chars]

(UN) Unit Number on this Device [0-0FFH]

(UIN) Unit Info Name [1-17 Chars]

(MB) Max Buffers [0-OFFH]

2-113

[1-12 Chars ,1-14 Chars,

Physical/Stream/Named, 0-OFFFFH]

Req
0081H
Yes
0081H
0082H |
Yes
Yes
03E8H
Req
0800H
0800H
No

0068H
0078H
00D8H
00DAH
00D4H
00D6H
0002H
00012C00H
0000H
0000H
0000H
00000000H

t0_info
Normal
Yes
Yes
Yes
Yes
Both
Full
CRT
No
0000H
0000H
2580H
0017H

TO

0000H
t0_info
0000H

230990-001

AP-174

Intel iSBC®215/218 Driver

(IL) Interrupt Level [Encoded Level]
(ITP) Interrupt Task Priority [0-0FFH]
(WIP) Wakeup 1/0 Port [0-0FFFFH]

Intel iISBC® 215/218 Unit Information
(NAM) Unit Info Name [1-17 Chars]

(MR) Maximum Retries [0-OFFFFH]

(CS) Cylinder Size [0-OFFFFH]

(NC) Number of Cylinders [0-OFFFFH]

(NFH) Number of Fixed Platters/Disk [0-OFFH]
(NRH) Number of Remove Platters/Disk [0-0FFH]
(NS) Number of Sectors/Track [0-0OFFFFH]
(NAC) Number of Aux. Cylinders [0-0FFH]
(SSN) Starting Sector Number [0-OFFFFFFFFH]
(BTI) Bad Track Information [Yes/Nol

Intel iISBC® 215/21 8 Unit Information
(NAM) Unit Info Name [1-17 Chars]

(MR) Maximum Retries [0-OFFFFH]

(CS) Cylinder Size [0-OFFFFH]

(NS) Number of Cylinders [0-OFFFFH]

(NFH) Numbers of Fixed Platters/Disk [0-OFFH]
(NRH) Number of Remove Platters/Disk [0-0FFH]
(NS) Number of Sectors/Track [0-OFFFFH]
(NAC) Number of Aux. Cylinders [0-OFFH]
(SSN) Starting Sector Number [0-OFFFFFFFFH]
(BIT) Bad Track Information [Yes/No]

Intel iISBC® 215/218 Unit Information
(NAM) Unit Info Name [1-17 Chars]

(MR) Maximum Retries [0-OFFFFH]

(CS) Cylinder Size [0-OFFFFH]

(NC) Number of Cylinders [0- OFFFFH]

(NFH) Numbers of Fixed Platters/Disk [0-OFFH]
(NRH) Number of Remove Platters/Disk [0-OFFH] -
(NS) Number of Sectors/Track [0-OFFFFH]
(NAC) Number of Aux. Cylinders [0-0FFH]
(SSN) Starting Sector Number [0-OFFFFFFFFH]
(BIT) Bad Track Information [Yes/Nol

Intel iISBC® 215/218 Unit Information
(NAM) Unit Info Name [1-17 Chars]

(MR) Maximum Retries [0-OFFFFH]

(CS) Cylinder Size [0-0FFFFH]

(NC) Number of Cylinders [0-OFFFFFH]

(NFH) Number of Fixed Platters/Disk [0-0FFH]
(NRH) Number of Remove Platters/Disk [0-0FFH]
(NS) Number of Sectors/Track [0-OFFFFH]
(NAC) Number of Aux. Cylinders [0-OFFH]
(SSN) Starting Sector Number [0-0FFFFFFFFH]
(BTI)Bad Track Information [Yes/Nol

Intel iISBC® 215/21 8 Unit Information
(NAM) Unit Info Name [1-17 Chars]
(MR) Maximum Retries [0-OFFFFH]

2-114

0058H
0082H
0100H

uinfo_215gen
0009H
0000H
0001H
0001H
0000H
000CH
0001H
00000000H
Yes

uinfo_215w5
0009H
0000H
0132H
0004H
0000H
0009H
000AH
00000000H
Yes

uinfo_215w
0009H

" 0000H

020DH
0005H
000H

000CH
000AH
00000000H

Yes ’

uinfo_215pt
0009H
0000H
01D2H
0003H
0000H
000CH
0006H
00000000H
Yes - -

unifo_215f
0009H

230990-001

AP-174

(CS) Cylinder Size [0-0FFFFH] 0000H
(NC) Number of Cylinders [0-0FFFFH] 004DH
(NFH) Number of Fixed Platters/Disk [0-OFFH] 0000H
(NRH) Number of Remove Platters/Disk [0-OFFH] 0001H
(NS) Number of Sectors/Track [0-OFFFFFH] 001AH
(NAC) Number of Aux. Cylinders [0-OFFH] 0000H
(SSN) Starting Sector Number [0-0FFFFFFFFH] 00000000H
(BTI) Bad Track Information [Yes/No] Yes

Intel iSBC® 215/218 Unit Information

(NAM) Unit Info Name [1-17 Chars] uinfo_215fd
(MR) Maximum Retries [0-OFFFFH] 0009H
(CS) Cylinder Size [0-OFFFFH] 0000H
(NC) Number of Cylinders [0-0FFFFH] 004DH
(NFH) Number of Fixed Platters/Disk [0-OFFH] 0000H
(NRH) Number of Remove Platters/Disk [0-OFFH] 0002H
(NS) Number of Sectors/Track [0-OFFFFH] 001AH
(NAC) Number of Aux Cylinders [0-OFFH] 0000H
(SSN) Starting Sector Number [0-OFFFFFFFFH] 00000000H
(BTI) Bad Track Information [Yes/No] . Yes

Intel iISBC® 215/218 Unit Information

(NAM) Unit Info Name [1-17 Chars] uinfo_shugart96
(MR) Maximum Retries [0-OFFFFH] 0009H

(CS) Cylinder Size [0-OFFFFH] 0000H

(NC) Number of Cylinders [0-OFFFFH] 00S0H
(NFH) Number of Fixed Platters/Disk [0-OFFH] 0000H

(NRH) Number of Remove Platters/Disk [0-OFFH] 0002H

(NS) Number of Sectors/Track [0-OFFFFH] 0008H

(NAC) Number of Aux. Cylinders [0-OFFH] 0000H

(SSN) Starting Sector Number [0-0OFFFFFFFFH] 00000000H
(BTI) Bad Track Information [Yes/No] No

Intel iISBC® 215/218 Unit Information

(NAM) Unit Info Name [1-17 Chars] uinfo_shugart48
(MR) Maximum Retries [0-OFFFFH] 0009H

(CS) Cylinder Size [0-OFFFFH] 0000H

(NC) Number of Cylinders [0-OFFFFH] 0028H

(NFH) Number of Fixed Platters/Disk [0-OFFH] 0000H

(NRH) Number of Remove Platters/Disk [0-0FFH] 0002H

(NS) Number of Sectors/Track [0-OFFFFH] 0008H

(NAC) Number of Aux. Cylinders [0-OFFH] 0000H

(SSN) Starting Sector Number [0-OFFFFFFFFH] 00000000H
(BTI) Bad Track Information [Yes/Nol No

Intel iISBC® 215/iSBX™ 21 8 Device-Unit Information

(NAM) Device-Unit Name [1-13 Chars] cm0

(PFD) Physical File Driver Required [Yes/Nol Yes

(NFD) Named File Driver Required [Yes/No] Yes

(SDD) Single or Double Density Disks [Single/Double] Single
(SDS) Single or Double Sided Disks [Single/Double] Single
(EFI) 8 or 5 Inch Disks [8/5] 5

(GRA) Granularity [0-0FFFFH] 0400H
(DSZ) Device Size [0-OFFFFFFFFH] 00A68000H
(UN) Unit Number on this Device [0-0FFH] 0000H
(UIN) Unit Info name [1-17 Chars] uinfo_215wS$
(UDT) Update Timeout [0-OFFFFH] 0064H
(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH] 0008H
(FUP) Fixed Update [True/False] True

(MB) Max Buffers [0-OFFH] 00FFH

2-115 230990-001

AP-174

Intel iISBC® 215/iSBX™ 218 Device-Unit Information
(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/No]

(NFD) Named File Driver Required [Yes/No]

(SDD) Single or Double Density Disks [Single/Double]

(SDS) Single or Double Sided Disks [Single/Double]

(EFD) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-0FFFFFFFFH]

(UN) Unit Number on this Device [0-OFFH]

(UIN) Unit Info name [1-17 Chars]

(UDT) Update Timeout [0-OFFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH]
(FUP) Fixed Update [True/False]

(MB) Max Buffers [0-O0FFH]

Intel ISBC® 215/iSBX™ 218 Device-Unit Information
(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/Nol

(NFD) Named File Driver Required [Yes/No]

(SDD) Single or Double Density Disks [Single/Double]
(SDS) Single or Double Sided Disks [Single/Double]
(EFI) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-0FFFFFFFFH]

(UN) Unit Number on this Device [0-0FFH]

(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-OFFFFH]
(NB) Number of Buffers [nonrandom =:0/rand = 1-OFFFFH]

(FUP) Fixed Update [True/False]
(MB) Max Buffers [0-OFFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information
(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/Nol

(NFD) Named File Driver Required [Yes/Nol

(SDD) Single or Double Density Disks [Single/Double]

(SDS) Single or Double Sided Disks [Single/Double]

(EFD) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-OFFFFFFFFH]

(UN) Unit Number on this Device [0-0FFH]

(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-OFFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH]
(FUP) Fixed Update [True/Falsel

(MB) Max Buffers [0-OFFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information
(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/No]

(NFD) Named File Driver Required [Yes/No]

(SDD) Single or Double Density Disks [Single/Double]

(SDS) Single or Double Sided Disks [Smgle/Double]

(EFI) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-0FFFFFFFFH]

2-116

iw0

Yes

Yes

Single
Single

8

0400H
01E2D000H
0000H
uinfo_215w
0064H
0008H
True
00FFH

wmfdx0
Yes

Yes
Double
Double

5.

0200H
0004F800H
0008H
uinfo_shugart48
0064H
0004H

True
00FFH

wfddo

‘Yes

Yes
Double
Double

8

0100H
000F9700H
0008H
uinfo_215fd
0064H
0004H
True

'00FFH

wfd0
Yes

Yes

Double
Single

8

0100H
0007C500H

230990-001

AP-174

(UN) Unit Number on this Device [0-OFFH]
(UIN) Unit Info Name [1-17 Chars]
(UDT) Update Timeout [0-0FFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH]

(FUP) Fixed Update [True/Falsel
(MB) Max Buffers [0-0FFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information

(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/Nol]
(NFD) Named File Driver Required [Yes/No]
(SDD) Single or Double Density Disks [Single/Double]
(SDS) Single or Double Sided Disks [Single/Double]
(EFD) 8 or S Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-0FFFFFFFFH]

(UN) Unit Number on this Device [0-0FFH]

(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-0FFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH]

(FUP) Fixed Update [True/False]
(MB) Max Buffers [0-OFFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information

(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/No]
(NFD) Named File Driver Required [Yes/Nol
(SDD) Single or Double Density Disks [Single/Double]
(SDS) Single or Double Sided Disks [Single/Double]
(EFI) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-O0FFFFFFFFH]

(UN) Unit Number on this Device [0-OFFH]

(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-OFFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH]

(FUP) Fixed Update [True/Falsel
(MB) Max Buffers [0-0FFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information

(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/Nol
(NFD) Named File Driver Required [Yes/Nol
(SDD) Single or Double Density Disks [Single/Double]
(SDS) Single or Double Sided Disks [Single/Double]
(EFD) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-0FFFFFFFFH]

(UN) Unit Number on this Device [0-0FFH]

(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-0FFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH]

(FUP) Fixed Update [True/False]
(MB) Max Buffers [0-0FFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information

(NAM) Device-Unit Name [1-13 Chars]

2-117

0008H
uinfo_215f
0064H
0004H
True
00FFH

wf0

Yes

Yes

Single
Single

8

0080H
0003ES00H
0008H
uinfo_215f
0064H
0004H
True
00FFH

cml

Yes

Yes

Single
Single

5

0400H
00A68000H
0001H
uinfo_215w5
0064H
0004H

True
00FFH

iwl

Yes

Yes

Single
Single

8

0400H
01E2D000H
0001H
uinfo_215w
0064H
0004H
True
00FFH

wmfdx1

230990-001

AP-174

(PFD) Physical File Driver Required [Yes/No]

(NFD) Named File Driver Required [Yes/No]

(SDD) Single or Double Density Disks [Single/Double]
(SDS) Single or Double Sided Disks [Single/Double]
(EFD) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-0FFFFH]

(DSZ) Device Size [0-0OFFFFFFFFH]

(UN) Unit Number on this Device [0-0FFH]

(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-OFFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH]
(FUP) Fixed Update [True/False]

(MB) Max Buffers [0-0FFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information
(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/No]

(NFD) Named File Driver Required [Yes/Nol

(SDD) Single or Double Density Disks [Single/Double]

(SDS) Single or Double Sided Disks [Single/Double]

(EFD 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-OFFFFFFFFH]

(UN) Unit Number on this Device [0-OFFH]

(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-0FFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH]
(FUP) Fixed Update [True/False]

(MB) Max Buffers [0-0FFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information
(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/No]

(NFD) Named File Driver Required [Yes/No]

(SDD) Single or Double Density Disks [Single/Doublel]

(SDS) Single or Double Sided Disks [Single/Double]

(EFD) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-0FFFFFFFFH]

(UN) Unit Number on this Device [0-0FFH]

(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-OFFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH]
(FUP) Fixed Update [True/False]

(MB) Max Buffers [0-0FFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information
(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/No]

(NFD) Named File Driver Required [Yes/Nol

(SDD) Single or Double Density Disks [Single/Double]
(SDS) Single or Double Sided Disks [Single/Double]
(EFI) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-OFFFFFFFFH]

(UN) Unit Number on this Device [0-0FFH]

(UIN) Unit Info Name [1-17 Chars]

2-118

Yes

Yes
Double
Double

S

0200H
0004F800H
0009H
uinfo_shugart48
0064H
0004H
True
00FFH

wfddl

Yes

Yes
Double
Double

8

0100H
000F9700H
0009H
uinfo_215fd
0064H
0004H
True
00FFH

widl

Yes

Yes
Double
Single

8

0100H
0007C500H
0009H
uinfo_215f
0064H
0004H
True
00FFH

wfl
Yes
Yes
Single
Single
8

0080H
0003E900H
0009H
uinfo_215f

230990-001

AP-174

(UDT) Update Timeout [0-OFFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-OFFFFH]

(FUP) Fixed Update [True/Falsel
(MB) Max Buffers [0-OFFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information

(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/No]
(NFD) Named File Driver Required [Yes/No]

(SDD) Single or Double Density Disks [Single/Double]
(SDS) Single or Double Sided Disks [Single/Double]

(EFI) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-OFFFFFFFFH]

(UN) Unit Number on this Device [0-0FFH]
(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-0FFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-OFFFFH]

(FUP) Fixed Update [True/Falsel
(MB) Max Buffers [0-OFFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information

(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/No]
(NFD) Named File Driver Required [Yes/Nol

(SDD) Single or Double Density Disks [Single/Doublel
(SDS) Single or Double Sided Disks [Single/Double]

(EFD) 8 or 5 Inch Disks [8/5)

(GRA) Granularity [0-0FFFFH]

(DSZ) Device Size [0-OFFFFFFFFH]

(UN) Unit Number on this Device [0-OFFH]
(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-OFFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH]

(FUP) Fixed Update [True/False]
(MB) Max Buffers [0-0FFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit information

(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/No]
(NFD) Named File Driver Required [Yes/No]

(SDD) Single or Double Density Disks [Single/Double]
(SDS) Single or Double Sided Disks [Single/Double]

(EFD) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-0FFFFH]

(DSZ) Device Size [0-0FFFFFFFFH]

(UN) Unit Number on this Device [0-0FFH]
(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-OFFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-0FFFFH]

(FUP) Fixed Update [True/Falsel
(MB) Max Buffers [0-0FFH]

Intel iISBC® 215/iSBX™ 218 Device-Unit Information

(NAM) Device-Unit Name [1-13 Chars]

(PFD) Physical File Driver Required [Yes/Nol
(NFD) Named File Driver Required [Yes/No]

(SDD) Single or Double Density Disks [Single/Double]

2-119

0064H
0004H
True

00FFH

wmfdyQ
Yes

Yes
Double
Double
N

0200H
0009F800H
0008H
uinfo_shugart96
0064H

0004H

True

00FFH

wmfdyl
Yes

Yes
Double
Double

5

0200H
0009F800H
0009H
uinfo_shugart96
0064H
0004H
True
00FFH

pw0

Yes

Yes

Single
Single

8

0400H
0102C000H
0000H
uinfo_215pt
0064H
0008H
True
00FFH

Yes
Yes
Single

230990-001

AP-174

(SDS) Single or Double Sided Disks [Single/Double]

(EFI) 8 or 5 Inch Disks [8/5]

(GRA) Granularity [0-OFFFFH]

(DSZ) Device Size [0-OFFFFFFFFH]

(UN) Unit Number on this Device [0-0FFH]

(UIN) Unit Info Name [1-17 Chars]

(UDT) Update Timeout [0-0FFFFH]

(NB) Number of Buffers [nonrandom = 0/rand = 1-OFFFFH]
(FUP) Fixed Update [True/False]

(MB) Max Buffers [0-OFFH]

Intel Line Printer Driver

(IL) Interrupt Level [Encoded Level]

(ITP) Interrupt Task Priority [0-OFFH]

(POA) 8255A Port A address [0-OFFFFH]

(POB) 8255A Port B Address [0-0FFFFH]

(POC) 8255A Port C Address [0-OFFFFH]
(CON) 8255A Control Port Address [0-OFFFFH]
(TAB) Printer Expanded Tabs [Yes/No]

Intel Line Printer Driver Device-Unit Information
(NAM) Device-Unit Name [1-13 Chars]

(UN) Unit Number on this Device [0-0FFH]

(UIN) Unit Info Name [1-17 Chars]

(MB) Max Buffers [0-0FFH]

Nucleus

(ASC) All Sys Calls [Yes/No]

(PV) Parameter Validation [Yes/No]

(ROD) Root Object Directory Size [0-0FFOh]

(MTS) Minimum Transfer Size [0-0FFFFH]

(DEH) Default Exception Handler [Yes/No/Deb/Usel
(NEH) Name of Ex Handler Object Module [1-32chs]
(EM) Exception Mode [Never/Program/Envxron/All]
(NR) Nucleus in ROM [Yes/No]

User Jobs

(ODS) Object Directory Size [0-OFFOH]

(PMI) Pool Minimum [20H - OFFFFH]

(PMA) Pool Maximum [20H - OFFFFH]

(MOB) Maximum Objects [1-0FFFFH]

(MTK) Maximum Tasks [1-0FFFFH]

(MPR) Maximum Priority [0-OFFH]

(AEH) Address of Exception Handler [CS:IP]
(EM) Exception Mode [Never/Prog/Environ/All]
(PV) Parameter Validation [Yes/No]

(TP) Task Priority [0-OFFH]

(TSA) Task Start Address [CS:IP]

(DSB) Data Segment Base [0-0FFFFH]

(SSA) Stack Segment Address [SS:SP]

(SS) Stack Size [0-OFFFFH]

(NPX) Numeric Processor Extension Used [Yes/No]

2-120

Single

8

0400H
00000400H
0000H
uinfo_215gen
0064H

0008H

True

00FFH

0048H
0082H
00C8H
00CAH
00CCH
00CEH
Yes

Ip
0000H

NOT REQUIRED

0000H

Req
Yes
0020H
0040H
Yes

Never
No

0010H

0100H

0100H

0010H

0010H

0000H
0000H:0000H
Never

Yes

0082H
23A0H:0000H
0000H
0000H:0000H
0100H

No

230990-001

AP -174

Includes and Libraries

Path Name [1-45 Characters]

(UDF) UDI Includes and Libs
/rmx86/udi/

(HIF) Human Interface Includes and Libs
/rmx86/hi/

(EIF) Extended I/0 system Includes and Libs
/rmx86/eios/

(ALF) Application Loader Includes and Libs
/rmx86/loader/

(BIF) Basic I/0 System Includes and Libs
/rmx86/ios/

(THF) Terminal Handler and Debugger Includes and Libs
/rmx86/th/

(NUF) Nucleus and Root Job Includes and Libs
/rmx86/nucleus/’

(ILF) Interface Libraries
/rmx86/lib/

(CAF) Crash Analyzer Includes and Libs
/rmx86/crash/

(DTF) Development Tools Path Names
:lang:

Generate File Names

File Name [1-55 Characters]

(ROF) ROM Code File Name
rmx86.rom

(RAF) RAM Code File Name
rmx86

2-121

230990-001

AP-174

Intel Related Publications

iRMX 86 Release 5 Operator’s Manual (172764-001)

iRMX 86 Configuration Guide (9803126-05)

System 86/330A4 Overview Manual (144680-001)

iRMX 86 Documentation Addendum for Release 5 (146032-001)
iRMX 86 Basic 1/0 System Reference Manual (9803123-05)
iRMX 86 Loader Reference Manual (143318-002)

2-122

230990-001

Intel ﬁg#'é'CAT'ON AP-184

August 1984

Writing Device Drivers
For XENIX* 86 and 286 —
Task or Trivia?

MOHANDAS NAIR
APPLICATIONS MARKETING
INTEGRATED SYSTEMS OPERATION

© INTEL CORPORATION, 1984 Order Number 280041-001
* XENIX is a trademark of MICROSOFT Corp. 2-123

Il‘ltel® AP-184

WR|T|NG DEV'CE 7.0 ;vg-'@El‘#l\TOMY OF THE /O
DRIVERS FOR XENIX 86 7.1 Theblock interface
7.1.1 The system buffers
AND 286 — TASK OR 7.1.2 Driver support routines
7.1.3 Block device driver
TR IVIA ? - routines
7.1.4Review
7.1.5 Steps taken to satisfy
CONTENTS requests
7.1.6iSBC® 254 Bubble Memory
1.0 INTRODUCTION board walkthrough
7.1.7 Final look at block
2.0 DEFINITIONS driversc.0oi..n.
7.1.8 The raw (character interface)
3.0 COMPONENTS OF THE XENIX* 1/0 toablock device
ENVIRONMENT 7.2 The characterinterface
3.1 The process’ view of the 7214Clists
kernell 7.22Terminal I/0
3.2 The kernel’s view of the 7.2.3 Useful routines
process ' 7.2.4 tty.help — the line
3.3 The kernel’s view of the discipline routines
driver 7.2.5 Terminal I/0 device driver
3.4 Thedrivers view of the routines
kernell 7.2.6 Examples of character I/0
3.5 The driver's view of the (terminal) drivers
device 7.2.6.1iSBX™™ 270
3.6 Putting the components Walkthrough
together 7.2.6.2Low level routines
7.2.6.3Required routines
4.0 TYPES OFDEVICES 7.2.6.4Afinalnote
4.1 Blockdevices
4.2 8hargcter devices CONCLUSIONS
4.3 Combinati ices
ombination devices APPENDICES
5.0 DEVICES VIEWED FROM THE
USERINTERFACE REFERENCES
6.0 THEENVIRONMENT ACKNOWLEDGEMENTS
6.1 Theu-area
6.2 Task-time execution vs. * XENIXis a trademark of MICROSOFT Corp.

interrupt-time execution
6.3 1/0 path through the system ..

2-124 280041-001

intgl”

AP-184

1.0 INTRODUCTION

The world of device configuration and device drivers
has since time been an area where only hacks could
tread. Being the lowest-level of software interfacing
to the device, drivers were always examined by self-
motivated experts. Also, drivers were hard to come-
by and even harder to comprehend.

Intel Corporation’s “open systems” concept,
coupled with the XENIX* Operating System and our
family of microprocessor systems, creates an attrac-
tive environment for building and adding new
devices and drivers. However, the folklore involved
with the XENIX Operating System and its internal
functions are exemplified in the lack of device driver
details. This paper clears the fog around device driv-
ers and device driver writing. It is written for the
general operating system user bringing him/her
details of the anatomy of the I/0 system, driver in-
terfaces and driver support routines. The details that
follow pertain to the Release 1 XENIX 286/86
Operating System which is a superset of the Unix*
V7 operating system. This application note discusses
writing device drivers for the XENIX Operating
System as well as describes the operating environ-
ment around device drivers. Note that the reader
may not need the discussion on the environment
when writing device drivers. However, when the
reader begins to debug them, he/she will find thes:

discussions worthwhile. :

Most driver writers would agree that few start writ-
ing drivers from scratch. Many use existing driver
code as templates. This paper includes actual coded
and pseudo-coded examples coupled with descrip-
tions which grant the reader(and soon to be writer)
a bouncing-board introduction to writing device
drivers.

2.0 DEFINITIONS

A device driver is that body of software that allows
an operating system to communicate with a device.
This body of software is the lowest software level of
abstraction in the 1/0 system. Figure 1a shows these
levels identifying device drivers as a set of machine-
independent routines(commands) of the operating
system which talk to devices.

In the XENIX Operating System, a device driver is a
collection of procedures placed in a file that is confi-
gured into the system. No source code is needed for
this configuration as the operating system, once
configured, will talk with these routines in the driver.

Before attempting to write a XENIX device driver,
one must:

1) Understand the device i.e. know how to talk to
the device, initialize it etc,

*UNIX 15 a Trademark of Bell Labs

2-125

2) Understand how the XENIX Operating inter-
faces to the driver i.e what is covered in this ap-
plication note.

3) Begin writing the routines needed for a driver
i.e. mimic an existing driver.

USER-TASK

<« — — — — — —BYTE-STREAMV/O

- — - -

USER-INTERFACE
(SHELL)

FILE SYSTEM

+OPERATING SYSTEM

|
DEVICE-DRIVERS 1

-———-

DEVICE

1977

Figure 1a. Driver Model

3.0 COMPONENTS OF THE XENIX 1/0
ENVIRONMENT

This application note breaks device drivers and the
XENIX Operating system into the following
components:

1) the process

2) the kernel

3) the I/O buffers

4) the driver(s)

5) the device(s)

These components are shown in figure 1b. These

components communicate with each other in unique
ways.

3.1 The Process’ View of the Kernel

Processes communicate with the kernel through
system calls i.e. open, close, read. These system calls
can be found in the XENIX Operating System Docu-
mentation (173258001).

‘ 3.2 The Kernel’s View of the Process

Section 6.0 (THE ENVIRONMENT) defines a
process, process synchronization, user-areas and in-
troduces the kernel’s view of the process.

280041-001

AP-184

PROCESS
DRIVER
DEVICE
1978

Figure 1b. Components of the I/0 Environment

3.3 The Kernel’s View of the Driver

Section 4.0 (Types of Devices) serves as an introduc-
tion to how the kernel views the driver. Details of
this view are found in Section 7.0 (The Anatomy of
the I/0 System) where the system I/0O buffers are
described as used by the kernel.

3.4 The Drivers View of the Kernel

Section 7.0 (The Anatomy of the I/O System) ex-
plains how the driver communicates with the kernel,
by introducing the assist routines (Section 7.1.2,
7.2.3, 7.2.4) available to drivers. Furthermore, the
driver must understand the buffer scheme when
talking with the kernel. Sections 7.1.1 and 7.2.1 (The
1/0 buffers) detail what the driver manipulates.

3.5 The Driver’s View of the Device

The device driver is a collection of routines that act
on the device and the device reponds to the driver
through interrupts. The driver talks with the device
when an action is requested or when the device inter-
rupts the driver on completion of the action. The
driver talks with the device through routines which
are discussed in Sections 7.1.3 (Block device driver
routines), 7.2.5 (Terminal I/0 device driver routines
and Appendix D (Interrupt Mapping).

3.6 Putting the Components Together
Section 6.3 (I/0 Path through the system) will give

2-126

an introduction to how the above-mentioned compo-
nents interact. To understand this discussion, the fol-
lowing concepts must be covered:

1) Types of Devices (Section 4.0)

2) How Devices are viewed from the user interface -
(Section 5.0)

3) The kernel’s view of the process (The Environ-
ment Section 6.0, 6.1 and 6.2)

4.0 TYPES OF DEVICES

The XENIX Operating System supports two kinds of
devices - Block and Character. Input/Output
to/from these devices are consequently known as
block and character 1/0.

4.1 Block Devices

A block device is a sectored device that is accessed
randomly. A file system resides on it as well. A good
example of a block device is a winchester disk or a
floppy disk. I/0 with a block device is executed
through a set of kernel I/0 buffers(cache) which in-
tervenes transfers of data (in fixed sized blocks) be-
tween user memory and the respective device. Block
1/0 involves a considerable amount of kernel activity
due to these buffering characteristics.

Also:

1) The size of Block 1/0 transfer requests from
kernel to device are a multiple of the system’s
blocksize (BSIZE). BSIZE is 1024 bytes in
XENIX 286 Operating System.

2) Transfers are seldom done directly to the user
task’s memory. The transfers are staged
through a buffer pool of BSIZE buffers. Also,
the XENIX kernel manages these buffers to per-
form blocking/deblocking and cacheing. 1/0
transfers to/from the user task’s memory are
satisfied from the buffers.

4.2 Character Devices

A character device is unstructured. A file-system
cannot reside on a character device. Examples are
terminals and printers. In character 1/0, data transfer
requests occur in ‘n’ bytes between sections of
memory and the device. Hence, “character” is sy-
nonymous to “byte.” One must realize that there is
minimal operating system involvement in data trans-
fer as it is a private transaction between a user task
and the device driver(see figure 2).

4.3 Combination Devices
Some devices can be accessed and treated as a block

or character device. For example, the disk interface
can be accessed either as a block or character 1/0

280041-001

ntel

AP-184
USER PROGRAM
USER
system =
KERNEL DRIVER DEVICE
O O
1975
Figure 2a. Block 1/0 Interface
USER PROGRAM
1
i
_ _ MiNmMAL_ USER
INVOLVEMENT X ~ system .~ T T T T~~~
)
¥
KERNEL DRIVER DEVICE
(@) O
Figure 2b. Character I/0 Interface 1976

Figure 2a and 2b. Block and Character Interfaces

device. The character device permits direct i/o trans-
fers between user memory and device. This mode of
transfer is called RAW 1/0. Raw 1/0 is very useful
when direct disk-to-disk copy is necessary. The
kernel buffers and file system are bypassed in this
operation. Routines such as dump, dd, fsck are
examples of such raw operations.

5.0 DEVICES VIEWED FROM THE USER
INTERFACE

How are drivers in the XENIX Operating System
identified? In the XENIX user interface, a directory
called /dev exists for the purpose of holding all rele-
vant device driver interfaces. XENIX is a file-
oriented operating system and treats all devices as
files. As files are accessible by the file-system, so are
devices.

An Is -1 (directory listing) of the /dev directory is
shown in figure 3.

Since devices are accessible as files, data can be sent
to them with:

echo “talk to me” > /dev/ttya0

Devices can be opened, updated and closed via the
filesystem. /dev/ttya0 is some-user’s terminal. Files
that identify devices are called device special files as

2-127

they provide the hook to the drivers from the file-
system. Enforcing device independence where all
devices are files in XENIX permits tremendous flexi-
bility and uniformity in the XENIX Operating
System. Device special files are identified to the
kernel as a 16-bit integer value. This 16-bit value is
composed of two other values, which are the
device’s major and minor numbers. The high-order
8-bits form the major number and the low-order
form the minor number. XENIX provides two
macros — major(dev) /minor(dev) to decode these
values from the device file. This <major,minor>
number pair is used, whenever the device is
referenced, to identify the relevant device driver.
XENIX is internally very table(array) oriented.
These numbers are indices to an array of possible
drivers.

Figure 3 shows the <major,minor> number-pair
for each device. Also note that the leading “c” and
“b” characters first on each line denote the character
and block files respectively. To see the connection
between major number/minor number and drivers,
take a look at the c.c file (appendix A). c.c is created
in the configuration process. The following data-
structures in c.c are created to maintain the relation-
ship between drivers and the major/minor numbers

280041-001

intel

AP-184

(identifying the device special file). The data struc-
tures are:

1) dinitswl] is a vector of device-initialization
procedures. The procedures mentioned in this
vector are called during system initialization to
initialize devices.

2) bdevswl] is the table of block-device interfaces.
The index to a driver in this table is the major
device number of the Block interface for the
device.

3) cdevswl] is the table of character-device
interfaces. The index to the driver in this table is
the major device number of the character inter-
face to the device. Note that major numbers do
not overlap for block/character devices unless
the same device is represented as a block and a
character device.

