

LITERATURE

In addition to the product line handbooks listed below, the INTEL PRODUCT GUIDE (no charge,
Order No. 210846-(03) provides an overview of Intel's complete product lines and customer services.

Consult the INTEL LITERATURE GUIDE (Order No. 210620) for a listing of Intel literature. TO
ORDER literature in the U.S., write oreal! the INTEL LITERATURE DEPARTMENT, 3065 Bowers
Avenue, Santa Clara, CA 95051, (800) 538-1876, or (800) 672-1833 (California only). TO ORDER
literature from international locations, contact the nearest Intel sales office or distributor (see listings in
the back of most any Intel literature).

Use the order blank on the facing page or cal! our TOLL FREE number listed above to order literature.
Remember to add your local sales tax.

1985 HANDBOOKS

Product line handbooks contain data sheets, application notes, article reprints and other design
information.

QUALITY/RELIABILITY HANDBOOK (Order No. 210997-001)
Contains technical details of both quality and reliability programs and principles.

CHMOS HANDBOOK (Order No. 290005-001)
Contains data sheets only on all microprocessor, peripheral, microcontroller and
memory CHMOS components.

MEMORY COMPONENTS HANDBOOK (Order No. 210830-004)

TELECOMMUNICATION PRODUCTS HANDBOOK (Order No. 230730-003)

MICRO CONTROLLER HANDBOOK (Order No. 210918-003)

MICROSYSTEM COMPONENTS HANDBOOK (Order No. 230843-002)
Microprocessors and peripherals-2 Volume Set

DEVELOPMENT SYSTEMS HANDBOOK (Order No. 210940-003)

OEM SYSTEMS HANDBOOK (Order No. 210941-003)

SOFTWARE HANDBOOK (Order No. 230786-002)

MILITARY HANDBOOK (Order No. 210461-003)
Not available until June.

COMPLETE SET OF HANDBOOKS (Order No. 231003-002)
Get a 25% discount off the retail price of $160.

*u.s. Price Only

*U.S. PRICE
$15.00

$12.00

$18.00

$12.00

$18.00

$25.00

$15.00

$18.00

$12.00

$15.00

$120.00

u.s. LITERATURE ORDER FORM
NAME: __________________ TITLE: ______ _

COMPANY:

ADDRESS: ________________________ __

CITY: _____________ _ STATE: ____ ZIP: ___ _

COUNTRY: _________________________ _

PHONE NO.: (__ .!....-... ____________________ _

ORDER NO.

~::!=:*~~I-;:::::I =
~~~~I-;:::::I = 
~::::::!:~~I-~I ~ 
~::!=:*~~I-~I = 
~~~~I-~I ~ 
'----J.--'--'--,J.......,L--JI-...... I ..&........&.--J

POSTAGE AND HANDLING:
Add appropriate postage
and handling to subtotal
10% U.S.
20% Canada

Allow 4-6 weeks for delivery

TITLE QTY. PRICE TOTAL

x

x

x

x

x

x

Subtotal ____ _

Your Local Sales Tax ____ _

Total ____ _

Pay by Visa, MasterCard, Check or Money Order, payable to I ntel Literature. Purchase Orders
have a $50.00 minimum.

o Visa Account No. ____________ _ Expiration ___ _
o MasterCard Date

Signature: __________________________ _

Mail To: Intel Literature Distribution
Mail Stop SC6-714
3065 Bowers Avenue
Santa Clara, CA 95051.

Customers outside the U.S. and Canada should con
tact the local I ntel Sales Office or Distributor listed in
the back of this book.

For information on quantity discounts, call the 800 number below:
TOLL-FREE NUMBER: (800) 548-4725
Prices good until 12/31/85.
Source HB

Mail To: Intel Literature Distribution
Mail Stop SC6-714
3065 Bowers Avenue
Santa Clara, CA 95051.

SOFTWARE HANDBOOK

1985

About Our Cover:
The design on our front cover is an abstract portrayal of the role Intel software plays in

systems development. The heart of systems development is surrounded by a sphere of
peripheral development through which Intel software can guide the designer to reaching

development goals.

Intel Corporation makes no warranty for the use of its products and assumes no
responsibility for any errors which may appear in this document nor does it make a
commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel
Corporation. Use, duplication or disclosure is subject to restrictions stated in
Intel's software license, or as defined in ASPR 7-104.9(a) (9). Intel Corporation
assumes no responsibility for the use of any circuitry other than circuitry
embodied in an Intel product. No other circuit patent.licenses are implied.

No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify'
Intel products:

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, i, i, ICE, iCS, iDBp,
iDIS, 121CE, iLBX, im, iMDDX, iMMX, In site, Intel, intel, inte'BOS, Intelevision,
inteligent Identifier, inteligent Programming, Intellec, Intellink, iOSP, iPDS,
iSBC, iSBX, iSDM, iSXM, KEPROM, Library Manager, MCS, Megachassis,
MICRO-MAINFRAME, MULTI BUS, MULTICHANNEL, MULTI MODULE,
OpeNet, Plug-A-Bubble, PROMPT, Promware, QUEST, QueX, Ripplemode,
RMXl80, RUPI, Seamless, SLD, SYSTEM 2000, and UPI, and the combination
of ICE, iCS, iRMX, iSBC, iSBX, MCS, or UPI and a numerical suffix.

The following are trademarks of the companies indicated and may only be used to
identify products of the owners.

CP/M is a trademark of Digital Research, Inc.

DEC, DEC-10, DEC-20, PDP-11, DECnet, DECwriter, RSTS, and VAX are trade
marks of Digital Equipment Corporation.

MDS is an ordering code only and is not used as a product name or trademark.

MDS@ is a registered trademark of Mohawk Data Sciences Corporation.

Microsoft is a trademark of Microsoft, Inc.

@Intel Corporation, 1984

inter
Table of Contents

CHAPTER 1
OVERVIEW

Introduction , '" '" " 1-1

CHAPTER 2
OPERATING SYSTEMS

Introduction•............................... , , .. ,. 2-1
8080/8085 Microprocessor Family

DATA SHEET
Digital Research Inc. CP/M 2.2 Operating System 2-2

8086/8088/80286 Microprocessor Family
DATA SHEETS

iRMX 86 Operating System. 2-5
iOSP 86, iAPX 86/30, iAPX 88/30, iAPX 186/30 and iAPX 188/30 Support Package. 2-24
iRMX 86 MULTIBUS II Support Package... 2-28

FACT SHEET
iRMX Operating Systems .. 2-31
XENIX 3.0 Operating Systems.. 2-37

APPLICATION NOTES
AP-130 Using Operating Systems Processor's to Simplify Microcomputer Designs. . .. 2-44
AP-174 Optimizing the iRMX 86 Operating System Performance

on System 86/310 and System 86-330 2-95
AP-184 Writing Device Drivers for XENIX 86 and 286 - Task or Trivia? 2-123
AP-221 An Introduction to Task Management in the iRMX 86 Operating System 2-193

ARTICLE REPRINTS
AR-286 Software That Reside~ in Silicon .. 2-234
AR-287 Putting Real-Time Operating Systems to Work. .. 2-240
AR-288 Intel's Matchmaking Strategy: Marry iRMX Operating

System with Hardware 2-252
AR-337 Industrial PC Systems Demand Real Time Operating Systems ' 2-255

CHAPTER 3
TRANSLATORS AND UTILITIES FOR PROGRAM DEVELOPMENT

Introduction. • • . 3-1
MCS-80/85 Mircroprocessor Family

DATA SHEETS
PL/M 80 High Level Programming Language 3-3
FORTRAN 80 8080/8085 ANS FORTRAN 77 Intellec Resident Compiler.. 3-6
Microsoft, Inc. BASIC-80 Interpreter Software Package.. 3-10
Microsoft, Inc. BASIC-80 Compiler Software Package " 3-13
Microsoft Multiplan Spreadsheet ... 3-15
PASCAL-80 Software Package ... 3-23
WORDSTAR Word Processing Software. 3-28

IAPX 86/88/186/188/286 Microprocessor Family
DATA SHEETS

iAPX 86, 88 Software Development Packages for Series II/PDS .. 3-35
86/88/186/188 Software Packages ... ' 3-45
FORTRAN 86/88 Software Package. • . 3-46
Pascal 86/88 Software Package. .. 3-50
PLIM 86/88/186/188 Software Package. 3-53
iC-86 C Compiler for the 8086 .. 3-57
8087 Support Library. 3-61
8087 Software Support Package. 3-65
8089 iOP Software Support Package #407200 .. 3-68
iAPX 286 Software Development Package . 3-71
PL/M 286 Software Package ... 3-76
iSDM 286 iAPX 286 System Debug Monitor. 3-80
80287 Support Library. 3-84
Pascal-286 Software Package 3-87
VAXNMS Resident Software Development Packages for iAPX 286 3-90

iii

VAXNMS Resident iAPX 86/88/186 Software Development Packages ..••............ 3-96
iSDM 86 System Debug Monifor•.............•.......•...•...•... 3-103
iVDI 720 Graphics Virtual Device Interpreter " ...•........................ 3-108
iPLP 720 NAPLPS Interpreter.•.•... 3-112

FACT SHEETS
iRMX Languages•................................. ~.. 3-116
XENIX Languages.•.•••. .•.. ... 3-121

Single Chip Microcontrolier Software
DATA SHEETS

2920 Software Support Package•.......................... 3-125
MCS-48 Diskette-Based Software Support Package 3-136
8051 Software Package•.................................. 3-138
iRMX 51 Real-Time Multitasking Executive 3-147
MCS-96 Software Development Packages•............................... 3-153

CHAPTER 4
DEVELOPMENT PRODUCTIVITY TOOLS

Introduction. ..•.•. 4-1
Program Development and Management Tools

DATA SHEETS
PSCOPE High-Level Program Debugger. 4-2
Program Management Tools•........................... 4-7
ISIS-II Software Toolbox.•.. 4-10
8086 Software Toolbox .. 4-12
AEDIT Text Editor ; 4-14

CHAPTER 5
COMMUNICATION SOFTWARE

Introduction.•.. 5-1
DATA SHEETS .

Mainframe Link for Distributed Development ;.......... 5-2
Intel Asynchronous Communications Link•................... 5-5
iNA 960 Network Software . 5-8
NOS II Electronic Mail. .. • 5-20
iNA 955 iRMX NOS-II Link.. 5-22
iRMX 510 iDCM Support Package•....................... , , . 5-26

CHAPTER 6
SYSTEM AND APPLICATIONS SOFTWARE

Introduction ...•.. ;, 6-1
FACT SHEETS

XENIX Productivity Software Tools... 6-2
Third Party Software for Intel Products. 6-10
Database Information System iDIS 715... 6-13

CHAPTER 7
COMPONENT SOFTWARE

DATA SHEETS
80130/80130-2 iAPX 86/30, 88/30, 186/30, 188/30 iRMX 86
Operating System Processors. • 7-1
80150/80150-2 iAPX 86/50, iAPX 881"1), 186/50, 188/50 CP/M 86
Operating System Processors. 7-23

iv

CHAPTER 8
USER LIBRARY

Introduction ... , 8-1
User Library

Insite User's Program Library .. 8-2
Insite Submittal Requirements.. 8-3
Insite Index of Program. 8-5

APPENDIX A
Software Standards. A-1
Software Support Services A-3
iRUG... A-5

v

Overview 1

SOFTWARE HANDBOOK OVERVIEW

Welcome to the Intel Software Handbook. This handbook is a complete guide to the software products and
services offered by Intel.

Intel's software products follow the open systems strategy that allows Intel products to be purchased at the
customers' desired level of integration. Hence these products are available for component, board, or systems
applications. This open systems philosophy is backed by software standards that insure that the software can
operate at numerous levels of integration. These software standards are described in the appendix.

Software for Intel's products is available both from Intel and from Independent Software Vendors (ISVs). For a
complete listing of software available from ISVs, see the Int,,'i Yellow Pages which is published annually by Intel.
This handbook describes software products that are avail.?,. J3through Intel, consisting of Intel-developed and
ISV-developed products. Products that are offered by Intt::! f)ave all been evaluated and tested to meet Intel's
quality standard. They are backed by an extensive support organization described in the appendix.

Operating Systems 2

inter
OPERATING SYSTEMS

INTRODUCTION

The ability to convert advanced microprocessor technology into solutions for modern day problems begins with
effective and efficient designs for new hardware products and architecture. However, a most critical element In
the success of any microcomputer solution is the availability of a high quality, reliable operating system.
Without this software counterpart, the technological advances cannot be fully implemented, nor their benefits
fully realized.

The classic role of the microcomputer operating system can be outlined by viewing its major functions and
purposes. The functions of the microcomputer operating system are threefold: 1) to manage system resources
and the allocation of these resources to users; 2) to provide automatic functions such as initialization and
start-up procedures; and 3) to provide an efficient, straightforward and consistent method for user programs to
interface with the hardware subsystems, including a simple and friendly human interface. Typically, the
operating systems have one of two main purposes. First, they can be used to develop a new software system
that runs on another machine. These systems are usually large and fairly sophisticated. ISIS and 'XENIX are
examples of such developmental operating systems. The second purpose for microcomputer operating
systems is directed toward the execution of software programs fortargeted application. The largest number of
operating systems are of this type, including the RMX systems. The most critical requirement is for these
systems to be effective and efficient since they are usually small, fast systems dedicated to a specific real-time
application.

This rather neat and simple categorization of microcomputer operating systems, which has been useful in the
past, is quickly becoming blurred. The rapid developments in microcomputer technology have increased the
power and decreased the cost of microcomputers, allowing them to become applicable to the solution of a
broader variety and more sophisticated set of problems. Microcomputer systems must increasingly provide
such capabilities as multiprogramming, multitasking, multiprocessing, networking, as well as scheduling and
priority determination. As systems become more complex, they must still remain responsive to real-time
applications. Operating systems must be able to capitalize on the trends toward placing more and more
software into silicon. This trend is blurring the distinction between the hardware and software subsystems.
Microcomputer systems are also evolving to encompass both the developmental and target application
purposes into one system.

These dramatic changes in technology place additional demands on operating systems. We see operating
systems undergoing changes to consider the need for: 1) modularity and ease of configurability;
2) evolutionary, not revolutionary, path of growth; and 3) standardization in languages, networks and the
operating system itself. The first need is required to allow the system to be a powerful development tool yet
configurable to more specialized applications. The last two items are needed to provide protection of a firm's
software investment, including the option to move toward silicon software.

The operating systems and executives in this section are state-of-the-art microcomputer systems that have
taken to taslt the challenges posed by advanCing microprocessor technology. These operating systems offer
the widest range of solutions with the highest quality and most future-oriented software available today.
Consequently, our customers can select the appropriately optimized option to achieve their price/performance
goals and give them time-to-market advantage over their competitors.

'XENIX is a trademark of Microsoft Corp.

2-1

DIGITAL RESEARCH INC.
CP/M* 2.2 OPERATI'NG SYSTEM

• High-performance, single-console
operating system

• Simple, reliable file system matched to
microcomputer resources

• Table-driven arc;hitecture allows field
reconfiguration to match·a wide variety
of disk capacities and needs

• Extensive documentation covers all
facts of CP/M applications

• More than 1,000 c;ommercially available
compatible software products

• General-purpose subroutines and
table-driven data-access algorithms
provide a truly universal data
management system

• Upward compatibility from all previous
versions

CP/M 2,2 is a monitor control program for microcomputer system and application uses on Intel 8080/8085-
based microcomputer. CP/M provides a general environment for program execution, construction, storage,
and editing, along with the program assembly and check-out facilities,

The CP/M monitor provides rapid access to programs through a comprehensive me management package, The
file subsystem supports a named file structure, allowing dynamic allocation of file space as well as sequential
and rand'om file access, Using this system, a large number of distinct programs can be stored,in both source
and machine-executable form.

CP/M also supports a powerful context editor, Intel-compatible assembler, and debugger subsystems. Nearly all
personal software programs can be bought configured to run under CP/M, several of which are available from
Intel. '

FEATURES

CP/M is logically divided into four distinct modules:

BIOS-Basic I/O System

-Provides primitive operations for access to disk
drives and interface to standard peripherals
(teletype, CRT, paper tape reader/punch, bubble
memory, and user-defined peripherals)

-Allows user modification for tailoring to a particu
lar hardware environment

BOOS-Basic Disk Operating System

-Provides disk management for one to sixteen disk
drives containing independent file directones

-Implements disk allocation strategies for fully
dynamic file construction and minimization of
head movement across the disk

f INTEL CORPORATION 1983 2-2

-Uses less than 4K of. memory allOWing plenty of
memory space for applications programs

-Uses less than 4K of memory

-Makes programs transportable from system to
system

-Entry points include the following primitive
operations which can be programmatically
accessed:

SEARCH

OPEN

CLOSE

RENAME

READ

WRITE

SELECT

Look for a particular disk file by
name

Open a file for further operations

Close a file after processing

Change the name of a particular file

Read a record from a particular file

Write a record to a particular file

Select a particular disk drive for
further operations

SEPTEMBER 1984
ORDER NUMBER:210268·004

DIGITAL RESEARCH, INC.
CP/M 2.2

CCP-Console Command Processor

-Provides primary user interface by reading and
interpreting commands entered through the
console

-Loads and transfers control to transient programs,
such as assemblers, editors, and debuggers

-Processes built-in standard commands including:

ERA Erase specified files

DIR

REN

SAVE

TYPE

List file names in the directory

Rename the specified file

Save memory contents in a file

Display the contents of a file on
the console

TPA-Transient Program Area

-Holds programs which are loaded from the disk
under command of the CCP

-Programs created under CP/M can be checked out
by loading and executing these programs in
the TPA

-User programs, loaded into the TPA, may use the
CCP area for the program's data area

-Transient commands are specified in the same
manner as built-in commands

-Additional commands can be easily defined by the
user

-Defined transient commands include:

PIP Peripheral Interchange Program
-implements the basic media transfer
operations necessary to load, print,
punch, copy, and combine disk files,
PIP also performs various
reformatting and concatenation
functions. Formatting options include
parity-bit removal, case conversion,
Intel hex file validation, subfile
extraction, tab expansion, line number
generation, and pagination

ED Text Editor-allows creation and
modification of ASCII files using
extensive context editing commands:
string substitution, string search,
insert, delete and block move; ED
allows text to be located by context,
line number, or relative position with a
macro command for making extensive
text changes with a single command
line

2-3

ASM Fast 8080 Assembler-uses standard
Intel mnemonics and pseudo
operations with free-format input, and
conditional assembly features

DDT Dynamic Debugging Tool-contains
an integral assembler/disassembler
module that lets the user patch and
display memory in either assembler
mnemonic or hexadecimal form and
trace program execution with full
register and status display;
instructions can be executed between
breakpoints in real-time, or run fully
monitored, one instruction at a time

SUBMIT Allows a group of CP/M commands to
be batched together and submitted to
the operating system by a single
command

STAT Lists the number of bytes of storage
remaining on the currently logged
disks, provides statistical information
about particular files, and displays or
alters device assignments

LOAD Converts Intel hex format to absolute
binary, ready for direct load and
execution in the CP/M environment

SYSGEN Creates new CP/M system disks for
back-up purposes

MOVCPM Provides regeneratibn of CP/M
systems for various memory
configurations and works in
conjunction with SYSGEN to provide
additional copies of CP/M

BENEFITS

-Easy implementation on any computer configura
tion which uses an Intel 8080/8085 Central Pro
cessing Unit (see the CP/M-86 data sheet for CP/M
applications on the iAPX86 CPU)

-iPDS version supports bubble memory option as
an additional diskette drive. Also allows diskette
duplication with a single drive

-Extensive selection of CP/M-compatible programs
allows production and support of a comprehen
sive software package at low cost

-Field programmability for special-purpose operat
ing system requirements

-Upward compatibility from previous versions of
CP/M release 1

AFN-02111C

intel' DIGITAL RESEARCH, INC.
CP/M 2.2

-Provides field specification of one to sixteen logi
cal drives, each containing up to eight megabytes

-Files may contain up to 65,536 records of 128 bytes
each but may not exceed the size of any single disk

-Each disk is designed for 64 distinct files-more
directory entries may be allocated if necessary

SPECIFICATIONS

Hardware Required

-Model 800 with 720 kit

-OS 235 kit or MDS 225 with 720 kit (integral drive
supported except as system boot device)

-iPDS Personal Development System
Optional:

RAM up to64K

-Additional floppy disk drives

-Single density via 201 controller

-Bubble memory and optional Shugart 460 5%"
disk drive for iPDS

Documentatiol'l Package

Title

CP/M 2.2 documentation consisting
of 7 manuals:

An Introduction to CP/M Features
and Facilities

CP/M 2.2 User's Guide
CP/M Assembler (ASM) User's

Guide
CP/M Dynamic Debugging Tool

(DDT) User's Guide
ED: A Context Editor for the CP/M

Disk System User's Manual
CP/M 2 Interface Guide
CP/M 2 Alteration Guide

SUPPORT:

-Individual users are physically separated by user
numbers, with facilities for file copy operations
from one user area to another

-Relative-record random-access functions provide
direct access to any of the 65,536 records of an
eight-megabyte file

Shipping Media

(Specify by Alpha Character when ordering.)

A-single density (IBM 3740/1 compatible)

B-double density

F-double-sided, double density 5%" floppy (iPDS
format)

Order Code Product Description

See Price List CP/M (Control Program for
Microcomputers) is a disk-based
operating system for the Intel
8080/80SS-based systems. CP/M
provides a general environment for
program development, test, execution
and storage. CP/M storage is available
via a comprehensive, named-file
structure supporting both sequential
and random access CP/M support
tools include a Text Editor, a
debugger, and an 8080/8085
assembler.

Intel offers several levels of support for this product, depending on the system configuration in which it is used.
Please consult the price list for a detailed description of the support options available.

An Intel Software License required.
'CP/M is a registered trademark of Digital Research, Inc:
'CP/M-86, MP/M, CP/NET and MP/NET are trademarks of Digital Research, Inc

2-4 AFN·02111C

iRMXTM 86 OPERATING SYSTEM

• Real-time processor management for
time-critical iAPX 86, iAPX 88, iAPX 186,
IAPX 188, and IAPX 286 (Real Address
Mode) applications

• On-target system development with
Universal Development Interface (UDI)

• Configurable system size and function
for diverse application requirements

• All iRMXTM 86 code can be (P)ROM'ed to
support tC?tally solid state designs

• Compatible operating system services
for IAPX 86/30, 88/30, 186/30 and 188/30
Operating System Processors (iOSPTM 86)

• Configured systems for the IAPX 86 and
iAPX 286 processors in Intel integrated
system products (ISYS 86/300 and ISYS
286/300)

• Multi-terminal support with mUlti-user
human interface

• Broad range of device drivers included
for Industry standard MUL TIBUS@
peripheral controllers

• Complete support of 8087 and 80287
processor extension

• Powerful utilities for interactive
configuration and real-time debugging

The iRM)(TM 86 Operating System is an easy-to-use, real-time, multi-tasking and multi-programming software
system designed to manage and extend the resources of iSB(;@ 86, iSBC 88, iSBC 186, iSBC 188, and iSBC 286
Single Board Computers, as well as other iAPX 86, iAPX 88, iAPX 186, iAPX 188, and iAPX 286 (Real Address
Mode) based microcomputers. iRMX 86 functions are available in silicon with the iAPX 86/30, 88/30,186/30
and 188/30 Operating System Processors, in a user configurable software package. iRMX 86 functions are also
fully integrated into the SYSTEM 86/300 and SYSTEM 286/300 Family of Microcomputer Systems. The Oper
ating System provides a number of standard interfaces that allow iRMX 86 applications to take advantage of
industry standard device controllers, hardware components, and a number of software packages developed
by Independent Software Vendors (ISVs). Many high-performance features extend the utility of iRMX 86 Sys
tems into applications such as data collection, transaction processing, and process control where immediate
access to advances in VLSI technology is paramount. These systems may deliver real-time performance and
explicit control over resources; yet also support applications with multiple users needing to simultaneously ac
cess terminals. The configurable layers of the System provide services ranging from interrupt management and
standard device drivers for many sophisticated controllers, to data file maintenance commands provided by a
comprehensive multi-user human interface. By providing access to the standard Universal Development Interface
(UDI) for each user terminal, Original Equipment Manufacturers (OEMs) can pass program development and
target application customization capabilities to their users.

HUMAN INTERFACE

USER APPLICATIONS

iRMXTM VLSI Operating System

The follow,ng are trademarks of Intel Corporat,on and may be used only to deSCribe Intel products Intel. ICE, ,MMX, ,RMX, ,SBC, ,SBX, ,SXM, MUL TIBUS, MULTICHANNEL
and MULTIMOOULE Intet Corporation assumes no responSIbility for the use of any CircUitry other than CirCUitry embodied In an Intel product No other CircUit patent licenses
are Implied Information contained herein supercedes preVIOUsly published speCifications on these deVices from Intel

© INTEL CORPORATION, 1984 2-5
Apnl,1984

Order Number: 210885.002

inter IRMXTM 86 OPERATING SYSTEM

The iRMX 86 Operating System is a complete set of
system software modules that provide the resource
management func.tions n~ecj by computer ,systems.
ThE!,se management functions allow Original Equip
me!1t'Manufactur~rs (OEMs) to best use resOurces
available in microcomputer systems while getting their
products to market quickly, saving time and money.
Engineers are relieved of writing complex system soft
ware and can concentrate instead On their application
software.

This data st!e8t describes the major features of the
iRMX 86 Operating System. The benefits provided to
engineers who write application software and to users
who want to take advantage of improving microcom
puter price and performance are expl~ned. The first
section ouUines the system resource management func
tions of the Operating System and describes several
system calls. The second section gives a detailed over
view of iRMX 86 features aimed at sen/lng both the
iRMX 86 system designer and programmer, as well
as the end users of the product into which the Operat-

, ing System is incorporated.

FUNCTIONAL DESCRIPTION

To, take best ~dvantage of iAPX 86, 88, 186, 188, and
286 (Real Address Mode) microprocessors in applica
tions where the computer is required to perform many
functions simultaneously, the iRMX 86,Operating System
provides a multiprogramming environment in which
many independent, multi-tasking application programs
may run. The flexibility of independent environments
allows application programmers to separately manage '
each application's resources during both the develop
ment and test phases.

The resource management functions of the iRMX 86
System are supported by a nUl)'lber of configurable
software layers. While r:nanyof the functions supplied
by the innermost layer, the Nucleus, are required by
all systems, all other functions are optional. The I/O
systems, for eXample, may be omitted in systems haVing
no secondary storage requirement. Each layer provides
functions that encourage application programmers to
use modular design techniques for quick development
of easily maintainable programs.

The components of the iRMX 86 Operating System pro
vide both implicit and explicit management of system
resources. These resources include proc,essOr sched
uling, up to one megabyte of system memory, up to,
57 independent interrupt sources, 'all input and output
devices, as well as directory and data,files contained
on mass storage devices and accessed by a number
of independent users. Management of these system
resources and methods for sharing resources between
multiple processors and users is discussed in the fol
lowing sections. '

2-6

Process Management

To implement multi-tasking application systems, pro
grammer~ require Ii methoa of managing the differ
entprocesses of their application; and for allowing the
processes to communicate with each other. The
Nucleus layer of the iRMX 86 System provides a num
ber of facilities to efficiently manage these process
es, and to effectively communicate between them.
These facilities are' provided by system calls that
manipulate data structures called task~,,jobs, regions,
semaphores and mailboxes. The iRMX 86 System
refers to these structures as "objects".

Tasks are the basic element of all applications built
on the iRMX 86 Operating System. Each task is an
entity capable of executing C,PU instructions and issu
ing system calls in order to Perform a function. Tasks
are characterized by their register values (including
those of an optional 8087 or 80287 Numeric Proces
sor Extension), a priority between 0 and 255, and the
resources associated with them.

Each iRMX 86 task in the system is scheduled for op
eration by the iRMX 86 Nucleus. Figure 1 shows the
fIVe States in which each task may be placed, and some
examples of how a task may move from one state to
another. The iRMX 86 Nucleus ensures that each task
is placed in the correct state, defined'by the events
in its external environment and by'the task issuing sys
tem calls. Each'task has a priority to indicate its rela
tive importance and 'need to respond to its
environment. The Nucleus guarantees that the highest
priority ready-to-run task is the task that runs.

Jobs are used to define the operating environment of
a group of tasks. Jobs effectively limit the sCQPe of an
application by collecting all of its tasks and other ob
jects into one group. Because the environment for ex
ecution of an application is defined by an iRMX 86 job,
separate applications can be efficiently developed by
separate development teams.

The iRMX 86 Operating System provides two primary
techniques for real-time event synchronization in multi
task applications: regions and semaphores.

Regions are used to restrict access to critical sections
of code and data. Once the iRMX 86 Operating Sys
tem gives a task access to resources guarded by a
region, no other tasks may make use of the resources,
and the task is given protection against deletion and
suspension. Regions are typically used to protect data
structures from being simultaneously updated by mul
tiple tasks.

Semaphores are used to provide mutual exclusion
between tasks. Th~y contain abstract "units" that are
serit between the tasks, and can be used to implement
the cooperative sharing of resources.

Order Number: 210885-002

iRMXTM 86 OPERATING SYSTEM

171

191 lSi

1 (10)

INON EXISTENTI

NOTES:
(1) Task IS created

(2) Task becomes highest Priority ready task

(3) Task gets pre-empted by one with higher Priority

(4) Task calls SLEEP or task walts at an exchange

(5) Task sleep period has ended. message was sent to
walt Ing task or walt has ended

(6) Task calls SUSPEND on self

(7) Task suspended by other than self

(8) Task suspended by other than self or a resume that
did not bring suspension depth to zero

(9) Task was resumed by other task

(10) Task IS deleted

Figure 1. Task State Diagram

Multi-tasking applications must communicate informa
tion and share system resources among cooperating
tasks. The iRMX 86 Operating System assigns a unique
16-bit number, called a token, to each object created
in the System. Any task in possession of this token is
able to access the object. The iRMX 86 Nucleus al
lows tasks to gain access to objects, and hence sys
tem resources, at run-time with two additional
mechanisms: mailboxes and object directories.

Mailboxes are used by tasks wishing to share objects
with other tasks. A task may share an object by send
ing the object token via a mailbox. The receiving task
can check to see if a token is there, or can wait at the
mailbox until a token is present.

Object Directories are also used to make an object
available to other tasks. An object is made public by
cataloging its token and name in a directory. In this
manner, any task can gain access to the object by know
ing its name, and job environment that contains the
directory.

Two example jobs are shown in Figure 2 to demon
strate how two tasks can share an object that was not

2-7

SYSTEM ROOT JOB

JOB A JOB B

e TASK 81

MAILBOX

&
TASK 82

SEMAPHORE

OBJECT DIRECTORY

MAILBOX AM
MAILBOX AN
TASK A3

OBJECT DIRECTORY

TASK 82

OBJECT DIRECTORY

MAILBOX RM!Q!LA
SEMAPHORE RS.LQ.Ll!
TASK 82

. Figure 2. Multiple Jobs Example

known to the programmer at the time the tasks were
developed. Both Job 'A' and Job 'B' exist within the
environment of the 'Root Job' that forms the founda
tion of all iRMX 86 systems. Each job possesses a
directory'in which tasks may catalog the name of an
object. Semaphore 'RS', for example, is accessable
by all tasks in the system, because its name is cataloged
in the directory of the Root Job. Mailbox 'AN' can be
used to transfer objects between Tasks 'A2' and 'A3'
because its token is accessable in the object directory
for Job 'A'.

Table 1 lists the major functions of the iRMX 86 Nucleus
that manage system processes.

Memory Management
Each job in an iRMX 86 System defines the amount
of the one megabyte of addressable memory to be used
by its tasks. The iRMX 86 Operating System manages
system memory and allows jobs to share this critical
resource by providing another object type: segments.

Segments are contiguous pieces of memory between
16 Bytes and 64K Bytes in length, that exist within the
environment of the job in which they were created. Seg
ments form the fundamental piece of system memory
used for task stacks, data storage, system buffers
loading programs from secondary storage, passing in:
formation between tasks, etc.

The example in Figure 2 also demonstrates when in
formation is shared between Tasks 'A2' and 'A3'; 'A2'
only needs to create a segment, put the information
in the memory allocated, and send it via the Mailbox
'AM' using the RQ$SEND$MESSAGE system call (see
Table 1). Task 'A3' would get the message by using
the RQ$RECEIVE$MESSAGE system call. The Figure
also shows how the receiving task could signal the
sending task by sending an acknowledgement via the
second Mailbox 'AN'.

Order Number: 210885·002

iRMXTM 86 OPERATING SYSTEM

Table 1. Process Management System Calls

System Call Function Performed

RQ$CREATE$JOB Creates an environment for a number of tasks and other objects, as well as creating an
initial task and its stack .

. RQ$DELETE$JOB Deletes a job and all the objects currently defined within its bounds. All memer! used
is returned to the job from which the deleted job was created.

RQ$OFFSPRING Provides a list of all the current jobs created by the specified job.

RQ$CATALOG$OBJECT Enters a name and token for an object into the object directory of a job.

RQ$UNCATALOG$OBJECT Removes an object's token and its name from a job's object directory

RQ$LOOKUP$OBJECT Returns a token for the object with the specified name found in the object directory of
the specified job.

ROGETTYPE Returns a code for the type of object referred to by the specified token.

RQ$CREATE$MAILBOX Creates a mailbox with queues for waiting tasks and objects with FIFO or PRIORITY
discipline.

RQ$DELETE$MAILBOX Deletes a mailbox.

RQ$SEND$MESSAGE Sends an object to a specified mailbox. If a task is waiting, the object is passed to the
appropriate task according to the queuing disCipline. If no task is waiting, the object is
queued at the mailbox.

RQ$RECEIVE$MESSAGE Attempts to receive an object token from a specified mailbox. The calling task may
choose to wait for a specified number of system time units if no token is available.

RO$DISABLE$DELETION Prevents the deletion of a specified object by increasing its disable count by one.

RQ$ENABLE$DELETION Reduces the disable count of an object by one, and if zero, enables deletion of that
object.

RO$FORCE$DELETE Forces the deletion of a specified object if the disable count is either 0 or 1.

RQ$CREATE$TASK Creates a task with the specified priority and stack area.

RQ$DELETE$TASK Deletes a task fro.m the system, and removes it from any queues in which it may be
waiting.

RQ$SUSPEND$TASK Suspends t~e operation of a task. If the task IS already suspended, its suspension
depth is increased by one.

RO$RESUME$TASK Resumes a task. If the task had been suspended multiple times, the suspension depth
is reduced by one, and it remains suspended.

RQ$SLEEP Causes a task to enter the ASLEEP state for a specified number of system time Units.

RQGETTASK$TOKENS Gets the token for the calling iask or associated objects within its environment.

RQSETPRIORITY Dynamically alters the priority of the specified task.

RQGETPRIORITY Obtains the current priority of a specified task.

RQ$CREATE$REGION Creates a region, with an associated queue of FIFO or PRIORITY ordering discipline.

RQ$DELETE$REGION Deletes the specified' region if it is not currently in use.

RQ$ACCEPT$CONTROL Gains control of a region only if the region is immediately available.

RQ$RECEIVE$CONTROL Gains control of a region. The calling task may specify the number of system time
units it wishes to wall if the region is not immediately available.

RQ$SEND$CONTROL Relinquishes control of a region.

RQ$CREATE$SEMAPHORE . Creates a semaphore.

RQ$DELETE$SEMAPHORE Deletes a semaphore.

RQ$SEND$UNITS Increases a semaphore counter by the specified number of units.

RQ$RECEIVE$UNITS Attempts to gain a specified number of units from a semaphore If the units are not
immediately available, the calling task may choose to wait.

2-8 Order Number: 210885·002

iRMXTM 86 OPERATING SYSTEM

Each job is created with both maximum and minimum
limits set for its memory pool. Memory required by all
objects and resources created in the job is taken from
this pool. If more memory is required, a job may be al
lowed to borrow memory from the pool of its containing
job (the job from which it was created). In this manner,
initial jobs may efficiently allocate memory to jobs they
subsequently create, without knowing their exact re
quirements.

The iRMX 86 Operating System supplies other memory
managrnent functions to search specific address ranges
for available memory. The System performs this search
at system initialization, and can be configured to ig
nore non-existent memory and addresses reserved for
1/0 devices and other application requirements.

Table 2 lists the major system calls used to manage
the system memory.

Interrupt Management
Real-time systems, by their nature, must respond to
asynchronous and unpredict~ble events quickly. The
iRMX 86 Operating System uses interrupts and the
event-<lriven Nucleus described earlier to give real-time
response to events. Use of a pre-emptive scheduling
technique ensures that the servicing of high priority

events always takes precedence over other system
activities.

The iRMX 86 Operating System gives applications the
flexibility to optimize either interrupt response time or
interrupt response capability by providing two tiers of
Interrupt Management. These two distinct tiers are
managed by Interrupt Handlers and Interrupt Tasks.

Interrupt Handlers are the first tier of interrupt
service. For small simple functions, interrupt handlers
are often the most efficient means of responding to an
event. They provide faster response than interrupt
tasks, but must be kept simple since interrupts (except
the iAPX 86, 88, 186, 188, and 286 non-maskable in
terrupt) are masked during their execution. When ex
tended service is required, interrupt handlers "Signal"
a waiting interrupt task that, in turn, performs more
complicated functions.

Interrupt Tasks are distinct tasks whose priority is as
sociated with a hardware interrupt level. They are per
mitted to make any iRMX 86 system call. While an
interrupt task is servicing an interrupt, interrupts of
lower priority are not allowed to pre-empt the system.

Table 3 shows the iRMX 86 System Calls provided to
manage interrupts.

Table 2. Memory Management System Calls

System Call Function Performed

RQ$CREATE$SEGMENT Dynamically allocates a memory seg(Tlent of the specified size.

RQ$DELETE$SEGMENT Deletes the specified segment by deallocating the memory.

RQGETPOOL$ATTRIBUTES . Returns attributes such as the minimum and maXimum, as well as current size of
the memory In the enVIronment of the calling task's Job.

RQGETSIZE Returns the size (in bytes) of a segment.

RQSETPOOL$MIN Dynamically changes the minimum memory reqUirements of the Job environment
containing the calling task.

Table 3. Interrupt Management System Calls

System Call Function Performed

RQSETINTERRUPT ASSigns an interrupt handler and, If deSired, an Interrupt task to the specified Interrupt
level. Usually the calling task becomes the Interrupt task.

RQ$RESET$INTERRUPT Disables an interrupt level, and cancels the assignment of the Interrupt handler for that
level. If an interrupt task was assigned, it is deleted

RQGETLEVEL Returns the number of the highest priOrity Interrupt level currently being processed.

RQ$SIGNAL$INTERRUPT Used by an Interrupt handler to Signal the associated Interrupt task that an interrupt has
occurred

RQ$WAIT$INTERRUPT Used by an Interrupt task to SLEEP until the associated Interrupt handler Signals the
occurrence of an interrupt.

RQ$EXIT$INTERRUPT Used by an Interrupt handler to relinquish control of the System.

RQ$ENABLE Enables the hardware to accept Interrupts from a speCified level

RQ$DISABLE Disables the hardware from accepllng Interrupts at or below a speCIfied level.

2-9 Order Number: 210885"()02

inter iRMXTM 86 OPERATING SYSTEM

INTERRUPT MANAGEMENT EXAMPLE

Figure 3 illustrates how the iRMX 86 Interrupt System
may be used to output strings of characters to a printer.
In the example, a mailbox named 'PRINT' is used by
all tasks in the system to queue messages to be printed.
Application tasks put the characters in segments that
are transmitted to the printer interrupt task via the PRINT
Mailbox. Once printing is complete, the same interrupt
task passes the messages on to another application
via th~ FINISHED Mailbox SO that an operator message
can be displayed.

Figure 3. Interrupt Management Example

Basic 110 System
The Basic 110 System (BIOS) provides the direct ac
cess to 110 devices needed by real-time applications.
The BIOS allows 110 functions to overlap other system
functions. In this,manner, application tasks make asyn
chronous calls to the iRMX 86 BIOS, and proceed to
perform other activities. When the 110 request must
be completed before an application can continue, the
task waits at a mailbox for the result of the operation.

Some system calls provided by the BIOS are listed in
Table 4.

The Basic 110 System communicates with peripheral
devices through device drivers. These device drivers
provide the System with four basic functions needed
to control and communicate with devices: Initialize 110,
Finish 110, Queue 110, and Cancel 110. Using the de
vice driver interface, users of non-standard devices may
write custom drivers compatible with the 110 System.

The iRMX 86 Operating System includes a number of
device drivers to allow applications to use standard
USART serial communications devices, multiple CRTs
and keyboards, bubble memories, diskettes, disks, a
Centronics-type parallel printer, and many of Intel's
iSBC and iSBXTM device controllers (see Table 8'). If
an application requires use of a non-standard device,
users need only write a device driver to be included
with the BIOS, and access it as if it were part of the
standard system. For most common random-access
devices, this job is further simplified by using standard
routines provided with the System. Use of this techni
que ensures that applications can remain device inde
pendent. ,

Multi-Terminal Support
The iRMX 86 Terminal Support provides line editing
and terminal control capabilities. The Terminal Support
communicates with devices through simple drivers that
do only character 110 functions. DynamiC terminal re
configuration is provided so that attributes such as ter
minal type and line speed may be changed without
modifying the application or the Operating System.
Dynamic configuration may be typed in, generated pro
gral)'lmatically or stored in a file and copied to a termi
nalliO connection.

Table 4. Key BIOS 110 Management System Calls'

System Call Function Performed

RQAATTACH$FILE Creates a Connection to an existing file

RQACHANGE$ACCESS Changes the types of accesses permitted to the specified user(s) for a speCific file

RQACLOSE Closes the Connection to the speCified file so th~t It may be used agalO, or so that
the type of access may be changed.

RQACREATE$DIRECTORY Creates a Named File used to store the names and locations of other Named Files

RQACREATE$FILE Creates a data file With the speCified access rights

RQADELETE$CONNECTION Deletes the Connection to the spe<;lfied file

RQAGET$FILE$STATUS Returns the current status of a speCified file.

RQAOPEN Opens a file for either read, write, or update access.

RQAREAD Reads a number of bytes from the current posi!1on 10 a specified file

RQASEEK Moves the current data pointer of a Named or Physical file

RQAWRITE Writes a number of bytes at the current pOSition In a file

RQ$WAIT$IO Synchronizes a task with the I/O System by causIOg It to walt for 1/0 operation
results

2-10 Order Number: 210885-002

iRMXTM 86 OPERATING SYSTEM

The iRMX 86 Terminal Support provides automatic
translation of control characters to specific control se
quences for each terminal. This translation enables
applications using standard control characters to func
tion with non-standard terminals. The translation re
quirements for each terminal can be stored in terminal
description files and copied to a connection, as des
cribed above.

Disk 1/0 Performance
Figure 4 shows iRMX 86 performance obtained using
the iSBC 215 Winchester Disk and iSBX 218A Dis
kette Controllers under the specified conditions. The
vertical axis is a linear scale of throughput in units of
10,000 bytes per second. The horizontal axis is a
logrithmic scale showing the transfer size for the reads
and writes. Each data pOint on the graph indicates the
time required for a readlwrite request of 64K bytes.
Therefore each transfer size on the horizontal scale
less than 64K was repeated until a total request of 64K
was read or written.

Each device driver can be used to interface to a num
ber of separate and, in some cases, di.fferent devices

- " - w - . - w _

I··
!. ,

. .. _._. - .. -+--
17

16

f---t
I i

15

! I _ .. J
i .. - .. _- .. -14

i
! I ._.!._+. 0 13 z

0

-_ ..

..

(see Figure 5). The iSBC 215 Device Driver, supplied
with the system, is capable of supporting the iSBC 215
Winchester Disk Controller, the iSBC 220 SMD Disk
Controller, and the iSBX 218A Flexible Disk Controller
(when mounted on an iSBC 215 board). Each device
controller may, in turn, control a number of separate
device units. In addition, each driver may cl)ntrol a
number of like device controllers. This capability allows
the use of large storage systems with a minimum of
1/0 system code to write or maintain.

Extended 1/0 System
The iRMX 86 Extended 1/0 System (EIOS) adds a num
ber of 1/0 management capabilities to simplify access
to files. Whereas the BIOS provides users with the basic
system calls needed for direct management of 1/0 re
sources, many users prefer to have the system perform
all the buffering and synchronization of 1/0 requests
automatically. The EIOS allows users to access 1/0
devices without having to write procedures for buffer
ing data, or to specify particular devices with constant
device names.

w _
0

w . - - . -.
..

~ r-"~ .-1--

0 V -- ~

~ ~ I

--:::.-!~~ I
--t-
! A~ :/ ~ rr : '\ it I r

\~1J
,

~~ ~-::
,

i ,
I I, ~

I :
t ... - : i I I 1fI" :

II i I

'-n i
:

u 12 w
I/)

a: 11 w
Il.
I/)

10 w
"" > .,
0

8
g
"" :>
Il.
l:
CI 6 :>
0 a:
l:

""

o

,
~

I

i- ' 1-' . . .

~ ~
.. J ._-- - -L

j A
I

~. - _. , I

lR .. 1... . ..1. : .! ~ ---. --_ ..
, ,

r- ... :.- -: -r:-::....- f- ,
r- 2~6R :.y-/ ~I ! .j-. .. + : -- _. ----

r 86R l/.:~ i ..
286W-:- ~_

r I 86W;"- I
r- I· J1 I --- - .. . -..•.... r --

j i
256 512 1K 2K 4K 8K 16K

TRANSFER SIZE

Figure 4. iRMXTM 86 Disk I/O Performance·

2-11

! I \ 286R
I -.-----. ..

I ... -- ..

I

i
t-- - ... ~ - -

I

!

I I i

32K 64K

Order Number: 210885-002

intJ iRMXTM 86 OPERATING SYSTEM

APPLICATION SOFTWARE

TASK TASK TASK TASK TASK TASK TASK TASK TASK TASK TASK

,SBX'·
218

DEVICE
CONT

ROLLER

PHYSICAL
FILE

DRIVER

.sac·
215

DEVICE
DRIVER

,sac'
215

DEVICE
CONT·

ROLLER

I ,
I
I ,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ,
I
I ,
I
I
I ,
I
I
I
I
I

NAMED
FILE

DRIVER

.ssc·
254

,sac'
254

DEVICE
DRIVER

BUBBLE
MEMORY

FILE 1/4 MBYlE BUBBLE

STREAM
FILE

DRIVER

UN
CONN
DeVICE

UNIT CONN DEVICE UNITS CONNECTED DEVICE UNIT

CONDUITS REPRESENT DEVICE CONNECTIONS
WIRES IN CONDUITS REPRESENT FILE CONNECTIONS

Figure 5. Device Driver and Controller Relationships

By performing device buffering automatically, the
iRMX 86 EIOS optimizes accesses to disks and other
devices. Often, when an application task asks the Sys
tem to READ a portion of a file, the System is able to
respond immediately with the data it has read in ad
vance of the request. Similarly, the EIOS will not de
lay a task for writing ctata to a device unless it is
specifically told to, or if its output buffers are filled.

Logical file and device names are provided by the
EIOS to give applications complete file and device in
dependence. Applications may send data to the 'line
printer' (:LP:) without needing to know which specific
device will be used as the printer. This logicill name
may, in fact, not be a printer at all, but it could be a disk
file that is later scheduled for printing.

The EIOS uses the functions provided by the BIOS to
synchronize indMduaillO requests with results returned
by device drivers. Most EIOS system calls are similar
to the BIOS calls, except that they appear to suspend
the operation of the calling task until the I/O requests
are completed. .

Two new primitives have been added to the EIOS.
These are: RQ$HYBRID$DETACH$DEVICE and
RQGETLOGICAL$D~VICE$STATUS.

RQ$HYBRID$DETACH$DEVICE allows a programmer
to temporarily detach a device physically so it can be
temporarily attached another way.

RQGETLOGICAL$DEVICE$STATUS provides infor
mation about a logical device: the physical device name,
file driver, number of connections to the device, and
the owner of the device.

File Management
The iRMX 86 Operating System provides three distinct
types 0' files to ensure efficient management of both
program and data files: Named Files, Physical Files,
and Stream Files. Each file type provides access to
I/O devices through the standard device drivers men
tioned earlier. The same device driver is used to ac
cess physical and named files for a given device.

NAMED FILES

Named files allow users to access information on se
condary storage by referring to a file with its ASCII
name. The names of files stored on a device are stored
in special files called directories. As directories are
themselves named files, the iRMX 86 File System allows
directories to contain the names of other directories.
Figure 6 illustrates the resulting hierarchical file struc
ture. This structure is useful for isolating file names
to particular user applications, and for tailoring system
data to the requirements of users and applications
sharing storage devices. Using different branches on
the directory tree, different users do not have to coor
dinate in naming their files to ensure unique names.

2-12 Order Number: 210885-002

inter iRMXTM 86 OPERATING SYSTEM

SIM SIM· TEST OBJECT
SOURCE OBJECT

BATCH-1 BATCH·2

I = DIRECTORY

'-----'

/\ = NAMED
~ DATA FilE

Figure 6. Hierarchical Named File Structure

Whenever a request is made involving a file name, the
System will search the appropriate directory in order
to find the necessary information about the file's size,
access rights, and specific location on the storage
device.

The iRMX 86 BIOS uses an efficient format for writing
the directory and data information into secondary stor
age. This standard iRMX 86 format is fully compatible
with the ISO Media standard, and other Intel systems
such as the iRMX 88 Operating System. This structure
enables the system to directly access any byte in a file,
often without having to do additional I/O to access
space allocation information. The maximum size of an
individual file is 4.3 billion bytes.

EASE OF ACCESS

The hierarchical file structure is provided to isolate and
organize collections of named files. To give operators
fast and simple access to any level within the file tree,
an ATTACHFILE command is provided. This command
allows operators to create a logical name to a point in
the tree so that a long sequence of characters need
not be typed each time a file is referred to.

ACCESS PROTECTION

Access to each Named File is protected by the rights
assigned to each user by the owner of the file. Rights
to read, append, update, and delete may be selectively

2-13

granted to other users of the system. In general, users
of Named Files are classified into one of two categories:
User and World. Users are used when different pro
grammers and programs need to share information
stored in a file. The World classification is used when
rights are to be granted to all who can use the system.

PHYSICAL FILES

Physical Files allow more direct device access than
Named Files. Each Physical File occupies an entire de
vice, treated as a single stream of individually access
able bytes. No access control is provided for Physical
Files as they are typically used for such applications
as driving a printing device, translating from one device
format to another,. driving a paper tape device, real
time data acquisition, and controlling analog mech
anisms.

STREAM FILES

Stream Files provide applications with a method of us
ing iRMX 86 file management methods for data that
does not need to go into secondary storage. Stream
Files act as direct channels, through system memory,
from one task to another. These channels are very use
ful to programs, for example, wishing to preserve file
and device independence allowing data sent to a printer
one time, to a disk file another time, and to another
program on a different occasion.

Order Number: 210885-002

inter iRMXTM 86 OPERATING SYSTEM

BOOTSTRAP AND APPLICATION LOADERS

Two utilities are supplied with the System to load pro
grams and data into system memory from secondary ,
storage devices:

The iRMX 86 Bootstrap Loader can be configured to
a size of less than 1 K Bytes of P(ROM), and is typically
used to load the initial system from the system disk
into memory, and begin its execution. Error reporting
and debug switch features have been added to the Boot~
strap Loader. When the Bootstrap Loader detects er
rors such as: file does not exist or device not ready,
an error message is reported back to the user, The de
bug switch will cause the Bootstrap Loader to load the
system but not begin its execution. Instead the Boot
s~rap Loader will pass control to the monitor at the first
instruction to be executed by the system.

The Application Loader is typically used by application
programs already running in the system to load addi
tional programs and data from any secondary storage
device. The Human Interface layer, for example, uses
the Application Loader to load the non-resident Human
Interface Commands. The Application Loader is capable
of loading both relocatable and absolute code as well
as program overlays.

Human Interface
The flexibility of the interface between computer con
trolled machines and their users often determines the
usability and ultimate success of the machines. Table
11 lists iRMX 86 Human Interface functions giving users
and applications simple access to the file and system
management capabilities described earlier. The pro
cess, interrupt, and memory managment functions de
scribed earlier, are performed automatically for Human
I nterface users.

MULTI-USER ACCESS

USing the multi-terminal support provided by the BIOS,
the iRMX 86 Human Interface can support several si
multaneous users. The real-time nature of the system
is maintained by providing a priority for each user, and
using the event-driven iRMX 86 Nucleus to schedule
tasks. High-performance interrupt response is guaran~
teed even while users interact with various application
packages. For example, multi-terminal support allows
one person to be using the iRMX 86 Editor, while an
other compiles a FORTRAN 86 or PASCAL 86 program,
while several others load and access applications.

Each terminal attached to the iRMX 86 multi-user Hu
man Interface is automatically associated with a user,
a memory pool, and an initial program to run when the
terminal is connected. This association is made using
a file that may be changed at any time. Changes are
effective the next time the system is initialized.

The initial program specified for each terminal can be
a special application program, a custom Human Inter-

2-14

face, or the standard iRMX 86 Command Line
Interpreter (CLI). For example, you may choose to use
the Microsoft Basic Interpreter as this initial program.
After system start-up, each terminal user would be able
to run the interpreter without asking for it to be loaded.
From the BASIC interpreter, an operator, for example,
could run a data collection program, written i,; BASIC,
that communicates with several laboratory instruments,
and prints charts and reports based on certain test re
sults. When finished entering, changing, or running
a BASIC program, the terminal would remain in BASIC
for the next user.

Specifying an application program as a terminal's
initial program makes the interface between operators
and the computer system much simpler. Each operator
need only be aware of the function of a particular appli
cation; not needing to interact with any unfamiliar func
tions also available on the application system.

Specifying the standard iRMX 86 Human Interface CLI
as the initial program enables users of the terminals
to access all iRMX 86 functions. This CLI makes it easy
to manage iRMX 86 files, load and execute Intel-supplied
and custom programs, and submit command files for
execution.

FEATURE OVERVIEW
The iRMX 86 Operating System is well suited to serve
the demanding needs of real-time applications execut
ing on complex microprocessor systems. The iRMX 86
System also provides many tools and features needed
by real-time system developers and programmers. The
following sections describe features useful in both the
development and execution environments. The descrip
tion of each feature outlines the advantages given to
hardware and software engineers concerned with over
all systemcost,expandability with custom and industry
standard options, and long-term maintenance of iRMX
86-based systems. The development environment fea
tures also describe the ease with which the iRMX 86
Operating System can be incorporated into overall
system designs.

Execution Environment Features

REAL-TIME PERFORMANCE

The iRMX 86 Operating System is designed to offer
the high performance, multi-tasking functions required
by real-time systems. Designers can make use of the
latest VLSI devices such as the 8087 or 80287 Numeric
Processor Extension, and the 80130 Operating System
Firmware Component to improve their system cost/per
formance ratio or the iMM)(TM 800 MULTIBUS® Message
Exchange software package to divide and coordinate
various system activities among multiple processors.
Typical iRMX 86 system performance characteristics
are shown in Table 5.

Order Number: 210885-002

iRMXTM 86 OPERATING SYSTEM

Many real-time systems require high performance op
eration. To meet this requirement, all of iRMX 86 can
be put into zero wait-state P(ROM). This approach elimi
nates the possibility of disk access times slowing down
performance, while allowing system designers to take
advantage of high performance memory devices.

CONFIGURABILITY

The iRMX 86 Operating System is configurable by sys
tem layer, and by system call within each layer. In addi
tion all the 110 port addresses used by the System are
configurable by the user. This flexibility gives designers
the freedom to choose configurations of hardware and
software that best suit their size and functional
requirements. Two example configurations are shown
in Figure 7.

Table 5. iRMXTM Real-Time Performance
Using iSBC® 86/30 and iSBC® 286/10

Single Board Computers

ISBC"'86/30 ISeC'" 28611 0
Real-Time Execution Execution
Function Time (msec) Time (msec)

Suspend Task 1.02 0.83

I nterrupt Latency 0.29 0.20
(to handler) (Max) (Max)

Interrupt Latency 0.02 0.03
(to handler) (Typical) (Typical)

Context Switch Caused 0.84 0.78
By Interrupt (Max) (Max)

Send Message 0.32 0.25
(no context switch)

Send Message 0.58 0.49
(with context switch)

Send Control 0.21 0.16
(no context switch)

Send Control 0.64 0.54
(with context switch)

Receive Control 0.26 0.19
(no waiting)

Context switch time is the time between executing in the
context of a task, and the first instruction to execute in the
context of another task.
The execution times shown in Column 2 were measured us
ing an 8MHz iSBC Single Board Computer, 256K on-board
RAM, and all program and data stored in on-board RAM.
The execution times shown in Column 3 were measured us
ing a 5MHz iSBC 286/10 Single Board Computer, no on
board RAM, and all program and data stored in LBX RAM.

2-15

RAM

PROM

r OPERATOR
CONSOLE

APPLICATIONS

810S

RAM f

PROM

SYSTEM BUFFERS
AND OATA

APPLICA nON CODE

1
COMMON I UTILITIES

HUMAN INTERFACE

EIOS

I
WINCHESTER

I DISK
DRIVER

NUCLEUS

BOOTSTRAP LOADER

BUILDING SECURITY
SYSTEM

SYSTEM
BUFFERS

DATA

16K BYTES
APPLICA liON CODe

BACKGrOUND -1
APPliCATION

FLOPPY
DISK

DRIVER

SK BYTES NUCLEUS CODE

.asp 86 INTERFACE

801300SF

DATA COMMUNICATION
CONTROLLER

Figure 7. Typical iRMXTM 86 Configuratio~s

Most configuration options are selected during system
design stages. Others may be selected during system
operation. For example, the amount of memory devoted
to queues within a Mailbox can be specified at the time
the Mailbox is created. Devoting more memory to the
Mailbox allows more messages to be transmitted to
other tasks without having to degrade system perform
ance to allocate additional memory dynamically.

The chart shown in Table 6 indicates the actual memory
size required to support these different configurations
of the iRMX 86 System. Systems requiring only Nucleus
level functions may require no more than 13K bytes
for the Operating System. (Use of the iAPX 86/30 re
quires only 4K bytes of RAM, 7K bytes of initialization
code in EPROM and the 16K bytes of code in the 80130.)
Other applications, needing 110 management functions,
may select portions of additional layers that fit their
needs and size constraints.

This configurability also applies to the Terminal Hand
Ier, Dynamic Debugger, and System Debugger. The
Terminal Handler provides a serial terminal interface
in a system that otherwise doesn't need an 110 system.
Either one of the debuggers need to be included only
as debugging tools (usually only during system devel
opment).

Order Number: 210885-002

iRMXTM 86 OPERATING SYSTEM

Table 6. IRMXTM 86 Configuration Size· Chart

System Layer Min. ROMabie Max. ,Data

Bootstrap Loader

Nucleus

BIOS

Application Loader

EIOS

Human Interface

UDI

Terminal Handler

System Debugger

Dynamic Debugger

Human Interface Commands

Interactive Configuration Utility

* Usable by System after bootloadln9

MUL TI·PROCESSING

The resources provided by a single processor are often
not enough to perform certain functions. With the stand
ard interfaces provided by the iMMX 800 MULTIBUS

, Message Exchange package, the iRMX 86 Operating
System supports a loosely-coupled multi-processing
environment. Task running on one processor may com
municate with tasks running on other processors, even
if they operate under different operating systems. The
iMMX 800 software is capable of sending messages
over the MUL TlBUS to tasks operating under either
the iRMX 88 Executive, or the iRMX 86 Operating Sys
tem. Using this message exchange mechanism, appli
cations may increase their system performance quite
easily, improve overall interrupt response, gain access
to the iSBC® 550 Ethernet Controller, and leave room
for future product enhancements"

MULTI·USER ACCESS

Many real-time systems must provide a variety of users
access to system control functions and collected data.
The iRMX 86 System provides easy-ta-use support for
applications to access multiple terminals. II also en
ables multiple and different users to access different
applications concurrently.

FigLOre 8 illustrates a typical iRMX 86 application si
multaneously supporting multi-terminal data collection
and real-time environments. Shown is a group of ter
minals used by machinists on a shop floor to commu
nicate with a job management program, a building
security system that constantly monitors energy usage
requirements, a system operator console capable of
accessing all system functions, and a group of termi
nals in the Production Engineering department used
to monitor job costs while developing new device con
trol specifications instructions. The iSBC,544 Intelligent
Terminal Interface supports multiple user terminals
without degrading system performance to handle char
acter 110.

Size

1K

10.5K

26K

4K

10.5K

22K

8K

3K

20K

28.5K

Size

1.5K

24K

78K

10K

12.5K

22K

8K

3K

20K

28.5K

Size

6K*

2K

1K

2K

1K

15K

0

O.3K

1K

1K

116K

308K

Q 0

6 fEE. TERM',NALS

.SBe 534 1-0 -
DATA

COLLECTION
TERMINALS

Figure 8. Multi·Terminal and Multi·User
Real-Time System

EXTENDABILITY

The iRMX 86 Operating System provides three means
of extensions. This extendability is essential for support
of OEM and volume end user value added features.
This ability is provided by: user-defined operating sys
tem calls, user-defined objects (similar to Jobs, Tasks,
etc.), and the ability to add functions later in the pro
duct life cycle. The modular, layered structure. of the
System easily facilitates later additions to iRMX 86 ap
plications. User-defined objects are supported by the
functions listed in Table 7.

Using standard iRMX 86 system calls, users may define
custom objects, enabling applications to easily mani
pulate commonly used structures as if they were part
of the original operating system.

2-16 Order Number: 210885·002

iRMXTM 86 OPERATING SYSTEM

Table 7. User Extension System Calls

System Call Function Performed

RQ$CREATE$COMPOSITE Creates a custom object built of previously defined objects.

RQ$DELETE$COMPOSITE Deletes the custom object, but not the vanous objects from which It was built

RQ$INSPECT$COMPOSITE Returns a list of Token Identifiers for the component objects from which the 2jJeciiled
composite object is bUilt. I

RQ$AL TER$COMPOSITE Replaces a component object of a compOSIte object.

RQ$CREATE$EXTENSION Creates a new type of object and assigns a mailbox used for collecting these objects
when they are deleted.

RQ$DELETE$EXTENSION Deletes an extension definition.

EXCEPTION HANDLING

The System includes predefined exception handlers
for typical 110 and parameter error conditions. The error
handling mechanism is both configurable and extend
able.

SUPPORT OF STANDARDS

The iRMX 86 Operating System supports the many
hardware and software standards needed by most ap
plication systems to ensure that commonly available
hardware and software packages may be interfaced
with a minimum of cost and effort. The iRMX 86 System
supports the iSBC family of products built on the Intel
MUL TIBUS (IEEE Standard 796), and a number of
standard software interfaces such as the UDI and the
common device driver interface (See Figure 9). The
procedural interfaces of the UDI are listed in Table 9.

The Operating System includes support for the pro
posed IEEE 80-bit extended real-variable format of
the 8087 Numeric Data Processor, and the IEEE 796
(MUL TIBUS) hardware interface. Other standards such

as the iMMX 800 MUL TIBUS Message Exchange, and
an Ethernet communication interface are supported
by optional software packages available to run on the
iRMX 86 System.

SPECTRUM OF CPU PERFORMANCE

The iRMX 86 Operating System supports a broad range
of Intel processors. In addition to support for iAPX 86
and 88 based systems, the iRMX 86 system has been
enhanced to support iAPX 186, 188, and 286 (Real Ad
dress Mode)-based Systems. This new support ena
bles the user to take advantage of the faster speed
and higher performance of Intel's 286 based micro
processors such as the iSBC 286/10 single board
computer. By chOOSing the appropriate CPU, designers
can choose from a wide range of performance options,
without having to change application software.

COMPONENT LEVEL SUPPORT

The iRMX 86 System may be tailored to support specific
hardware configurations. In addition to system memory,

• ElHEANET IS a ,~ .. t .. "d Itademark <>1 X"ro' Corp

Figure 9. iRMXTM 86 Standard Interfaces

2-17 Order Number: 210885·002

iRMXTM 86 OPERATING SYSTEM

only an iAPX 86, iAPX 88, iAPX 186, iAPX 188, or iAPX .
286 microprocessor, an 82591\ Programmable Interrupt
Controller (PIC), and either an 8253, 8274,.or 82530
Programmable Interval Timer (PIT) are required as
follows:

• iAPX 86 and iAPX 88 systems need either:
- 8253 PIT and 8259A PIC (master) or
- 80130 firmware (PIC is master)

• iAPX 186 and iAPX 188 systems where 186 PIC is
slave, needs either:
- 8253 PIT and 8259A PIC (master) or
- 80130 firmware (PIC is master)

where 186 PIC is master:

- Uses 186 PIT for the system clock; no external
PIT is needed

- Can use either
186 PIC (master) only or
8259A180130 PIC (slave)

• iAPX 286 systems need
- 8253 PIT and 8259A PIC.

Alternatively, the iRMX 86 Operating System may be
used in conjunction with the 80130 Operating System
Firmware Component that not only provides these hard
ware functions, but eliminates the need for approxi
mately 16K bytes of the i.RMX 86 Nucleus code (see
Figure 7). For systems requiring extended mathematics
capability, an 8087'or 80287 Numeric Data Processor
may be added to perform these functions up to 100 times
faster than equivalent software. For applications servic
ing more than 8 interrupt sources, additional 8259A's
may be configured as slave controliers.

BOARD LEVEL SUPPORT

The iRMX 86 Operating System includes device drivers
to support a broad range 01 MUL TIBUS device con
trollers. The particular boards and types of devices
supported are listed in Table 8. The device controllers
all adhere to industry standard electrical and functional
interfaces.

In addition to the on-CPU board terminal drivers, the
iRMX 86 BIOS includes two iSBC board-level device
drivers to support multiple terminal interfaces:

The iSBC 544 Intelligent Four-Channel Terminal In
terlace Device Driver provides support for multiple
controllers each supporting up to four standard RS232
terminals. The iSBC 544 drivertakes advantage of an
on-board 8085 processor to greatly reduce the system
processor time required for terminal 1/0 by.locally
managing input and output bulfers. The iSBC 544
firmware provided with the operating system can off
load the system CPU by as much as 75% when do
ing character outputting.

The iSBC 534 Four-Channel USART Controlier Device
Driver also provides support lor multiple controlier

2-18

boards each supporting up to four standard RS232
terminals.

The new RAM disk feature in iRMX 86 makes a por
tion of the memory address space look like a disk drive
to the 1/0 system.

Table 8. Supported Devices

ISBC@ Device
Description

ContrOller

iSBC@ 86,88 Serial Port to CRT, Parallel Port to
Centronics-type Printer, Interval Timer
and I nterrupt Controller.

iSBC''' 186/03 Small Computer System Interface
(SCSI) Supporting All Random
Access "Extended Standard"
SCSI/SASI hard disk controllers.

iSBC@ 204 Single Density Diskette.
iSBC@ 206 Cartridge-Type Hard Disk.
iSBC@ 208 Single & Double Density, Single &

Double Sided, 8" & 5.25" Diskettes.

iSBC@ 215(G) Standard Winchester Disks.
iSBX@ 218 Single or Double denSity, Single or

double sided, 8-inch diskettes
(when used on an·iSBC 215(G)).

iSBX@ 218A Single or Double Density, Single or
Double Sided, 8" & 5.25" Diskette
(when used on an iSBC 215G Win·
chester Controller).

iSBC@ 220 Standard Storage Module Board.
iSBX@ 251 Bubble ·Memory Multimodule Board.
iSBC@ 254(S) Bubble Memory Board.
iSBX@ 351 1-Channel Serial Port to CRTs,

Modems.
iSBC@ 534,544 4-Channel Serial Ports to CRTs,

Modems.

ISBXTM 270 Black and White CRTs and full
ASCII keyboards.

NOTE: (G) = optional iSBC 215, iSBC 215B,
or iSBC 215G

(S) = optional iSBC 254 or iSBC 254S

Development Environment Features
The iRMX 86 Operating System supports the efficient
utilization of programming time by providing important
tools for program development. Some of the tools nec
essary to develop and debug real-time systems are in
cluded with the Operating System. Others, such as
language compilers, are available from Intel and from
leading Independent Software Vendors.

LANGUAGES

The iRMX 86 Operating System supports 31 standard
system calis known as the Universal Development In
terface (UDI). Figure 9 shows the iRMX 86 standard
interfaces to many compilers and language translators,
including the iAPX 86 and 88 Macro Assembler; the
PASCAL 86/88, PUM 86/88, FORTRAN 86/88 and C86
compilers available from Intel. Also included are other

Order Number: 210885·002

iRMXTM 86 OPERATING SYSTEM

Intel development tools, language translators and utili
ties available from other vendors. Any application that
ran on the iRMX 86 Release 5 Universal Runtime Inter
face (URI) will run on the iRMX 86 Release 6 UOI. The
full set of UOI calls (which includes the URI system
calls) is required to run a compiler.

These standard software interfaces (the UOI) ensure
that users of the iRMX 86 Operating System may trans
port their applications to future releases of the iRMX 86
Operating System and other Intel and independent
vendor software products. The calls available in the
UOI are shown in Table 9.

Table 9. UOI System Calls

System Call Function Performed

Memory Management:
DQ$ALLOCA TE Creates a Segment of a specified size

DQ$FREE Returns the specified segment to the System
-

DQGETSIZE* Returns the size of the specified Segment.

DQ$RESERVE$IO$MEMORY* Reserves memory to OPEN and ATTA'CH files

File Management:
DQ$ATTACH Creates a Connection to a specified file.

DQ$CHANGE$ACCESS* Changes the user access rights associated With a file or directory.

DQ$CHANGE$EXTENSION Changes the extension of a file nam,e In memory.

DQ$CLOSE Closes the specified file Connection.

DQ$CREATE Creates a Named File.

DQ$DELETE Deletes a Named File,

DQ$DETACH Closes a Named File and deletes ItS Connection

DQ$OPEN Opens a file for a particular type of access,

DQGETCONNECTION$STATUS* Returns the curr!!nt status'of the specified file Connection

DQ$FILE$INFO * Returns data about a file ConnecllOn.

DQ$READ Reads the next sequence of bytes from a file.

DQ$RENAME* Renames the specified Named File.

DQ$SEEK Moves the posillOn pOinter of a file,

DQ$TRUNCATE Truncates a file.

DQ$WRITE Writes a sequence of bytes to a file,

Process Management:
DQ$EXIT EXits from the current application job,

DQ$OVERLAY* Causes the specIfied overlay to be loaded

DQ$SPECIAL Performs special 110 related functions on terminals With speCial control
f,eatures,

DQ$TRAP$CC Captures control when CNTRUC is typed,

Exception Handling:
DQGETEXCEPTION$HANDLER Returns a pointer to the program currently being used to process errors.

DQ$DECODE$EXCEPTION Returns a short deSCription of the specified error code.

DQ$TRAP$EXCEPTION Identifies a custom exception processing program for a particular type of error.

Application Assistance:
DQ$DECODE$TIME Returns system lime and date In binary and ASCII character format.

DQGETARGUMENT* Returns the next argument from the character string used to invoke the ap-
plicallOn program,

DQGETSYSTEM$ID * Returns the name of the underlying operating system supporting the UDL

bQGETTIME* Returns the current time of day as kept by the underlYing operallng system

DQ$SWITCH$BUFFER Selects a new buffer from which to process commands,

• Calls available only through the UDI

2-19 Order Number: 210885-002

iRMXTM 86 OPERATING SYSTEM

The high performance of the iRMX 86 Operating Sys
tem enhances the throughput of compilers and other
development utilities. Table 10 indicates the average
performance of typical development environment
functions operating in the same configuration
described in Figure 4.

Table 10. Development Environment Performance

Function
Average

Execution Time

Directory Command
5.3 sec

(S Format with 25 files)

Load the COPY Command 1.2 sec

Copy a 1 K By1e File 1.0 sec
(Winchester to Winchester)

Copy a 16K By1e File 1.7 sec

Copy a 64K Byte File 3.9 sec
Copy a 1 K Byte File

1.4 sec
(Winchester to Diskette)

Compile PLiM 86 3931pm

Compile PASCAL 86
4531pm

Program

TOOLS

Certain tools are necessary for the development of
microcomputer applications. The iRMX 86 Human In
terface includes many of these tools as non-resident
commands. They can be included on the system disk
of a application system, and brought into memory when
needed to perform functions as listed in Table 11.

Table 11. Major Human Interface Utilities

Command Function

BACKUP Copy directones and files from one
device to another.

COpy Copy one or more files to one or
more destination files.

CREATEDIR Create a directory file to store the
names of other files

DIR list the names, Sizes, owners, etc.
of the files contained in a directory.

ATTACHFILE Give a logical name to a specified
location In a file directory tree.

PERMIT Grant or rescind user access to a
file.

RENAME Change the name of a file

SUBMIT Start the processing qf a senes of
commands stored In a file.

SUPER Change operator's 10 to that of the
System Manager with global access
rights and privileges.

Table 11. Major Human Interface Utilities.(Con.t.)

Command Function

TIME Set the system time·of-day clock.

VERIFY Verify the structure of an IRMXTM 86
Named File volume. and ch'l~k for
possible disk data errors.

INTERACTIVE CONFIGURATION UTILITY

The iRMX 86 Operating System is designed to provide
OEMs the ability to configure for specific system hard
ware and software requirements. The Interactive Con
figuration Utility (ICU) builds iRMX 86 configurations
by asking appropriate questions and making reasonable
assumptions. It runs on either an Intellec® Series III
development system or iRMX 86 development system
that includes a hard disk and the UDI. Table 12 lists
the hardware and support software requirements of
different iRMX 86 development system environments.

2-20

Table 12. iRMXTM Development Environment

Intellecl!> Series III:
MDS 313 PUM 86/88 Compiler
One hard disk and one diskette drive

iRMXTM 86 Development System
iRMXTM 860 ASM 86 Assembler and

'Utilities
iRMXTM863 PUM 86/88 Compiler
iSDM 86 or 286 System Debug Monitor
512K By1es of flAM
5M By1e On-Line Storage and one

double-density diskette drive

SYSTEM 86/300 or 286/300 Series
Microcomputer System Basic configuration

Figure 10 shows one of the many screens displayed
during the process of defining a configuration. It
shows the abbreviations for each choice on the left,
a more complete description with the range of possi
ble answers in the center, and the current (sometimes
default) choice on the right. The bottom of the screen
shows three changes made by the operator (lower
case lettering), and a request for help on the Excep
tion Mode question. In response'to a request for help,
the ICU displays an additional screen outlining pos
sible choices and some overall system effects.

The ICU requests only information required as a result
of previous choices. For example, if no Extended 110
System functions are required, the ICU will not ask
any further questions about the EIOS. Once a config
uration session is complete, the operator may save all
the information in a file. Later when small changes are
necessary, this file can be modified. A completely new
session is not required.

Order Number: 210885-002

inter iRMXTM 86 OPERATING SYSTEM

Nucleus
(ASCI All Sys Calls IYeslNol
lPV) Parameter ValidatIOn IVes/No]
(RODI Root Oblect D"ecto~ SlZeIO-OFFOhl
(MTS) MInimum Transfer Size IG-OFFFFH]
{DEH} Default ExceptIOn Handler !YeslNolOeblUsej
(NEH) Name of Ex Handler Object Module [1- 32chs]
(EM) ExcepllOn Mode INeverlProgramfEnvtronlAIIJ
(NRI Nucleus In ROM IYeslNol

Enter Changes [Abbreviations '/ = new-value] ASC = N
pv=no
rod=48
em'

Yes
Yes
OOt4H
0040H
Yes

Never
No

Figure 10. ICU Screen for iRMXTM 86 Nucleus

REAL· TIME DEBUGGING TOOLS

The iRMX 86 Operating System supports three distinct
debugging environments: Static, Dynamic, and Post
Mortem. While the iRMX 86 Operating System does
support a multi-user Human Interface, these real-time
debugging aids are usually most useful in a single-user
environment where modifications made to the system
cannot affect other users.

System. Debugger

The static debugging aid is the iRMX 86 System De
bugger. This debugger is an extension of the iSDM 86
and the iSDM 286 System Debug Monitors. The System
Debugger provides static debugging facilities when
the system hangs or crashes, when the Nucleus is in
advertently overwritten or destroyed, or when synchron
ization requirements prevent the debugging of certain
tasks. The System Debugger stops the system and al
low you to examine the state of the system at that in
stant, and allows you to:

- Identify and interpret iRMX 86 system calls.

- Display information about iRMX 86 objects.

- Examine a task's stack to determine system call
history.

iRMXTM 86 Dynamic Debugger

The iRMX 86 Dynamic Debugger runs as part of an
iRMX 86 application. It may be used at any time during
program development, or may be integrated into an
OEM system to aid in the discovery of latent errors.
The Dynamic Debugger can be used to search for errors
in any task, even while the other tasks in the system
are running. The iRMX 86 DynamiC Debugger com
municates with the developer via a terminal handler
that supports full line editing.

System Crash/Dump Analyzer

The often difficult job of debugging real-time applica
tions is made much simpler with the System
Crash/Dump Analyzer. The analyzer allows program
developers to record system memory for later analy
sis even if the system has halted. This analysis lists
such vital information as which jobs have active tasks,
which system queues contain which tasks, and what
segments contain which data.

2-21

PARAMETER VALIDATION

Some iRMX 86 System Calls require parameters that
may change during the course of developing iRMX 86
applications. The iRMX 86 Operating System includes
an optional set of routines to validate these parameters
to ensure that correct numeric values are used and that
correct object types are used where the Systf'm expects
to manipulate an object. For systems based only on the
iRMX 86 Nucleus, these routines may be removed to
improve the performance and code size of the System
once the development phase is completed.

START ·UP SYSTEMS

Two ready-to-run, mUlti-user start-up systems are in
cluded in the iRMX 86 Operating System package.
These iRMX 86 start-up systems are fully configured,
mUlti-user iRMX 86 Operating Systems ready to be
loaded into memory by the Bootstrap Loader. Both
start-up systems are configured to include all of the
system calls for each layer and most of the features
provided by iRMX 86. iRMX start-up systems include
UDI support so that users may run languages such as
PUM-86, Pascal, FORTRAN, and software packages
from independent vendors.

The start-up system for the iAPX 86 processor is con
figured for Intel SYSTEM 86/300 Series microcom
puters with a minimum of 384K bytes of RAM. The
following devices are supported.

• iSBC 215liSBX 218 or iSBC 215GliSBX 218A

• iSBC 254(S)

• Line Printer
• 8251A Terminal Driver

• iSBC 544 Terminal Driver

The start-up system for the iAPX 286 processor is con
figured for Intel SYSTEM 286/300 Series microcom
puters with a minimum of 512K bytes and a maximum
of 896K bytes of RAM. The following devices are sup
ported.

• iSBC 208
• iSBC 215/iSBX 218 or iSBC 215G/iSBX 218A

• iSBC 254(S)
• Line Printer for iSBC 286/10
• 8274 Terminal Driver
• iSBC 544 Terminal Driver

Either system will run without hardware or software
configuration changes and can be reconfigured on a
standard system with at least 512K bytes of RAM. Def
inition files are also included for iSBC 186/03, 186/51
and 188/48 configurations.

This start-up system may be used to run the ICU (if a
Winchester disk is attached to the system) to develop
custom configurations such as those pictured in Figure
8. As shipped, the Human Interface supports a single
user terminal. However, the Start-up System terminal
configuration file may be altered easily to support from
two to five users.

Order Number: 210885-002

inter iRMXTM 86 OPERATING SYSTEM.

SPECIFICATIONS

Supported Software Products
iRMX 860 iRMX 86 Development Utilities

Package, including the iAPX 86
and 88 Linker, Locater, Macro
Assembler, Librarian, and the
iRMX 86 Editor.

iRMX 861 PASCAL 86/88 Compiler

iRMX 862 FORTRAN 86/88 Compiler

iRMX 863 PLIM 86/88 Compiler

iRMX 864 TX Screen-oriented Editor

iMMX 800 MULTIBUS Message Exchange
software package for iRMX 86,
and 88 application systems

iOSP 86 Support Package for iAPX 86130,
88/30,186/30, and 188130 Oper
ating System Processors

iRMX PSCOPE 86 High Level Language Debugger

Supported Hardware Products

COMPONENTS

iAPX 86 and 88 Microprocessors

iAPX 186 and 188 Microprocessors

iAPX 286 Microprocessors (Real Address Mode only)

8087 Numeric Data Processor Extension

80287 Numeric Data Processor Extension

iAPX 86/30 (80130) Operating System Firmware Com-
ponent

8253 and 8254 Programmable Interval Timers

8259A Programmable Interrupt Controller

8251A USART Terminal Controller

8255 Programmable Parallel Interface

8274 Terminal Controller

82530 Serial Communications Controller

iSBC® MULTIBUS BOARD AND SYSTEM PRODUCTS

iSBC 86/12A, 86/05, 86/14, 86/30, 86/35, 88/25, and
88/40 Single Board Computers

iSBC 186/03 Single Board Computer

iSBC 186/51 Ethernet Controller

iSBC 188/48 Communications Controller

iSBC 286/10 Single Board Computer(Real Address
Mode only)

iSBC 204 Diskette c:ontroller

iSBC 206 Hard Disk Controller

iSBC 208 Diskette Controller

2-22

iSBC 215(G) Winchester Disk Controller

iSBX 218(A) Flexible Diskette Multi-Module
Controller

iSBC 220 SMD Disk Hard Controller

iSBC 254(S) Bubble Memory System

iSBC 534 4-Channel Terminal Interface

iSBC 544 Intelligent 4-Channel Terminal Interface
and Controller

iSBX 251 Bubble Memory Multi-Module

iSBX 350 Parallel Port (Centronics-type Printer
Interface) .

iSBX 351 Serial Communications Port

iSBX 270 CRT Light Pen and Keyboard Interface

SYSTEM 86/300 Family

SYSTEM 286/300 Family

AVAILABLE LITERATURE
The iRMX 86 Documentation Set is comprised of the
following four volumes of reference manuals. Order
numbers are associated with these four volumes only.

iRMX 86 INTRODUCTION AND OPERATOR'S REF
ERENCE MANUAL FOR RELEASE 6
Order Number: 146545-001 .

Introduction to the iRMX 86 Operating System

iRMX 86 Operator's Manual

iRMX 86 Disk Verification Utility Reference Manual

iRMX 86 PROGRAMMERS REFERENCE MANUAL
FOR RELEASE 6, PART I
Order Number: 146546-001

iRMX 86 Nucleus Reference Manual

iRMX 86 Basic I/O System Reference Manual

iRMX 86 Extended I/O System Reference Manual

iRMX 86 PROGRAMMERS'S REFERENCE MANUAL
FOF! RELEASE 6, PART II
Order Number: 146547-001

iRMX 86 Application Loader Reference Manual

iRMX 86 Human Interface Reference Manual

iRMX 86 Universal Development Interface Reference
Manual

Guide to Writing Device Drivers for iRMX 86 and iRMX
88 1/0 Systems

iRMX 86 Programming Techniques

iRMX 86 Terminal Handler Reference Manual

iRMX 86 Debugger Reference Manual

iRMX 86 System Debugger Reference Manual

iRMX 86 Crash Analyzer Reference Manual

iRMX 86 Bootstrap Loader Reference Manual

Order Number: 210885-002

inter IRMXTII 86 OPERATING SYSTEM

iRMX 86 INSTALLATION AND CONFIGURATION
GUIDE FOR RELEASE 6
Order Number: 146548-001

iRMX 86 Installation Guide
iRMX 86 Configuration Guide
Master Index for Release 6 of the iRMX 86 Operating

System

Application Notes
Ap Note 130 - Using Operating System Processors
to Simplify Microcomputer Designs. (Order Number:
230786-001

ORDERING INFORMATION
The iRMX 86 Operating System is available under a
number of different licensing options as noted here.
Source listings are available on microfiche. Reconfig
urable object libraries are provided on double density
ISIS-formatted diskettes or on either double density,
single sided iRMX 86-formatted 8" diskettes, or double
density, double sided, 5.25" diskettes. ISIS-format disk·
ettes may be used on Intellntellec Development Sys
tems. The iRMX 86-format may be used on any iRMX
86-based system supporting the appropriate compilers
and development environment.

The OEM license options listed here allow users to
incorporate the iRMX 86 Operating System into their
applications. Each use requires payment of an Incor·
poration Fee.

ORDER CODE DESCRIPTION

iRMX 86 KIT BRO: Double density, single-sided 8"
ISIS format OEM license

iRMX 86 KIT ERO: Double density, single sided 8"
iRMX 86-Format OEM license
for use on iRMX 86-baSed en·
vironments.

243

Ap Note 174 - Optimizing the iRMX 86 Operating
System Performance on System 86/310 and System
861330 (Order Number: 230990-001)

Training Courses
The iRMX 86 Operating System

Customer Seminars
Contact local Intel Sales Office for details on available
video·tape and slide presentations.

iRMX 86 KIT JRO: Double density, double sided
5.25" iRMX 86-Format OEM Ii·
cense for use on iRMX 86-based
environments.

Other licensing options include prepayment of all future
incorporation fees, single use rights for a single mach·
ine, use at a second development site, one year update
service extensions, the right to make copies for addi·
tional development systems, and source listing materials.

Each option includes 90 days of support service that
provides the quarterly iRMX 86 Technical Report, Soft·
ware Problem Report Service, anctcopies of System
Updates that occur during this period. Except for source
listings, all initial licenses include a complete set of
iRMX 86 Documentation.

As with all Intel software, purchase of any of these op
tions requires the execution of a standard Intel Master
Software License. The specific rights granted to users
depends on the specific option and the License signed.

Order Number: 210885-002

-n+ _I~
II I 'ell

'/

iOSpTM 86

•

•
•

iAPX 86/30, IAPX 88/30, iAPX 186/30 and
iAPX 188/30 SUPPORT PACKAGE

Development and run-time support for • Compatible with IntellP> PLIM 86, PAS-
IAPX 86/30, 88/30, 186/30, and 188/30 CAL 86, FORTRAN 86, and ASM86 MAC-
Operating System Processors RO ASSEMBLER

Total iRMXTM 86 Operating System 'soft- • Supports {P)ROM or R~M based system
ware compatibility

Supports custom system Initialization
Extendable with iRMXTM 86 Operating •
System calls • Interactive Configuration Utility

The Intel iOSpTM 86 SUppOI1 Package for the iAPX 86/30, 88/30, 186/30, and 188/30 Operating System
Processors contains a comprehensive set of easy-ta-use tools needed to develop (P)ROM or RAM-based ap
plications that use the 80130 Operating System Firmware component. This Suppol1 Package is compatible
with all versions of the 80130 component. All of the system initialization and run-time facilities are provided
in libraries that may tie configured to specific requirements, and linked to application programs written in either
ASM86 MACRO ASSEMBLER or a high level programming language such as PASCAL 86, FORTRAN 86,
and PUM 86. The iOSP 86 Package provides users with the basic initialization ahd interface routines needed
to build application software based on the fundamental operating system functions of the iAPX 86/30, 88/30,
186/30, and 188130 Operating System Processors. The iOSP 86 Package also enables users to add higher
level I/O functions from the fully compatible iRMXTM 86 Operating System, or to form custom, real-time
systems.

. ,
."

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No other CircUit
Patent Licenses are implied, -

©INTEL CORPORATION, 1984
2-24

JUNE,1984
ORDER NUMBER: 210236.()()2

inter iOSpTM 86

FUNCTIONAL DESCRIPTION
The iAPX 86/30, 88/30,186/30, and 188/30 Operat
ing System Processors (OSPs) provide an easy-to
use foundation on which many real-time applications
may be built. They provide the functions and system
support needed to implement both simple and com
plex applications that require multiple tasks to run
concurremly (see Figure 1). These services are made
possible by the addition of the five new data types
integrated into the 80130 Operating System Firmware
(OSF) component. The 80130 OSF extends the bas
ic data types of the CPU (integer, byte, character, etc.)
by adding new system data types (JOB, TASK, MAIL
BOX, SEGMENT, and REGION), and extensive timer,
interrupt, memory, and error management designed
to give real-time response to multitasking and mul
tiprogramming applications. As shown in the second
half of the figure, other operating system functions
such as mass storage 1/0 services and an easy-to
use Human Interface can be added easily, by using
modules from the iRMX 86 Operating System. The
iOSP 86 Support Package provides both an interface
between application software and the Operating Sys
tem Processors, and development tools designed to
make the implementation and initialization of real
time, multitasking sYlltems much easier.

The iOSP 86 Support package provides system de
velopers with the configuration options necessary to
tailor the iAPX86/30, 88/30,186/30, and 188/30 Oper
ating System Processors to custom applications. Cen
tral to the entire configuration process is the
Interactive Configuration Utility (ICU86). This utility
is an easy-to-use tool which allows you to make con
figuration decisions by responding to screen-oriented
displays. Using' the ICU, users can build the neces
sary support code. The interface libraries form a sim-

MULTITASKING, REAL-TIME
APPLICATION SOFTWARE

iOSP'· 86 INTERFACE LIBRARIES

8086

8087 8088

(OPTIONAL) 80186 80130
OR

80188

pie interface between application software and the
operating system primitives of the 80130 OSF com
ponent.

Memory and 1/0 Addressing
The 80130 OSF requires that a 16K byte block of,
memory address space be reserved for accessing in
ternal functions. The ICU is used to specify the base
address of the 80130,and the beginning of the initiali
zation support code.

All Interrupt and Timer management of the OSF is
controlled via a reserved 16 byte 110 address block
that may be selected by the user. In addition, from'
1 to 7 slave 8259A interrupt controllers can be speci
fied in order to provide the system with up to 57 pri
ority interrupt sources. The 80130 baud rate generator
may also be configured to support an optional termi
nal interface.

Extending the 80130 OSF
The 80130 OSF allows users to add their own oper
ating system extensions. These extensions may take
advantage of the detailed and efficient intertask com
munication and synchronization primitives already
provided by the 80130, andlor may utilize custom
functions tailored to specific applications. The Sup
port Package also enables users to extend the OSF
with the extensive services of Intel's iRMX 86 Oper
ating System, thereby allowing applications to. grow
without having to change or alter application software
already written, or having to write other operating sys
tem software.

Use of the 80130 OSF with the iRMX 86 Operating
System reduces the amount of memory needed for
the iRMX 86 Nucleus layer by 14K bytes, and ena
bles applications to take advantage of the increased

COMPLEX
APPLICATION SOFTWARE

COMPILERS

HUMAN INTERFACE

EIOS

BASIC 1/0 SYSTEM

iRMX'· 86 NUCLEUS

iOSP'· 86 INTERFACE LIBRARIES

8086

8087 8088

(OPTIONAL) 80186 80130
OR

80188

Figure 1. Structure of Typical Systems

2-25 210236-002

inter iOSpTM 86.

performance and reduced size requirements inher
ent in the iAPX 86/30, 88/30, 186/30, and 188/30
Operating System Processors. Since each of the serv
ices provided by the 80130 component is totally com
patible with iRMX 86, applications have an automatic
upward path to support complete file systems and
multiple processor environments.

Application Interfaces
Two interface libraries are included in the iOSP 86
Support Package. The first allows programmers to
write application software modules in the Compact
Model of computation supported by Intel's compilers.
The second provides an .interiace to program seg
ments written in either the Medium or Large Models.
The iOSP 86 Support Package does not support pro
gram segments written in the Small Model.

The interface libraries provide the means of access
ing all of the primitives supported by the Operating
System Processors. With this interface, and all the
memory management primitives of the OSPs, appli
cations have full access to 1M byte of memory, and
all of the addressing modes of the CPU.

These libraries are fully compatible with object mod
ules produced by the ASM86 MACRO ASSEMBLER,
and the PASCAL 86, FORTRAN 86, and PUM 86
Compilers.

Application Initialization
The iOSP 86 Support Package provides, via the ICU,
for the configuration of the system ROOT JOB, and
all user application JOBs that require initialization
when the system is started. The user also specifies
the configuration of the interrupt system (including
the optional iAPX 186/188 interrupt controller in either
master or slave modes and any slave 8259A inter
rupt controllers) and the clock rate used for system .
timing. These choices are automatically programmed
into the various devices when the system is initialized.

JOB GROUP
CREATE JOB
END INIT TASK

TASK GROUP
CREATE TASK
DELETE TASK
SUSPEND TASK
RESUME TASK
SLEEP

SEGMENT GROUP
CREATE SEGMENT
DELETE SEGMENT

REGION GROUP
CREATE REGION
DELETE REGION
sEND CONTROL
RECEIVE CONTROL
ACCEPT CONTROL

Parameter Validation
Parameter validlition is a configuration option of an
OSP-based system. The OSP can check the
parameters of the primitive that you invoke either on
a systemwide basis or on a per job basis.

Operating System Calls
The 80130 OSF performs a total of 38 operating sys
tem primitives all of which are completely compati
ble with the equivalent iRMX 86 Operating System
calls. The iOSP 86 Support Package provides user
level, interfaces to these primitives to enable appli
cations to create, delete, control, and exchange the
new data types provided by the 80130 OSF. In gener
al, these interfaces allow application software to
manage all of the resources of an iAPX 86/30, 88/30,
186/30, or 188/30 OSP (and an optional 8087 Numeric
Processor Extension) system via any of the 38 sys
tem calls shown in Figure 2.

Required Development Hardware
Use of the iOSP 86 Support Package requires a Ser
ies III Intellec Development System iNith double den
sity flexible diskette drives or any iRMX 86 system
supporting a standard 5.25 inch or 8 inch flexible dis
kette drive and the iRMX 860 Assembler and Utili
ties Package. Use of the 80130 requires only a
minimal system including either the iAPX 86/30,
88/30, 186/30 or 188/30 Operating System Proces
sor, and enough system memory to contain the ap
plication programs and initialization and interface
software provided in the iOSP 86 Package.

Board Level Product Support
Intel microcomputer boards which use the 80130 OSF
include the iSBC 186/03 and the iSBC 186/51 Sin
gle Board Computers. An iOSP 86 application may
be written specifically to run on these boards.

INTERRUPT MANAGEMENT GROUP

SET OS EXTENSION
SETINTERl'lUPT
ENTER INTERRUPT
EXIT INTERRUPT
WAIT INTERRUPT
SIGNAL INTERRUPT
RESET INTERRUPT
ENABLE
DISABLE
GET LEVEL GET TASK TOKENS

SET PRIORITY OBJECT MANAGEMENT GROUP
CATALOG OBJECT ERROR CONTROL GROUP

SET EXCEPTION
SIGNAL EXCEPTION
GET EXCEPTION

MAILBOX GROUP
CREATE MAILBOX
DELETE MAILBOX
SEND MESSAGE
RECEIVE MESSAGE

LOOKUP OBJECT
DISABLE DELETION
ENABLE DELETION
GET TYPE

Figure 2. Operating System Primitives

2-26 210236·002

iOSpTM 86

Part Number Description

OSP 86 B iOSP 86 Support Package con
tained on an ISIS-II compatible,
single-sided, double density 8 inch
diskette.

ORDERING INFORMATION
Each of the ordering options listed below include all
the necessary initialization and interface procedures
needed to use the iAPX 86/30, 88/30, 186/30, and
188130 Operating System processors. Purchase of the
iOSP 86 Package requires verification of an Intel
Master Software License. Each package also includes
an iOSP 86 User's Manual (Document Number
146798-001), and a 90 day update service.

OSP 86 E

OSP 86 J

2-27

iOSP 86 Support Package con
tained on an iRMX 86 format,
single-sided, double density 8 inch
diskette.

iOSP 86 Support Package con
tained on an iRMX 86 format
double-sided double density, 5.25
inch, 48 tracks-per-inch diskette.

•

•
•

iRMXTM 86-MULTIBUS® II
SUPPORT PACKAGE

MULTIBUS® II support for iSBC® 286(100 • Automatic software configuration of
applications in Real Address Mode, memory boards
including support for the SCSI peripher-
al interface and up to 1 megabyte • Support for battery backed-up, global
addressability time-of-day clock
Functions in conjunction with the
iRMXTM 86 Release 6 Operating System • Extendable to allow addition of custom
Interp,rocessor Signal Support device drivers

The iRM)(TM 86-MULTIBUS® II Support Package, functioning with the iRMX 86 Release 6 Operating System soft
ware, provides the ability to execute all configurable layers of the iRMX 86 software in the MULTIBUS II environ
ment (iRMX 86-MULTIBUS II Operating System). Applications in Real Address Mode are supported for the iSBC®
286/100 board, including support for the SCSI peripheral interface and all iSBX™ boards supported by iRMX 86
Release 6, as well as support for iAPX 286 component applications.

NEW IN iRMXTM 86

MULTIBUSII 0
OPERATING SYSTEM

HUMAN INTERFACE

USER APPLICATIONS

iRMXTM VLSI Operating System

The followIng are trademarks of Intel CorporatIon and may be used only to describe Intel products· Intel. ICE. IMMX, IRMX, ISBC, iSBX, iSXM, MULTIBUS,
MULTICHANNEL and MULTIMODULE. Intel Corporation assumes no responsibility for the use of any CIrcuitry other than Clrcuttry embodied in an Intel
product. No other circurt patent lIcenses are imploed. Information contained hereon supercedes previously published speclficatons on these devices from Intel.

© INTEL CORPORATION, 1984
2-28 SEPTEMBER, 1984

ORDER NUMBER: 280057.001

inter iRMXTM 86-MULTIBUS® II Support Package

FUNCTIONAL DESCRIPTION

Overview

The iRMX 86 MULTIBUS II package contains system
modules that replace portions of the iRMX 86 Release
6 Operating System, allowing the iRMX 86 Operating
System to execute in a MULTIBUS II environment. All
the functions available in the IRMX 86 Operating Sys
tem are available in the iRMX 86-MULTIBUS II Oper
ating System. For a complete description of these
functions, their value, and performance, please refer
to the Release 6 iRMX 86 Operating System Data Sheet
(order number 210885-0(2).

This functional description section describes the new
features provided by the iRMX 86 MULTIBUS II pack
age. These new features add the new capabilities re
quired for OEMs to execute the iRMX 86 Operating
System in a MULTIBUS II environment for iSBC 2861100
or iAPX 286 applications in Real Address Mode.

Interprocessor Signal Support

In a MULTIBUS II system, interprocessor communi
cation and synchronization is done via messages over
the bus. This communication includes data-less mes
sages to Signal that an event has occured. The iRMX
86 MULTIBUS II package supports signal messages
using the Message Interrupt Controller (MIC) Com
ponent. The major advantage of signal message sup
port is the ability for a host cpu board to send or
receive signal messages from up to 254 distinct
sources, with the priorities of each message being
based on the sending or receiving task's priority. Sig-

SPECIFICATIONS

Below is the list of supported products for the iRMX
86 MULTIBUS II Support Package.

Supported Software Products
iRMX 86 Release 6 Operating System

Supported Hardware Products

Components:

iAPX 286 Microprocessor (Real Address Mode only)
80287 Numeric Data Processor Extension
8253 and 8254 Programmable Interval Timers
8259A Programmable Interrupt Controller (PIC)
8255 Programmable Parallel Interface (PPI)
82530 Serial Communications Controller (SCC)
82258 Advanced DMA Controller (ADMA)
Bus Arbiter Controller (BAC)
Message Interrupt Controller (MIC)

nal messages are not tied to hardware interrupt lev
els and priorities as external interrupts were in the
MULTIBUS I environment.

Automatic Software Configuration of
Memory Boards

The iRMX 86-MULTIBUS II Operating System has the
option of automatically configuring memory boards. The
addresses for each board are defined sequentially in
relation to the phYSical placement of each board in the
card cage. This feature allows for the swapping, ad
ding, and deleting of memory boards in the system on
a dynamic basis.

Accurate Time-of-Day Clock Support

Resident in every MULTIBUS II system is a Central
Services Module (iSBC CSM/001 board). The CSM
board contains a battery backed-up, global time-of-<lay
clock. The iRMX 86-MULTIBUS II Operating System
uses this clock to automatically initialize the time-of-<lay
clock maintained by the operating system.

Custom Device Driver Support

Like the iRMX 86 Operating System, the iRMX 86-
MULTIBUS II Operating System is extendable to sup
port user value-added custom device drivers. This
feature allows the system to be more closely tailored
to meet a specific application requirement and expands
the list of supported hardware products. The user need
not purchase source code to write a custom driver and
can configure the driver into the system at configura
tion time. Custom drivers can use the Message Inter
rupt Controller (MIC) to pass signal messages.

iSBC® MULTIBUS® II Board Products:

iSBC 2861100 Single Board Computer (Real Address
Mode only)

iSBC CSM/OO1 Central Services Module
iSBC MEM/312, 310, 320, 340 cache-based memory
iSBX 218(A) Flexible Diskette Multi-Module Controller
iSBX 251 Bubble Memory Multi-Module
iSBX 270 CRT Light Pen and Keyboard Interface
iSBX 350 Parallel Port (Centronics-type Printer Interface)
iSBX 351 Serial Communications Port

AVAILABLE LITERATURE

iRMX 86-MULTIBUS II Support Package Reference
Manual (order number 147127)

There are four manual kits supplied with the iRMX 86
Release 6 Operating System and are available under
the order numbers shown in the iRMX 86 Operating
System Data Sheet (order number 210885-002)

2-29 280057-001

IRMX1M 86-MULTIBUS@ II Support Package

ORDERING INFORMATION

The i~MX 86 MULTIBUS " Package is available under
a number of different licensing options. Obtaining a
license for the iRMX 86 Release 6 Operating System
is a pre-requisite to licensing the iRMX 86 MULTIBUS
" Package. Reconfigurable object libraries are provid
ed on: 1) Double-density single-sided ISIS-formatted 8"
diskettes; 2) Double-density, single-sided iRMX
86-formatted 8" diskettes; 3) Double-density, double
sided, iRMX 86-formatted 5.25" diskettes. ISIS-format
diskettes may be used on Series '" Development Sys
tems. The iRMX 86-format may be used on Series IV
Development Systems (5.25" diskettes) or any iRMX
86-based system supporting the appropriate disk drivers,
compilers and development environment.

The OEM license options listed here allow users to in
corporate the iRMX 86 MULTIBUS " package into their
applications. Each use requires payment of an Incor
poration Fee.