4) vecintsw[] is the table of interrupt procedures.
This table contains one entry per supported in-
terrupt level of the cascaded 8259A Programma-
ble Interrupt Controller. The index represents
the interrupt level.

total 11

cw--w--w-1root 4, 1Feb 113:13 console
brw------- lIroot 0, 9Jan2317:47df0
brw------- lroot 0, 13Jan 2009:47 dxf0
brw------- lroot 0, 8Jan2009:46f0
CIW=-=-=-=- Isysinfo 2, 11Jan2009:45 kmem
crw--w--w- 1root 3, 7Feb 114:241p
CIW=-===--- 1sysinfo 2, 0Jan2009:45 mem
cw-rw-rw- lroot 2, 2Feb 119:30 null
CIW=--=----- lroot 0, 9Feb 107:32rdf0
W ==mmmn- l1root 0, 13Jan 2009:47 rdxf0
brw------- 2 sysinfo 0, 1Jan 3016:40 root
CIW=-=------ 2 sysinfo 0, 1Jan2009:45 rroot
CIW=---=--=- 2 sysinfo 0, 3Jan3016:42rusr
CIW -==-=--- 2sysinfo 0, 1 Jan2009:45rw0a
CIW =-==---- 2root 0, 2Jan2009:45rwOb
CIW=-=--===- 2 sysinfo 0, 3 Jan 30 16:42 rwOc
CIW -=-===- Iroot 0, 0Jan2009:45rw0t0
CIW-=--=---- 1root 0, 12Jan 2009:47 rxf0
crw-rw-1w - 1root 6, 01Jan 2009:45 tty
crw-w--w- 1root 3, OFeb 117:35ttya0
CIw--w--w- 1 nair 3, 1Feb 119:36ttyal
caw-rw-rw- lroot 3, 2Feb 108:26ttya2
crw--w--w- 1root 3, 3Feb 107:53ttya3
crw-rw-1w- lroot 4, 0Jan2009:45 ttyf0
brw------- 2sysinfo 0, 3Jan2416:51 usr
brw------- 2 sysinfo 0, 1Jan 3016:40 w0a
brw------- 2 sysinfo 0, 2 Jan2009:45 w0b
brw------- 2 sysinfo 0, 3Jan2416:51 wOc
brw------- lroot 0, 01Jan2009:45 w0t0

Figure 3. Thels Listing

Only an overview of configuration details will be cov-
ered in this write-up. Knowledge of the configuration
process is not needed to write a device driver. Figure

2-128

4 illustrates the file and directory structure maintaing
drivers and the configuration files/shell scripts.
Basically, there are three interesting files:

1) xenixconf: edit this file to describe the configura-
tion to be built (see Appendix B)

2) master: contains a master copy of the configura-
tion information (Appendix C)

3) cc generated from the above two using a pro-
gram “config.”

config
i.e master+xenixconf ==========> ¢

To configure:

1) edit master
2) edit xenixconf
3) in/sys/conf run MAKEXENIX

The rest is automatic. Appendix B and C give exam-
ples of xenixconf and master. There will be no fur-
ther discussion of the configuration details which do
not contribute to learning how to write device driv-
ers in XENIX. This overview was meant to describe
how c.c is created. However, before attempting to
write drivers, one must have a minimal understand-
ing of the operating environment surrounding
device drivers. ThlS is the topic of discussion that
follows.

6.0 THE ENVIRONMENT

The environment of any driver is, of course, the
operating system, the device and the user-
programs(processes) that communicate with the
driver. This section concentrates on the kernel’s
view of the process. A task or process to the operat-
ing system is defined as:

1) the existence of an element/structure in the
proc table. The proc table contains details of all
processes in the system.

2) the existence of a per-process data area
(u-area) representing it in the kernel. Any pro-
cess image contains this special area that is
copied into the kernel data space when it is
active. This area identifies the process and hold
parameters of the process.

A proc table entry and its corresponding
u_structure, defines the state of a process at any in-
stance during its birth(fork), lifetime and
death(exit). The proc table entry is that part of a pro-
cess that must always remain in memory for process
communication and restart capability. The u_struc-
ture is that part of the process which can be swapped
out onto disk, along with the per-process data
segment, at times when the process is not in a runna-
ble state.

280041-001

AP-184

'CONFIG FILES E.G)
XENIX CONF,
MAKEXENIX,
MASTER, C-C,

DRIVERS

HEADER
FILES FOR
DRIVER

CONFIGURATION
DATA-STRUCTURES,

1987

Figure 4. The Configuration Files/Directories

6.1 The u-area

The XENIX operating system does not differentiate
a kernel process from a user process. Processes can
run in either kernel mode, using system services
and privileges (access to i/o drivers, u_area) or in
user mode, where user-program code is executing.
The operating system manages the relevant user-
programs using a per-process data area, called the u-
area. The u-area contains pertinent information
such as system-stack information, preserved regis-
ters and I/O parameters used for data transfer.
Throughout the discussion on device drivers, there
will be mention of information in the u-area. To
recap, the u-area is that space held in the kernel to
maintain information about processes that run on
the CPU. Every process has a u-area that is made up
of a detailed structure, called the u-structure. This
structure is multiplexed in the kernel i.e is swapped
in and out with the process and contains considerable
information about the process such as:

system call arguments
process sizes

registers saved

error information

1/0 information

Input/output parameters held here are:

u.u_error -error information, 0 means no error

u.u_base - starting user transfer address

u.u_count - bytes to transfer

u.u_segflg - flag telling if transfer is to/from user
data space (0) or system imemory (1)

u.u_offset - offset in file for I/0

The driver will receive other information too, such
as, the target device, the size of the job and the
buffer address in the task’s memory. For block
devices, only u.u_error is updated. For character
drivers, all other parameters are used. The u-area
should not be accessed by the running driver at all
times. This is because events occur in any operating
system that are either:

1) Synchronous, as in normal code executing in
user space

2-129

2) Asynchronous, as when an interrupt occurs and
the interrupt service routine is called for the
device.

Synchronous activities happen as the CPU permits
users to run their code. When their code makes re-
quests to the system resources, they are subject to
be swapped out of memory. Once the device per-
forms these requests, it interrupts the processor
asynchronously. The Operating System then calls on
certain routines, called interrupt service, routines,
to perform actions that follow the device’s comple-
tion of its requested job.

The u_area, being part of the process, may have
been swapped out after resource requests were
made. Hence, the asynchronous portions of code
called on an interrupt cannot access this area. The
terms “task-time execution” and “interrupt-time ex-
ecution” are used to differentiate times it can and
cannot be accessed. Obviously, the device driver
must contain routines that are called due to
asynchronous and synchronous events.

6.2 Task-time Execution vs.
Interrupt-time Execution

As mentioned, the XENIX Operating System does
not concern itself with whether tasks are running in
user or kernel mode. Hence, there may be several
tasks contending for system resources that are non-
1/0 related. At task-time, tasks are executing user or
system code. Their u-area may be used whenever
the process executes system code i.e. makes a
system call and the kernel uses this area for stack
and parameter storage. This u-area is resident when
the process is running and ,therefore, can be ad-
dressed by the driver for data transfer. The user
space is addressable at this time and information
about the running process can be placed in this area
by the driver.

Contrary to this, during interrupt-time execution,
the device has interrupted the CPU. At this time,
the running task may not be the task that requested

280041-001

ntel

AP-184

1/0 to/from the device. Usually, the task-time por-
tion of the driver has exited after the I/O request
and that process may have been swapped out.
Hence, the u-area and the user data space cannot
safely be accessed or used at interrupt time by the in-
terrupt service routine. However, the interrupt ser-
vice routine gets relevant information(about what to
do) from the task-time portion of the driver via
static variables. Obviously, from the nature of task-
management, interrupt routines are limited in beha-
vior and they cannot make assumptions about the
state of the system or the presense of tasks/data in
the system. Figure 5a illustrates the distinction be-
tween the task-time portion and the interrupt-time
portion of any driver that has to evidently cater and
respect the realities of task vs. interrupt -time
execution.

Task and interrupt-time routines are separate but
they may call common data-manipulating routines.

One such routine is called by both sides and manipu-
lates common buffers used (will be discussed later).
There is a mechanism used for mutually excluding
an update attempt of one routine from another. This
mutual exclusion technique is required as the
asynchronous portion of the driver may be removing
an element from a list, for example, while the
synchronous portion of the same driver may be plac-
ing an element onto the list. The technique basically
deals with the interrupt structure and priorities of
the system. For further details on the interrupt
mapping, see Interrupt Mapping (Appendix D).

The operating environment, and the nature of tasks
have been discussed only briefly as the device driver
is the main focus of this application note. To bring
together the basic components of the roadmap
(Section 3.0) i.e. how the process, the kernel and the
driver communicate, a brief description of the basic
1/0 path through the system follows.

INTERRUPT

TASK
SER
& g
C
YES \
U AREA \ DRIVER
PORTON OF ~ INTERRUPT
R ER \ ROUTINE
KERNEL \

\

1983

" Figure 5a. Task vs. Interrupt Time Execution

2130

280041-001

intel’ AP-184

6.3 1/0 Path Through the System

Thus far, the driver interfaces have yet to be
discussed. Knowing the environment a driver exists
in is sufficient for understanding the I/O path
through the kernel when I/0 system calls are made.
This will explain how the components of the road-
map (Section 3.0) interact. To illustrate the way all
these device tables and system calls relate, the fol-
lowing calling sequences are presented. Details have
been avoided to simplify the concepts described.

/*
* user program makes system call
*/

fd = open(“/dev/ttyb1”,1)

/*
* the kernel reacts with
*/

1) The kernel entry routine gets the system-call
trap, determines it’s an “open” call and calls
“open” in the kernel.

2) Open calls a procedure to parse the path-name
(nami) and turn it into an inode. An inode is the
structure that represents a file in the file-system.

3) Open notices that the inode represents a charac-
ter special-file and not a normal disk file. Thus,
it accessed the cdevswll table using the major
number in the inode, and calls the device-
drivers open procedure.

4) The driver’s open procedure does whatever it
needs to do i.e. opens the device. It sets
u.u_error if an error occurs and returns.

5) If the driver did not declare an error, open allo-
cates a file-descriptor in the user-process, and re-
turns it.

6) If the driver returned an error, open simply
passes it back to the user program.

/*
* user program does
*/

read(fd, buf, 128);
/*

* kernel does
*/

1) The kernel gets the system-call trap, determines
itis a read call and calls read in the kernel.

2) Read uses the “fd” argument and determines
which inode it represents.

3) The inode indicates it is a character special-file.
Thus, read uses the major device number
stored in the inode to access the cdevswll table
and calls the drivers read routine.

4) The drivers read routine does whatever it needs
to do transferring data to the user’s buffer. If
any errors occur, it sets u.u_error. In any case,
the driver eventually returns after having trans-
ferred the data.

5) The read routine returns to the kernel, which re-
turns to the user program.

The 1/0 path will be elaborated on with details on
driver functions with respect to block I/0. For the
time being, the above sequence should be used as a
template.

7.0 THE ANATOMY OF THE 1/0 SYSTEM

This discussion covers how the kernel and the driver
communicate (See Section 3.0 Roadmap) and can be
best broken down into two stages. They are:

1) the block interface
2) the character interface

The following discussions go into much detail on
how the buffer schemes for block and character 1/0
devices work. These details are not needed for
device driver writing. However, knowledge of the
kernel buffers for block I/0 devices and the charac-
ter lists for character I/0 devices will be useful when
debugging begins. This knowledge will help the
device driver writer to understand the inner work-
ings of the driver he/she is writing.

7.1 The Block Interface

Much has been discussed about what block 1/0 is.
Block 1/0 transfers require the kernel’s intervention
when they occur. All block transfers require the use
of I/0 buffers. These buffers are used as a temporary
storage area for caching and blocking/deblocking.
Usually, data transfer occurs between user space and
devices via these system buffers (see figure 5b).

Each buffer is BSIZE bytes long and has a buffer
header corresponding to it. BSIZE and other system
level constants are defined in param.h (Appendix
E) The header file buf.h defines this buffer header
structure (Appendix F). Buf.h also describes how
these kernel buffers are structured. Although it is
not necessary to understand all fields in the buffer
header, some fields must be noted:

b_dev- device number
b_blkno- block for the transfer
b_bcount- bytes to transfer

2-131 280041-001

intel

AP-184

b_cylin- cylinder number
b_addr- address to be transferred from/to
b_flags- nature of transfer i.e. B_LREAD

7.1.1 THE SYSTEM BUFFERS

Consider a list, called the freelist, that is initialized
to be a circular doubly-linked list of buffer-headers.
Each header in the list has a pointer to its own
BSIZE buffer. Figure 6a shows this list with forward
and backward pointers av_forw and av_back. Con-
" sider another list called the device list. This list
hangs off each device driver. The buffers forming
these device lists are device request that are waiting
to be serviced. At start state these lists for each
device are empty and their headers point to them-
selves with b_forw and b_back. (figure 6b). Each
device has its own queue structure that exists to
schedule I/0 requests. This queue is structured

exactly like the freelist, i.e. is doubly linked and
circular. The head of this queue called the static
buffer header, is a buffer-header just like all the
others. However, some irrelevant fields that it holds
(used by other headers in the queue) are -
redeclared(aliased). These redeclarations are found
in buf.h. Here, av_forw, av_back, b_forw, b_back
used on the same buffer headers but form two con-
current lists. Remember, the freelist is the master
list. b_flags determines, for the enquirer, if the
buffer is BUSY, WAITING and the like. Details of
these flags are found in buf.h also.(for further
details about flags see ref1).

The configuration file c.c (appendix A) holds the
data structure bdevswl] which is the table of device
driver routines indexed by their major number. The
last element in this structure for each device is ixxx-
tab (see naming convention — Appendix G) where

CODE

DATA
SEGMENT | | sEGMENT

<

4 Y
4 J

Le*® J|SYSTEM

XENIX /
OPERATING
SYSTEM
DRIVERS IN /
OPERATING

BU;FERS

BLOCK /O

-~ 1986

Figure 5b. The System Buffers

2-132

280041-001

AP-184

FREE LIST

~

V_FORW

AV_BACK

)

[
(
(
(

AV_FORW

DEVICE LIST
ixxx TAB \
B_BACK B_FORW
1988

Figure 6a. Start State

xxx is the device identification number e.g. 215,
544. xxxtab is the pointer to the system buffers for
that device i.e xxxtab is the static buffer header ad-
dress for the queue of device request. Remember
that at start state, these queues are empty.

When a user process requests a write (as a first
request) a buffer header from the freelist is removed
and placed on the device list. The av-pointers of the
freelist are unused and b_pointers are now used in
the device list. The av_pointers are re-declared to be
b_actf and b_actl respectively. These links are used
to form a new list using the same buffer headers that
are in the device queue. Think of two lists i.e. the
device list (with items plucked from the freelist)
using all four pointers ,thus being members of two
lists superimposed (see figure 6b). But why two lists
superimposed? Well, at first there were two lists —
the freelist and the device specific list (of course,
each device has one device specific list but for this
discussion let it suffice to have only one device).

Upon a request, the kernel takes a buffer header
from the freelist and places it on the device queue.
The kernel also places details of the write request
into the buffer header fields. As the kernel manages

2-133

these buffers, the address of this buffer header is
given to the device driver. The driver calls a routine
disksort() which takes the buffer header and orders
it in the device specific queue using not the b_point-
ers but the unused av_pointers. Note that the buffer
header is already in the device queue with the
b_back/b_forw pointers active. Disksort() orders
these requests-into cylinder order on insert using the
av_forw (b_actf) and av_back (b_act]) pointers form-
ing a new list of optimally ordered requests (see
figure 7a).

There are three lists formed here:
1) the device specific list hanging off the device
driver (cdevsw = = > xxtab)

2) the active list that uses the same elements in the
device list but uses the av_pointers ordered by
disksort()

3) the freelist of buffer headers using the av_point-
ers before redeclaration.

Thus, the write request is then ordered into the
active list for the device.

280041-001

AP-184

FREE LIST

)
)
)

-COEENED

0

DEVICE LIST

B_FORW/B_BACK USED

V.
N—”

1989

Figure 6b. Buffer placed in device list by kernel

The task-time portion of the driver has been running
all this time and this task portion returns after it has
made the request. The user process sleeps on the
event that the device will complete the requested
transaction. In other words, the task sleeps on the
buffer-header address. The sleep() instruction per-
mits a context switch within the operating system.
The operating system can then schedule other tasks
for CPU attention.

The device, on completion of the requested write
will interrupt the CPU. The interrupt, through the
XENIX interrupt scheme, will invoke the respective
interrupt service routine which is in the interrupt-
time portion of the driver. This is done
asynchronously.

This interrupt service routine will awaken all pro-
cesses associated with the event using iodone() (see
section 7.1.2). Note that for write, the task-time por-
tion was responsible for the transfer of data from the

2-134

user space to the buffers while the interrupt service
routine is invoked when the data in buffers are writ-
ten to disk. The relevant process, on awakening is re-
scheduled by the scheduler to run as soon as
possible. The interrupt service routine then checks
to see if there are other pending requests on the
device specific queue. If not empty, it instigates the
next transaction from the next buffer on the device
queues (by following the av_pointers now declared
b_actf/b_actl).

When interrupt routines are alive and running,
mutual exclusion(mutex) is ensured by raising the
priority level of the running task in the CPU and on
completion, lowering the priority level. Details of
this technique is found in Interrupt Mapping. (Ap-
pendix D). This technique locks out interrupts of an
equal and higher level than itself for a short period
when shared data structures are manipulated. The
interrupt service routine may be looking for the next
request on the device queue, when the task-portion

280041-001

AP-184

FREE LIST

)
)
)

- OEENED

AV_FORW/AV_BACK
USED

B_FORW/B_BACK
USED HERE

DEVICE LIST/ACTIVE LIST

SO0

2

X/

~
)
)
|/

AV_FORW/AV_BACK
USED HERE BUT
ALIASED TO
B_ACTF/B_BACTL
(DISKSORT PLACES
IT IN THIS QUEUE)

1990

Figure 7a. Another Request Placed in Device List
and also Placed in Active List by Driver

of the driver may be calling disksort() that orders
the device list or when the kernel is placing the
buffer header with a request onto the same list.

On completion, the buffer header is marked as IO
complete and this header is released from the device
specific queue and placed at the end of the freelist
using the av_pointers. Note that the link to the
active list is broken (reusing the av_pointers).
Remember also, that b_forw/b_back pointers are
still maintaining membership with the device specific
list even when the buffer is now a member of the
freelist pool. Here is where the buffer is placed in
cache.

As shown in figure 7b,the buffer request X is placed
on the freelist using the av_pointers but is still a lead-
ing member of the device list. On the next request,

2-135

the kernel will search the device queue (not the
active list) from the beginning. As you can see in
figure 7b, the list is diverted into another list of
available but recently used buffers by following
b_forw/b_back pointers. Here cacheing occurs as
most recent transactions can be checked for
repetition. Note that the X buffer will bubble up the
freelist until it will be re-used for other transactions.
Until then it is cached.

280041-001

Inte|® AP-184 '

FREE LIST

DEVICE LIST/ACTIVE LIST

(2

AV_FORW/AV_BACK
USED HERE

uu\/u/

9
\09'
CACHE LIST HANGING
OFF THE DEVICE
LIST

LR

1991

Figure 7b. When Request Granted the Buffer is Returned to Free List but is Stilla
Member of the Device List and is cached. No Longer in Active List.

For a review of the block drivers duties, in an 1/0 fill out buffer header
request, consider a read request and the following . with device #
point-by-point discussion: . block #
. call task-time portion of device driver
user calls read .onreturn,
READ . sleep on buffer header waiting for
wakeup
. maps file fd to inode . - copy into user space
. calls readi
readi (read inode) The device driver does
. determines block to be read (bmap() { ‘
called) issues or queues request to the device
. searches buffer list i.e follows av_pointers interrupt handler wakes processes when on 1/0
matching block # to last read/write complete
. if cached, copy into user space and return when awakened return to readi
. if not cached, flush first buffer from freelist }

2-136 280041-001

intel

AP-184

NOTE: the above is only a specific example and a
brief one. For example, details of the support rou-
tines checking whether it is block/character read was
not mentioned.

So far, elements of the I/0 system anatomy dis-
cussed are invisible to the device driver writer.
He/She need not know all of the intricacies of buffer
management but there is a need to fully comprehend
the routines to be written, the system calls available
and the operating environment of device drivers. In
accordance with this methodology, block drivers
have, in their grasp, many powerful and consistent
system calls available from the kernel. They can be
called “driver support routines” because some of
them are available to character drivers also.

7.1.2 DRIVER SUPPORT ROUTINES

The following list is an informal collection of possible
support routines used in block I/0 drivers and by
the kernel. The kernel deals with the declarations
for the arguments and on many situations, places
values into these arguments. This is because the
kernel is allowed access to most of these arguments
and knows their values. Some of these calls are also
used in character I/0 transfers and will be referenced
in the character interface description:

physio(strat,bp,dev,rw)

where strat is the address of the strategy routine(a
driver procedure) which is the routine that performs
read, writes and starts up the device. This routine
will be discussed in section 7.1.3. It takes, as an
argument, a pointer to a buffer-header (bp) which
holds detailed information about the transfer.

where dev is the relevant device that character 1/0 is
to occur to (the < major,minor>) pair.

where rw is a flag indicating the nature of the
transfer(B_LREAD, B_WRITE in param.h)

Physio is used by block devices which can be treated
as character devices. In this case, transfer between
user space and device space is done directly (direct
1/0) with no intervening buffers. Remember that
for this to be successful, physical I/O must occur
when the instigating user process is in memory and
active (and not swapped out). physio is a routine
called by a driver for physical I/0 on a device.
Among other functions, physio checks the validity
of the transfer request. The buffer header pointer
that is passed to physio does not hold a buffer ad-
dress but the address of the physical location in
memory or the device, depending on the direction
of the transfer. Physical I/0 is a contiguous transfer
feature that is used in tar, fsck and dd, among other
utilities.

2-137

disksort(&xxxtab, bp);

struct buff xxxtab /* static buffer header */
struct buf *bp /* new buff header to be inserted */

disksort() is the assist routine ingredient to the
buffering/cacheing protocol as it manages the active
request queue. It takes, as arguments, the address of
the pointer to the static buffer header for the specific
device. The active request queue holds all requests
for the device. bp is the pointer to the new buffer
header that holds another request on the device.
disksort() inserts this request in the queue of re-
quests in cylinder/block order to minimize disk
accesses.

iodone (bp)
struct buf *bp /* header of completed request */

is a clean-up routine that informs the process that
the request made is complete. iodone() is called by
an interrupt service routine and issues a wakeup()
on the relevant event i.e. the buffer pointer bp. The
routine pulls the request off the device specific
queue and places it onto the free list.

sleep (bp,pri), wakeup (bp) and iowait (bp)
struct buf *bp

Process/task synchronization is a required feature in
the multi-user/multi-tasking XENIX Operating
System. Processes have to be informed when to wait
for the system’s shared resources. The XENIX
kernel provides two routines, sleep()/wakeup(),
for this purpose. Sleep() takes, as argument, a key
or event that the calling process waits on. This key
or event is nothing more that a bit-pattern. The key
or event in this case is conveniently the buffer-
header pointer that the task-time portion of a driver
is using for the transfer request. To re-iterate, the
task-time portion of the driver, when making an I/O
request, may have to wait after the request is made
until the actual I/0 is completed. The waiting is
begun by a system routine called iowait() which is
called by the kernel and physio () which is called by a
driver in direct physical /0 (for magnetic tape driv-
ers when driver calls strat() and waits for I/0 to
complete).

PRI, the second argument, is the priority at which
the process is to sleep. The sleep priority is higher
than what a user process can acquire. When the
wakeup() occurs, the process continues at the sleep
priority thus giving it a higher probability of being
scheduled earlier.

280041-001

intel

AP-184

Priorities range from 0 to 127. Priorities are not
bound by rules but the priority PZERO is used to dif-
ferentiate two main situations that may occur. If a
priority < PZERO is set for the sleep, no signal can
wake up the process. Hence, the process will be awa-
kened with an iodone() in the future. With a priority
> PZERO, signals will awaken the process even
before iodone() Also, smaller numerical priorities
mean higher priority levels. The safer technique is
therefore to place ‘sleep’ in a loop that tests if the
buffer is available for continuation. Hence, if I/0 is
complete and the buffer freed, the process is awa-
kened legally. Otherwise, continue to sleep.

Also, when the device returns an interrupt iodone ()
is called which calls wakeup() that sets the
event(buffer header) and induces life to all processes
waiting on that event — not just the “first” one. Pro-
cesses must therefore ensure that they are awake for
the correct reason. One way to do this is for the task-
time portion to check a predetermined static
memory location for instructions left by the
interrupt-time portion of the driver on completion.

timeout (func,arg,time)

int (*func) 0;
intarg;
int time;

/* function called as argument */

Arranges for func to be called with argument arg in
time clock-ticks. timeout() is a facility that runs a
procedure after n clockticks. The procedure is called
at clock interrupt time and ,hence, conforms to the
interrupt-time rules. Used for character I/0 also.

iomove (addr, count, flag)

Used for large data transfers. addr gives you infor-
mation on where in kernel the transfer is to occur.
count signifies the.size of the transfer in bytes. Flag
tells us if it is a B_READ/B_WRITE. The other
transfer address is found in the processes’ u_struc-
ture as u.u_base.

7.1.3 BLOCK DEVICE DRIVER ROUTINES

Briefly, a block device driver is composed of one or
more of the following routines:

.init() is a routine called very early during system ini-

tialization (at boot time) to initialize the device. It is
called with no parameters and returns no values. In-
terrupts are disabled at this time and the existence of
the device is verified. It prints appropriate messages
stating that the device is/is not found and remem-
bers if the device is alive (sets a flag). This routine is
called once.

2-138

open() is a routine that opens the device. Prepare it
for activity and is called on every open of the device.

Its parameters are
dev_tdev;
int flag;

open(dev,flag) is the calling sequence where dev is
<major,minor> device number and flag is either
B_READ or B_WRITE. The program validates the
device number and sets-up initial parameters. Any
errors detected is recorded in the u.u_error. The pre-

-sence of the device is verified before the open

oceurs.
close(dev)

is called on the final close of the device. The close
routine flushes pending transfers in device specific
queue and sets flags that remember that the device
is closed.

strat(bp)
struct buf *bp; /* pointer to buffer header */

Called by the kernel in response to the user program
instigating a read/write request. strat is “strategy.”
Inserts a request on the queue of device requests.
The kernel provides a buffer headér to the routine
and it validates the header to ensure that it has all
the necessary information (e.g B_LREAD). The
driver routine calls start() and disksort()

intr(level)
int level,

The interrupt routine is called by the kernel when
the device interrupts. This routine is called when the
device is moving from an active state to an idle state.
If the device is active on entry to the interrupt ser-
vice routine, the interrupt service routine was awa-
kened by a spurious interrupt. If not, the device
state is changed to idle. In this state, the previous re-
quest was satisfied and an iodone should be called.
The momentun is continued to keep the device busy
by calling the start() routine if other requests are
pending on the request queue (device specific
queue).

start()

This routine functions to move the device from an
idle state to an active state i.e. it talks with device. It
is called when the device is idle or a request is
queued. It interprets the information on the buffer
header at the beginning of the queue of device re-
quests and sends commands to the controller.

280041-001

intel

AP-184

These routines form a file called ixxx.c where xxx is
the numerical representation of the device (see
Naming Conventions - Appendix G). This file
should reside in /sys/io directory. Conventionally,
cxxx.c an adjoining file is also created to identify any
data structure relevant for the main program. cxxx.c
resides in the /sys/cfg directory. Finally, constants
and #defines are found in a header file, generally
“included” in cxxx.c, called ixxx.h. This file is creat-
ed in /sys/h. Hence, a driver for the iSBC 254
Bubble Memory board should be composed of:

i254.c main driver routines
i254.h the header file
c254.c the configuration data structures

With this brief description of the driver routines, a
casual discussion of how these routines interact with
each other and the kernel is a natural follow-up.
Some reiteration of previous details is necessary to
give an overall consistent discussion.

7.1.4 REVIEW

User requests to be performed on a device (usually
on a file living on the device) are converted by the
kernel to simple requests for I/0 which are passed to
the driver. The kernel does any blocking/deblocking
and cacheing to minimize device accesses. Strat()
and Intr() are the main routines required of a block
device driver. The request which is passed to the
strat() routine is passed in the form of a pointer to a
buffer header. This header contains all the informa-
tion necessary to perform the operation - B_LREAD,
B_WRITE, device address to use e.g. which track
and sector, and the address of the kernel buffer
from which the data should be taken or into which
the data should be placed. The buffer header points
to BSIZE’d buffers and the request will always be for
BSIZE operations.

Be sure to keep in perspective the level of software
being discussed - the driver itself sees only requests
for transfers to or from a physical block of the device
- entities like file-structure, disk space allocation, or
blocking/deblocking of small or large requests are all
performed by higher level kernel software. All the
device driver needs to do is examine a request,
determine whether it is a read or write and perform
the operation between the indicated memory address
and the indicated block device.

2-139

7.1.5 STEPS TAKEN TO SATISFY REQUESTS

This discussion centers around the strat() and intr()
routines. All requests are passed to the driver by the
kernel by calling the strat() routine, with a single
parameter - a pointer to a buffer header. As before,
the header specifies the type of operation that is to
be performed, the memory and device addresses to
be used, and a field for recording the result of the op-
eration after it has completed. The strat() routine
places the incoming request on the linked list of
active requests to be performed. If the device is cur-
rently busy performing a previously queued request,
the strat() routine has finished its job and returns. If
the device is idle (i.e. the request is the only one on
the active list), the strat() routine must initialize the
operation for the request. This typically involves
loading parameters into a peripheral controller and
initiating a command. At this point, the strat() rou-
tine has completed and returns.

After a command is started, it is typically a long-time
(by cpu standards) until the request is completed
and an interrupt occurs. The interrupt routine must
field this interrupt and determine the reason for it. If
it is the expected “operation-complete” interrupt,
the interrupt routine should perform any operation
needed to complete the transfer, then call the
iodone() routine with a single parameter — the
pointer to the buffer header of the request just
completed. The iodone() performs some clean-up,
notably waking up the process which was waiting for
the I/0 to complete. At this point, the interrupt rou-
tine may determine if other requests are waiting in
the active request queue for the device, and if so,
initiate the next one by calling the start() routine.
Once done, the interrupt routine returns with its job
done. The interrupt routine is a trigger that keeps
firing-up new requests as they are discovered on the
queue. Once the list is exhausted, the intr() routine
returns without starting another request (none there
to start) and the seed is lost and the sequence stops.
The strat() routine must start another request to
“prime the pump” and start the momentum again.

With this understanding of driver routines, a pseu-
docode example of the iSBC 254 Bubble Memory
board driver will complete the discussion of block
I/0 device drivers. As mentioned, this section of
block I/0 is not the main thrust of the application
note as emphasis has been placed on the character
interface. This discussion will culminate in a pseudo-
code walkthrough.

280041-001

|nteP AP-184

7.1.6iSBC® 254 BUBBLE MEMORY BOARD WALKTHROUGH

1/*
2 * SBC 254 Bubble Memory bodrd device driver. (Pseudo-code)
3 * '
4* - implements block and raw interfaces for an SBC 254 -1, -2, or -4.
5 * - always accesses all bubbles in parallel, meaning that there are
6 * always 2048 pages on the board, and the page size can be 64, 128,
7* or 256 bytes (see c254.c) .
8 * - will handle only one 254
9 * - uses DM A mode for bubble accesses
10 * - I/O base address and number of bubbles configurable in c254.c
11*
12*
13*/
14
15 #include “../h/param.h”
16 #include “../h/systm.h”
17 #include “../h/buf.h”
18 #include “../h/conf.h”
19 #include “../h/dir.h”
20 #include “../h/user.h”
21 #include “../h/i254.n”
22
23
24 extern struct i254cfg i254cfg;/* see c254.c
25 * for values, i254.h for definition
26 */
27 struct buf i254tab; /* static buffer header */
28 struct buf i254rbuf; /* static buffer header for
29 rawinterface */
30 short i254alive, i254isopen; /* device existence, open flags */
31
32/*
33 * i254init - called early in the system initialization - probes for
34* 254 by resetting it and watching for appropriate reaction
35*/
36i254init()
37{
38
39
40 * this is the first routine of the driver that will be called,
41 * it’s a good time to clear the i254isopen flag
42 */

44 i254isopen = 0; /* 254 is closed */

46 /*

47 * more stuff to init the board and check status

48 */

49}

50

S1/*

52 * i2540pen - checks for correct minor number(0) ,and existence of the
53+* board, and either allows or disallows the open

54*/

55

56 i254open(device, flag)

57 dev_t device; /* device number */

S8int flag; /* what kind of open (for reading, writing, etc.)

2-140

280041-001

InteF AP-184

59 we’ll ignore this */

60 {

61 if ((minor(dev) == 0) && (i254alive)) {
62 i254isopen = 1; /* mark 254 as open */
63 return;

64)

65 else{

66 u.u_error = ENXIO;

67 return;

68 }

69}

70

71 /*

72 *i254strat - queues the I/0 request and starts it if the device is idle
73*/ .

74 i254strat(bp)

75 struct buf *bp;

76

77 ¢

78 int x, startpage, numpages, ppb;

79

80 r*

81 * first thing to do is check device is open; otherwise, allow
82 *no I/0

83 */

84

85 if (~— i254isopen) {

86 bp->b_flags|= B_LERROR;

87 bp->b_error = ENXIO;

88 iodone(bp); /* mark it done */
89 return;

90 }

91

92 /*

93 * convert the block number to a page number, and the number of

94 * blocks to number of pages,and the starting block to the starting

95 * page - these could be sped up with some appropriate shifts instead

96 * of *and / */

97 */

98

99 ppb = BSIZE / i254cfg.c_page_size; /* pages per block */

100 numpages = bp->b_bcount * ppb; * number of pages */
101 startpage = bp->b_blkno * ppb; /* 1st page of transfer */
102

103 /*

104 * Now check the requested operation for validity in terms of the
105 * the number of pages on the device.

106 * Here’s the thinking:

107 *ifrequest is READ on 1st block after the last block -> EOF

108 knnn WR]TE et _> errOr

109 *""”READ or WRITE 2 or more pages past the end -> error
110 *ifrequest starts on valid page, but runs off end -> EOF

111 ¥/

112

113 if (startpage > BUBPAGES) {

114 /* 2 or more after last page, so error */
115 bp->b_flags|= B_ERROR;

116 bp->b_flags = ENXIO;

117 jodone (bp);

118 return;

2-141

280041-001

Il’\".'e'® ' AP-184

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

}
if (startpage = = BUBPAGES) {
/* 1st block after last one */
if (bp->b_flags & B_READ)
bp->b_resid = bp->b_bcount; /* read, so just EOF */
else {
* write, so error */
bp->b_flags|= B_ERROR;
bp->b_error = ENXIO;

}
iodone(bp);
return;

}

if ((startpage + numpages) > (BUBPAGES -1)) {
/* starting ok, but running off end */
bp->b_resid = bp->b_bcount;
iodone(bp);
return;

}

/* if we’re here, request looks OK, so queue it and
* (if necessary) start it
*/

bp->b_cylin = startpage; /* use page number as sort field */

/#
* Since we’re about to play with the queue, and this can be
* accessed at any time via the interrupt handler, we need to
* shut down this interrupt level to provide mutex
*/

x =SPLQ);

disksort(&i254tab, bp);

if (i254tab.b_active = = IO_IDLE) i254start(bp): /* start if idle */
splx(x); /* reenable this interrupt level */

)
i254start(bp)
struct buf *bp;

/* this routine is the most device specific of all others.
The routine is called by both strat() and intr() at task-time
and interrupt time. It starts up the device if it is idle and
keeps the momentum going with other requests.
*
/

/*
*1254intr - interrupt handler-checks status of operation just completed
* and starts new operation if one is queued
*/
i254intr (level)
int level,

{

short stat;

/*
* point to first buffer header in the active queue, making sure
* that it’s actually pointing to a buffer header
*/

2-142

280041-001

- ®
Intel AP-184

179
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

if ((bp = i254tab.b_actf) == NULL) {
printf(“No active buffer header, i254intr, level %d0,
level);
return;
}
/*
* clear the interrupt source and disable DMA
*/
outb(i254cfg.c_base_port + BMCCMD, CLRINT);
outb(i254cfg.c_base_port + DMAMODE, DMADIS);
/*
* Now look at the status of the BMC to determine if this is the
* successful end of an operation. Report any errors encountered
*/
stat = inb(i254cfg.c_base_port + STATUSPORT);
if (stat & BMCBUSY) {
printf(“BMC still busy, i254intr, status = %d0, stat);
return;
}
if (stat & (BMCOPFAIL | BMCTIMERR |BMCUNCERR)) {
#ifdef VERBOSE
\ printf("Error, i254intr, status = %d0, stat);
#endif
/* call deverror here? */
bp->b_flags|= B_LERROR;
bp->b_error = EIO;
}
else if (stat & BMCCORERR)
printf(“Cor error, i254intr, status = %d0, stat);
/#
* At this point we have determined that a legitimate bubble interrupt
* has occurred, and if there has been an error, it’s recorded. Now
* we need to mark the operation as complete and start the next request
* in the queue (if there’s one there).
*/
i254tab.b_actf = bp->av_forw;
jodone(bp);
if ((bp = i254tab.b_actf) == NULL) {
i254tab.b_active = IO_IDLE;
return;
} .
r* .
* At this point, bp is pointing to the next request in the
* queue, so start it.
*/
i254start(bp);
}
/*
* i254close - clears i254isopen flag
*/

2-143

280041-001

intgl

AP-184

239 i254close(device)
240 dev_t device;

241 |

242 i254isopen = 0;

243}

244

245 /*

246 *i254read - RAW interface read routine - calls physio
247 */

248

249 i254read(device)
250 dev_t device;

251

252 physio(i254strat, &i254rbuf, device, B_READ);
253}

254

255 i254write(device)
256 dev-_t device;
257

259)

The i254init() routine (line 36) reports on the
devices it expects to find and the ones it actually
finds. The normal procedure is to give the device
some command (usually a reset or initialization),
then do a busy wait loop, waiting for a “’sign-of-life*
from the device. of course, the busy wait loop
should have some other form of termination, so that
a non-responsive device does not cause the system
to hang at the point. Usually, a simple counter to
limit the time spent in the wait loop is used. The
i254init() routine (line 36) writes a message to the
console, such as ”SBC 254, port 0x040 found* or
”SBC 254, port 0x040 NOT found.“ Also, it is usual
to let the i254init() routine set a flag which indicates
the presence or absence of the device. The
i2540pen() routine (line 56) then checks this flag
and will return an error if an open is attempted on a
non-existent device.

The i2540open() routine (line 56) is called upon each
open on a device and provides an opportunity for
doing any device set-up that is required. This could
be the routine that spins-up a Winchester disk, or
turns on the motor of a mini-floppy. As before, the
i254open () routine should check for device existence
flag, set by the i254init() routine, and return an
error if necessary.

The i254strat() routine (line 72) is the routine
which actually performs the bulk of the work in any
block device driver. The strat() routine queues the
new request onto the active queue (of the device
specific queue). This queue is a linked list of buffer
headers which contains data transfer parameters and
are awaiting service. At the head of this list is a static
buffer header that is called ixxxtab, where xxx is the
device handler prefix that is used on all the proce-
dures composing the device driver (see Naming

2-144

{
258 physio (i254strat, &i254rbuf, device, B_-WRITE);

Conventions - Appendix G) In this case ”xxx“ is
”254.“ This header contains pointers which make
forward and backward links to other buffer headers
in the list (remember b_forw/b_back). Besides the
list of pending device requests, the buffer headers
can also be linked onto a free-list, which contains all
the buffer headers which are not set-up for an opera-
tion using av_forw/av_back. A third list contains the
buffer headers that are currently available or have
been used(cache list). This list is the cache mecha-
nism which the kernel uses by looking down to see if
perhaps it can re-use the data from another request
and avoid physically accessing the device again. It is
managed with the av_forw/av_back pointers re-
declared. Details of these buffers and how they are
managed are found in Block I/0 Interface (Section
7.1).

The actual manipulation of the device list and the
free list is handled completely by the kernel with its
higher level routines and does not need to be the
concern of the device driver. The active list (device
specific list with av_pointers) is managed by the
device driver, but usually can be handled by a couple
of provided subroutines, so that the driver does not
have to explicitly deal with the pointers which struc-
ture the list. Disksort() is the routine normally used
to place a buffer header onto the active list. Remem-
ber the active list is a reordered version of the device
list. Besides the actual mechanics of updating the
list, disksort() also provides a sorting facility which
orders the active requests by cylinder number, to
minimize seek time between requests. Since the
disksort() routine is general in nature, and does not
know of the specific physical characteristics of partic-
ular devices, its algorithm for sorting is to simply
order requests based on the cylinder field of the

280041-001

intel

AP-184

buffer header. By filling in this field with an appropri-
ate number i254strat() can effectively implement
sorting routines which correspond to the device
being handled. For example, on a bubble memory
board, there is no such thing as a cylinder. By order-
ing requests based on the page numbers, seek time
can be minimized between successive bubble
accesses. So, the i254strat() routine may just drop
the page number into the cylinder field, and let
disksort() do the rest. If a more complex algorithm
is desired, the i254strat() routine can implement it
and handle the insertion onto the active list itself, by-
passing use of disksort() completely. When a trans-
fer is complete, the buffer header is removed from
the active list (av_forw/av_back removed) by the
routine iodone(). This is typically called by the
i254intr O routine (line 169).

After i254strat() has queued a request onto the
active list, it must check and see if the device is cur-
rently in the process of performing an operation. If
so, the 1254intr() routine will start pending
requests, and i254strat()’s work is done. If the
device is not busy, i254strat() must start the opera-
tion to satisfy the request. Since the responsibility of
starting an operation rests with both i254strat() and
1254intr() routines, depending on the
circumstances, the code used to start a request is
usually placed into a procedure call i254start() (line
156), which is then called by i254strat() /1254intr().

The i254start() routine is typically the most device
specific routine in the set composing the device
driver. It examines the next request on the active
lists, sets-up the operation accordingly and starts it.
Thus i254start() is the' routine which does output to
1/0 ports and is generally cognizant of the details of
performing a function with the device. Once
i254start() is called to initiate a transfer, i254strat()
is complete and returns.

The 1254intrQ routine (line 88) is called by the
kernel when an interrupt from the device occurs.
Details of manipulating the interrupt controller have
already been handled by the kernel, and the only
thing 1254intr) needs to be concerned about is han-
dling the device itself. The interrupt typically occurs
to indicate that the transfer is complete. Once
1254intr) has determineed that this is the case, it
should do anything necessary to finish up the opera-
tion as far as the device is concerned, set the status
field in the buffer header to indicate successful com-
pletion of the operation, and then call iodone() (line
221) to finish up as far as the kernel is concerned.
iodone() performs several functions, among them,
awakening the process which was waiting for this op-
eration to complete, removing the buffer header
from the active list and placing the buffer header
onto the free list. If the interrupt occurred as a result
of the operation terminating unsuccessfully, th

status ﬁe?d (u.u_error) should be set and iotﬁme(?
should be called. Once done, 1254intr() must then
check and see if there are other requests waiting in

2-145

the active queue. If so, the i254start() routine
should be called to start the next request.

Obviously, i254strat()/1254intr() manipulate
common data structures. Because the i254strat()
routine can be interrupted at any time by the occur-
rence of an interrupt (and the subsequent execution
of the interrupt handler), care must be taken such
that the interrupt routine does not “clobber* some-
thing that i254strat() was in the process of
doing(e.g. like adding a request to the queue, check-
ing to see if the device is active etc.). The only
mechanism available to achieve this mutual
exclusion(mutex) is to shut down the interrupt level
used by the device while i254strat() is in the critical
region(s) of code. The slpN routines are used to do
th)is (see Interrupt Mapping for details - Appendix
D).

The i254close() routine (line 239) is called only
once by the kernel This routine should also clean-
up(e.g. turn off a minifloppy motor) for whatever is
appropriate for the device.

Finally, the i254start() (line 156) routine is called
by both the interrupt routine and the strategy routine
i.e. at task-time and interrupt-time. As described
before, the routine checks to see if more requests
are on the device queue and outputs the appropriate
commands to the ports.

7.1.7 FINAL LOOK AT BLOCK DRIVERS

Note that the above discussion on block I/0 devices
and interfaces is as detailed a discussion as possible
given the fact that the next step is to look at existing
code and work from it. Device drivers are seldom
written from scratch. They are usually based on ex-
isting examples. However, there will be problems if
every detail about the device is not understood.
Knowing the device and its intricacies is of utmost
importance to developing a device driver for it.

Kernel overhead is high for block I/0 devices i.e.
the kernel works hard for these drivers. But not all
of driverideology can be viewed through such struc-
tured notions as buffers, blocks and the like. Drivers
have an unstructured side to them. This side is the
character 1I/0 interface.

7.1.8 THE RAW (CHARACTER INTERFACE)
TO A BLOCK DEVICE

A block I/0 device like a disk can have a character
1/0 interface. Note that a new set of routines,
namely ixxxread(), ixxxwrite() and ixxxioctlQ
etc. have to be created for a block device. These rou-
tines implement the character interface for a block
device driver. This character interface permits a
block device, like a disk, to have direct I/O or byte
1/0 transfer capability. The data structure cdevswl |

280041-001

intel

AP-184

in c.c shows that the disk has both character and
block interfaces. Notice that certain locations
unused in cdevswl] are either titled nulldev/nodev.
Nodeyv is a macro that implies a position in the array
that is invalid i.e. printers cannot read. Nulldev is
nothing more than a no-op, that implies it is legal
but not implemented.

Moving away from these details, the respective char-
acter 1/0 reads and writes merely call physio() (see
Device Driver Support Routines Section 7.1.2).
With this call,

1) the user process is locked in memory

2) strat() is called with the buffer header already
updated with the transfer information.
However, the address of the transfer is not a
buffer header address but a physical location.

3) iowait() is called which will wait for I/0
completion.

The character 1/0 interface is often called the raw in-
terface and is used in general utilities like dd and tar.
This interface is fast, unstructured and does not go

through the kernel buffer scheme. Further details
can only surface by mvestlgatmg the character 1/0
interface.

7.2 The Character interface

Character I/0 is synonymous to “byte” I/0 or direct
I/0. Terminals and printers fall under this category
of relatively unstructured I/0 mediums between
device and user-space. In general, to access character
I/0 devices, user processes must be locked in
memory and hence, for overall system throughput,
these devices must be fast. For relatively slower
devices (guess who? ==>> terminals), a data buf-
fering mechanism is employed. These queues are
character-based and, hence, are used only for small
datatransfers.

7.2.1 CLISTS

Each driver that wishes to use these buffers declares
a static buffer header. These buffers are called clists
and are linked-lists of buffers. The buffer header is
declared in tty.h (Appendlx H). The structure of the
header is:

 stru
ct
clist
{
int c_cc: /* characters in the list */
char *c_cf: | /* ptr to first char */
char *c_cl: /* ptr to last char */

}

Y

Y

Y

2-146

280041-001

intgl”

AP-184

These clist-headers point to character-holding links
that contain four-word blocks of characters(pointer
and sixcharacters). Each driver program declares its
own clists and this structure accumulates clist-
structure-elements (as data transfer prevails) from a
“freelist” of buffers. The buffer mechanism is
simple compared to the block interface as only a few
routines manipulate the clist structure.

Two routines, gete() and pute() manipulate the clist.

1) getc(removes a character from the list and
moves c_cf forward if it not in a block boundary
i.e. it is not in the end of a six character
boundary. If it is, the pointer c_cf is set to the
beginning of the next block and the block that
the last character was read from is placed in the
freelist (see figure 8a and b).

2) Consequently, putc() places a character in the
list and obtains a new block when necessary (see
Useful Routines).

If precautions are not taken, the freelist may be ex-
hausted by one process. This is alleviated by defining
two marks - a low and high -water mark in tty.h.

These marks are maintained for each clist by rou-
tines that manage them. When a process requests
more than its high-water mark, it puts itself to sleep
until there are more free to use i.e. when the clist is
flushed and it hits its low-water mark). This is an
output feature (cannot suspend keyboard input!!).
This will alleviate the problem of any process
dominating the freelist. Low speed character devices
are assisted by the clist structure declared by the rele-
vant driver. Each driver that deals with byte 1/0
must declare clist structures required for each opera-
tion i.e. an input clist and an output clist.

7.2.2 TERMINAL I/0

Each terminal line is associated with line characteris-
tics called the tty structure. Details of these are
found in the manual section of tty(4) in the XENIX
Operating System Documentation (173258-001).
The file tty.h describes the tty structure for each line.

There exists a set of routines that manipulate this tty
structure.These routines are found in tty.c (not
attached) and are termed “line discipline routines.”
In /sys/conf/c.c (Appendix A) these routines are
outlined under the data structure lineswll. These

ul

FREE

1

C_CF

- -~

c_CL -

1984

Figure 8a. clists — free list and clist for a device notice they point not to

first/last character.

2-147

280041-001

AP-184

FREE

C_CF

ccCL ——

1985

Figure 8b. When getc() takes last char on first block, the clist structure is

returned to FREE LIST.

routines are preceded by “tty” or “tt” (Naming
Conventions). A summary of these routines is
found in tty.help (section 7.2.4).

Coming back to the tty structure(Appendix H),
three queues are identified for use by each terminal
interface. These structures are clists and are:

. the output queue

. the input queues
. the canonical queue(cooked)
. the raw queue

Three static buffer headers (clist headers) are estab-
lished in the tty structure for each line. The output
queue facilitates output to the terminal using the
high/low-water marks as gauge. The raw queue is
used as the first input vehicle where all characters
input are placed. It is from here that the terminal
echo occurs. Notice that echo response is generally
quick and is irrespective of whether the requesting
process is in or out of memory. The canonical queue
is that queue maintained for each line that respects
all characters especially those that are dependent on
surrounding characters i.e. backspace, delete, charac-
ter expansion etc. This queue is also called the
cooked queue to symbolize a — raw (not raw) queue

2-148

to further establish that XENIX-is not lacking in
humor! Two queues live to serve the goal of quick
and consistent character treatment.

The tty.c (line discipline) routines are invisible to
the driver-writer. Once these routines are called,
they do most of the work. The queue manipulation
and I/0 functions are purely interface functions that
are not in the driver code.

As mentioned before (Section 6.2), the function of
any driver can be partitioned into task vs. interrupt-
time execution. For character device drivers, the
task-time portion deals with moving data to/from
the user space and the clist queues. This movement
(transfer) uses data derived from the users u_struc-
ture e.g. u.u_count is decremented on data transfer
(no device driver involvement) that is performed by
the tty.c routines.

The interrupt-time portion of the driver manages

the transfer of data between the device and the clist
queues (namely, the raw and output queues).

280041-001

intel

AP-184

7.2.3 USEI';'UL ROUTINES

The following are useful kernel routines used by the
line discipline routines. Further routines are found
in Device Driver Support Routines (section 7.1.2).

int getc(queue)
struct clist *queue;

Returns a character from the clist queue or -1 if the
queue is empty. The queues are either the raw,
canonical or output queues.

int putc(c,queue)
struct clist *queue;

Puts a character “c” on the queue. Returns “0” if
the character is placed and “—1” if unable to place
in queue. The “—1” returns if gone beyond the high-
water mark of the respective clist.

7.2.4 TTY.HELP — THE LINE DISCIPLINE
ROUTINES

XENIX currently supports one line discipline rou-
tines i.e. how to interpret characters on I/0 on the
line. This line discipline is made up of several
routines. They are:

ttyopen (dev, tp)

dev_t dev;
struct tty *tp;

This routine is called by the device driver’s open
routine. It is given an address of the line’s device
number and tty structure. Relevant fields in the tty
structure are updated and the raw, canonical and
output queues are initialized.

ttyclose (tp)
struct tty *tp;

All character queues with respect to the respective
tty structure are flushed. Relevant fields in the struc-
ture are set to “closed.”

ttread (tp)
struct tty *tp;

Handles a read request i.e a system call. Details on
the input target addresses are found in the u_struc-
ture i.e u.u_base, u.u_count etc. This routine obtains
data from the canonical queue and waits, if
necessary, for more input. It also calls canon() , a
routine that transfers characters from the raw input
list to the canonical list after processing these lines.
Canon() basically waits until a full line has been

2-149

typed when in cooked mode whereas, in raw, it
transfers data immediately.

ttread() also waits on ttyinput() to function in the
interrupt time portion of the device driver.

ttwrite (tp)
struct tty *tp

Handles a write request. ttwrite() outputs u.u_count
characters into the output queue (outq in tty.h)
guarding the high/low-water marks. Calls
ttyoutput() which places character in output queue
adding delays, expanding tabs etc. Calls ttstart() to
begin transmitting the character.

ttyinput(c, tp)

struct tty *tp;
char c;

Places a character on the raw queue and echoes it if
required. This is how input characters are given to
the read request. ttyinput() is run at interrupt-time
to add “c” to the raw queue identified by “tp.” The
echo is done by a call to ttstart() to begin character
transmittal and a call to ttyoutput() that basically
transports characters from the raw queue to the
output queue and prepares them for output.

ttstart (tp)
struct tty *tp;

is called to cause the next byte to be output if the
device is idle. It is called by the task-time portion of
the driver as well as the interrupt-time portion.
ttstart () calls the “xxxstart()” routine in the driver.

ttiocomm (cmd, tp, addr, dev)

int cmd;
struct tty *tp;
caddr_t addr;
dev_tdev;

Handles common 1/0 control functions like line-
editing, setting line characteristics except baud rates.
Consider this call a transfer of input/output control
and line characteristic functions to the relevant data
structure that holds that information. This routine is
called from the xxxioctl) routine of the driver.

As mentioned in the discussion on driver interfaces,
the file c.c holds all kernel interface data-structures
to the main driver routines. The data structure
cdevswl] is the link to the character I/O drivers. This
structure maps the main special devices like
/dev/ttya0 to the actual driver routines.

280041-001

intel

AP-184 -

7.2.5 TERMINAL I/0 DEVICE DRIVER
ROUTINES ;

The following routines are typical of a character
device driver. The tty.c routines are used as most
terminal I/O device drivers rely on them. Other driv-
ers for line printers (output only) do not use the
tty.c routine as less processing of output is necessary
and is simpler. The terminal I/O driver-routines are:

ixxxinit(Q

This routine initializes the device. It checks to see if
the device is alive and sets a flag to remember this. It
then prints messages which tells the user interface
that it is/is not alive.

ixxxopen (dev, flag)

dev_tdev;
int flag;

dev is <maj,min> device number. Flag is
B_READ, B_WRITE. Flag may be ignored for tty
drivers. Called every time the device is opened.
Checks for validity of open, fills out tty structure for
the device line. The fields it fills are:

t_addr - set the device’s I/O address
. t_oproc - set to the address of the device’s
output start routine

t_iproc - set to address of start routine for output
t_state - device’s state

Calls ttyopen. Calling sequence:
ixxxopen() =====> ttyopen
ixxxclose (dev, flag)

dev_tdev;

dev and flag are described for ixxxopen(). The rou-
tine is called when the last file attached to the device
is closed. Calls ttyclose and performs clean-up e.g.
flushes pending clists. Calling sequence:

xenix = ===> ixxxclose() ====="> ttyclose
ixxxread(dev)
dev_t dev;

' Tl{is routine implements the read system call for the

line and calls ttread() passing it the tty structure for

the line. Calling sequence:

xenix ====> ixxxread() ======>
ttread .

ixxxwrite (dev)
Like the read(). Calling sequence:

xenix ====> ixxxwrite() ====> ttwrite
ixxxioctl(dev, cmd, addr, flag)

dev_t dev;

int cmd;

caddr_t addr;

int flag;

Implements the ioctl éystem call for this line. I/0
control is used for special functions such as rewind-

ing tapes and the like. In termW -
routine is used to get/set vario aracteristics of

the line. A common-—tfy.c routine used is
ttioccomm (). Calling sequence:

xenix ====> jxxxioctl) ===>
ttioccomm
ixxxstart(tp)
struct tty *tp; /* ptr to the tty structure */

the start() routine is called by the common tty sup-
port routines to start output on the line. The address
of this routine is set in the open() routine and this
address is kept in the line’s tty-structure. This ad-
dress is picked up by the tty.c routine to initiate

" action on the device. Typically,if the device is idle, a

character is grabbed from the output queue and sent
to the device. If the device is busy or no characters
are available, the procedure is exited. Calling
sequence:

at task time:

xenix = = = > ixxxwrite) = = = > ttwrite()
=== >ttstart() = = = >ixxxstart()

at intr time:

device= = = >ixxxintr() = = = > ttyinput()
= == >ttstart() = = = > ixxxstart()

on input,

device== = >ixxxintr() = = = > ttstart()
= ==>jxxxstart()

on output

ixxxintr(level)

int type;

280041-001

intel

AP-184

This is the interrupt procedure. Level may be
ignored. An input interrupt service routine will call
ttinput() while an output interrupt will call ttstart()
to begin output of the next character. The ttstart()
routine will then call the driver’s start() routine. As
in block device, the interrupt service routine is
called when the device is returning from the busy
state to the idle state. ttstart() is called to bring the
device back to the 'busy state if further output is
necessary. Calling sequence:

HW/input intr = == > xenix ==="> ixxxintr()
===> ttyinput()

HW/output intr = == > xenikx = = = >ixxxintr()
===> ttstart()

Note: These routines are simpler to write due to the
tty.c routines. Terminal I/0 is a special case of char-

acter I/0. Other character I/0 devices require the
same routines i.e. ixxxopen() etc. but cannot rely on
the functionality provided by the line discipline
routines.

The following diagram (figure 9) illustrates how 1/0
occurs in terminal I/0. Before any further detail is
tackled, a brief diagram of the calling sequences for
the main driver routines is shown also. ixxxstart()
(figure 10) is called from both the ixxxintr()
/ixxxwrite() routines.

7.2,6 EXAMPLES OF CHARACTER I/0
(TERMINAL) DRIVERS

There is no real substitute for actual code. However,
in XENIX drivers, code can be a challenge to read
and understand. To alleviate long hours, a walk-
through of a roughlywritten driver follows. Another
example is found in Appendix L.

TASK INTERRUPT |

___________________________ 4 - R
| |

READ () CALL _| READ () ' TTREAD() ppotocoL

(SYSTEM CALL)]] ROUTINES

(O
(i€

WRITE() CALL ! WRITE()

— —— - — - —— — — . —— — ——— — — — — — — — —

J—cmou ()<L

TTYOUTPUT ()

(O

E|{U|E

{

TTINPUT () RECEIVE
+———+t—— INPUT

|
|
|
|

TTSTART ()
TRANSMIT

TTWRITE()

OUTPUT

(et

|
|
[
l
I
|
|
I
!
|
[
l
[
|
I
|
I
[
|
[
[
[
[
[
[
I

|
|
|
|
|
|
|
|
|

1981

Figure 9. Architecture of Lists and Hold the Work.

2-151

280041-001

AP-184.

OPEN CLOSE ‘1 =reap WRITE INTR 10CTL

: START .
\) SYSTEM/DRIVER

NN L[/ e
]
/.IJJJJ.JJ.IJJJJ.I.IJJ 33

dddddddddIIdIddd
80 0 S A T U P O e B P
[N8 0 DD D D O D O }

| = . |

1982

Figure 10. Terminal 1/0 Driver Routines.

2-152 280041-001 -

Inter AP-184

7.2.6.1 iISBXTM 270 Walkthrough

1/*
2 *i270.c - iSBX270 device driver
3 *
4* - implements terminal device driver for the iSBX270 character
5* graphics video display controller
6 *
7 * See also: ¢270.c - i270 configuration
8* i270.h - i270 include files
9 *
10 * Notes on this driver:
11* (1) The driver supports the keyboard interface and display

12* in scroll mode or page mode

13* (2) All manual references in the comments are to the iSBX270
14* Video Display Terminal Controller Board Hardware Reference
15* Manual, order number 143444-001.

16*/

17

18 #include “../h/param.h”
19 #include “../h/user.h”
20 #include “../h/tty.h”

21 #include “../h/i270.h”

22

23 extern struct i270cfg i270cfg; /* configuration structure */
24

25 short i270_alive; /* board alive flag */

26 struct tty i270tty; /* tty structure */

27 int c_state; /* state variable used for escape
28 sequences */

29 /*

30* i270init) .

31* - tests for presence of the iISBX270, and reports its presence
32+ or absence

33* - initializes 270 for the configured modes of operation

34* - this routine is called very early in the system initialization
35%/

36

37i270init()

38{

39 short mode;

40int rststat;

41

42 /*

43 * The sequence below sends a reset command to the 270. The
44 * algorithm is based on the flowchart, page 3-8 of the manual.
45 * We perform the additional task of determining if the board is
46 * present or not.

47*/

48 c_state = 0,

49 rststat = rst2700); /* reset 270 */

50 if (rststat == RSTERR) {

.51
52 /*
53 * Board not found.
54 */
55

56 printf(“iSBX 270 board port %x NOT found.0, i270cfg.c_data);
57 i270_alive = 1270DEAD;
58 return;

2-153

280041-001

mtel® AP-184

59}
60 else {
61 printf(”iSBX 270 board port %x found.0, i270cfg.c_data);
62 i270_alive = 1270LIVES;
63}
64
65 /%
66 * Board lives, so set it up in the configuration specified.
67 * NIMASK is anded with everything to clear any bits which
68 *aren’t implemented.
69 * Once we reach this point, we’ll assume that the board is
70 *alive to some extent, so we’ll just concern ourselves with
71 * getting through the initialization; but we can’t afford to
72 * get hung up if the firmware is acting funny. Our approach
73 * will be to protect ourselves against infinite loops, but not
74 * check for error conditions or worry about reporting them.
75 */
76
77 mode = (i270cfg.c_keybrd |i270cfg.c_lpen |i270cfg.c_dma |
78 i270cfg.c_mode | IBEINT | (i270cfg.c_cursor & CURMSK))
79 & NIMASK;
80 mode270(mode);
81}
82
83/
84 * rst270() - resets the 270 board
85*/
86
87 rst2700)
88 {
89 unsigned i;
90
91 /x
92 * Clear out any garbage in input and output buffers.
93 *iis a safety valve in case the board is not here and
94 *we read a 1 in the IBF bit - we’ll take care of the
95 * presence or absence of the board later - for now we just
96 * need to get out of this loop.
97 */
98
99i =0,
100 while ((in_270(i270cfg.c_stat) & 1270IBF) && (i+ + < 30000)) {
101 if (in_270(i270cfg.c_stat) & 12700BF) ‘
102 in_270(i270cfg.c_data); /* dummy data */
103}
104 out_270(i270cfg.c_stat, I270RST); /* reset it */
105
106 / x
107 * We’ll look for some sign of life from the 270. If
108 *it’s not there, we’ll either blow right through the
109 *loop, or get stuck in it forever. We’ll limit
110 *forever to 30000 iterations, and check for a count of
111 *0or > 30000 upon terminating the loop - either one is
112 * then interpreted as a sign that the board isn’t here.
113 */
114
1151 = 0;
116 while ((in_270(i270cfg.c_stat) &
117 (I2700BF |1270IBF |1270BUS)) && (i+ + < 30000)) {
118 if (in_270(i270cfg.c_stat) & 12700BF)

2-154

280041-001

Intel® AP-184

119 in_270(i270cfg.c_data); /* dummy input */
120}

121if (GG == 0)| (i > 30000)) return RSTERR;

122 else return RSTOK;

123}

124

125 /x

126 * mode270(mode) - sets VDTC mode for 270 board to specified mode
127 */

128

129 mode270(mode)

130 short mode;

131 ¢

132 unsigned i;

133

134 /%

135 * First, go into null busy wait until we can stick another
136 * command into the input buffer - once again, i is used as
137 * an escape in case the firmware on the 270 is acting goofy.
138 */

139i =0,

140 while ((in-270(i270cfg.c_stat) & 1270IBF) && (i+ + < 30000));
141

142 /*

143 * Now we can issue a new command - we do a set VDTC mode.
144 */

145 '

146 out_270(i270cfg.c_stat, I270SM)

147

148 /*

149 * Wait until the 270 can accept the parameter.

150 */

151

152i=0;

153 while (((in_270(i270cfg.c_stat) &

154 (12700BF |1270IBF | 1270BUS)) != 1270BUS) && (i+ + < 30000)) {
155 if (in_270(i270cfg.c_stat) & 12700BF)

156 in_270(i270cfg.c_data); /* dummy input if OBF set */
157}

158 out_270(i270cfg.c_data, mode);

159}

160

161 /*

162 * i2700pen(dev) - opens dev

163 */

164

165 i2700pen(dev)

166 dev_t dev;

167 {

168 int unit, i270start();

169 struct tty *tp;

170

171 /*

172 * First check to make sure that board is alive - if not,

173 * mark error and return.

174 */

175)

176 if (i270_alive = = 1270DEAD) {

177 u.u_error = ENXIO; /* no such device or address */
178 return;

2-155

280041-001

intel © aAp-1es

179}

180

181 /*

182 * tp will point to the tty structure
183 */

184

185 tp = &i270tty;

186

187 /*

188 * Check for 270 already being exclusively opened
189 */

190 :
191 if ((tp->t_state & XCLUDE) && u.u_uid) {
192 u.u_error = EBUSY;

193 return;

194}

195

196 /*

197 * Set up fields in tty structure.
198 */

199

200 tp->t_addr = (caddr_t)i270cfg.c_data; /* io base address */

201 tp->t_oproc = i270start; /* routine to start output */
202

203 /x i

204 *If this is first open...

205 */

206

207 if ((tp->t_state & ISOPEN) == 0) {

208, ttychars(tp); /* sets special characters */

209 tp->t_ispeed = tp->t_ospeed = 9600; /* baud rate meaningless */
210 tp->t_flags = ODDP |EVENP|ECHO | CRMOD:; /* should add no
211 tab expansion here */ ’

212}

213 tp->t_state|= CARR_ON;
214 ttyopen(dev, tp);

215}

216

217 /*

218 *i270close(dev, flag)
219 */ '
220

221 i270close (dev)

222 dev_tdev,

223

224 struct tty *tp;
225

226 tp = &i270tty;

227 ttyclose(tp);

228 tp->t_addr = (caddr-t) 0; /* forget base address */
229}

230

231i270read(dev)

232 dev_tdev;

233 {

234 struct tty *tp;
235)

236 tp = &i270tty;

237 ttread(tp);

238}

2-156

280041-001

Il'ltel® , AP-184

239

240 i270write(dev)

241 dev_t dev;

242 {

243 structtty *tp;

244

245 tp = &i270tty;

246 ttwrite(tp);

247 }

248

249 i270iintr (level)

250 int level,

251

252 struct tty *tp;

253 short status, chr;

254

255 tp = &i270tty;

256 status = inb(i270cfg.c_stat);
257 chr = inb(i270cfg.c_data);
258 if (status & 1270KDR)

259 ttyinput(chr, tp); /* only if a valid keyboard hit */

260 }

261

262 i2700intr (level)

263 int level,

264 {

265 struct tty *tp;
266 .

267 tp = &i270tty;

268 if (tp->t_state & BUSY) {

269 tp->t._state &= ~ BUSY;

270 ttstart(tp);

271 if ((tp->t_state & ASLEEP) &&

272 (tp->t_outg.c_cc <= TTLOWAT))
273 wakeup((caddr_t) &tp->t_outq);
274)

275))

276 int ttrstrt();

277 extern char partabl];
278

279 i270start(tp)

280 struct tty *tp;

281 {

282 int c,s;

283 short mode;

284

285 s = spl50);

286 if (tp->t_state & (TIMEOUT [BUSY)) {
287 splx(s);

288 return;

289 }

290 if ((c=getc(&tp->t_outq)) >=0) {
291 tp->t_state |= BUSY;

292 splx(s);

293 . switch (c_state)

294 case 0:

295 - if (c == 0x1b) {

296 #ifdef DEBUG

297 printf(“0 %x0, c);
298 #endif

2-157

280041-001

|ntel° AP-184

299 outb(i270cfg.c_data, c);

300 c_state = 1;

301 }

302 elseif (c == 0x11) {

303 outb(i270cfg.c_data, c);
304 : c_state = 8; /* graphics leadin */
305 } .
306 else if ((tp->t_flags & RAW) | (c <= 0x7f))
307 outb(i270cfg.c_data, c);
308 else {

309 tp->t_state |= TIMEOUT;
310 tp-> t_state &= ~ BUSY;
311 timeout(ttrstrt, (caddr—t)tp, (c & 0x7f));
312 return;

313 }

314 . break;

315 case 1:

316 switch (¢) {

317 case’="

318 /* cursor address sequence */
319 #ifdef DEBUG

320 printf(“0 %x0, c);

321 #endif

322 outb(i270cfg.c_data, 0);

323 c_state = 2;

324 break;

325 case 'G™:

326 /* visual attribute sequence */
327 #ifdef DEBUG

328 printf(*0 00000) ;

329 #endif

330 outb(i270cfg.c_data, 0);

331 c_state = 3;

332 break;

333 case 'M’:

334 /* change mode sequence */
335 outb(i270cfg.c_data, 0);

336 . c_state = 6;

337 ~ break;

338 default:

339 /* regular escape sequence */
340 #ifdef DEBUG

341 printf(“0 %x0, c);

342 #endif

343 outb(i270cfg.c_data, c);

344 c_state = 0,

345 break;

346 }

347 break;

348 case 2:

349 #ifdef DEBUG

350 printf(“0 %x0, ¢);

351 #endif

352 outb(i270cfg.c_stat, 1270SCP);
353 c_state = 4,

354 break;

355 case 3:

356 #ifdef DEBUG

357 printf(“0 %x0, 0x80);

358 #endif

2-158

280041-001

intel

AP-184

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384 /*
385
386
387
388
389
390
391
392
393 |

outb(i270cfg.c_data, ((c & 0x3f) |0x80));

c.state = 0; ‘
break;

case 4:
outb(i270cfg.c_data, (c - 0x30));
c_state = §;
break;

case 5:
outb(i270cfg.c_data, (c - 0x30));
c_state = 0,
break;

case 6:
outb(i270cfg.c_stat, 1270SM);
c_state = 7,
break;

case 7:

mode = (i270cfg.c_keybrd |i270cfg.c_lpen |
i270cfg.c_dma |i270cfg.c_mode |
IBEINT | (i270cfg.c_cursor & CURMSK))
& NIMASK; .
mode = (mode & 0x3f) | ((c - 0x30) < < 6);
outb(i270cfg.c_data, mode);
c_state = 0;
break;
case 8:

* just output character and go back to state 0 -
* nothing special, just didn’t want to flip into a
* special mode as a result of this graphics character

*/
outb(i270cfg.c_data, c);
c_state = 0;
break;

394 else spix(s);

13!