ORDER CODE

iRMX 86 II BRO:

iRMX 86 " ERO:

DESCRIPTION

Double-density, single
sided 8" ISIS-format OEM
license.

Double-density, single
sided 8" iRMX 86-format
OEM license.

2-30

iRMX 86 " JRO: Double-density, double
sided 5.25" iRMX
86-format OEM license.

iRMX 86 " KIT BRO: Includes iRMX 86 Release
6. Double-density, single
sided 8" ISIS format OEM
license.

iRMX 86 " KIT ERO:lncludes iRMX 86 Release·
6. Double-density, single
sided 8" iRMX 86-format
OEM license.

iRMX 86 " KIT JRO: . Includes iRMX 86 Release
6. Double-density, double
sided 5.25" iRMX
86-format OEM license.

Other licensing options include prepayment of all future
incorporation fees and single use rights for a single
machine.

Each option includes 90 days of support service that
provides Software Problem Report Service and copies
of System Updates that occur during this period.

As with all Intel software, purchase of any of these op
tions requires the execution of a standard Intel Master
Software License. The specific rights granted to·users
depend on the specific option and the license Signed.

280057-001

intJ

iRMXTM
OPERATING

SYSTEM

• High-performance, real-time, multi
tasking operating system for Intel's
86/300 and 286/300 microcomputer
systems

• Highly configurable, modular structure
for easy system expansion

• Wealth of design facilities and industry
standard languages to support fast, easy
development

• Application software portable to next
generation of Intel VLSI

• Supported by Intel's post-sales software
support organization

NUCLEUS

2-31

The Total Solution for the
Real·Tlme Application OEM
Intel's iRMXTM 86 Operating System is a
real-time, multi-tasking, multiuser,
multiprogramming operating system de
signed to support high performance,
time-critical applications such as factory
automation, industrial control and com
munications networks. The iRMX
operating system serves as an optimized
event-driven executive for managing and
extending the resources of Intel's 86/300
and 286/300 systems in real-time appli
cations where high speed and low inter
rupt latency are required. Added per
formance for demanding numeric
intensive tasks comes from support of
Intel's floatfug point math coprocessors.

Comprised of modular layers, Intel's
iRMX operating system is highly con
figurable, allowing the OEM to easily
customize the system to meet the needs
of target applications. In addition, the
iRMX operating system provides OEMs
with complete development capabilities.
It has systems debuggers, crash analyz
ers, screen editors, utilities, and an inter
active Configuration Utility (lCU)
everything the development engineer
needs to design and configure efficiently.

To further reduce development time, a
complete set of industry-standard lan
guages enables OEMs to take advantage
of existing application software. This
shaves months off development time and
is a key advantage to the competitive
OEM.

Speed, the Name of the
Real·Time Game
In a real-time system the computer must
respond to interrupts instantly; time is
always at a premium. Intel's iRMX
Operating System delivers superior
real-time performance, thanks to ultra
fast context switching, task synchroniza·
tion and memory-based message passing.

The iRMX 86 Operating System man
ages the resources of the 286/300 systems
in real-address mode. iRMX 86 makes
possible the utilization of the high-'

of Intel's iAPX
286 microprocessor for those demanding
high-speed applications.

Further accelerating processing power in
number-crunching and floating point
math applications is iRMX operating
system's support of Intel's math
coprocessors .

Our 8087 numeric data processor in our
iRMX 86-based systems can perform
floating point operations four times faster
than competitive minicomputers with
hardware math processors. For even
greater pefformance, OEMs can select
the iAPX 286 and the 80287 coprocessor
working in tandem in the iRMX 86
system.

The superior price/performance ratio that
results from combining Intel's iRMX
operating systems and the System 300
family makes the choice clear: a more
competitive Intel micro-based system
over a more expensive minicomputer
based system.

Add More Processors for
More Power, More Speed
Need still more micro-muscle in your
application? In an iRMX-based system,
additional intelligent boards can be
added to enhance system throughput.

With the iMMXTM 800 (MULTIBUS®
Message Exchange) software package,
the iRMX 86 Operating System supports
a loosely-coupled multiprocessing
environment. Tasks running on one board
may communicate with tasks running on

2-32

other boards, even if they operate under
different Intel operating systems or
micropt:QCessors.

Multiprocessing is possible due to the
hardware capabilities of Intel's System
300 MULTIBUS System Bus and the
software support provided by iMMXTM
800. Overall system performance and
flexibility can be greatly enhanced by
off-loading the main CPU with such in
telligent I/O boards as Intel's quad serial
communication controller, digital con
troller or Ethernet communications
controller.

Modular Software for
Versatile, Easy Configuration
The iRMX operating systems shipped
with Intel's 86/300 and 286/300 hardware
systems are preconfigured at the factory
to support a standard board set; however,
the OEM can additionally configure or

HUMAN
INTERFACE

EXTENDED

USER "n'c' ... ""'",,,

extend the operating system to meet
specific needs.

Intel's iRMX operating systems are con
figurable by system layer and by system
call within each layer. Such flexibility
gives designers the ability to choose
software features that best suit their ap
plication's size and functional require
ments. The iRMX Operating System also
includes I/O drivers for many of Intel's
MULTIBUS boards and industry-

BASIC
I/O SYSTEM

standard peripherals. You simply select
the ones you need.

The Interactive Configuration Utility
(ICU) is a built-in facility for assisting
the OEM in the configuration process.
The ICU prompts the user for system
parameters and requirements, then builds
a command file to compile, assemble,
link, and locate necessary files.

The net results for the OEM: fast, easy·
system configuration with quick time
to-market benefits.

For customizing and extending your
iRMX system, Intel has provided all the
"hooks" necessary to make the job easy.
The iRMX 86 Operating System contains
extendability features that enable the
OEM to add custom operating system
calls, custom features, and custom
functionality to his application-at any
time in the application's life. The ability
to add functions late in a product's life is
key to an OEM's competitive edge in a
fast-changing market.

iRMX'"M Operating System
Has All the Fundamentals,
Too!
In addition to multiprocessing, Intel's
iRMX operating systems have all the
basics you would expect to find in a
minicomputer operating system ...
capabilities such as multitasking,

mUltiprogramming, and multitenninal
support.

Multitasking requires a method of
managing the different processes of
an application and for allowing
these processes to communicate
with each other. The iRMX Nuc
leus provides these facilities plus
task scheduling. The Basic I/O
System provides users with the
system calls for direct manage
ment ofI/O deVices needed for
real-time applications. The Ex
tended I/O System adds a number
of I/O management capabilities to
simplify access to files, such as

automatic buffering and syn-
chronization ofI/O requests.

2-33

The Human Interface functions give
users and applications simple access to
the file and system management capa
bilities. Using the multitenninal support
provided by the Basic I/O system, the
Human Interface can support several
simultaneous users. For example,
multi-tenninal support allows one person
to use the iRMX Editor, while another
compiles a FORTRAN or Pascal pro
gram, while several others load and
access applications.

On-Target Development:
One System Does It All
The beauty of Intel systems lies in their
flexibility. Engineers developing an
iRMX -based target system can use the
same iRMX-based system in the de
velopment process; the development and
target systems are one in the same. The
bottom-line benefit is low entry-level
costs for the OEM.

On-target development contributes im
measurably to a shorter development
curve and decreased time-to-market,
since it isn't necessary to purchase and
learn separate development systems.
With Intel's iRMX-based system, one
system does it all:

Tap into a Wide Range of
Languages and Utilities
An Intel iRMX-based system supports
many industry-standard and widely
available languages: FORTRAN 77 ,
Pascal (ISO Draft Standard) and PLIM
compilers; Intel Assemblers, and popular
independent vendor products, such as
Microsoft's BASIC and Mark Williams'
Ccompiler.

iRMX operating systems also have a
menu-driven, screen-oriented text editor
and a variety of utilities for manipulating

object code to facilitate the development
process.

Multiple-language support'is made '
possible by it set of systems calls known

as the Universal Development Interface
(UDI) which enables the iRMX systems
to interface with many compilers and
language translators. UDI ensures that
users will be able to transport applica
tions to future releases of iRMX oper
ating systems as well as use language and
utilities of other software vendors that
support um. (For more information on
lutel iRMX languages, see the iRMX
Language Fact Sheet)

As an option, a commercial extension
package iCEX is available. It provides
such useful utilities as: a Shared I/O
System (SIOS) that allows multiple tasks
to access mass storage data through
shared buffers in main storage; a Re
entrant Program Manager (RPM) that
eliminates the need to have multiple
copies of the same program in memory to
support concurrent applications; a File
Printer; Multi-user LOG ON facilities;
and many more.

Intel's Open Systems
Approach Means Freedom '
to Grow
At lutel, we believe that systems need to
expand in order to meet the needs of a
changing marlcet; and that is how we
design our products. '

Standards are the key to systems
that are open to future expansion,
future technology and future
markets.

lutel 's ~ operating systems are
built from the inside-out with indus
try standards: UDI (Universal
Development Interface), RTI
(Runtime luterface) , MULTIBUS
,System Bus (IEEE 796), iMMX
800 Package (MULTIBUS multi
processing), Ethernet (IEEE
802.3), extended math format
(IEEE P754), and industry-standard
peripheral device interfaces.

An OEM who builds his product around
one of lute I 's RMX-board systems is as
sured of multi-vendor hardware/software
alternatives and a future upgrade path. In
today's highly competitive markets, that
is the only kind of system to build.

Thday, you'll have the ability to tap into
readily available application software
packages, languages, and utilities,
MULTIBUS boards, and peripherals.
Thmorrow, you will be able to tap into the
latest, high-performance VLSI without
sacrificing today's software investment.
Applications written on iRMX 86 will
run on lutel's iAPX 86, iAPX 88, iAPX
186, iAPX 188 and iAPX 286-based
systems.

Not to be forgotten are the advantages of
starting from the systems level to begin
with. lutel has invested hundreds of
man-years in software and hardware de
velopment for its systems products. For
the OEM trying to meet a market win
dow, time-to-marlcet is niuch faster when
starting with a system instead'of boards
or components. It makes good business
sense to let lutel provide the "micro
engine", so you can concentrate on your
area of expertise and get to m8rket'

Worldwide Service and
Support
The iRMX 86 Operating System is a
mature proven product willi thousands of
installations at the component, boafd and
systems levels. Post-sales software sup
port is available to lutel iRMX 86
Operating System OEMs in the forin of
software updates and routine systems
software maintenance. Software support
is extendable in one-year iDcrernents after
the initial90-day warranty.,Hotline
service is available separately to cus
tomers needing quick regional software
support. All software is completely
docutne\lted, apd 'users receive monthly
technical reports, newsletters and access
to the iRMX users group and software
libraries.

'iRMX users can also take advantage
of lutel's worldwide staff of trained
hardware and software engineers for
application design assistance. We offer
complete training for operating system
software and associated system
hardware, bringing OEM's up to speed
and helping get their products to market
quickly.

Intel, the Technology Leader
... With the Total Solution
lutel started the microprocessor revolu
tion with the 4004 and has been the
market leader with every generation of
advanced microprocessor VLSI since.
We not only invented the inicroprocesSor
but MULTIBUS single board computers,
as well.

lutel '8 technology leaderShip has. by
n~essity, extended from micoo- .
processors into operating system
software. iRMX is recognized as the
industry standard real-time VLSI
operating system.

OEMs ,can enhance their product's 1llIIi
ketability by leveraging their value-added
on top of the solid fOlJ1ldation of.an·
iRMX·based lutel300 qllCll;lcpmputer
system. lutel~s solution.off~ the most
price/performance with the least'riSk to
progressive OEMs ... because \ve know
the ~-time game from the inside out.

Specifications

Supported Software Products
IRMX 860 IRMX 86 Development

Utilities Package Including
the IAPX 86 and 88 linker,
Locator, Macro Assembler,
Llbranan, and the IRMX 86
Editor

IRMX 861 Pascal 86/88 Compiler

IRMX 862 FORTRAN 86/88 Compiler

IRMX 863 PUM 86/88 Compiler

IRMX 864 TX-Screen-Onented Editor

IRMX 865 BASIC Interpreter

IRMX 866 C Compiler

IMMX 800 MULTIBUS® Message
Exchange software package
for IRMX 80, 86, 88, and 286
application systems

Supported Hardware Products
iSBC' MULTI BUS· Products

ISBC 86/12A, 86/05, 86/14, 86/30, 86/35,
88/25,88/40, and 286/10
Single Board Computers

ISBC 186/03 Single Board Computer

ISBC 186/51 Ethernet Controller

ISBC 188/48 Communications Controller

ISBC 286/10 Single Board Computer
(Real Address Mode only)

ISBC204 Flexible Disk Controller

ISBC206 . Hard Disk Controller

iSBC208 Flexible Disk Controller

ISBC 215 Winchester Disk Controller

ISBC220 SMD Disk Controller

ISBX 251 Bubble Memory System

ISBC 254 Bubble Memory System

ISBC 534 4-Channel Terminal Interface

ISBC 544 Intelligent 4-Channel
Terminal Interface and
Controller

ISBX 218 Flexible Disk Controller

ISBX 350 Parallel Port (Centronlx-type
Printer Interface)

ISBX 351 Senal Communications Port

ISBX 270 cm: Light Pen and Keyboard
Interface

System 86/300 Family
System 286/300 Family

Available Literature
The I RMX 86 Documentation Set IS
compnsed of the follOWing four volumes
of reference manuals Order numbers
are associated With these four volumes
only

iRMX 86 Introduction and Operator's
Reference Manual for Release 6
Order Number. 146545-001

Introduction to the IRMX 86 Operating
System

IRMX 86 Operator's Manual

IRMX 86 Disk Venf,catlon Utility
Reference Manual

IRMX 86 Programmers Reference
Manual for Release 6, Part 1
Order Number 146546-001

IRMX 86 Nucleus Reference Manual

IRMX 86 BasIc 110 System Reference
Manual

IRMX 86 Extended I/O System Reference
Manual

iRMXTM 86 Configuration Size Chart

IRMX 86 Programmer's Reference
Manual for Release 6, Part II
Order Number 146547-001

IRMX 86 Application Loader Reference
Manual

IRMX 86 Human Interface Reference
Manual

IRMX 86 Universal Development
I nterface Reference Manual

GUide to Writing Device Dnvers for IRMX
86 and IRMX 881/0 Systems

IRMX 86 Programming Techniques

IRMX 86 Terminal Handler Reference
Manual

IRMX 86 Debugger Reference Manual

IRMX 86 System Debugger Reference
Manual

IRMX 86 Crash Analyzer Reference
Manual

IRMX 86 Bootstrap Loader Reference
Manual

IRMX 86 Installation and Configuration
Guide for Release 6
Order Number 146548-001

IRMX 861nstaliatlon GUide

IRMX 86 Configuration GUide

Master Index ior Release 6 of the IRMX
86 Operating System

System Layer Min. ROMabie Max. Data
Size

Bootstrap Loader
Nucleus
BIOS
Application Loader
EIOS
Human Interface
UDI
Terminal Handler
Debugger
Human Interface Commands
Interactive Configuration Utility

System 86/300 Memory: 348KB
Maximum Addressable Memory: 1 MB

Minimum Memory Required with ICU Loaded: 448KB

·Usable by System after Bootloadlng

2-35

Size

1K
10.5K
26K
4K

10.5K
22K
11K
3K

28.5K

Size

1.5K
24K
78K
10K

12.5K
22K
11K
3K

28.5K

6K*
2K
1K
2K
1K

15K
o

O.3K
1K

116K
308K

inter
OrderIng Infonnatlon

Each iRMX operating system includes two startup systems
supporting Jntel's System 300 standard hardware and Intel
processor boards. Intel System customers also receive the iRMX
860 (Assembler, Linker, Locator, Ubraries, Editor, Utilities) and
iRMJ!: 863 (PUM Language) products and are entitled to one
~d incorporation fee. Also included: Software Problem
Reporting Service (SPR), and a 90 day,System Software
Subscription (new slw release updates). Also includes. System.
Softwarci documentation.

ReIer to Intel"s OEM price list, OEM Mlcroc:omputer System section, for
ordering Information.

XENIX*3.0
OPERATING

SYSTEM

@INTELCORPORATl0N1984
·XENIX ts a trademark of MIcroaoft Corporation
tUNIX l8a tradamarkof Bell Laboratone8

• XENIX 3.0 Industry Standard
Multiuser Operating System

• Fully licensed version of the UNlXt
operating system optimized for the Intel
80286 processor

• Leading edge microprocessor imple
mentation of UNIX, fastest noating
point performance on a microprocessor

• Important commercial OEM
enhancements

• Supports multiple levels of integration:
components, boards and systems

• Supported by Intel's worldwide post
sales service and support organizations

ORDER·NUMBER 230752-003

2-37

System for
derivation
System III.

not only all the.
System III, but

enh,mce'lUerlts from

3.0 provides the OEM with a
complete software base on which to build
value-added functionality. Itincludes the
operating system, the C language; teXt
processors, development tools, sYstem
accounting and security features, and

·XENIX IS a trademark of Microsoft Corporatton

commercial enhancements that make it
the optimum foundation for OEM appli

cation software
solutions.

XENIX:
Portable,

Flexible,
Powerful

XENIX has become
the industry-standard
microcomputer operat-

ing system for inter
active, multi-user
applications. It has
gained wide popu

larity in applica-
tions such as distrib

uted data processing,
business data process

ing, word processing,
software development, sci

entific and engineering ap
plications, and graphics.

XENIX has achieved this mar
ket success through a solid com

bination of UNIX system technol
ogy, Microsoft value-added product

development, and Intel's experience in
microprocessor technology. In the fu
ture, XENIX 3.0 will benefit from ad
vances in AT&T UNIX technology,
Microsoft software technology and Intel
semiconductor and system technology.

XENIX is also an extremely powerful
operating system, providing the applica
tions programmer with a wealth of de
velopment to{)ls and utilities for bring
ing OEM products to market quickly.

..........
XENIX 3.0: Leading Edge
UNIX Performance on a Micro
As the first UNIX operating system de
rivative optimized for the iAPX 286,
XENIX 3.0 alone can take full advan
tage of the 80286 's unique features:

On-chip memory management
and protection provides two key ad
vantages for XENIX 3.0 over other
microprocessor UNIX implementations.
First, on-chip memory management and
protection drastically reduces the over
head in accessing system memory as
compared to the usual separate memory
management unit. With this func
tionality right on the chip, the operating
system works more smoothly and
efficiently.

Second, on-chip memory management
and protection circuitry ensures that each
version of XENIX 3.0 will be very com
patible with every other version. This
heretofore impossible level of compati
bility aids OEM, software developers,
and end users due to the wider
availability of compatible software.

Advanced microprocessor
architecture provides pipeline
processing, wherein a continual flow of
instructions is kept in the CPU queue,
results in throughput several times faster
than the fastest competing
microprocessor.

1.75x

1.5x

1.25x

1.0x

CONVERGENT TECHNOLOGY MINI FRAME
ALTOS 986-----

Fast floating pOint processing
is due to XENIX 3.0 support of the Intel
iAPX 287 math coprocessor. Floating
point processing deliVers throughput that
is an order of magnitude faster than
non-floating point processing. Extra high
processing speeds are needed in applica
tions such as data base processing;
commercial data reduction and graphics.

'111111///////////"""'IIIIIIIIIIIIIIIII~
2-38

Faster, More Reliable Still
When Teamed with Other
Intel Systems Components
The throughput enhancements in
the XENIX 3.0 software are pushed
to even greater speeds by special
hardware architecture in Intel's systems
and board products.

MULTIBUS® System ArchItec
ture is the industry-standard system
bus. It accommodates any of the special
purpose Intel iSBC'" boards, as well as a
multitude of third party Multibus boards
and standard peripherals, for easy sys
tem expansion.

iLBXTM (Local Bus Exchange)
is an Intel hardware innovation that
increases the amount of local memory
accessible by the operating system to sig
nificantly improve system throughput.

Error Correction Circuitry (ECC)
automatically detects and corrects soft
errors in RAM. This on-board, self
correction facility reduces errors and
further underscores data integrity.

See Intel benchmark series

A Faster Operating System
Means Market Leadership
The combination of the industry's most
widely accepted operating system for .
multi-user, interactive applications with
the industry's fastest and most advanced
microprocessor gives the OEM a far
superior price/performance ratio than is

XENIX 2!16 combines UNIX technology from

available through other options. The re
sult for the OEM: market leadership due
to the ability to more attractively price
products based on superior performance.

XENIX 3.0: The Best of
Everything
The XENIX 3.0 Operating System con
tains the best of many vendors' UNIX!
XENIX development efforts during the
last ten years (see Fig. above). We have
taken the best features of many UNIX
versions-ease of use, flexibility, per
formance, security, reliability-and
added our own enhancements (not the
least of which is compatibility with the
iAPX 286) to make XENIX 3.0 the op
timum software foundation for the
commercial OEM.

Superior Date Reliability and
Integrity
XENIX 3.0 contains enhancements to
provide extremely high data reliability
and integrity, particularly important to
the OEM who is adding value to a system
product. The following enhancements in
XENIX 3.0 contribute to uniformly reli
able data at all stages of application
development.

Automatic disk recovery is an
improvement of the UNIX file system
that allows automatic recovery of the file
system in the event of unexpected system
shutdown.

Record ,nd file locks arbitrate
multiple-access requests to the same re
cord or file, allowing the programmer to
extend locks to a single record, group of
records or the entire file. This is im
portant in multi-user applications to pre
vent two or more users accessing and
updating the same information
simultaneously.

XENIX System Analysis Test
(XSAT) is a complete hardware
spftware diagnostic package included
with all Intel integrated system products.
XSAT provides a total analysis of a
XENIX-based system, ensuring relia
bility even after the OEM configures
new drivers into the system.

Tools for Easy System
Configuration
In addition to increased data relia
bility measures, XENIX 3.0 has
been functionally enhanced for
easier system configuration.
An interactive configura
tion utility allows the
user to specify device
drivers, disk buffers,
memory size, etc., making
it easy for the OEM to meet
design requirements. XENIX 3.0
includes over 12 device drivers for high
speed controllers.

Friendlier Interface
The standard UNIX human interface has
been enhanced in XENIX 3.0, with the

"""IIIII •••••••••• ~
2-39

addition of vi, a full-screen editor, for
easier and faster application development.

The XENIX C shell augments the capa
bilities of the slandard~UNIX shell with
the ability to maintain histories of in
voked processes and pI"lWide the alias
featun:, savi!lg re-keying of often-used
commands. 'XENIX 3.0 also pI"lWides
the vis~ shell, a menu driven com
mand interpreter which makes full use of
the screen to display status and environ
mental information to the user. It has a
built-in HELP facility and allows users
to add new applications to the menu.

Intel's Open Systems
Approach
Intel believes that system components
haIdware or software-should be fully
compatible with other family members
at any level of integration and open to
future VLSI advancements. XENIX 3.0
was designed to be part of the Open
Systems concept.

Portability from Chip to
Board to System

Intel's XENIX 3.0 Operating System is
available for and fully 'compatible across
Intel component, boaId and ~ystem de
signs, something that no other XENIX
version offers.

Such portability gives OEMs the fleld
bility to choose the most appropriate and
profitable level of integration for their
applications. Component-level integra
tion allows the OEM to meet unique

design requirements; boa!d and
, system-level integration afford

time to market.

There is no loss in
software development

, investment as your
needs change, since

you can port XENIX
based applications from the

, chip to the system level or
, even from one Intel processor to
another.

Open to
Configurability through
Third-Party Software and
Hardware
XENIX 3.0 users can tap into an exten
sive base of existing third-party lan
guages and application packages for
almost endless versatility in system
configurability. There are hundreds of
such packages available today with
many more on the way. 10 assure the '
availability and quality of these pack
ages on our systems, we have the Inde
pendent Software Vendor Program.
Through this activity, software vendors
are given Intel systems as well as techni
cal assistance to aid them in porting their
packages. The resulting product is
thoroughly evaluated by Intel prior to
certification for operation on our system
products.

Superior Documentation
In rme with the OEM orientation of the
Intel hardware and software combina
tion, the documentation for Intel's
XENIX 286 product provides excellent
support for system builders. In addition
to the mature UNIX documentation' from
AT&T and the value-added feature
documentation by Microsoft, Intel adds
a wealth of publications aimed at help
ing the OEM to successfully launch
XENIX 3.0 based products.

Worldwide Support and
Service
XENIX 3.0 customers can take advan
tage of Intel's worldwide staff of trained
haIdware and software engineers in
coqtracting for application design assis:
tance. A liberal warranty, including
software updates and a technical news
letter, follows the sale. Once the war-

Intel offers complete training on the
XENIX 3.0 Operating System as well as
the iAPX 286 processor and associated
hardware.

Intel, The Technological
Leader ...
Intel is committed to pushing the fron
tiers of VLSI design to their ultimate
limits. In the process, we move our
customers along the technology curve
without interruptions in application
'development or expensive mid-stream
an:hitecture changes. '

Intel started the micro revolution with
the 4004 and has been the market leader
with every generation of advanced pro
cessors since.

Systems and system softwm are a
natural for us: who better knows the
pieces and how to make them work
together?

... In Total Solutions
The XENIX 3.0 Operating System fully
exploits the iAPX 286, the fastest and
most sophisticated microprocessor on
the market. No otherprocessor/operat
ing system combination will 'give OEMs
a faster and more economical path to
getting systems and applications on the
market.

Intel has' always been first withtIie latest
and most advanced VLSI and now with
s)'lltem software tailor-made for Intel
VLSI. Because we're there first, our
customers are first in their respectjve '
markets with state-of-the-art OEM and
end-user products.

r ___ ., XENIX*3.0,'
2-40

XENIX 3.0 includes support for the following Intel
Systems, single board computers and processors.
• System 286/310
• System 286/380

• iSBC® 286/10 Processor Board
-16mb of addressing
-On-chip memory protection

• CX Series RAM board
-ECC (Error Correction Circuitry)
-iLBXTM (Local Bus Extension)

• iSBC 215 Winchester Controller
• iSBX 218 Floppy Controller
• iSBC 534 Serial I/O Expansion Board
• iSBC 544 Intelligent Serial I/O Expansion Board
• iSBC 188/48 8-channel Serial I/O Expansion Board
• iSBC 552 Ethernet Controller Board
• iSBX 217 Thpe Controller Board

• 80286 Central Processor
• 80287 Fast Floating Point Processor

2-41

Documentation

Documentation Includes:

• Overview of the XENIX 286 Operating System
• XENIX 286 Installation and Configuration Guide
• XENIX 286 System Administrator's Guide
• XENIX 286 Communications Guide
• XENIX 286 Visual Shell User's Guide
• XENIX 286 User's Guide
• XENIX 286 Reference Manual
• XENIX 286 C Library Guide
• XENIX 286 Programmer's Guide
• XENIX 286 Device Driver Guide
• XENIX 286 Text Formatting Guide

TextBooks

The UNIX Book-Banahan & Rutter
The UNIX System-Bourne
The UNIX Operating System-Kaare
Understanding UNIX: A Conceptual Guide-Groff & Weinberg
The UNIX Programming Environment-Kernighan & Pike
Introducing the UNIX System-McGilton & Morgan
A Practical Guide to the UNIX System-Sobell
A User Guide to the UNIX System-Yates & Thomas
A Business Guide to the UNIX System-Yates and Emerson

Ordering Information

XNX 286 HRO
XNX 286 KRO
XNX286.RF·
SYS31O-17X
SYS 31O-m.1X
SYX 286 RO
SYX 286 RF

XENIX Object Software (8" double side, double density) plus license rights
XENIX Object Software (514" double-sided, double density) plus license rights
Software Incorporation Fee
System Kit including System 310-17 and XENIX Software
System Kit including System 310-17, XENIX Software, 6 user support
License rights extel\sion for system customers
System incorporation fee

2-42

inter

Ordering Information

XNX286H
XNX286K
XNX286RO
XNX286RF
173258
CTWI4PP
SPRTECHREP
HOTLINE
SP86 330 XINSTALL
CONSULT-FIELD
CONSULT-LT

XENIX Object Software (8" double side, double density)
XENIX Object Software (5\4" dOljble-sided, double density)
Software License Rights Extension
Software Incorporation Fee
XENIX Documentation Package
XENIX Customer Training
XENIX Support Subscription Services
XENIX Hotline Phone Service
XENIX Software Installation
XENIX Onsite Field Consulting
XENIX Onsite Field Consulting for extended time periods.

2-43

ATION,1982

/

APPLICATION
NOTE .

2-44

AP-130

March 1982

ORDER NUIIBE ~A~CH 1982 R. 2,028S-001

AP·130

INTRODUCTION

Intel recently introduced a new set of extensions to its
microprocessor product line. The iAPX 86/30 and
iAPX88/30 Operating System Processors (aSPs) aug
ment the general-purpose instruction set of the well
known 8086/8088 architecture to include common,
real-time, operating system capabilities. A single
device, the 80130 Operating System Firmware compo
nent (OSF), now provides hardware support for ftmc
tions previously relegated to software.

The 80130 introduces new concepts in the areas of both
hardware and software. At first glance, traditional
component-level hardware designers could feel some
what intimidated by the esoteric concepts and un
familiar buzzwords encountered in the software world.
Even the experts in conventional operating system
(OS) design may initially find it strange that what used
to be "soft" software routines are now cast in silicon.

This application note is intended for readers at both
levels. The first section reviews the development of
processor extensions in general and operating system
firmware in particular. Later sections should help you
understand what a real-time operating system can do,
how the 80130 provides these capabilities, and how to

2-45

design system hardware and software to take advantage
of such features.

The note also documents a complete (albeit simple)
system, including schematics and listings. The reader
may wish to reconstruct this system to get started with
aSPs. Finally, a step-by-step description of the so
called "configuration" process shows how physical
system parameters are incorporated into the software
as the software is "installed" in memory. Through
out the note are a number of "exercises"-questions
relating to concepts just presented. Please take a
few moments to think about these questions before
reading on.

The reader need not have worked with operating sys
tems previously, though such background would be
helpful. The reader should also know something about
microprocessor hardware-at a minimum, how the
8086 or 8088 devices operate. For simplicity, most of the
software examples are written in PLlM-86, so the
reader should be familiar with PLlM-80 or some other
block-structured language. Finally, be forewarned that
the configuration steps make use of several ISIS utility
programs, including EDIT, SUBMIT, ASM86,
LINK86, and LOC86. Readers who wish to brush up on
any of the above should consult the appropriate Intel
reference manuals.

AFN.Q2058A

I:E! v,, Vee V" Vee

AD14 AD1S AD14 AD1S

AD13 SHE AD13 Al61S3

AD12' IR7 A012 AD171S4

AD11 IRS AD11 AlB/55

AD10 IRS AD10 Al61S6

ADS IR4 AD9 SHElS7 (HIGH)

ADS IR3 ADS MNliii

AD7 1R2 AD7 iiD
ADS IRI ADS iili/Cffii
ADS IRO ADS ROJGf1
AD4 INT AD4 LOCi(

AD3 52 AD3 fi

AD2 51 AD2 S1
ADI SO ADI iIO

ADO ACK ADO OSO

MeMeS LlR NMI 051

iOCs SYSnCK INTR TEST

CLK DELAY CLK READY

V" BAUD V" RESET

Figure 1. 8086 and 80130 Pinout Diagrams

2-46

AP-130

EVOLUTION OF PROCESSOR
EXTENSIONS

In the early days of microcomputing (circa 1974), things
were simple. The first microprocessors comprised just
the central processing unit of a simple computer. Sys
tems built up from these processors were generally
smaIl, dedicated-purpose device controllers-often
replacing the random logic of an earlier design. The
system designer had responsibility for the development
of the hardware and all application software.

Semiconductor technology has progressed rapidly
since then. Devices have become more sophisticated,
as have the applications in which they are used. System
functions today are more complex than they used to be,
and are demanding more in the way of both system
hardware and software.

To help designers cope with this complexity, semicon
ductor vendors are building increasingly more
"functionality" into their standard product lines.
Whereas the general arithmetic functions of the 8080
and 8085 were limited to addition and subtraction of
eight-bit unsigned (ordinal) values, for example, the
Intel® 8088 and 8086 now add, subtract, mUltiply, or
divide eight- or 16-bit, signed or unsigned variables
-an obvious improvement.

The evolution of ftoating-point arithmetic provides an
other example of technology growth. Initially, design
ers of numeric and process-control systems each
developed the ftoating-point arithmetic routines they
needed. Intel eased this task considerably in 1977 when
it introduced a standard ftoating-point format and a
ftoating-point arithmetic software library, FPAL-80. In
1978, the iSBC 310 High-Speed Mathematics Unit im
plemented these same functions with dedicated hard
ware and executed them an order-of-magnitude faster.

The 8231A Arithmetic Processor Unit (introduced in
1979) provided similar functionality in one chip at much
lower cost. To accommodate the needs of today's
world, the Intel RealMathTK software'standard and the
8087 numeric coprocessor perform 80-bit ftoating-point
arithmetic for high-performance 8088 and 8086
systems.

This evolution offtoating-point hardware illustrates two
recurring themes in the microcomputer industry. First,

. there is a natural trend toward componentization:

1. New applications reveal a need for new types of
functionality (in this case, fioating-pointarithmetic).

2. As common requirements become evident, vendors
develop software to serve these needs.

2-47

3. Specialized hardware is developed to support the
established functions more simply and effectively
than software alone.

In time, everything ends up in silicon.

The second theme is this: different functions should be
implemented in different ways to fit the customer's
needs. "Universal" requirements-like 16-bit
multiplication-are best incorporated into the CPU.
Functions needed only by certain applications-like
high-speed, extended-precision square roots-should
be provided as optional Processor Extensions so that
their expense is incurred only by those who need them.
In keeping with this philosophy, Intel currently offers
several processor extension products (see "What's in a
Name?").

What's in a Name?

The 80130 Operating System Firmware (OSP) device is
only the latest member of an extremely ftexible family
of Intel microprocessors. Its siblings include the 8086
and 8088 Central Processing Units (CPU s), the 8089 I/O
Processor (lOP), and a ftoating-point math coproces
sor, the 8087 Numeric Processor Extension (NPX).
These individual standard components may be mixed
and matched in numerous ways to create combinations
optimized for widely varying applications.

To make it easier to discuss the most common con
figurations, Intel has defined an "Advanced Processor
Series" (iAPX) numbering scheme, something akin to
those used in the minicomputer and mainframe worlds.
The 8086 CPU by itself, for instance, is called the iAPX
86110. The 808618087 combination is dubbed the iAPX
86120. An 8086180130 pair has the name iAPX 86130. The
8086, 8087, and 80130 together would form an iAPX
86140.

When each of these combinations uses an 8088 in lieu
of the 8086, each of the numbers above substitutes
"88" for the "86". An 8088 teamed with an 80130 is
therefore called the iAPX 88130. Finally, adding an 8089
to any system changes the final zero to a one. So, an
iAPX 88/41 system would be one using the 808818087/
8089/80130 chip set.

Real-Time Operating Systems

Let's turn our attention now to the subject of micro
computer operating system software-an area steadily
growing in importance. The trends toward standardized
functions with specialized implementations will be
come evident.

AP-130

But first, what is an operating system? The phrase
means different things to different people. In 20 words
or less: An OS is It tool, a set of programs or routines
which reduce and simplify the problem of managing
system resources. (Well, 21, actually ...)

Most microcomputer prpgrammers have encountered
single-user diskette operating ,system~, Intel's ISIS-II@,
and CP/M@ and CPIM-86@ from Digital Research Incor
porated among them. In essence, an OS of this sort is a
collectioh of run-time subroutines which perfOrm
device 110 operations and give application programs
access to a disk-based file system. Along with these are
routines to supervise the loading and execution of ap
plication programs. Historically, this type of OS is
oriented toward user-interactive applications: software
development, business computing, and the like.

In the mainframe world, the goal of an operating system
is to use expensive equipment as efficiently as possible.
Batch processing systems ensure that programs waste
as little CPU time as possible, though each monopolizes
the CPU until it has completed. A time-sharing OS
allots short periodic "slices" of time to each of several
independent users, during which each has access to the
CPU, memory, and other system resources.

A step above the traditional time-sliced OS are "real
time, multitasking operating systems." But what is a
"real-time" application? ("Don't all programs execute
in real time?")

A real-time systell!- is one in which the CPU must do
many different things (tasks), all more-or-less simulta-

neously. Unlike the sequential time-sharing of
mainframe OSs, though, the tasks are prioritized. J...ow
priority tasks are preempted if any of higher priority
have work to do. The higher-priority task then runs
unti1 it must wait for some external event to occur or no
longer needs the CPU for some other reason. Thus, the
CPU services tasks in their order of importance.

A computer controlling factory machinery, for in
stance, might perform five separate tasks:

1. Monitor input'switches to detect emergency condi
tions, determine intended operating mode, or update
indicator lights showing machine status;

2. Drive a stepper motor to position a tool;

3. Keep track ofthe time of day;

4. Send output to the console (e.g., CRT), either in
response to explicit commands or as part of some
other task;

5. Read and process characters entered from a console
keyboard. '

These tasks seem largely unrelated, though the first few
may be more important to system operation
than the others. Let's consider some alternate
ways to accomplish these functions with today's
microcomputers.

Conceptually, the most straightforward approach might
be to dedicate a separate computer to each. The pro
gram for each would then be quite simple: an initializa
tion p~e followed by an endless loop performing the
dedicated function. Algorithms for the first four tasks
are flowcharted in Figure 2.

Figure 2. Flowcharts for Concurrent Machine-Tool Taska

2-48

AP-130

What's wrong with this approach? Ignoring cost, the
need for multiple CPUs becomes physically unrealistic
for more than a few tasks-60, say, or 600. And tasks
are rarely fully independent; note that the switches
monitored by task 1 could affect task 2, and that tasks 4
and 5 interact with the rest of the system in as yet
undefined ways. So, some sort of communications
would .have to be set up between the micros.

Exercise 1. Suppose five tasks are all interrelated.
How many communications channels would have
to be set up between different processors? If each
channel requires two dedicated communication

chips, how would the number of peripheral
devices compare with the number of CPUs?

In each task, the CPU spends most of its time waiting
for time to pass or for something to happen. One CPU
would be able to implement all five tasks if its time were
properly divided among them. An alternate approach,
then, might be for a single processor to attend to each
task in turn, performing the actions called for by each.
Figure 3 shows a flowchart for this scheme. Only one
CPU is required and .the tasks can communicate be
tween themselves and share physical resources like the
console.

READ STATE OF
INPUT SIGNALS

WRITE MACHINE STATUS
TO INDICATDR UGHTS

STEP IN APPA().
PAlATE DIRECTION

INCREMENT TIME~
OF-DAY COUNTERS

OUTPUT MESSAGE
TO CONSOLE

Figure 3. Machine-Tool Tasks Implemenled Via Polling Scheme
2-49

AFN-02058A

AP-130

TIie problem here is the h~avy 'interaction between
tasks. Before it can be serviced, an important task may
have to wait for many other less critical tasks to com
plete. TIiis imposes it conshafnt that each task release
the CPU as quickly ~ possible. Also, lumping tasks
together obscures the boundaries between them. In
itialization sequenclls must be grouped with each other,
rather than with the sections of code affected. Adding to
or deleting any task may affect the 'others. It's not clear
how to structure the program s\lch that programmers
could cooperate on such a program.

Moreover, the various tasks can mterfere with each
'other. Suppose on a given pass through the processor
loop, three tasks each send one new character of a
message to the console display screen. The resulting
output would be most interesting.

The third, and optimal approach, would be one which
combined the advantages of the first two approaches,
while avoiding the pitfalls. Each function of the overall
system could be designed, written, and tested sepa
rately, as in the first approach, yet all the 'software
would run on a single computer system as in the
second. Tasks could therefore communicate with each
other easily, and share peripherals such as CRTs. This
multitask control and communication function could be
performe'd largely through software.

The key is finding a way to properly budget CPU time
between the various tasks. Early pioneers of complex,
real-time, control system design found that they needed
special routines, apart from the application tasks them
selves, to supervise the execution of application tasks.
It was (at best) an inconvenience for so many engineers
to independently define, design, document, test and
debug software with the same general purpose. At
worst, schedules slipped or projects were cancelled for
the lack of reliable executive software.

To help avoid these hazards and free up the designers to
concentrate on more immediate goals, Intel developed
iRMX 80, the first real-time, multitasking, executive
operating system for microprocessors. iRMX 86 was
introduced to the 16-bit world two years later in 1980.

Because of the critical real-time nature Qf such operat
ing systems, they require certain hardware capabilities
in the host system, such as special timer logic clocked at
certain frequencies to measure the passing of time, and
interrupt controllers to monitor assorted asynchronous
events. Combine all this with a handful of memory
chips to house just the OS software, and the address

, decode and control logic needed by all ofthe above, and
, you'll find you need the equivalent of a single-board
computer system just to support a multitasking
environment.

Until now, tltat is. The current tiend is to integr;tte OS
software and hardware functions into silicon. Intel:s
iAPX 432 32-bit MicroMainfrarne™ sY,stem does this
within'the CPU. For the 16-bit world, however, Intel
provides it separate, chip; the 80i30, which contains
operating system firmware as well as timer and inter-
rupt con'trol functions. ' ' ,

What is the 80130 OSF? It is an extremely sophisticated
integrated circuit, fabricated, using Intel's high
performance :aMOS technology, which contaiDs over
160,000 devices. In one 40-pin package (Figure 4), the
80130 combines several timers, multiple-mode inter
rupt control logic, and a large control store memory
-plus buffers, decoders and the like-to form the in
tegrated, heart of a multitasking operating system.
Compared with the iRMX 86 Nucleus, for example, the
80130 replaces an 8259A PIC, an 8253 PIT, a special
oscillator, 16K bytes' worth of memory, and aS,sociated
control logic.

The 80130 operates in conjunction with the 8086 CPU:
Together, the two chips are called the iAPX 86130 OSP.
The same device may be paired just as easily with an
'8088 forming the iAPX 88130. From here on, though,
references to the 8086 'or "host processor" apply to
both CPUs. Due to the high speed of HMOS, the 80130
currently runs at system clock rates up to 8 MHz with
out inserting any wait states. Firmware in the 80130
supports the 35 primitive functions listed in Table 1.
Many of these are discussed in Chapter IV.

2-50

SYSTEM HARDWARE DESIGN

The 80130 supports a wide range of system architec
tures, from compact to quite complex. Most, however;
have in common the functional blocks represented in
Figure 5. After a brief review of iAPX 86130 systems in
general, we'll examine 80130 requirements in greater
detail.

Basic Functional Blocks

In addition to the 80130, the central processing "core"
of a typical OSP system would incl~de an 8088 or 8086
operating in maximum mode, an 82843A clock
generator, and an 8288 system controller, all connected
according to the standard rules. More on the 80130-
specific interconnects later.

Address latches (e.g., 8282s or 8283s) are generally
needed to demultiplex the processor address bus for
standard memory deVices and for memory and 110
device-select logic: The number (from zero to three
octal latches) depends, on the host processor,
memories, and the addressing'scheme employed. Data

AP-130

Table 1. Operating System Primitives Supported by 80130

Task Management
Suspend Task
Resume Task
Sleep
Create Task
Delete Task
Set Priority
Get Task Tokens

Intertask Communications and Synchronization
Send Message
Receive Message
Create Mailbox
Delete Mailbox

Mutual Exclusion Control
Receive Control
Accept Control
Send Control
Create Region
Delete Region

transceivers (8286s or 8287s) may also be needed for
increased bus buffering.

Any complete microprocessor system must also have
some combination ofI/O peripherals and memory, col
lectively indicated by the box labeled "Local Re
sources." As we shall see, some of the system RAM
and ROM (or EPROM) must be reserved for OSP itself.
Additional logic decodes the latched address lines to
generate chip-select signals for the memory and I/O
devices.

This note only discusses simple, single-processor sys
tems. More sophisticated architectures may incor
porate a multimaster system bus, in addition to a local
processor bus. This would require additional system
controllers, address latches, and bus transceivers for
bus isolation, and address mapping logic (not shown) to
select between the various busses, enable the respec
tive transceivers, generate a System Ready signal, and
so forth. For design information on such techniques,
refer to application note AP-67 in theiAPX 86,88 User's
Manual.

2-51

Interrupt Managemeut
Set Interrupt
Signal Interrupt
Reset Interrupt
Enter Interrupt
Wait Interrupt
Exit Interrupt
Enable
Disable
Get Level

Free Memory Management/System Partitioning
Create Segment
Delete Segment
Create Job

Misc. Support
Signal Exception
Get Type
Disable Deletion
Enable Deletion
Set O.S. Extension
Get Exception Handler
Set Exception Handler

80130 Pin Functions

Back to the 80130. Certain pins on the 80130 (in particu
lar, AD IS-ADO) attach directly to the CPU. The AD
pins are bidirectional, accepting addresses from the
host and returning instructions or data. By monitoring
the system clock and status signals, S2-S0, the 80130
can decode the processor status internally and respond
automatically to the appropriate bus cycles. The BHE
input lets the 80130 determine the width of data trans
fers and distinguishes an 8088 host from an 8086. If you
refer back to Figure I, you'll notice that these 80130 pin
assignments were selected to simplify P.C. board
layout. .

Beca~se of the 80130's location on the CPU side of any
latches or data transceivers (on what is sometimes
called the "pin bus"), the transceivers (if used) must be
disabled when the 80130 is driving the processor bus.
Whenever the 80130 is responding to any type of bus
cycle, it generates anACK signal. As Figure 4 suggests,
one way to avoid contention is to simply disable the
transceivers when ACK is active. ACK can also be used
to prevent the insertion of wait states.

AFN·02058A

AP-130

I--------------------------------~-I
I OPERATING SYSTEM UNIT I
I I
I

00-7
I

I I
I r I 7

I
PROGRAMMABLE

I INTERRUPT I
I LOGIC I INTERRUPT INP UTS

I I
I I
I I INTERRUPT OUT
I KERNel I
I CONTROL I

I
STORE I

I I
I I

1

? SYSTEM ~ SYSTEM

TIMER I
I

W
I

I I
08·15 I

I c:::::--
DELAY DELAY
TIMER

:

~ :
1

BAUD RATE ~ SAUORA
GENERATOR I

: I
I

TE

1--------------- ------- -- ---------------1
I I
I <-- I
I 11- CLOCK

I
I 3 ,. I DATA BUS ~ STATUS I BUFFER

I
INTERFACE

< ;Z , • AND I 4

I ADDRESS CONTROL ~BUSCO
ADDREssl I LATCH

NTAOL

DATA BUS I -!-- LOCAL
I I INTERRU PT
I CONTROL UNIT I (wi) L __________________________________ ~

Figure 4. 80130 Internal Block Diagram

Additional pins on the 80130 include eight interrupt
request inputs. Internal interrupt control logic provides
many of the functions of the 8259A. During system
configuration (Chapter V), each of the eight may be
individually defined as a direct level-sensitive or edge
triggered interrupt request, or each may be cascaded
with a standard 8259A in slave mode.

The INT output must be connected to the host CPU to
inform it of an enabled interrupt request. In very large
systems with multiple, cascaded interrupt controllers,
Local Interrupt Request (LIR) indicates to the bus
contention logic whether a requesting slave is local, or
must be accessed via a multimaster bus.

driven by SYSTICK, so this connection must be made
externally, Routines within the 80130 initialize and per
form all bit-level control of the interrupt and timer
logic, according to options and parameters specified
during the configuration process. Freeing the program
mers from this tedium allows them to devote more
thought to solving their own unique problems.

An additional, independent timer generates a' user
programmable, square. wave output SIgnal called
BAUD to clock an off-chip USART.

Since the 80130 displays some of the characteristics of
both memory and 110, it requires chip-select signals for
both the memory (MEMCS) and 110 (IOCS) address

The 80130 also contains dedicated timeriogic to provide spaces. These are discussed at length below. Finally,
the OS time base, which is output on SYSTICK. Intel has reserved one output pin (called "DELAY")
Software operating in conjunction with the 81030 as- for use in future designs. Leave it unconnected in iAPX
sumes one of the interrupt inputs (INT2 in this case) is 86/30 systems.

2-52
AFN-()2058A

>

i

~
~

+5

1

+5

I r-k- 1\ 8284A Vee
(A1)Cl1< r--

S>- "S2- CONTROL ClK ~I--- rV ~
(CONTROL BUS)

SIGNALS READY ,..... READY 8288
RDY1 RESET (A3) V
ASYNCR - RESET

~1-'-AEN2 STB
BHE p: , B.:2

~ BHE
AEN1 RDY2 A19 A19

P
(A4) V A\6 A1.

jl~
LOCAL (ON-BOARD)

8086 RESOURCES
(A2)

~'STB
1\

(PROM, PERIPHERALS, RAM
N.C. Ali ACCORDING TO APPUCATION)

N.C aSl A~15 \ 8282 A"
NC. QSO I (AS)

t--- Ai.
ADO I\- f0- r

NC. LOCK

14='~ N.C. ROIGT1

NC. ROfGTO "";'STB f NMI
~ .

TEST MOl 8282 -
A7-A O LOCAL (+SYS) INTGND MAX ~~6) - V READY 015--00

1 ~ -=-~ I <---;:,. - - e-
DT/A

+51

ACKU-

INT =r--J ~~,(Ii - - ~

80130

'" ;,.
~ ,.,,---(A7)

A19-A16
~I- DE II-BHE i+-

015

S> !J1..---- ADDRESS ~ 8286
DECODE ,--'- (A8) l\r

So !\.j-- LOGIC

~A8 ~"-NC- illi 2 Al~
o SERIAL INT _ BAUD

~
ry--

N.C- DELAY
i01:S t-- ~86lft-r SYSTlCK

I---
A7

(A9J 1\r-MEMCS "4 l\f DO

- r- INT7

~:"~--
- ~ INT6
- ... INT5

;L-RIPHERALS - ... INT4
A~1S - ... INT3 PROCESSOR DATA BUS FOR MULTI-MASTER SVST

... INT2 ADO \r - INT1 - INTOySS vss

Figure 5. Basic iAPX 86/30 Microcomputer System Block Diagram

}

SYSTEM
CONTROL
BUS

SYSTEM
ADDRESS
BUS

SYSTEM
DATA
BUS

»
l'
~

AP·130

Additional System Requirements

The OSP requires a certain amount of off-chip memory
for its own operation. The system must provide at least
lK bytes of RAM at address OOOOOH for the CPU
interrupt vectors, plus another 150(\0 bytes for OSP
system variables, data structures, stacks, and the like.
This RAM may reside anywhere in the 8086 megabyte
address space, although it is often contiguous with the
interrupt vector up front. Application tasks must each
have their own stack, so allow at least an additional 300
bytes of RAM for each.

Any iAPX 86 system must have ROM or EPROM at the
upper end of memory to hold the CPU restart vector.
About 3400 more bytes are consumed by code to initial
ize and access the OSP. This code is generated auto
matically from libraries on a diskette provided with a
product called the iAPX 86/30 and iAPX 88/30 Operat
ing System Processor Support Package (iOSP 86).
Space left in the initialization EPROMs is available for
application tasks.