397 i270ioctl(dev, cmd, addr, flag)
398 caddr_t addr;

399 {

400 struct tty *tp;
401 tp = &i270tty;
402 if (ttioccomm(cmd, tp, addr, dev)) {

403

404 /*

405 * No ioctl functions supported
406 */

407

408 }

409 else u.u_error = ENOTTY;
410}

411

412 in_270(port)

413 unsigned port;

414 {

415 unsigned i

416

417{ for (i=0;i < DELAY270; i+ +);
418 return (short) inb(port);

2-159

280041-001

intel

A

P-184

419}

420 out-270(port, val)
421 unsigned port;
422 short val;
423 (-

424 unsigned

425 :

426 for (i=0;i < DELAY270; i+ +);
427 outb(port, val);

428}

L

7.2.6.2 Low Level Routines

The following routines are not required but were
built for clarity and in accordance with structured
methodology. The routines are:

in_270-line 412
out_270-line 420
rst270-line 87
mode270-line 129

Details of the calling sequences for these routines
and others are found in figure 11. Consider the
procedures in_270 (412) and out_270 (420). These
routines are just the in and out routines of the
kernel with a constant delay in front, and are used
only at boot time. This implies that DELAY270
times the execution time of a for loop is lost for
every byte transfer (at boot time) to/from the 270
controller, and that the constant DELAY270 must
be fixed every time the kernel is ported to a new
cpu. These routines would make sense if the 270 re-
quired requests to be a certain time interval apart,
and the author of the driver could not guarantee that
the commands to the 270 would be far enough apart
any other way. It would also need to be checked that
DELAY270 iterations took less than 100
microseconds, to insure interrupt latency was not ad-
versely affected when these routines were called at a
high cpu priority during interrupt service.

rst270 (87) -resets the 270 controller. It begins by
reading the status register of the controller. If the
input buffer is full (1270IBF), the 270 cannot accept
another command (even the reset), so if the data
buffer is full, a data byte is read to make room in the
270 hardware’s buffer. Once the input buffer of the
270 is no longer full, it is sent a reset command. The
variable ‘i’ is used to insure that if the 270 is not
present, this loop will execute at most 30,000 times.
Once the reset command is sent, it should be acted
upon by the controller. We enter another loop, simi-
lar to the first , which is designed to’check the exis-
tence of the 270 controller. The controller exists if it
is now unable to receive input (270IBF), ready to
send to the cpu (I2700BF), or busy doing something
(perhaps, but not necessarily, the reset). If it is none
of the above, the loop will execute zero times. Note
that it is possible that the 270 is not there and that

garbage is being read from where the status register
would have been. There is code here that assumes
that if after 30,000 tries, the controller does not
return to an idle state, garbage is being read. Note
again that the use of a constant number of iterations
to represent an interval of time is bad practice since
it implies assumptions about the execution speed of
the cpu, which will vary.

Mode270 (129) is a routine similar to rst270, but de-
signed to set the initial mode of the controller after
the controller is reset. First the driver waits until the
controller is ready to receive the command (or
30,000 tries). Note that this means the controller
must become ready within 30,000 executions of an
in_270 to accept the mode change command. This is
why there is a delay in in_270, but this is still bad
practice, since it is cpu dependent code. The ‘set
mode’ command is sent, and a wait is done until the
controller can accept the new mode, then the new
mode byte is sent to the controller. The code to do
this wait ensures that ’while the controller is busy
and has input or output flush any input from it’. It
should be noted that this is acceptable because this
routine is called only by i270init at boot time. If
mode270 were called during normal system
operation, this input would be meaningful and there-
fore would need to be processed. It is not clear that
this loop will succeed in flushing all input generated
while the 270 was in the previous mode, raising the
possibility that garbage typed before a reboot will
remain in the 270’s buffers.

7.2.6.3 Required Routines

i270init (37) is called at boot time to be sure the 270
controller is ready to use, and is the only reference
to the routines described above. First, rst270 is
called to see if a 270 exists (49, 50). If not, a diagnos-
tic is printed, and the fact there is no 270 controller
is remembered (56, 57). If the 270 controller exists,
it is set for a standard mode modulo NIMASK,
which insures the controller is not placed in an unim-
plemented mode (77-80). This is also the place
where interrupts from the 270 are enabled (78).

i2700pen (165) is called for every open of the 270
device. In line 176 ensures that if the 270 controller
was not found at boot time, all opens will fail with a

2-160 280041-001

.
Inter AP-184
i270 OPEN 1270 READ 1270 CLOSE i270i0CTL
@ @ TTREAD TTYCLOSE TTIOCOMM
1270 init 1270 OINTR i270 INTR
DE 27 RST240
IN270 ouT270 1270START ~ i270WRITE
~
INB ouTs TTWRITE
KEY
D DRIVER ROUTINES Oy LRI TER ROUTINES
PROTOCOL ROUTINES
O R @ KERNEL ROUTINES 1980

Figure 11. iISBXTM 270 Video Terminal Corntroller Board

Driver Routine Dependancies Calling Sequences.

‘nonexistent device’ (ENXIO). Line 185 sets up a
pointer to the status record for the device. If the
device has an active exclusive open, line 191 ar-
ranges an open failure with a busy return. Line 201
sets a pointer for use by the protocol routines to start
output. Line 207 arranges that the 270 looks to the
kernel like a 9600 baud terminal with characteristics
suited to the device. Line 213 sets a flag to note the
device is open for later. Note that ISOPEN is set by
ttyopen.

2-161

i270close (221) is called on the last close of the
device. It just calls the protocol routine ttyclose,
then removes the I/0 address of the 270 from the
tty structure. '

i270read (231) and i270write (240) respond.to reads

and writes by simply calling the protocol routines
‘ttread’ and ‘ttwrite’, respectively.

280041-001

intel

AP-184.

i270iintr (249) responds to an input interrupt by
‘simply getting the character, and calling the protocol
routine ‘ttyinput’ with it if it came from the
keyboard.

'i2700intr (262) responds to an output interrupt by
checking if there was output in progress. If so, line
269 clears the BUSY flag (in case there are no more
characters to output). The protocol routine ‘ttstart’
will send the next character and set BUSY if there is
more output to do. If a process is sleeping because
the output queue was at the high water mark, and
the queue is now below the low water mark, all such
processes are awakened(271-273).

i270start (279) is called after output interrupts and
by the protocol routines to initiate output to the 270.
This routine sets a cpu priority high enough to pre-
vent reentrancy problems caused by the fact it can
be called by interrupts (285). The high cpu priority is
used to insure the BUSY bit does not change, so that
it may be used as a lock to prevent more than one
flow of control from getting into the switch state-
ment of line 293. Once this lock is obtained, the cpu
priority is lowered. The interrupt priority should
remain raised for no more than the 100
microsecond. If the driver is doing output, this rou-
tine will return(line 286). It is necessary that all
paths out of this routine lower the cpu priority (note
lines 287, 292, and 394) within the time constraint.

Line 290 uses the ‘getc’ routine to get the next char-
acter from the output clist. The way interrupt driven
output to tty devices is performed is by maintaining
the output portion of the terminal in one of two
states (idle or BUSY). In the idle state the device is
ready to receive a character for output, and in the
BUSY state a character has been sent to the device
and the device has not yet signaled (via an output
interrupt) that it is finished initiating the output.
Output interrupts do not necessarily signal that the
character has been output, only that the output has
been started and the output device is ready to accept
the next output character. A call to i270start, then

“ should force the terminal into the BUSY state
except in the case that the output clist is empty (lines
290 and 394). At the next output interrupt the termi-
nal goes from BUSY to idle (line 269), and protocol
routine ttstart calls the appropriate start routine (set
by line 201 to be i270start) to attempt to put the
device back into the BUSY state.

A major reason for the bulk of this routine is thatit
maintains a finite state machine which controls the
disposition of characters sent to the 270. This ma-
chine implements certain escape sequences which do
device control operations. Some of these device con-
trol operations cannot be done by writing to the data
port, and so require special code. There is also code
implementing an escape for graphic attribute bytes

2-162

which prevents them from being mistaken for
device control escape sequence leadins. A state tran-
sition diagram, shown in figure 12, details the con-
trol character sequences and other input sequences
expected by the device. The code for the default
treatment for most characters is in state 0 at lines
306 and 307. Characters with the high bit set
(non-ASCII characters) are used to implement a
timed delay at lines 308 through 313. If this state is
not cleared, the driver will hang. The code at lines
295 through 301 implement a transition to state one
in the event an escape character is written to the 270.
The graphic attribute escape is in state 0 at lines 302
through 305 and in state 8 at lines 383 through 392.

An escape is followed by a character which deter-
mines which escape sequence is involved. At state 1
lines 317 through 324 we see a transition to state 2 if
a cursor motion sequence (KESC> =) is found,
after sending an ASCII NUL to the 270 controller to
abort the escape sequence. State 2 sends a set cursor
position (I270SCP) command to the status port and
sends us to state 4 (lines 352 and 353). State 4 then
sends a data byte minus an ASCII ‘0’ (the X axis
position), and sends us to state 5 (lines 363 and
364). State 5 then sends another data byte minus an
ASCII ‘0’ (the Y axis position), and sends us back to
state O (lines 367 and 368). State 1 lines 325 through
332 abort the escape sequence and move to state 3 to
implement a ‘set attributes’ (<ESC> G)
command. State 3 sends the character after masking
it to insure a valid attribute byte (line 359), the re-
turns to state 0. State 1 lines 333 through 337 abort
the escape sequence and move to state 6 to initiate a
‘set mode’ command. State 6 sends a ‘set mode’ to
the controller’s status port and moves to state 7
(lines 371 and 372). State 7 shifts the output byte’s
low bit into the ‘page mode’ bit, sends the new
mode to the data port and returns to state 0 (lines
375 through 381). Note that an <ESC > M sequence
followed by a character other than an ASCII ‘0’ or
‘1’ is not guaranteed to result in a valid mode. The
remaining state 1 code (lines 338 through 347)
implement the default action, which is to send the
escape sequence on to the device and return to state
zero. Note that this works because no 270 hardware
escape sequence is over two characters (the escape
and the command). Longer escape sequences would
probably need a protection similar the protection by
state 8 of attribute bytes, to prevent them from
being mistaken for lead-in characters. If all escape se-
quence support were implemented by the device via
the data port, as is the case for terminals on a serial
line, none of this state machine logic would be
appropriate.

i270ioctl (379) is called to respond to every ioctl
issued to the 270. It responds by using the protocol
routine ‘ttioccomm’ to process all terminal ioctls,
and rejecting all others since the board does not sup-
port baud rates. :

280041-001

AP-184

‘G’, NULL
SET ATTRIBUTES

DEFAULT,
C & 3F/80

<ESC>,C
‘MW, NULL

SETMODE

DEFAULT, MODE,

DEFAULT, [SM]-

DEFAULT, C

<ESC>M: 0—SCROLL MODE
<ESC>M: 1—PAGE MODE

ESCAPE SEQUENCE

GRAPHIC CHARACTER 1979

CURSOR MOVE

DEFAULT, C

DEFAULT, [SCP]

) DEFAULT, C

DEFAULT, C-'0’

<bpC1>,C

Figure 12. State Transition Diagram for iSBXTM 270 Terminal Controller Board.

Used by the Driver.

7.2.6.4 A Final Note

This walkthrough has detailed the required routines,
their subtleties as well as their interactions with the
line discipline routines (protocol routines). The
iSBX 270 Video Terminal Controller Board driver is
only in draft form (it works!) and is not an example
of Intel Corporation’s coding methodology.

CONCLUSIONS

Now the clouds should have cleared around the
XENIX Operating System and device driver writing.
Insight is but one aspect of the challenge of writing
device drivers. It is premature to call it a trivial task.
The task of writing one is simple but the task of
debugging, testing and completing one demands

respect. Device driver writers have the power to do

almost anything with the operating system especially
crash it! This power can be extremely difficult to
adjust to at the tender age of a “XENIX user.”
However, this discussion has briefly covered

2-163

definitions, the I/0 environment, the representative
driver routines and code walkthroughs.

In attacking the device-driver writing issue, there is
difficulty in approaching the subject with any step-
by-step logical flow with a top-down methodology.
Hence, imagine the entire learning environment of
device drivers to be a circle. This discussion joins the
circle at any one point, follows it and embraces the
entire concept of device driver writing for the
XENIX 286 and 86 Operating System. With this
circle relatively filled, by this discussion, the task of
writing device drivers may still be more a task than
trivia but will be more a challenge than a chore! '

280041-001

|ntel"\ AP-184

APPENDIX A: THE c.c FILE CREATED BY MASTER
AND XENIXCONF ...

APPENDIX B: XENIXCONF PR e,

APPENDIX C: THE CONFIGURATION

FILEMASTER,

APPENDIX D: INTERRUPT MAPPING

APPENDIX E: param.h FILE THAT LISTS THE

- SYSTEM CONSTANTS ...

APPENDIX F: THE buf.h FILE DESCRIBING THE

BUFFER-HEADER STRUCTURE

APPENDIX G: NAMIN.G CONVENTIONS

APPENDIX H: THE tty.h FILE DESCRIBING THE

TTYSTRUCTURE
APPENDIX I: THE c254.c AND i254.h FILES

APPENDIX J: THEiISBC®S534

2-164

280041-001

|nte|® AP-184

APPENDIX A:

THE C.C FILE CREATED BY MASTER AND XENIXCONF

/*

*/ Configuration information

*
#define NBUF 29
#define NINODE 120
#define NFILE 120
#define NMOUNT 8
#define SMAPSIZ (NPROC/2)
#define NCALL 25
#define NPROC 100
#define NTEXT 40
#define NCLIST 150
#define NFLOCKS 100
#define MAXUPRC 15
#define TIMEZONE (8%60)
#define NCOREL 1
#define DSTFLAG 1
#define GENBOOT 0
#define CMASK (o]
#define MTOP 512
#include *‘‘../h/param h*"
#include ‘‘../h/buf.h"
#include ‘‘../h/tty.h"
#include *‘. /h/conf.h*
#include ‘‘../n/proc.h*
#include *‘‘../h/text.h"
#include *‘‘../h/dir.h*
#include *‘°‘../h/a out.h"
#include *‘../h/user h*“
#include *“* ./h/file h*
#include ‘*../h/inode h*"
#include ‘‘../h/acct.h*
#include ** /h/mmu.h"
#include “‘../h/map.h*
#include *‘‘../h/callo.h*
#include ‘‘../h/mount h*
#include *‘../h/var h*
#1nclude ‘‘../h/clist.h*

extern nodev(), nulldev(), novec();

int clock();
int dbgintr(Q);
int 1544intr(Q);
int 1216intrQ);
int 174intrQ;
int 1lpintrQ:

%nt (*vecintsw([]) () =

clock,
dbgintr,
novec,
i644intr,
novec,
i216intr,
1741intr,

2-165

280041-001

|ntel° | AP-184

novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec, - ~
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec, . '
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec, .
novec,
novec,
novec,
lpintr,
}; -
extern 1216open(), 1215close(), 1215init(), 1215read(), 1215write(), i216ioctl (),
1216strategy(), 1215tab;

extern i644open(), 1b644close(), i644init(), 1644read(), 1544write(), 1544ioctl();
extern 174open(), 174close(), 174init(), 174read(), i74write(), i74ioctl();

2-166 ' 280041-001

Inter AP-184

extern lpopen(), lpclose(), lpinit(), lpwrite();
extern mmread(), mmwrite();
extern syopen(), syread(), sywrite(), syioctl();

struct bdevsw bdevsw(]=

/* 0%/ 1215open, 1216close, 1216strategy, &£1215tab,

.

itruct cdevsw cdevsw[]=

/* 0x/ 12150pen, 1216close, 1215read, 1215write, i1216ioctl, nulldev, 0,
/* 1*/ syopen, nulldev, syread, sywrite, syloctl, nulldev, 0,
/* 2x/ nulldev, nulldev, mmread, mmwrite, nodev, nulldev, 0,
/* 3%/ 1b44open, 1ib644close, 1544read, 1644write, i644ioctl, nulldev, o,
/* 4x/ 1T4open, 174close, 174read, {74uwrite, 174ioctl, nulldev, 0,
{* 6%/ 1lpopen, lpclose, nodev, lpwrite, nodev, nulldev, O,

int nblkdev= 1;
int nchrdev= 6;

dev t rootdev= makedev(0,1);
dev_t pipedev= makedev(0,1);
dev t swapdev= makedev(0,2);
daddr t swplo= 1;

int nswap= 1180;

}nt (*dinitsw(]) O=

1216init,
16441init,
1741iniv,
lpinit,

N (int (») O)0

int ttyopen(), ttyclose(), ttread(), ttyinput(), ttstart();
char *ttwrite();

struct linesw linesw[]=

{
/*0%/ ttyopen, ttyclose, ttread, ttwrite, nodev, ttyinput, nulldev,
nulldev, ttstart, nulldev,
0
3.

int nldisp = 1;

int Timezone=TIMEZONE;
int Dstflag=DSTFLAG;
int Genboot=GENBOOT;
int Cmask=CMASK;

struct buf buf [NBUF];

char buffers[NBUF] [BSIZE+BSLOP] ;
struct file file[NFILE];

struct inode inode [NINODE];
struct locklist locklist[NFLOCKS];
struct proc proc[NPROC] ;

struct text text[NTEXT];

struct map swapmap[SMAPSIZ];
struct callo callout(NCALL];
struct cblock cfree[NCLIST];
struct mount mount[NMOUNT];

struct var v=

NBUF,

2-167 280041-001

lI'I'lIeIﬂ> ‘ | AP-184 |

NCALL,

NINODE,

(char *) (&inode [NINODE]),
NFILE,

(char *) (&file[NFILE]),
NMOUNT,

(char *) (#gmount [NMOUNT]),
NPRQC,

(char *) (&proc [NPROC]),
NTEXT

(char *) (#text[NTEXT]),
NCLIST,
MAXUPRC,
NFLOCKS
};
short mm free = O;

short mm_nfree = 0;
short mem_top = MTOP;

2-168 280041-001

Inter AP-184

APPENDIX B:

XENIXCONF

The following file establishes the devices to be

selected and configured into the system.
*

* Devices
*

12156 1
*1534 1
1644 1
i74 1
*1270 1
1p 1
*sm 1
debug 1
*fd 1
*1287 1

root 1215 1

pipe 1216 1

swap 12156 2 1 1180
*

* Local parameters

* ,

timezone (8*60)
daylight 1

cmask 0

*

* Tunable Parameters
*

* Dont change them unless you're sure you know what you're doing!
*

buffers 29

procs 100

mounts 8

inodes 120

files 120

clists 160

locks 100

maxproc 16

mem_top 512

2-169 280041-001

II'Ite|® B AP-184

APPENDIX C: R

The configuration file-Master

*
* The following devices are those that can be specified in the system
* description file. The name specified must agree with the name shown
*name vsiz msk typ hndlr-na bmaj cmaj # na vecl vec2 vec3 vecd

3 4 5

* 1 2 6 7 8 9 10 11 12 13 14
1215 2 0137 014 i2156 0 0 0 2 -1 00056 0 0 Oa
fd 0 0137 014 fd 0 6 6 1 -1 0 0 0 Oa
1634 2 0137 004 i63¢ 0 O 1 1 -1 0002 0 0 Oa
1644 2 0137 004 i644 0 o 3 1 -1 0003 0 0. Oa
i74 2 0137 004 i74 0 o 4 1 -1 0006 0 0 Oa
1270 2 0133 004 i270 0 o0 7 1 -1 01060 0 0 Oa

sm 0 036 010 sm O 1 0 1 -1 0 0 0 Oa
1p 2 0132 004 l1p 0 0 5 1 -1 0107 0 0 Oa
debug 2 0o 0 dbg 0 O 0 1 -1 0001 0 0 Oa
slave7 2 0 0 sl o o 0 1 -1 0007 0 0 Oa
1287 2 0 300 i287 0 0 O 1 -1 0008 0 0 0a

*

* The following devices must not be specified in the system description

* file. They are here to supply information to the config program.
*

memory O 06 0324 mm 0 -1 2 1 o 0 o0 o0 o0
tt 0 027 0324 sy 0 -1 1 1 0 0 0 0 0
$$

*

* The following is the line discipline table

*
:;¥$$ ttyopen ttyclose ttread ttwrite nodev ttyinput nulldev nulldev ttstart nulldev
*

* The following entries form the alias table.

*

1216 disk
1634 serial
sm sim
$$3

*

* The following entries form the tunable parameter table.

*

buffers NBUF 60
inodes NINODE 100
files NFILE 100
mounts NMOUNT 8
swapmap SMAPSIZ (NPROC/2)
calls NCALL 2§
procs NPROC 60
texts NTEXT 40
clists NCLIST 150
locks NFLOCKS 200
maxproc MAXUPRC 156

timezone TIMEZONE (8%60)
pages NCOREL 1
daylight DSTFLAG 1
genboot GENBOOT 0

cmask CMASK 0
mem_top MTOP 512

2-170 280041-001

Il‘lte|® AP-184

APPENDIX D:

Interrupt Mapping

Interrupts are not vectored directly to the interrupt
routine procedure of a driver. Rather, the interrupt is vec-
tored inot part of the Xenix kernel. The kernel code takes
care of playing with the 8259A PIC, setting up an appropri-
ate interrupt mask, switching to the kernel map and stack
for the process, saving and restoring registers and handline
scheduling semantics The outcome to this in that the inter-
rupt routine can be written in C. Xenix handles the other
details

The interrupt model is one of multiple levels of prior-
ities. An interrupt is unique in priority and can be served
only if it higher(smaller in numerical form) than the
current interrupt level

The splN() command is used to lock out other interrupts
which are Tower in priority (i.e. <N). Spl() (set priority
level) is a privileged operation and not one any process can
use. All interrupt driven routines need a method to inter-
lock data access. Data 1items such as buffer pools and
private data. The calls splbuf()/splcli() are these
features that permit routines to interlock their allocation
and de-allocation of buffers. Spl only raises the current
CPU interrupt level, it never changes the priority level to
a lower level with as with an splx() The system
buffers/clists can also be mutually exclude during access
by splcli() and splbuf() which 1is an spIN() with N high
enough to lock out device interrupts that affect them. In
mutual exclusion, all relevant interrupt levels are locked
out from access by.

short s

s = spl6() /* returns 16 bit value, not-decipherabla */

sﬁlx() /* must accompany each spl call to return pri level */
/* note that spl7 1s most restrictive and spl0 is the least */

2-171 280041-001

intel

AP-184

APPENDIX E:

Paran.g file that lists the system constants

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

MAXMEM 0x180
SSIZE 4096
SINCR 1024
NOFILE 20
CANBSIZ 256
HZ 20
DHZ 20
MSGBUFS 128
NCARGS 6120

/* max core per process - 750K */

/* initial stack size (bytes) */
/* increment of stack (bytes) */
/* max open files per process ¥/
/* max size of typewriter line */
/* Ticks/second of the clock */
/* Ticks/second of the clock */

/* Characters saved from error messages */
/* # characters in exec arglist */

USTK SIZE 4096 /* default size of user stack */

MAXTTYS
NIOSTAT 650

* priorities
* probably should not be
t/albored too much
*

#define

#define

#define
<#define
#define
- #define
#define
#define
#define

/*

PSWP 0

PINOD 10
PRIBIO 20
PZERO 25
NZERO 20
PPIPE 26
PWAIT 30
PSLEP 40
PUSER 50

* signals

* dont
*/

#define
/%

change

NSIG 17

16

/* Max # open ttys */

/* max number of bufs to keep stats for */

* No more than 16 signals (1-16) because they are
* stored in bits in a word.

*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

SIGHUP 1
SIGINT 2
SIGQUIT 3
SIGINS
SIGTRC
SIGIOT
SIGEMT
SIGFPT
SIGKIL
SIGBUS 10
SIGSEG 11
SIGSYS 12 °
SIGPIPE 13
SIGCLK 14
SIGTRM 15
SIGFN

OO

/*
/*
/*
16

hangup */ .

interrupt (rubout) */

quitv (FS) %/

illegal instruction */

trace or breakpoint */

iot */ '

emt */

floating exception */

kill, uncatchable termination */

bus error */

segmentation violation ¥/

bad system call */

end of Yipe */

alarm clock */

Catchable termination */
/* function key */

* fundamental constants of the implementation--
* cannot be changed easily

*/

2-172

280041-001

|nteF AP-184

#define NBPW sizeof (int) /* number of bytes in an integer */

#define BSIZE 1024 /* size of secondary block (bytes) */

/* BSLOP can be O unless you have a TIU/Spider */

#define BSLOP 4 /* In case some device needs bigger buffers */
#define NINDIR (BSIZE/sizeof (daddr t))

#define BMASK 01777 /* BSIZE-1 */

#define BSHIFT 10 /* LOG2(BSIZE) */

#define NMASK 0377 /* NINDIR-1 */

#define NSHIFT 8 /* LOG2(NINDIR) */

#define INOPB (BSIZE/sizeof (struct dinode)) /* # inodes per block ¥/
#define LINOPB 4 /* LOG2(INOPB) */

#define NULL O

#define DCMASK 0 /* default mask for file creation */

#define NODEV (dev_t) (-1)

#define ROOTINO ((ino_t)2) /* 1 number of all roots */

#define SUPERB ((daddT t)1) /* block number of the super block */
#define DIRSIZ 14 T /* max characters per directory */

#define NICINOD 100 /* number of superblock inodes */
#define NICFREE 100 /* number of superblock free blocks */
/* #define INFSIZE 138 /* size of per-proc info for users */
#define CBSIZE 6 /* number of chars in a clist block */
#define CROUND 07 /* clist rounding: sizeof(int *) + CBSIZE - 1%/
/*
* MMU parameters.
*/
#define MMPGSZ 2048 /* bytes/page in the MMU */
#define LMMPGSZ 11 /* log2(MMPGSZ) */
#define NPAGEPS 32 /* There are 32 pages in a se§menc */
#define NSEG O /* max seg / user %see user.h) */
#define MMFRAGMENTS 256 /* mamimum number of free segments ¥/
/*
*/Some macros for units conversion
*

/* pages to disk blocks */

#define ptod(x) ((x)*(MMPGSZ/BSIZE))

/* bytes to disk blocks */

#define btod(x) (((x) +(BSIZE-1))>>BSHIFT)

/* 1number to disk address */
#define itod(x) (daddr_t)(((unsigned)(X)*(INOPB+INOPB—1))>>LINOPB)

/* inumber to disk offset */
#define itoo(x) (int) (((x)+(INOPB+INOPB-1))&(INOPB-1))

/* pages to bytes */
#define ptob(x) ((x)<<LMMPGSZ)

/* bytes to pages */
#define btop(x) (((unsigned) (x)+(MMPGSZ-1))>>LMMPGSZ)

/* bytes to page number */
#define btopn(x) (((unsigned) (x))>>LMMPGSZ)

/* page to address */
#define ptoa(x) (((long) (x) << LMMPGSZ))

/* address (long (32 bit)) to page number (int)*/
#define atopn(x§ ((int)(((longy(x))>>LMMPGSZ))

./* address (long (32 bit)) to page count (int)*/
#define atop(x) ((int)(((10ng§(x)+(MMPGSZ-l))>>LMMPGSZ))

/* address (long (32 bit)) to offset (int) get bits LMMPGSZ-1 - 0 */
#define atoo(x) ((int) ((x)&(MMPGSZ-1))) :

/* long address to short address (get low 16 bits of long address */
#define atos(x) ((int) ((x) & O0x0000FFFF))

2-173

280041-001

inter AP-184

/* long address to short address (get low 16 bits of long address */
#define atoh(x) ((int) ((x) >> 16)§<

/* page number to long */
- #define ptol(x) ((long) ((int) (x))<<LMMPGSZ)

/* major part of a device */
#define major(x) (int) (((unsigned) (x)>>8))

/* minor part of a device */ : ,
#define minor(x) (int) ((x)&0377) '

/* make a device number */
#define makedev(x,y) (dev_t) ((x)<<8 | (y))

/* extract low word of long */
#define LOWWORD (x) . (Unt)x)

/* extract high word of long */
#define HIGHWORD(x) ((int) ((long)x >> 16))

/* 8086 base from an absolute physical address */
#define Dbase86(x) ((short) (x>>4))

typedef struct { int r[1]; } * physadr;
typedef struct { unsigned short off;
unsigned short seg; } segadr;

typedef long daddr_t;
typedef char * caddr_t;
typedef unsigned short 1no_t;
typedef long time t; ‘
typedef int label t[5]; /* return, sp, si, di, bp */
typedef int dev_t]
typedef long off”t;
/*
*/Hachine-dependenn bits and macros
*
#define SPLOMASK 0x00 /* 0xCO ==> SM on On-Board USART */
#define USERMODE(ps) ((ps)&03 == 03)
#define CLKONLY(ps) ((ps) 20x8000) /* 1010 --- PLB */

2-174 280041-001

|nte|® AP-184

APPENDIXF:

The buf.h file describing the buffer-header structure

L 2R 2R 2K K R K K O

Each buffer in the pool is usually doubly linked intq;é/iisns:
the device with which it is currently associated (always)
and also on a list of blocks available for allocation
for other use (usually).

The latter list is kept in last-used order, and the two
lists are doubly linked to make it easy to remove

a buffer from one list when it was found by

looking through the other.

A buffer is on the available list, and is liable

to be reassigned to another disk block, if and only

if it is not marked BUSY. When a buffer is busy, the
avallable-1list pointers can be used for other purposes.
Most drivers use the forward ptr as a link in their I/0
active queue.

A buffer header contains all the information required

to perform I/0.
are in bio.c.

struct buf

~
ﬂ{l*#*{*&&i&

int b_flags;
struct buf
struct buf
struct buf
struct buf

unsigned b_bcount;

union {

caddr t b addr;

Most of the routines which manipulate these things

/* see defines below */

b forw; / headed by d _tab of conf ¢ */
b back; / * %/ -

av forw; / position on free list, */
av back; / if not BUSY*/

dev t b dev; ~

int *b_words;
struct filsys *b filsys; ;* as superblocks */
*

struct dinode *b_dino;

/* major+minor device name */
/* transfer count */
/* always points to buffer area */
/* as low order core address */
/* as words for clearing */

as ilist */

daddr_t *b_daddr; /* as indirect block ¥/

} b un;

daddr t b _blkno;

char 5_xmem;
char b error;

/* block # on device */
/* high order core address */
/* returned after 1/0 */

nnslgnid int b_resid; /* bytes not transferred after error */
unsigned int b_cylin; /* cylinder number for disk i/o queue */

}.

extern struct buf buf(];

/* The buffer pool itself */

extern struct buf bfreelist; /* head of available list */

/%

*/These flags are kept in b_flags.
* ’

#define B WRITE O /* non-read pseudo-flag */

#define B READ 01 /* read when I/0 occurs */

#define B DONE 02 /% transaction finished */

#define B ERROR 04 /% transaction aborted */

#define B BUSY 010 /* not on av forw/back list */

#define B PHYS 020 /* Physical T0O potentially using UNIBUS map */
#define B MAP 040 /* This block has the UNIBUS map allocated */

#define B WANTED 0100

#define B_AGE
#define B ASYNC

/* issue wakeup when BUSY goes off */

0200 /* delayed write for correct aging */
R 0400 /¥ don't wait for I/0 completion */
#define B™DELWRI 01000 /* don’t write till block leaves available list */

2-175

280041-001

Inte|® AP-184

#define B_TAPE 02000 /* this is magtape (no bdwrite, raw i/o at any loc) */
#define B PBUSY 04000
#define B PACK 010000
#define B PURGE 020000 /* bpurge() in progress--invalidate buf when releas

/*
* special redeclarations for
* the head of the queue per
* device driver. -
*/
#define b actf av_forw
#define b actl . av back
#define b active b_bcount
#define b _errcmnt b_resid

/*
* collect io statistics

*
#define DISKMON 1

#ifdef DISKMON
_struct {
int nbuf,
long nread;
long nreada;
long ncache;
long nwrite;
long bufcount [NIOSTAT] ;
long nswapb;
} 1o info;
#endif

2-176 280041-001

ll'l'l:el® AP-184

APPENDIX G:

Naming Conventions
. Al

The convention followed is:
ixxxppp

where
xxx is the number of the device (i.e 534,524)
PPp 1s the procedure name i.e. init, open

Thus, the 1SBX 270 Video Terminal Controller Board
driver has the interface procedures:

1270init ()
12700pen ()
1270start() etc.