As code is being written, the system designer should
count on another 1500 bytes of code from the support

libraries being added to his application during the link
ing and system configuration steps. These memory re
quirements are shown in Figure 6. In practice, the
separate blocks in this figure would be grouped together
for more efficient use of RAM and EPROM chips.
The 80130 occupies a 16K-byte block of addresses in the
host-processor memory space, so external logic should
decode address bits A19-A14 to generate MEMCS~
Similiarly, the timer arid interrupt control logic occupy
a 16-byte block of addresses in the I/O space; at least
some of the bits A15-A. must be decoded to generate
IOCS. The 80130 decodes all the lower-order address
bits (14 for memory, four for I/O internally).

Firmware in the 80130 leaves a great deal of flexibility in
decoding the chip-select signals, to be compatible with
whatever decode logic is already present in the system.
The I/O starting address may be on any 16-byte bound
ary in the full CPU I/O space. The memory block has
only two restrictions: the off-chip initialization and in
terface code memory must be placed immediately
above the MEMCS block, so the 80130 may not occupy
the extreme top of memory, nor may the 80130 reside at
address OOOOOH since this area is reserved for interrupt
vectors.

iAPX 86/30 SYSTEM MEMORY REQUIREMENTS

OFFFFOH

MUST BE
CONTIGUOUS

400H

x

r////////////A }

POWER ON-LOCATION

80130 INITIALIZATION AND CONFIGURATION
CODE (ROM/EPROM)

16K FOR 80130 ON 16K BOUNDARY

1.5K CODE BYTES SYSTEM INITIALIZATION (ROM/EPROM)

1.SK RAM BYTES FOR IAPX 86/30 STACK AND DATA (RAM)

1K BYTES
RESERVED FOR
INTERRUPTS (RAM)

Figure 6. Operating System Processor System Memory Requirements

2-54
AFN-02058A

AP-130

Timing Requirements

System timing analysis is often the most tedious part of
digital hardware design. This discussion can be rela-,
tively short, though, because the 80130 timing is quite
simple: by design, the part is compatible with the timing
of the host processor. Since it interfaces directly with
the CPU pins, traditional set-up, hold, and access times
no longer matter.

There are really only two areas of concern in analyzing
the timing of most asp systems, both of which relate to
the user-generated chip-select signals. Figure 7 il
lustratesthe relevant timing signals of a standard 8086
four-state Read cycle (memory or 110), along with the
timing responses of the 80130. 1I0Write cycle timing is
the same. (Full timing diagrams are part of the respec
tive data sheets.)

The first concern is that MEMCS and IOCS,must be
active early in a memory or 110 cycle if the 80130 is to

T' n T2

I
• TCHCL reLCH I

/ .
-' ClK

respond during T3 . In each case, the chip-select signals
must be active TCSCL before the end of state T2 .
Assuming wait states aren't desired, addresses
generated by the CPU must propagate through the ad
dress latches and be decoded during Tl or T2 .

How much time does this leave the decode logic? As
we'll see, ample.

By convention, TCLAV is the delay from the start of
Tl until address information is valid on the CPU pins;
TIVOV is the propagation delay through an 8282 latch;
and TCSCL is the 80130 chip-~elect set-up time. The
mnemonic Tovcs represents the chip-select logic prop
agation delay, after the latch outputs are stable. The
sum of these four delays must be less than two system
clock cycles, reduced by the clock transition time.

T CLAV + T1VOV + Tovcs + TCSCL :5 T CLCL + T CLCL

Tovcs :5 T CLCL + T CLCL - T CLAV - T1VOV - TCSCL
:5 125 + 125 - 60 - 30 - 20 (osee.)
:5 140 osee.

I T3 I T'
TW

J
,

.:CHSV·
1

TSVCH 9 relel TClSH I ;SHC~ j
52,51. SO

\

BHE.AD 1s-AD o.

,Ioes

WRIT E CYCLE

- I--
AD, s-ADo

CK

REA DCVCLE

ADo

ACK

I / J
I~ASCH·I ~
V BHE, Al"5-AO VALID X-----

reseL

I TDseL

I
ADDRESS VALID 'fJIJNX WRITE DATA VALID

r-TCSAK -l
Y TSACK
I

~ ~ TClDV

~
FLOAT

ADDRESS VALID READ DATA VALID

I TCLVE

TSACK \

Figure 7. Operating System Processor Timing Diagrams

2-55

HS

/
I
~
I I
H j..-TCSAK I

I

F9
FLOAT

~

AFN·02058A

AP·13.0

The propagation delay numbers plugged into the equa
tion are worst-case values from the appropriate Intel
data sheets. The CPU is an 8086-2 operating at 8 MHz.
This means the Flddress decode logic must produce
stable C~ outputs within 140 nanoseconds.

Exercise 2. Using standard', low-power Schottky
TTL, does it make sense for a circuit to take
longer than 140 nsec. to decode 6 program or 12
110, address bits? Even if the rather liberal setup
specs are not met, the 80130 would still work fine.
Wait states would be needed until the ,chip-select
signal was active, however, so performance
would degrade some. '

The second point of concern relates to ready signal
timing. The 80130's acknowledge output signal, ACK,
can be used to control the CPU's ready signal. For this
case, the chip-select signal must be active early in a
memory or 110 cycle to allow activation of ACK early
enough to prevent wait states. There are tWQ schemes
for implementing ready signals; "normally ready" and
"normally not ready." (For more details, refer to AP-
67, "8086 System Design. ") Chip-select timing is more
critical in some "normally not ready" systems.

8288

8086
CPU ALE

A19 lOG 80

A18 70 70

A17 60 6Q

All 50 50

AD15 40 4Q

AD14 3D 30

748373

READY

Vee

READY -

Gl

In a "normally not ready" design" acknowlejlge signals
are generated when each resource is accessed. The
individual acknowledgements are combined to form a
system-wide ready signal which is synchronized by the
8284A clock generator via 'the RDY and AEN inputs.
The 8284A can be strapped to accept asynchronous
ready signals (asynchronous operation) or to accept
synchronous ready signals (synchronous operation).
Synchronous 8284A operation provides more time for
address latch propagation and chip-select decoding. In
addition, inverting ACK off chip produces an active
high ready signal compatible with the 8284A RDY in
puts, which have 'shorter set-up requirements than
AEN inputs. (As a side benefit, a NAND gate used like
this can combine ACK with the active-low acknowl
edge signals from other parts ofthe system.) Based on
these assllplptions, the time available for address latch
propagation and chip-select decoding at 8 MHz is:

TCLAV ~Tovcs + TCSAK + BR;VCL sTCLCL + TCLCL
Tovcs s 2 TCLCL - TCLAV - TCSAK - TRIVCL

s 250 60 110 35
s 45 nsec.

The circuit in Figure 8 which uses Schottky TTL com
ponents leaves about 15 nsec. to produce MEMCS from

80130
OSF

G2B }-G2A DECODE
C

B

A 1mll:I'
74S138 lit:R

SYSTEM
ACKNOWLEDGE

Figure 11., Hlgh-!i)peed Address Decoding Circuit

2-56
AFN·02D5SA

AP-130

the high-order address bits-more than enough for the
74S138 one-of-eight decoder shown.

Granted, this does not leave much leeway to fully
decode the 110 address bits. A 12-input NAND gate on
ADI5-AD4 could be used, introducing only a single
propagation delay but forcing the 110 register block to
start at OFFFOH. Incomplete decoding is also legal:, it is
safe to drive IOCS with the (latched) AD15 signal di
rectly, provided all other ports in the system are dis
abled when this bit is low. In this case, the effective
address of the 110 block (which must be specified dur
ing the system configuration step) could be OOOOH, or
any other multiple of 16 between OOOOH and 7FFOH.

Again, the OSP system will still operate even if the
memory or 110 decoding is slow. The acknowledge
signal returned to the host CPU would just be delayed
accordingly, 'so unnecessary wait states would be in
serted in access cycles, but the 80130 would not mal
function. Only rarely does the OSP access resources in
its 110 space. Even if slow decode logic were to insert
several wait states into every 110 cycle, the overall
effect on system performance would be insignificant.

A few words of caution, though. If the 8284A is strap
ped for synchronous operation, external circuitry must
guarantee that ready-input transitions don't violate the
latch set-up requirements. Also, the chip-select signal
must not remain low so long after the address changes
that the 80130 could respond to a non-80130 access
cycle.

Exercise 3. Suppose the typical timing values for
a particuiar decoder would easily meet the ready
input set-up requirements presented above for
asynchronous 8284A operation, but pathological
worst-case figures were just a little slow. Could
that circuit still be used safely in most applica
tions? What would happen if the worst-case com
bination of worst-case conditions ever actually
did occur? These occasional extra wait states
would probably not cause a hard system failure.

Exercise 4. Earlier it was mentioned that the ac
knowledge signal could also be used to avoid ~us
contention. Prove that with any decode logic
which meets the above requirements,ACK would
disable the bus transceivers before the host CPU
samples the bus.

Example System Design

Appendix A includes full schematics for a complete
iAPX 86130 system providing considerable function
ality with only 27 chips. In addition to the OSp, 'the

2-57

system has 4K bytes of 2114 RAM (with sockets for
another 4K), from 8K to 32K bytes of 2732A or 2764
EPROM, an 8251A USART operating at 9600 baud, and
an 8255A Programmable Peripheral Interface with 24
parallel 110 lines. Eight of the inputs read logic values
off DIP switches; eight outputs drive small LEDs. Four
more outputs connect to the coil drivers of a four-phase
stepper motor. A layout diagram of the prototype ap
pears in Figure 9.

The system is even simpler than the discussion of
"typical" requirements implied. The 8086 direct-bus
drive capability is adequate to make the data trans
ceivers unnecessary. (To equalize the bus loading, the
8255A is connected to the upper half of the bus.) Ad
dress decoding logic was minimized by making the
high-order address bits "don't-cares." Moreover, the
part count could have been reduced to 16 using an 8088
and multiplexed-bus 8185 RAMs and 8755A EPROMs.
(The reader may be surprised to learn that, except for
wire-wrapping mistakes, the prototype system hard
ware worked when it was first powered up. The author
certainly was!)

APPLICATION SOFTWARE
DEVELOPMENT

Like other well-structured programs, application
software to run on the iAPX 86130 is written as a num
ber of separate procedures or subroutines. In conven
tional programs, though, execution begins with a
section of code (the program body) at the outermost
level. The program calls application procedures, which
may call other procedures, but which eventually run to
completion and return to the program body.

In an OSP application, though, there is no "outermost
level" in the traditional sense; rather, the procedures
are started, suspended, and resumed as situations war
rant under the control of the OSP. The term "task"
refers to the execution of such a procedure in this way.
While an instruction stream is suspended, the OSP
keeps track ofthe task state (instruction counter, CPU
register contents, etc.) so that it may be resumed later.

Each task is assigned a relative priority by the program
mer, on a scale of 0 (high priority) to 255 (low). Tasks
with higher (numerically lower) priority are given pref
erential treatment by the OSP; the task actually control
ling the CPU at any given instant will be the one with the
highest priority which is not waiting for some 'event to
occur. (If all this sounds confusing, examples coming
later may help.)

A task which operates independent of other tasks can
be written without knowing anything about the others.

AFN-02058A

AP·130

8086

B1

80130

B4

RESISTORS SWITCHES

D~Ll

Figure 9. Example System Prototype Layout

This makes it easy to divide a very large programming
job among a ~eam of programmers, each writing the
code for some of the tasks. Moreover, a task need not
even know if other tasks exist. They may be tested and
debugged before others have even been written. As an
application evolves, new tasks may be added or un
necessary ones removed without affecting the rest.

The number of tasks in an application may need to be
qUite large. The number of tasks allowed in one applica
tion is essentially unlimited, as is the number of other
objects-regions, mailboxes, segments, and the like.
(The term "object" relates to different types of data
structures maintained internally by the OSP.) Each ob
ject is internally identified by a unique 16-bit "token,"
which means the theoretical maximum total is over
65,000. The more pragmatic issue 'of physical memory
consumption limits the number of simultaneous concur
rent tasks to "only" several thousand.

(When a number of tasks cooperate to accomplish some
common goal, the collection of tasks is referred to as an
application "job." The OSP also allows for an unlimited
number of application jobs, though only one is il
lustrated in the example discussed here. A second
similar machine, with different status switches, a differ-

ent motor, and a different console might make up a
second job.) .

All OSP application jobs must have one special in
itialization task (often called INIT$TASK) just to get

. started; this 'One may, in turn, create other tasks as, it
executes. The initialization task for this example is
discussed at the end of this chapter.

.2-58

Hardware Initialization

The life of any task can be broken into three phases:
start-up, execution, and termination, The start-up
phase initializes variables, data structures, and other
objects needed by the task. During the execution phase
the task performs its useful work. Depending on the
application, this may be a single sequence of actions, or
a loop executed repeatedly. When the task completes, it
must terminate itself so as not to use any more CPU
time. One or more phases may be omitted. For exam
ple, some tasks are intended to execute "forever," in
which case the termination phase is not required.

ThisJife cycle is suggested by Example 1, a segment of
code called HARDWARE$INIT$TASK. This task first

AFN-02058A

AP-130

programs the 80130 internal timer logic to generate a
square-wave cycle on the BAUD pin every 52 system
clock cycles, which corresponds to a system console
data rate of 9600 baud. The task then sets the system's
8255A PPI and 8251A USART devices to operate in the
desired modes, and outputs a short sign-on message to
the CRT. For the sake of reader's unfamiliar with the
protocol for interfacing with the 8251A, simple input
and output routines (C$IN and C$aUT) are reproduced
in Example 2:

HARDWARE$INITtTASK PROCEDURE,
DECLARE HARDtINITSEXCEPTtCODE WORD.
DECLARE PARAM'~l C*l BYTE DATA (40H. SOH. DOH. 40H. 4EH. 27H).
DECLARE PARAM.51$INDEX BVT£,
DECLARE SIGN.ON.MESSAGE (*1 BYTe DATA

(CR. LF. 'lAPX Sib/3D HARDWARE INITIALIZED', CR, LF).
DECLARE SIGNtON.INDEX BYTE,

QUTPUTCPP ISCMD)=9OH,
OUTPUT C T I MER$CMD) =OB6H.
OVTPUT(BAUDSTIMERI-33. I*GENERATES ~600 BAUD FROM :5 MHZ*I
OUTPUT C BAUD.TIMER)=0.
DO PARAMS51$INDEX-O TO (SIZECPARAM'tSl)-1) J

CUTPUT<CMO$'l)",PARAM$51 (PARAI'1$'l$INDEX *.
END. I*OF USART INITIALIZATION DO-LOOP*I

DO SIGNtONSINDEX-O TO (SIZECSIGN$ONSMESSAGE)-l),
CALL C'OUTCSIGNtONSMEB6AGE(SIGNSONSINDEX»,
END, I*OF SION-ON DO-L.OOP.I

CALL RQ,RESUMESTASK(INITsTASKSTOKEN.@HARDSINl1sEXCEPnCODE).
CALL ROsDELETESTASK (0. ctHARDSINIT$EXCEPT.CODE),
END HARDWARE.INITSTASK.

Example 1. System Hardware Initialization Task

CSOUT PROCEDURE (CHAR).
DECLARE CHAR BYTE.
DO WHILE (INPUnSTATS51) AND 01H)"O"

1* NOTHING *1
END.

OUTPUT(CHARS51)-CHAR,
END CSOUT,

CSIN PROCEDURE BYTE.
DO WHILE (INPUT<STATS51l AND 02H) .. O,

1* NOTHING *1
END.

RETURN INPUT(CHARS51).
END CSIN,

Example 2. Simple 8251A Input and Output
Routines

The baud timer should be initialized by a code sequence
like that shown here. The 80130 logic is actually com
patible with the initialization sequence which would be
needed to configure timer 2 of an 8253A as a program
mable rate generator. The baud rate parameter loaded
into the timer is simply the system clock frequency
divided by the desired output frequency. No other
timers should be affected by user programs.

the procedure RQ$DELETE$TASK, suicidally
sper;:ifying itself as the task to be deleted.

Exercise 5. Beginners may make two common
programming errors when developing asp tasks.
The first is when a task deletes itself without ever
resuming the suspended task that created it. The
second is to not terminate a task properly, with the
result that the processor executes a return in
struction when the task's work is done. (However,
execution of the task did not originate with a call
from the as.) As with all computers, an asp will
do exactly what it is told. How do you suppose the
system would react in each case? (Hint: only one
of the two failure modes is predictable.)

You may have noticed three things from this short ex
ample and Table 1. First, every asp call begins with
the letters RQ. (PL/M compilers totally iguore dollar
signs within symbols; they serve only to split long sym
bol names to make them easier for humans to read.)The
letters RQ don't mean anything in particular; their pur
pose is to make sure asp routine names don't conflict
with any user symbols. These particular letters were
chosen to be compatible with the historical naming
convention used by iRMX 86. It may be useful, though,
to think ofRQ as an abbreviation for REQUEST, imply
ing that the asp provides useful services at the bidding
of application code.

The second thing to notice is that the asp routine
names imply pretty well what each routine does. an the
one hand, long procedure names take a little longer to
type; on the other, they make code listings much easier
to read and understand. In effect, the long names help
make asp code self-documenting. The long names
shouldn't hinder code development; rarely can pro
grammers think faster than they can type. If they could,
programmer productivity would be measured in
thousands of lines per day.

The third thing is that the last parameter in every asp
system call points to a word in which the asp proce
dure will return an exception code to the application
task. The procedure will return a non-zero exception
code in this word if it cannot do its job correctly. This
does not always imply that an error occurred; some
times it just means another task isn't ready to cooperate
yet. Sometimes an exception value indicates whether

When the hardware has been initialized, the task the asp request was processed immediately or delayed
calls an operating system procedure 'called RQ$ for some reason. In fact, some asp routines are guaran-
RESUME$TASK. This signals the asp that the task's teed never to return a non-zero exception code, yet the
start-up phase has completed, and that the initialization pointer is still required for the sake o(consistancy. For
task (which in this case suspended itself after creating a full explanation of the other parameters for the asp
HARD$INIT$TASK) may continue. Since its function procedures and details on what the different exception
is hardware iriitialization ouly, HARD$INIT$TASK codes mean, consult the iAPX 86/30, 88/30 User's
has no execution phase per se. It terminates by calling Manual.

2-59
AFN.0205BA

AP-130

To illustrate how the OSP procedures are used, the
following code examples implement the machine con
troller tasks introduced earlier. Appendix B puts all the
code examples together, though not in the exact-order
discussed. Be Forewarned: the examples border on
trivial. They are in this note to demonstrate how to call
system routines with as few lines of code as possible,
not to tax the capabilities of the OSp. In fact, none of the
tasks even check for exception codes returned by the
OSP, under the naive assumption that nothing will go
wrong in a debugged program. if you're interested in
more elaborate software examples, consult application
notes AP-86 and AP-I10. These notes focus specifically
on iRMX 86, but their methods and much 'ofthe code
apply equally to the OSP systems. '

Simple Time Delays

The STATUS$TASK routine simply monitors eight
switches through an input port, and updates eight
LEDs with a pattern determined by the switch settings
and task status. Specifically, the LEDs display the bit
wise Exclusive-OR function ofthe inputs and an eight
bit software counter maintained by the task. This action
will repeat twice per second. The task does nothing
between iterations.

The RQ$SLEEP routine gives application tasks a way
to release the, CPU when it is not needed. Any task
calling this routine is "put to sleep" for the amount of
time it specifies (from 1 to 65,000 SYSTICK intervals),
releasing the CPU to service other tasks in the mean
time. After the requested time has transpired, the OSP
task will reawaken the task and resume its execution,
provided a more important task is not then executing.

The 80130 timer logic generates the fundamental Sys
tem Tick by dividing the system clock frequency by
two, then subdividing that frequency by a 16-bit value
specified during the configuration process. The period
used here is 5 msec., which-would result in all 5 MHz
system by dividing the 2.5 MHz internal frequency by
12,500.

E}i:ercise 6: At this rate, what's the longest nap
that would result from a single call to
RQ$SLEEP? How, could this duration be
extended?

PUM listings for the complete STATUS$TASK routine
appear in Example 3. '

2-60

STATUS.TASK PROCEDURE.
DECLARE BTATustcDUNTER BYTE,
DECLARE STATUS$EXCEPT$CODE WORD.

STATUS.cCUNTER-O.
CALL Ra.RESUf1EtTASKC INntTASK,TOKEN, asTA1UStEXCEPT'CODE),
DO FOREVER. I

OUTPU1(PPltS)=INPUT(PPI*A) XDR STATUStCOUNTER.
STATVStCOUNTER-STATUStCOUNTER+ 1.
CALL RO.SLEEP (100 •• STATUS$EXCEPT'CODE).

, END,
END STATUS'TASK.

Example 3. Status Polling and Reporting Task

Stepper Motor Control

Conceptually, a stepper motor consists of four coils
spaced evenly around a rotating permanent magnet. By
energizing the coils in various combinations, the mag
net can be induced to align'itselfwith the coils, individu
ally or in pairs. A microcomputer can make a stepper
motor rotate, step-by-step, in either direction, byemit
ting appropriate coil control signal patterns at intervals
corresponding to the step rate.

The stepper-motor sequencer (Example 4) is an embel
lished version of STATUS$TASK. The oSP calls are
intermixed with a few more statements of application
code, and the task uses global variables as delay
parameters. The reader may wish to adapt the com
mand interpreter task at the end of this chapter to let the
operator modify (read: "play with") these parameters
to adjust the motor speed as the program r~s.

DECLARE eWtSTEP.DELAY BYTE,
CCW$STEP'DELAY BYTE,
eW,PAusE.DELAY BYTE.
CCWSPAUSESDELAV IVTE.

MOTOR.TASK PROCEDURE.
DECLARE MOTOR'EXCEPT'CoDE WORD.
DECLARE MOToR.POSITION BVTE,

HoTOR.PHASE BVTE,
DECLARE PHASE.CODE (4) BYTE

DATA (00000101B. 000001108. 000010108. 000010018),

CW.STEP$I)ELAV=50. I*INITIAL STEP DELAYS = 1/4 SECOND*I
CCW.STEP.DELAY-50.
CW.PAUSE.DELAY""200. I*PAUBES AFTER ROTATION = 1 SECOND*I
CCWSPAUSE.DELAY-200.
PALL RO.RESUME.TASK(INIT.TASK.TOKEN •• MOTOR'EXCE.PT.CODE).
DO F,,"EVER.

DO MOTDA.POSITION=O TO 100,
MOTOR.PHASE-MOTORSPOSITION AND 0OO3H.
OUTPUT (PP I.C) -PHASE.CODE (MOTOR.PHASE),
CALL RS.SLEEP (CW.STEP.DELA'V, @MOTORSE"XCEPT'CODE).
END.

CALL RG'SLEEP (CW.PAUSE.DELAY, eMOTDA.EXCEPT.CODE).
DO MOTOR.POSITION-O TO 100.

MOTDR,PHASE=(lOO-MOTOR'POSITION) AND OOO:3H.
OUTPUT (PP I.C) _PHASE'CODE (MOTORSPHASE),
CALL RMSLEEP (CCW.6TEP.DELAV. '"OrOR'EXCEPT'CODE),
END,

CALL RMSLEEP (CCW'PAUSE.DELAV, IMOTQR$EXCEPT.CODE).
END.

END "OTOR'TASK.

Example 4. Steppe Motor Controller Task

Real-Time Interrupt Processing

The 80130 supports a two-tiered hierarchy of interrupt
processing. The lower-level tier corresponds to the

AFN-II2058A

AP·130

traditional concept of hardware interrupt servicing; a
routine called an "Interrupt Handler" is invoked by the
80130 internal interrupt control logic for immediate
response to asynchronous external events. A short
routine like this might, for example, move one charac
ter from a USART to a buffer. Interrupt handlers oper
ate with lower-priority interrupts disabled, so it is a
good idea to keep these routines as quick as possible.

"Interrupt Tasks," on the other hand, are higher-level
tasks which sit idle until "released" by an interrupt
handler. The task then executes along with other active
tasks, under the control of the OSp. Such a task should
be used to perform slower but less time-critical pro
cessing when occasions warrant, such as when the
aforementioned buffer is full. Moving such additional
processing outside the hardware-invoked interrupt
handler reduces the worst-case interrupt processing
time.

This hierarchy also decreases interrupt latency. Most
OSP primitives execute in their own, private
"environment" (e.g., with their own stack and data
segments) rather than that of the calling task. Interrupt
handlers, on the other hand, run in the same environ
ment as the interrupted task. (In fact, the 80130
primitives may themselves be interrupted!) Leaving the
CPU segment registers unchanged minimizes software
overhead and interrupt response time, but also means
that interrupt handlers may not call certain OS,
routines. An interrupt task, on the other hand, is in
itiated and suspended by the OSP itself, with no such
restrictions.

Let's see how these capabilities would be used. The
time delays introduced by the RQ$SLEEP call are only
as accurate as the crystal frequency from which they
are ultimately derived: This may not be exact enough
for critical time-keeping applications, since oscillators
vary slightly with temperature and power fluctuation.

To keep track of the time of day, the example system
uses a 60-Hz A.C. signal as its time base. (Most power
utility companies carefully regulate line frequency to
exactly 60 Hz, averaged over time.) A signal from the
power supply is made TTL-compatible to drive one of
the 80130 interrupt request pins. An interrupt handler
responds to the interrupts, keeping track of one
second's worth ofA.C. cycles. An interrupt task counts
the seconds by incrementing a series of variables.

Example 5 illustrates the former routine. AC$
HANDLER simply increments a variable on each 60-
Hz interrupt. Upon reaching 60, it clears the counter
and signals TIME$TASK (Example 6).

2-61

DECLARE AC.CYCLE_COUNT BYTE,

AC.HANDLER PROCEDURE INTERRUPT 59. I*VECTOR FOR 80130 INT3*1
DECL.ARE AC'EXCEPT'CODE WORD,

CALL RCKENTERSINTERAUPT (Act INTERRUPT.LEVEL. eAcsEXCEPT.CODE) •
ACtCVCLEtCDUNT-AC,CYCLE'COUNT+l.
IF AC*CYCLE.COUNT >- bO

THEN DO.
ACSCYCLE.COUNT=O,
CALL RQtSlQNALtINTERRUPT(AC'INTERRUPTSLEVEL,

~AC'EXCEPTSCDDE) •
END.

ELSE CALL RG,EXITSINTERRUPTCACSINTERRUPTtLEVEL.
@AC'EXCEPT'CaDE).

END AetHANDLER.

Example 5. 60-Hz A.C. Interrupt Handler

In its initialization phase, TIME$TASK sets up the
interrupt handler by calling the RQSET
INTERRUPT routine. The body ofTIME$TASK (the
execution phase) is just a series of nested loops count
ing hours, minutes, and seconds. When TIME$TASK
calls RQ$WAIT$INTERRUPT inside its inner-most
loop, the OSP suspends execution of the task until
AC$HANDLER signals that another second's worth
of A.C. cycles has elapsed. Thus, interrupt handlers
can serve to "pace" interrupt tasks. After a day,
TIME$TASK completes and deletes itself.

DECLARE SECONDsCOUNT BYTE.
MINUTE'COUNT BVTE.
HOURtCOUNT BVTE.

TIHE$TASK PROCEDURE.
DECL.ARE TIHESEXCEPTSCODE WORD.

ACSCVCL.E'COUNT=O.
CALL. RQSSETSINTERRUPTCACtINTERRUPTtliL.EVEL..OlH.

INTERRUPTSPTR(ACtHANDL.ER), DATASSEQSADDR aASE.
@TIHEtEXCEPTtCDDE).

CALL. ROSRESUMESTASK(INIT$TASKSTOKEN.I:TIME.SEXCEPTSCODE).
DO HDURsCDUNT=O TO 23.

DO MINUTESCOUNT-O TO 59.
DO SECONOSCOUNT=O TO 59,

CALL ROsWAITSINTERRUPT C AC.INTERRUPT.LEVEL.
@TIMEsEXCEPTSCODEl.

IF SECONosCOUNT MOD 5 = 0
THEN CALL. PROTECTED.CRTtOUT (BEL.l.

END. 1* SECOND LOOP "'1
END. 1* MINUTE LOOP *1

END. 1* HOUR LOOP *1
CALL ROSRi!:SETSINTERRUPTCACSINTERRUPTSLEVEL.

ITIMESEXCEPTSCODE) •
CALL RGSDELETE.STASKCO.@TIMESEXCEPTSCODE).
END TIME.TASK.

Example 6. Interrupt Task to Maintain Time of Day

Exercise 7: The time maintained by TIME$TASK
is consistently wrong, unless the system resets at
midnight. Aside from that, how much error would
accumulate per month had TIME$TASK paced its
inner loop by calling RQ$SLEEP if the system
oscillator was 00.01% off? How does this com
pare with a cheap digital watch? How much error
will accumulate from the 60-Hz time base
described?

TIME$TASK incorporates another gimmick: every five
seconds it sends an ASCII "BEL" character (07H) to
the console to make it beep, by calling a routine called
PROTECTED$OUTPUT. This lead-in gives us a
chance to discuss OSP provisions for task synchroniza
tion and mutual exclusion.

AFtI-02058A

AP-130

Mutual Exclusion

Whenever system resources (e.g., the console) are
shared among mUltiple concurrent tasks, the software
designer must be aware of the potential for conflicts. In
single-threaded (as opposed to multitasking) programs,
the easiest way to transmit characters is by calling a
console output routine (written by the user or supplied
by the OS) which outputs the character code.
(Remember the examples following the hardware in
itialization routine?)

This approach presents two problems in a multitasking
system. One is efficiency: a high-priority task could
'hang up the whole system while it waits for a printer
solenoid to energize, induce a magnetic field, accelerate
the hammer, contact a daisy-wheel spoke, move it up to
the ribbon, and press them both against the paper. This
waste of time is termed "busy waiting," and should
always be avoided. By OSP standards, even 1130 of a
second can seem interminable; if the printer is other
wise occupied, the whole system could shut down
indefinitely.

Aside from efficiency, though, there is a more serious
synchronization problem here. Assume Task A has a
higher priority than Task B. Task A is asleep. Task B
calls a subroutine to poll the USART and transmit a
character. The lJSART becomes ready. When this is
detected, the subroutine prepares to output the charac
ter to the USART

Time out! Task A just woke up and starts running. Task
A wants to transmit its own character. It calls its own
output routine, checks the USART, fi~ds it available,
sends it a new character, and goes back to sleep
(or suspends itself, or awaits another interrupt
whatever).

Now Task B continues. It "knows" the USART is
available, having dutifully monitored it earlier. Task B's
character goes out to the USART. The USART goes out
to lunch. (In practice, the USART will probably just
transmit corrupted data; still, its operating require
ments have been violated.)

In Task B's output routine, the sequence of statements
from when the peripheral is found to be ready to when
the next character is written constitutes a "critical
region" (a.k.a. "critical section" or "non-interruptable
sequence"). Recognizing such regions and handling
them, correctly is an important concern in any multi
tasking system, so the asp provides several facilities
~interrupt control, regions and mailboxes-to help
'handle general synchronization and mutual exclusion
problems. Which one to choose depends on the
circumstance.

2-62

Exercise 8: In this example, would it be better if
Tasks, A and B shared a single output routine, so
that only' one section of code sent data to the
USART? Convince yourself that the same (or
worse!) problems could still arise.

Sometimes critical sections can be protected by just
disabling interrupts at appropriate points in the applica
tion software. To maintain the integrity of an iAPX
86/30 system, application code must never execute the
STI, CLI, or HLT instructions (ENABLE, DISABLE,
or HALT statements in PUM), nor can it access the
interrupt control logic directly. Instead, the interrupt
status should be controlled w'ith the OSP
RQ$ENABLE and RQ$DISABLE procedures;
routines should be halted via RQ$SUSPEND or
RQ$WAIT$INTERRUPT.

Back toTIME$TASK: we want to transmit BELs to the
console every five seconds. The console output task
will be transmitting other 'characters. A "clever" pro
grammer may recognize that this will lead to a critical
section and analyze the situation as follows:

1. A hazard would arise if TIME$TASK sends out a
beep when CONSOLEOUTTASK is using the
USART; ,

2. TIME$TASK will only execute after being signaled
by ACHANDLER;

3. ACHANDLER only reponds to an external
interrupt.

"Therefore, all CONSOLEOUTTASK has to do to
be safe is disable the 60-Hz interrupt around its output
routine. "

Not quite. There are still potential hazards. Suppose
CRTOUTTASK has the same priority as
TIME$TASK. TIME$TASK may already have been
signaled by ACHANDLER and be ready to run when
CRTOUTTASK completes. An otherwise unrelated
event-another interrupt, for instance-could mo
mentarily suspend CRTOUTTASK during the criti
cal region withA.C. interrupts disabled. When the OSP
returns to that level, it might resume with
TIME$TASK, not CRT$OUT$TASK. This could lead
to the same malfunctions as before, so disabling 60-Hz
interrupts didn't help. This series of worst-case as
sumptions is admittedly convoluted, but the resulting
sporadic errors are among the hardest of all bugs to,
squash.

The problem is that this attempted solution involves too
much interaction between tasks, making it confusing
and error-prone. Even if some scheme of priority-level
'assignments and task interactions could be made to
work, later modifications or simple additions to the job

AFN'()2058A

AP-130

could cause bugs to reappear. (The analogy of an unex
ploded time bomb comes to mind.)

A simpler solution would be one corresponding more
closely with the problem. Accordingly, the OSP sup
ports several primitives just to supervise and control
access to critical regions.

One of the OSP "data types" is a data structure called a
"Region," which can be used by application code to
control access to a shared port or some other resource.
A task wishing access to the resource should call the
OSP procedure RQ$RECEIVE$CONTROL before
trying to access that resource; when done it must call
RQ$SEND$CONTROL.

The OSP keeps track of which regions are in use. As
long as a region is busy (i.e., has been entered but not
yet exited), the OSP will prevent other tasks from enter
ing the region by putting them to sleep. The OSP keeps a
qu~ue of all tasks waiting for the busy region. When the
regum later becomes-available (i.e., when the task con
trolling the region calls RQ$SEND$CONTROL), one
ofthe sleeping tasks-either the highest priority or the
most patient-will be awakened, granted control of the
region, and sent on its way. (When a region is created
the OSP is told whether to awaken tasks waiting for th~
region based on their priority or how long they
have been waiting.) Effectively, a call to RQ$
RECEIVE$CONTROL will not return to the applica
tion task until the resource in question becomes
available.

The PROTECTEDCRTOUTPUT (Example 7) dem
onstrates this protocol. The routine is declared
ree~trant which means (by definition) the routine may
be mterrupted and restarted safely. A reentrant routine
may be shared by a number of tasks, instead of replicat
ing the same code throughout the application.

PROTECTED'CRr.OUT PROCEDURE (CHAR) REENTRANT,
DECLARE CHAR BYTE,
DECLARE CRT.EXCEPT$CODE WORD.
CALL Ra'RECEIVEtCONTROL (CRT'REGIQN$TO~ENI ~CRT$EXCEPT$CQDE),
DO WHILE (INPUnSTAT.51) AND {)lH)"O,

1* NOTHING! *1
END.

OUTPUT (CHAR.51) ""CHAR ,
CALL ROSSEND.CONTROL (&CRT$EXCEPT$CODE),
END PROTECTED.CRT.OUT,

Example 7. CRT Output Routine Protected by
Region Protocol

As a concession to simplicity, PROTECTED$
CRT$OUTPUT does use a form of the busy waiting
method described earlier. The maximum delay at 9600

2-63

baud is only one millisecond, however, much shorter
than a system tick. Besides, tasks performing character
I/O will all have low priority levels, so the OSP would
just delay them if anything more urgent comes up.

Exercise 9: Decide whether this explanation is a
feeble attempt at rationalization, or a well
justified engineering trade-off.

Inter-Task Communication

But what if a high priority task must output a string of
characters, or the peripheral response time is too long?
Busy-waiting may not be acceptable. Alternatively, the
output routine could buffer the data and service the
USART within an interrupt routine. Another would be
to simply pass the data off to a special (low-priority)
output task and continue.

Tasks pass information to each other via something
called a "message." A message may be the token for
any type of OSP object, but the most common and most
flexible type is called a "memory segment." In our
example, segments will be used to carry strings of
ASCII characters between tasks, so we'll examine seg
ments first. Message formats are defined by the individ
ual application programmer-make sure the sending
and receiving tasks assume the same format!

A memory segment is just a section of contiguous-sys
tem RAM allocated (set aside) by the OSP at the re
quest of an executing task. The OSP keeps track of a
free memory "pool," which is initially all unused RAM
in the system. When a task needs some RAM, it tells the
RQ$CREATE$SEGMENT procedure how much it
wants. The OSP finds a suitable memory block in the
pool, a,nd returns a 16-bit token defining its location. (If
not enough memory is available, the procedure returns
an exception code.)

The token is the base portion of pointer to the first
usable byte of the segment, with the offset portion
assumed to be zero. (The token values for all other
objects have no physical significance.) Knowing this
it's possible to access elements of the segment as th~
application warrants.

The subroutine in Example 8 shows how to request a
segment and construct a message. PRINT$TIME sends
the ASCII values of the time-of-day counters
(maintained in TIME$TASK) to the CRT output task
described later. The message format adopted for these
examples will consist of a byte giving the message

AFN·02058A

Ap·130

i length, followed by that 'number of ASCII characters.
Figure 10 shows this format.

PRINn:TDD PROCEDURE.
DECLARE TOD.MESSAOE.TOI<EN WORD.
DECLARE. TOD,EXCEPT.CODE WDRDi
DECLARE: TOD.SEGMENT.OFFsET WORD.

, TOD'BEGf'iENT'8ASE WORD.
DECLARE TOD'SEGMENT'PNTR POINTER AT (ITOD$SEQfIIENT.OFFSe., I.
DECLARE TDDnEMPLATE (2EU BYTE

DATA (27. 'THE TIME lS NOW hh'fMI n. I.CRd .. F),
DECLARE TOD.STRING B'ASED TOD$SE9t"lENt,PNTR (a) BYTE,
DECLARE TOD.STRINQ'INDEX eVTE.

'TOD.MESSAQEtTDKEN-RO,CRE ... TE'SEOMENT (28 •• TOD'EXCEPT'CDDE),
TOD.SEGf'lENTtBASe-TDD,MESSAQE.TOKEN, -
TOD'SEGMENT,OFFSET-O,
DO TDD'STRINQ.INDEX-o TO 27.

TCD.STR INQ (TanHTA INO'INDEX)"
TOD.TEI"JPLATE(TOD'STRING'INDEX).

END.
TOn.STR I NQ (17) -ASCI I.CDDE(HOUR.CQVNT /10).
TOD.STR INQ (1 B) -ABC I ISCDDE (HOUR'COUNT MOD 10 l ,
TDDfSTRlNO(20)-ASCX XfCODE(MlNUTEfCOUN r 110).
TODtSTRlNQ(21)=ASClX$CODE(MlNUTE*COUNT MOD 10),
TODfSTR lHO (23) -MiC I I.CODE (SECDNDtCOUNT 110) •
T>ODUTR INC;H 24) -Aac I1fCODE (SECONDtCOUNT MOD 10).
CAL.L. R(ifBEND.MESSAGE (CRTtMAILBQX.TQKEN,

TOD.MESSAQE.TDKEN. 0, .TOD.e:XCEPTfCDDE).
RETURN.
END PRINT.TODl

Example 8. Subroutine to Send Tlme-of-Day
Message to Output Task

We're coding PRINT$TIME here (see Example 8),
whileTIME$TASK is fresh in our minds. It will actually
be called 'by (and is therefore considered a part of)
KEYBOARD$TASK. Note that while task~ are written
as individual procedures, they need not be fully self
contained: outside procedures should be used to help
organize and structure the code.

The first thing PRINT$TIME does' is have the OSP
create a segment of suitable length, and copies a
"message template" into the segment, byte by byte.
Then it converts the TIME$TASK counter values to
ASCII, filling in blanks in the template. Finally, it sends
the token for the message to the CRT mailbox.

To repeat, these examples are intended to illustrate use
of the OSP routines assuming minimum familiarity with
PUM. Better programming practices might take advan
tage of PL/M literals, structures and' the array
LENGTH function to build the message, rather than
the inflexible constants shown here. Some of thj:se
techniques are suggested by PRINT$STATUS
(Example 9), which indicates the binary status of the
input switches.

OFl'SET= 4

PRINT.STATUS, PROCEDUREI
DECLARE STATUS.tESSAOE.TOKEN W~D.
DECLARE STATUStEXCE'TKODE WORDi
DECLARE BTATUS.SEQI'1ENT.DFFSET WORD,

STATUS'SEQMENn8ASE WORD,
DECLARE STATUS.HOMENT.PNTR POINTER

AT (HTATUS.SEGI'ENT.OFFSET),
DECL.ARE STATUS.TEMPL.ATE (40) BVTE DATA

(39. 'THE SWITCHES ARE NOW SET TO B',CR.L,.F).
DlfCLARE STATUhSTRINO BASED STATUS.SEOMENT"'NTR (40) BVTE.
DECLARE STATUBtSTRINO.INDEX BVTE. '
DECL.ARE Bn.PATTERN BYTE,

STATUS.MESSAQE.TOKEN-RGSCREATE.SEOI'IENT (40.
.STATUS.EXCEPT.CODE) ,

_STATUS.SEcme:NT.BASE.~TATUS.MESSAOE*TOKEN.
STATUS.SEQI'IENT.OFFSET-O.
DO STATUStSTRINO.INDEX-O TO 3CI.

STATUStSTRINQ(STATUStSTRINQ.tNDEX)=

STATUS$TEl1PLATE(STATUSt9TH INOfINDEX ••
END.

BITSPATTERN-INPUT(PPItA) •
DO BTATUS.STRINOSlNDEX-211 TO 3.,

STATUStBTR lHO (STATUSfSTRING.iNDEX).
ASCU.CQDE(BIT*PATTERN AND OlH).

BITtPATTERNaROR(BIT$PATTERN,l)1
END,

CALL RotSENDfMESSAOE (CRTtMAIL.BOX.TOKEN.
ST~TUS.I1ESSAOE.TQKEN. 0 •• STATUS.EXCEPT.CODEll

END PR lNT.STATUS.

Example 9. Subroutine to Send'Status Report
Message to Output Task

Exercise 10: One input port is read by both
STATUS$TASK and PRINT$STATUS. Does this
constitute a shared resource? A critical region?

Exercise 11: PRINT$TIME reads the counts
maintained by TIME$TASK, but doesn't alter
them. Forced mutual exclusion is generally
mandatory when multiple tasks perform
~eadlmodify/write sequences on a given variable.
Can PRINT$TIME make TIME$TASK malfunc~
tion? What about the opposite case? If this failure
mode was deemed unacceptable, how could it be
protected?

Mailboxes

The data in a message doesn:t actually move or get
copied from source to destination when the message is
sent; this would be too slow with long messages.
Rather, the OSP "carries" the message's token from

'task to task via a data structure cleverly termed a
mailbox. If one task must send messages to another, a
mailbox must be created to hold them. The' sender calls
the RQ$SEND$MESSAGE to put a message
token into the mailbox. If the receiver isn't ready for
the message yet, the OSP puts the message token
into an ordered queue. When the receive~ calis RQ$

I t! T I·N. I'E' lap I T I .1·1 ,.·I·E' I ep I ·1' I ~·I ep I'N·I ~'I·w·1 ep 1.1• I·r I·:· 1.3; 1'4·1 .:' 1.5'1 ~'I·'" I CR I LF, I
SEGMENT STARTING ADDRESS - TOO$MESSAGESTOKEN:OOOOH

Figure 10. Message Formats Expected by Output Task

2-64

AP-130

RECEIVE$MESSAGE later, the OSP will give it the
tokens one at a time.

What happens if a task tries to receive a message when
the mailbox is empty? (This is quite possible, since
tasks do run asynchronously.) What token would the
OSP return?

In the simple case. . . it doesn't! Instead of returning
right away with no data, the OSP will wait until data is
available. In the meantime, the OSP puts the receiving
task to sleep, remembering that it is waiting for a
message at that mailbox. The next time a message is
sent to that mailbox, the OSP will awaken the receiving
task, give it the token, and-if its priority is high
enough-resume its execution. Alternatively, receiving
tasks may elect to not wait if the mailbox is empty, or to
wait only a specified time.

Many tasks may actually send and receive messages
through a single mailbox, with messages being queued
in the order that the RQ$SEND$MESSAGE calls are
executed. The OSP also maintains a list of tasks waiting
to receive messages from an empty mailbox, analogous
to the queued tasks waiting for region control. As each
message is sent to themailbox.itis passed immediately
to a waiting task, either the one waiting the longest or
the one with the highest priority (likewise determined
by a parameter specified when the mailbox is created).

Exercise 12: Under what conditions could a mail
box's message queue contain messages waiting to

. be received, while the task queue contains tasks
waiting for messages? Ignore the possibility that
this may happen momentarily during the imple
mentation of either routine. If you think of any'
such circumstances, please contact the author.

Example 10 shows a task which prints the messages
sent above. Upon receiving a message token,
CRTOUTTASK determines the message length from
the first two bytes, and sequentially prints each element
of the string through the PROTECTEDCRT
OUTPUT routine explained earlier. When done, the
segment containing the message is deleted, returning its
RAM to the free-memory pool.

A few words are in order about the segment accessing
techniques demonstrated here. PUM-86 has a special
data type, called a "pointer," used to indirectly access
other PUM variables. OSP application programs must
be compiled with the "compact" or "large" model spe
,cified. This tells the compiler to implement pointers as
32-bit double words corresponding to the two parts
(base:offset) of the 8086 machine-segmented address
ing scheme. PUM-86 tries to shield the programmer

CRTSounTASK PROCEDURE,

2-65

DECLARE MESSAGE"LENQTH BYTE.
DECLARE MESSAGE. TOKEN WORD.
DECLARE RESPONSE.TOKEN WORD.
DECLARE MESSAQE'EXCEPUCODE WORD.
DECLARE MESSAQESSEQMENTSOFFSET WORD.

MESSAGE.SEGMENT.BASE WQRDJ
DECLARE MESSAQE'SEQMENTSPNTR POINTER AT

(@MESSAGE.SEGMENT.OFFSET) ,
DECLARE MESSAGE.STRINO.CHAP BASED MESSAGlE'SEGMENTSPNTR BYTE,

CALL ROSRESUME'TASK(INITSTASK,TOKEN, @MESSAQESEXCEPTSCODE),
DO FOREVER I ,

MESSAGE,TOKEN-RO.RECE lVE.MESSAGE (CRTSMAILBoxsrOKEN. OFFFFH.
I:RESPONSE.TOM.EN. eI'1ESSAGE.EXCEPTtCODE) •

I'1ESSAOESSEOI'1ENTSOFFSET=OJ
I'1ESSf\OE.SEQI'1ENT.BASE-MESSAGESTOKEN,
MESSAOESLENGTH-MESSAGEtSTR ING.CHAR.
DO MESSAGEtSEQMENTSOFFSET-1 TO MESSAGESLENGTH.

CALL PROTECTED.CRTSOUT (MESSAGE.STR I NO.CHAR) I
ENOl

CALL ROtDELETESSEGMENT(MESSAQESTOKEN. (tMESSAQE'fEXCEPTSCODEl.
END. 1* OF FOREVER-LOOP *1

END CRT.OUT.TASK,

Example 10. Task to Transmit Messages
to the CRT

from the details, yet at times the two parts must be
manipulated separately (for instance, to access data in
an OSP segment knowing only the segment token/base
value).

To get around this, these examples assign a pair of word
variables to the same address as a PLiM pointer vari
able. Each representation is then an alias for the other.
To determine the base or offset value of an item of data,
load the pointer variable with a pointer to the item and
then reference the appropriate field of the overlayed
pair of word variables. To "build" an arbitrary pointer,
assign computed values to the base and offset fields and
then access the data item via the composite pointer.

Exercise 13: PUM 86 does not have built-in func
tions to separate the high and low-order words of a
pointer variable. Does this seem to be a weakness
in the language? Bear in mind that the machine
representation for pointers varies depending on
which programming model is specified at compila
tion time. When the "small" model is selected, the
compilers take advantage of a 16-bit pointer
representation for faster and more compact code.

Console Command Interpreter

If a system has a console keyboard, it's probably used
to accept and interpret operator commands. For this
demonstration system, the lowest priority of all tasks is
a simple-minded routine which polls the USART until a
character has been received, and immediately echoes it
by calling-you guessed it !-PROTECTED
CRTOUTPUT. Thus, the keyboard is "alive"; jt
responds immediately to keystrokes, so the operator
can type whatever nonsense he desires while every
thing else is going on.

Ten of the keys (digits 0 through 9), invoke special
commands which illustrate interactions between the

AFN·02058A

AP-130

multiple tasks. Commands 0 and 1 print out the time
and status messages; the rest suspend and'resume
various tasks, as shown by Table 2. The code for
COMMAND$TASK appears in Example 11.

Initialization Task

Now that the application tasks have been written, we
can write the initialization task.

All applications require a special type of task to initial
ize system variables and peripherals and create tasks
and other 'Objects used by the application. It, too, is
written as a PL/M procedure, and can thus be divided
conceptually into the same three phases.

Example 12 shows such a task for the demonstration
system. The first thing INIT$TASK does is determine
the base address of the job data segment by assigning
pointer DATASEGPTR with its own address. Next it
calls the RQGETTASK$TOKENS routine, which
tells the task what token value the OSP assigned it at
run time. It then initializes the system peripherals by
creating the hardware initialization task discussed
above; this code could have been integrated into
INIT$TASK itself just as easily. During its own
"execution" phase, INIT$TASK calls routines to
create the OSP data structures shared by the applica
tion tasks: the REGION controlling access to the
USART, and the MAILBOX repository for output mes
sages. INIT$TASK creates the application tasks them
selves by calling RQ$CREATE$TASK.

Though not always required, it is common practice for
the overall initialization task to suspend itself after
creating each offspring, to let the newborn task get
started. Under this convention, each offspring task
must resume the initialization task by calling the

COMMAND.TASK PROCEDURE,
DECLARE CONSOLE.CHAR BYTE,
DECLARE COMMANO.EXCEPT.CODE WORD.

CALL RO$RESUMEHASK(INIT$TASKsTOKEN. @COMMAND$EXCEPT$CODE),
DO FOREVER.

CONSQLE$CHAR=CSIN AND 7FH,
CALL PRQTECTEDsCRTsOUT(CONSOLE$CHAR),
IF CONSOLE$CHAR=CR

THEN CALL PROTECTEOsCRT$QUT(LFn
-IF (CONSOLE$CHAR :>= 'O'l AND (CONSOLE$CHAR <.:= '9')

END,

THEN Do.
CAll PROTECTED • .cRT$OUT (CR),
CALL PROTECTEOSCRT$OUT eLF),
DO CASE (CONSOLE.CHAR-/O'),

CALL PRINT$,TOD.
CALL PRINT$StATUS.
CALL RQSSUSPENO$TASK (CRTSQUT$TASKSTQKEN,

@COMMANDsEXCEPTsCODE).
CALL RQ$RESUME$TASK (CRnOUT$TASK*TOKEN,

@COMMAND$EXCEPT$CODE),
CALL RG$DISABLE (AC$INTERRUPT$LEVEL.