This naming convention allows the kernel procedures to
understand unique driver interfaces. Usually, data struc-
tures also follow this convention to identify variable names
and symbols.

2-177

280041-001

Inte|® | AP-184

APPENDIX H:

The tty.h file deseribing the tty structure

/*
* A clist structure is the head

* of a linked list queue of characters

* The characters are stored in 4-word

* blocks containing a link and several characters.
* The routines getc and putc

* manipulate these structures.

*

t

struct clist
int ¢ cc; /* character count */
char *C¢_cf; /* pointer to first char */
N char *c_cl; /* pointer to last char */
/*
* A tty structure 1is needed for
* each UNIX character device that
* is used for normal terminal IO.
* The routines in tty.c handle the
* common code associated with
* these structures.
* The definition and device dependent
*/code is in each driver. (kl.c dc.c dh.c)
*
struct tc {

char t_intrc; /* interrupt */

char t_quitc; /* quit */

char t_startc; /* start output */

char t_stopc; /* stop output */

char t eofc; /* end-of-file */

N char t_brkc; /* input delimiter (like nl) */

%truct Ly

struct clist t_rawq; /% input chars right off device */
struct clist t_canq; /* input chars after erase and kill */
struct clist t_outq; /# output list to device */

int (¥ t_oproc)(J; /* routine to start output */

int (* t_iproc)(); /* routine to start input */

struct chan *t_chan; /* destination channel */

caddr_t t_linep; /* aux line discipline pointer */

caddr_t t_addr; /* device address */

dev_t t_dev; /* device number */

short t_flags; /* mode, settable by ioctl call */

short t'state; /* internal state not visible externally */
short t 2state; /¥ continuation of state, driver specific */
short t pgrp; /* process group name */

char t delct; /* number of delimiters in raw q */

char t line; /* line discipline */

char t col; /* printing column of device */

char t_erase; /* erase character ¥/

char vt kill, /¥ kill character */

char t_char; /* character temporary */

char t_ispeed; /* input speed */
char t ospeed; /* output speed */
union {

struct tc t_tc;

struct clist t _ctlq;
} t_un; -

2-178 -

280041-001

-
|ntel® AP-184
#define tun tp->t un
/*
*/structure of arg for ioctl/
* *
struct ttiocdb {
char loc_ispeed; d
char loc ospeed; e
char ioc_erase, f
char ioc_kill; a
int 1loc flags,; u
}; - 1
t
#define TTIPRI 28
#define TTOPRI 29 s
#define CERASE ' g
c#define CEOT 004
#define CKILL ‘e’ i
#define CQUIT 034 a/* FS, cntl shift L */
#define CINTR 0177 1/% DEL */
#define CSTOP 023 /* Stop output: ctl-s */
#define CSTART 021 c/* Start output: ctl-q */
#define CBRK 0377 h
a
/* limits */ r
#define TTHIWAT 100 a
#define TTLOWAT 70 c
#define TTYHOG 256 t ,
e
/* modes */ r
#define TANDEM 01 s
#define CBREAK 02
#define LCASE 04 *
#define ECHO 010 /
#define CRMOD 020
#define RAW 040
#define 0DDP 0100
#define EVENP 020Q
#define NLDELAY 001400
#define TBDELAY 006000
#define XTABS 006000
#define CRDELAY 030000
#define VTDELAY 040000
/* Hardware bits */
#define DONE 0200
#define IENABLE 0100
/* Internal state bits */
#define TIMEOUT 01 /% Delay timeout in progress */
#define WOPEN 02 /* Waiting for open to complete */
#define ISOPEN 04 /* Device is open */
#define FLUSH 010 /* outq has been flushed during DMA */
#define CARR ON 020 /* Software copy of carrier-present */
#define BUSY 040 /* Output in progress */
#define ASLEEP 0100 /* Wakeup when output done */
#define XCLUDE 0200 /* exclusive-use flag against open */
#define TTSTOP 0400 /* Output stopped by ctl-s */
#define HUPCLS 01000 /* Hang up upon last close */
#define TBLOCK 02000 /* tandem queue blocked */
#define DKCMD 04000 /* datakit command channel */
#define DKMPX 010000 /* datakit user-multiplexed mode */
#define DKCALL 020000 /* datakit dial mode */
#define DKLINGR 040000 /% datakit lingering close mode */
#define CNTLQ 0100000 /* interpret t_un as clist ¥/

/* Driver specific state bits */
#define INBUSY 01
#define INSTOP 02

/* Input in progress */
/* Stop input interrupts */

2-179

280041-001

inte"

AP-184

/*

*/t.t,y ioctl commands

* .

#define TIOCGETD (('t’'<<8)|0)
#define TIOCSETD (('t'<<8)|1)
#define TIOCHPCL (('t’'<<8)|2)
#define TIOCMODG (('t'<<8)|3)
#define TIOCMODS ((°t°<<8)|4)
#define TIOCGETP (('t°<<8)|8)
#define TIOCSETP (('t’'<<8)|9)
#define TIOCSETN (('t'<<8)|10)
#define TIOCEXCL (('t’<<8)|13)
#define TIOCNXCL ((°t’'<<8)|14)
#define TIOCFLUSH (('t'<<8)|16)
#define TIOCSETC (('t’'<<8)|17)
#define TIOCGETC ((°'t’'<<8)|18)
#define TIOCGETS (('t’'<<8)|19)
#define: DIOCLSTN ((°'d'<<8)]|1)
#define DIOCNTRL (('d’<<8)]|2)
#define DIOCMPX ((*'d’'<<8)13)
#define DIOCNMPX (€'d’'<<8)14)
#define DIOCSCALL (¢€'d’<<8)|5)
#define DIOCRCALL (('d’'<<8)[6)
#define DIOCPGRP (('d'<<8)|7)
#define DIOCGETP (('d’'<<8)|8)
#define DIOCSETP (('d'<<8)(9)
#define DIOCLOSE (('d’'<<8)|10)
#define DIOCTIME (('d’'<<8)|11)
#define DIOCRESET ((’d’'<<8)[12)
#define FIOCLEX ((C'f'<<8) 1)
#define FIONCLEX (('f’'<<8)]|2)
#define FIORDCHK (' £'<<8)13)
#define MXLSTN (('x'<<8) 1)
#define MXNBLK (("x'<<8)|2)
/*

*/tty ioctl commands (extension)

*
#define MLCRESET (('m'<<8)|0)
#define MLCBOOT (('m*<<8)|1)
#define MLCREAD (('m*<<8)|2)
#define MLCWRITE (('m’<<8)[3)

. 2-180 280041-001

Il'\‘l.'el® AP-184

APPENDIX I:

The c264.c and 1254.h files

include file for 254 driver ... this is 1254 h

mask constants for BMC status:

* % * ¥ *
~

#define BMCBUSY 0x80
#define BMC

/*
*/configuration structure for 254
*
struct 1264cfg {unsigned c_base_port;
unsigned c_page_size;

’

/* this is c254.c
*/

#include ‘‘../h/1264.h*
struct 1264cfg 1264cfg={0x40, /* I/0 base port address */
266} /* bubble page size
- 64 for 1 bubble,
128 for 2 bubbles,
256 for 4 bubbles */

2-181 280041-001

intel® AP-184

APPENDIX J:

The iSBC 634

Pararerererer Y TR R E R R R R R R R B R B I A I I LR A R I R A L

INTEL CORPORATION PROPRIETARY INFORMATION. THIS LISTING IS
SUPPLIED UNDER THE TERMS OF A LICENSE AGREEMENT WITH INTEL
CORPORATION AND MAY NOT BE COPIED NOR DISCLOSED EXCEPT IN
ACCORDANCE WITH THE TERMS OF THAT AGREEMENT.

1sbcb34 device driver.

This is the set of procedures that make up the isbc6534 device driver.

The procedures provided include ib34open, ibB34close, 1634intr, ib34start,

1634ioctl which are the interfaces between xenix and the hardware.

The subroutines used are 1534init, ib634param which are used to program the
hardrare. The 1sbcb34 hardware consists of 4 usarts, 2 pic's, 2 pit’'s and

a ppi.

Multiple isbc534 minor number structure:

bits 0-4:
Minor #: Board:
0-3 usarts 1st Board lowest intr level

4-7 usarts 2nd Board intr level

20-23 usarts 6th Board last intr level(7)
bits 6-6 reserved for future use.

NOTES: The base address of the béard MUST be non-zero!!!
The isbc86/12 board must have the fail safe timer installed.(default)

The isbc534 REQUIRES a HARDWARE MODIFICATION for MODEM SUPPORT
The isbc534 requires a default jumper removed from
pin 106-106
and add a jumper from
pin 105-104
This modification cascades timer bdg4 to bdgbs to allow a
2 second timer used in detecting carrier from a modem.
The carrier loss signal is generated via a separate interrupt.
The above modification is ONLY NEEDED to FOR MODEM SUPPORT but should
be done for consistency.

Debug switches are: DEBUG for isbc634 support.
. 1634debug: output control
0 == no output except spurious intrs
1 == special currently same as 0
2 == little but useful output
3 == all output

Written by Jim Chorn
on 12/29/81

History: modified 1/15/82 for multiple board support.
modified 1/29/82 for comsole support.
modified 3/29/82 for addition of modem support
mods affect i634open,ib634close,1634intr.

modefied 4/22/82 moved console support out to support isbx351
modified 6/22/82 added OR tie’ng of 534°'s on the same interrupt
level.

Changed the modem support bit to 0xCO meaning configure

the line for detection of aquisition AND loss of carrier detect
signal. Bit 0x40 means detection of aquisition and bit 0x80
means detection of loss of carrier detect signal.

The detection of aquisition of carrier without detection of

2-182

280041-001

Inte|® AP-184

* loss of carrier is meaningless and is not menticned in the
* manual entry.

*

*/

#include '‘../h/1634.h" /* hardware structure and local commands */
#include ‘‘../h/param.h*

#include ‘‘../h/systm.h" /* system */

#include **'../h/conf.n"® /* system configuration */

#include ‘‘../h/dir.h* /* system directory structures */
#include ‘‘'../h/a.out.h* /¥ needed for user.h */

#include ‘‘../h/user.h® /* user structures (system) */
#include **../h/tty.h* /* device structures (system) */
#include '‘../h/usart.h*® /* baud rates */

#include ‘‘../h/intr.h* /% some pic commands from system */
#ifdef DEBUG

int 1534debug = 1; /* debug output control */

#endif

int 1634vakeup; /* wakeup variable for modems */
struct tty 1534tty[N534+%4]; /* 4 USARTs per 534 */
struct 1634cfg 1534cfgiN534]; /* board software addresses von conf*/
int 1634base (8] ; /* board number -> board base addr */
int i634alive [N534] ; /* does it live ?7? ¥/
/*

* This procedure verifies that a isbc534 board is presently

* configured by putting the board into test mode and

* then checking if the board actually is in test mode.

* This test mode check is a one bit test. If the board configured is not
* present an array variable for each board called 1634alive is set to false.
*

* TITLE: 1634probe

*

* CALL: 1534probe();

*

* INTERFACES: 1634open, 1534intr (thru the variable 1534cfg(])

*

* CALLS: none

*

* History:

*

*/

}534probe()

register board;
register struct i634cfg *cf;

struct db534 *DBbase; /* set up the i/o boards base address ¥/
int alive;

for (board=0; board<N534; board++){
cf = &1534cfglboard];
if (cf->c base != 0) {

alive = 1; /* assume it lives */

DBbase =cf->c base;

outb (&DBbase->stestmd, 1); /* select test mode */

if((inb(&DBbase->stestmd) & 1) == 0) /% is test mode selected? */
alive = 0; /* trash base addr for intr() #*/

outb (#DBbase->stestmd, Oxff);
1f((inb(2DBbase->stestmd) & 1) == 0)

alive = 0;
outb (&DBbase->stestmd, O) ; /* deselect test mode */
printf (* *1SBC 534 Based %x board %d %s.0,

cf->c base, board,

alive ? ‘‘found® : ‘*NOT found*);
1634base[board] = cf->c_base; /* associate board & tty strucs*/
i634alive[board] = alive;

2-183 280041-001

LR AR 2R K 2E 2R B BE IR BRI R CBE R B an SR BRI R B I R IR AR

i6
{

#1

#te

Inter’ | AP-184 . o

This procedure initializes the isbc534 when the call to dinit is
made. This procedure is done ONCE ONLY in the following sequence:
initialize the isbcb34 structures to point at the board,
reset the board,
initialize the usarts with a special hardware sequence
initialize the ppi port for input,
initialize and mask the on-board pic’s.
After this has been accomplished there is no reason to reinitialize the
isbc634 except when hardware failure occurs.
NOTE: The baud rate clocks are not programmed here; this
is done on the first device open in the call to 1534param;see 1634open. -

TITLE: 16341init
CALL: 1534init();

INTERFACES: dinit
CALLS: delay
History: 1/11/82 Shortened the delay time from 100 to 10 to speed things

up a bit.
1/16/82 Added probing for boards .

/
34init()
struct db534 *DBbase; : /* set up the i/o boards base address */
struct cb534 *CBbase;
register int 1, board;
fdef DEBUG
1f(1534debu%>=2)
printf(‘*i634 init, *);
ndif

1634probe () ;
for(board=0; board<N534; board++) {
if(1634a11ve[board] = 0)
continue; /* Board not there! */
CBbase = DBbase = 1634cfgl[board].c_base;
outb (&DBbase->reset, 0);
outb (2DBbase->seldata, O);
for (1=0;1i<4;1++){ /* init each usart */
i51uinit (#DBbase->USART[1i] .cntrl) ;

}

outb (&DBbase->PIC([0] .csr, PICICW1);
outb (2DBbase->PIC[0] .msr, PICICW2);
outb (&DBbase->PIC[1] .csr, PICICW1);
outb (&DBbase->PIC[1] .msr, PICICW2);
outb (&DBbase->PIC[0] .msr, MASKINT);
outb (&DBbase->PIC[1] .msr, MASKINT);
outb (&CBbase->selcntr,1);

163tprog (&CBbase- >PIT{1] timer[1], ‘ /* timer bdg4*/
&2CBbase->PIT[1]. pcr /* pcr *x/
(RATEMDO | 0x40) , ' /* mode */
U534SPEED) /* 2 sec */

153hprog(lCBbase >PIT[1] timer[2] /% timer bdgb*/
&CBbase->PIT([1] .pcr, /* per */
(RATEMDO | 0x80) , /* mode ¥/
US34SPEED) ; /* 2 sec */

outb(&CBbase->se1data,1);

/*
* This procedure sets up a usart timer for a load operation.

2-184 280041-001

IR I IR IR R R R R R R R R R R R N K R R R

Inte|® AP-184

The code depends on having the ttystructure filled out before a call is made
to i634param. This is the sequence of events;
check for valid speed

program timer (using 153tprog)
This procedure will program bdg0 to bdg4 as a baud rate generator.

TITLE: i534param

CALL: 1634param(dev);

INTERFACES: 1534init,

CALLS: 163tprog

History: 1/20/82 : removed bdg4, bdgbd programming options.

These timers aren’t used.

1/29/82 : added console programming :
4/7/82 : added i153tprog to handle pit programming
4/22/82 : removed console programming

/

#define MAXBAUDS 15 /* maximum indexes into 1634baud([] */
int 1634baud[] = {

Us BO , US_B6O, Us B75 , USs B110, O,
US”B160, US B200, US B300, US B600, US B1200,
0,” USTB2400, ~ US_B480D, US_B9600, 0,
0
};
int 1634speed[N534%*4]; /* track record */
1634param(dev)
dev_t dev;
{
struct cb534 *CBbase; /¥ set up the i/o boards base address ¥,
register struct tty *tp;
int unit, s, speed,mode,pit;
unit = minor(dev) & MINORMSK;
tp = &1534tty[unit],
CBbase = tp->t_addr & 0xfO;
s = (int)tp->t_ospeed;
1f(s==0) { /* hangup signal via stty */
outb(tp->t_addr+1, SHANGUP) ;
return;
1f(s == 1634speed[unit])
return; /* already that fast */
else
1634speed [unit] = s;
unit %= 4; /* which usart? */
speed = 1534baud[s];
if ((s > MAXBAUDS) || ((s != 0) 2& (speed == 0))) {
u.u_error = EINVAL; /* invalid baud rate */
retirn;
}
if (unit == 3){
pit = &CBbase->PIT[1].timer[0];
mode = RATEMDO;
Yelse{
pit = &CBbase->PIT([0].timer[unit];
N mode = RATEMDO | (unit <<6);
s = SPLQ),
outb (&CBbase->selcntr, 1) ;
163tprog(pit, (pit|0x03) ,mode,speed) ;
outb(&CBbase->seldata,1) ;
N splx(s);

2-185

280041-001

= ®
Intel AP-184

/ .
This procedure opens one of the 4 lines on the i1sbc634 board for
exclusive use by a user. The file ‘structure is initialized

and control is passed to ttyread which does the actual open.

Not supported is the fifth device which is the parallel port.

TITLE: 1634open

INTERFACES: xenix
CALLS: 16341init, ttyopen

History: 1/15/82: Modifed code for multiple i1534's to:index a

*

*

*

*

*

*

*

*

*

* CALL: 1534open(dev, flag);
*

*

*

*

*

*

* configuration table to get the board base address.
*

*

n

/
int 1634start();

1534open (dev)
dev_t dev;

{ ,
struct db534 *DBbase; /* set up the i/o boards base address */
register struct tty *tp;
register int unit;

int modem; /* modem bit in minor dev numb */

unit = minor(dev) & MINORMSK;

if (unit >= (N534%4)) { /* not enough tp's */
u.u_error = ENXIO;

) return;

tp = &1634tty[unit];

it (i634alive[unit/4] == 0) { /* Board not there! */ -
u.u_error = ENXIO; ‘
return;

}
DBbase = (struct db534 *)i634cfglunit/4].c base,
unit %= 4; B
tp->t_addr = (caddr t)&DBbase->USART(unit] .data;
modem = minor(dev) & MODEMMSK;
‘tp->t_oproc = i634start;
if ((Tp->t_state & ISOPEN) == 0) {
ttychars(tp) ; '
tp->t_ispeed = tp->t ospeed = ISPEED, /* channel speed */
tp->t_flags = ODDP | EVENP | ECHO | CRMOD;
i534param(dev) ; /* load baud clock */
outb((tp->t_addr +1), SANSWER) ; /* turn usart (dtr) on */
if (modem) {~
if (modem & MODEMWAIT) /* mask detect leaving aqua */
while((inb((tp->t addr +1)) & DTRON) == 0§
sleep((caddr_t)&i534wakeup, TTIPRI),
outb (&DBbase->PIC[1] .msr , ((inb(2DBbase->PIC[1] msr)) &
(7 (0x10<< unit)) &TIMERGO)),
/*unmask carrier/detect */

}
outb (&DBbase->PIC[0] .msr , ((inb(&DBbase->PIC[0].msr)) &(~(3<< unit * 2)))),
/* unmask txrdy, rxrdy */

b4

if (tp->t_state & XCLUDE && u.u_uid != 0) {
u.u_error = EBUSY;
return;

}
tp->t_state |= CARR ON;
(¥linesw([tp->t_lineJ.1 open) (dev, tp),

2-186 280041-001

LR IR K 3 I R K R R B B R R R R B A 4

Inte|® AP-184

This procedure performs the close operation on one of the devices of the
1sbcb34. A close masks the device on board; reinstalls the flags that
state the device is closed; calls ttyclose the do the operation.

Not implemented yet is device 4 which is the parallel port; it is
unknown device at this minute.

TITLE: 1634close

CALL: 1534close(dev, flag);

INTERFACES: xenix

CALLS: ttyclose

History:

/

1534close (dev)

dev_t dev;

LR 2 2R R BE R B B IR R N NE R R

struct db534 *DBbase; /% set up the 1/0 boards base address */
register struct tly *tp;

register unit;

register mask;

int s,

unit = minor(dev) & MINORMSK;
tp = &i534tty[unit],
DBbase = (tp->t addr & 0xfO0);
if (unit < N534%3) {
1f(tp->t_state & HUPCLS) {
tp->t_state &= "CARR ON;
outb(tp->t_addr +1,SHANGUP); /* dtr off */
(*linesw[tp->t_linel .1 close) (tp);
ttyclose(tp); -
unit%=4;
s = SPLQ);
mask = inb(&DBbase->PIC[0] .msr) | (3 << (unit * 2));
outb (&DBbase->PIC[0] msr, mask); /* RXRDY, TxRDY off */
splx(s);

}
tp->t_addr = (caddr_t) O,

This procedure interfaces the read‘request with the system read operation
to obtain a byte from the usart. The usart’s character is read after an
interrupt so this procedure calls the system to wait for the interrupt
procedure to pass the character on to the input character queue.

TITLE: 163dread

CALL: 1ib34read(dev)

INTERFACES: xenix

CALLS: ttread

History:

2-187

280041-001

15634read (dev)

dev_t dev;
{

LR K IR 2R 2R 3K SR B BE 3R 3K IR 2R 2K N J

register struct tty *tp;
register int unit; \

unit=minor(dev) & MINORMSK;
tp = &15634tty[unit];

(*1linesw[tp->t_line] 1 _read) (tp);

This procedure is the compliment of the i634read routine. A call is
made to ttwrite which watches the output queue for characters and
gets the characters in the queue out to the device

TITLE: 15634write

CALL: 1534write(dev),

INTERFACES: xenix

CALLS: ttwrite

History:

/

i634write (dev)
dev_t dev;

{

PSSR R R X I IR IR B S I 2R R 2 S b 2 2 4

register struct tty *tp;
register int unitv;

unit=minor(dev) & MINORMSK;
tp = #15634ttyl[unit];
(*1inesw[tp->t_line] .1 write) (tp);

This procedure is called by xenix with interrupts off (spl5) when the
isbcb34 interrupts. The interrupt process polles the 8259°'s on the isbc534
to find out which device ; (if the device is a usart receiving it gets the
character) then sends the character to ttyinput or restarts output by
calling ttstart depending on which interrupt was set off. Ttystart-calls
1634start to make sure that no more characters need to be transmitted and

to let every body know a character has been transmitted. The carrier detect
ring indicator, present next digit and pit interrupt signals are not
implemented yet. The present next digit signal comes from the external
source on line 4.

NOTE : all carrier detect signals both interrupt and latch on the 8256 ppi.

Refer to the H/W manual for possible uses of these signals

(1e ACU | printer applications).

The rxrdy/txrdy lines from the older usarts (8251A/s2657 & older) cause
giltches on the pic interrupt lines. This is a problem with the USART.
If possible replace usart with a newer version.

TITLE: 1634intr
CALL: 1i634intr(level);
INTERFACES: xenix

CALLS: ttyinput, ttstart

2-188

.

280041-001

Il'l‘tel® AP-184

*
* History: 1/13/82: Condensed the usart Rxrdy/txrdy intr switch to
* run more efficiently using an if.. ; Added the
* unset of busy flag which gets set in 1634start.
* 1/15/82: changed variable type to level which was incorrect.
* added multiple isbc534 support.
*
*/
int wakeup(),
1634intr(level)
int level;
{ .
struct db534 *DBbase; /* set up the i/o boards base address */

register struct tty *tp;

register char c;

int status,mask; /* mask & status to/from PIC */
int gotone,board;

do {
gotone=0;
for(board=0;board<N634;board++) {
if(1534alive[board])
DBbase = 1534base[board];
outb (&DBbase->PIC[0] .csr, GETINT);
status = inb(&DBbase->PIC[0] .csr);

if ((status & GOODINT) == GOODINT) { /* check bit 8 for an int */
gotone++;
outb (&DBbase->PIC[0] .csr, PIC_EOI);
status &= 0x07; /* mask off garbage bits */
tp = &1534tty[board*4] + (status >> 1);
if ((status & 0x01) == 0){ /* Rxrdy intr */

¢ = inb(tp->t_addr);
(*linesw[tp->T_line].1 rint) (c, tp);
Yelse{ /%~ Txrdy intr */
tp->t_state &= ~BUSY; /* the character is out */
(*linesw[tp->t line] .1 start) (tp). /* do the next one */
1f((vp->t_state & ASLEEP) && (tp->t outq.c_cc <= TTLOWAT)) {
tp->t state &= TASLEEP; - -
wakeup ((caddr_t)&tp->t_outq);

}
}
outb (&DBbase->PIC[1] .csr, GETINT);
status = inb(&DBbase->PIC[1].csT);
if ((status & GOODINT) == GOODINT) { /* check bit 8 for an int */

gotone++;
outb (&DBbase->PIC[1] .csr, PIC_EOI);
status &= 0x07; /* mask off garbage bits */

if (status >= 4)
tp = &1634tty[board*4] + (status -4);
switch(status) {

case 0 : /* pit 1 cntr 4 =/
break;

case 1 : /* pit 1 cntr 6 */
wakeup ((caddr_t)&ib34wakeup) ;
break;

case 2 : /* ring ind all */
break;

case 3 : /* present next */
break;

case 4 : /* port O detect*/

case 5 : /* port 1 detectx/

case 6 : /* port 2 detect*/

case 7 /* port 3 detect*/

if((tp->t_state & (CARR_ON|ISOPEN))
== (CARR_ON|ISOPEN)) {

signal (tp->t_pgrp, SIGHUP);
tp->t state E= “CARR_ON;

/* flIck dtr off to cause

2-189 280041-001

|ntel° . AP-184

* hardwvare hang up on

* modem

*/ :

mask = inb (&DBbase->PIC[1] .msr)

| (1<<status);

outb(&DBbase->PIC[1] .msr, mask);
/* carrier detect off */

outb((tp->t_addr +1),SHANGUP) ;

break;

#ifdef DEBUG

dii* else printf(‘‘'1634: Spurious Int level %d0, level); x/
#en

/* no interrupt from this device

a call should be made to handle
some form of accounting as this
interrupt is probably caused by
an out of date usart 8261A/s2657
or older.(giltches occasionally
the rxrdy/txrdy lines)

LA I R K I 4

}
}
} while(gotone) ;

* This procedure starts output on a usart if needed. ib34start gets a

* character from the character queue, outputs the character to the usart,
* and sets the BUSY fla%. The busy flag gets unset when the character

* has been transmitted by 1534intr().

*

* TITLE: 1634start

*

* CALL: 1634start(tp)

*

* INTERFACES: ttystart

* .

* CALLS: none

*

* History: 1/13/82: Removed the hardware probing for txrdy and added
* a set of the busy flag which gets unset on txrdy

* interrupt.

*

*/

int ttrstre();
char partab(];

1634start (tp)
Eegiscor struct tty *tp.

register c;
register s;

#ifdef DEBUG
11(1634debug>=3)
ait printf(°'1b634start: called on unit at %x0, tp->t_addr);
#en -

s = spl6();

it (tp->t_statek(TIMEOUTIBUSY)) {
splx(s) ;
return;

}
splx(s); :
1f ((c=getc(&tp->t_outq)) >= 0) {
1f (tp->t_flags & RAW) {
outb(tp->t_addr, c);
Yelse{ -
1t (c<=0x7f) {
outb(tp->t addr, c¢ | (partab(c]20200));
Yelse{ -

2-190

mter AP-184

tp->t_state |= TIMEOUT,
timeout(ttrstrt, (caddr t)tp, (c20x7f));

return; /* 1'm tImed out & !BUSY */
}

y tp->t_state |= BUSY;

/* :
* This procedure handles the ioctl system calls for such things as baud rate,
* changes and various .hardware control changes from the initial set up.

* Currently only baud rate changes are supported.
*

* TITLE: i634ioctl

*

* CALL: 1534ioctl(dev, cmd, addr, flag)
*

* INTERFACES: ioctl

*

* CALLS: 1634param, ttioccomm

*

* History:

*

*/

16341ioctl(dev, cmd, addr, flag)
gaddr_t addr;

register struct tty *tp;
register int unit;

unit = minor(dev) & MINORMSK;
tp = 81634tty[unit];
1t (ttioccomm(cmd, tp, addr, dev)) {
if (cmd==TIOCSETP || cmd ==TIOCSETN) /*1f baud change do it*/
1634param(dev) ;
}else
u.u_error = ENOTTY;

2-191 280041-001

lnter AP-184

REFERENCES ACKNOWLEDGEMENTS

1) Ritchie, Dennis M., The Unix 1/O System , 1) Jim Enimons, for hours of shared discussion on
undated. device drivers and for his iSBC 254 Bubble

2) Scheulen, Bob, Microsoft Device Driver Guide, un- Memory Board Pseudo-Code.
published ’82. 2) Dilip Ratnam, Phil Barret, Jean McNamara

3) Letwin, Gordon, Interrupt Structure, unpublished Rick Byrant and other members of the XENIX
(MICROSOFT) *82. team for sharing their ideas.

4) Short, Antony, The XENIX /O System, unpu- 3) Vince Slyngstad, for his iSBX 270 Video Termi-
blish e’d (MICRbSOFT) 82, i nal Controller walkthrough.

5) Beck, Bob, The Anatomy of XENIX Device
Drivers, unpublished.

6) Byrant, McNamara, Vaish, Writing Device

Drivers, UNIFORUM ’84.

2-192

mtef APPLICATION AP-221
. NOTE

October 1984

An Introduction to
Task Management in the
iIRMX™ 86 Operating System

CATHERINE J. LUNDBERG
APPLICATIONS ENGINEERING

© INTEL CORPORATION, 1984 Order Number 280047-001
2-193

lnte|® ‘ AP-221

An Introduction to Task
Management in the
iRMX™ 86 Operating
System

Contents
Introduction

iRMX™ 86 Operating System Nucleus
Architecture
Memory Management
Task Scheduling

Single Task Application Example
Inittask ...l
Onetask
CreatingTasks
Mailboxes
Using the System Debugger (SDB)
ExceptionHandling

Multiple Task Application Example
Main$task

Supervisor$task
Widget$task '
IO$task
Mailboxes
Deadlock
Initialization
Debugging
Configuration
Conﬂgurlng the iIRMX™ 86
- Operating System
Lmkmg and Locating the
Application
Conclusion e
Appendix A: Inittask Code
Appendix B: Onetask Code
AppendixC: TasksCode
Appendix D: Submitfile

Appendix E: iRMX 86 Operating System
DefinitionFile

Appendix F: Related Publications

2-194

lI'Itel® AP-221

INTRODUCTION

The purpose' of this application note is to help users
understand the nucleus of the iRMX™ 86
Operating System, and how to use the nucleus. The
other layers of the Operating System are not
discussed. It is assumed that the reader has a basic
understanding of the iRMX 86 Operating System,
which can be gained by reading the product
documentation. This application note does not
discuss all areas of the nucleus with equal depth, so
readers wishing to understand areas other than task
scheduling should refer to the iRMX 86 Nucleus
Reference Manual for more information. Related
areas are covered in enough detail to provide the
necessary background for understanding how to use
tasks in the iRMX 86 Operating System.

This application note focuses on the nucleus and its
task scheduling and resource management
functions. The nucleus of the iRMX 86 Operating
System must handle two major functions: task
scheduling, which also involves interrupt handling;
and resource management, in particular memory
management. The iRMX 86 Operating System has
other layers, which increase the functions provided
by the Operating System and which rely on the
nucleus as their base.

The iRMX 86 Operating System is a real time
operating system which can have multiple jobs and
tasks. It is a preemptive, priority based operating
system. Since only one task can be executing on the
central processor at any time, the task scheduler is
the heart of the operating system.

The application note has two examples. The first
example creates a single task to show what is
involved in creating a task. The second example
shows multitasking, creating three tasks. It
demonstrates how the relative priorities of the tasks
affect the way the application behaves, and is used as
the basis for discussing deadlock between tasks.

iRMX™ 86 OPERATING SYSTEM
NUCLEUS ARCHITECTURE

The nucleus of the iRMX 86 Operating System is
essentially a resource manager. There are many
resources which an operating system must handle.
These can be divided into three areas for the iRMX
86 Operating System: processor time, objects and
memory. The main concern in this application note
is control of processor time, but the reader should
remember that in controlling processor time, the
nucleus also manages each of the other two areas.

Processor time is the key resource the iRMX 86
Operating System manages. The Operating System
should use the processor as efficiently as possible.

When a task requires the processor, that task is
placed in the ready state. The processor always
executes the highest priority ready task first. If more
than one task of that priority is ready, the processor
is allocated to the task that has been ready the
longest. Once a task gains control of the processor,
that task retains control until preempted by a higher
priority task or interrupt, or the task gives up control.

Objects are the building blocks of the iRMX 86
Operating System. There are several types of
objects: tasks, jobs, segments, mailboxes,
semaphores, regions, extension objects, and
composite objects. Tasks are the primary focus of
this application note. However, the use of segments
and mailboxes will also be discussed since they are
used to communicate between the tasks in the
example programs.

Memory usage is usually a critical factor in an
application. It is desirable to use as little memory as
possible, while still allowing the application to run
efficiently. Insufficient memory can slow down the
execution of a task or cause an error when executing
the application.

Some other functions of the iRMX 86 Operating
System that are implemented at the nucleus level
are exception handling, interrupt management, and
hardware manipulation of devices such as the
programmable interrupt controller, the system
clock, and the numeric data processor. These
functions are not specifically discussed in this
application note.

Memory Management

In the iRMX 86 Operating System, memory is
partitioned into pools. That portion of the nucleus
that allocates memory is called the free space
manager. The root job, which is the first job in the
Operating System and the ancestor of all other jobs,
has a memory pool consisting of all available
memory when the Operating System initializes. As
jobs are initialized, they are allocated memory from
the root job’s pool for their own use.

Jobs which are created during system initialization,
such as those that make up the iRMX 86 Operating
System layers, are allocated memory based on
configuration parameters. There are two parameters
used in requesting memory. The first is the
minimum memory pool size. This parameter
specifies the minimum amount of memory that the
job requires in order to run. The second parameter is
maximum memory pool size. This parameter can
either have the same value as the minimum pool
size, or it can have some larger value. If it has a
larger value, the job will be allowed to borrow
memory dynamically from its parent or some more

2-195 ' 280047-001

AP-221°

Intel

distant ancestor. If the maximum memory p&l is
set to a smaller value than the minimum memory
pool, an error will result. If the minimum and
maximum memory pool sizes are the same, the job
will be allocated that amount of memory and will not
be allowed to borrow memory.

If there is sufficient memory to fulfill the request
when a job is created, it is given the minimum
amount of memory requested. If there is not enough
memory, the job is not created and an error
(ESMEM) will be returned to the creator. If the job
is created and later needs more memory, the request
will be honored up to the maximum memory pool
size by borrowing. The memory is borrowed from
the job’s ancestors. A job with the same minimum
and maximum memory pool size cannot borrow
memory from its parent.

Usually, only one job created by the root job should
be allowed to borrow memory. This prevents more
than one job borrowing memory from the same

memory pool. Multiple jobs borrowing from the -

same memory pool can cause deadlock between the
jobs, so borrowing should be used with great
caution. In an iRMX 86 Operating System with all
the layers, the Human Interface is usually chosen to
be the layer allowed to borrow memory.

Memory is allocated by the free space manager on a
first come, first served basis. The job that is created
first will receive the memory it requested if there is
sufficient memory available to satisfy the minimum
memory pool request. Then the next job created will
request the memory it needs. If a job is not able to
get as much memory as it needs, the operating
system will return an ESMEM error to the creating
task and the job will fail to be created. The free space
manager will continue to try to allocate memory to
the next job that is created. -

The free space manager for Release 6 of the iRMX
86 Operating System keeps a sequential doubly
linked list of the available segments of memory
within each job pool. Each block of memory has a
header which contains two links: one forward, and
one backward. A pointer called the rover always
points to the next entry of the hnked list’s unallocat-
ed memory.

When a memory request is made, the next memory
entry in the linked list is checked to see if it is large
enough. The first segment found which is large
enough is allocated and removed from the free space
manager’s list. The rover points to the remainder of
the segment just allocated. Memory is always allocat-
ed in contiguous segments, including allocating mini-
mum memory pools. The rover keeps the lower por-
tion -of memory from becoming more fragmented
than the upper portions. Using the rover and a first

2-196

fit algorithm means that the average number of seg-
ments that must be checked is also decreased. (See
Knuth: The Art of Computer Programming: Vol. 1
pp 435-453. In particular, refer to exercise 6 on p.
452 and its answer on p. 597.) When memory is re-
turned to a pool, it is merged with exnstmg segments
when possible.

The Application Loader allocates memory to jobs at
run time under control of the iRMX 86 Operating
System. The OMF (Object Module Format) for the
iAPX 86 processor has two areas in which minimum
and maximum memory pools are specified. First are
the program’s minimum and maximum static
memory requirements. These static memory
requirements correspond to the code and data size
of the job. The second area in which memory pools
are specified are a minimum and maximum dynamic
memory pool which are specified in the LINK86
process.

When the Application Loader allocates memory for
a program, the Application Loader calls the Nucleus
to create a memory pool as large as possible within
the specified bounds from the user’s memory pool.
In Releases 5 and 6 of the iRMX 86 Operating
System, with each failed attempt to allocate
memory, the application loader decrements the size
of the memory pool requested by 3% of the
difference between the current size attempted and
the minimum size. The Application Loader then
tries again to allocate the memory. This approach is
used so that the application is given the largest
amount of memory possible in as few tries as
possible, and so that the loading time is decreased.

Task Scheduling

Tasks are the active objects in an iRMX 86
Operating System, and they do all the work. They
run inside of jobs, which provide the environment
the tasks need, such as the memory pools. There are
five possible execution states for an iRMX 86 task. ~
These states are running, ready, asleep, suspended,
and asleep-suspended. Nucleus system calls can
change the state of a task. External events can also
affect the state of the task. Figure 1 shows the state
transition diagram for tasks.

Tasks can have different priorities. A numerically
lower priority is a logically higher priority task. A
task which has a logically higher priority will execute
first if it is in the ready state. Tasks will be put on the
ready list in priority order, and within a priority, the
task which has been ready the longest will execute
first.

Normal tasks are assigned priorities between 80H
and OFFH so that they can be serviced with
minimum delay. Interrupts are usually at a higher
priority than normal tasks, and will always interrupt

280047-001

II'I‘teIE AP-221

NON-EXISTANT —————— >
READY
ASLEEP RUNNING . SUSPENDED
ASLEEP-
SUSPENDED

2079

Figure 1. Task State Transition Diagram

the processor when they occur. The interrupt
handler may be able to handle the interrupt directly,
or it may invoke an interrupt task to handle the
interrupt. The interrupt handler will retain control of
the processor until the handler exits or a higher
priority event occurs.

When mailboxes are used, queues of either tasks
and objects can form at the mailbox. Task queues
can form at semaphores. Task queues can be priority
ordered or FIFO (First In First Out) ordered. This
order is specified when the mailbox is created. A
FIFO queue on a mailbox can cause a task with a
lower priority to execute before a task with higher
priority. If both tasks are waiting on the mailbox
before continuing execution and the lower priority
task is first on a FIFO queue, the lower priority task
will execute first. However, when the higher priority
task receives the object for which it was waiting, the
task now becomes the ready task with the highest
priority and can take control of the processor.

SINGLE TASK APPLICATION EXAMPLE

This section explains how to create a task, how to
use mailboxes, and how to use the System
Debugger. It also covers exception handling, as well
as how to configure the iRMX 86 Operating System,
and how to link and locate the application job.

The single task example shows how to create a single
task that writes to the terminal. The structure of the
operating system used for this application example is
shown in Figure 2. The code has an initial module,

2-197

called Inittask (Appendix A), which is used to
provide a stable entry point for the application code.
The entry point of Inittask is the start address for the
task. In the User Job screen of the ICU, this value
must be supplied for the task start address
parameter. Inittask calls Onetask (Appendix B)
which does all the work of the application. The
submit file which links and locates the user job is
given in Appendix D.

INITTASK

The .initial module, shown in Appendix A, is very
simple. It illustrates how to set up a stable entry
point for a user job. There is no data in this module,
and there are only two calls. Inittask is never
changed, and it is linked first, so its entry point is
stable no matter what changes are made to the rest
of the application code. This approach allows the
user job’s entry point to be set up only once in the
configuration of the operating system, and removes
the need to generate a new operating system
whenever the application code is changed.

The .MP2 file generated by the LOC86 utility shows
that the module has the entry point Inittask at
1500:0002H. This address is used as the task start
address in the definition file, in the User Job screen
of the ICU. Inittask calls RQSENDSINITSTASK,
which is a requirement for any job created by the
root job in the iRMX 86 Operating System. Calling
RQSENDSINITSTASK allows the root task to
resume execution and create another first level job.
Once RQSENDSINITSTASK has been called,

280047-001

AP-221
ROOT
JOB INIT TASK
BIOS
TASKS SDB TASK
(deletes itself
after initialization)
BIOS JOB sSDBJOB APPLICATION JOB
2080

Figure 2. Single Task System

Inittask calls an external procedure called
MainS$task, which is the actual code that creates the
example task. The same initial module is used with
both application examples.

ONETASK

In Appendix B, the code for Onetask is shown.
There are two parts to Onetask. First is the main
module, called MainS$task. Second is the task which
is created by MainS$task, called First$task. Note that
there are really two tasks, only one of which is creat-
ed specifically in the example code.

MainS$task creates a mailbox and catalogs it in the
user job’s directory under the name DONEMBX. It
uses this mailbox to synchronize MainS$task and the
task which is created. It creates First$task and then
waits at the mailbox to receive a message from
First$task to indicate that the task has finished.
MainStask then deletes the task and deletes the
mailbox.

MainS$task deletes segments received from the mail-
box, and then deletes the mailbox. In the code
shown in Appendix B, there is a loop around creating
and deleting the task, with the PL/M 86 call CAUSE-
SINTERRUPT (3) at each end of the loop. This code
as used in this example was for debugging purposes,
but could have also allowed stopwatch timing of the
routine. Note also that using CAUSESINTERRUPT
(3) calls in your code will result in all other tasks in
the system halting, including those of other users.

2-198

At the point where MainS$task calls RQSRECEIVES-
MESSAGE to wait at the mailbox, First$task begins
to run. MainStask has a higher priority than
First$task, so First$task cannot run until Main$task
either suspends itself or goes to sleep. In this case,
Main$task is waiting on the mailbox, which puts it in
the sleeping state, and Main$task cannot continue
until an object is received from the mailbox. This sit-
uation gives First$task-a chance to run, since it is
now the highest priority ready task.

First$task creates some mailboxes and segments,
and does a lookup to find the mailbox DONEMBX
which it must use to communicate with MainS$task.
First$task then physically attaches the terminal,
opens a file connection, and writes a buffer to the
terminal. Then it closes the connection, deletes the
file connection, and detaches the device. It cleans up
by deleting the segments and mailboxes it created,
and signals MainS$task that it is done by sending a
message to the mailbox DONEMBX.

MainStask receives control of the processor after
First$task sends a message to DONEMBX to indi-
cate completion. MainS$task then deletes the seg-
ments and mailboxes which are left, and then
deletes the application job. All memory allocated to
the application job will then be returned to the root
job’s memory pool.

If there was an error while running this application,
the task would end up looping in one of the ‘error’
routines. If the application completed successfully
and exited, the nucleus idle task for Release 6 of the
iRMX 86 Operating System would begin executing.

280047-001

intel

AP-221

The Basic I/0 System (BIOS) was used in this appli-
cation to provide immediately visible results. The
section which involves using the BIOS is the most
complex part of the example code. Many applications
will have no need of the BIOS.

These applications were done in the LARGE model
of compilation to provide simpler examples. The
COMPACT model can be used if the application’s
code and data are less than 64K each. COMPACT
code can usually execute faster because calls will be
within the same segment, so won’t require changing
as many registers to execute the call.

Creating Tasks

To illustrate all the areas that are involved in creating
a task, let’s go through each of the parameters of the
RQSCREATESTASK system call. The call looks like
this.

task$token = RQSCREATES$TASK
(priority,
start$address$pointer,
data$segment,
stack$pointer,
stackSsize,
task$flags,
exception$pointer) ;

The parameters in the RQSCREATESTASK call are
explained below.

Priority: Task scheduling involves setting relative
priorities of tasks. Unless a task is involved in
processing interrupts, its priority should be
between 129 and 255. When a task having a
priority in the range 0 to 128 is running, certain
external interrupt levels are disabled, depending
on the priority. The task for this application used
a priority of 202. The initial task itself was given
a priority of 82H, or 130, at configuration time.

Start$address$Spointer: The start address pointer is
used to point to the beginning of the task which
is being created. In the PL/M 86 LARGE and
COMPACT models, the pointer points to the
label of the procedure containing the task. The
task was a procedure within the same main
module for these examples. If the task had been
compiled separately, it would have to be defined
as an external procedure within the main
module which created the task. The actual
locations are resolved when the application is
linked and located.

Data$segment: In the PL/M 86 LARGE model, the

data segment is set equal to zero when creating-

the task. Setting the data segment to zero allows
the task to set up its own data segment. In other

2-199

models of PL/M 86, the user task must
explicitly set up its own data segment or the
value of the data segment must be obtained
from the locate map and used in the call. Refer
to the iRMX 86 Configuration Guide, which is
part of the IRMX 867 |[nstallation and
Configuration Guide for Release 6 for more
information on how to set up the data segment
of a task.

Stack$pointer: The stack pointer is also set to zero
to allow the iRMX 86 Operating System to
automatically allocate a stack of size stack$size.
While the task is running, the SS register will
show which stack segment is being used for the
application task.

Stack$size: The stack size will need to vary with
stack requirements of the task. If the task is
reentrant, or makes calls to subroutines with
many parameters, or if the task makes iRMX 86
Operating System calls, the amount of stack
must be larger than if the task only keeps local
variables on the stack.

There are two ways to determine the stack size
needed. The first method involves arithmetically
determining the stack size needed, based on
three things: the number of bytes required for
interrupts, the number of bytes required for
system calls, and the amount of stack required
by the task’s code segment. This method is ex-
plained in iRMX 86 Programming Techniques,
which is part of the iRMX™™ 86 Programmer’s
Reference Manual for Release 6, Part Il. The
other method involves choosing a relatively
large stack size and reducing it through empirical
methods. To use the empirical method, display
the stack with a debugger. If there are “C7”s on
the stack when the application has completed,
that part of the stack hasn’t been used. You can
also watch the stack pointer, kept in the SP
register, to see how low it goes. It will grow
toward zero from the value given as the stack
pointer when the task is created.

While testing the example application code, the
stack size was set to 2000 (7DOH) which was
much too large. A stack size of 300 was sufficient
for this task.

Task$flags: Task flags are used in the iRMX 86
Operating System Releases 5 and 6 to tell the nu-
cleus whether the task contains floating point
instructions. This task did not, so task$flags was
set to 0. Setting bit 0 of task$flags to 1 to indicate
the use of floating point instructions will result
in memory being reserved for the NPX
registers. The other bits of task$flags are
reserved. The iAPX 8087 or iAPX 80287 must

280047-001

intel

AP-221.

be included in the system if floating point in-
structions are used.

Exception$pointer: This pointer gives the location
of the word where the status of this call will be
returned. The result is checked after the call to
make sure that an ESOK was returned. For con-
venience while debugging, the condition code
can also be found in the CX register. The nu-
cleus manual (Chapter 7 for iRMX 86 Release
6) contains a table of exceptional conditions that
can be returned and their numeric codes.

Mailboxes

There are two object queues associated with every
mailbox. One is a fast queue, which has a fixed
length determined when the mailbox is created. The
other object queue is an overflow queue, and
memory must be allocated for that queue each time
it is used. This example used one mailbox to com-
municate between the original task and the task it
created. The fast queue has a length of 4, which is
the default value, indicated by the 0 as the first
parameter of the create$mailbox call. If this mailbox
frequently had large numbers of objects on its
queue, it might have been useful to use a larger fast
queue. This approach, of course, means that more
memory would be allocated to the mailbox when it
is created. In this application, the minimum fast
queue length wasused. ©~

The DONEMBX mailbox is being used as if it was a
semaphore. It is used only to tell the parent task that
the child task has completed. First$task also creates
some mailboxes which are used to send
information. For instance, when a physical connec-
tion is made to the terminal, the mailbox is used to
receive a token for the physical connection.
Similarly, when a file connection is made, the mail-
box receives a file connection token.

Different protocols can be set up to handle objects
which are received at a mailbox. In this application,
after an object is received from a mailbox, that
object is deleted after it has been used in an appropri-
ate manner (such as to extract the file connection
token). A protocol can also be set up so that objects
are reused. A response can be sent to the task that
sent the object. Only Operating System created ob-
jects can be sent to a mailbox. Objects should be
deleted when they are no longer needed, because
they take up memory. Creating extra objects and ne-
glecting to delete them can eventually cause a task to
use up all its available memory. The objects which
are sent to mailboxes in this example are segments.
Examples of how to check for the presence of objects
are shown in the following section on using the
System Debugger.

2-200

Using the System Debugger (SDB)

The System Debugger is a job which is added to the
iRMX 86 Operating System at configuration time.
The only configurable parameter in the SDB is its in-
terrupt level, which in this example should be the
default value of 018H, master interrupt level one.
The SDB knows most of the data structures of the
iRMX 86 Operating System, and can be used to
determine what is happening within the Operating
System while an application job is running.

The first thing that must be done when using the
SDB is to activate it. If you are writing an application
which can be run from the Human Interface, the
DEBUG cusp can be used. The example application
wasn’t run from the Human Interface. Instead, it is
built in as a user job. The SDB can be invoked by
pressing the front panel interrupt button, or by in-
serting a ‘CAUSESINTERRUPT (3)’ call into the
source code. While bootloading an application, the
‘CAUSESINTERRUPT (3)’ call is a more useful
tool, since pressing the interrupt button cannot stop
the application at a specific point. The monitor won’t
get control immediately as it would if the job were
loaded from a development system. The
‘CAUSESINTERRUPT (3)’ call can be taken out of
the application when the code is debugged. Any use
of the SDB should be done only in a single-user
system, since the SDB will stop all jobs.

CAUSESINTERRUPT (3) is used in three places in
the single task application code. The first occurrence
is as soon as the module Main$task is entered, but
before any of its code has executed. The second
place is before the loop to create and delete the task.
The third place is after the loop is completed. During
the debugging phase of developing the code, there
were also CAUSESINTERRUPT (3) calls within the
task, to help determine what was happening. Break-
points can also be used once the code has been
stopped so that the monitor has control. A break-
point is set by the monitor command ‘g, address’.
The code will execute until it gets to that address,
and then it will break to the monitor.

The job tree is found by using the SDB command
‘vj’ for view job. An example follows for the applica-
tion task.

.Vj

BFDD
B68A
BE9E

BFDD is the token for the root job. By knowing the
memory pools of each of the layers, and looking at
the memory pools of each of the other job tokens, a
user can determine that B68A is the user job, (the
application code), and BE9E is the BIOS. The ‘vt’
command will show the current state of each token.

280047-001

intel

AP-221

.Vt BE9E

Object type = 1 Job (NOTE: This token is for the BIOS.)

Current tasks 0003 Max tasks FFFF Max priority 00
Current objects 000A Max objects FFFF Parameter obj BFBS§
Directory size 0000 Entries used 0000 Job flags 0000
Except handler 0EE4:01CO Except mode 00 Parent job BFDD
Pool min 0800 Pool max 0800 Initial size 0800
Pool size 0800 Allocated 0077 Largest seg 0764
.Vt B68A

Oject type = 1 Job (NOTE: This token is for the application job.)
Current tasks 0001 Max tasks 0010 Max priority 00
Current objects 0001 Max objects 0020 Parameter obj BFB8
Directory size 0010 Entries used 0001 Job flags 0001
Except handler OEE4:01C0O Except mode Parent job BFDD
Pool min 0500 Pool max Initial size 0500
Pool size 0500 Allocated 01FD Largest seg 0303

Notice from these tables that the application job may
have been created with too much memory. It is only
using 01FD of memory (Allocated), and has a mini-
mum and a maximum pool size of 0500H (Pool min,
Pool max). A pool size of 0250H would probably
have been sufficient. If this command was executed
early in the application, all the objects might not be
created yet. So the job might require more memory
than is currently being used at some point in its
existence.

The command ‘vo job-token’ shows all the objects
that have been created in a job. The token for each
object contained by that job will be shown, listed
after a designation for which type of object it is. You
can check for the presence of leftover segments at
the end of a task’s execution with this command.
Before executing the application code, the following
list shows what the command and its results look
like.

.vo B68A

Child Jobs:

Tasks: B491
Mailboxes:
Semaphores:
Regions:
Segments:
Extensions:
Composites:

By using the SDB command ‘vk’, the tasks that are
ready or sleeping can be seen. After running the
user job to completion, the result of the ‘vk’ com-
mand looks like this:

vk
Ready Tasks:
Sleeping Tasks: BE64 BE2E BEO06 1CCF

2-201

If the code hadn’t completed executing, results like
this might indicate deadlock. The tasks would have
to be examined to see how long they were asleep. If
they are all asleep forever, nothing further will
happen without an external event.

Exception Handling

In this example, the default system exception han-
dler is used, and the exception mode is set to
‘never’. This setting means that the application code
either wishes to handle exceptions in-line or through
a call to an exception handler. The system exception
handler will not be invoked for errors. If the handler
were invoked, it would simply delete the task con-
taining the call which caused the exception.

This application handles exceptions in line. After
each system call, the task checks the status word for
ESOK. If an exception is detected, the task will jump
to ERROR and loop there forever. This technique is
to help identify where an error occurred, and is
useful for debugging the application. The CX register
contains the status returned from the call, so it is
possible to find out which error occurred by using
the monitor command ‘x’ to display the registers.
The problem them becomes the following: to find
out where the error occurred. This procedure usually
involves stepping through the code, or setting sever-
al breakpoints (using the monitor commands to
break at given points).

It is useful to insert ‘CAUSESINTERRUPT (3)’
calls at points when the task is likely to transfer con-
trol (such as after sending or receiving messages).
When the application is running properly, remove
the ‘CAUSESINTERRUPT (3)’ calls to allow the
code to execute unattended. Breakpoints can also be
used to monitor the code.

280047-001

intel

AP-221

If you write your own exception handler, you have
to decide upon which conditions it will be invoked.
You must compile, link and locate the exception
handling code, and determine the starting address of
the exception handler: This value must be confi-
gured into the operating system as the User Job’s ex-
ception handler address. Each task can also have its
own exception handler by using the call
RQSSETSEXCEPTIONSHANDLER.

An exception handler is the preferred method of
handling exceptions, but exception handlers are
beyond the scope of this application note. An excep-
tion handler would eliminate the need for GOTOs in
the code. GOTOs are considered bad programming
practice in most structured languages.

MULTIPLE TASK APPLICATION
EXAMPLE

For the second example, the same initial code,
Inittask, was used. The main module is called Main$-
task as it was for the single task example. The same
configuration of the iRMX 86 Operating System is
used, since the start address is the same for both
applications. The code for this example, called
Tasks, is shown in Appendix C. The main module
for this example creates three tasks, and lets them
do the work. A diagram of the system is shown in
Figure 3.

The three tasks are set up according to their
function. This very simple example of a machine
control system makes the classic product, widgets.
One task is the supervisor and controls the other two
tasks. It sends messages to the other tasks to tell
them what to write or how many widgets to make.
The second task, called IOStask, outputs messages
which it has received from Supervisor$task to the
terminal. The third task, called WidgetS$Stask, makes
widgets. In this example, Widget$task is essentially a
no-op task, but it could easily be replaced with code
that implemented a real application.

MAINSTASK

The code in the second example has an initial
module which creates three tasks, and then waits at
a mailbox for them to complete execution. The ini-
tial module then deletes the three tasks and the mail-
boxes it has created. When everything is cleaned up,
it deletes the application job. The initial task not only
creates the mailbox it needs for signaling when the
tasks are done, but it also creates the other four mail-
boxes that are used by the three tasks to communi-
cate with each other. The mailboxes are cataloged in
the user job’s directory, and each task must look up
the mailboxes it needs to use.

ROOT

JOB

BIOS
TASKS SDB TASK

(deletes itself
after initialization)

BIOS JOB SDB JOB

INIT TASK

WIDGET
TASK

APPLICATION JOB
2081

Figure 3. Multiple Task System

2-202

280047-001

intel

AP-221

Pseudocode for Main$task

create mailboxes

catalog mailboxes in job’s directory

create SupervisorS$task

create Widget$task

create [0$task

receive message from SupervisorS$task (done)
delete tasks

delete mailboxes

delete myself

SUPERVISORS$TASK

Supervisor$task is created with the highest priority
of the three tasks. It happens to be created first, but
because it has the highest priority it would execute
first regardless of when it was created. Supervisor$-
task controls the other two tasks. The other two
tasks are created with priorities lower than both Su-
pervisor$task and the creating task. If one of them
had been created with a priority higher than the
creating task and had been the first one created, it
would have begun executing as soon as it was
created, preventing the creator task from creating
SupervisorS$task.

Pseudocode for Supervisor$task

lookup mailboxes in job’s directory

do1to10
send message to Widget$task (make widget)
send message to I0$task (making widget, message)
receive message from WidgetS$task (done)
receive message from I0$task (done)

end

send message to Widget$task (cleanup)

send message to I0$task (cleanup)

receive message from Widget$task (done)

receive message from I0Stask (done)

cleanup by deleting segments

send message to MainS$task (done)

The supervisor allows Widget$task and 10S$task to
work as independently as possible. It sends messages
to both of them, and then waits for both to reply
before it repeats the loop. This approach allows the
tasks to execute when they can get the processor,
completely independently of each other. We can also
look at the ready lisi at various points in the code
and see which task is executing. Tasks will not
always execute in the same order with this method.
Because each task is required to wait for a message
indicating that it may run, IOS$task cannot inform
the console that a widget is being made any sooner
than WidgetStask begins to make the widget. If the
sends and receives had instead been paired (sending
then receiving from the same task) Supervisor$task
could have guaranteed which task would be execut-
ing at any given point in the code.

2-203

Supervisor$task is sending information in the
mailboxes to each task. In the single task example, a
simple segment with no information content was
sent between the creating task and the created task
to signal that the created task was done executing. A
semaphore could have been used just as well in that
example. In this multitasking example a semaphore
would not work. Information is being passed to each
of the tasks to tell them whether or not to continue
executing, or that they should clean up their
environments. In addition, SupervisorS$task is
passing to [O$task a message that will be printed out.
To pass the message, a structure is used. The
structure contains values, rather than tokens for
objects. The values are moved into the structure
with the MOVB PL/M call prior to sending the
structure’s token through the mailbox. Structures
which contain tokens should be avoided, especially
when using mailboxes which communicate between
jobs. On more advanced processors than the iAPX
86, operating systems may be implemented in which
jobs have disjoint address spaces. In that case, a
token may have different values in different jobs.
The iRMX 86 Operating System will expect this
convention to be followed but will not enforce it.
Future operating systems may enforce the
convention. This example is completely contained
within one job, so it isn’t quite as restricted.

WIDGETS$TASK

Widget$task is extremely simple for this example.
This portion in a real application would probably be
the most complex, since it would involve the ma-
chine interfaces for a control process. It could also in-
clude any mathematical calculations which need to
be done.

Pseudocode for Widget$task

look up mailboxes
receive message from Supervisor$task (make
widget)
do while make widget is true
send message to Supervisor$task (done)
receive message from Supervisor$task (make
widget)
end
cleanup the environment
send message to Supervisor$task (done)

I0$TASK

This task is very similar to First$task in the first
example. The main difference between the two is
the way the information for the messages is given to
the tasks. In Onetask, the message was defined
within the task. In IO$task, the information for the
message is passed to IO$task via a mailbox from
Supervisor$task. This task illustrates how to do
simple I/0 with just the BIOS.

280047-001

intgl

_AP-221

Pseudocode for I0$task

look up mailboxes
receive message from supervisor (making
widget, message)
create user
physically attach terminal
get device connection
create file)
get file connection
open file
receive message from Supervisor$task (making
widget, message)
do while making widget is true
write message (Making widget)
delete segments
send message to Supervisor$task (done)
receive message from Supervisor$task (making
widget, message)
end
close file
delete file connection
detach device
delete user
cleanup environment by deleting segments
send message to Supervisor$task (done)

Mailboxes

In this application, mailboxes are used for several
purposes. Their most obvious purpose is to send in-
formation between tasks. Less obvious but more im-
portant is the role they play in allowing mutual exclu-
sion and synchronization between tasks.

The simplest messages in the application return an
empty segment to the mailbox to indicate that the
task has completed some portion of work, and the
receiving task can continue. This empty segment is
the kind of message that Widget$task and I0S$task
send to Supervisor$task, and the kind of message
that Supervisor$task sends to MainS$task when it has
completed execution. This exchange could be ac-
complished just as well by using a semaphore rather
than a mailbox.

The more complex messages contain some
information. In this example, the message contains
information indicating that the task should continue
executing a loop, or that it is time to clean up the en-
vironment and exit. The message that was sent be-
tween Supervisor$task and I0$task also contained
the message that Supervisor$task wanted IO$task to
print out. This example illustrates the kind of infor-
mation that can be passed between tasks using
mailboxes.

Mailboxes are also used in this application to imple-
ment mutual exclusion and synchronization between
the tasks. One alternative implementation which is

2-204

not shown here keeps the three tasks all at the same
priority, and uses mailboxes to allow the tasks to ex-
ecute in a strictly defined order. The implementation
shown in this example is quite general purpose, and
doesn’t use as many mailboxes as the alternative
implementation would. This implementation also
allows the tasks to have more freedom in when they
can run, and uses the processor more efficiently if
one of the tasks is blocked while doing [/0.

Deadlock

As more tasks are used, and as more mailboxes are
used to communicate between the tasks, the possi-
bility of deadlock increases. Deadlock usually is
caused by faulty design, and may appear when
debugging of the code begins. Evidence of possible
deadlock occurs when all the tasks are sleeping, and
no tasks are ready when you use the SDB command
‘vk’ to check what’s going on. This situation can be
caused by sending a message to the wrong mailbox,
or by not creating segments to send within a loop
that is sending messages. An example of deadlock
can be obtained by changing the code in Supervisor$-
task in some minor ways.

Executes correctly:

Doi=1t010
create segments
send message to Widget$task (make widget)
send message to I0$task (making widget, message)
receive message from Widget$task (done)
delete segment
receive message from I08task (done)
delete segment

end

3

Causes deadlock:

create segments
Doi=1t010
send message to Widget$task (make widget)
delete segment
send message to I0$task (making widget, message)
delete segment
receive message from Widget$task (done)
receive message from I08task (done)
end

The second code example results in deadlock be-
cause the object which is sent.to the mailbox is creat-
ed outside the loop. Once it is sent, there is no
longer an object to send, and the receiving task can’t
continue unless it has a timeout specified because it
never receives another object. With a different syn-
chronization scheme, ‘if the receiving task hadn’t
deleted the message, that object could have been
sent again. .

280047-001

intel

AP-221

Key placés to watch for deadlock in the code are
where some communication occurs between the
tasks. Other situations that can cause deadlock are
tasks needing the same resources, such as a unit
from a semaphore, or a region. Insufficient memory
will cause an ESMEM error rather than deadlock.

Initialization

Supervisor$task controls the other two tasks. This
control is necessary since the tasks cannot execute
more than a few lines of code without receiving a
message from the supervisor. The tasks execute a
few lines of code to lookup the mailbox which they
will use to communicate with the other tasks. Then
they can make the RQSRECEIVESMESSAGE call.
The task with the highest priority which was created
first, and as a result, has been ready the longest, will
execute first. Since Supervisor$task was created with
a higher priority than the other two tasks, it will exe-
cute first. By the time it gives up control of the
processor, it has already sent messages to both of
the other tasks. The task that has been ready the lon-
gest at this point will execute first. In this example,
the first executed task happens to be WidgetS$task,
since it was created before I0$task was.

Debugging

The same techniques are used to debug a multiple
task application as were discussed in the single task
example. Look at the .MP2 file before beginning
debugging, and find the entry points to each task.
The .MP2 file is produced as a result of the LOC86
step in building the application. Use
‘CAUSESINTERRUPT (3)’ calls at the beginning of
each task, and keep track of which task is executing
at a given time. One technique that was used in this
application to make it easier to debug was to send all
errors to an error routine within each task. The error
routine was different in each task (outputting A1H
for the first task, A2H for the second task, etc.). It
was immediately obvious by looking at the disassem-
bled code containing the call which task caused the
exception. -

As a second debug alternative, the iRMX 86 Dynam-
ic Debugger is also useful in a multiple task
application. Rather than halting the entire system
. like the SDB does, the Dynamic Debugger allows
users to examine vital system objects while the
system is running. The Dynamic Debugger must be
configured into the Operating System with its own
terminal handler and its own terminal if the BIOS is
used.

CONFIGURATION

There are two steps involved in configuration: con-
figuring the operating system; and compiling, linking

2-205

and locating the application code. The same defini-
tion file was used for both applications, and the same
submit file was used to link and locate the
applications.

Configuration of the iIRMX™ 86 Operating
System

For both examples in this application note, the same
operating system configuration was used. The layers
used are the Nucleus (for scheduling and intertask
communication) and the BIOS (so that 1/0 could be
done). The SDB, for debugging the code, was also
configured into the operating system as a user job.
The only device driver required is the terminal
driver. The listing of the operating system definition
file is shown in Appendix E.

User Jobs

This application code is configured into the operating
system as a user job. The Interactive Configuration
Utility (ICU) requires information to be given about
the user job, and sets up a %JOB macro for the job.
However, the ICU does not set aside memory for
the user job, and it does not link and locate the job
as it does for the layers of the operating system.

An application that uses only nucleus and BIOS calls
is a user job. If the application uses the EIOS or the
Human Interface, it is'an I/0 job and must be confi-
gured as a child job of the EIOS. Applications can
also be run from the Human Interface level, as jobs
under the Human Interface. In a real-time
application, treating the application as a user job or
user jobs is usually most appropriate. During
development, however, the application could be run
under the Human Interface. This technique would
eliminate rebooting after each code change or trial
run to test the application.

The following parameters appear in the User Jobs
screen in the ICU. Each parameter is defined and ex-
plained in the context of the example application.

JOB NAME (NAM)

The first question in the User Jobs screen for the
iRMX 86 Release 6 ICU is Job Name. This question
is optional, and is just used for the user to keep track
of which user job is being configured in the screen. It
is not used by the ICU.

OBJECT DIRECTORY SIZE (ODS)
Object directory size refers to how many objects can

be cataloged in the job’s directory. In the first
example, the only object that is being cataloged is

280047-001

intel

AP-221

the mailbox DONEMBX which is used to let the
main task know that First$task has completed. In
the second example, five mailboxes are cataloged,
so the object directory size doesn’t have to be very
big for this application. The default value for this
parameter is 10H, which is large enough for this
application. If you have a large application and many
objects are cataloged, this number would have to be
increased. For small applications, a small value can
be used to conserve memory. Memory is allocated
for the object directory of a job when the operating
system is initialized.

POOL MINIMUM, POOL MAXIMUM (PMI, PMA)

Pool minimum and pool maximum are closely
related. They specify the amount of memory that the
job requests from its parent. For this example, a
pool minimum and pool maximum size of SOOH was
chosen. The minimum and maximum should be set
to the same value in the user job to avoid memory
fragmentation. The Human Interface is usually the
only exception to this rule.

MAXIMUM OBJECTS (MOB)

This parameter defines how many objects can be
created by the application. For this application, the
maximum objects was set to 20H, but only 10 objects
existed at any given time. In a larger application, of
course, 20H could easily become insufficient. To
determine how many objects are being used at a
given point in time, use the SDB command ‘vo user-
job-token’.