@COMMAND$EXCEPUCODE),
CALL RG$ENABLE (AC$INTERRUPT$LEVEL,

@COMMANO$EXCEPT$COOE),
CALL RG$SUSPENO.TASK (MOTOR$TASK$TOKEN,

(iCOMMAND$EXCEPT$CODE) •
CALL RQ$RESUME$TASK (MOTOR$TASK.TOKEN,

@COMMAND$E)(CEPT$CODE),
CALL RQ$SUSPEND$TASK(STATUS4TASK$TDKEN,

@COMMAI'4D$E)(CEPT$CDDE),
CALL RG$RESUME$TASK (STATUS$TASK$TOKEN,

@COMMANO$E)(CEPT$CODE),
END, 1* OF CASE-LIST *1

END, 1* OF COMMAND PROCESSING *1

END COMMAND$TASK,

Example 11. Task to Accept and Process Keyboard
Commands

INli$TASK PROCEDURE PUBLIC,
DECLARE INITSEXC~PT$COOE WORD,

DATASEGPTR=@INIT$TASKSTOKEN, I*LOAD DATA SEGMENT BASE*I
CF!T$MAIL130X$TOKEN=RG$CREATE$MAtLBQX (0, @INlHiEXCEPT$COOE),
CRT$REGIDN$TOKEN=RG$CREATE$REGIONCO, @INIT$EXCEPT$CODE),
INIT$TASKHOKEN=RG$GET$TASK$TOKENS (0, @IN!T$EXCEPT$CODE),
HAROWARE$INIT$TASK$TOKEN=RG$CREATESTASK

~~ !~N~~:~~~~:~:~~~~~~ASK. DATf'~SEG$ADDR BASE, 0, 300,

CALL RG$SUSPENO$TASK(Q,@INIT$EXCEPT$CODE),
STATUS$TASKSTOKEN=RGSCREATE$TASKC 110, I!STATUSSTASK,

DATA$9EGSADDR BASE, 0, 3QO, 0, @INIT$EXCEPT$COOE),
CALL RQ$9USPENO$TASK(0,@INITSEXCEPT$COOE),
MOTOR$TASK$TOKEN=RGSCREATE$TASK(110, @MQTOR$TAS~,

DATASEGADDR BASE, 0, 300, O,@INITSEXCEPT$CODE),
CALL RG$SUSPEND*TASK(O,@INIT$EXCEPT$CDDE),
T IME$TASK$TOKEN=RG$CREATE$TASK (120, @TIME$TASK,

OATASEGADDR BASE, 0, 300, 0, (!INIT$EXCEPT$COOE),
CALL RG$SUSPENDHASK(O. @:INIT$EXCEPT$CODE),
CRTOUTTASY.$TOKEN=RG$CREATE$TASK (120, @CRTSDUT$TASK,

DATASEGADOR BASE, 0, 300, O,@INIT$EXCEPT!IICODE),
CALL RG$SUSPEND$TASK(O, <!!INIT$EXCEPT$CDDE),
COMMAND$TASK$TOKEN=RG$CREATE$TASK (130, @COMMAND$TASK,

DATASEGADDR BASE, 0, 300, O,@INIT$EXCEPT$CODE),
CALL RG$SUSPENOHASK(O,@INIT$EXCEPT$CDDE),
CALL RGENDINITSTASK,
CALL RGSOELETE$TASK (0, @INIT$EXCEPT$CODE),
END INITHASY.,

Example 12. Task to Initialize System Software

Table 2. Special Console Commands

Key Function

0 Send Time-of·day message to CRT.
I Send status update message to CRT.
2 Suspend CRT output task. The asp will automatically save messages to the task

in the CRT mailbox queue.
3 Resume CRT output task. Queued messaj!es will be displayed.
4 Disable 60-Hz interrupt -driven time base. Time-of-day clock will stop.
5 Enable 60-Hz time base to resume clock execution.
6 Suspend motor control task. Motor will stop.
7 Resume motor control task. Note that ifta,sk was suspended 17 times, it must be

resumed 17 times.
8 Suspend status polling task. Lights indicating system status will freeze in current state.
9 Resume status polling task.

2-66
AFN'02058A

AP-130

RQ$RESUME$TA8K routine when its own local in
itialization is complete. This convention is called
synchronous initialization; its purpose is to ensqre that
each task is allowed to complete its own start-up phase
before the next task is created. Otherwise, there's a risk
that higher-priority tasks created later could start exe
cuting before earlier tasks were ready for them, with (at
best) unpredicatable results.

When all the tasks have been created, INIT$TASK has
served its purpose. It must then call RQ$SEND$
INIT$TASK. This short procedure (actually self.
contained in an OSP Support Package interface library,
not built into the 80130) tells the OSP that all the off
spring tasks have been created for a given job. At this
point, INIT$TASK could continue with non-initializa
tion activities. The code for KEYBOARD$TASK might
have been implemented here, for example. Since this
example has nothing more to do, INIT$TASK deletes
itself with a final call to RQ$DELETE$TASK.

Code Translation

That's all, folks. Mix together the above code frag
ments, declare literals and global variables, and com
pile until done (about four minutes). The source file
name selected for this example 'is AP130.PLM. The
compiler will produce two files: an annotated source
listing (named AP130.LST) reproduced in toto in Ap
pendix B, and a relocatable object file (AP130.0BJ)
which will be used in the installation procedure dis
cussed next.

High-Level Parameter Passing
Conventions

Well-designed programs generally rely on subprograms
("procedures" in PLIM terminology) for often
repeated instruction sequences, or, to perform
machine-level operations within High-Level Language
programs. PLlM-86 and other Intel high-level languages
use a standard set, of conventions to pass parameters
and results between procedures; assembly language
programmers are advised to adhere to these conven
tions for software compatibility.

Before calling a subroutine or function, input
parameters must be pushed sequentially onto the stack,
in the order (left-to-right) they appear in tIie procedure
parameter list. When eight-bit parameters are pushed,
the high-order byte associated with them is undefined.
Thirty-two-bit pointer values are pushed in two steps,
offset word before base word. The stack "grows"
down, so the left-most parameter will have highest
numbered address. /

2-67

Functions which return a byte or word value (i.e., typed
procedures) do so in the CPU AL or AX registers.
Pointers are returned through the ES:AX register pair.
The PLIM Programming Manual explains these con
ventions more fully.

'One way to see how an assembly language routine
would interface with PLIM is to first write a dummy
PLIM procedure using the same parameter sequence as
the desired assembly language routine. Compile this
procedure with the compiler CODE switch set. The
listing will then include the appropriate assembly lan
guage instruction sequence, and may be followed as a
pattern for the final routine.

SOFTWARE CONFIGURATIONS &
INTEGRATION

When the application code has been written and com
piled, the hardest part of program development is over.
Before the code may be executed; though, the OSP
must be told various things about the system hardware
environment, desired software options, application job
characteristics, and so forth.

This information is conveyed during a multi-phase se
quence of steps collectively called the Configuration
process. Though the process is somewhat lengthy and
time-consuming, it is also very "mechanical"; the per
son doing the work does not need to understand any of
the application code or even know what it does. Nor
mally, configuration would be performed by a techni
cian or a single member of the programming team, aided
by appropriate SUBMIT command files. This chapter
shows the full configuration and installation process for

.the demonstration system. For more details, refer to
the OSP User's Manual.

The three phases of the configuration are:

1. Generating, linking, and locating OSP support code
required for'the EPROM immediately above the
80130 address space;

2. Linking and locating the object file for the applica
tion job developed in Section IV;

3. Creating,' linking, and locating a short module
(called the Root Job) which initializes the OSP and
application jobs when system is reset. '

Finally, of course, the absolute code resulting from each
phase must be programmed into EPROMs or loaded
into a test system before it can be executed.

Before starting, though, it is beneficial to draw up a
memory map for host system hardware, to determine
what sections of memory are available. This map will be
filled in as each module is linked and located.

AFN-Q2058A

AP-130

The prototype system memory space has two areas of
interest: addresses OOOOOH through 01FFFH contain
RAM, while OFCOOOH through OFFFFFH contain
EPROM. Since the CPU uses the first IK bytes of RAM
for the CPU interrupt pointers, and the last 16 bytes for
the restart sequence, these ar~as should be recorded on
the map. For referenlfe purposes, Figure 11 also indi
cates that addresses OF8000H through OFBFFFH
enable the 80130 firmware. All this is shown in
Figure 11.

Generating the OSP Support Code

The OSP support code" custpmizes" the OSP firmware
for a particular hardware environment, initializes the
system, and supports extended software capabilities.

EPROM
(2112764)

RAM

MEMORY MODULE

{-~-

80130 MEMORY SPACE

8086 INTERRUPT VECTOR

To define the hardware environment, the user creates a
source file which invokes a series of Intel-supplied
macros. Parameters for these macros specify the 80130
I/O base address, SYSTICK interval (in system clock
cycles), and how the interrupt request pins will be used.

For instance, the code example in Figure 12 defines the
prototype system hardware. This source file must be
assembled, linked with several libraries from the OSP
support disk, and located to produce the actual OSP
support code. Figure 13 shows the actual sequence of
commands needed. The DATA starting address speci
fied within the LOC86 parameter list (00400H) is the
first free byte of system RAM (see Figure 11); the
CODE address (OF8000H) is simply the 80130 firmware
starting apdress. '

STARTING ENDING
ADDRESS ADDRESS

OFFFF:O OFFFF:F

OFCOO:O

OF800:0 OFSFF:F

01FF:F

0000:0 003F:F

APPLICATION JOB s'tARTING ADDRESS: ____ _

ROOT JOB STARTING ADDRESS: ______ _

Figure 11. Example System Memory Map

$nTLE(S0130 DEVICE.C!JNFIGURATION TABLE}
NAMEODEVCF

$INCLUDE< Fl NDEVCF MAC)

XMASTER]IC(BOI30, 2000H, 0, 0)

• SLAVE_PIC (SLAVE TYPE, BASEJORT. EDGE_VS_LEVEL. MASTER._LEVEL)

Y.TIMEfH80130. 200BH, 2BH. 12500)

• NDP._SUPPORT(ENCODED_LEVEL)

END

Figure 12. 80130 Device Configuration Taj)le

2-68
AFN-Q2058A

AP-130

FO ASM86 Fl 8VP130 A86 PRINT(Fl SUP130 Lsn ERRDRPRINT ~,

MACRO(SQ) PAGEWIDTH(132)

FO LINK86 ~
Fl OSX LIB(08X86, OSXCNFl, t
Fl NUC! LIB(NBEGIN), t-
Fl ODEVCF OBJ, ~,

Fl 08X LIB, &
Fl NUC1 -LIB, t,
Fl OSX LIB, &
Fl NUC2 LIB,
Fl OSX LIB,
F1 NUC4 LIB,
Fl OSX LIB, &
Fl NURSLV LIB, &
Fl OSX LIB &-

TO Fl SUP130 LNK. MAP PRINT(Fl SUP130 MPl) NAME (MHHMAL _80130)

FO LOC86 &
Fl SUP130 LNK TO Fl SUP130 MAP PRINT(Fl SUP130 MP2) 8C(3) S(

SEGSIZE(STACK(Ol) &
ADDRESSES (CLASSES(CODE COF8000H), DATA (00400H))) 8.
ORDER (CLASSES (DATA, STACK) l
OBJECTCONTROLS (NOL I NES, NOCOMMENTS, NOSYMEOLS)

Figure 13. Support Code Configuration Commands

A reliable and relatively straightforward way to per
form this step is to create a file containing the exact
command sequence shown in Figure 13 and execute
this file using the SUBMIT utility program. Of course,
the example assumes SUBMIT, ASM86, LlNK86,
and LOC86 are all on drive :FO:, and that the various
libraries have been copied from the support disk to
drive :Fl:.

(An alternate, support -code configuration scheme lets
the user modify the OSP software characteristics in
special situations. A programmer working with iRMX
86, for instance, may wish to augment the OSP
firmware to support all the iRMX Nucleus primitives.
This would be done by editing and assembling file
OTABLE.A86 to select from a menu of software op
tions, and modifying the linkage step slightly to include
one of the iRMX 86 libraries. The OSP built-in features
are more than sufficient for the purposes of this note,
though, so only the first approach is illustrated.)

Appendix D reproduces the Locate map file produced
during this phase. Near the end of file SUPI30.MP2 is a
table of memory usage, showing that the last bytes of
RAM and ROM consumed are OOA6: FH and OFC61:
FH, respectively. Update Figure 11 with this informa
tion. (The final version of the demonstration-system
memory map appears in Appendix C.) This phase
needn't be repeated unless the system hardware char
acteristics change.

2-69

Application Code Configuration

After compiling the application job, it must be linked
with a library of interface routines from the support
diskette, and located within available memory. Use
RPIFC.LIB or RPIFL.LIB, depending on whether the
job was compiled with the Compact or Large software
model. Figure 14 is a command sequence file suggested
for this purpose. Again, the starting addresses specified
for LOC86 are taken from the system memory map.

Whenever the support code is reconfigured, check
SUP130.MP2 to see if its memory needs have changed.
If so, the application-job-configuration command file
will need to be edited. This is still a·lot simpler (J;lot to
mention more reliable) than retyping the whole se- .
quence each time application jobs are revised. Readers
familiar with the capabilities of the SUBMIT program
may prefer to represent these variables by parameters,
such that they may be easily specified each time the
command file is invoked.

As in the first phase, examine the locate map
("AP130.MP2", reproduced in Appendix E) after the
application code has been configured and update the
memory map. Also, note the segment and offset values
assigned to the initialization task. These will be needed
later.

AFN-02058A

Ap·130

Creating the Root Job

By now, all of the code needed to execute the applica
tion program has been prepared and is ready to run
-except it has no way to get it started! The OSP hard
ware and system data structures must be initialized
before INIT$TASK can be created. A short module
called the Root Job performs this function.

Figure 15 is the Root Job source file for the demonstra
tion system, dubbed RJB 130.A86. It consists of just five
macro calls. The %JOB macro defines certain charac
teristics of the applicationjob; for a full description see
the asp User's Manual. One ofthese parameters is the
initialization-task starting address (noted in the last
step), which wiIllikely change with each iteration of the
application software.

The process closely resembles the one which produced
the OSP support code. First, determine various system
characteristics. Then create a file defining these charac
teristics as macro input parameters. Finally, assemble,
link, and locate the file to produce the final code.

The two %SAB macros define "System Address
Blocks" -sections of the overall memory space which
the OSP should not consider "free space." Note that
the first invocation blocks off the RAM addresses con
sumed so far in the memory map, plus an extra 140H
bytes reserved for the Root Job initialization stack.

SUBMIT FILE TO LINK APPLICATION '"'DB TO INTERFACE LIBRARY
AND LOCATE RESUL TINQ OUTPUT.
REVISED 10/23/81 - ""HW

LINK86 oFt AP130.0BJ. :Fl RPIFC LIB TO Fl AP130 LNK &-
MAP PRINT(o F1. AP130 MP1)

LoeS6 Fl AP130. LNK TO Fl AP130 g..
ORDER '(CLASSES (DATA. STACK, MEMORV.) ~
SEQSIZE (STACK (0» g,
ADDRESSES (CLASSES (DATA (OOA70H), g,

CODE (OFC620H») &
MAP PRINT ('Fl:AP130 MP2) ,,&
OB.JECTCONrROLS <NOLINES. NOCOMMENTS, NOPUBLICS. NOSYMBOLS)

OHBo Fl AP130 TO Fl' AP130 Ha6

COPY .Fl,AP130 MPI TO LP

COPY Fl AP130 MP2 TO LP

Figure 14. Job Configuration Commands

· .
• SOURCE PROGRAM DEFININQ CHARACTERISTICS OF ROOT .JOB FOR
• AP-130 DEMONSTRATION PROQRAM (JHW - 10/25/81)
; .
SINCLUDE(·Fl.CTABLE MAC)

XSAB (0. OOCO. U)
XSAB (0200. FFFF. U)
%.JOB(O. OCOH, lOOH, OFFFFH. OFFFFH. I. 0 0.1. 0.100. Oi="C62: 06B5. 0. 0 O. 200H. 0)
%OSX (OF8000H. N)
r.SYSTEM(F800. 0, 4. N. N. 1)

END

Figure 15. Root Job Configuration File

2-70
AFN-Q2058A

AP-130

(After completing this phase, examine RJB130.MPZ to
confirm that 140H is the correct number.) The second
%SAB invocation excludes addresses 02000H through
OFFFFFH, all of which is non-RAM, either EPROM,
80130 firmware, or non-existent. The %SYSTEM
macro defines system-wide software parameters.

Figure 16 is a command file to translate, link, and locate
the root job. Once again, the LOC86 parameters come
from Figure 11. The listings produced during this phase
are reproduced in Appendix F. The final memory map
appears in Appendix C.

EPROM Programming

We are now ready to program EPROMs with the pro
gram modules linked and located above. Intel's Univer
sal PROM Programmer (UPP) and a control program
called the Universal Prom Mapper (UPM) will be used
in this step. Particular commands to the UPM will vary
with program size, memory location, and EPROM type,
but the general sequence should resemble that shown
here.

The first step is to invoke UPM and initialize the pro
gramming system, following a command sequence
similar to that in Figure 17. The example system incor
porates two 2764 devices, so 16K bytes of memory
buffer are cleared.

Next, all the final code modules produced above (e.g.,
SUP 130, AP130, and RJB130) must be loaded into the

UPM memory buffer. The three commands in Figure 18
petform this function.

When the final system is reset, execution must branch
into the root job initialization sequence. When the abso
lute code modules have finished loading, manually
patch a jump instruction into the buffer area corres
ponding to the CPU reset vector. The opcode for the
8086 or 8088 intersegmentjump is OEAH; the instruc
tion's address field must contain the address assigned to
label RQ$START$ADDRESS (read from the root job
locate map), the 16-bit segment offset (low byte first)
followed by the segment base address (ditto). The UPM
CHANGE command should be used to make this
patch, as illustrated in Figure 19.

The UPM memory buffer now contains a complete
image of the code needed for the system EPROMs. Up
until now, all software-related steps-source code
preparation, translation, linking and locating-have
been the same for 8086- or 8088-based systems. At this
point, however, the software installation procedures
diverge slightly.

Recall that the 8086 fetches instructions 16 bits at a
time, from coordinated pairs ofEPROMs. One contains
only even-numbered program bytes, the other, odd. To
separate the linear UPM buffer into high- and low-order
bytes for iAPX 86/30 designs, use the UPM STRIP
command as shown in Figure 20.

Now "burn" the EPROMs with the PROGRAM com
mand in Figure 21.

LINK AND LOCATE THE lRMX 86 ROOT JOB

f10DIFIED FOR TWO-DRIVE OPERATION
REVISED 10/25 - JHW

ASMB6 f1 RJB130 A86 MACRO(75)

LINI'-.S6 g,
f1 croot Ilb('root), ~,

f1 R..JD130 obJ' 8c
f1 CT'oot lIb g,

TO f!1 RJD130 Ink &-
MAP PRINT(f!1 R.JB130 mpl)

LOC86 -1'1 RJB130 Ink &.
ro Fl RJB130 ~
MAP PRINT(f1 RJBi30 mp2) l!<:
OC(noll, nopl, noem, nosb) &;
PC(noll. pL noem, nosb) &
SEGSIZECstack(O») g,
ORDER(classes(data. stack. memoT'Y» I!:(
ADDREssES (classes (code (OFD180H). &.

dataCOOADOH»)

01-186 Fl RJB130 TO Fl R.JB130 H86

COP'!' Fl R.JB130 LST fO LP

COpy Fl RJB130 MPl TO LP

COpy Fl RJB130 MP2 TO LP

Figure 16. Root Job Configuration Commands
2-71

AFN·02058A

AP-130

flll f""'l 0 to 3IIIh wllh OHh

Figure 17. UPM Initialization Sequence

read 88hex file : f1: sup130. h88 from 0 to 3fffh start OfcOOOh
read 88hex file: f1: a,,13O. h88 fromOto 3IIIh aterl 0fc000h
read 88hex file :" : rJb13O. h86 from 0 to 3"", aterl 0fc000h

Figure 18. UPM Commands to Load Hex Flies

, change 311Oh=Oeah, 11h, 00h, 18h, OIdh

Figure 19. UPM Command to Patch Restart Vector

strip low from 0 to 3IIIh into 4000h
strip hi from 0 to 3fffh Into 6000h

Figure 20. UPM Commands to Strip High and Low Bytes

program from 4000h to 5fffh atert 0

program !rOm 6OO0h to 7fffh alarl 0
exH

Figure 21. UPM Commands to Program EPROMs

To save some trouble, the UPM invocation and all com
mands except the manual patch can be combined into a
SUBMIT command file. Replace the CHANGE 'com
mand with a control-E character so the oPerator can
adjust the starting address for the iteration. Also place
control-Es before each PROGRAM step to give the
operator ti~e to socket the next memory device.

SUMMARY

The development of the 80130 marks a major milestone
in the evolution of microcomputer systems. For the
·first time, a single VLSI device integrates the hardware
facilities and operating system firmware needed by'
real-time multitasking applications. The 80130 offers
the system hardware designer the advantages of higher
'integratio'n-reduced device count, smaller boards, .
greater reliability-along with faster design cycles and
optimal system performance.

before. It is now possible for concurrent tasks to be
dispatched, memory segments allocated, and messages
relayed through mailboxes nearly as easily as sub
routines, dynamic variables, and 110 ports were used in
the past. In effect, Jobs, Tasks, Segments, Mailboxes,
and Regions become new OSP data types, manipulated
entirely by firmware in the 80130.

Yet despite standardizing these functions, the OSP does
not restrict the user's flexibility. The device can accom
modate a variety: of hardware environments, and both
the hardware and software capabilities are desired.

ACKNOWLEDGEMENTS

The author would like to thank Peter Pederson for
designing and implementing the demonstration system
breadboard discussed in this note, Pam Johnson for her
assistance in typing the manuscript, and Hal Kop,
Lionel Smith, George Alexy, Chuck McMinn, and
Sandy Wharton for their help in reviewing the drafts
and providing many thoughtful comments and
criticisms. ~ ' ..

AFN-02058A

AP·139

APPENDIX A
EXAMPLE SYSTEM SCHEMATICS

2-73
AFN-02058A

N
.!.J
~

~

i
~

I~~' i .p I li~ ~ ~~LK ~ CL~ ~e~ I I~
AD
D r-

Vee

100kH

~ ,II ,III ~R elK ii3-~
~IOWC

IORC
AIOWC
MRDe

510n I I

t51.C. ~ ~ J~I 1 r 1 1 1 1 1- WR

a ~ elK
CLR t; K

OJ ,.

RESET 111111.1
m

GND NMI g
GNO TEST Ol

GND MN/Mx

INTR

SYSTICK I" "

f-------jl~i H iii i
r-

,---- t---

DATA-BUS

Figure A·1. Example System Schematics

MRDe

AMWC

12

13

AD
12

04

Gl

1
EN1G Vee *""+5

All 2 S1A EN2G

A12 3 SlB S2A 14

ER1CS 4 IYO a! S2B 13

EJI2elI 5 IVl !ii 2YO 12 OR1CS
ER3CS 6 IY2 III 2Y1 11 OR2CS

ER4Cli 7 IV3 2Y2 10 OR3CS
11

GNr GNO 2V3 9 OR4CS
3

03 D3

13 1
2

8

D3

1 10
9

F1

A15 f EN1G Vee ~+5
A13 2 S1A EN2G

15

A14 3 SlB S2A ~A14"""
s---1 IVO a! S2B ~A15

(80130) IOl:! IVl !ii 2VO
12

USARTe!i 6 IY2 III 2Vl
11

LEPCS (2784)

I'll!l'CS 7 1Y3 2Y2 10 MEMCS (80130) f GNO
2Y3 9 MEPCS (2784)

Figure A-1. Example System Schematics (continued)

2-75
AFN-02058A

AP-130

APPENDIXB
SOURCE CODE LISTINGS

2-76

AP-130

rSIS-Il PI.IM-66 V2 0 COMPILATION OF MODULE DEM0130
OBJECT t100ULE PLACED IN . Fl' AP 130. OBJ
COMP ILE::R INVOKED BY~ PLM86 . Fl: AP130. PLM DATE (12121>

:J

4

5

6

7

8

?,99

]01

$DEBUG COMPACT ROM TITLE('AP-130 APPENDIX B

DEMO$l30. DO,

1* SYSTEM-WIDE LITERAL DECLARATIONS: *1

DECLARE FOREVER LITERALLY 'WHILE 01H',

1* 1/0 PORT DEFINITIONS. *1

DECLARE CHAR$51 LITERALLY '4000H',
CMD$51 LITERALLY '4002H',
STAT$51 LITERALLY '4002H'.

DECLARE PPI$A LI1ERA~LY '6001H'.
PPI$B LITERALLY '6003H'.
PPI$C LITERALLY '6005H'.
PPI$CMD LITERALLY '6007H'.
PPI$STAT LITERALLY '6007H'.

DeCLARE TIMER$CMD LITERALLY '200EH'.
BAUD$TlMER LIl'ERALLY '200CH';

12/21/61')

DECLARE AC$INTERRUPT$LEVEL LITERALLY '0011100013'.

DECLARE CR LITERALLY 'ODH'.
LF LITERALLY 'OAH',
BEL LITERALLY '07H'.

DECLARE ASCII$CODE (16) BYTE DATA ('0123456789ABCDEF');

$I:JEC'!

$tNCLUDE (.Ft NUCLUS.EXT)
$SAVE NOLI S T
$INCLUDE (rl NEXCEP LIT)
$o;dve nollst

1* GLOBAL VARIABLE DECLARATIONS. *1

DECLARE DATASEGPTR POINTER.
DATASEGADDR STRUCTURE (OFFSET WORD. BASE WORD)

AT (@DATASEGPTR).

DE.CLARE HARDWARE$INIT$TASK$TOKEN WORD.
STATUS$TASK$TDKEN WORD.
MOTOR$TASK$TOKEN WORD.
TIME'$TASK$TOKEN WORD.
AC$HANDLER$TOKEN WORD.
CRTOUTTASK$TOKEN WORD.
COMMANDtTASK$TOKEN WORD.
INIT$TASK$TLIKEN WORD.

DECLARE CRT$MAILBOX$TOKEN WORD.
CRT$REGION$TOKEN WORD;

2-77
• AFN·0205SA

'JO:"'2
'3(j':) 2
304 2

3()~' 3
306 2
3(Y' 2

~lO8
3(,1 1,.- .-
310 3
~31 ! 2
-31. ;~ :2

31 :~
31-.1 ;;
31 ~, ;~

316 ,2
31 7 -,

~

31.1:1 2

319 2
J20 d
3;;:1 '"
32.2 '"
3d'3 to: ..

... ~:' Jl :J
1 j~

~ .' 3
~~6 2
'27 :l

-i,?8 3
3;~(1 2
JJO 2
;::11 2

3:"{2
33:3 :2
334 " ~

335 2
336 2
33/ 2
:)38 3
3::V::? J
J40 3
341 3
34~' ~!

AP-130

SEJECT,

1* CODE EXAMPLE 2 SIMPLE CRT INPUT AND OUTPUT ROUTINES. *1

CSOUT: PROCEDURE (CHAR);
DECLARE .CHAR BYTE;
DO WHILE (INPUT(STATS51) AND 01H)=0;

1* NOTHING *1
END;

OUTPUT(CHARS51)=CHAR;
END CSOUT;

C$IN: PROCEDURE BYTE;
DO WH1LE (INPUT<STATS51) AND 02H)=0; -

1* NOTHING *1
END;

RETURN INPUT (CHARS51);
.. ND CSIN;

$&.JEC r

;.. CODE EXAMPLE 1. HARDWARE INITIALIZATION TASK. *1

HARDWARESINITSTASK. PROCEDURE;
DECLARE HARDSINITSEXCEPTSCODE WORD;
DECLARE' PARAMS51 (*) BYTE DATA (40H.8DH.00H.40H.4EH.27H).
DECL.ARE PARAMS51$INDEX BYTE;
DECLARE SIGNSONSMESSAGE (*) BYTE DATA

(CR.LF. 'iAPX 86/30 HARDWARE INITIALIZED',CR.LF);
DECLARE SIGNSONSINDEX BYTE;

OUTf'ur (PP ISCMD) =90H.
DUTPl!T (TIMERSCMD)=OB6H;
OUTPUT(BAUDSTIMER)=33; I*GENERATES 9600 BAUD FROM 5 MHZ*I
OUTP UT (BAUDS TI MER) =0.
DO PARAMS51SINDEX=0 TO (SIZE(PARAMS51)-1);

OUTPUT(CMDS51)=PARAMS51 (PARAMS51SINDEX);
END, I*OF USART INITIALIZATION DO-LOOP*I

DO SIGNSONSINDEX=O TO (SIZE(SIGNSONSMESSAGE)-l);
C/,I.L C1;OUT (SIGNSONSMESSAGE(SIGNSONSINDEX»;
END; I*OF SIGN-ON DO-LOOP*I

CALL R(lSRESUMESTASK (INITSTASKSTOKEN. (!HARDSINITSEXCEPTSCODE);
CAL L RGSDELETE$ TASK (0. @HARDSINITSEXCEPTSCODE) ;
END HARDWARESINITSTASK;

$EJECl

1* CODE EXAMPLE 3. STATUS POLLING AND REPORTING TASK. *1

STATUSSTASK PROCEDURE;
DECl ARE STATUSSCOUNTER BYTE;
DECLARE STATUSSEXCEPTSCODE WORD;

STATUSSCOUNTER=O;
CALL RG$RESUME$TASK(INITSTASK$TOKEN.(!STATUS$EXCEPT$CODE);
DO FOREVER,

OUTPUT(PPISB)=INPUT(PPI$A) XOR STATUSSCOUNTER;
STATUS$COUNTER=STATUSSCOUNTER+l;
CALL RQSSLEEP(100,@STATUSSEXCEPT$CODE);
END;

END STATUSSTASK;

2-78
AFN-02058A

343

344 1
345 2
346 2

347 2

348 2
349 2
350 2
351 2
352 2
353 2
354 3
355 4
356 4
357 4
358 4
359 3
360 3
361 4
362 4
363 4
364 4
365 3
366 3
367 2

368

369
37 () 2

371 2
372 2
373 2

J7~ 3
376 3

377 3
378 2

379 2

AP-130

$EJECT

1* CODE EXAMPLE 4. STEPPER MOTOR CONTROL TASK. *1

DECLARE CW$STEP$DELAY BYTE,
CCW$STEP$DELAY BYTE.
CW$PAUSE$DELAY BYTE,
CCWsPAUSEsDELAY BYTEI

MOTORSTASK: PROCEDUREI
DECLARE MOTORsEXCEPTSCODE WORD.
DECLARE MOTORSPOSITION BYTE.

MOTORSPHASE BYTEI
DECLARE PHASESCODE (4) BYTE

DATA (0000010IB.00000ll0B.000010l0B.00001001B)1

CWSSTEPsDELAY=501 I*INITIAL STEP DELAYS = 1/4 SECOND*I
CCWSSTEPSDELAY=50,
CWSPAUSESDELAY=200. I*PAUSES AFTER ROTATION = 1 SECOND*I
CCWSPAUSEsDELAY=2001
CALL RGSRESUMESTASK(INITsTASKSTOKEN.@MOTORsEXCEPT$CODE)1
DO FOREVER I

DO MOTORsPOSITION:O TO 1001
MOTORSPHASE=MOTORsPOSITION AND 0003Hl
OUTPUT(PPISC)=PHASEsCODE(MOTORSPHASE)I
CALL RGsSLEEP(CWSSTEPSDELAY.@MOTORSEXCEPTSCODE)1
ENDI

CALL RGSSLEEP(CWSPAUSESDELAY.@MOTORsEXCEPTsCODE)1
DO MOTORsPOSITION:O TO 1001

MOTORsPHASE=(100-MOTORsPOSITION) AND 0003Hl
OUTPUT(PPISC)=PHASESCODE(MOTORSPHASE)I
CALL RGsSLEEP(CCWSSTEPSDELAY,@MOTORsEXCEPTSCODE).
END I

CALL RGSSLEEP(CCWSPAUSESDELAY.@MOTORsEXCEPTSCODE)1
ENOl

END MOTORsTASKI

$E,)ECT

1* CODE EXAMPLE 5. INTERRUPT HANDLER TO TRACK 60 HZ INPUT. *1

DECLARE AC$CYCLESCOUNT BYTEI

AC$HANDLER. PROCEDURE INTERRUPT 59,
DECLARE ACsEXCEPTSCODE WORDI

I*VECTOR FOR 80130 INT3*1

CALL RGSENTERSINTERRUPT(ACSINTERRUPTSLEVEL.@AC$EXCEPTSCODE)I
AC$CYCLE$COUNT=ACSCYCLESCOUNT+l1
IF AC$CYCLE$COUNT >= 60

THEN DOl
AC$CYCLEsCOUNT=OI
CALL RG$SIGNALsINTERRUPT(ACSINTERRUPT$LEVEL.

@ACsEXCEPTsCODE)1
. END.

ELSE CALL RGsEX ITsINTERRUPT (ACsINTERRUPT$LEVEL.
@ACSEXCEPTSCODE).

END AC$HANDLERI

2-79
AFN-02058A

380
381 ;;!
38~ 2
3[3:1 Z~

384 2

:385 3
J86 ;:~

.~187 2
'388 ;2

389

390
391 2

:_l92 ~~

:393 2

394 ;'1
~l95 ;<
396 :1
397 4
398 5

399 5

401 's
402 4
403 3
40·. -,

~

405 2
406 ;;1

AP-130

$EJECT

1* CODE EXAI1PLE 7. PROTECTED CRT OUTPUT SUBROUTINE. *1

PROTECTEDCRTOUT. PROCEDURE (CHAR) REENTRANT'.
DECLARE CHAR BYTE,
DECLARE CRT$EXCEPT$CODE WORD,
CALL RG$RECEIVE$CONTROL(CRT$REGION$TOKEN,@CRT$EXCEPT$CODE),
DO WHILE <INPUT (STAT$51) AND 01H)=0,

1* NOTHING *1
END,

OUTPUT(CHAR$51)=CHAR,
CALL RG$SEND$CONTROL(@CRT$EXCEPT$CODE)'

lEND PROTECTEDCRTOUT,

$E-!ECT

I~ CODE EXAMPLE 6. INTERRUPT TASK TO MONITOR CLOCK TIME. *1

DECLARE SECOND$COUNT BYTE,
MINUTE$COUNT BYTE,
HOUR$COUNT BYTE,

TIME$TASK: PROCEDURE,
DECLARE TIME$EXCEPT$CODE WORD,

AC$CYCLE$COUNT=O,
CALL RGSETINTERRUPT(AC$INTERRUPT$LEVEL,OlH,

INTERRUPT$PTR(AC$HANDLER),DATASEOADDR. BASE,
@TIME$EXCEPT$CODE), .

CALL RG$RESUME$TASK(INIT$TASK$TOKEN,@TIME$EXCEPT$CODE),
DO HOUR$COUNT=O TO 23,

DO MINUTE$COUNT=O TO 59,
DO SECOND$COUNT=O TO 59,

CALL RG$WAIT$INTERRUPT(AC$INTERRUPT$LEVEL,
@TIME$EXCEPT$CODE) ,

IF SECOND$COUNT MOD 5 = 0
THEN CALL PROTECTEDCRTOUT(BEL) ,

END, 1* SECOND LOOP *1
END, 1* MINUTE LOOP *1

END, 1* HOUR LOOP *1
CALL RG$RESET$INTERRUPT(AC$INTERRUPT$LEVEL,

@TIME$EXCEPT$CODE),
CALL RG$DELETE$TASK(O,@TIME$SXCEPT$CODE),
END TIME$TASK,

2-80
AFN-02056A

407
408 2
40'1 2
410 2

411 2
412 2

413 .,
-11.4 .,

"
415 2
416 2
41 7 '2
41[3 ;1

419 ']

420 3
421 2
4'"")""")
~,- 2

423 -,
424 -,
425 2
4·26 2
427 2

428 2
429 2

430
431 ~ c.

432 .2
438 ~

434 2

435 '0
~

4"36 ~

431 2
438 ;;;,>

489 ., ,-

440 -,
~

441 ~~

442 .,
c.

443 3

444 3
41.1 ~1 ';:0]

44·S 2
447 3

448 3
449 3
450 2

431 2

AP-130

$EJECT

1* CODE EXAMPLE 8. SUBROUTINE TO CREATE TIME-OF-DAY MESSAGE. *1

PRINT$TOD. PROCEDURE,
DECLARE TOD$MESSAGE$TOKEN WORD,
DECLARE TOD$EXCEPT$CODE WORD,.
DECLARE TOD$SEGMENT$OFFSET WORD,

TOD$SEGMENT$BASE WORD,
DECLARE TOD$SEGMENT$PNTR POINTER AT (eTOD$SEGMENT$OFFSET),
DECLARE TOD$TEMPLATE (28) BYTE

DATA (27. 'THE TIME IS NOW hh: mm: 55. ',CR, LF),
DECLARE TOD$STRING BASED TOD$SEGMENT$PNTR (28) BYTE,
DECLARE TOD$STRING$INDEX BYTE,

TOD$MESSAGE$TOKEN=RQ$CREATE$SEGMENT(28,@TOD$EXCEPT$CODE),
TOD$SEGMENT$BASE=TOD$MESSAGE$TOKEN,
TOD$SEGMENT$OFFSET=O,
DO TOD$STRING$INDEX=O TO 27,

TOD$STRING(TOD$STRING$INDEX)=
TOD$TEMPLATE(TOD$STRING$INDEX),

END,
TOD$STRING(17)=ASCII$CODE(HOUR$COUNT/l0),
TOD$STRING(18)=ASCII$CODE(HOUR$COUNT MOD 10),
TOD$STRING(20)=ASCII$CODE(MINUTE$COUNT/l0),
TOD$STRING(21)=ASCII$CODE(MINUTE$COUNT MOD 10);
TOD$STRING(23)=ASCI I$CODE(SECOND$COUNT/l0) ,
TOD$STRING(24)=ASCII$CODE(SECOND$COUNT MOD 10),
CALL RQ$SEND$MESSAGE(CRT$MAILBOX$TOKEN,

TOD$MESSAGE$TOKEN,O,@TOD$EXCEPT$CODE),
RETURN,
END PRINT$TOD,

1* CODE EXAMPLE 9. SUBROUTINE TO CREATE SWITCH STATUS MESSAGE. *1

PRINT$STATUS: PROCEDURE,
DECLARE STATUS$MESSAGE$TOKEN WORD,
DECLARE STATUS$EXCEPT$CODE WORD,
DECLARE STATUS$SEGMENT$OFFSET WORD,

STATUS$SEGMENT$BASE WORD,
DECLARE STATUS$SEGMENT$PNTR POINTER

AT (@STATUS$SEGMENT$OFFSET),
DECLARE STATUS$TEMPLATE (40) BYTE DATA

(39, 'THE SWITCHES ARE NdW SET TO B',CR,LF),
DECLARE STATUS$STRING BASED STATUS$SEGMENT$PNTR (40) BYTE,
DECLARE STATUS$STRING$INDEX BYTE,
DECLARE BIT$PATTERN BYTE,

STATUS$MESSAGE$TOKEN=RQ$CREATE$SEGMENT(40,
@STATUS$EXCEPT$CODE),

STATUS$SEGMENT$BASE=STATUS$MESSAGE$TOKEN,
STATUS$SEGMENT$OFFSET=O,
DO STATUS$STRING$INDEX=O TO 39,

STATUS$STRING(STATUS$STRING$INDEX)=
STATUS$TEMPLATE(STATUS$STRING$INDEX)l

END,
Blf$PATTERN=INPUT(PPI$A),
DO STATUS$STRING$INDEX=29 TO 36,

STATUS$STRING(STATUS$STRING$INDEX)=
ASCII$CODE(BIT$PATTERN AND 01H),

BIT$PATTERN=ROR(BIT$PATTERN,1),
END,

CALL RQ$SEND$MESSAGE(CRT$MAILBOX$TOKEN,
STATUS$MESSAGE$TOKEN,O,@STATUS$EXCEPT$CODE),

END PRINT$STATUS,

2-81
AFN-02058A

4~2

49:; ~
"-

4 5l~ 'J
4~'\ ~.~

4":>." :;:
4 ~j 7 .,

<-

4'>8 '-'
.1')9 .
~6(l :::
4t,1 ;2

402 3

40,3 j

4c··:;, ,
46~J 3
466 :1
467 i~

'168 4
46'>' :3
470 ':1
47l ;1

472
473 2
47'l ~

41'0 .~
470 2
471 3
478 3
419 .l

4d1 3

48:1 4
484 4
4~3~1 4
48" .,
487 ~

4SH :;

489 :;

490 "

491 :;

4qt.! :;

493 5

494 :;

49~ :;

496 :;
497 4
498 3
499 2

AP·130

/·It COIlE El\A~IPLE-. 10. TASK TO RECEIVE MESSAGES ANI? TRANSMIT THEM TO CRT. *1

CRTOUTTASK. PROCEDURE,
DEC I_ARE' MESSAGE.LENGTH BYTE,
DECLARE MESSAGE$TOKEN· WORD,
DECl.ARE RESPONSE$TOKEN WORD,'
DECLARE MESSAGE$EXCEPT$CODE WO~D;'
DECLARE MESSAGE$SEGMENT$OFFSET WORD,

MESSAGE$SEGMENT$BASE 'WORD; .
DECLARE. MESSAGE$SEGMENT$PNTR POINTE'R AT (<!!MESSAGE$SEGMENT$OFFSET);
DECL.ARE MESSAGE$STRING$CHAR .BASED MESSAGE$SEGMENT$PNTR BYTE,

CALL RG$RESUME$TASK(INIT$TASK$TOKEN, @MESSAGE$EXCEPT$CODE),
DO FOREVER,

MESSAGE$TOKEN=RG$RECEIVE$MESSAGE(CRT$MAILBOX$TOKEN,OFFFFH,
~RESPONSE$TOKEN,@MESSAGE$EXCEPt$CODE)'

MESSAG~$SEGMENT$OFFSET=O,
ME'SSAGE$SEGMENT$BASE=MESSAGE$TOKEN;
MF..13SAGE$LENGTH=MESSAGE$STR I NG$CHAR,
DO MESSAGE$SEGMENT$OFFSET=l TO MESSAGE$LENGTH,

CALL PROTECTEDCRTOUT(MESSAGE$STRING$CHAR),
END,

CALL RG!I>'DELETE$SEGMENT (MESSAGE$TOKEN, @MESSAGE$EXCEPT$CODE),
END, (~OF FOREVER-LOOP *1

END CRT$OUT!I>TASK,

$EJI£CT

1* CODE EXAMPLE 11. TASK TO POLL KEYBOARD AND PROCESS COMMANDS. *1

COMMAND$TASK. PROCEDURE,
DECLARE CONSOLE$CHAR BYTE,
DECLARE COMMAND$EXCEPT$CODE WORD,

CALL RG$RESUME$'TASK (INIT$TASK!I>TOKEN, @COMMAND$EXCEPTSCODE);
DO FOREVER,

CONSOLE!I>CHAR=C$IN AND 7FH,
CAI_L PROTECTEDCRTOUT (CONSOLE$CHAR),
IF CONSOLE$CHAR=CR

THEN CALL PRO.TECTEDCRTOUT(LF»)·
IF (CONSOLE$CHAR:>= '0')· AND (CONSOLE$CI:IAR (= '9')

END,

THEN DO,
CALL PROTECTEDCRTOUT(CR),
CALL .. PROTECTEDCRTOUT(LF);
DO CASE (CONSOLE$CHAR-' 0'),.

CALL PR INT1IiTOD,
CALL PRINT$STATUS,
CALL RG$SUSPEND$TASK(CRTOUTTASK$TOKEN,

@COMMAND$EXCEPT$CODE),
CALL RG$RESUME$TASK(CRTOUTTASK$TOKEN,

@COMMAND$EXCEPT$CODE),
CALL RG$DISABLE(AC$INTERRUPT$LEVEL,

@COMMAND$EXCEPT$CODE),
CALL RG$ENABLE(AC$INTERRVPT$LEVEL,.

@COMMAND$EXCEPT$CODE),
CALL RG$SUSPEND$TASK(MOTOR$TASK$TOKEN,

@COMMAND$EXCEPT$CODE),
CALL RG$RESVME$TASK(MOTOR$TASK$TOKEN,

@COMMAND$EXCEPT$CODE);
CALL RG$SUSPEND$TASK(STATUS$TASK$TOKEN,

@COMMAND$EXCEPT$CODE);
CALL RO$RESUME$TASK(STATUS$TASK$TOKEN,

@COMMAND$EXCEPT$CODE),
END, 1* OF CASE-LIST *1

END, 1* OF COMMAND PROCESSING *1

END COMMAND$TASK,

2-82 AFN.()2Q58A

500
501 2

50;2 2
503 2
504 2
')05 2
506 2

srj / -,
~

5('<4 2

S09 2
510 2

511 2
51 ~:> 2

513 2
:>14 2

51t:> 2
51t. 2

517 2
518 2
519 ">

520 2

521

AP·130

$EJECT

1* CODE EXAMPLE 12. TASK TO INITIALIZE OSP SOFTWARE. *1

INIT$TASK: PROCEDURE PUBLIC;
DECLARE INIT$EXCEPT$CODE WORD;

DATASEGPTR=@INIT$TASK$TOKEN; I*LOAD DATA SEGMENT BASE*I
CRT$MAILBOX$TOKEN=RG$CREATE$MAILBOX(O.@INIT$EXCEPT$CODE);
CRT$REGION$TOKEN=RG$CREATE$REGION(O.@INIT$EXCEPT$CODE);
INIT$TASK$TOKEN=RGGETTASK$TOKENS(O.@INIT$EXCEPT$CODE);
HARDWARE$INIT$TASK$TOKEN=RG$CREATE$TASK

(110.@HARDWARE$INIT$TASK.DATA$SEGSADDR.BASE.0.300.
O.@INIT$EXCEPT$CODE);

CALL RG$SUSPEND$TASK(O.@INIT$EXCEPT$CODE);
STATUS$TASK$TOKEN=RG$CREATE$TASK(110.@STATUS$TASK.

DATASEGADDR. BASE.0.300.0.@INITSEXCEPTSCODE);
CALL RG$SUSPEND$TASK(O.@INIT$EXCEPT$CODE);
MOTOR$TASK$TOKEN=RG$CREATESTASK(110.@MOTOR$TASK.

DATASEGADDR. BASE.0.300.0.@INIT$EXCEPTSCODE);
CALL RG$SUSPEND$TASK(O.@INIT$EXCEPTSCODE);
TIME$TASK$TPKEN=RG$CREATESTASK(120.@TIME$TASK.

DATASEGADDR BASE.0.300.0.@INIT$EXCEPT$CODE);
CALL RG$SUSPEND$TASK(O.@INIT$EXCEPT$CODE);
CRTOUTTASK$TDKEN=RG$CREATE$TASK(120.@CRT$OUT$TASK.

DATASEGADDR. BASE.O.300.0.@INIT$EXCEPT$CODE);
CALL RG$SUSPEND$TASK(O.@INIT$EXCEPT$CODE);
COMMAND$TASK$TDKEN=RG$CREATE$TASK(130.@COMMAND$TASK.

DATASEGADDR BASE.0.300.0.@INIT$EXCEPT$CODE);
CALL RG$SUSPEND$TASK(O.@INIT$EXCEPT$CODE);
CALL RGENDINIT$TASK;
CALL RG$DELETE$TASK(O.@INIT$EXCEPT$CODE);
END INIT$TASK;

END DEMO$130,

MODULE INFORMATION

CODE AREA SIZE
CONSTANT AREA SIZE
VARIABLE AREA SIZE
MAXIMUM STACK SIZE
848 LI NES READ
o PROGRAM ERROR(S)

END OF PL/M-86 COMPILATION

084CH
OOOOH
0052H
0026H

2124D
OD

82D
38D

2-83 AFN-02058A

AP·130

APPENDIXC
SYSTEM MEMORY MAP

2-84
AFN·02058A

AP-130

EXAMPLE SYSTEM MEMORY MAP

MEMORY MODULE

EPROM
(2x2784)

RAM

[---ROOT JOB CODE AREA

APPUCATlDN JOB CDDE AREA

OSP SUPPORT CODE AREA

80130 MEMORY SPACE

FREE SYSTEM RAM

ROOT JOB DATA AREA

APPUCATION JOB DATA AREA

OSP SUPPORT DATA AREA

11088 INTERRUPT VECTOR

STARTING ENDING
ADDRESS ADDRESS

OFFFF:O OFFFF:F
OFD18:O OFD38:O

OFC82:O OFD17:B

OFCOO:O OFC81:F

OF800:O OFaFF:F

DOCO:D O1FF:F

DOAD:O DOBF:F

0DA7:O DDAC:'

0040:0 DOA8:F

0000:0 D03F:F

INmAUZATlON TASK STARTING ADDRESS: FC82:G8B5

ROOT JOB STARTING ADDRESS: __ ..!.FD1=8"':001=''--__

2-85
AFN-02058A

, Ap·130

APPENDIX D
SUPPORT ,CODE LOCATE MAP

2-86

AP-130

ISIS-[I MLS-86 L.OCATER, VI 2 INVOKED OY
FO LOCBb • Fl SUP130 LNK TO Fl SUP130 MAP PRINTC FI SUP130 MP2) 9C(3) It

SEGSIZECSTACKCO)) &
ADDRESSES (CLASSES (CODE (OF8000H) • OAT A (00400H))) ..
ORDER (CLASSESC DATA. STACK» • OB~ECTCONTROLS (NOL INES, NOCOHMENTS, NOSVHBOLS)
WARNING 26 DECREASING SIZE OF SEGMENT

SEGMENT STACK

SYMBOL TABLE OF MODULE HtNIMAL_80130
READ FROM FILE . Fl SUP130 LNK
WRITTEN TO FILE Fl SUP130

BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SYMBOL BASE OFFSET TYPE SV"BOL

0040H OOOOH PUB INTERRUPTTASKVEC 0040H 0120H PUB DEFAULT JiANDLER OO4OH 0144H PUB READVLISTROOT
Q040H Ol4BH PUB INTERRORENTRV 0040H 014CH PUB 8YSTEMEXCEPTIONH 0040H Ol5OH PUB DELET IDNT ASIITDKE

-ANDLERPTR -N
0040H 0152H PUB EXTENSIONLISTROO 0040H 01S4H PUB DELETION-PB~ECT _ OO40H Ol51oH PUB SVSTEHPDDL TOKEN'

-T -BASE
OO4OH Ol5BH PUB ROOT .JOBTOKEN 0040H 015AH PUB HINTRANSSUE 0040H OISCH PUB LAST...NDP _TASK
0040H 015EH PUB NOP _INTERRUPT J.E 0040H 0160H PUB PARAH_VALIDATION 0040H OI62H ' PUB REOIONjLAOS

-VEL_VAR -_VECTOR
0040H 0164H PUB TAa..._WAITINQ_FLA 0040H OIb6H PUB REGION_TIlKEN_TAB 0040H Ol71oH PUB SIONAL_O_INllEX

-98 -I.E
0040H 017BH PUB SIQNAL_O 0040H OIEBH PUB KERNELJI.A9 0040H OlE9H PUB ACTIYATE_SID*L_

-G
OO4OH OlEAH PUB FtL.LCHAR 0040H OlEBH PUB NU',-SLAVES 0040H OIECH PUB DLDJlL,AVE.-NUII
0040H OIEDH PUB INTt'lASK 0040H OIFIoH PUB DISABLEHASK 0040H OIFFH PUB LEYELJlET _T LE
0040H 020BH PUB IHR_PORT 0040H 021AH PUB EOIJ'DRT 0040H 022CH PUB I8RJ'ORT
0040H 023EH PUB PIC_INFO 0040H 0247H PUB CLOCK_SPEC...E0I 0040H 024BH PUB CLOCKJlN
0040H 0249H PUB CLOCK_DFF OO4OH 024AM PUB CLOCK_LEVEL 0040H 05DOH PUB END_DF -.DATA
FBOOH 45CCH PUB NOP _INTERRUPT J.E FBOOH 45C2H PUB VAL I DATE_PARAttS_ FBOOH 4542H PUB OETDESCRTDKEN

-VEL -BODV JlUI1K'I'
FSOOH 4556H PUB OETDESCRPOINTER F800H ~:567H PUB OETPDINTER FSOOH 453DH PUB BCAN'EIIDRV
FBOOH 453BH pUB OVERFLOW F800H 4533H PUB NENTRY _BODY FBOOH 452EH PUB KSUSPEND
FBOOH 4529H PUB KINITIALIZE FBOOH 4S24H PUB KENABLELEVELNS FBOOH 451FH PUB KENABLELEVEL
FBOOH 451AH PUB KCREATEftEQIONNS FBOOH 451~ PUB KCREATEOB~CTNS FBOOH 4510H PUB KCREATEDB.JECT
FBOOH 450BH PUB INITNDP FBOOH 45010H PUB INITIALIZE _ FSOOH 4501H PUB FINIBHINITIALIZA

-THIN
F800H 44FCH PUB EDI_ROUTINE FBOOH 44F7H PUB DIVIDEBVZERO FBOOH 44F2H PUB DECDDEJ.EVEL
FBOOH 44EDH PUB CDHHDN...ERROR FBOOH 44EBH PUB CLOCKENTRVJlODV FBOOH 44E3H PUB ARRAVIDUNDII
FBOOH 44DOH PUB SYBTEHEXCEPTIONH F8COH 4472H .UB INITIALIZE_TIrER FBOOH 43AEH PUB INITIALIZE_PICS

-ANDLER
FBOOH 435CH PUB INIT_INTERNAL._RE FBOOH 434EH PUB NOP _INTERRUPT_HA FBOOH 433FH PUB CLQCKENTRV

-OICINS -NDLER
~UB FBOOH 4336H PUB NENTRV FBOOH 40FEH PUB INITIALIZENUCLEU FBOOH 40BOH RGWAITINTERRUPT _

-5 -BODV
FBOOH 4OB1H PUB RGSI9NALtNTERRUP FBOOH 40ACH PUB RGQETLEVELJlODV FBOOH 40A1H PUB R(I£XITINTERRUPT _

-TJlODV -BODV
FBOOH 4OA2H PUB RGENTER INTERRUPT FBOOH 409DH PUB RClDISABLE_BODY FBOOH 4094H PUB RGWAITINTERRUPT

-_BODV
FaoOH 40BAH PUB RGSIGNALINTERRUP FaOOH 4OBOH PUB RQQETt.EVEL FBOOH 40710H PUB R(I£NTER INTERRUPT

-T
FaOOH 40bCH PUB RGEXITINTERRUPT F800H 40b2H PUB RGDISABLE FBOOH 405DH PUB NUNLOCK_DELETION

-_OBJECT
FBOOH 4058H PUB NUNLOCKNS FBOOH 40S3H PUB NUNLOCK FSOOH 404EH PUB NOPEN_DELETtDN_O

-B.JECT
FBOOH 4049H PUB NOPENNS FBOOH 4044H PUB NOPEN FBOOH 403FH PUB NLDCK_DELETION_O

-B~ECT
FBOOH 403AH PUB NLOCKNS FeOOH 4035H PUB NLOCK FBOOH 4030H PUB NCLOSE_DELETtON_

-OBJECT
FBOOH 402BH PUB NCLOS£NS FeOOH 4026H PUB NCLOSE F800H 402lH PUB DELETERUNNINGlTAa

--I<
FBOOH 401CH PUB DELETEOB.JEC T F800H 400AM PUB COPVRIGHT FBOt»< 4000H PUB NBEQIN

FSOOH 4000H PUB INIT _NUCLEUS_.JUM FC5DH OQ04H PUB II"lR_START FC5CH eooEH pua
-P

FC5CH OOOFH PUB INIT_CHDI FC5CH 0010H PUB INtT _CHD5_HASTER FC9CH 001lH PUB
FC'5CH 0Ol2H PUB INIT _CMD4_MASTER FC61H OOOEH PUB SLAVE_TABLE FC61H 0OO3H PUB

FC61H QOO5H PUB CLOCK_O_PORT FC61H OQ07H PUS CL.OCK_COUNT FC61H OOOAH PUB
FC61H OCOBH PUB C_CLOCK_SPEC_EOI FCblH OOOCH PUB C_CLOCK_ON FC61H 0009H PUB
FBOOH 4576H PUB LEVEL7 _HANDLER FBOOH 4574H PUB PARAM_VALIDATION

-_PATH

MEMORY MAP OF MODULE MINIMAL_80130
READ FROM FILE FI- SUPI30 LNK
WRITTEN TO FILE FI SUPl30

SEGMENT MAP

START STOP LENQTH ALIQN NAME CLASS

OOOOOH 003FFH 0400H A (ABSOLUTE)
00400H 009EFH 05FOH W DATA DATA
009FOH 009FFH OOlCH Q INTVEC_REQ_SEQ DATA
OOAOOH OOAOFH 00lOH Q EXT _REG_SEQ DATA
OOAIOH OOAIFH OOlOH Q ~OB_REG_SEQ DATA
OOA20H OOA2FH OOIOH G SEM_REQ_SEQ DATA
OOA30H OOA3FH OOIOH Q HAIL.JIE"_SEQ DATA
OOA40H OOA4FH OOIOH G OD_REQ_SEQ DATA
OOA50H OOA9FH OOIOH G PDOL.JIE"_SEG DATA

2-87

OOA60H OOA6FH OOlOH

OOA7QH COA70H COOOH W
OOA70H QOA70H COOOH G
FeOOOH FC5CDH 45CEH W
FC'5CEH FC5D2H 0OO5H W
FC5D4H FC5E5H 0012H W
rC5E6H FC5F7H OO12H W
FC5F8H FC609H 0012H W
FC60AH FC612H 0OO9H B
FC613H FC61CH OCOAH B
FC61EH FC61EH COOOH W