MAXIMUM TASKS (MTK)

The next parameter specifies the maximum number
of tasks which can be created by tasks in this user
job. This application used the default value of 10H,
but could have used 4H, since only three tasks were
created (one task was created by the root job to be
the user job task). The definition file was being used
by both the single task example and the multiple
task example, so the default value is appropriate.

MAXIMilM PRIORITY (MPR)

The maximum priority parameter refers to the
maximum priority allowed of any task in this job
which is created. This parameter was set to OH
where OH indicates that the priority of the root job is
the maximum allowable priority of the tasks. The
root job’s priority in this_operating system is 00H,
which doesn’t limit the maximum allowable priority.

ADDRESS OF EXCEPTION HANDLER (AEH)

This apblication is using the system exception
handler, so the address of exception handler used is

2-206

0000H:0000H. If the user job had its own exception
handler, the correct address of that exception han-
dler would have to be found by first linking and
locating the application code and the exception
handler, and then looking in the .MP2 file for the ad-
dress of the exception handler.

EXCEPTION MODE (EM)

The exception mode is set to ‘never’ for this user
job, indicating that the exception handler won’t be
invoked for any kind of error condition. Instead, ex-
ceptions will be handled in-line in the example code.

PARAMETER VALIDATION (PV)

Parameter validation is used by the nucleus to deter-
mine if the parameters passed in system calls are
valid. This question should be answered yes until
the application code is debugged. If the BIOS or
other upper layers are being used in the operating
system, parameter validation should be enabled
even when the application code is debugged, or the
Operating System will not work. If parameter valida-
tion is turned off, the nucleus calls will execute
faster, so setting parameter validation to ‘no’ can im-
prove perform;xnce.

TASK PRIORITY (TP)

Task priority sets up the static priority of the initial
task which is created for the user job. For this
application, the priority of the task is set to 82H, or
130.

TASK START ADDRESS (TSA)

The Task Start Address is the start address of the
job’s initialization task. This address is determined
from the .MP2 file after locating the application
code. For both example applications this address was
1500H:0002H. '

DATA SEGMENT BASE (DSB)

The data segment base is set to 0000H, which allows
the task to set up the data segment base for the initial
task of the user job. Since the LARGE model of
compilation was used, the parameter can be set to
zero.

STACK SEGMENT ADDRESS (SSA)

The stack segment address is also set to
0000H:0000H to allow the nucleus to allocate a stack
segment to the task and take care of initializing the
SS and SP registers. This setting permits dynamic
stack allocation and deallocation.

280047-001

intel

AP-221

STACK SIZE (SS)

The stack size for the task is set to 300, which is the
amount that is considered necessary to make any nu-
cleus system calls. Since this application was very
small, it didn’t need a very large stack. If a job used a
lot of subroutines and nested procedures with many
parameters, or if the job was recursive, the amount
of stack needed could increase.

NUMERIC PROCESSOR EXTENSION USED
(NPX)

The 8087 Numeric coprocessor was not used in this
application task. If any floating point functionality is
needed within a task, this parameter should be set to
yes in the configuration process.

The last parameter which must be considered when
creating the definition file for the application is the
amount of RAM required and where it is located.
This is a parameter in the memory screen of the
ICU. Remember that the ICU does not locate the
user job for you, so memory must be specifically set
aside to be used by the user job. In this application,
the RAM that was used was from 0104H to 1500H,
and from 1800H to F7FFH. The user job was allowed
to use RAM from 1500H to 1800H (these numbers
are specified in paragraphs of 16 bytes each). The
operating system itself was put into the memory
from 104H to just under 1500H. This location can be
determined by looking at the .MP2 files for each of
the layers of the operating system after completing
the configuration.

Linking and Locating the Application

The submit file that was used for this application is
shown in Appendix D. Note first of all that instead
of using the name of the application code program, a
%0 was used. This convention allows you to invoke
the submit file with a parameter which is the name
of the application code program. The same submit
file was used for both examples. Note that Inittask is
linked with the INITCODE option. This is necessary
with LINK86 v 2.0 and LOC86. The INITCODE
option is not necessary with other versions of
LINKS86.

While the submit file is running, some warnings will
be generated. The following errors are normal and
should be ignored.

2-207

WARNING 12: UNRESOLVED SYMBOLS

WARNING 26: DECREASING SIZE OF
SEGMENT
SEGMENT: STACK

WARNING 66: START ADDRESS NOT SPECI-
FIED IN OUTPUT MODULE

CONCLUSION

This application note is an introduction to the basic
functions of the iRMX 86 Operating System
Nucleus. Task scheduling and memory management
functions were covered in detail. Two applications
were discussed, using some pieces of code in
common. The functions involved in developing and
testing real-time code were explained while using
the application code for examples and reference.
Configuration of the application operating system
was also covered in detail.

The examples shown in this application note illus-
trate how to develop a real-time application. The
first example shows how to use the nucleus and
BIOS to do simple I/0 at the lowest, most optimiza-
ble level. The second example builds on the concepts
developed in the first example, expanding the appli-
cation to a more realistic process control situation.

Both examples shown earlier are fairly simple. They
illustrate what has to be done to create and use a
task. They are good examples for a user who has
written a limited amount of PL/M 86 code using the
nucleus system calls. The multiple task example
would be a good foundation for a process control
application. Each of the tasks in the second example
shows a major function of real time code,
demonstrating control, [/0, and supervisory
functions.

The iRMX 86 Operating System is ideally suited to
multi-tasking, real-time applications. The ability to
use the same system for both development and as
the target system is a great benefit to the develop-
ment engineer and the company which is developing
real-time applications. The modularity provided by
the iRMX 86 Operating System and the PL/M 86
language make it easier to develop code for one
application, then modify it for another application.
The ultimate benefits to users are reduced develop-
ment time, added cost savings, and shorter time-
to-market for new products.

280047-001

|ntel® AP-221

APPENDIX A: .o o
APPENDIX B: ..ot
APPENDIX C: ..o
APPENDIXD: ..o SRR
APPENDIXE:
APPENDIX F: .o

2-208 280047-001

Il'l‘tel® AP-221

APPENDIX A

PL/M-86 COMPILER single task creation; for ap note

iRMX 86 PL/M-86 V2.1 COMPILATION OF MODULE INITTASK
OBJECT MODULE PLACED IN INITTASK.OBJ
COMPILER INVOKED BY: :LANG:pIm86 INITTASK.P86

$large rom debug
$title('single task creation; for ap note')
/***

* This is an example to be used for an ap note on task *
* scheduling. *

* Cathy Lundberg 03/22/84 *
***/
1 inittask: do;

$INCLUDE (/RMX86/INC/NEINIT.EXT)
= $SAVE NOLIST

1 main$task: PROCEDURE EXTERNAL;
5 2 END main$task;

/***

* This separate module is used to keep the user job's
start address constant while changing the code.
This module has no data or constants in it, all it
does is call the main routine, main$task, after
calling rqendinit$task.

***/

*

* % ¥ *
* % % ¥

6 1 begin: PROCEDURE PUBLIC;

CALL rqendinit$task;
CALL main$task;
END begin;

O 0o~
N NN

10

—

END inittask;

MODULE INFORMATION:

CODE AREA SIZE = 0018H 24D
CONSTANT AREA SIZE = 000OH 0D
VARIABLE AREA SIZE = 000OH oD
MAXIMUM STACK SIZE = 0008H 8D

36 LINES READ
0 PROGRAM WARNINGS
0 PROGRAM ERRORS

2-209 280047-001

Inte|® AP-221

DICTIONARY SUMMARY:

112KB MEMORY AVAILABLE
3KB MEMORY USED (2%)
OKB DISK SPACE USED

END OF PL/M-86 COMPILATION

2-210

280047-001

inter AP-221

APPENDIX B

PL/M-86 COMPILER single task creation; for ap note

iRMX 86 PL/M-86 V2,1 COMPILATION OF MODULE ONETASK
OBJECT MODULE PLACED IN ONETASK.0BJ o
COMPILER INVOKED BY: :LANG:PLM86 ONETASK.P86

$1arge rom debug
$title('single task creation; for ap note')
1 onetask: DO;

/**t*ﬁﬁ*ﬁ*ﬁ*

* This is an example to be used for an ap note on task *
* scheduling. "
* Cathy Lundberg 03/22/84 -

***********************ﬁ****ﬁ**ﬁ*********t&******ﬁ**#&***/

/* The include for LTKSEL.LIT must be done before any other 1nclu&és.
* because anything that uses TOKENS must have the data type defined
* for a token, */

$INCLUDE (/RMX86/INC/LTKSEL.LIT)
= $SAVE NOLIST

$INCLUDE (/RMX86/INC/NEXCEP.LIT)
= $save nolist

$INCLUDE (/RMX86/INC/NUC.EXT)
= $SAVE NOLIST

$INCLUDE (/RMX86/INC/BIOS.EXT)
= $SAVE NOLIST

/****************************f**t*****iﬂ*****************t*t****#tﬁ******i

* main$task is the procedure that is called by inittask to create the *
task 'first$task'. It creates a mailbox, creates the task, and then *
waits at the mailbox, allowing first$task to execute. When first$task®*
finishes and sends a message to the mailbox, control is returned to :

main$task, and it deletes first$task and the mailbox.
*********************************t***f**********i*t*ﬁ*******ﬁﬁ*****tt*'*ﬁ/

* ¥ % %

280 1 main$task: PROCEDURE REENTRANT PUBLIC;

281 2 DECLARE job TOKEN,
data$seg TOKEN,
user$token TOKEN,
taska TOKEN,
done$wr it ing$mbx TOKEN,
resp TOKEN;

282 2 DECLARE task$flags WORD,
status WORD,
i WORD;

2-211 280047-001

If\‘te|® AP-221 g
283 2 DECLARE seg$pointer .. POINTER,

start$address POINTER,

taska$ptr POINTER,

stack$pointer POINTER;

284 2 DECLARE stack$size$300 LITERALLY '300';

285 2 DECLARE priority$level$202 LITERALLY ‘202",

286 2 DECLARE iors$token . SELECTOR;;

287 2 DECLARE done$obj TOKEN AT(@iors$token);

288 2 DECLARE iors BASED . iors$token STRUCTURE

(status WORD,
unit$status WORD,
actual WORD) ;

289 2 data$seg = 0; /* task sets up own data segment */

290 2 stack$pointer = 0; /* automatic stack allocation */

291 2 task$flags = 0; /* no floating point */

292 2 job =0; /* catalog object in containing job */

293 2 CAUSESINTERRUPT (3);

/* create a mailbox to use for letting this task know
* that the task it created is done writing. */.

294 2 done$wr1ting$mbx = rq$create$mailbox (0, @status);

295 2 IF status <> E$OK THEN GOTO error;

297 2 CALL rq$catalog$object (O, done$wr1t1ng$mbx @(7,'DONEMBX'),

. @status);

298 2 IF status <> E$OK THEN GOTO error;

300 2 CAUSESINTERRUPT (3),

301 2 DO I =1 TO 1000;

/* Now create taska */

302 3 taska = rq$create$task (priority$level$202, @first$task,
data$seg, stack$pointer,
stack$size$300, task$flags, @status);

303 3 IF status <> E$0K THEN GOTO error;

305 3 done$obj,=}rq$receifé$me55age (done$writing$mbx, Offffh,

0, ' - ‘
@status);

306 3 IF status <> E$0K THEN GOTO error;

308 3 CALL rq$delete$segment (done$obj, @status),v

309 3 IF status <> E$OK THEN GOTO error;

311 3 CALL rq$delete$task (taska, @status);

312 3 IF status <> E$OK THEN GOTO error;

314 3 END; /* of DO WHILE loop */

315 2 CAUSE$INTERRUPT (3);

316 2 CALL rq$delete$mailbox (done$writing$mbx, @status),

317 2 IF status <> E$OK THEN GOTO error;

319 2 GOTO ok;

320 2 error: . /* output to usart to determine which */

DO WHILE 1; /* task had the error. For debugging.*/

321 3 0UTPUT(9CH) OAAH .

322 3 END;

280047-001

2212

intel

AP-221

323

324

2

ok:

CALL rq$delete$job (0, @status); /* delete myself */

END main$task;

/***

FIRST$TASK 1is the task which is created by main$task. It creates
the necessary mailboxes and segments, and then attaches the terminal *

*

* % o * F * ¥

325
326

327
328
329
330

331

332
333

334

335
336
337

338
339

physically.

*

It then creates a file so that it has a file connection.*

It opens the file connection, and writes the contents of a buffer to *

the terminal.
device connection, and detaches the device.

Then it closes the file connection, deletes the
Last, it looks up the

mailbox created in main$task and sends a message to the mailbox.

This allows control to return to main$task.
***********************'k***/

1
2

NN N

N N N

n N

first$task: PROCEDURE REENTRANT PUBLIC;

DECLARE job TOKEN,
mbx$token TOKEN,
seg$token TOKEN,
user$token TOKEN,

file$connection TOKEN,
device$connection TOKEN,
done$token TOKEN,

done$writ

ing$mbx TOKEN;

DECLARE status WORD;
DECLARE hard BYTE;
DECLARE iors$token TOKEN;

DECLARE dev$conn$object TOKEN AT (@iors$token),
file$Sconn$object TOKEN AT (@iors$token),

*
*
*
*

object TOKEN AT (@iors$token);
DECLARE iors BASED iors$token STRUCTURE
(status WORD,
unit$status WORD,
actual WORD);
DECLARE buffer BASED seg$token (1) -BYTE;
DECLARE user$object STRUCTURE
(length WORD,
count WORD,
id (1) WORD) ;
DECLARE message(*) BYTE DATA ("SINGLE TASK TEST');
user$object.length = 1;
user$object.count = 1;
user$object.id(0) = OFFFFH;
job = 0; /* catalog object in containing job */

hard = OffH;

/* request a hard detach of the device */

2-213

280047-001

intal” ap-221

380 2 user$token = rq$create$user (@user$object, @status);
341 2 IF status <> E$OK THEN GOTO error;
343 2 mbx$token = rq$create$mailbox (0, @status);
344 2 IF status <> E$OK THEN GOTO error;
346 2 segftoken = rq$create$segment (48, @status);
347 2 IF status <> E$OK THEN GOTO error;
349 2 CALL rqaphysical$attach$device (@(2,'T0'), 1, mbx$token, -
Ostatus);
350 2 IF status <> E$OK THEN GOTO error; ;]
352 2 dev$conn$object .= rq$receive$message (mbx$token, OFFFFH, O,
@status);
353 2 IF status <> E$OK THEN GOTO error;
355 2 device$connection = dev$conn$object;
3% 2 CALL rqacreate$file (user$token, device$connection,
0, 0, 0, 0, 0, mbx$token, @status);

357 2 IF status <> E$0K THEN GOTO error;
359 2 file$conn$object = rq$receive$message (mbx$token, OFFFFH, 0,

, ‘ Ostatus);
360 2 IF status <> E$0K THEN GOTO error;
362 2 file$connection = file$conn$object;
363 2 CALL rqaopen (file$connection, 2, 0, mbx$token, @status);
364 2 IF status <> E$OK THEN GOTO error;
366 2 object = rq$receive$message (mbx$token, OFFFFH, 0, @status);
367 2 IF status <> E$0K THEN GOTO error;
369 2 CALL rq$delete$segment (object, @status);
370 2 IF status <> E$OK THEN GOTO error;
372 2 CALL movb(@message, @buffer, SIZE(message)):
373 2 CALL rqawrite (file$connection, @buffer, size(message),

mbx$token, @status);
374 2 IF status <> E$OK THEN GOTO error;
376 2 object = rq$receive$message (mbetoken OFFFFH, 0, @status);
377 2 IF status <> E$0K THEN GOTO error;
379 2 CALL rq$delete$segment (object, @status);
380 2 IF status <> E$OK THEN GOTO error;
382 2 CALL rqaclose (file$connection, mbx$token, @status);
383 2 IF status <> E$OK THEN GOTO error;
38 2. object = rq$receive$message (mbx$token, OFFFFH, 0, @status);
38 2 IF status <> E$OK THEN GOTO error;
388 2 CALL rq$delete$segment (object, @status);
389 2 IF status <> E$OK THEN GOTO error;
391 2 CALL rqadelete$connection (file$connection, mbx$token,
: @status);

392 2 IF status <> E$OK THEN GOTO error;
394 2 object = rq$receive$message (mbxstoken OFFFFH, 0, @status),
395 2 IF status <> E$OK THEN GOTO error;
397 2 CALL rq$delete$segment (object, @status);
398 2 IF status <> E$OK THEN GOTO error;

2-214 280047-001

inteF AP-221

400

401
403
404
406
407

409
410

412
413
415
416
418
419
421

422
424

425
4217
428
430
431
433

434

435
436

437

438
439
440
441

2 CALL rqaphysical$detach$device (device$connection, hard,
mbx$token, @status);
2 IF status <> E$OK THEN GOTO error;
2 object = rq$receive$message (mbx$token, OFFFFH, 0, @status);
2 IF status <> E$OK THEN GOTO error;
2 CALL rq$delete$segment (object, @status);
2 IF status <> E$0OK THEN GOTO error;
2 CALL rq$delete$mailbox (mbx$token, @status);
2 IF status <> E$OK THEN GOTO error;
2 CALL rq$delete$user (user$token, @status);
2 IF status <> E$OK THEN GOTO error;
2 CALL rq$delete$segment (seg$token, @status);
2 IF status <> E$0K THEN GOTO error;
2 done$token = rq$create$segment (16, @status);
2 _IF status <> E$0K THEN GOTO error;
2 done$writing$mbx = rq$lookup$object (0, @(7,'DONEMBX'), 500,
: @status);
2 IF status <> E$0K THEN GOTO error;
2 CALL rq$send$message (done$writing$mbx, done$token, O,
@status);
2 IF status <> ESOK THEN GOTO error;
2 CALL rq$delete$segment (done$token, @status); /* this code */
2 IF status <> E$OK THEN GOTO error; /* shouldn't be*/
2 CALL rq$delete$mailbox (done$writing$mbx, @status);
2 IF status <> ESOK THEN GOTO error; /* executed */
2 GOTO ok;
2 error: ' /* output to usart for debugging */
DO WHILE 1;
3 OUTPUT(9CH) = OAAH;
3 END;
2 ok:
DO;
3 CALL rq$suspend$task (0, @status); /* suspend myself */
3 END;
2 END first$task;
1 END onetask;

MODULE INFORMATION:

CODE AREA SIZE 0554H 1364D

CONSTANT AREA SIZE = 0023H 35D
VARIABLE AREA SIZE = 000OH 0D
MAXIMUM STACK SIZE = 0040H 64D

1520 LINES READ
0 PROGRAM WARNINGS
0 PROGRAM ERRORS

2-215 s 280047-001

Il1teﬂf) - ‘ AP-221

DICTIONARY SUMMARY:

84KB MEMORY AVAILABLE
20KB MEMORY USED (23%)
OKB DISK SPACE USED

END OF PL/M-86 COMPILATION

2-216

280047-001

Il’ltel® AP-221

APPENDIX C

PL/M-86 COMPILER three task creation; for ap note

iRMX 86 PL/M-86 V2.1 COMPILATION OF MODULE TASKS
OBJECT MODULE PLACED IN TASKS.0BJ
COMPILER INVOKED BY: :LANG:PLM86 TASKS.P86

$1arge rom debug
$title('three task creation; for ap note')
1 tasks: DO;

/***

* This is an example to be used for an ap note on task *
* scheduling.) *
* Cathy Lundberg 04/23/84 *

***/

/* The include for LTKSEL.LIT must be done before any other
* includes, because anything that uses TOKENS must have the
* data type defined for a token. */

$INCLUDE (/RMX86/INC/LTKSEL.LIT)
= $SAVE NOLIST

$INCLUDE (/RMX86/INC/NEXCEP.LIT)
= $save nolist

$INCLUDE (/RMX86/INC/NUC.EXT)
= $SAVE NOLIST
$INCLUDE (/RMX86/INC/BIQS.EXT)
$SAVE NOLIST

/***

* MAINSTASK is the procedure that is called by inittask to create the
three tasks. I0$task outputs to the screen. Widget$task makes
widgets. Supervisor$task controls what I0$task and widget$task are
doing. When widget$task has made X widgets, supervisor$task sends
a message to I0$task saying that X widgets have been made, and the
message is printed by I0$task. Then it sends a message to
main$task to tell it that the tasks are done executing. Main$task
has been waiting at a mailbox for that welcome news, and when it

receives the message, it deletes all three tasks. *
***/

* % % % O % ¥ %
* % ok F * ¥ ¥ %

280 1 main$task: PROCEDURE REENTRANT PUBLIC;
281 2 DECLARE data$seg TOKEN,
I10$task$token TOKEN,

widget$task$token TOKEN,
supervisor$task$token TOKEN,

2-217 280047-001

AP-221

2-218

lnter
main$super$mbx TOKEN,
writemsgmbx TOKEN,
start$write$mbx TOKEN,
done$wr ite$mbx TOKEN,
start$widget$mbx TOKEN,
done$widget$mbx TOKEN;
282 2 DECLARE task$flags. WORD,
status WORD,
i , WORD;
283 2 DECLARE stack$pointer POINTER;
284 2 DECLARE stack$size$300 LITERALLY '300';
285 2 DECLARE priority$level$202 LITERALLY 1202,
286 2 DECLARE priority$level$190 LITERALLY '190';
287 2 DECLARE iors$token SELECTOR;
288 2 DECLARE done$obj TOKEN AT(@iors$token);
289 2 DECLARE iors BASED jors$token STRUCTURE
(status WORD,
unit$status WORD,
actual WORD);
290 2 data$seg = 0; /* task sets up own data segment */
291 2 stack$pointer = 0; /* automatic stack allocation */
292 2 task$flags = 0; /* no floating point */
293 2 CAUSESINTERRUPT (3);
/* create a mailbox to use for 1ett1ng this job know
* that the tasks are done executing. */
294 2 main$super$mbx = rq$create$mailbox (0, @status);
+295 2 IF status <> E$OK THEN GOTO error;
297 2 start$write$mbx = rq$create$mailbox (0, @status);
298 2 IF status <> E$0K THEN GOTO error;
300 2 done$write$mbx = rq$create$mailbox (0, @status);
301 2 IF status <> E$0K THEN GOTO error;
303 2 start$widget$mbx = rq$create$mailbox (0, @status);
304 2 IF status <> E$0K THEN GOTO error;
306 2 done$widget$mbx = rq$create$maiibox (0, @status);
307 2. IF status <> E$OK THEN GOTO error;.
309 2 CALL rq$catalog$object (0, main$super$mbx, @(9 ‘MAINSUPER'),
‘ @status);
310 2 IF status <> E$0K THEN GOTO error; -
312 2 CALL rq$catalog$object (0, start$write$mbx,
©(10, 'STARTWRITE'), @status);
313 2 IF status <> E$OK THEN GOTO error;
315 2 CALL rq$catalog$object (0, done$write$mbx, @(9 'DONEWRITE'),
@status);
316 2 IF status <> E$0OK THEN GOTO error;
318 2 CALL rg$catalog$object (0, start$widget$mbx,
(11, 'STARTWIDGET'), @status),
319 2 IF status <> E$OK THEN GOTO error;
21 2 CALL rq$catalog$object (O, done$w1dget$mbx,
@(10 'DONEWIDGET'), @status);
322 2 IF status <> E$OK THEN GOTO error;
324 2 CAUSESINTERRUPT (3);

280047-001

lI'T'.'el® AP-221

/* Now create the tasks. */ .
325 2 supervisor$task$token = rq$create$task (priority$level$190,
@supervisor$task, data$seg, stack$pointer,
stack$size$300, task$flags, @status);

326 2 IF status <> E$OK THEN GOTO error;

328 2 widget$task$token = rq$create$task (priority$level$202,
@Gwidget$task, data$seg, stack$pointer,
stack$size$300, task$flags, @status);

329 2 IF status <> E$OK THEN GOTO error;

331 2 I0$task$token = rq$create$task (priority$level$202, @IO$task,
data$seg, stack$pointer,
stack$size$300, task$flags, @status);

332 2 IF status <> E$OK THEN GOTO error;

334 2 done$obj = rq$receive$message (main$super$mbx, OFFFFH, O,

@status);

335 2 IF status <> E$0OK THEN GOTO error;

337 2 CAUSESINTERRUPT (3);

338 2 CALL rq$delete$segment (done$obj, @status);

339 2 IF status <> E$0K THEN GOTO error;

341 2 CALL rq$delete$task (IO$task$token, @status);

342 2 IF status <> E$0OK THEN GOTO error;

344 2 CALL rq$delete$task (widget$task$token, @status);

345 2 IF status <> E$0K. THEN GOTO error;

347 2 CALL rq$delete$task (supervisor$task$token, @status);

348 2 IF status <> E$OK THEN GOTO error;

350 2 CAUSESINTERRUPT (3);

351 2 CALL rqg$delete$mailbox (main$super$mbx, @status);

3%2 2 IF status <> E$OK THEN GOTO error;

354 2 CALL rq$delete$mailbox (start$write$mbx, @status);

355 2 IF status <> E$OK THEN GOTO error;

357 2 CALL rq$delete$mailbox (done$write$mbx, @status);

358 2 IF status <> E$OK THEN GOTO error;

360 2 CALL rq$delete$mailbox (start$widget$mbx, @status);

361 2 IF status <> E$OK THEN GOTO error;

363 2 CALL rq$delete$mailbox (done$widget$mbx, @status);

364 2 IF status <> E$OK THEN GOTO error;

366 2 GOTO ok;

367 2 error: /* output to usart for debugging */

DO WHILE 1;

368 3 OUTPUT(9CH) = OAAH;

369 3 END;

370 2 ok:

CALL rq$delete$job (0, @status); /* myself */

371 2 END main$task;

/***
* This is the task which is controlling the other two tasks. It has *

* higher priority than them now, but could have the same priority *

* since it uses the mailboxes to synchronize the tasks. *
***/

2-219 280047-001

AP-221

374
375
376

377
378

379
380

381
383

384
386

387
389

390
392

393

395
396

397

398
400

401

402
404

NN

N

NN N NN

w ww w wN

w W

supervisor$task: PROCEDURE REENTRANT PUBLIC;

DECLARE done$token TOKEN,
main$super$mbx TOKEN, .
start$write$mbx TOKEN,
done$write$mbx TOKEN,
start$widget$mbx TOKEN,
done$widget$mbx TOKEN,
cleanup$token TOKEN,
make$widget$token TOKEN;
DECLARE status , WORD,
i WORD;
DECLARE cleanup$ptr BASED cleanup$token (1) BYTE,
make$widget$ptr BASED make$widget$token (1) BYTE;
DECLARE cleanup$d BYTE DATA(0), '
make$widget$d BYTE DATA(1),
message$d(*) BYTE DATA('Mak ing widget'),
mak ing$widget$d BYTE DATA(1);

DECLARE sendtoio$token TOKEN;
DECLARE sendtoio BASED . sendtoio$token STRUCTURE (
) ‘ mak ing$widget (1) BYTE,
message (13) BYTE);

CAUSESINTERRUPT (3);
main$super$mbx = rq$lookup$ob3ect (0, @(9, 'MAINSUPER'),
OFFFFH, @status);
IF status <> E$OK.THEN GOTO error;
start$write$mbx = rq$lookup$object (0, ©(10, STARTWRITE),
OFFFFH, @status);
IF status <> E$0K THEN GOTO error;

done$write$mbx =" rq$lookup$object (0, @(9, 'DONEWRITE'),
" OFFFFH, @status);
IF status <> E$OK THEN GOTO error;
start$widget$mbx = rq$lookup$object (0, @(11,'STARTWIDGET'),
OFFFFH, @status)
IF status <> E$OK THEN GOTO error;
done$widget$mbx = rq$lookup$ob3ect (0, ©@(10,'DONEWIDGET'),
OFFFFH, Ostatus);
IF status <> E$OK THEN GOTO error;

DO i =1 TO0 10;

CAUSESINTERRUPT (3);

/* Send message to widget task, mailbox STARTWIDGET */

make$widget$token = rq$create$segment (SIZE(make$widget$d),
@status);

IF status <> E$OK THEN GOTO error;

CALL MOVB (@make$widget$d, Gmake$widgetSptr,

SIZE (make$widget$d));
CALL rq$send$message (start$widget$mbx, make$w1dget$token
0, @status);
IF status <> E$OK THEN GOTO error;
CAUSESINTERRUPT . (3);

2-220 : 280047-001

mtel" AP-221

/* Send message to I0 task, mailbox STARTWRITE */

405 3 sendtoio$token = rq$create$segment (32, @status);
406 3 IF status <> E$OK THEN GOTO error;
408 3 CALL MOVB (@message$d, @send$to$io.message,
SIZE(message$d));
409 3 CALL MOVB (@mak ing$widget$d, @sendtoio.mak ing$widget,
SIZE(mak ing$widget$d));
410 3 CALL rg$send$message (start$write$mbx, sendtoio$token, 0,
@status);
411 3 IF status <> E$OK THEN GOTO error;
413 3 CAUSESINTERRUPT (3);
/* Receive message from widget task, mailbox DONEWIDGET */
414 3 done$token = rq$receive$message (done$widget$mbx, OFFFFH,
. 0, @status);
415 3 IF status <> E$0OK THEN GOTO error;
417 3 CAUSESINTERRUPT (3);
418 3 CALL rq$delete$segment (done$token, @status);
419 3 IF status <> E$OK THEN GOTO error;
/* Receive message from I0 task, mailbox DONEWRITE */
421 3 done$token = rq$receive$message (done$write$mbx, OFFFFH, 0,
@status);
422 3 IF status <> E$OK THEN GOTO error;
424 3 CAUSESINTERRUPT (3);
425 3 CALL rq$delete$segment (done$token, @status);
426 3 IF status <> E$OK THEN GOTO error;
/* receiving messages from the tasks, they are done and we *
* are ready to tell them to clean up. */
428 3 END;
/* Send message to widget task, mailbox STARTWIDGET */
429 2 cleanup$token = rq$create$segment (SIZE(cleanup$d), @status);
430 2 IF status <> E$OK THEN GOTO error;
432 2 CALL MOVB (@cleanup$d, @cleanup$ptr, SIZE(cleanup$d));
433 2 CALL rg$send$message (start$widget$mbx, cleanup$token, O,
@status?;
434 2 IF status <> E$OK THEN GOTO error;
436 2 CAUSE$INTERRUPT (3);
/* Send message to I0 task, mailbox STARTWRITE */
437 2 sendtoio$token = rq$create$segment (32, @status);
438 2 IF status <> E$0K THEN GOTO error;
440 2 CALL MOVB (@message$d, @send$to$io.message, SIZE(message$d));
441 2 CALL MOVB (@cleanup$d, @send$to$io.mak ing$widget,
SIZE(cleanup$d));
442 2 CALL rg$send$message (start$write$mbx, sendtoio$token, O,
@status);
443 2 IF status <> E$OK THEN GOTO error;
/* Receive message from widget task, mailbox DONEWIDGET */
445 2 done$token = rq$receive$message (done$widget$mbx, OFFFFH, O,

@status);

2-221 280047-001

intgl’ | aP-221

IF status <> E$OK THEN GOTO error;

446 - 2
448 2 CAUSESINTERRUPT (3);
449 2 CALL rq$delete$segment (done$token @status),
450 2 IF status <> E$0K THEN GOTO error;
/* Receive message from 10 task mailbox DONENRITE */
452 2 done$token = rq$receive$message (done$wr1te$mbx OFFFFH, 0,
@status);
453 2 IF status <> E$OK THEN GOTO. error;
455 2 CAUSESINTERRUPT (3);
456 2 CALL rq$de1ete$segment (done$token, Bstatus);
457 2 IF status <> E$0K THEN GOTO error;
459 2 CAUSESINTERRUPT (3);
/* Send message to main task, mailbox MAINSUPER */
460 2 done$token = rq$create$segment (16, @status);
461 2 IF status <> E$OK THEN GOTO error;
463 2 CALL rq$send$message (main$super$mbx, done$token, 0, @status);
464 2 IF status <> E$OK THEN GOTO error;
466 2 CALL rq$suspend$task (0, @status); /* suspend myself */
467 2 - IF status <> E$0OK THEN GOTO error;
469 2 GOTO ok;
470 2 error: "7 /* output to usart for debugging */
. DO WHILE 1; . ‘ .
471 3 OUTPUT(9CH) = O0A3H;
472 3 END;)
473 2 ok: -

CALL rq$suspend$task (0 @status) /* myself */
END supervisor$task;

/**t******************
* J0$task is a task which is created by main$task. It creates *

* the necessary mailboxes and segments, and then attaches the terminal *
* physically. It then creates a file so that it has a file connection.*
* It opens the file connection, and writes the contents of a buffer to *
* the terminal. Then it closes the file connection, deletes the *
* device connection, and detaches the device. *
**************************f**/
474 1 I10$task: PROCEDURE REENTRANTrPUBLIC;
475 2 DECLARE mbxstoken) TOKEN,
seg$token TOKEN, o
user$token . TOKEN, ‘ _ ‘ ' .

file$connection TOKEN,
device$connection TOKEN,
cleanup$token TOKEN,
done$token. . TOKEN,
make$widget$token TOKEN,
continue$token - TOKEN,
done$write$mbx TOKEN,
start$write$mbx TOKEN;

$2:222 280047-001

Il‘lte'qD " AP-221

476 2 DECLARE status WORD;

477 2 DECLARE hard BYTE;

478 2 DECLARE iors$token TOKEN;

479 2 DECLARE cleanup$ptr BASED cleanup$token (1) BYTE;

480 2 DECLARE sendtoio$token TOKEN;

481 2 DECLARE sendtoio BASED sendtoio$token STRUCTURE (
mak ing$widget (1) BYTE,
message (13) BYTE);

482 2 DECLARE dev$conn$object TOKEN AT (Q@iors$token),
file$conn$object TOKEN AT (@iors$token),
msg$received$obj TOKEN AT (@iors$token),
object TOKEN AT (@iors$token);

483 2 DECLARE iors BASED iors$token STRUCTURE

(status WORD,

unit$status WORD,

actual WORD) ;
484 2 DECLARE buffer BASED seg$token (9) BYTE;
485 2 DECLARE user$object STRUCTURE

(1ength WORD,

count WORD, -

id (1) WORD);

486 2 user$object.length = 1;

487 2 user$object.count = 1;

488 2 user$object.id(0) = OFFFFH;

489 2 hard = OffH; /* request a hard detach of the device */

490 2 CAUSESINTERRUPT (3);

/* Set up the mailboxes for this task to use */
491 2 start$write$mbx = rq$lookup$object (0, @(10, 'STARTWRITE'),
OFFFFH, @status);
492 2 IF status <> E$0K THEN GOTO error;
494 2 done$write$mbx = rq$lookup$object (0, @(9,'DONEWRITE"'),
OFFFFH, @status);
495 2 IF status <> E$0K THEN GOTO error;
/* Receive message from supervisor task, mailbox STARTWRITE.
*/ .
497 2 sendtoio$token = rq$receive$message (start$write$mbx,
OFFFFH, 0, Ostatus);

498 2 IF status <> E$OK THEN GOTO error;

500 2 CAUSESINTERRUPT (3);

501 2 user$token = rq$create$user (Guser$object, @status);

502 2 IF status <> E$OK THEN GOTO error;

504 2 mbx$token = rq$create$mailbox (0, @status);

505 2 IF status <> E$OK THEN GOTO error;

507 2 seg$token = rq$create$segment (48, @status);

508 2 IF status <> E$0K THEN GOTO error; -

510 2 CALL rqaphysical$attach$device (@(2,'T0'), 1, mbx$token,

@status);

2-223 280047-001

intel

AP-221

511
513

NN

514
516

N NN

517

518
520

NN

521
523

524
525
527
528
530
531

NN NN N NN

IF status <> E$OK THEN GOTO error;

dev$conn$object = rq$receive$message (mbx$token OFFFFH, 0,'

@status);
IF status <> E$0K THEN GOTO error;
device$connection = dev$conn$object;

CALL rqacreate$file (user$token, device$connection,

0, 0, 0, 0, 0, mbx$token, @status);

IF status <> E$0K THEN GOTO error;

file$conn$object = rq$receive$message (mbx$token, OFFFFH, O,

@status);
IF status <> E$0OK THEN GOTO error;
f1le$connect1on file$conn$object;

CALL rq$asopen (file$connection, 2, O, mbx$token, Ostatus);

IF status <> E$OK THEN GOTO error;

object = rq$receive$message (mbx$token, OFFFFH, 0, @status);

IF status <> E$OK THEN GOTO error;
CALL rq$delete$segment (object, @status);
IF status <> E$OK THEN GOTO error;

/***
* This is the part of the code that will be repeated. It receives

* the message from second task and writes it to the screen, then
* returns control to the second task.