I r-C61EH FC61FH 0OO2H W

FC'620H FC620H COOOH W

GROUP MAP

ADDR ESS GROUP OR SEGMENT NAME
OQ400H DGROUP

DATA
I NTVEC _REG _SEG
EXT _REG_SEG
.JOB_REO_SEG
SEM...REO_SEQ

~~~;~~:E~EG, 
POOL_REO_SEQ 
DELE T ION_REG _SEQ 

FeOOOH CGROUP 
CODE 
PIC":'CNF _SEG 
_IMRJORT 
J;OIJORT 
_ISR...READJORT 
JIC_INF'O 
TIMER_CNF _SEG 
CSEG 

AP-130 

DELETION...REQ_S DATA LAST RAM BYTE USED -EG 

STACK STACK 
"'?SEG 
CODE CODE 
P IC_CNF _SEQ CODE 
_IMRJORT CODE 
_EOI_PORT CODE 
_ISR_READJORT CODE 
JIC_INFO CODE 
TIMER_CNF _SEG CODE 
CSEG CODE 

SLAVE_SEG CODEt-- LAST EPROM BYTE USED 

MEMORY MEMORY 

2-88 
AFN-02058A 



AP·130 

APPENDIX E 
APPLICATION JOB LOCAtE MAP 

2-89 
AFtHl2058A 



AJ)-130 



OOA7H 002EH gYM STATUSSEGMENTOFF 
-SET 

OOA7H 002EH SYM STATUSSEGMENTPNT 
-R 

OOA7H 002EH BAS STATUSSTRING 

DOA7H D04FH SYM J'3ITPATTERN 
OOA7H 0050H SYM MESSAGELENGTH 
OOA7H 0034H SYM RESPONSETOKEN 

DDA 7H 0038H SYM MESSAGESEGMENTOF 
-FSET 

OOA7H I 0038H SYM MESSAGESEGMENTPN 
-TR 

FC62H 05AFH SYM COMMANDTASK 

AP-130 

OOA7H OQ30H gYM STATUSSEGMENTBAS 
-E 

FC62H 0059H SYM STATUSTEMPLATE 

OOA7H 004EH gYM STATUSSTRINGINDE 
-x 

FC62H Q52FH gYM CRTOUTTASK 
OOA7H 0032H SYM MESSAGETQKEN 
OOA7H 0036H gYM MESSAGEEXCEPTCQD 

-E 
OOA7H 003AH SYM MESSAGESEGMENTBA 

-SE 
OOA7H 0038H BAS MESSAGESTR INGCHA 

--R 
OOA7H 0051H SYM CONSOLECHAR 

00A7H 003CH SYM COMMANDEXCEPTCOD I FC62H 06B5H \ SYM INITTASK'~ INITIALIZATION TASK STARTING ADDRESS 
-E 

DOA 7H 003EH SYM 
FC62H 0087H LIN 
FC62H 0096H LIN 
FC62H OOA1H LIN 
FC62H OOBOH LIN 
FC62H OOB9H LIN 
FC62H OOOCH LIN 
FC62H OOC8H LIN 
FC62H OOD1H LIN 
FC62H OOEFH LIN 
FC62H 010CH LIN 
FC62H 011FH LIN 
FC62H 0139H LIN 
FC62H 013EH LIN 
FC62H OISOH LIN 
FC62H 01SCH LIN 
FC62H 016DH LIN 
FC62H Ol72H LIN 
FC62H 017AH LIN 
FC62H 0184H LIN 
FC62H 0196H LIN 
FC62H 01A5H LIN 
FC62H 01BDH LIN 
FC62H 01D6H LIN 
FC62H OlF5H LIN 
FC62H 020FH LIN 
FC62H 0228H LIN 
FC62H 023BH LIN 
FC62H 0259H LIN 
FC62H 0270H LIN 
FC62H 027DH LIN 
FC62H 028DH LIN 
FC62H 029CH LIN 
FC62H 02ACH LIN 
FC62H 02BBH LIN 
FC62H 02CAH LIN 
FC62H 02D2H LIN 
FC62H 02F3H LIN 
FC62H 030FH LIN 
FCb2H 032DH LIN 
FC62H 034EH LIN 
FC62H 035DH LIN 
FC62H 036FH LIN 
FC62H 0389H LIN 
FC62H 038EH LIN 
FC62H 03A7H LIN 
FC62H 03BEH LIN 
FC62H 03D9H LIN 
FC62H 040EH LI N 
FC62H 0440H LIN 
FC62H 0472H LIN 
FC62H 0489H LIN 
FC62H 048CH LIN 
FC62H 04A5H LIN 
FC62H 04BCH LIN 
FC62H 04D7H LIN 
FC62H 04EEH LIN 
FC62H 050FH LIN 
FC62H 052DH LIN 
FC62H 0532H LIN 
FC62H 053FH LIN 
FC62H 0560H LI N 
FC62H 0573H LIN 
FC62H 0592H LIN 
FC62H OSAAH LIN 
FC62H 05AFH LIN 
FC62H OSBFH LIN 
FC62H 05C9H LIN 
FC62H 05DAH LIN 
FC62H OSF4H LIN 
FC62H ObOOH LIN 
FC62H 0616H LIN 
FC62H 062CH LIN 
FC62H 064CH LIN 
FC62H 066CH LIN 
FC62H 06BCH LIN 
FC62H 06EOH LIN 
FC62H 06BSH t.:.IN 

INITEXCEPTCODE 
304 
306 
308 
310 
312 
319 
321 
323 
325 
327 
329 
331 
335 
337 
339 
341 
344 
349 
351 
353 
355 
357 
359 
361 
363 
365 
367 
371 
373 
376 
378 
380 
384 
386 
388 
392 
394 
396 
398 
400 
402 
404 
406 
415 
417 
419 
421 
423 
425 
427 
429 
439 
441 
443 
445 
447 
449 
451 
460 
462 
464 
466 
468 
470 
472 
476 
478 
480 
483 
485 
487 
489 
491 
493 
495 
498 

1500 

FC62H 0084H LIN 
FC62H 0093H LIN 
FC62H 009DH LIN 
FC62H OOA4H LIN 
FC62H OOB3H LIN 
FC62H OOB9H LIN 
FC62H OOC2H LIN 
FC62H OOCEH LIN 
FC62H OOE4H LIN 
FC62H OOF8H LIN 
FC62H 0116H LIN 
FC62H 012CH LIN 
FC62H Ol3BH LIN 
FC62H 0143H LIN 
FC62H OlSOH LIN 
FC62H 0160H LIN 
FC62H 0170H LIN 
FC62H 0175H LIN 
FC62H 017FH LIN 
FC62H 0189H LIN 
FC62H 0196H LIN 
FC62H OlBOH LIN 
FC-62H OlCDH LIN 
FC62H 01E6H UN 
FC62H 0202H LI N 
FC62H 021FH LIN 
FC62H 023BH LIN 
FC62H 0256H LIN 
FC62H 0266H LIN 
FC62H 0278H LIN 
FC62H 02BAH LII>.I 
FC6:2H 029AH LIN 
F C 62H 02AOH LI N 
FC62H 02BBH LW 
FC62H 02C2H LIN 
FC62H 02CFH LIN 
FC62H 02D7H LIN 
FC62H 0300H LIN 
FC62H 031EH LIN 
FC62H 033AH LIN 
FC62H 0354H LIN 
FC62H 0366H LIN 
FC62H 037CH LIN 
FC62H 038BH LIN 
FC62H 039FH LI N 
FC62H 03ADH LIN 
FC62H 03DOH LIN 
FC62H 03FSH LIN 
FC62H 0427H LIN 
FC62H 0459H LIN 
FC62H 0487H LI N 
FC62H 0489H LIN 
FC62H 049DH LIN 
FC62H 04ABH LIN 
FC62H 04CEH LIN 
FC62H 04DFH LIN 
FC62H 050BH LIN 
FC62H 0518H LIN 
FC62H 052FH LIN 
FC62H OS3FH LIN 
FC62H OSSAH LIN 
FC62H 0568H lIN 
FC62H 0588H LIN 
FC62H 059DH LIN 
FC62H 05ADH LIN 
FC62H 05B2H LIN 
FC62H 05BFH LIN 
FC62H 05DOH LIN 
FC62H 05EOH LIN 
FC62H 05FAH LIN 
FC62H 0610H LIN 
FC62H 06lCH LIN 
FC62H 063CH LIN 
FC62H 065CH LIN 
FC62H 067CH LIN 
FC62H 069CH LIN 
FC62H 06B3H LIN' 
FC62H 06aSH LIN 

302 
305 
307 
309 
311 
31:) 
320 
322 
324 
326 
328 
330 
332 
336 
338 
340 
342 
348 
350 
352 
354 
356 
358 
::160 
362 
364 
366 
369 
372 
375 
377 
379 
383 
385 
387 
;]90 
393 
395 
397 
399 
401 
403 
405 
407 
416 
418 
420 
422 
424 
426 
428 
430 
440 
442 
444 
446 
448 
450 
452 
461 
463 
465 
467 
46'11 
47\ 
470 
477 
479 
48\ 
4B4 
486 
488 
490 
492 
494 
496 
499 
S02 

2-91 
AFN-02058A 



AP-130 

FC6;H 06C4H LIN 503 FC6;H 06DlIH LIN 504 
FC6;H 06E6H LIN 505 FC62H 06F6H LIN 506 
FC6;H 071FH LIN 507 FC6;H onCH LIN 'OB 
FC6;H 075l1H LIN 509 FC62H 076;H LIN '10 
FC6;H O'78llH LIN 511 FC62H 07ftH LIN 511! 
FC6;H 07CIH LIN 513 FC6;H 07CEH LIN ,514 
FC6;H 07F7H LIN 515 FC6;H 0II04H LIN 5 ... 
FCMZH OBiWH LIN 517 FC6;H OB3AH LIN 51411 
FC62H OB3DH LIN 51" FC6l!H 084AH LIN 520 
FC6;H OOB4H LIN !liI!1 

'I'II!MORY MAP OF MODULE DEI't0130 
READ "'ROM FILE Fl. API30. LNM 
WRITT~N TO FILE . F1. API30 

S~Ql'tENt I1AP 

START STOP LENIITH ALIQN NAI'II! CLASS 

100A70H OOACIH 0052H W DATA r..-___ ..;... __ ..;... _________ DA_TA....It..-- LA8l'DATA BYtE OFAPPLICATIONJ08 

ODAC2H 00AC2H OOOOH W STAC~ stACM 
ODADOH OOADOH OOOOH Q ~?SEO 

I FCb20H FD17BH oaSCH w CODE o.;..;;.;;.;;.;..;.......;.;;;.;;..;..;;.;.;.._-.;;.;..;......;........;.;.....;.;;.;;.;;;.... ____ C"'O;;;;OE ..... \4--- LASl"CODE BYTE OFAPPUCATION JOB 

FD17CH FD17CH OOOOH W I1EI1ORY I'II!I1ORY 

OROUP MAP 

ADDRESS QROUP OR BE_NT HAl'll! 
FC620H CQROUP 

CODE 
OOA7OH OQROUP 

DATA 

2-92 



AP-130 

APPENDIX F 
ROOT JOB LOCATE MAP 

2-93 
AFN·02058A 



AP-130 

ISIS-II MCS-B6 LOCATER. VI. 2 INVOKED BY. 
L.OC86 .'1 R.JB130 Ink It: 

TO : Fl RJB130 It 
MAP PRINTt. fl. R.JB130 mp2) Bt 
OC(noli. nopl. noem. nasb) It 
PC (noli. pl. noem. noab) Bt 
SEQSIZE< stack (0» Bt 
ORDER(clils ••• (dat •• stack. m.moT'Y» & 
AODRESSES(c las'us (cod~(OFDlBOH), lie 

data<OOAOOH» ) 
WARNINg 26 DECREASING SIZe: OF SEGMENT 

SEGMENT STACK 

SYMBOL TABLE OF MODULE ROOT 
READ FROM FILE FI RJB130 LNK 
WRITTEN TO FILE FI RJB130 

BASE OFFSET TYPE SYMBOL 

F018H DISOH PUB NUC_INIT _ENTRY 

BASE OFFSET TYPE SYMBOL 

FOIBH 0184H puB CODEDATA 

I FDI.BH 0011H PUB RGSTARTADDRESS 14----' ROOT oIOB STARTING ADDRESS FDIBH OOIOH PUB INTERROR 

FDIBH OOOOH PUB CRASH 
FD18H 0030H PUS ROOTTASK 
FDIBH OIIBH PUB RGCREATEJOB 
FDIBH 0124H PUB RGSUSPENDTASK 
FD18H 0146H PUB RG_N_C_RETURN_40 
OOADH OOaOH PUB JOBNUMBER 

MEMORY MAP OF MODULE ROOT 
READ FROM FILE FI RJB130 LNK 
WRITTEN TO FILE Fl R"'B130 

FD18H 002AH PUB RGROOT",OBVERSION 
FD1SH OlOCH puS SYSTEMSUICIDE 
FD1SH 011EH PUB RGOETTASKTOKENS 
PD1aH 012AH PUB RG ..... N_C_RETURN_6 
FDiSH 0162H PUB RGERROR 
OOADH 0002H PUB ROOTTASKSTATUS 

MODULE START ADDRESS PARAGRAPH == FD18H OFFSET = OOllH 
SEQMENT MAP 

START STOP LENGTH AL I ON NAME CLASS 

OOADOH OOAD3H 0OO4H W DATA DATA 

IOOAD4H OOBFFH O12CH W INIT _STACK STACK I---- LAST DATA BYTE OF ROOT JOB 

OOCOOH OOCOOH OOOOH W STACK STACK 
OOCOOH OOCOOH OOOOH G "'>?SEG 
FDIBOH FD339H OlSAH W CODE CODE 
F033AH F0345H OOOCH W SAB"pESCR IPTOR CODE 

-S 

FD346H FD366H 0021H W _~_J_DESCRIPTOR CODEr----LASTCODEBYTEOFROOToIOB 

F0368H FD368H OOOOH W MEMORY 

GROUP MAP 

ADDRESS GROUP OR SEOMENT NAME 
OOADaH DQROUP 

DATA 
FD1SOH COROUP 

CODE 
SAB "pESCR IPTORS 
U_,",_DESCRIPTORS 

MEMORY 

2-94 
AFN-02058A 



inter APPLICATION 
NOTE 

Jan uary 1984 

Optimizing the iRMXTM 86 
Operating System 

Performance on System 
86/31 0 and System 86/330 

, 
-INTEL CORPORATION, 1984 

CATHERINE LUNDBERG 
ISO APPLICATIONS MARKETING 

2-95 Order Number: 230990-001 



Optimizing the iRMX™ 86 
Operating System 
Performance on System 
86/310 and System 
86/330 

2-96 

CONTENTS 

INTRODUCTION .•••.•••.••••••.•• 

OVERVIEW OF THE iRMX™ 86 
OPERATING SYSTEM .......... .. 

PERFORMANCE TUNING .•.•..•.•• 
The Size Of The Loader Buffers 
The Volume Granularity Of Devices 
The Number Of BIOS Buffers 
The Interleave Factor Of Devices 

PERFORMANCE TESTS .......•.•.. 
RSAT Maximum Transfer Rate 
iRMXTM 86 Operating System Generation 
iRMXTM 86 BIOS Generation 
COPY Test 
DIRTest 
Boot Disk Generation 
Boot Test 
BAcKU~ And RESTORE Test 

EVALUATION SEQUENCE .•.••.•.. 

SYSTEM 86/330A PERFORMANCE 
RESULTS .•..••.••••••••••.••... 

SYSTEM 86/310 PERFORMANCE 
RESULTS ••.••••••.••••..•.•..•. 

CONCLUSION ., ••.•••.•.•••..•.•.. 

APPENDIX A: 'SYSTEM 
CONFIGURATIONS .•••••.•.••••. 

APPENDIX B: DEFINITION FILE FOR AN 
OPTIMUM iRMXTM 86 OPERATING 
SySTEM .•... : ..••..•.•......... 

230990.001 



AP·174 

INTRODUCTION 

. The Intel iRMXTM 86 Operating System is one of the most widely used real-time' operating systems. Because it 
is intended for real-time applications it must respond immediately to the event that has the highest priority. 
Most users of the iRMX 86 Operating System are application program oriented and their programs use the real
time capabilities fully. 

The Release 5 version of the iRMX 86 Operating System has the capability of supporting program 
development. This means that a system can be used for application code development, and later as the target 
system. Development costs can be decreased within a company, since there is no need to have separate systems 
for program development and for target systems. In addition, programs do not have to be downloaded from 
the development system to the target system. 

Since there are many possible software configurations for mixes of real time applications and program develop
ment work, the purpose of this application note is to identify system configuration options which will improve 
the overall performance of the iRMX 86 Operating.system from the Human Interface level, which is the level 
that the user sees while doing development work. The results of this application note could also be applicable to 
the user who is optimizing a target system configuration, since most of the parameters discussed in this study 
would affect the performance of the target system. Although the Release 5.0 operating system is faster and 
more optimized than previous versions of the iRMX 86 Operating System, further optimization has been 
found possible, especially when a specific hardware configuration is known. 

OVERVIEW OF THE iRMX™ 86 OPERATING SYSTEM 

The iRMX 86 Operating System is composed of layers. The layers in the iRMX 86 Release 5.0 Operating 
System are the Nucleus, the Basic 110 System, the Extended 110 System, the Application Loader, the Human 
Interface, and the Universal Development Interface (See Figure 1.) A layer provides a specific subset of operat
ing system function. For instance, the Nucleus provides management of iRMX 86 objects such as tasks and 
jobs, the BIOS provides device independent 110 services, and the UDI provides the interface software to allow 
applications to be operating system independent. 

Different layers are added according to the requirements of the application. Lower layers may be used without 
upper layers, but upper layers must have the lower layers' as their groundwork. Using fewer layers of the operat
ing system usually means that the application can execute faster. The UDI layer is required to run the utilities 
(such as PLiM 86, ASM86, and LINK86) since all the languages products are based on the UDI. The code pro
duced by running these utilities may not need all the layers. 

Most layers of the iRMX 86 Operating System have user configurable parameters. The values given to these 
parameters can be changed to allow the operating system to perform efficiently. Some parameters should be 
left at their default values, or the operating system will not function properly. For other parameters, the opti
mum value depends on the application, and the hardware configuration being used. 

The System 86/310 and System 86/330A have different requirements because of their hardware 
implementations. The major difference is their Winchesters and flexible disks. Parameters that affect disk per
formance have the most effect on the systems. This application brief deals with those parameters which can be 
changed to provide optimal values for disk performance. 

PERFORMANCE TUNING 

A number of parameters can affect the system performance. The parameters which are configurable in the 
iRMX 86 Operating System don't change the actual speed at which the processor works. The variables that can 
improve performance' affect how fast information can be given to the processor, or how much time must be 
spent to maintain system integrity. There are two ways to change the values of these parameters. 

One way is to reconfigure the operating system using the ICU. The ICU is an interactive configuration utility 
which uses a screen oriented list of parameters to allow changes in an operating system. While using the ICU, 
different values are given to particular parameters to change the system performance. The ICU also allows the 

230990-001 



AP -174 

Figure 1 Model of the iRMXTMS6 Operating System 

addition or deletion of individual layers of the operating system. The ICU creates a submit file from the infor
mation contafned in the definition file. When this file is submitted, it generates a new operating system which 
uses the new values that were given to the parameters. 

The second way parameters can be changed to affect system performance is to format the random access 
devices differently. Changing the interleave factor while using the FORMAT cusp makes a great difference in 
the disk I/O performance. ' 

The Size of the Loader Buffers 

The iRMX 86 Application Loader has two configurable buffer sizes. The Loader internal buffer is the Loader's 
working buffer for converting Object Module Formats (OMFs) to executable code. The default value for the 
Loader internal buffer is' 400H, or lK. Increasing this will not improve petformance, but is sometimes 
necessary. OMFs are usually smaller than lK, but the Fortran 86 compiler can sometimes generate records 
that are longer than lK. Trying to load these records will cause an "E$RECJ,ENGTH" error, which can be 
eliminated by increasing the Loader internal buffer size. This parameter is found in the ICU screen titled 
"Application Loader". The variable is called "Internal Buffer Size (IBS)". 

The Loader read buffer is used as a caching buffer when reading data from secondary storage. The Loader read 
buffer size influences the system performance. The Loader read buffer size is found in the ICU screen labeled 
"Application Loader". The parameter is labeled "Read Buffer Size (RBS)". The default value of the Loader 
read buffer size is 400H, or lK. IncreasiI\g the Loader read buffer size will improve system performance. 

2-98 230990-001 



AP-174 

The Volume Granularity of Devices 

File fragmentation happens when a file is written into a space that is not large enough to hold the whole file. 
Portions of the file must then be stored somewhere else on the disk to finish writing the file. This means that 
the disk controller must seek to several places on the disk to read the whole file, or to write the file, and the 
speed of disk I/O will be decreased. There are three different characteristics the user can vary to control file 
fragmentation on a device: device granularity, volume granularity, and file granularity. Device granularity is 
both the minimum allocation size, the minimum transfer size and is usually the sector size of a device. Volume 
granularity is the minimum file allocation size for all files on the device. The volume granularity is a multiple of 
the device granularity. Finally, file granularity is the minimum allocation size for a particular file and is a multi
ple of the volume granularity. By increasing the volume granularity and file granularity the files on a device 
should be forced to be contiguous. If the Winchester is fragmented, the smallest contiguous chunk of data for 
anyone file will be the volume granularity. 

Volume granularity on Winchester drives does not appear to affect system performance, so that parameter can 
be left at its default value of 400H, or lK. This parameter is found in the screen titled "Intel iSBCI> 215/iSBX 
218 Device-Unit Information". The field is labeled "Granularity". 

The diskette media which is used most frequently on the System 86/330A is a double sided double density disk 
with a device granularity of256 bytes (100H). The physical name of the first such device is "wfddO" in the stan
dard defmition file. With a device granularity of 256 bytes, a volume granularity of 256 bytes is the most 
effective. Using a device with a device granularity of 1024 bytes will improve the performance of the diskette. 
The physical name ofthe first double sided double density diskette with 1 K byte device granularity is "wfdxO". 
The device tested for this application note was "wfddO" the diskette with device granularity of 256 bytes. The 
diskette device used in the System 86/310 has the physical name of "wmfdxO". It is a double sided, double 
density diskette with a device granularity of 512 bytes. 

The Number of BIOS Buffers 

The BIOS buffers are internal caching buffers which are used to hold data which is written to or read from 
secondary storage. The BIOS will only transfer the number of bytes that are a multiple of the device 
granularity. The device granularity is 1024 for the Winchester, and it varies for flexible disks. The most com
monly used values are 512 for the System 86/310's diskette, and 256 for the System 86/330A's standard 
diskette. . 

Increasing the number of buffers for each device usually has a positive effect on disk performance, but only. up 
to a certain point. Buffers'must be updated, or flushed to the device, after a certain amount of time to ensure a 
reliable system. There are two parameters that control flushing buffers. They are called "Update Timeout:' and 
"Fixed Update" or "Common Update Timeout". Update timeout is a variable for each device. A value of64H 
(100) for update timeout means that when a device has not been accessed for 1 second, the buffers associated 
with that device will be written to the device. If the device is in constant use, this timeout limit may never be 
reached, especially if the value given to update timeout is large. For this reason, there is a second update 
parameter which can also be used. 

The second parameter is called "Common Update Timeout" in the BIOS screen, and "Fixed Update" in the in
dividual device screens. Common update timeout has one value for all devices in the operating system, but it is 
specified on an individual unit basis if it will be invoked. A value of 3E8H (1000) for common update timeout 
means that buffers associated with devices where common update timeout was invoked will be flushed at the 
end of 10 seconds. The buffers will be flushed if they have'been used since the last time the system wide 
common update timeout happened. This ensures that even buffers for devices which have been continuously 
in use will be written to their device. 

Increasing the amount of time between updating system buffers would improve performance, but it degrades 
reliability. If a system failure occurs, for instance, a' power failure, the disks would have incorrect data on them 

. if the buffers hadn't been written to disk. Using update timeout and eommon update timeout values that are ap-
propriate reduces the damage caused by a system failure. -

Different values of update timeout and common update timeout were not tested for the systems. These 
parameters were left at their default values for each device. 

2-99 230990-001 



AP-174 

The time necessary to update the buffers causes a decrease in performance if there are,too many,buffers. Buf
fers also use memory when the device is connected. Careful usage of memory is necessary especially when the 
amount of memory available is limited, as is frequently the case for the target system, 

Since diskettes are usually used only to transfer files between systems or for backups, the performance of the 
flexible disks is not as important as the performance of the Winchester device. Since increasing the number of 
buffers for a device increases the amount of memory required to attach the device, adding buffers for diskettes 
does not usually outweigh the need to conserve memory. 

The BIOS number of buffers parameter is found in the ICU screen titled "Intel iSBC 215/iSBX 218 Device 
Unit Information". Each device has its own Device Unit Infoqnation screen. The field is labeled "Number cif 
Buffers". The default number of buffers for Winchester devices is 4. The default number of buffers for flexible 
disk devices is usually 2. 

The Interleave Factor of Devices 

One of the parameters of the FORMAT command is "Interleave". If the consecutively-accessed sectors of a 
disk are staggered (that is, if they are not consecutive physical sectors), disk access time can decrease 
considerably. The reason for this decrease is that although a controller cannot read a sector and issue another 
read command in the time it takes for the next sector to be positioned under the head, the controller can per
form this operation in less time than it takes for the disk to revolve once. Therefore, if the consecutively
accessed sectors are staggered correctly, the next accessed sector will be positioned under the read head just as 
the controller becomes ready to read it. 

The amount of staggering is called the interleave factor. An interleave factor of two means that as the disk, 
rotates, the controller consecutively accesses every second sector. Note that a prQperly set interleave factor also 
implies the number of disk rotations necessary to access all the sectors on a given track. An interleave factor of 
two implies that it takes two rotations of the disk to access all the sectors on a track. 

The interleave factor is important when large transfers of consecutive data take place at speeds that approach 
the maximum transfer rate of the disk. Most information put on a disk will be stored in sectors that are con
secutively accessed, if that is possible. If a disk has been heavily used so that few logically adjoining blocks are 
available, then the information will be stored in nonconsecutively accessed blocks, wherever there is space 
available. Naturally, this will slow down data transfer speed, since seeks must be done frequently to find where, 
the next block of data is located. System performance will be best if the most frequently used utilities, programs 
and data are written onto the disk first, after formatting the disk with the optimum interleave factor. 

There are three distinct cases where large amounts of data are transferred. 

1) When the operating system is bootstrap loaded from disk 

2) When the Application Loader is used to load an application program from disk 

3) When programs are invoked that perform large transfers of consecutive data, such as the Human Inter
face COpy command 

Each of these operations does a different amount of processing to the data which is being transferred. This 
means that the turnaround time between sector accesses is different. 

The Bootstrap Loader instructs the disk controller to read one sector at a time. Thus, the turnaround time 
depends on the execution overhead of the Bootstrap Loader and is comparatively long. A large interleave 
factor is optimal for flexible disks that are used with the Bootstrap Loader. For hard disks however, the 
Bootstrap Loader has no effect on the turnaround time because revolution speed is so great that more than one . 
disk revolution occurs between sector reads. 

The Application Loader reads several sectors at a time, into its internal read buffer. Then it takes a relatively 
long time to process the object records in this buffer. The ideal interleave factor here is one that optimizes for 

2-100 230990-001 



AP-174 

the object record processing time between disk accesses. For flexible diskettes, this interleave factor is some
what smaller than that for the Bootstrap Loader. However, the Application Loader is not affected by the inter
leave factor on hard disks. 

Applications which transfer large amounts of consecutive data (such as the COPY command) can'initiate data 
transfers involving many sequential sectors. Thus, the controller accesses sectors on a given track as fast as 
possible. Here, the ideal interleave factor is one that optimizes for the turnaround speed of the disk controller. 

The ideal interleave factor depends heavily on the application. However, because the revolution speed of hard 
disks is so high, they should be formatted with interleave facto,rs that are optimized for the turnaround speed 
of the disk controller. 

It is more important to match the interleave factor to the application with diskettes. They are usually smaller 
devices and are usually used for one major type of access. Flexible disks are much more sensitive to varying in
terleave factors, since the controllers for flexible devices are not as fast as the Winchester controllers, Different 
types of flexible disks will have different optimum values for the interleave factor. So optimum values for 8 
inch diskettes will not be the same as optimum values for 51A inch diskettes. 

The default value for the interleave factor in the FORMAT command is 5. The recommended Winchester in
terleave factor for the iRMX 86 Release 5.0 operating system was 4. This was evaluated to verify if this was the 
best interleave factor for the Winchester. Then flexible disks were evaluated to find out which interleave factor 
was best for each type of application. 

PERFORMANCE TESTS 

Since the goal of this application note was to determine optimum values of parameters when systems were 
being used for development, benchmarks which measure CPU performance were not used, Instead, all the 
tests used involved a lot of disk 110. Some of them also involved building tables in memory. These tables could 
have been built on disk if there had been insufficient memory available for them, but that would have degraded 
performance markedly. 

The languages and system utilities were used extensively, as well as the DIR, COPY, BACKUP and RESTORE 
cusps. These are the kinds of things that are done most frequently while using the system for development 
purposes. Descriptions of each of the tests used follow, 

A$AT Maximum Transfer Rate: 

The RSAT test ORMX 86 System Acceptance Test) measures the number of bytes transferred every 60 
seconds from a secondary storage device: It also keeps track of the maximum number of bytes transferred in a 
60 second time period. If RSAT is invoked with a large buffer size, a good approximation of the maximum 
transfer rate of a device is obtained. A larger buffer size will increase the transfer rate, The largest buffer size 
that RSAT allows is 63K. This is a multiple of both the Winchester device granularity and the diskette device 
granularity, so it allows the maximum transfer rate. 

The RSAT test is a composite of reads, writes, seeks, and truncates. The results are a good indication of overall 
performance during disk 110. The RSAT test was run for both the Winchester and the diskette evaluations. 
The RSA T performance data contributed heavily in the analysis of the performance datil. 

iRMXTM 86 Operating System Generation: 

The generation of an iRMX 86 Operating system from an Interactive Configuration Utility created submit file 
consists of a number of compilations and asSemblies, and extensive use of the utilities. The generation of an 
iRMX 86 Operating System gives a very good indication of the performance 'that can be expected when using 
these utilities. The time necessary to complete the iRMX 86 Operating System generation was weighted heavily 
in the analysis of the performance data. This test involved I/O only on the Winchester. 

2-101 
230990-001 



AP·17~ 

IRMXTM 86 BIOS Generation 

Because the BIOS generation has fewer steps in it than a full iRMX 86 Operating System generation, it was 
used ,to zero in on the best configuration quickly. It assembles two modules, and then links two groups of Ii
braties together. This test involved I/O only on the Winchester. 

~YTest: 

The Human Interface COpy cusp was invoked to copy a large file (greater than 128K) from secondary storage. 
This test was used to see what the normal throughput of the system was. This was done for both Winchester 
and flexible disk devices. 

DIRTest: 

This test listed a directory with a large number of files in it to the terminal. The short file format was used to dis
play the directory. This test was of some interest but was not weighted heavily in the analysis of the perfor
mance data. The time required to access a directory is extremely dependent on the location of the directory on 
the device'. This test was done for the Winc~ester and flexible disk devices. 

Boot Disk Generation: 

The boot disk generation test formatted a diskette and then copied the files need for a bootable system, onto 
the diskette. This test gave a good indication of the performance when writing to a diskette. This test was per
formed to c;leten:nine diskette performance with different interleave factors. 

Boot Test: 

The amount of time it took the iRMX 86 Operating System to boot from a diskette was recorded to determine 
the best interleave factor for booting. This test was performed only on diskettes to determine the optimum in
terleave factor. 

BACKUP And RESTORE Test: 

The time to BACKUP and RESTORE from the Winchester to one flexible disk wa'$,gathered to determine the 
best interleave factor for the diskette when it is being used as a backup device. The'IRMX 86 Release 5 versions 
of BACKUP and RESTORE were used in the evaluation. The volume granularity and BIOS buffer sizes were 
not a factor, since the diskette is formatted physical. BACKUP and RESTORE perform lK reads and writes to 
the diskette. BACKUP and RI;STORE use both Winchester I/O and diskette I/O, but the diskette was the only 
device ~hich had the interleave factor changed as part of the evaluation with this test. 

EVALUATION SEQUENCE 
" , 

Since all possible permutations of variables could not be tested, the evaluation was performed by vlP'ying one 
parameter at a time. The research started with the default configurations of the operating system. The first 
parameter was varied to find the best value, and then its best value was used to determine the next parameter's 
optimum value. This method continued until all optimum values had been found. The parameters were tested 
in the following sequence. . . 

1) The best Winchester interleave factor was found for the standard system. Values from 1 to 9 were tested 
for the System 86/330A, and interleave factors from 1 to 8 were tested for the System 86/310. 

2) The best Application Loader read buffer size was determined. Buffer sizes from lK to 8K bytes were 
tested for both systems in lK byte incremepts. 

2-102 230990-001 



AP-174 

3) The best number of Winchester BIOS buffers was determined. The systems were tested with 1 to 8 BIOS 
buffers for the Winchester. 

4) The best Winchester volume granularity was found. Volume granularities of lK and 2K bytes were 
tested for each system. . 

5) The best Winchester interleave factor was determined. Again, Winchester interleaves from 1 to 9 were 
tested for the System 86/330A, and Winchester interleaves from 1 to 8 were tested for the System 
86/310. 

6) The best number of BIOS buffers was determined for the diskettes. The systems were tested with 1 to 6 
BIOS buffers. 

7) The best diskette volume granularity was determined. Values of256, 512 and 1024 bytes were tested for 
the System 86/330A diskette .. Values of 512 and 1024 bytes were tested for the System 86/310 diske~te. 

8) The best flexible disk interleave factor was determined for each operation. Interleave factors from 1't~
were tested for the System 86/330A diskette. Interleave factors from 1 to 7 were tested for the System 
86/310 diskette. 

SYSTEM 86/330A PERFORMANCE RESULTS 

Performance data was collected on a production System 86/330A using the iRMX 86 Release 5.0 Operating 
System in its standard configuration. Tests were run to determine the best configuration parameter values. Per
formance data was again collected with the best configuration of the iRMX 86 Operating System to determine 
the improvement in performance. The results for both configurations of the operating system using the 8" 
Priam Winchester using the iSBC 215 controller are shown in Tables 1 and 2 for the 5 MHz system and the 8 
MHz system. 

Table 1. System 86/330A Winchester Performance 
(5 MHz ISBC· 86/30 Single Board Computer) 

Test Execution Time 

Standard Optimum Improvement 
(min:sec) (min:sec) (percent) 

iRMX 86 Generation 17:22 16:08 7% 
BIOS Generation 4:20 4:05 6% 
DIR of 171 files 0:25 0:25 0% 
COpy 128 K byte file 0:10 0:10 0% 

Bytes per Second 

Standard ~ptiJIium Improvement 

RSAT max transfer rate 80,640 90,316 12% 

2-103 230990-001 



Ap·174 

Table 2. System Q6/330A Winchester Performance 
(8 MHz ISBC@ 86/30 Single Board Computer) . 

Test . Execution Time 

Standard Optimum Improvement 
(min:sec) (min:sec) (percent) 

iRMX 86 Generation 13:26 12:29 7% 
BIOS Generation 3:21 3:09 6%. 
DIR of171 files 0:22 0:19 14% 
COpy 128 K byte fil~ 0:10 0.08 20% 

Bytes per Second 

Standard Optimum Improvement 

· RSAT max transfer rate 92,467 105,370 12% 

Note that the granularity of the measurements was 1 second. In a test that takes 10 seconds to run, the real 
amount of time necessary to run a test could be 10% off of the result shown. This can account for the dif
ferences shown between the 5 and 8 MHz systems, especially in the DIR and COPY command tests. The tests 
which took greater quantities 'of time are a more accurate reflection of the actual system performance that can 
be expected. 

The optimum values of the parameters are listed below. These were the parameter values which ,were used in 
the optimal iRMX 86 operating system configuration. 

• The Application Loader read buffer size was increased from lK to 7K. 

• The volume granularity of the Winchester was left at lK, which is the device granularity for the 
Winchester. 

• The number of Winchester BIOS buffers was increased from 4 to 8. 

• A Winchester interleave factor of 3 instead of 4 was used. 

• The volume granularity of the diskette was left at 256 bytes. This was the 8" diskette's device 
granularity. .. . 

• The numper of diskette BIOS buffers was increased from 2 to 4 .. 

Performance data was collected on the 8" DS/DD diskette drive using the iSBX™ 218 controller after finding 
the optimum values of the parameters for the rest of the System 86/330A. The best interleave factor for the dis" 
kette was determined for each type of use. The results are shown in Table 3. 

The fastest boot time was found when the diskette was formatted with an interleave factor 0(7. For transferring 
files between systems by using the COPY cusp the interleave factor should be 3. This is shown in Table 4 by the 
results of the Boot Disk Generation test, the DIR test; and the COPY test. When treating an 8" diskette as a 
physical device, as in BACKUP and RESTORE, the interleave factor should be 2. 

SYSTEM 86/310 PERFORMANCE RESULTS 

Performance data was collected on a System 86/310 using the iRMX 86 Release 5.1 Operating System in its 
standard configuration. Tests were run to determine the best configuration' parameter values. Performance 
data was again collected with the best configuration of the iRMX 86 Operatin3 System to determine the im
provement in performance. The result for both configurations of the operl!ting system at 5 MHz using the 51,4" 
CMI Winchester with the iSBC 215 controller is shown in Table 5. The result for the optimum configuration of 
the operating system at 8 MHz using the 51,4" CMI Winchester is shown in Table 6. 

2>-104 230990-001 



AP·174 

Table 3. System 88/330A DS/DD Diskette Performance 

Test Execution Time 
(min:sec) 

Interleave Factor 7 3 2 

Boot Time 1:02 2:42 2:36 
Boot Disk Generation 6:34 6:18 6:43 
DIR of14 Files 0:22 0:21 0:22 
COPY 187,768 Byte File 1:01 0:45 1:03 
BACKUP 4:15 2:43 2:25 
RESTORE 4:40 2:43 2:25 

Bytes per Second 

RSAT Max Transfer Rate 5,376 9,677 12,902 

Table 4. Optimum Interleave Factors for System 88/330A D'skettes 

1YPe of Appllcatlon Optimum Interleave Factor 

Using Bootstrap Loader 7 
Transferring Named files 3 
BACKUP and RESTORE 2 

Table 5. System 88/310 Winchester Performance 
(5MHz ISBC· 88/30 Single Board Computer) 

Test Execution Time 

Standard Optimum 
(min:sec) (min:sec) 

iRMX 86 Generation 19:16 17:57 
BIOS GenC}ration 4:26 4:22 
DIR of171 Files 0:27 0:24 -
COPY 128 K Byte File 0:14 0:13 

Bytes pe~ Second 

Standard ,Optimum 

RSAT Max Transfer Rate 72,038 69,888 

2·105 

Improvement 
(pe~nt) 

7% 
1% 

11% 
7% 

Imp,rovement 

-3% 

I 



AP-174 

Table 6. System 86/310 Winchester Performance 
(8 MHz iSBC@ 86/30 Single Board Computer) 

Test Execution Time 

Optimum 
(min:sec) 

iRMX 86 Generation 14:35 
BIOS Generation 3:32 
DIR of171 Files 0:20 
COpy 128 K Byte File 0:11 

Bytes per Second 

Optimum 

RSAT Max Transfer Rate 78,490 

The best performance of the System 86/310 was found with the following configuration of the parameters. 

• The Application Loader read buffer size was increased from lK to 7K bytes. 

• The volume granularity of the Winchester was left at lK bytes. 

• The number of Winchester BIOS buffers was increased from 4 to 8. 

• A Winchester interleave factor of 4 was used. 

• The volume granularity of the diskette was left at 256 bytes. 

• The number of diskette BIOS buffers was increased from 2 to 4. 

After the optimum values were found for the variables affecting Winchester performance, performance data 
was collected on the 5.25" DS/DD diskette drive using the iSBX 218A controller to determine the best inter
leave factor for the diskette. Again, different interleave factors were best for different uses of the flexible disk. 
The results are shown in Table 7. 

Table 7. System 86/310 DS/DD Diskette Performance 

Test Execution Time 
(min:sed 

Interleave Factor 5 2 1 

Boot Time 1:20 1:55 1:55 
Boot Disk Generation 12:50 10:59 11:20 
DIR of14 Files 0:24 0:27 0:24 
COPY 181,784 Byte File 1:17 1:01 1:16 
BACKUP 2:02 1:20 1:10 
RESTORE 2:04 1:11 1:00 

Bytes per Second 

RSAT Max Transfer Rate 3,226 6,451 9,677 

" 

.2-106 230990-001 



AP-174 

As the data shows, the best interleave factor for booting was 5. For ordinary use in transferring files between 
systems with the COPY cusp the interleave factor should be 2. This was demonstrated by the Boot Disk Gener
ation Test, the DIR test and the COpy test. For BACKUP and RESTORE from the Winchester to the flexible 
disk the best interleave factor was l. These numbers are shown in Table 8 below. 

Table 8. Optimum Interleave Factors for System 86/31 0 Diskettes 

Type of Application Optimum Interleave Factor 

Using Bootstrap Loader 5 
Transferring Named Files 2 
BACKUP and RESTORE 1 

CONCLUSION 

The parameters changed generally affected 110 performance the most. The Application Loader read buffer size 
was changed from lK to 7K bytes. The number of BIOS buffers was changed from 2 to 4 for flexible diskettes, 

. and from 4 to 8 for Winchester devices. The interleave factor was set to 3 for the System 861330A Winchester, 
and to 4 for the System 86/310 Winchester. The optimum interleave factor for each system's flexible diskette 
varied according to how the diskette was to be used. 

By reconfiguring the system with different values for the configuration parameters and no changes to the 
hardware, a performance improvement of up to 20% may result. Performance may also be improved by chang
ing the interleave factor when formatting random access disk devices. An application that used disk I/O would 
benefit by using the optimum values found in this application note. 

2-107 230990-001 



AP-174 

APP~NDIX A 
SYSTEM CONFIGURATIONS 

2-108 230990-001 



Ap·174 

APPENDIX A 

SYSTEM CONFIGURATIONS 

Both systems used in the performance testing were production model systems. The software used on them was 
the iRMX 86 Release 5.0 Operating System for the System 86/330A, and the iRMX 86 Release 5.1 Operating 
System for the System 86/310. Hardware and software configurations of each system are shown in Table A-I. 

Table A·1. System Configurations 

System 86/330A System 86/310 

iSBC 86/30 Single Board Computer iSBC 86/30 Single Board Computer 
384 K Memory 640 K Memory 
iSBC 215/218 Disk Controller iSBC 215/218 Disk Controller 
iRMX 86 Release 5.0 Operating System iRMX 86 Release 5.1 Operating System 

Note: More memory was required to run the ICU than was available in the System 86/330A. The ICU requires 
448K bytes of RAM to run. 

2·109 230990-001 



AP -174 

APPENDIX B 
DEFINITION FILE 

OF AN OPTIMIZED iRMX™ 
86 OPERATING SYSTEM 

230990-001 



AP-174 

APPENDIX B 

Definition File of an Optimized iRMX™ 86 Operating System 

Hardware 
(OSP) 80130 Operating System Extension [Yes/No] 
(OTU) 80130 Timer Used [YesINo] , 
(OPU) 80130 PIC used [YesINo] 
(OCD) 80130Coypright = 1981 [YesINo] 
(BL) 80130 Base Address Location [40h-OFFFFh] 
(BP) 80130 Base Port Address [O-OFFFFH] 
(MP) 8259A Master Port [O-OFFFFH] 
(MPS) Master PIC Port Separation [O-OFFH] 
(SIL) Slave Interrupt Levels [1-7 IN one] 
(LSS) Level Sensitive Slaves [1-7INone] 
(LSP) Local slave PICS [1-7 IN one] 
(TP) 8253 Timer Port [O-OFFFFH] 
(CIL) Clock Interrupt Level [0-7] 
(CN) Timer Counter Number [0,1,2] 
(CI) Clock Interval [O-OFFFFH msec] 
(CF) Clock Frequency [O-OFFFFH khz] 
(TPS) Timer Port Separation [O-OFFH] 
(NPX) Numeric Processor Extension [YesINo] 
(NIL) NPX Interrupt Level [Encoded] 

Memory 
Type: RAM = low, high 
Type: ROM = low, high 
Type: RAM = 0104H, 239FH 
Type : RAM = 28CDH, F7FFH 

Sub-systems 
(UDI) Universal Development Interface [Yes/No] 
(HI) Human Interface [YesINo] 
(AL) Application Loader [YesINo] 
(EIO) Extended YO System [YesINo] 
(BIO) Basic YO System [YesINo] 
(DB) Debugger [YesINo] 
(TH) Terminal Handler [YesINo] 
(CA) Crash Analyzer [YesINo] 
(UIR) UDI in ROM [YesINo] 
(CAR) Crash Analyzer in ROM [YesINo] 
(RIR) Root Job in ROM [YesINo] 

Human Interface 
(ICL) Initial Command Line Size [O-OFFFFH] 
(CNM) Command Name Length [0-255) 
(SYS) System Directory [1-45 characters] 
(DRP) Default Resident Initial Program fYesINo) 
(RIP) Resident Initial Program [1-45 characters] 
(CON) Conftguration Device Name [1-14 chars] 
(PMI) Human Interface Pool Minimum [O-OFFFFH] 
(PMA) Human Interface Pool Maximum [O-OFFFFH] 
(HIR) Human Interface in ROM [YesINo] 

2-111 

No 
No 
No 
Yes 
OOOOH 
OOOOH 
OOCOH 
0002H 
None 
None 
None 
OODOH 
0002H 
OOOOH 
OOOAH 
04CDH 
0002H 
Yes 
0008H 

Yes 
Req 
Req 
Req 
Req 
No 
No 
No 
No 
No 
No 

0100H 
0030H 
:SD:SYSTEM 
Yes 
Default 
:SD: 
0100H 
FFFFH 
No 

230990-001 



AP-174 

HI Jobs 
(MIN) Jobs Minimum Memory [O-OFFFFH pages] 
(MAX) Jobs Maximum Memory [O-OFFFFH pages] 
(NPX) Numeric Processor Extension Used [Yes/No] 

Resident User 
(TDN) Terminal Device Name [1-12 characters] 
(MTP) Maximum Task Priority [O-OFFH] 
(UID) UserlD Number [O-OFFFFH] 
(MIN) Minimum Memory Required [O-OFFFFH] 
(MAX) Maximum Memory Required [O-OFFFFH] 
(IpP) Initial-Program Pathname [RESIDENT/1-45 characters) 
(DEF) Default Directory [1-45 characters) 

Prefixes 
Prefix: 1-45 characters 
Prefix: :$: 
Prefix: :PROG: 
Prefix: :UTILS: 
Prefix: :SYSTEM: 
Prefix: :LANG: 
Prefix: 

HI Logical Names 
Logical Name: logicaLname,patiLname " 
Logical Name: LANG, :SD:WORK 
Logical Name: WORK, :SD:WORK 
Logical Name: SYSTEM, :SD:SYSTEM 
Logical Name: UTILS, :SD:UTILS 

Application Loader 
(IBS) Internal Buffer Size [O-OFFFFh) 
(RBS) Read Buffer Size [O-OFFFFh) 
(LIT) Load Job Type [None/ Async/Sync] 
(DMP) Default Memory Pool Size [O-OFFFFh] 
(CT) Code Type [Abs(Pic/LtI/Ovr] . 
(ALR) Application Loader in ROM [Yes/No] 

EIOS 
(ASC) All Sys Calls in EIOS 
(ABR) Automatic Boot Device Recognition [Yes/No] 
(DLN) Default System Device Logical Name [1-12 characters] 
(DPN) Default System Device Physical Name [1-12 charactersl 
(DFD) Default System Device File Driver [Phys/Str/Named] 
(DO) Default System Device Owners ID [O-OFFFFH] 
(EBS) Internal Buffer Size [O-OFFFFh] 
(DDS) Default 10 Job Directory Size [5-0FFOh] 
(ITP) Internal EIOS Task's Priorities [O-OFFH] 
(PM!) EIOS Pool Minimum [O-OFFFFH] 
(PMA) EIOS Pool Maximum [O-OFFFFH] 
(EIR) Extended 110 System in ROM [Yes/No] 

I/O Users 
User: user name,Owner-ID [,ID,ID;m,ID) 

2-112 

0100H 
OOOOH 
Yes 

TO 
OOAOH 
FFFFH' 
0100H 
FFFFH 
RESIDENT 
:sd:user/world 

[I -12 Chars, 1-45 Chars) 

0400H 
1COOH 
Synchronous and Asynchronous 
OIOOH . 
Overlay, LTL, PIC and Abs 
No 

Req 
Yes 
sd 
wfO 
Named 
OOOOH 
0400H 
0020H' 
0083H 
0180H 
0180H. 
1"lo 

230990-001 



AP -174 

Logical Names 
Logical Name: logical name,device-Ilame,fiIe_driver,owners-id 

Logical Name: BB, BB, Physical, OOOOH 
Logical Name: STREAM,STREAM, Stream, OOOOH 
Logical Name: LP,LP, Physical, OOOOH 

BIOS 
(ASC) All Sys Calls in BIOS [Yes/No) 
(ADP) Attach Device Task Priority [1-0FFH) 
(TF) Timing Facilities Required [Yes/No) 
(TTP) Timer Task Priority [O-OFFH) 
(CON) Connection Job Delete Priority [O-OFFH) 
(ACE) Ability to Create Existing,Files [Yes/No) 
(SMI) System Manager ID [Yes/No) 
(CUT) Common Update Timeout [O-OFFFFH) 
(CST) Control-Sequence Translation [Yes/No) 
(PMI) BIOS Pool Minimum [O-OFFFFH) 
(PM A) BOIS Pool Maximum [O-OFFFFH) 
(BIR) Basic I/O System in ROM [Yes/No) 

Intel Terminal Driver 
(IlL) Input Interrupt Level [Encoded) 
(OIL) Output Interrupt Level (Enqoded) 
(UDP) USART Data Port (O-OFFFFH) 
(USP) USART Status Port (O-OFFFFH) 
ORP) 8253 Input Rate Port [O-OFFFFH) 
OCP) 8253 Input Control Port (O-OFFFFH) 
ORC) 8253 Input Counter Number [0-2) 
ORM) Input Rate Maximum (O-OFFFFFFFFH) 
(ORP) 8253 Output Rate Port [O-OFFFFH) 
(OCP)8253 Output Control Port [O-OFFFFH) 
(ORC) 8253 Output Counter Number [0-2) 
(ORM) Output Rate Maximum [O-OFFFFFFFFH) 

Intel Terminal Driver Unit Information 
(NAM) Unit Info Name [1-17 Chars) 
(LEM) Line Edit Mode (Trans/Normal/Flush) 
(ECH) Echo Mode (Yes/No) 
OPC) Input Parity Control (Yes/No) 
(OPC) Output Parity Control (Yes/No) 
(OCP Output Control in Input (Yes/No) 
(OSC) OSC Controls (Both/In/Out/Neither) 
(DUP) Duplex Mode (Full/HaIf) 
(TRM) Terminal Type [CRT/Hard Copy) 
(MC) Modem Control [Yes/No) 
(RPC) Read Parity Checking [See Help/0-3] 
(WPC) Write Parity Checking [See Help/0-4) 
(BR) Baud Rate [O-OFFFFH) 
(SN) Scroll Number (O-OFFFFH) 

Intel Terminal Driver.Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars) 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name U-17 Chars) 
(MB) Max Buffers (O-OFFH) 

2-113 

[1-12 Chars ,1-14 Chars. 
Physical/Stream/Named, O-OFFFFH) 

Req 
0081H 
Yes 
0081H 
0082H. 
Yes 
Yes 
03E8H 
Req 
0800H 
0800H 
No 

0068H 
0078H 
00D8H 
OODAH 
00D4H 
OOD6H 
0002H 
00012COOH 
OOOOH 
OOOOH 
OOOOH 
OOOOOOOOH 

to-info 
Normal 
Yes 
Yes 
Yes 
Yes 
Both 
Full 
CRT 
No 
OOOOH 
OOOOH 
2580H 
0017H 

TO 
OOOOH 
to-info 
OOOOH 

230990-001 



Intel iSBC~ 215/218 Driver 
(IL) Interrupt Level [Encoded LeveI] 
(ITP) Interrupt Task Priority [O-OFFH] 
(WIP) Wakeup Iio Port [O-OFFFFH] 

Intel iSBC~ 215/218 Unit Information 
(NAM) Unit Info Name [1-17 Chars] 
(MR) Maximum Retries [O-OFFFFH) 
(CS) Cylinder Size [O-OFFFFH] 
(NC) Number of Cylinders [O-OFFFFH] 

AP,-17~ 

(NFH) Number of Fixed Platters/Disk [Q-OFFH] 
(NRH) Number of Remove Platters/Disk [O-OFFH] 
(NS) Number of Sectors/Track [O-OFFFFH] 
(NAC) Number of Aux. Cylinders [O-OFFH) 
(SSN) Starting Sector Number [O-OFFFFFFFFH] 
(BTl) Bad Track Information [Yes/No] 

Intel iSBC~ 215/218 Unit Information 
(NAM) Unit Info Name [1-17 Chars] 
(MR) Maximum Retries [O-OFFFFH) 
(CS) Cylinder Size [O-OFFFFH] 
(NS) Number of Cylinders [O-OFFFFH) 
(NFH) Numbers of Fixed Platters/Disk [O-OFFH] 
(NRH) Number of Remove Platters/Disk [O-OFFH] 
(NS) Number of Sectors/Track [O-OFFFFH) 
(NAC) Number of Aux. Cylinders [O-OFFH) 
(SSN) Starting Sector Number [O-OFFFFFFFFH] 
(BIT) Bad Track Information [Yes/No] 

Intel iSBC~ 215/218 Unit Information 
(NAM) Unit Info Name [1-17 Chars] 
(MR) Maximum Retries [O-OFFFFH] 
(CS) Cylinder Size [O-OFFFFH) 
(NC) Number of Cylinders [O-OFFFFH] 
(NFH) Numbers of Fixed Platters/Disk [O-OFFH) 
(NRH) Nuniber of Remove Platters/Disk [O-OFFH] 
(NS) Number of Sectors/Track [O-OFFPFH) 
(NAC) Number of Aux. Cylinders [O-OFFH) 
(SSN) Starting Sector Number [O-OFFFFFFFFH] 
(BIT) Bad Track Information [Yes/No] 

Intel iSBC@ 215/218 Unit Information 
(NAM) Unit Info Name [1-17 Chars) 
(MR) Maximum Retries [O-OFFFFH) 
(CS) Cylinder Size [O-OFFFFH] 
(NC) Number of Cylinders [O-OFFFFFH] 
(NFH) Number of Fixed Platters/Disk fO~OFFH] 
(NRH) Number of Remove Platters/Disk' [O-OFFH) 
(NS) Number of Sectors/Track [O-OFFFFH] 
(NAC) Number,of Aux. Cylinders [O-OFFH] 
(SSN) Starting Sector Number [O-OFFFFFFFFH] 
(BTl) Bad Track Information [YeslNo] 

Intel iSBC@ 215/218 Unit Information 
(NAM) Unit Info Name [1-17 Chars] 
(MR) Maximum Retries [O-OFFFFH] 

0058H 
00'82H 
0100H 

uinfo.215gen 
0009H 
OOOOH 
OOOlH 
0001H 
OOOOH 
OOOCH 
OOOlH 
OOOOOOOOH 
Yes 

uinfo.215w5 
0009H 
OOOOH 
0132H 
0004H 
OOOOH 
0009H 
OOOAH 
OOOOOOOOH 
Yes 

uinfo.215w 
OQ09H 
OOOOH 
020DH 
0005H 
000R' 
OOOCH 
OOOAH 
OOOOOOOOH 

'l 

Yes 

uinfo.215pt 
0009H 
OOOOH 
'0102H 
0003H 
OOOOH 
OOOCH 
0006H 
OOOooOOOH 
Yes " 

unifo.215f 
0009H 

230990-001 



AP-174 

(CS) Cylinder Size [O-OFFFFH) 
(NC) Number of Cylinders [O-OFFFFH) 
(NFH) Number of Fixed Platters/Disk [O-OFFH) 
(NRH) Number of Remove Platters/Disk [O-OFFH) 
(NS) Number of Sectors/Track [O-OFFFFFH) 
(NAC) Number of Aux. Cylinders [O-OFFH) 
(SSN) Starting Sector Number [O-OFFFFFFFFH) 
(BTI) Bad Track Information [Yes/No) 

Intel iSBC@ 215/218 Unit Information 
(NAM) Unit Info Name [1-17 Chars) 
(MR) Maximum Retries [O-OFFFFH) 
(CS) Cylinder Size [O-OFFFFH) 
(NC) Number of Cylinders [O-OFFFFH) 
(NFH) Number of Fixed Platters/Disk [O-OFFH) 
(NRH) Number of Remove Platters/Disk [O-OFFH) 
(NS) Number of Sectors/Track [O-OFFFFH) 
(NAC) Number of Aux Cylinders [O-OFFH) 
(SSN) Starting Sector Number [O-OFFFFFFFFH) 
(BTl) Bad Track Information [Yes/No) , 

Intel iSBC@ 215/218 Unit Information 
(N AM) Unit Info Name 11-17 Chars) 
(MR) Maximum Retries [O-OFFFFH) 
(CS) Cylinder Size [O-OFFFFH) 
(NC) Number of Cylinders [O-OFFFFH) 
(NFH) Number of Fixed Platters/Disk [O-OFFH) 
(NRH) Number of Remove Platters/Disk [O-OFFH) 
(NS) Number of Sectors/Track [O-OFFFFH) 
(NAC) Number of Aux. Cylinders [O-OFFH] 
(SSN) Starting Sector Number [O-OFFFFFFFFH) 
(BTI) Bad Track Information [Yes/No) 

Intel iSBC@ 215/218 Unit Information 
(NAM) Unit Info Name 11-17 Chars) 
(MR) Maximum Retries [O-OFFFFH) 
(CS) Cylinder Size [O-OFFFFH) 
(NC) Number of Cylinders [O-OFFFFH) 
(NFH) Number of Fixed Platters/Disk [O-OFFH) 
(NRH) Number of Remove Platters/Disk [O-OFFH) 
(NS) Number of Sectors/Track [O-OFFFFH) 
(NAC) Number of Aux. Cylinders [O-OFFH) 
(SSN) Starting Sector Number [O-OFFFFFFFFH) 
(BTI) Bad Track Information [Yes/No) 

Intel iSBC@ 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars) 
(PFD) Physical File Driver Required [Yes/No) 
(NFD) Named File Driver Required [Yes/No) 
(SDD) Single or Double Density Disks [Single/Double) 
(SDS) Single or Double Sided Disks [Single/Double) 
(EFI) S or S Inch Disks [8/S) 
(GRA) Granularity [O-OFFFFH) 
(DSZ) Device Size [O-OFFFFFFFFH) 
(UN) Unit Number on this Device [O-OFFH) 
(DIN) Unit Info name 11-17 Chars) 
(UDT) Update Timeout [O-OFFFFH) 
(NB) Number of Buffers [nonrandom = O/rand = I-OFFFFH) 
(FUP) Fixed Update [True/False) 
(MB) Max Buffers [O-OFFH) 

2-115 

OOOOH 
004DH 
OOOOH 
OOOlH 
OOIAH 
OOOOH 
OOOOOOOOH 
Yes 

uinfo_21Sfd 
0009H 
OOOOH 
004DH 
OOOOH 
0002H 
OOIAH 
OOOOH 
OOOOOOOOH 
Yes 

uinfo-shugart96 
0009H 
OOOOH 
OOSOH 
OOOOH 
0002H 
OOOSH 
OOOOH 
OOOOOOOOH 
No 

uinfo_shugart4S 
0009H 
OOOOH 
002SH 
OOOOH 
0002H 
0008H 
OOOOH 
OOOOOOOOH 
No 

cmO 
Yes 
Yes 
Single 
Single 
S 
0400H 
OOA6S000H 
OOOOH 
uinfo_21SwS 
0064H 
OOOSH 
True 
OOFFH 

230990-001 



AP-174 

Intel iSBC® 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars) 
(PFD) Physical File Driver Required [Yes/No) 
(NFD) Named File Driver Required [YeslNo) 
(SDD) Single or Double Density Disks [Single/Double) 
(SDS) Single or Double Sided Disks [Single/Double) 
(EFI) 8 or 5 Inch Disks [8/5) 
(GRA) Granularity [O-OFFFFH) 
(DSZ) Device Size [O-OFFFFFFFFH) 
(UN) Unit Number on this Device [O-OFFH) 
(UIN) Unit Info name [1-17 Chars) 
(UDT) Update Timeout [O-OFFFFH) 
(NB) Number of Buffers [nonrandom = O/rand = 1-0FFFFH) 
(FUP) Fixed Update [True/False) 
(MB) Max Buffers [O-OFFH) 

Intel iSBC® 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars) 
(PFD) Physical File Driver Required [Yes/No) 
(NFD) Named File Driver Required [Yes/No) 
(SDD) Single or Double Density Disks [Single/Double) 
(SDS) Single-or Double Sided Disks [Single/Double] 
(EFI) 8 or 5 Inch Disks [8/5) 
(GRA) Granularity [O-OFFFFH) 
(DSZ) Device Size [O-OFFFFFFFFHJ 
(UN) Unit Number on this Device [O-OFFHJ 
(UIN) Unit Info Name [1-17 Chars) 
(UDT) Update Timeout [O-OFFFFH) 
(NB) Number of Buffers [nonrandom =,O/rand = 1-0FFFFHJ 
(FUP) Fixed Update [True/FalseJ 
(MB) Max Buffers [O-OFFH] 

Intel iSBC® 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name [1-13 CharsJ 
(PFD) Physical File Driver Required [Yes/NoJ 
(NFD) Named File Driver Required [Yes/No) 
(SDD) Single or Double Density Disks [Single/Double) 
(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) 8 or 5 Inch Disks [8/5J 
(GRA) Granularity [O-OFFFFH) 
(DSZ) Device Size [O-OFFFFFFFFH) 
(UN) Unit Number on this Device [O-OFFH) 
(DIN) Unit Info Name [1-17 Chars) 
(UDT) Update Timeout [O-OFFFFH) 
(NB) Number of Buffers [nonrandom = O/rand = 1-0FFFFH] 
(FUP) Fixed Update [True/False) 
(MB) Max Buffers [O-OFFH) 

Intel iSBC® 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars) 
(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [Yes/No) 
(SDD) Single or Double Density Disks [Single/DoubleJ 
(SDS) Single or Double Sided Disks [Single/Double) 
(EFI) 8 or 5 Inch Disks [8/5) 
(GRA) Granularity [O-OFFFFH) 
(DSZ) Device Size [O-OFFFFFFFFH) 

2-116 

iwO 
Yes 
Yes 
Single 
Single 
8 
0400H 
0IE2DOOOH 
OOOOH 
uinfo-215w 
0064H 
0008H 
True 
OOFFH 

wmfdxO 
Yes 
Yes 
Double 
Double 
5 
0200H 
0004F800H 
0008H 
uinfo_shugart48 
0064H 
0004H 
True 
OOFFH 

wfddO 
Yes 
Yes 
Double 
Double 
8 
OIOOH 
OOOF9700H 
0008H 
uinfo_215fd 
0064H 
0004H 
True 
OOFFH 

wfdO 
Yes 
Yes 
Double 
Single 
8 
0100H 
0007C500H 

230990-001 



(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name 11-17 Chars] 
(UDT) Update Timeout [O-OFFFFH] 

AP-174 

(NB) Number of Buffers [nonrandom = O/rand = 1-0FFFFH] 
(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel iSBC@ 21511SBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name 11-13 Chars] 
(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [Yes/No] 
(SDD) Single or Double Density Disks [Single/Double] 
(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) 8 or 5 Inch Disks [S/5] 
(GRA) Granularity [O-OFFFFH] 
(DSZ) Device Size [O-OFFFFFFFFH] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name [1-17 Chars] 
(UDT) Update Timeout [O-OFFFFH] 
(NB) Number of Buffers [nonrandom = O/rand = I-OFFFFH] 
(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel iSBC@ 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars] 
(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [Yes/No] 
(SDD) Single or Double Density Disks [Single/Double] 
(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) 8 or 5 Inch Disks [8/5] 
(GRA) Granularity [O-OFFFFH] 
(DSZ) Device Size [O-OFFFFFFFFH] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name [1-17 Chars] 
(UDT) Update Timeout [O-OFFFFH] 
(NB) Number'ofBuffers [nonrandom = O/rand = 1-0FFFFH] 
(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel iSBC@ 21511SBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name 11-13 Chars] 
(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [Yes/No] 
(SDD) Single or Double Density Disks [Single/Double] 
(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) 8 or 5 Inch Disks [S/5] 
(GRA) Granularity [O-OFFFFH] 
(DSZ) Device Size [O-OFFFFFFFFH] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name 11-17 Chars] 
(UDT) Update Timeout [O-OFFFFH] 
(NB) Number of Buffers [nonrandom = O/rand = I-OFFFFH] 
(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel iSBC@ 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name 11-13 Chars] 

2-117 

OOOSH 
uinfo..215f 
0064H 
0004H 
True 
OOFFH 

wro 
Yes 
Yes 
Single 
Single 
S 
0080H 
0003E900H 
OOOSH 
uinfo..215f 
0064H 
0004H 
True 
OOFFH 

cm1 
Yes 
Yes 
Single 
Single 
5 
0400H 
OOA6S000H 
OOOlH 
uinfo..215w5 
0064H 
0004H 
True 
OOFFH 

iw1 
Yes 
Yes 
Single 
Single 
8 
0400H 
01E2DOOOH 
000lH 
uinfo..215w 
0064H 
0004H 
True 
OOFFH 

wmfdx1 

230990-001 



(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [YeslNo] 

AP-174 

(SDD) Single or Double Density Disks [Single/Double] 
(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) S or S Inch Disks [S/S] 
(GRA) Granularity [O-OFFFFH] 
(DSZ) Device Size [O-OFFFFFFFFH] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name [1-17 Chars] 
(UDT) Update Timeout [O-OFFFFH] 
(NB) Number of Buffers [nonrandom = O/rand = 1-0FFFFH] 
(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel iSBC® 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars] 
(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [Yes/No] 
(SDD) Single or Double Density Disks [Single/Double] 
(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) S or S Inch Disks [S/S] 
(GRA) Granularity [O-OFFFFH] 
(DSZ) Device Size [O-OFFFFFFFFH] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name [1-17 Chars] 
(UDT) Update Timeout [O-OFFFFH] 
(NB) Number of Buffers [nonrandom = O/rand = 1-0FFFFH] 
(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel iSBC® 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars] 
(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [YeslNo] 
(SDD) Single or Double Density Disks [Single/Double] 
(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) S or S Inch Disks [S/S] 
(GRA) Granularity [O-OFFFFH] 
(DSZ) Device Size [O-OFFFFFFFFH] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name [1-17 Chars] 
(UDT) Update Timeout [O-OFFFFH] 
(NB) Number of Buffers [nonrandom = O/rand = 1-0FFFFH] 
(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel iSBC® 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars] 
(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [Yes/No] 
(SDD) Single or Double Density Disks [Single/Double] 
(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) S or S Inch Disks [S/S] 
(GRA) Granularity [O-OFFFFH] 
(DSZ) Device Size [O-OFFFFFFFFH] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name [1-17 Chars] 

2-118 

Yes 
Yes 
Double 
Double 
S 
0200H 
0004FSOOH 
0009H 
uinfo..shugart4S 
0064H 
0004H 
True 
OOFFH 

wfddl 
Yes 
Yes 
Double 
Double 
S 
0100H 
OOOF9700H 
0009H 
uinfo..21Sfd 
0064H 
0004H 
True 
OOFFH 

wfdl 
Yes 
Yes 
Double 
Single 
S 
OlOOH 
0007CSOOH 
0009H 
uinfo..2lSf 
0064H 
0004H 
True 
OOFFH 

wfl 
Yes 
Yes 
Single 
Single 
S 
OOSOH 
0003E900H 
0009H 
uinfo..21Sf 

230990-001 



AP-174 

(UDT) Update Timeout [O-OFFFFH] 
(NB) Number of Buffers [nonrandom = O/rand = 1-0FFFFH] 

'(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel iSBC® 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name 11-13 Chars] 
(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [Yes/No] 
(SDD) Single or Double Density Disks [Single/Double] 
(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) 8 or 5 Inch Disks [8/5] 
(GRA) Granularity [O-OFFFFH] 
(DSZ) Device Size [O-OFFFFFFFFH] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name 11-17 Chars] 
(UDT) Update Timeout [O-OFFFFH] 
(NB) Number of Buffers [nonrandom = O/rand = 1-0FFFFH] 
(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel iSBC® 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars] 
(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [Yes/No] 
(SDD) Single or Double Density Disks [Single/Double] 
(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) 8 or 5 Inch Disks [8/5] 
(GRA) Granularity [O-OFFFFH] 
(DSZ) Device Size [O-OFFFFFFFFH] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name [1-17 Chars] 
(UDT) Update Timeout [O-OFFFFH] 
(NB) Number of Buffers [nonrandom = O/rand = 1-0FFFFH] 
(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel iSBC® 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars] 
(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [Yes/No] 
(SDD) Single or Double Density Disks [Single/Double] 
(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) 8 or 5 Inch Disks [8/5] 
(GRA) Granularity [O-OFFFFH] 
(DSZ) Device Size [O-OFFFFFFFFH] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name 11-17 Chars] 
(UDT) Update Timeout [O-OFFFFH] 
(NB) Number of Buffers [nonrandom = O/rand = 1-0FFFFH] 
(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel iSBC® 2151iSBX™ 218 Device-Unit Information 
(NAM) Device-Unit Name 11-13 Chars] 
(PFD) Physical File Driver Required [Yes/No] 
(NFD) Named File Driver Required [Yes/No] 
(SDD) Single or Double Density Disks [Single/Double] 

2-119 

0064H 
0004H 
True 
OOFFH 

wmfdyO 
Yes 
Yes 
Double 
Double 
5 
0200H 
0009F800H 
0008H 
uinfo..shugart96 
0064H 
0004H 
True 
OOFFH 

wmfdyl 
Yes 
Yes 
Double 
Double 
5 
0200H 
0009F800H 
0009H 
uinfo_shugart96 
0064H 
0004H 
True 
OOFFH 

pwO 
Yes 
Yes 
Single 
Single 
8 
0400H 
0102COOOH 
OOOOH 
uinfo-215pt 
0064H 
0008H 
True 
OOFFH 

wO 
Yes 
Yes 
Single 

230990-001 



Ap .. 174 

(SDS) Single or Double Sided Disks [Single/Double] 
(EFI) 8 or 5 Inch Disks [8/5] 
(GRA) Granularity [O-OFFFFH] 
.(DSZ) Device Size [O-OFFFFFFFFH] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name [I-17 Chars] 
(UDT) Update Timeout [O-OFFFFH] 
(NB) Number of Buffers [nonrandom = O/rand = I-OFFFFH] 
(FUP) Fixed Update [True/False] 
(MB) Max Buffers [O-OFFH] 

Intel Line Printer Driver 
(IL) Interrupt Level [Encoded LeveIl 
(ITP) Interrupt Task Priority [O-OFFH] 
(POA) 8255A Port A address [O-OFFFFH] 
(PO B) 8255A Port B Address [O-OFFFFH] 
(POC) 8255A Port C Address [O-OFFFFH] 
(CON) 8255A Control Port Address [O-OFFFFH] 
(TAB) Printer Expanded Tabs [Yes/No] 

Intel Line Printer Driver Device-Unit Information 
(NAM) Device-Unit Name [1-13 Chars] 
(UN) Unit Number on this Device [O-OFFH] 
(UIN) Unit Info Name [1-17 Chars] 
(MB) Max Buffers [O-OFFH] 

Nucleus 
(ASC) All Sys Calls [Yes/No] 
(PV) Parameter Validation [Yes/No] 
(ROD) Root Object Directory Size [O-OFFOh] 
(MTS) Minimum Transfer Size [O-OFFFFH] 
(DEH) Default Exception Handler [Yes/No/Deb/Use] 
(NEH) Name of Ex Handler Object Module 11-32chsl 
(EM) Exception Mode [Never/Program/Environ! All] 
(NR) Nucleus in ROM [Yes/No] 

User Jobs 
(ODS) Object Directory Size [O-OFFOH] 
(PM I) Pool Minimum [20H - OFFFFH] 
(PM A) Pool Maximum [20H - OFFFFH] 
(MOB) Maximum Objects [I-OFFFFH] 
(MTK) Maximum Tasks [I-OFFFFH] 
(MPR) Maximum Priority [O-OFFH] 
(AEH) Address of Exception Handler [CS:IP] 
(EM) Exception Mode [Never/Prog/Environ/ AlIJ 
(PV) Parameter Validation [Yes/No] 
(TP) Task Priority [O-OFFH] 
(TSA) Task Start Address [CS:IP] 
(DSB) Data Segment Base [O-OFFFFH] 
(SSA) Stack Segment Address [SS:SP] 
(SS) Stack Size [O-OFFFFH] 
(NP.X) Numeric Processor Extension Used [Yes/No] 

2-120 

Single 
8 
0400H 
00000400H 
OOOOH 
uinfo_215gen 
0064H 
0008H 
True 
OOFFH 

0048H 
0082H 
OOC8H 
OOCAH 
OOCCH 
OOCEH 
Yes 

Ip 
OOOOH 
NOT REQUIRED 
OOOOH 

Req 
Yes 
0020H 
0040H 
Yes 

Never 
No 

OOIOH 
OIOOH 
OlOOH 
OOIOH 
OOIOH 
OOOOH 
OOOOH:OOOOH 
Never 
Yes 
0082H 
23AOH:OOOOH 
OOOOH 
OOOOH:OOOOH 
OIOOH 
No 

230990-001 



Includes and Libraries 
Path Name [1-45 Characters] 
(VDF) VOl Includes and Libs 

Irmx86/udil 
(HIF) Human Interface Includes and Libs 

Irmx86/hil 
(ElF) Extended I/O system Includes and Libs 

Irmx86/eiosl 
(ALF) Application Loader Includes and Libs 

Irmx86/10ader I 
(BIF) Basic 1/0 System Includes and Libs 

Irmx86/iosl 

Ap·174 

(THF) Terminal Handler and Debugger Includes and Libs 
Irmx86/thl 

(NVF) Nucleus and Root Job Includes and Libs 
Irmx86/nucleus/' 

(ILF) Interface Libraries 
Irmx86/libl 

(CAF) Crash Analyzer Includes and Libs 
Irmx86/crashl 

(DTF) Development Tools Path Names 
:Iang: 

Generate File Names 
File Name II-55 Characters] 
(ROF) ROM Code File Name 

rmx86.rom 
(RAF) RAM Code File Name 

rmx86 

2-121 230990-001 



Intel Related Publications 
iRMX 86 Release 5 Operator's Manual (172764-001) 
iRMX 86 Configuration Guide (9803126-05) 
System 86/330A Overview Manual (144680-001) 

AP-174 

iRMX 86 Documentation Addendumjor Release 5 (146032-001) 
iRMX 86 Basic I/O System Rejerence Manual (9803123-05) 
iRMX 86 Loader Rejerence Manual (143318-002) 

2-122 
230990-001 



inter APPLICATION 
NOTE 

AP-184 

August 1984 

Writing Device Drivers 
For XENIX* 86 and 286 -

Task or Trivia? 

MOHANDAS NAIR 
APPLICATIONS MARKETING 

INTEGRATED SYSTEMS OPERATION 

© INTEL CORPORATION, 1984 
• XENIX is a trademark of MICROSOFT Corp: 2-123 

Order Number 280041-001 



WRITING DEVICE 
DRIVERS FOR XENIX 86 
AND 286 - TASK OR 
TRIVIA? 

CONTENTS 

1.0 INTRODUCTION 

2.0 DEFINITIONS ................... . 

3.0 COMPONENTS OF THE XENIX· 1/0 
. ENVIRONMENT ................. . 
3.1 The process' view of the 

kernel ....................... . 
3.2 The kernel's view of the 

process ..................... . 
3.3 The kernel's view of the 

driver ........................ . 
3.4 The drivers view of the 

kernel ....................... . 
3.5 The driver's view of the 

device ..... ~ ................. . 
3.6 Putting the components 

together ..................... . 

4.0 TYPES OF DEVICES ............ . 
4.1 Block devices ............... . 
4.2 Character devices ........... . 
4.3 Combination devices ........ . 

5.0 DEVICES VIEWED FROM THE 
USER INTERFACE .............. . 

AP-184 

7.0 THE ANATOMY OFTHE 1/0 
SYSTEM ........................ . 
7.1 The block interface .......... . 

7.1.1 The system buffers ....... . 
7.1.2 Driver support routines ... . 
7.1.3 Block device driver 

routines ................. . 
7.1.4 Review .................. . 
7.1.5 Steps taken to satisfy 

requests ............. , .. . 
7.1.6 iSBC@ 254 Bubble Memory 

board walkthrough ....... . 
7.1.7 Final look at block 

drivers .................. . 
7.1.8 The raw (character interface) 

to a block device ......... . 
7.2 The character interface ...... . 

7.2.1 Clists ................... . 
7.2.2 Terminal I/O ............. . 
7.2.3 Useful routines ........... . 
7.2.4 tty.help - the line 

discipline routines ........ . 
7.2.5 Terminal I/O device driver 

routines ................. . 
7.2.6 Examples of character I/O 

(terminal) drivers ......... . 
7.2.6.1 iSBXTM 270 

Walkthrough .......... . 
7.2.6.2 Low level routines ..... . 
7.2.6.3Required routines ..... . 
7.2.6.4 A final note ........... . 

CONCLUSIONS ..................... . 

APPEt-iDICES 

REFERENCES 

6.0 THE ENVIRONMENT ............. ACKNOWLEDGEMENTS ............ . 
6.1 The u-area .................. . 
6.2 Task-time execution vs. • XENIX is a trademark of MICROSOFT Corp. 

interrupt-time execution ..... . 
6.3 I/O path through the system .. 

2-124 280041-001 



AP-184 

1.0 INTRODUCTION 

The world of device configuration and device drivers 
has since time been an area where only hacks could 
tread. Being the lowest-level of software interfacing 
to the device, drivers were always examined by self
motivated experts. Also, drivers were hard to come
by and even harder to comprehend. 

Intel Corporation's "open systems" concept, 
coupled with the XENIX' Operating System and our 
family of microprocessor systems, creates an attrac
tive environment for building and adding new 
devices and drivers. However, the folklore involved 
with the XENIX Operating System and its internal 
functions are exemplified in the lack of device driver 
details. This paper clears the fog around device driv
ers and device driver writing. It is written for the 
general operating system user bringing him/her 
details of the anatomy of the I/O system, driver in
terfaces and driver support routines. The details that 
follow pertain to the Release 1 XENIX 286/86 
Operating System which is a superset of the Unix' 
V7 operating system. This application note discusses 
writing device drivers for the XENIX Operating 
System as well as describes the operating environ
ment around device drivers. Note that the reader 
may not need the discussion on the environment 
when writing device drivers. However, when the 
reader begins to debug them, he/she will find these 
discussions worthwhile. 

Most driver writers would agree that few start writ
ing drivers from scratch. Many use existing driver 
code as templates. This paper includes actual coded 
and pseudo-coded examples coupled with descrip
tions which grant the reader(and soon to be writer) 
a bouncing-board introduction to writing device 
drivers. 

2.0 DEFINITIONS 

A device driver is that body of software that allows 
an operating system to communicate with a device. 
This body of software is the lowest software level of 
abstraction in the I/O system. Figure la shows these 
levels identifying device drivers as a set of machine
independent routines(commands) of the operating 
system which talk to devices. 

In the XENIX Operating System, a device driver is a 
collection of procedures placed in a file that is confi
gured into the system. No source code is needed for 
this configuration as the operating system, once 
configured, will talk with these routines in the driver. 

" 
Before attempting to write a XENIX device driver, 
one must: 

1) Understand the device i.e. know how to talk to 
the device, initialize it etc, 

'UNIX" a Trademark ofBelll.ab, 

2) Understand how the XENIX Operating inter
faces to the driver i.e what is covered in this ap
plication note. 

3) Begin writing the routines needed for a driver 
i.e. mimic an existing driver. 

USER-TASK 

1- - - - - - - BYTE-STREAM I/O 

USER-INTERFACE 

(SHELL) 

FILE SYSTEM 

!-OPERATING SYSTEM 

DEVICE-DRIVERS 

t 
DEVICE 

1977 

Figure 1 a. Driver Model 

3.0 COMPONENTS OF THE XENIX I/O 
ENVIRONMENT 

This application note breaks device drivers and the 
XENIX Operating system into the following 
components: 

1) the process 

2) the kernel 

3) the I/O buffers 

4) the driver(s) 

5) the device (s) 

These components are shown in figure 1 b. These 
components communicate with each other in unique 
ways. 

3.1 The Process' View of the Kernel 

Processes communicate with the kernel through 
system calls i.e. open, close, read. These system calls 
can be found in the XENIX Operating System Docu
mentation (I 73258001). 

3.2 The Kernel's View of the Process 

Section 6.0 (THE ENVIRONMENT) defines a 
process, process synchronization, user-areas and in
troduces the kernel's view of the process. 

2-125 280041-001 



inter AP-184. 

PROCESS 

CLIST KERNEL SYSTEM 
BUFFER 

OEVICE 

1978 

Figure 1 b. Components of the I/O Environment 

3.3 The Kernel's View of the Driver 

Section 4.0 (Types of Devices) serves as an introduc
tion to how the kernel views the driver. Details of 
this view are found in Section 7.0 (The Anatomy of 
the I/O System) where the system I/O buffers are 
described as used by the kernel. 