533
534
535

ww N

536
538

539
541
542
544
545

wWwwww ww

547
548
550

551
553

w W w W w

554 3

555 3

DO WHILE sendtoio.making$widget(0) = 1;
CAUSESINTERRUPT (3);

*
*

*/

CALL rqawrite (f1le$connect1on @send$to$io.message,

size(sendtoio. message),
mbx$token, @status); ’

IF status <> E$OK THEN 60TO error;

object = rq$receive$message (mbx$token, OFFFFH, 0,

@status);

IF status <> E$0OK THEN GOTO error;

CALL rq$delete$segment (object, @status);

IF status <> E$OK THEN GOTO error;

CALL rq$delete$segment (sendto1o$token, @status)

IF status <> E$0K THEN GOTO error;

/* Send message to supervisor task, mailbox DONEWRITE */

done$token = rq$create$segment (16, @status);

IF status <> E$0K THEN GOTO error;

CALL rq$send$message (done$wr1te$mbx, done$token, 0
@status);

IF status <> E$OK THEN GOTO error;

CAUSE$INTERRUPT(3);

/* Receive message from supervisor task, mailbox
* STARTWRITE */

sendtoio$token = rq$receive$message {start$write$mbx,

OFFFFH, 0, @status);
IF status <> E$OK THEN GOTO error;

2-224

280047-001

AP-221

557
558

559
560
562
563
565
566
568
569
571

572
574
575
577
578

580

581
583
584
586
587

589
590

592
593
595
596

598
599
601
602
604
605

606

607
608

609

610
611

w w

NN N ~nN NN NN NN

NN N NN

~n w W N NN NN

CAUSESINTERRUPT (3);
END;

CALL rq$delete$segment (sendtoio$token, @status);
IF status <> E$OK THEN GOTO error;
CALL rqaclose (file$connection, mbx$token, @status);
IF status <> E$OK THEN GOTO error;
object = rq$receive$message (mbx$token, OFFFFH, 0, @status);
IF status <> E$OK THEN GOTO error;
CALL rq$delete$segment (object, @status);
IF status <> E$OK THEN GOTO error;
CALL rgadelete$connection (file$connection, mbx$token,
" @status);
IF status <> E$OK THEN GOTO error;
object = rq$receive$message (mbx$token, OFFFFH, 0, @status);
IF status <> E$OK THEN GOTO error;
CALL rq$delete$segment (object, @status);
IF status <> E$OK THEN GOTO error;

CALL rqaphysical$detach$device (device$connection, hard,
mbx$token, @status);
IF status <> E$OK THEN GOTO error;
object = rq$receive$message (mbx$token, OFFFFH, 0, @status);
~IF status <> E$OK THEN GOTO error;
CALL rq$delete$segment (object, @status);
IF status <> E$OK THEN GOTO error;

CALL rq$delete$mailbox (mbx$token, @status);
IF status <> E$0K THEN GOTO error;

CALL rq$delete$user (user$token, @status);
IF status <> E$OK THEN GOTO error;

CALL rq$delete$segment (seg$token, @status);
IF status <> E$0OK THEN GOTO error;

/* Send message to supervisor task, mailbox DONEWRITE *x/
done$token = rq$create$segment (16, @status);

IF status <> E$0K THEN GOTO error;

CALL rg$send$message (done$wr1te$mbx, done$token, 0, @status);
IF status <> E$0K THEN GOTO error;

CAUSESINTERRUPT(3);.
GOTO ok;
error:
DO WHILE 1;
OUTPUT(9CH) = OAlH;
. END;
ok:

CALL rq$suspend$task (0, @status);
END 10$task; - ‘
widget$task: PROCEDURE REENTRANT PUBLIC;

2-225 280047-001

[}
I'Itd’ AP-221
612 2 DECLARE done$token TOKEN,
continue$token TOKEN,
cleanup$token TOKEN,
start$widget$mbx . TOKEN,
done$widget$mbx - TOKEN,
make$widget$token TOKEN;
613 2 DECLARE status . WORD; . :
614 2 DECLARE cleanup$ptr BASED cleanup$token (1) BYTE,
‘ continuelptr BASED continue$token (1) BYTE,
make$widget$ptr BASED makeswidgetstoken (11) BYTE;
615 2 CAUSESINTERRUPT (3);
616 2 start$widget$mbx = rqSlookupSobJect (0, (11, 'STARTHIDGET)s
OFFFFH, @status),
617 2 IF status < ESOK THEN GOTO error,
619 2 done$widget$mbx = rq$lookup$object (0, ©(10, 'DONEWIDGET'),
, OFFFFH, @status)
620 2 IF status <> E$OK THEN GOTO error; o B
/* Recejve message from supervisor task, mailbox STARTWIDGET */
622 2 uakeSwidgetstoken = rqsrecewvesmessage (start$widget$mbx,
OFFFFH, 0, @status);
623. 2 IF status < ESOK THEN GOTO error;
625 2 DO WHILE makeSwidget$ptr(0) = 1; /* Repeat endlessly.
* Let supervisor task take care of controlling. */
626 3 CAUSESINTERRUPT (3),
627 3 CALL rq$delete$segment (make$widget$token, @status);
628 3 IF status <> E$OK THEN GOTO error;
/* Send message to supervisor task, mailbox DONEWIDGET */
630 3 done$token = rq$create$segment (16, @status);
631 3 IF status <> E$OK THEN GOTO error;
633 3 CALL rq$send$message (done$w1dget$mbx, done$token, 0,
‘@status);
634 3 IF status <> E$OK THEN GOTO error;
636 3 CAUSESINTERRUPT(3),
/* Receive message from supervisor task mailbox STARTWIDGET */
637 3 makeswidgetStcken = rq$receive5message (start$widget$mbx,
OFFFFH, 0, @status);
638 3 IF status <> E$OK THEN GOTO error;
640 3 END; /* do mak ing the widgets */
641 2 CAUSESINTERRUPT (3); o
_ /* cleanup the environment now. */
642 2 CALL rq$delete$segment (make$widget$token, @status);
643 2 IF status <> E$OK THEN GOTO error;
/* Send message to supervisor task, mailbox DONEWIDGET */
645 2 done$token = rq$create$segment (16, Ostatus);
g:g g IF status <> E$OK THEN GOTO error;

CALL rquendimessage (doneSwidget$mbx, donestoken 0,
- @status);

zgza 280047-001 .

intel

AP-221

649
651
652

653

654
655

656

657
658

1

N w w N NN

IF status <> E$0K THEN GOTO error;

CAUSESINTERRUPT(3);

GOTO ok

error:

/* output to usart for debugging */

DO WHILE 1;
OUTPUT(9CH) = 0A2H;

END;
ok:

END widget$task;

END tasks;

MODULE INFORMATION:

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
1796 LINES READ

0 PROGRAM WARNINGS
0 PROGRAM ERRORS

DICTIONARY SUMMARY:

wuounan

84KB MEMORY AVAILABLE
22KB MEMORY USED

OD1BH
00ASH
0000H
0044H

(26%)

OKB DISK SPACE USED
END OF PL/M-86 COMPILATION

.CALL rq$suspend$task (0, Ostatus);

3355D
169D
0D
68D

2-227

280047-001

|nte|® AP-221

APPENDIX D

PLM86 %0.P86 -

PLM86 inittask.P86

LINK86 inittask.0BJ to inittask.Ilnk initcode

LINK86 %0.0BJ to %0.1nkl initcode

1ink86 inittask.LNK, &
%0.LNK1, &
/1ib/ndp87/dcon87.11ib," &
/1ib/ndp87/cel87.11ib, &
/1ib/ndp87/eh87.11ib, &
/1ib/ndp87/8087.11ib, &
/1ib/rmx86/epifl.1ib, &
/1ib/rmx86/ipifl.1ib, &
/LIB/RMX86/RPIFL.LIB, &
/LIB/PLM86/PLM86.LIB &
TO %0.LNK

LOC86 %0.LNK TO %0 &

SEGSIZE (STACK(0)) ADDRESSES(CLASSES(CODE(015000H),DATA(017000H))) NOINITCODE

1ib86

delete /boot/%0(inittask) ’

add %0 to /boot/%0

e

2-228 280047-001

inte" | Ap-221

APPENDIX E

ICU86 V2.0 ONETASK.DEF

Hardware

(CPU) Processor used in the system

(OSP) 80130 Operating System Extension [Yes/No]
(TP) 8253/8254 Timer Port [0-OFFFFH]
(CIL) Clock Interrupt Level [0-7]

(CN) Timer Counter Number [0,1,2]

(CI) Clock Interval [0-OFFFFH msec]

(CF) Clock Frequency [0-OFFFFH khz]

(TPS) Timer Port Separation [0-OFFH]

(NPX) Numeric Processor Extension [Yes/No]
(NIL) NPX Interrupt Level [Encoded]

Interrupts

(MP) 8259A Master Port [0-OFFFFH]

(MPS) Master PIC Port Separation [0-OFFH]
(SIL) Slave Interrupt Levels [0-7/Nonel
(LSS) Level Sensitive Slaves [0-7/None]

Memory

Type : RAM = low, high
Type : ROM = low, high
Type : RAM = 0104H, 1500H
Type : RAM = 1800H, F7FFH

Sub-systems

(UDI) Universal Development Interface [Yes/No]
(HI) Human Interface [Yes/No]

(AL) Application Loader [Yes/No]

(EI0) Extended 1/0 System [Yes/No]

(BIO) Basic I1/0 System [Yes/No]

(SDB) System Debugger [Yes/No]

(DDB) Dynamic Debugger [Yes/No]

(TH) Terminal Handler [Yes/No]

(CA) Crash Analyzer [Yes/No]

BIOS

(ASC) A1l Sys Calls in BIOS [Yes/No]

(ADP) Attach Device Task Priority [1-OFFH]

(TF) Timing Facilities Required [Yes/No]

(TTP) Timer Task Priority [0-OFFH]

(CON) Connection Job Delete Priority [0-OFFH]
(ACE) Ability to Create Existing Files [Yes/No]
(SMI) System Manager ID [Yes/No]

(CUT) Common Update Timeout [0-OFFFFH]

2-229

8086
No
00DOH
0002H
0000H
000AH
04CDH
0002H
No
0008H

00COH
0002H
None
None

No
No
No
No
Yes
Yes
No
No
No

Yes
0081H
Yes

0081H -

0082H
Yes
Yes
03E8H

05/21/84 07:04:32

280047-001

(CST) Control-Sequence Translation [Yes/No] Yes
(0SC) Terminal 0SC Controls [Yes/No] Yes
(TS): Tape Support for iSBC 215G [Yes/No] No
(PMI) BIOS Pool Minimum [0-OFFFFH] 0800H
(PMA) BIOS Pool Maximum [0- OFFFFH] 0800H

8251A Driver

(IIL) Input Interrupt Level [Encoded] 0068H
(OIL) Output Interrupt Level [Encoded] 0078H
(UDP) USART Data Port [0-OFFFFH] : 00DS8H
(USP) USART Status Port [0-OFFFFH] 00DAH
(IRP) 8253 Inrate Port [0-OFFFFH] - 00D4H
(1CP) 8253 Input Control Port [0-OFFFFH] . 00D6H
(IRC) 8253 Input Counter Number [0-2] 0002H
(IRF) Inrate Frequency [0-OFFFFFFFFH] 0012CO00H
(ORP) 8253 Outrate Port [0-OFFFFH] 0000H
(0oCcP) 8253 Output Control Port [0-OFFFFH] 0000H
(ORC) 8253 Output Counter Number [0-2] 0000H

(ORF) Outrate Frequency [0-OFFFFFFFFH] . 00000000H

8251A Unit Information

(NAM) Unit Info Name [1-17 Chars] t0info
(LEM) Line Edit Mode [Trans/Normal/Flush] Normal
(ECH) Echo Mode [Yes/No] Yes
(IPC) Input Parity Control [Yes/No] Yes
(OPC) Output Parity Control [Yes/No] Yes
(0CC) Output Control in Input [Yes/No] Yes
(0SC) 0SC Controls [Both/In/Out/Neither] Both
(DUP) Duplex Mode [Full/Half] ' Full
(TRM) Terminal Type [CRT/Hard Copy] CRT
(MC) Modem Control [Yes/No] ' No
(RPC) Read Parity Checking [See Help/0-3] 0000H
(WPC) Write Parity Checking [See Help/0-4] 0000H
(BR) Baud Rate [0-OFFFFH] 2580H
(SN) Scroll Number [0-OFFFFH] 0017H

251A Device-Unit Information

(NAM) Device-Unit Name [1-13 chars] ‘ T0
(UN) Unit Number on this Device [0-OFFH] - 0000H
(UIN) Unit Info Name [1-17 Chars] t0info

(MB) Max Buffers [0-OFFH] 0000H

System Debugger
(SLV) SDB Interrupt Level [Encoded Leve]/NoneJ 0018H

Nucleus
(ASC) A1l Sys Calls [Yes/No] v Yes
(PV) Parameter Validation [Yes/No] Yes

.(ROD) Root Object Directory Size [0 - OFFOh] 0020H

2-230 280047-001

intel® AP-221

(MTS) Minimum Transfer Size [0-OFFFFH] ‘ 0040H
(DEH) Default Exception Handler [Yes/No/Deb/Use] Yes
(NEH) Name of Ex Handler Object Module [1-32chs]

(EM) Exception Mode [Never/Program/Environ/A11] Never

(SRR) Start Root job from Reset [Yes/No] No

User Jobs

(NAM) Job Name [0-14 characters] onetask
(0DS) Object Directory Size [0-OFFOH] 0010H

(PMI) Pool Minimum [20H - OFFFFH] 0500H

(PMA) Pool Maximum [20H - OFFFFH] 0500H

(MOB) Maximum Objects [1 - OFFFFH] 0020H

(MTK) Maximum Tasks [1 - OFFFFH] 0010H

(MPR) Maximum Priority [0 - OFFH] 0000H

(AEH) Address of Exception Handler [CS:IP] 0000H : 0000H
(EM) Exception Mode [Never/Prog/Environ/A11] Never

(PV) Parameter Validation [Yes/No] Yes

(TP) Task Priority [0-OFFH] 0082H

(TSA) Task Start Address [CS:IP] 1500H:0002H
(DSB) Data Segment Base [0-OFFFFH] 0000H

(SSA) Stack Segment Address [SS:SP] 0000H:0000H
(SS) Stack Size [0-OFFFFH] 1F40H

(NPX) Numeric Processor Extension Used [Yes/No]l No

User Modules
Module : 1-55 characters

ROM code

(BIR) Basic I/0 System in ROM [Yes/No] No
(SIR) SDB in ROM [Yes/No] No
(NIR) Nucleus in ROM [Yes/No] No
(RIR) Root Job in ROM [Yes/No]) No

Includes and Libraries
Path Name [1-45 Characters]
(UDF) UDI Includes and Libs

/rmx86/udi/
(HIF) Human Interface Includes and Libs
/rmx86/hi/
(EIF) Extended 1/0 System Includes and Libs
/rmx86/eios/
(ALF) Application Loader Includes and Libs
/rmx86/1oader/ ‘
(BIF) Basic I/0 System Includes and Libs ' ,
/rmx86/ios/
(SDF) System Debugger Includes and Libs
: /rmx86/sdb/
(THF) Terminal Handler and Dynamic Debugger Includes and Libs
) /rmx86/th/
(NUF) Nucleus and Root Job Includes and Libs
/rmx86/nucleus/

2-231 280047-001

|nte|® AP-221

(ILF) Interface Libraries

/rmx86/11ib/
(CAF) Crash Analyzer Includes and Libs
/rmx86/crash/
(DTF) Deve]opment Tools Path Names
, :lang:
Generate File Names
File Name [1-55 Characters]
(ROP) ROM Code Prefix
none
(RAF) RAM Code File Name .
< /boot/onetask
2-232

280047-001

il'\tel® AP-221

Appendix F: Related publications

Knuth, The Art of Computer Programming, Vol 1, pp
435-453, and exercise 6, p 452 with answer p 597. (c)
1973, 1978, Addison-Wesley Publishing Co.,
Redding, MA

iRMXTM 86 Introduction and Operator’s Reference
Manual For Release 6 (146194-001)

IRMXTM 86 Programmer’s Reference Manual, Part I,
For Release 6 (146195-001)

iRMXTM 86 Programmer’s Reference Manual, Part I1,
For Release 6 (146196-001)

iIRMXTM 86 Installation and Configuration Guide For
Release 6 (146197-001)

2-233

280047-001

AR-286

illtel ARTICLE
| REPRINT
Juné 1983
o(\
N WV
,QQ@ X
@ 0@

| $0‘ 60

O&\ 9\ &

&° Q¥

intel

AR-286 :

Software That Resides in Silicon

Ron Slamp and Jim Person, Intel Corporation

ilicon software sounds like a contradiction in terms. The

casting of software in silicon implies that the software

cannot be changed: yet software does and must change.
For example, it must be possible to alter a microprocessor
operating system so that the system will support different hard-
ware and software designs, as well as accommodate new hard-
ware components and applications. And if the software has
been committed to silicon, then a way must exist to overcome
any bugs that are discovered later.

Design Considerations

Silicon software consists of two kinds of code: on-chip code
and off-chip code (see Figure 1). In a typical case, some of the
off-chip code works closely with the on-chip code, and is devel-
oped as part of the silicon software package. This special off-
chip (or **support’’) code might contain initialization, interface,
system, and version update codes. For silicon software to
tolerate change and be usable in more than one system, the
on-chip code must have three qualities: position independence,
configyration independence and stepping independence.

Position Independence

Because the most advanced microprocessors address at least
1 megabyte of memory, system software that resides in silicon
must work right regardless of its location in memory. Absolute
addresses in the read-only, on-chip code or data restricts the
configuration of the system. Because the on-chip code recog-
nizes only offsets, absolute addresses are unacceptable. On-
chip code cannot presume to know the location of any code or
data, it can only presume to know the structure of the data
which it accesses. It cannot know, except relatively, where in
memory it (or any other code) resides. If the on-chip code is to
be position independent, then any absolute addresses needed
by the on-chip code must be obtained via the processor’s
registers.

Position independence is not a new concept; in fact, it is
rather an obvious requirement for silicon software. Compilers
and relocatable assemblers allow linking and locating, thus
making it easier to produce position-independent code. But
most of these tools can also produce code that is not position
independent. Silicon software developers need to be aware of
the position-independence requirement throughout the design,
implementation and test phases for their products.

Configuration Independence

The second requirement for silicon-resident software is that
the on-chip code must not depend on the underlying hardware
and software configuration of the system. Instead, the on-chip
code must have indirect access to other code or data, and must
then check the run-time data to deduce the system
configuration. ’

VLSI DESIGN March/April 1983

2-235

On-Chip Code Oft-Chip Code
r r]
[| Other Code
| 1
| Suppont
Software

Siicon | |

Software | 1
1 System Memory
! !
| IR

FIGURE 1. Silicon software is divided into on-chip code and oft-
chip code. The off-chip code either directly supports the
on-chip code or contains other applications code.

Because of the read-only nature of silicon software, con-
stants can cause problems when they are located within the
on-chip code. Values representing a hardware device must not
reside on-chip if that device can be located anywhere in the
system, or when values support several devices having similar
functions but different programming interfaces. Indirect access
is necessary for all values that vary depending on the configura-
tion of the system.

Stepping Independence

Stepping independence is an expansion of configuration in;
dependence, and is perhaps the most elusive of the
requirements to be met by software intended for residence in
silicon. A *'step™" is an updated version of the on-chip code. The
on-chip code and the off-chip code must remain compatible,
regardless of changes in either of them. Stepping independence
exists when all versions of the on-chip code work with all
versions of the off-chip code.

If stepping independence is taken into consideration when
the silicon software is developed, then provisions can be made
for the subsequent additions of options without changing the
on-chip code. Otherwise, the static nature of the on-chip code
might make it impossible to add options. Although configura-
tion independence can be designed into software from the start,
stepping independence can be achieved only if a system’s exist-
ing silicon software does not include features that prevent it.

One type of data that is likely to change between steps is the
value representing the size of a data area. If the software is to be
stepping independent, it cannot know the sizes of the data areas
accessed by on-chip code prior to run time. (No problems arise
if on-chip and off-chip code agree on the size of the data area.)

But what happens if the on-chip code 1s not from the same
version of the product as the off-chip code, and if the size of the
data area has changed between versions? If the size of the data
area is defined by a constant in the on-chip code, then that area
might be smaller than the off-chip code expects it to be. This
misunderstanding can lead to disaster as the off-chip code reads
and writes beyond the data area.

210341-005

AR-286

This problem is solved when the on-chip code ascertains the
size of the data area from off-chip data. Thus, the size of the
data areas for the system becomes a configuration option.

Getting the Bugs Out of Silicon Software

Every large program cortains bugs. Designers’ usually

remove bugs by modifying the program to correct the problem,
and then discarding the old program. However, a program in

silicon cannot be modified without stepping the component.
And even so, it is undesirable to discard the outdated
component.

Software designed for silicon should include a facility for
fixing bugs in on-chip code. One way to fix an on-chip bug is to
prevent access to the routine containing the bug. A correct
version of the routine is provided off-chip, and program execu-
tion is forced to branch to the off-chip version whenever the
routine is invoked. Modular programming practices during de-
velopment help reduce the cost of such off-chip duplication.

This on-chip bug-fix works well over time. Each component
step has an associated collection of bug-fix modules. The col-
lection is updated for each new version of the product, as
component steps fix known bugs. During system configuration,
the user specifies which component step is being used; the fixes
for that step are included automatically in the off-chip code.
Because of this facility, one step looks just like another to the
user.

Intel's OSF: A Software Component

The Operating System Firmware (OSF) component consists
of several hardware modules (see Figure 2). These modules
provide two functions that are essential to operating systems:
interrupts and timers. The OSF modules include a Control
Store (16K bytes of fast ROM) to contain the silicon software,
three programmable interval timers, an eight-input program-
mable interrupt controller, a bus interface, control logic, a data
buffer, and address latch logic.

The 80130: The IRMX™ 86 Kernel in Silicon

Intel’s first software-on-silicon product is the 80130. It pro-
vides a functional subset of the iRMX™ 86 Nucleus, which is
the heart of the iIRMX 86 operating system (OS). The iRMX 86
OS is a real-time, multi-tasking, multiprogramming operating
system intended for 16-bit microprocessor designs. The iRMX
86 family of standard software modules includes a nucleus, a
stand-along terminal handler, a stand-alone debugger, an asyn-
chronous I/0 system, a synchronous I/O system, a loader, a
human interface, and options required for real-time applica-
tions. The nucleus manages the creation and dynamic deletion
of all system architectural features (tasks, program environ-
ments, memory segments, data-communication managers,
etc.). It also schedules tasks, based on priority, interrupt man-
agement, memory management, validation of parameters,
management of exceptional conditions, and co-processor
support.

How the 80130 Satisties
the Silicon Software Criteria .

The iRMX 86 Nucleus provides both the on-chip and off-chip
codes needed to implement the operating system. The on-chip
code resides in the 16K-byte ROM space of the 80130. It is the
inain portion of the Nucleus code, and includes the kernel of the

VLSI DESIGN March/April 1983

2-236

Clock o
8086

Program Data
Memory . Memory

|
|

|

mq.mu;m Status ! l
[

interrupt_ Status.

Clock OsF Intercupt
et

CE=g=--

Baud-Rate Delay system
Timer Timer mer

Acknowledge

FIGURE 2.The OSF component works with systems that use the
iAPX 86, 88, 186, or 188 microprocessor. Close coupling of the
CPU and the OSF allows maximum zero-wait-state performance
ot the OSF software. '

On-Chip Code Oft-Chip Code
r 1

User Execution

™ “Support |
| software |

80130 [Request for
Kernel | set-up 0S Service
Control -~ wmem
1- % M

| I

FIGURE 3. Tho ition-ind dent intert lies data
location and mn-ﬂmo vuluos and starts on-chip oxocutlon ot
the software.

operating system and the primitives, which are present in the
basic 80130 configuration. The off-chip code is stored in exter-
nal RAM or ROM. It consists of initialization code, and code
that either cannot be position independent or cannot be known
before a given system is configured.

Position independence is guaranteed if entry to the on-chip
code is possible only through an interface in the off-chip code
that sets up the necessary registers. The off-chip position-
independence interface (see Figure 3) provides an absolute
data location and begins on-chip execution by the silicon-
resident code. All run-time values can be determined based on
the data location. On-chip execution gives the processor a
location in the on-chip code from which other on-chip locations
can be calculated.

It was relatively easy to make the 80130 configuration inde-
pendent, because (like most uperatmg~system kernels) it con-
tains only general-purpose functions. The off- Chlp code
contains all the drivers for particular peripheral chips. The
Interactive Conﬁgurauon Utility integrates the drivers with the
80130. ‘
The interface between the off-chip and on-chip codes
remains stable across component steps. The stepping-
independence interface (see Figure 4) resides on the chip, and
is a map of the on- chlp code. This interface gives the off-chip
code indirect access to all on-chip "pubhcs (e.g., externally
accessible routines, modules, and labels). Itis also a chart that
routes execution to the proper on-chip location. The off-chip
code uses an index of this chart to ‘specify which public should

210341-005

AR-286

On-Chip Code Off-Chip Code
T)
Teupport User
[S T l Extton
=N L
| Oftset NfUp\N
—— |
"L‘-——‘l"""”'_l—/'l
Return M L — J

FIGURE 4. All on-chip accesses are routed through the on-chip
stepping-independence interface, which provides compati-
bility between on-chip and oft-chip code. Becquse the
intart, stays stant, the ext 1 vaf

also stays constant, while the on-chip OFFSET changes to
point to the new location of the on-chip code.

be accessed. The index of a given routine remains the same
across component steps, even though the actual address (offset
into the component) of the public has changed. For different
versions of the on-chip and off-chip codes to work correctly, all
access from outside the component must be routed through the
stepping-independence interface.

The 80150: CP/M-86* in Silicon

Intel's decision to implement CP/M-86 operating system in
silicon (the 80150) raised a different design problem. With the
80130, Intel only had to deal with Intel-designed software. Code
design, implementation, extensions, corrections, support, and
the subsequent effect on the end user were all under Intel's
control. The selection of an independent software system such
as CP/M-86 (a product of Digital Research, Inc.) introduced
new factors into the implementation.

The CP/M-86 Architecture

The CP/M-86 operating system consists of three modules.
The Console Command Processor (CCP) handles command
line processing, and executes built-in utilities. The Basic Disk
Operating System (BDOS) performs logical disk 1/0, including
disk reading and writing, directory management, and sector
allocation. The Basic Input/Qutput System (BIOS), which con-
tains the configuration-dependent code and data, also provides
1/0 for specific peripheral chips.

CP/M-86 is a single-user, single-tasking operating system
written in position-dependent code. The 80150 contains the
entire CP/M-86 operating system: for many configurations, it
requires no off-chip code. Intel's goal was to use the
configuration-independent CCP and BDOS elements as a base,
and add to them a BIOS that supported a variety of peripheral
components but was still configuration independent.

The 80150 BIOS supports the following two functional con-
figuration options:

1. A preconfigured-mode system, for which the system de-
signer needs to do no operating-system code development
or extension.

2. A configurable-mode system , for which the designer makes
a selection from among the Intel drivers supplied, and
makes changes as required to meet hardware needs.

The 80150 BIOS includes drivers for the following chips:

*CPIM-86 1s a trademark of Digatal Research. Inc

VLS! DESIGN March/April 1983

2-237

tozst,® tozsh®
ccp CccP
Code Code
ccp
Data
BDOS
Code
BDOS
Code
BIOS
BDOS Code
Data
cce
BIOS Constants and messages
Code
BDOS
Constants and messages
/\/ Constants and messages
16-byte cold-boot
initialization
+16K
(@) (b)

FIGURE 5. (a) The standard disk-based CP/M-86 module is one
long structure containing both code and data. (b) Intel
reorganized the basic CP/M-86 architecture to tit the operating
system into the 80150 OS firmware component.

8251A Universal Asynchronous Receiver/Transmitter
(UART)

8274 Multi-Protocol Serial Controller (MPSC)

8255A Programmable Parallel Interface (PPI)

8275 Floppy-Disk Controller

8237 Direct Memory Access (DMA) Controller

If the 80150 is used as a co-processor with the iAPX 186 or
the 188, then the on-chip peripherals of these processors
(DMA, timers, interrupt controller, chip-select logic) are also
used. -

Configuration independence is achieved via the Configura-
tion Block (CB), with which whole BIOS drivers, data struc-
tures, and built-in utilities can be selected independently by the
system integrator. ‘

CP/M-86 Transformations

Intel and Digital Research together addressed the issues of
position dependence and intermixed code, data, buffers, and
stacks. The CCP and BDOS were reorganized to consolidate
code and to use the 80150's ROM space efficiently.

CP/M-86 was originally developed using an 8080 model struc-
ture. The use of this structure implied that the code and data
groups would overlap, as they do in the classical 8080-based
CP/M design. Each module contained set-aside buffer areas,
and included separate data stacks. Therefore, all variable areas

210341-008

AR-286

Address-BDOS
Address-BIOS - —
/ Addresses of user entry polms - — — —_— Start of BIOS
CONIN
' ccp / CONOUT
' CONST ~
Constants and Messages / usT ~ ~
ustsT N UON S~
/ AUXIN \\ “J ,
BDOS / AUXOUT \\\ ~ BIOS code
Constants and Messages AUXST N
9 / Disk read ~N
Disk wnite NG
c BIOS Er:mr messages
onstants and Messages ln;)ut/oulpul control blocks
\ CRT .
ccP i Keyboard
Varnables, Butfer \ Printer
and Stack \ Disk
Disk-parameter header
B8DOS \\ Disk-parameter block
Variables, Buffer Disk-skew tables
and Stack
BIOS -
— BIOS stack
Variables, Butter L 16-disk-drive disk-paramelur headers
and Stack N All disk-parameter blocks
Check vectors
\ Allocation vectors
N Track/sector disk buffers
(@) - (d) ©

FIGURE 6..The Configuration Block (CB) recontigures the 80150 for specitic hardware systems. a) 'l‘ho CB connants read

down from the 80150, and variables used at run-time. b) The BIOS portion of the CB
to the 80150 on-chip code, to alter execution paths for different

Ad

c)These

provide

and sldck areas had to be removed from code that would reside
in ROM.

Figure 5(a) shows the general structure of the original CCP
and BDOS. Although a natural separation between c¢ode and
data is clear, Digital Research did not distinguish between
constants, literal messages. and pure scratch storage.

Intel's first step in the transformation of CP/M-86 was to
group all variables within each module. including buffers and
stacks. We then placed this data grouping at the end of the
constants and literal messages for each of the CCP and BDOS
modules.

The new structure (Figure 5(b)) includes all code, constants,
and internal messages. as-well as a 16-byte initial-program- load
(IPL) boot resident in the 16K-byte OSF ROM. We removed all
variables from the body of CP/M-86. and put them in an exter-
nal RAM-based structure.)

Second, the implementation of CP/M via the Intel 8086
“*small model™* (separate code and data segments) rather than
via the 8080 model (intermixed code and data), meant that the
necessary additional variable data space would be available at
8015