3.4 The Drivers View of the Kernel 

Section 7.0 (The Anatomy of the I/O System) ex
plains how the driver communicates with the kernel, 
by introducing the assist routines (Section 7.1.2, 
7.2.3, 7.2.4) available to drivers. Furthermore, the 
driver must understand the buffer scheme when 
talking with the kernel. Sections 7.1.1 and 7.2.1 (The 
I/O buffers) detail what the driver manipulates. 

3.5 The Driver's View of the Device 

The device driver is a collection of routines that act 
on the device and the device reponds to the driver 
through interrupts. The driver talks with the device 
when an action is requested or when the device inter
rupts the driver on completion of the action. The 
driver talks with the device through routines which 
are discussed in Sections 7.1.3 (Block device driver 
routines), 7.2.5 (Terminall/O device driver routines 
and Appendix D (Interrupt Mapping). 

3.6 Putting the Components Together 

Section 6.3 (I/O Path through the system) will give 

an introduction to how the above-mentioned compo
nents interact. To understand this discussion, the fol
lowing concepts must be covered: 

1) Types of Devices (Section 4.0) 

2) How Devices are viewed from the user interface 
(Section 5.0) 

3) The kernel's view of the process (The Environ
ment Section 6.0, 6.1 and 6.2) 

4.0 TYPES OF DEVICES 

The XENIX Operating System supports two kinds of 
devices - Block and Character. Input/Output 
to/from these devices are consequently known as 
block and character I/O. 

4.1 Block Devices 

A block device is a sectored device that is accessed 
randomly. A file system resides on it as well. A good 
example of a block device is a winchester disk or a 
floppy disk. I/O with a block device is executed 
through a set of kernel I/O buffers(cache) which in
tervenes transfers of data (in fixed sized blocks) be
tween user memory and the respective device. Block 
I/O involves a considerable amount of kernel activity 
due to these buffering characteristics. 

Also: 

1) The size of Block I/O transfer requests from 
kernel to device are a multiple of the system's 
block size (BSIZE). BSIZE is 1024 bytes in 
XENIX 286 Operating System. 

2) Transfers are seldom done directly to the user 
task's memory. The transfers are staged 
through a buffer pool of BSIZE buffers. Also, 
the XENIX kernel manages these buffers to per
form blocking/deblocking and cacheing. I/O 
transfers to/from the user task's memory are 
satisfied from the buffers. 

4.2 Character Devices 

A character device is unstructured. A file-system 
cannot reside on a character device. Examples are 
terminals and printers. In character I/O, data transfer 
requests occur in 'n' bytes between sections of 
memory and the device. Hence, "character" is sy
nonymous to "byte." One must realize that there is 
minimal operating system involvement in data trans
fer as it is a private transaction between a user task 
and the device driver (see figure 2) . 

4.3 Combination Devices 

Some devices can be accessed and treated as a block 
or character device. For example, the disk interface 
can be accessed either as a block or character I/O 

2-126 280041-001 



inter AP-184 

USER PROGRAM 

USER 

SYSTEM 

KERNEL DEVICE 

1975 

Figure 2a. Block I/O Interface 

USER PROGRAM 

~ __ K_E_R_N_E_L __ ~~------~~~~D_R_IV_E_R~~~---------'I~I _____ D_E_V_IC_E __ ~ 
o 0 

Figure 2b. Character 1/0 Interface 1976 

Figure 2a and 2b. Block and Character Interfaces 

device. The character device permits direct i/o trans
fers between user memory and device. This mode of 
transfer is called RAW liD. Raw liD is very useful 
when direct disk-to-disk copy is necessary. The 
kernel buffers and file system are bypassed in this 
operation. Routines such as dump, dd, fsck are 
examples of such raw operations. 

5.0 DEVICES VIEWED FROM THE USER 
INTERFACE 

How are drivers in the XENIX Operating System 
identified? In the XENIX user interface, a directory 
called /dev exists for the purpose of holding all rele
vant device driver interfaces. XENIX is a file
oriented operating system and treats all devices as 
files. As files are accessible by the file-system, so are 
devices. 

An Is -I (directory listing) of the /dev directory is 
shown in figure 3. 

Since devices are accessible as files, data can be sent 
to them with: 

echo "talk to me" > /dev/ttyaO 

Devices can be opened, updated and closed via the 
filesystem. /dev/ttyaO is some-user's terminal. Files 
that identify devices are called device special files as 

they provide the hook to the drivers from the file
system. Enforcing device independence where all 
devices are files in XENIX permits tremendous flexi
bility and uniformity in the XENIX Operating 
System. Device special files are identified to the 
kernel as a 16-bit integer value. This 16-bit value is 
composed of two other values, which are the 
device's major and minor numbers. The high-order 
8-bits form the major number and the low-order 
form the minor number. XENIX provides two 
macros - major(dev) /minor(dev) to decode these 
values from the device file. This < major,minor > 
number pair is used, whenever the device is 
referenced, to identify the relevant device driver. 
XENIX is internally very table(array) oriented. 
These numbers are indices to an array of possible 
drivers. 

Figure 3 shows the < major,minor> number-pair 
for each device. Also note that the leading "c" and 
"b" characters first on each line denote the character 
and block files respectively. To see the connection 
between major number/minor number and drivers, 
take a look at the c.c file (appendix A). C.c is created 
in the configuration process. The following data
structures in c.c are created to maintain the relation
ship between drivers and the major/minor numbers 

2-127 280041-001 



inter AP-184 

(identifying the device special file). The data struc
tures are: 

1) dinitsw[ ) is a vector of device-initialization 
procedures. The procedures mentioned in this 
vector are called during system initialization to 
initialize devices. 

2) bdevsw[ I is the table of block-device interfaces. 
The index to a driver in this table is the major 
device number of the Block interface for the 
device. 

3) cdevswl ) is the table of character-device 
interfaces. The index to the driver in this table is 
the major device number of the character inter
face to the device. Note that major numbers do 
not overlap for block/character devices unless 
the same device is represented as a block and a 
character device. 

4) vecintswl ) is the table of interrupt procedures. 
This table contains one entry per supported in
terrupt level of the cascaded 8259A Programma
ble Interrupt Controller. The index represents 
the interrupt level. 

total 11 
crw - - w - - w - 1 root 4, 1 Feb 1 13:13 console 
brw - - - - - - - 1 root 0, 9 Jan 2317:47 dfO 
brw------- 1 root 0, 13 Jan 20 09:47 dxfO 
brw - - - - - - - 1 root 0, 8 Jan 20 09:46 fO 
crw------- lsysinfo 2, 1 Jan 20 09:45 kmem 
crw - - w - - w - 1 root 3, 7 Feb 1 14:24Ip 
crw------- 1 sysinfo 2, o Jan 20 09:45 mem 
crw-rw-rw- 1 root 2, 2 Feb 119:30 null 
crw------- 1 root 0, 9Feb 107:32 rdfO 
crw------- 1 root 0, 13 Jan 2009:47 rdxfO 
brw - - - - - - - 2 sysinfo 0, 1 Jan 30 16:40 root 
crw------- 2 sysinfo 0, 1 Jan 2009:45 rroot 
crw------- 2 sysinfo 0, 3 Jan 30 16:42 rusr 
crw------- 2 sysinfo 0, 1 Jan 20 09:45 rwOa 
crw------- 2 root 0, 2 Jan 20 09:45 rwOb 
crw------- 2 sysinfo 0, 3 Jan 3016:42 rwOc 
crw------- 1 root 0, o Jan 20 09:45 rwOtO 
crw------- 1 root 0, 12 Jan 20 09:47 rxfO 
crw-rw-rw- 1 root 6, o Jan 20 09:45 tty 
crw-w--w- 1 root 3, o Feb 1 17:35 ttyaO 
crw--w--w- 1 nair 3, 1 Feb 1 19:36 ttyal 
crw-rw-rw- 1 root 3, 2Feb 1 08:26 ttya2 
crw - - w - - w - 1 root 3, 3 Feb 1 07:53 ttya3 
crw -rw - rw- 1 root 4, o Jan 2009:45 ttyfO 
brw - - - - - - - 2 sysinfo 0, 3 Jan 2416:51 usr 
brw - - - - - - - 2 sysinfo 0, 1 Jan 30 16:40 wOa 
brw - - - - - - - 2 sysinfo 0, 2 Jan 20 09:45 wOb 
brw - - - - - - - 2 sysinfo 0, 3 Jan 2416:51 wOc 
brw - - - - - - - 1 root 0, o Jan 20 09:45 wOtO 

Figure 3. Theis Listing 

Only an overview of configuration details will be cov
ered in this write-up. Knowledge of the configuration 
process is not needed to write a device driver. Figure 

4 illustrates the file and directory structure maintaing 
drivers and the configuration files/shell scripts. 
Basically, there are three interesting files: 

1) xenixcanf: edit this file to describe the <;onfigura
tion to be built (see Appendix B) 

2) master: contains a master copy of the configura
tion information (Appendix C) 

3) c.c: generated from the above two using a pro
gram "config." 

config 
i.e master+xenixconf = = = = = = = = = = > c.c 

To configure: 

1) edit master 

2) edit xenixconf 

3) in Isys/conf run MAKEXENIX 

The rest is automatic. Appendix Band C give exam
ples of xenixconf and master. There will be no fur
ther discussion of the configuration details which do 
not contribute to learning how to write device driv
ers in XENIX. This overview was meant to describe 
how c.c is created. However, before attempting to 
write drivers, one must have a minimal understand
ing of the operating environment surrounding 
device drivers. This is the topic of discussion that 
follows. 

6.0 THE ENVIRONMENT 

The environment of any driver is, of course, the 
operating system, the device and the user
programs(processes) that communicate with the 
driver. This section concentrates on the kernel's 
view of the process. A task or process to the operat
ing system is defined as: 

1) the existence of an element/structure in the 
proc table. The proc table contains details of all 
processes in the system. 

2) the existence of a per-process data area 
(u-area) representing it in the kernel. Any pro
cess image contains this special area that is 
copied into the kernel data space when it is 
active. This area identifies the process and hold 
parameters of the process. 

A proc table entry and its corresponding 
u_structure, defines the state of a process at any in
stance during its birth (fork), lifetime and 
death (exit). The proc table entry is that part of a pro
cess that must always remain in memory for process 
communication and restart capability. The u_struc
ture is that part of the process which can be swapped 
out onto disk, along with the per-process data 
segment, at times when the process is not in a runna
ble state. 

2-128 280041-001 



inter AP-184 

1987 

Figure 4. The Configuration Files/Directories 
6.1 The u-area 

The XENIX operating system does not differentiate 
a kernel process from a user process. Processes can 
run in either kernel mode, using system services 
and privileges (access to ilo drivers, \Lllrea) or in 
user mode, where user-program code is executing. 
The operating system manages the relevant user
programs using a per-process data area, called the u
area. The u-area contains pertinent information 
such as system-stack information, preserved regis
ters and I/O parameters used for data transfer. 
Throughout the discussion on device drivers, there 
will be mention of information in the u-area. To 
recap, the u-area is that space held in the kernel to 
maintain information about processes that run on 
the CPU. Every process has a u-area that is made up 
of a detailed structure, called the u-structure. This 
structure is multiplexed in the kernel i.e is swapped 
in and out with the process and contains considerable 
information about the process such as: 

system call arguments 
process sizes 
registers saved 
error information 
I/O information 

Input/output parameters held here are: 

u.u_error -error information, 0 means no error 
u.u_base - starting user transfer address 
u.u_count - bytes to transfer 
u.u..segflg - flag telling if transfer is to/from user 

data space (0) or system memory (1) 
u. u_offset - offset in file for 1/0 

The driver will receive other information too, such 
as, the target device, the size of the job and the 
buffer address in the task's memory. For block 
devices, only u.u_error is updated. For character 
drivers, all other parameters are used. The u-area 
should not be accessed by the running driver at all 
times. This is because events occur in any operating 
system that are either: 
1) Synchronous, as in normal code executing in 

user space 

2) Asynchronous, as when an interrupt occurs and 
the interrupt service routine is called for the 
device. 

Synchronous activities happen as the CPU permits 
users to run their code. When their code makes re
quests to the system resources, they are subject to 
be swapped out of memory. Once the device per
forms these requests, it interrupts the processor 
asynchronously. The Operating System then calls on 
certain routines, called interrupt service, routines, 
to perform actions that follow the device's comple
tion of its requested job. 

The u_area, being part of the process, may have 
been swapped out after resource requests were 
made. Hence, the asynchronous portions of code 
called on an interrupt cannot access this area. The 
terms "task-time execution" and "interrupt-time ex
ecution" are used to differentiate times it can and 
cannot be accessed. Obviously, the device driver 
must contain routines that are called due to 
asynchronous and synchronous events. 

6.2 Task-time Execution vs. 
Interrupt-time Execution 

As mentioned, the XENIX Operating System does 
not concern itself with whether tasks are running in 
user or kernel mode. Hence, there may be several 
tasks contending for system resources that are non
I/O related. At task-time, tasks are executing user or 
system code. Their u-area may be used whenever 
the process executes system code i.e. makes a 
system call and the kernel uses this area for stack 
and parameter storage. This u-area is resident when 
the process is running and ,therefore, can be ad
dressed by the driver for data transfer. The user 
space is addressable at this time and information 
about the running process can be placed in this area 
by the driver. 

Contrary to this, during interrupt-time execution, 
the device has interrupted the CPU. At this time 
the running task may not be the task that requested 

2-129 280041-001 



inter AP-184 

I/O to/from the device. Usually, the task-time por
tion of the driver has exited after the I/O request 
and that process may have been swapped out. 
Hence, the u-area and the user data space cannot 
safely be accessed or used at interrupt time by the in
terrupt service routine. However, the interrupt ser
vice routine gets relevant information(about what to 
do) from the task-time portion of the driver via 
static variables. Obviously, from the nature of task
management, interrupt routines are limited in beha
vior and they cannot make assumptions about the 
state of the system or the presense of tasks/data in 
the system. Figure Sa illustrates the distinction be
tween the task-time portion and the interrupt-time 
portion of any driver that has to evidently cater and 
respect the realities of task vs. interrupt -time 
execution. 

Task and interrupt-time routines are separate but 
they may call common data-manipulating routines. 

TASK 

One such routine is called by bOth sides and manipu
lates common buffers used (will be discussed later). 
There is a mechanism used for mutually excluding 
an update attempt of one routine from another. This 
mutual exclusion technique is required as the 
asynchronous portion of the driver may be-removing 
an elem'ent from a list, for example, while the 
synchronous portion of the same driver may be plac
ing an element onto the list. The technique basically 
deals with the interrupt structure and priorities of 
the system. For further details on the interrupt 
mapping, see Interrupt Mapping(Appendix D). 

The operating environment, and the' nature of tasks 
have been discussed only briefly as the device driver 
is the main focus of this application note. To bring 
together the basic components of the roadmap 
(Section 3.0) i.e. how the process, the kernel and the 
driver communicate, a brief description of the basic 
I/O path through the system follows. 

INTERRUPT 

\ 

KERNEL 

YES 

TASK 
PORTION OF 

DRIVER 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

\ 

Figure 5a. Task vs.lnterrupt Time Execution 

2-130 

1983 

280041-001 



inter AP-184 

6.3 1/0 Path Through the System 

Thus far, the driver interfaces have yet to be 
discussed. Knowing the environment a driver exists 
in is sufficient for understanding the 110 path 
through the kernel when liD system calls are made. 
This will explain how the components of the road
map (Section 3.0) interact. To illustrate the way all 
these device tables and system calls relate, the fol
lowing caIling sequences are presented. Details have 
been avoided to simplify the concepts described. 

1* 
* user program makes system call 
*/ 

fd = open ("/dev/ttyb1 ",1) 

1* 
* the kernel reacts with 
*/ 

1) The kernel entry routine gets the system-call 
trap, determines it's an "open" call and calls 
"open" in the kernel. 

2) Open calls a procedure to parse the path-name 
(nami) and turn it into an inode. An inode is the 
structure that represents a file in the file-system. 

3) Open notices thai the inode represents a'charac
ter special-file and not a normal disk file. Thus, 
it accessed the cdevswll table using the major 
number in the inode, and calls the device
drivers open procedure. 

4) The driver's open procedure does whatever it 
needs to do i.e. opens the device. It sets 
u.u.-error if an error occurs and returns. 

5) If the driver did not declare an error, open allo
cates a file-descriptor in the user-process, and re
turns it. 

6) If the driver returned an error, open simply 
passes it back to the user program. 

1* 
* user program does 
*/ 

read(fd, buf, 128); 

1* 
• kernel does 
0/ 

1) The kernel gets the system-call trap, determines 
it is a read call and calls read in the kernel. 

2) Read uses the "fd" argument and determines 
which inode it represents. 

3) The inode indicates it is a character special-file. 
Thus, read uses the major device number 
stored in the inode to access the cdevswll table 
and calls the drivers read routine. 

4) The drivers read routine does whatever it needs 
to do transferring data to the user's buffer. If 
any errors occur, it sets u.u_error. In any case, 
the driver eventually returns after having trans
ferred the data. 

5) The read routine returns to the kernel, which re
turns to the user program. 

The liD path will be elaborated on with details on 
driver functions with respect to block lID. For the 
time being, the above sequence should be used as a 
template. 

7.0 THE ANATOMY OF THE 1/0 SYSTEM 

This discussion covers how the kernel and the driver 
communicate (See Section 3.0 Roadmap) and can be 
best broken down into two stages. They are: 

1) the block interface 

2) the character interface 

The following discussions go into much detail on 
how the buffer schemes for block and character liD 
devices work. These details are not needed for 
device driver writing. However, knowledge of the 
kernel buffers for block I/O devices and the charac
ter lists for character I/O devices will be useful when 
debugging begins. This knowledge will help the 
device driver writer to understand the inner work
ings of the driver he/she is writing. 

7.1 The Block Interface 

Much has been discussed about what block I/O is. 
Block I/O transfers require the kernel's intervention 
when they occur. All block transfers require the use 
ofI/O buffers. These buffers are used as a temporary 
storage area for caching and blocking/deblocking. 
Usually, data transfer occurs between user space and 
devices via these system buffers (see figure 5b). 

Each buffer is BSIZE bytes long and has a buffer 
header corresponding to it. BSIZE and other system 
level constants are defined in param.h (Appendix 
E) The header file buf.h defines this buffer header 
structure(Appendix F). Buf.h also describes how 
these kernel buffers are structured. Although it is 
not necessary to understand all fields in the buffer 
header, some fields must be noted: 

b_dev- device number 
b_blkno- block for the transfer 
b_bcount- bytes to transfer 

2-131 280041-001 



AP-184 

b_cylin
b-llddr
bJiags-

cylinder number 
address to be transferred from/to 
nature of transfer i.e. B-READ 

7.1.1 THE SYSTEM BUFFERS 

Consider a list, called the freelist, that is initialized 
to be a circular doubly-linked list of buffer-headers. 
Each header in the list has a pointer to its own 
BSIZE buffer. Figure 6a shows this list with forward 
and backward pointers avJorw and av_back. Con
sider another list called the device list. This list 
hangs off each device driver. The buffers forming 
these device lists are device request that are waiting 
to be serviced. At start state these lists for each 
device are empty and their headers point to them
selves with b_forw and b_back. (figure 6b). Each 
device has its own queue structure that exists to 
schedule I/O requests. This queue is structured 

7 

exactly like the freelist, i.e. is doubly linked and 
circular. The head of this queue called the static 
buffer header, is a buffer-header just like all the 
others. However, some irrelevant fields that it holds 
(used by other headers in the queue) are 
redeclared (aliased). These redeclarations are found 
in buf.h. Here, av_forw, av_back, bJorw, b_back 
used on the same buffer headers but form two con
current lists. Remember, the free list is the master 
list. b_f1ags determines, for the enquirer, if the 
buffer is BUSY, WAITING and the like. Details of 
these flags are found in buf.b also. (for further 
details about flags see ref 1). 

The configuration file c.c (appendix A) holds the 
data structure bdevsw[ I which is the table of device 
driver routines indexed by their major number. The 
last element in this structure for each device is ixxx
tab (see naming convention - Appendix G) where 

i/ 
II 

II 
U 

If 

BLOCK 
DEVICE: 

1986 

Figure 5b. The System Buffers 

2-132 280041-001 



inter AP-184 

FREE LIST DEVICE LIST 

ixxxTAB :\ 

6J~ .s6)J "-'0'. 

CGJ) 
AV_BACK CGJ) AV_FORW 

( ) 
• 
• (61 

Figure 6a. 

xxx is the device identification number e.g. 215, 
544. xxxtab is the pointer to the system buffers for 
that device i.e xxxtab is the static buffer header ad
dress for the queue of device request. Remember 
that at start state, these queues are empty. 

When a user process requests a write (as a first 
request) a buffer header from the free list is removed 
and placed on the device list. The av-pointers of the 
freelist are unused and b_pointers are now used in 
the device list. The av _pointers are re-declared to be 
b..actf and b_actl respectively. These links ar.e used 
to form a new list using the same buffer headers that 
are in the device queue. Think of two lists i.e. the 
device list (with items plucked from the free list) 
using all four pointers ,thus being members of two 
lists superimposed (see figure 6b). But why two lists 
superimposed? Well, at first there were two lists -
the freelist and the device specific list (of course, 
each device has one device specific list but for this 
discussion let it suffice to have only one device). 

U pan a request, the kernel takes a buffer header 
from the freelist and places it on the device queue. 
The kernel also places details of the write request 
into the buffer header fields. As the kernel manages 

1988 

Start State 

these buffers, the address of this buffer header is 
given to the device driver. The driver calls a routine 
disksortO which takes the buffer header and orders 
it in the device specific queue using not the b_point
ers but the unused av_pointers. Note that the buffer 
header is already in the device queue with the 
b_backlb_forw pointers active. DisksortO orders 
these requests into cylinder order on insert using the 
avJorw (b..actf) and aLback(b_actI) pointers form
ing a new list of optimally ordered requests (see 
figure 7a). 

There are tb,ree lists formed here: 

1) the device specific list hanging off the device 
driver (cdevsw = = > xxtab) 

2) the active list that uses the same elements in the 
device list but uses the av _pointers ordered by 
disksortO 

3) the free list of buffer headers using the av_point
ers before redeclaration. 

Thus, the write request is then ordered into the 
active list for the device. 

2-133 280041-001 



inter AP-184 

FREE LIST DEVICE LIST 

6) 
CGJ) 
(6)) 
(6)) 

• 
• 
• 

6) 1989 

Figure 6b. Buffer placed in device list by kernel 

The task-time portion of the driver has been running 
all this time and this task portion returns after it h~s 
made the request. The user process sleeps on the 
event that the device will complete the requested 
transaction. In other words, the task sleeps on the 
buffer-header address. The sleepO instruction per
mits a context switch within the operating system. 
The operating system can then schedule other tasks 
for CPU attention. 

The device, on completion of the requested write 
will interrupt the CPU. The interrupt, through the 
XENIX interrupt scheme, will invoke the respective 
interrupt service routine which is in the interrupt
time portion of the driver. This is done 
asynchronously. 

This interrupt service routine will awaken all pro
cesses associated with the event using iodoneO (see 
section 7.1.2). Note that for write, the task-time por
tion was responsible for the transfer of data from the 

user space to the buffers while the interrupt service 
routine is invoked when the data in buffers are writ
ten to disk. Th'e relevant process, on awakening is re
scheduled by the scheduler to run as soon as 
possible. The interrupt service routine then checks 
to see if there are other pending requests on the 
device specific queue. If not empty, it instigates the 
next transaction from the next buffer on the device 
queues (by following the av_pointers now declared 
b.-actflb_actJ) . 

When interrupt routines are alive and running, 
mutual exclusion(mutex) is ensured by raising the 
priority level of the running task in the CPU and on 
completion, lowering the priority level. Details of 
this technique is found in Interrupt Mapping ( Ap
pendix D ). This technique locks out interrupts of an 
equal and higher level than itself for a short period 
when shared data structures are manipulated. The 
interrupt service routine may be looking for the next 
request on the device queue, when the task-portion 

2-134 280041-001 



inter AP-184 

FREE LIST 

• 
• 
• 

AV _FORW I AV _BACK 
USED 

DEVICE LIST/ACTIVE LIST 

AV _FORW I AV _BACK 
USED HERE BUT 

ALIAS ED TO 
B..-ACTF/B_BACTL 

(DISKSORT PLACES 
IT IN THIS QUEUE> 

1990 

Figure 7a. Another Request Placed in Device List 
and also Placed in Active List by Driver 

of the driver may be calling disksortO that orders 
the device list or when the kernel is placing the 
buffer header with a request onto the same list. 

On completion, the buffer header is marked as IO 
complete and this header is released from the device 
specific queue and placed at the end of the free list 
using the av_pointers. Note that the link to the 
active list is broken ( reusing the av _pointers). 
Remember also, that b_forw/b_back pointers are 
still maintaining membership with the device specific 
list even when the buffer is now a member of the 
freelist pool. Here is where the buffer is placed in 
cache. 

As shown in figure 7b,the buffer request X is placed 
on the freelist using the av_pointers but is still a lead
ing member of the device list. On the next request, 

the kernel will search the device queue (not the 
active list) from the beginning. As you can see in 
figure 7b, the list is diverted into another list of 
available but recently used buffers by following 
b_forw /b_back pointers. Here cacheing occurs as 
most recent transactions can be checked for 
repetition. Note that the X buffer will bubble up the 
free list until it will be re-used for other transactions. 
U ntiI then it is cached. ' 

2-135 280041-001 



AP-184 

FREE LIST 

DEVICE LIST I ACTIVE LIST 

AV.FORW/AV.BACK 
USED HERE 

~~ 

~tf'+~~S 
CACHE LIST HANGING 

OFF THE DEVICE 
LIST 

1991 

Figure 7b. When Request Grantfd the Buffer is Returned to Free List but Is Still a 
Member of the Device List and is cached. No Longer in Active List. 

For a review of the block drivers duties, in an I/O 
request, consider a read request and the following 
point-by-point discussion: 

user calls read 
READ 
{ 

· maps file fd to inode 
· calls readi ' 

readi (read inode) 
· determines block to be read (bmapO 

called) 
· searches buffer list i.e follows av_pointers 

matching block # to last read/write 
· if cached, copy into user space and return 
· if not cached, flush first buffer from free list 

2-136 

J 

.fill out buffer header 
. with device # 
. block # 

· call task-time portion of device driver 
· on return , 
· sleep on buffer header waiting for 

wakeup 
· copy into user space 

The device driver does 
{ 
issues or queues request to the device 
interrupt handler wakes processes when on I/O 

complete 
when awakened return to readi 
J 

280041-001 



AP-184 

NOTE: the above is only a specific example and a 
brief one. For example, details of the support rou
tines checking whether it is block/character read was 
not mentioned. 

So far, elements of the I/O system anatomy dis
cussed are invisible to the device driver writer. 
He/She need not know all of the intricacies of buffer 
management but there is a need to fully comprehend 
the routines to be written, the system calls available 
and the operating environment of device drivers. In 
accordance with this methodology, block drivers 
have, in their grasp, many powerful and consistent 
system calls available from the kernel. They can be 
called "driver support routines" because some of 
them are available to character drivers also. 

7.1.2 DRIVER SUPPORT ROUTINES 

The following list is an informal collection of possible 
support routines used in block I/O drivers and by 
the kernel. The kernel deals with the declarations 
for the arguments and on many situations, places 
values into these arguments. This is because the 
kernel is allowed access to most of these arguments 
and knows their values. Some of these calls are also 
used in character I/O transfers and will be referenced 
in the character interface description: 

physio (strat,bp,dev ,rw) 

where strat is the address of the strategy routine(a 
driver procedure) which is the routine that performs 
read, writes and starts up the device. This routine 
will be discussed in section 7.1.3. It takes, as an 
argument, a pointer to a buffer-header (bp) which 
holds detailed information about the transfer. 

where dey is the relevant device that character I/O is 
to occur to (the < major, minor > ) pair. 

where rw is a flag indicating the nature of the 
transfer(B~EAD, B_ WRITE in param.h} 

Physio is used by block devices which can be treated 
as character devices. In this case, transfer between 
user space and device space is done directly(direct 
I/O} with no intervening buffers. Remember that 
for this to be successful, physical 1/0 must occur 
when the instigating user process is in memory and 
active (and not swapped out). physio is a routine 
called by a driver for physical I/O on a device. 
Among other functions, physio checks the validity 
of the transfer request. The buffer header pointer 
that is passed to physio does not hold a buffer ad
dress but the address of the physical location in 
memory or the device, depending on the direction 
of the transfer. Physical I/O is a contiguous transfer 
feature that is used in tar, fsck and dd, among other 
utilities. 

2-137 

disksort(&xxxtab, bp); 

struct buff xxxtab 1* static buffer header * / 
struct buf *bp 1* new buff header to be inserted *1 

disk sort 0 is the assist routine ingredient to the 
buffering/cacheing protocol as it manages the active 
request queue. It takes, as arguments, the address of 
the pointer to the static buffer header for the specific 
device. The active request queue holds all requests 
for the device. bp is the pointer to the new buffer 
header that holds another request on the device. 
disksort 0 inserts this request in the queue of re
quests in cylinder/block order to minimize disk 
accesses. 

iodone(bp) 

struct buf *bp 1* header of completed request • / 

is a clean-up routine that informs the process that 
the request made is complete. iodoneO is called by 
an interrupt service routine and issues a wakeupO 
on the relevant event i.e. the buffer pointer bp. The 
routine pulls the request off the device specific 
queue and places it onto the free list. 

sleep(bp,prj), wakeup (bp) and iowait(bp) 

struct buf *bp 

Process/task synchronization is a required feature in 
the multi-user/multi-tasking XENIX Operating 
System. Processes have to be informed when to wait 
for the system's shared resources. The XENIX 
kernel provides two routines, sleepO/wakeupO, 
for this purpose. SleepO takes, as argument, a key 
or event that the calling process waits on. This key 
or event is nothing more that a bit-pattern. The key 
or event in this case is conveniently the buffer
header pointer that the task-time portion of a driver 
is using for the transfer request. To re-iterate, the 
task-time portion of the driver, when making an I/O 
request, may have to wait after the request is made 
until the actual I/O is completed. The waiting is 
begun by a system routine called iowaitO which is 
called by the kernel and physioO which is called by a 
driver in direct physical I/O (for magnetic tape driv
ers when driver calls stratO and waits for I/O t6 
complete). 

PRI, the second argument, is the priority at which 
the process is to sleep. The sleep priority is higher 
than what a user process can acquire. When the 
wakeupO occurs, the process continues at the sleep 
priority thus giving it a higher probability of being 
scheduled earlier. 

280041-001 



inter AP-184 

Priorities range from 0 to 127. Priorities are not 
bound by rules but the priority PZERO is used to dif
ferentiate two main situations that may occur. If a 
priority < PZEROis set for the sleep, no signal can 
wake up the process. Hence, the process will be awa
kened with an iodoneO in the future. With a priority 
> PZERO, signals will awaken the process even 
before iodoneO Also, smaller numerical priorities 
mean higher priority levels. The safer technique is 
therefore to place 'sleep' in a loop that tests if the 
buffer is available for continuation. Hence, if I/O is 
complete arid the buffer freed, the process is awa
kened legally. Otherwise, continue to sleep. 

Also, when the device returns an interrupt iodoneO 
is called which calls wakeupO that sets the 
event(buffer header) and induces life to all processes 
waiting on that event - not just the "first" one. Pro
cesses must therefore ensure that they are awake for 
the correct reason. One way to do this is for the task
time portion to check a predetermined static 
memory location for instructions left by the 
interrupt-time portion of the driver on completion. 

timeout(func,arg,time) 

int ('func) 0; 1* function called as argument * / 
int arg; 
int time; 

Arranges for func to be called with argument arg in 
time clock-ticks. timeoutO is a, facility that runs a 
procedure after n clockticks. The procedure is called 
at clock interrupt time and ,hence, conforms to the 
interrupt-time rules. Used for character I/O also. 

iomove(addr, count, flag) 

U sed for large data transfers. addr gives you infor
mation on where in kernel the transfer is to occur. 
count signifies the size of the transfer in bytes. Flag 
tells us if it is a B_READ/B_ WRITE. The other 
transfer address is found in the processes' u_struc
ture as u.u_base. 

7.1.3 BLOCK DEVICE DRIVER ROUTINES 

Briefly, a block device driver is composed of one or 
more of the following routines: 

jnitO is a routine called very early during system ini
tialization (at boot time) to initialize the device. It is 
called with no parameters and returns no values. In
terrupts are disabled at this time and the existence of 
the device is verified. It prints appropriate messages 
stating that the device is/is not found and remem
bers if the device is alive (sets a flag). This routine is 
called once. 

openO is a routine that opens the device. Prepare it 
for activity and is called on every open of the device. 

Its parameters are 
dev_tdev; 
int flag; 

open (dev ,flag) is the calling sequence where dey is 
< major, minor > device number and flag is either 
B_READ or B_ WRITE. The program validates the 
device number and sets-up initial parameters. Any 
errors detected is recorded in the u. u_error. The pre
sence of the device is verified before the open 
occurs. 

close (dev) 

is called on the final close of the device. The close 
routine flushes pending transfers in device specific 
queue and sets flags that remember that the device 
is closed. 

strat(bp) 

struct buf *bp; 1* pointer to buffer header * / 

Called by the kernel.in response to the user program 
instigating a read/write request. strat is "strategy." 
Inserts a request on the queue of device requests. 
The kernel provides a buffer header to the routine 
and it validates the header to ensure that it has all 
the necessary information ( e.g B_READ ). The 
driver routine calls startO and disksortO 

intr(IeveJ) 

int level; 

The interrupt routine is called by the kernel when 
the device interrupts. This routine is called when the 
device is moving from an active state to an idle state. 
If the device is active on entry to the interrupt ser
vice routine, the interrupt service routine was awa
kened by a spurious interrupt. ,If not, the device 
state is changed to idle. In this state, the previous re
quest was satisfied and an iodone should be called. 
The momentun is continued to keep the device busy 
by calling the startO routine if other requests are 
pending on the request queue (device specific 
queHe). 

startO 

This routine functions to move the device from an 
idle state to an active state i.e. it talks with device. It 
is called when the device is idle or a request is 
queued. It interprets the information on the buffer 
header at the beginning of the queue of device re
quests and sends commands to the controller. 

2-138 280041-001 



AP-184 

These routines form a file called ixxx.c where xxx is 
the numerical representation of the device (see 
Naming Conventions - Appendix G). This file 
should reside in /sys/io directory. Conventionally, 
cxxx.c an adjoining file is also created to identify any 
data structure relevant for the main program. cxxx.c 
resides in the /sys/cfg directory. Finally, constants 
and #defines are found in a header file, generally 
"included" in cxxx.c, called ixxx.h. This file is creat
ed in /sys/h. Hence, a driver for the iSBC 254 
Bubble Memory board should be composed of: 

i254.c main driver routines 
i254.h the header file 
c254.c the configuration data structures 

With this brief description of the driver routines, a 
casual discussion of how these routines interact with 
each other and the kernel is a natural follow-up. 
Some reiteration of previous details is necessary to 
give an overall consistent discussion. 

7.1.4 REVIEW 

User requests to be performed on a device (usually 
on a file living on the device) are converted by the 
kernel to simple requests for I/O which are passed to 
the driver. The kernel does any blocking/deblocking 
and cacheing to minimize device accesses. Strate) 
and IntrO are the main routines required of a block 
device driver. The request which is passed to the 
strate) routine is passed in the form of a pointer to a 
buffer header. This header contains all the informa
tion necessary to perform the operation - B_READ, 
B_ WRITE, device address to use e.g. which track 
and sector, and the address of the kernel buffer 
from which the data should be taken or into which 
the data should be placed. The buffer header points 
to BSIZE'd buffers and the request will always be for 
BSIZE operations. 

Be sure to keep in perspective the level of software 
being discussed - the driver itself sees only requests 
for transfers to or from a physical block of the device 
- entities like file-structure, disk space allocation, or 
blocking/deblocking of small or large requests are all 
performed by higher level kernel software. All the 
device driver needs to do is examine a request, 
determine whether it is a read or write and perform 
the operation between the indicated memory address 
and the indicated block device. 

7.1.5 STEPS TAKEN TO SATISFY REQUESTS 

This discussion centers around the strate) and intrO 
routines. All requests are passed to the driver by the 
kernel by calling the stratO routine, with a single 
parameter - a pointer to a buffer header. As before, 
the header specifies the type of operation that is to 
be performed, the memory and device addresses to 
be used, and a field for recording the result of the op
eration after it has completed. The stratO routine 
places the incoming request on the linked list of 
active requests to be performed. If the device is cur
rently busy performing a previously queued request, 
the stratO routine has finished its job and returns. If 
the device is idle (j.e. the request is the only one on 
the active list), the strate) routine must initialize the 
operation for the request. This typically involves 
loading parameters into a peripheral controller and 
initiating a command. At this point, the stratO rou
tine has completed and returns. 

After a command is started, it is typically a long-time 
(by cpu standards) until the request is completed 
and an interrupt occurs. The interrupt routine must 
field this interrupt and determine the reason for it. If 
it is the expected "operation-complete" interrupt, 
the interrupt routine should perform any operation 
needed to complete the transfer, then call the 
iodoneO routine with a single parameter - the 
pointer to the buffer header of the request just 
completed. The iodoneO performs some clean-up, 
notably waking up the process which was waiting for 
the I/O to complete. At this point, the interrupt rou
tine may determine if other requests are waiting in 
the active request queue for the device, and if so, 
initiate the next one by calling the startO routine. 
Once done, the interrupt routine returns with its jo b 
done. The interrupt routine is a trigger that keeps 
firing-up new requests as they are discovered on the 
queue. Once the list is exhausted, the intrO routine 
returns without starting another request (none there 
to start) and the seed is lost and the sequence stops. 
The strate) routine must start another request to 
"prime the pump" and start the momentum again. 

With this understanding of driver routines, a pseu
docode example of the iSBC 254 Bubble Memory 
board driver will complete the discussion of block 
I/O device drivers. As mentioned, this section of 
block I/O is not the main thrust of the application 
note as emphasis has been placed on the character 
interface. This discussion will culminate in a pseudo
code walkthrough. 

2-139 280041-001 



AP-184 

7.1.6 iSBC@ 254 BUBBLE MEMORY BOARD WALKTHROUGH 

1/" 
2 • SBC 254 Bubble Memory board device driver. (Pseudo-code) 
3' 
4" - implements block and raw interfaces for an SBC 254 -1, -2, or -4. 
5 • - always accesses all bubbles in parallel, meaning that there are 
6 • always 2048 pages on the board, and the page size can be 64, 128, 
7 " or 256 bytes (see c254.c) 
8 • - will handle only one 254 
9 * - uses DMA mode for bubble accesses 

10' - I/O base address and number of bubbles configurable in c254.c 
11' 
12 * 
13 "f 
14 
15 #include " .. fhfparam.h" 
16 #include " .. fhfsystm.h" 
17 #include "../hfbuf.h" 
18 #include " . .lhfconf.h" 
19 #include " . .Ihfdir.h" 
20 #include " . .Ihfuser.h" 
21 #include " .. /h/i254.h" 
22 
23 
24 extern 
25 

struct i254cfg i254cfg;1* see c254.c 
• for values, i254.h for definition 

26 
27 struct 
28 struct 
29 

buf 
buf 

"f 
i254tab; 
i254rbuf; 

f* static buffer header • f 
1* static buffer header for 

rawinterface * f 
30 short i254alive, i254isopen; 
31 

1* device existence, open flags * f 

321* 
33 * i254init - called early in the system initialization - probes for 
34 • 254 by resetting it and watching for appropriate reaction 
35 *f 
36 i254initO 
37 ( 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49) 
50 
511* 

1* 
• this is the first routine of the driver that will be called, 
• it's a good time to clear the i254isopen flag 
*f 

i254isopen = 0; 1* 254 is closed * f 

1* 
* more stuff to init the board and check status 
*f 

52 • i2540pen - checks for correct minor number(O} ,and existence of the 
53 * board, and either allows or disallows the open 
54 *f 
55 
56 i254open(device, flag} 
57 dev_t device; 1* device number *f 
58 int flag; 1* what kind of open (for reading, writing, etc.) 

2-140 280041-001 



inter AP-184 

59 
60 { 
61 
62 
63 
64 
65 
66 
67 
68 
69 } 
70 
711* 

we'll ignore this 0, 
if ((minor (dev) = = 0) && (i254alive» { 

i254isopen = 1; 1* mark 254 as open 0, 
return; 

} 
else { 

u.u_error = ENXIO; 
return; 

72 °i254strat - queues the flO request and starts it if the device is idle 
73 0 , ' 

74 i254strat(bp) 
75 struct buf *bp; 
76 
77 { 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
921* 

int x, startpage, numpages, ppb; 

1* 
o first thing to do is check device is open; otherwise, allow 
o no I/O 0, 

if ( - i254isopen) { 
bp->bJlagsl= B..ERROR; 
bp->b_error = ENXIO; 
iodone(bp); 1* mark it done 0, 
return; 

93 * convert the block number to a page number, and the number of 
94 0 blocks to number of pages, and the starting block to the starting 
95 • page - these could be sped up with some appropriate shifts instead 
96 * ot· and' *' 
97 *' 98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
III 
112 
113 
114 
115 
116 
117 
118 

ppb = BSIZE' i254cfg.c_page..size; 1* pages per block 0, 
numpages = bp- > b_bcount • ppb; * number of pages 0/ 
startpage = bp-> b_blkno * ppb; 1* 1st page of transfer *' 

1* 
• Now check the requested' operation for validity in terms of the 
* the number of pages on the device. 
• Here's the thinking: 
• if request is READ on 1st block after the last block -> EOF 
• " " " WRITE" " " " " " " ... > error 
* " " " READ or WRITE 2 or more pages past the end - > error 
o if request starts on valid page, but runs offend -> EOF 0, 

if (startpage > BUBPAGES) { ,0 2 or more after last page, so error • / 
bp->bJlagsl= B..ERROR; 
bp->bJlags = ENXIO; 
iodone(bp); 
return; 

2-141 280041-001 



AP·18'4 

119 } 
'120 if (startpage = = BUBPAGES) ( 
121 1* 1 st ,block after last one *' 
122 if(bp->bJlags&B-READ) 
123 bp- > bJesid = bp-> b_bcount; '* read, so just EOF *' 
124 else { 
125 * write, so error *' 
126 bp->bJlagsl= B..ERROR; 
127 bp-> b..error = ENXIO; 
128 } 
129 iodone(bp); 
130 return; 
131 } 
132 if «startpage + numpages) > (BUBPAGES -1)) ( 
133 1* starting ok, but running off end *' 
134 bp- > bJesid = bp- > b_bcount; 
135 iodone(bp); 
136 return; 
137 
138 
139 1* if we're here, request looks OK, so queue it and 
140 * (if necessary) start it 

141 *' 
142 
143 bp->b..cylin = startpage; 1* use page number as sort field *' 
144 

145 '* 
146 * Since we're about to play with the queue, and this can be 
147 • accessed at any time via the interrupt handler, we need to 
148 * shut down this interrupt level to provide mutex 

149 *' 
150 
151 x = SPLO; 
152 disksort(&i254tab, bp); 
153 if(i254tab.b...active = = IOJ:DLE) i254start(bp); 1* start if idle *' 
154 splx(x); 1* reenable this interrupt level·' 
155 } 
156 i254start(bp) 
157 struct buf·bp; 
158 
159 1* this routine is the most device specific of all others. 
160 The routine is called by both stratO and intrO at task-time 
161 and interrupt time. It starts up the device ifit is idle and 
162 keeps the momentum going with other requests. 

163 *' 
164 
165 1* 
166 *i254intr - interrupt handler-checks status of operation just completed 
167 * and starts new operation if one is queued 
168 ., 
169 i254intr(!eveI) 
170 intIevel; 
171 { 
172 short stat; 
173 
174 1* 
175 • point to first buffer header in the active queue, making sure 
176 * that it's actually pointing to a buffer header 

177 *' 
178 

2-142 280041-001 



AP-184 

179 if «bp = i254tab.b--<lctO = = NULL) { 
180 printf("No active buffer header, i254intr, level %dO, 
181 level); 
182 return; 
183 
184 
185 1* 
186 • clear the interrupt source and disable DMA 
187 *j 
188 
189 outb(i254cfg.c_base_port + BMCCMD, CLRINT); 
190 outb(i254cfg.c_basLport + DMAMODE, DMADIS); 
191 
192 1* 
193 * Now look at the status of the BMC to determine if this is the 
194 * successful end of an operation. Report any errors encountered 
195 *j 
196 
197 stat = inb(i254cfg.c_base_port + STATUSPORT); 
198 if (stat & BMCBUSY) { 
199 printf("BMC still busy, i254intr, status = %dO, stat); 
200 return; 
201 ) 
202 if (stat & (BMCOPFAIL 1 BMCTIMERR 1 BMCUNCERR» ( 
203 # ifdef VERBOSE 
204 printf("Error, i254intr, status = %dO, stat); 
205 #endif 
206 1* call deverror here? *j 
207 bp- > b_flags 1= B-ERROR; 
208 bp- > b~error = EIO; 
209 ) 
210 else if (stat & BMCCORERR) 
211 printf("Cor error, i254intr, status = %dO, stat); 
212 
213 1* 
214 * At this point we have determined that a legitimate bubble interrupt 
215 * has occurred, and if there has been an error, it's recorded. Now 
216 * we need to mark the operation as complete and start the next request 
217 * in the queue (if there's one there). 
218 *j 
219 
220 i254tab.b_actf = bp->avJorw; 
221 iodone(bp); 
222 if «bp =i254tab. b--<lctO = = NULL) { 
223 i254tab.b_active = 10_IDLE; 
224 return; 
225 
226 
227 1* 
228 * At this point, bp is pointing to the next request in the 
229 * queue, so start it. 
230 *j 
231 
232 i254start(bp); 
233 
234 
235 1* 
236 * i254close - clears i254isopen flag 
237 *j 
238 

2-143 280041-001 



AP-184 

i254close(device) 
dev_t device; 
{ . 

i254isopen = 0; 
J 

1* 

239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 J 

* i254read - RAW interface read routine - calls physio 

*' 
i254read (device) 
dev_t device; 
{ 

physio(i254strat, &i254rbuf, device, B-READ); 

i254write(device) 
dev_t device; 
{ 

physio (i254strat, &i254rbuf, device, B_ WRITE); 

The i254initO routine Oine 36) reports on the 
devices it expects to find and the ones it actually 
finds. The normal procedure is to give the device 
some command ( usually a reset or initialization), 
then do a busy wait loop, waiting for a "sign-of-Iife" 
from the device. of course, the busy wait loop 
should have some other form of termination, so that 
a non-responsive device does not cause the system 
to hang at the point. Usually, a simple counter to 
limit the time spent in the wait loop is used. The 
i254initO routine (Jine 36) writes a message to the 
console, such as "SBC 254, port Ox040 found" or 
"SBC 254, port Ox040 NOT found." Also, it is usual 
to let the i254init 0 routine set a flag which indicates 
the presence or ab'sence of the device. The 
i2540pen 0 routine (line 56) then checks this flag 
and will return an error if an open is attempted on a 
non-existent device. 

The i254openO routine (line 56) is called upon each 
. open on a device and provides an opportunity for 
doing any device set-up that is required. This could 
be the routine that spins-up a Winchester disk, or 
turns on the motor of a mini-floppy. As before, the 
i2540pen 0 routine should check for device existence 
flag, set by the i254initO routine, and return an 
error if necessary. 

The i254stratO routine (line 72) is the routine 
which actually performs the bulk of the work in any 
block device driver. The stratO routine queues the 
new request onto the active queue (of the device 
specific queue). This queue is a linked list of buffer 
headers which contains data transfer parameters and 
are awaiting service. A t the head of this list is a static 
buffer header that is called ixxxtab, where xxx is the 
device handler prefix that is used on all the proce~ 
dures composing the device driver (see Naming 

2-144 

Conventions - Appendix G) In this case"xxx" is 
"254." This header contains pointers which make 
forward and backward links to other buffer headers 
ih the list ( remember bJorw/b_back). Besides the 
list of pending device requests, the buffer headers 
can also be linked onto a free-list, which contains all 
the buffer headers which are not set-up for an opera
tion using avJorw/av_back. A third list contains the 
buffer headers that are currently available or have 
been used(cache list). This list is the cache mecha
nism which the kernel uses by looking down to see if 
perhaps it can re-use the data from another request 
and avoid physically accessing the device again. It is 
managed with the aLforw/aLback pointers re
declared. Details of these buffers and how they are 
managed are found in Block I/O Interface (Section 
7.1). 

The actual manipulation of the device list and the 
free list is handled completely by the kernel with its 
higher level routines and does not need to be the 
concern of the device driver. The active list ( device 
specific list with av_pointers) is managed by the 
device driver, but usually can be handled by a couple 
of provided subroutines, so that the driver does not 
have to explicitly deal with the pointers which struc
ture the list. DisksortO is the routine normally used 
to place a buffer header onto the active list. Remem
ber the active list is a reordered version of the device 
list. Besides the actual mechanics of updating the 
list, disksortO also provides a sorting facility which 
orders the active requests by cylinder number, to 
minimize seek time between requests. Since the 
disksortO routine is general in nature, and does not 
know of the specific physical characteristics of partic
ular devices, its algorithm for sorting is to simply 
order requests based on the cylinder field of the 

280041-001 



AP-184 

butTer header. By filling in this field with an appropri
ate number i254stratO can effectively implement 
sorting routines which correspond to the device 
being handled. For example, on a bubble memory 
board, there is no such thing as a cylinder. By order
ing requests based on the page numbers, seek time 
can be minimized between successive bubble 
accesses. So, the i254stratO routine may just drop 
the page number into the cylinder field, and let 
disksortO do the rest. If a more complex algorithm 
is desired, the i254stratO routine can implement it 
and handle the insertion onto the active list itself, by
passing use of disksortO completely. When a trans
fer is complete, the butTer header is removed from 
the active list ( avJorw/av_back removed) by the 
routine iodoneO. This is typically called by the 
i254intrO routine (!jne 169). 

After i254stratO has queued a request onto the 
active list, it must check and see if the device is cur
rently in the process of performing an operation. If 
so, the 1254intrO routine will start pending 
requests, and i254stratO's work is done. If the 
device is not busy, i254stratO must start the opera
tion to satisfy the request. Since the responsibility of 
starting an operation rests with both i254stratO and 
1254intrO routines, depending on the 
circumstances, the code used to start a request is 
usually placed into a procedure call i254startO (!jne 
156), which is then called by i254stratO/1254intrO. 

The i254startO routine is typically the most device 
specific routine in the set composing the device 
driver. It examines the next request on the active 
lists, sets-up the operation accordingly and starts it. 
Thus 1254startO is the'routine which does output to 
I/O ports and is generally cognizant of the details of 
performing a function with the device. Once 
i254startO .is called to initiate a transfer, i254stratO 
is complete and returns. 

The 1254intrO routine (Hne 88) is called by the 
kernel when -an interrupt from the device occurs. 
Details of manipulating the interrupt controller have 
already been handled by the kernel, and the only 
thing 1254intrO needs to be concerned about is han
dling the device itself. The interrupt typically occurs 
to indicate that the transfer is complete. Once 
1254intrO has determineed that this is the case, it 
should do anything necessary to finish up the opera
tion as far as the device is concerned, set the status 
field in the butTer header to indicate successful com
pletion of the operation, and then call iodoneO (tine 
221) to finish up as far as the kernel is concerned. 
iodone 0 performs several function-s, amQng them, 
awakening the process which was waiting for this op
eration to complete, removing the butTer header 
from the active list and placing the butTer header 
onto the free list. If the interrupt occurred as a result 
of the operlltion tenpinating unsuccessfully, th(~ 
status field (u.u..error) should be set and iodone ) 
should be called. Once done, 1254intrO must then 
check and see if there are other requests waiting in 

2-145 

the active queue. If so, the i254startO routine 
should be called to start the next request. 

Obviously, i254strat0l1254intrO manipulate 
common data structures. Because the i254stratO 
routine can be interrupted at any time by the occur
rence of an interrupt (and the subsequent execution 
of the interrupt handler), care must be taken such 
that the interrupt routine does not "clobber" some
thing that i254stratO was in the process of 
doing(e.g. like adding a request to the queue, check
ing to see if the device is active etc. ). The only 
mechanism available to achieve this mutual 
exclusion(mutex) is to shut down the interrupt level 
used by the device while 1254stratO is in the critical 
region(s) of code. The sJpN routines are used to do 
this (see Interrupt Mapping for details - Appendix 
D). 

The i254c1oseO routine (Hne 239) is called only 
once by the kernel This routine should also c1ean
up(e.g. turn otT a minifloppy motor) for whatever is 
appropriate for the device. 

Finally, the i254startO (Hne 156) routine is called 
by both the interrupt routine and the strategy routine 
i.e. at task-time and interrupt-time. As described 
before, the routine checks to see if more requests 
are on the device queue and outputs the appropriate 
commands to the ports. 

7.1.7 FINAL LOOK AT BLOCK DRIVERS 

Note that the above discussion on block I/O devices 
and interfaces is as detailed a discussion as possible 
given the fact that the next step is to look at existing 
code and work from it. Device drivers are seldom 
written from scratch. They are usually based on ex
isting examples. However, there will be problems if 
every detail about the device is not understood. 
Knowing the device and its intricacies is of utmost 
importance to developing a device driver for it. 

Kernel overhead is high for block I/O devices i.e. 
the kernel works hard for these drivers. But not all 
of driverideology can be viewed through such struc
tured notions as butTers, blocks and the like. Drivers 
have an unstructured side to them. This side is the 
char\lcter I/O interface. 

7.1.8THE RAW (CHARACTER INTERFACE) 
TO A BLOCK DEVICE 

A block I/O device like a disk can have a character 
110 interface. Note that a new set of routines, 
namely ixxxreadO, ixxxwriteO and ixxxioctIO 
etc. have to be created for a block device. These rou
tines implement the character interface for a block 
device driver. This character interface permits a 
block device, like a disk, to have direct I/O or byte 
I/O transfer capability. The data structure cdevswl I 

280041-001 



inter AP-184 

in c.c shows that the disk has both character and 
block interfaces. Notice that certain locations 
unused in cdevswll are either titled nulldev/nodev. 
Nodev is a macro that implies a PQsition in the array 
that is invalid i.e. printers cannot read. Nulldev is 
nothing Il).ore than a no-op, that implies it is legal 
but not implemented. 

Moving away from these details, the respective char
acter 110 reads and writes merely call physioO (see 
Device Driver Support Routines Section 7.1.2). 
With this call, 

I) the user process is locked in memory 

2) stratO is called with the butTer header already 
updated with the transfer information. 
However, the address of the transfer is not a 
butTer header address but a physical location. 

3) iowaitO is caHed which will wait for I/O 
completion. 

The character 110 interface is often called the raw in
terface and is used in general utilities like dd and tar. 
This interface is fast, unstructured and does not go 

stru 
ct 
clist 
{ 
int c_cc: 
char *c_cf: 
char "c_cl: 
J 

r characters in the list *1 
1* ptr to first char *1 
/* ptr to last char "I 

through the kernel buffer. scheme. Further details 
can only surface by investigating the character I/O 
interface. 

7.2 The Character Interface 

Character I/O is synonymous to "byte" I/O or direct 
I/O. Terminals and ·printers fall under this category 
of relatively unstructured I/O mediums between 
device and user-space. In general, to access character 
I/O devices, user processes must be locked in 
memory and hence, for overall system throughput, 
these devices must be fast. For relatively slQwer 
devices (guess who? = = > terminals), a data buf
fering mechanism is employed. These Queues are 
character-based and, hence, are used only for small 
data transfers. 

7.2.1 CLISTS 

Each driver that wishes to use these butTers declares 
a static butTer header. These butTers are called clists 
and are linked-lists of butTers. The ·butTer header is 
declared in tty.h (Appen\iix H). The struc.ture of the 
header is: 

2-146 280041-001 



AP-184 

These dist-headers point to character-holding links 
that contain four-word blocks of characters( pointer 
and six characters ). Each driver program declares its 
own clists and this structure accumulates clist
structure-elements (as data transfer prevails) from a 
"freelist" of buffers. The buffer mechanism is 
simple compared to the block interface as only a few 
routines manipulate the dist structure. 

Two routines, geteO and puteO manipulate the dis!. 

1) geteO removes a character from the list and 
moves e_cf forward if it not in a block boundary 
i.e. it is not in the end of a six character 
boundary. If it is, the pointer ccf is set to the 
beginning of the next block and the block that 
the last character was read from is placed in the 
freelist ( see figure 8a and b). 

2) Consequently, puteO places a character in the 
list and obtains a new block when necessary (see 
Useful Routines). 

If precautions are not taken, the freelist may be ex
hausted by one process. This is alleviated by defining 
two marks - a low and high -water mark in tty.h. 

FREE 

These marks are maintained for each dist by rou
tines that manage them. When a process requests 
more than its high-water mark, it puts itself to sleep 
until there are more fre'e to use i.e. when the c1ist is 
flushed and it hits its low-water mark). This is an 
output feature (cannot suspend keyboard input!!). 
This will alleviate the problem of any process 
dominating the freelis!. Low speed character devices 
are assisted by the c1ist structure declared by the rele
vant driver. Each driver that deals with byte I/O 
must declare dist structures required for each opera
tion i.e. an input dist and an output clis!. 

7.2.2 TERMINAL I/O 

Each terminal line is associated with line characteris
tics called the tty structure. Details of these are 
found in the manual section of tty (4) in the XENIX 
Operating System Documentation (I 73258-000. 
The file tty.h describes the tty structure for each line. 

There exists a set of routines that manipulate this tty 
structure.These routines are found in tty.c (not 
attached) and are termed "line diSCIpline routines." 
In /sys/eonf/c.e (Appendix A) these routines are 
outlined under the data structure Iineswll. These 

C_CF 

~ 
- ---

C_CL 

Figure 8a. clists - free list and clist for a device notice they pOint not to 
firstllast character. 

2-147 

-

1984 

280041-001 



AP-.184 

I ~ .IE]-FREE 

'I 
-

C_CF t-- ~ 
C_CL r-

1985 

Figure ab. When getcO takes last char on first block, the clist structure is 
returned to FREE LIST. 

routines are preceded by "tty" or "tt" (Naming 
Conventions). A summary of these routines is 
found in tty. help (section 7.2.4). 

Coming back to the tty structure(Appendix H), 
three queues are identified for use by each terminal 
interface. Thes~ structures are clists and are: 

. the output queue 

. the input queues 
. the canonical queue (cooked) 
. the raw queue 

Three static buffer headers (dist headers) are estab
lished in the tty structure for each line. The output 
queue facilitates output to the terminal using the 
highllow-water marks as gauge. The raw queue is 
used as the first input vehicle where all characters 
input are placed. It is from here that the terminal 
echo occurs. Notice that echo response is generally 
quick and is irrespective of whether the requesting 
process is in or out of memory. The canonical queue 
is that queue maintained for each line that respects 
all characters especially those that are dependent on 
surrounding characters i.e. backspace, delete, charac
ter expansion etc. This queue is also called the 
cooked queue to symbolize a - raw (not raw) queue 

2-148 

to further establish that XENIX is not lacking in 
humor! Two queues live to serve the goal of quick 
and consistent character treatment. 

The tty.c (line discipline) routines are invisible to 
the driver-writer. Once these routines are called, 
they do most of the work. The queue manipulation 
and I/O functions are purely interface functions that 
are not in the driver code . 

As mentioned before (Section 6.2), the function of 
any driver can be partitioned into task vs. interrupt
time execution. For character device drivers, the 
task-time portion deals with moving data to/from 
the user space and the dist queues. This movement 
(transfer) uses data derived from the users U.-!itruc
ture e.g. u.u_count is decremented on data transfer 
(no device driver involvement) that is performed by 
the tty.c routines. 

The interrupt-time portion of the driver manages 
the transfer of data between the device and the dist 
queues (namely, the raw and output queues). 

280041-001 



AP-184 

7.2.3 USEFUL ROUTINES 

The following are useful kernel routines used by the 
line discipline routines. Further routines are found 
in Device Driver Support Routines (section 7.1.2). 

int getc(queue) 
struct clist *queue; 

Returns a character from the c1ist queue or -1 if the 
queue is empty. The queues are either the raw, 
canonical or output queues. 

int putc(c,queue) 
struct clist *queue; 

Puts a character "c" on the queue. Returns "0" if 
the character is placed and "-1" if unable to place 
in queue. The" -1" returns if gone beyond the high
water mark of the respective clist. 

7.2.4 TTY.HELP - THE LINE DISCIPLINE 
ROUTINES 

XENIX currently supports one line discipline rou
tines i.e. how to interpret characters on I/O on the 
line. This line discipline is made up of several 
routines. They are: 

ttyopen (dev, tp) 

dev_tdev; 
struct tty *tp; 

This routine is called by the device driver's open 
routine: It is given an address of the line's device 
number and tty structure. Relevant fields in the tty 
structure are updated and the raw, canonical and 
output queues are initialized. 

ttyclose(tp) 

struct tty *tp; 

All character queues with respect to the respective 
tty structure are flushed. Relevant fields in the struc
ture are set to "closed." 

ttread(tp) 

struet tty *tp; 

Handles a read request i.e a system call. Details on 
the input target addresses are found in the u_struc
ture i.e u.u_base, u.u_count etc. This routine obtains 
data from the. canonical queue and waits, if 
necessary, for more input. It also calls canon 0 , a 
routine that transfers characters from the raw input 
list to the canonical list after processing these lines. 
Canon 0 basically waits until a full line has been 

2-149 

typed when in cooked mode whereas, in raw, it 
transfers data immediately. 

ttreadO also waits on ttyinputO to function in the 
interrupt time portion of the device driver. 

ttwrite (tp) 

struct tty *tp 

Handles a write request. ttwriteO outputs u.u_count 
characters into the output queue (outq in tty.h) 
guarding the highllow-water marks. Calls 
ttyoutputO which places character in output queue 
adding delays, expanding tabs etc. Calls ttstartO to 
begin transmitting the character. 

ttyinput(c, tp) 

struct tty *tp; 
char c; 

Places a character on the raw queue and echoes it if 
required. This is how input characters are given to 
the read request. ttyinputO is run at interrupt-time 
to add "c" to the raw queue identified by "tp." The 
echo is done by a call to ttstartO to begin character 
transmittal and a call to ttyoutputO that basically 
transports characters from the raw queue to the 
output queue and prepares them for output. 
ttstart(tp) 

struct tty *tp; 

is called to cause the next byte to be output if the 
device is idle. It is called by the task-time portion of 
the driver as well as the interrupt-time portion. 
ttstartO calls the "xxxstartO" routine in the driver. 

ttiocomm(cmd, tp, addr, dey) 

intcmd; 
struct tty *tp; 
caddLt addr; 
dev_tdev; 

Handles common I/O control functions like line
editing, setting line characteristics except baud rates. 
Consider this call a transfer of input/output control 
and line characteristic functions to the relevant data 
structure that holds that information. This routine is 
called from the xxxioctlO routine of the driver. 

As mentioned in the discussion on driver interfaces, 
the file c.c holds all kernel interface data-structures 
to the main driver routines. The data structure 
cdevsw[J is the link to the character I/O drivers. This 
structure maps the main special devices like 
Idev IttyaO to the actual driver routines. 

280041-001 



AP-184 

7.2.5 TERMINAL I/O DEVICE DRIVER 
ROUTINES 

The following routines are typical of a character 
device driver. The tty.c routines are used as most 
terminal liD device drivers rely on them. Other driv
ers for line printers (output only) do not use the 
tty.c routine as less processing of output is necessary 
and is simpler. The terminal liD driver-routines are: 

ixxxinitO 

This routine initializes the device. It checks to see if 
the device is alive and sets a flag to remember this. It 
then prints messages which tells the user interface 
that it is/is not alive. 

ixxxopen (dev, flag) 

dev_tdev; 
int flag; 

dey is < maj,min > device number. Flag is 
B':'READ, B_WRITE. Flag may be ignored for tty 
drivers. Called every time the device is opened. 
Checks for validity of open, fills out tty structure for 
the device line. The fields it fills are: 

Laddr - set the device's I/O address 
Loproc - set to the address of the device's 

output start routine 
Liproc - set to address of start routine for output 
Lstate - device's state 

Calls ttyopen. Calling sequence: 

ixxxopen () = = = = = > ttyopen 

ixxxclose(dev, flag) 

dey and flag are described for ixxxopenO. The rou
tine is called when the last file attached to the device 
is closed. Calls ttyclose and performs clean-up e.g. 
flushes pending clists. Calling sequence: 

xenix = = = = > ixxxcloseO = = = = = > ttyclose 

ixxxread (dev) 

This routine implements the read system call for the 
line and calls ttread 0 passing it the tty structure for 
the line. Calling sequence: 

xenix ====> ixxxrea,dO ======> 
ttread 

ixxxwrite(dev) 

Like the read () . Calling sequence: 

xenix = = = = > ixxxwriteO = = = = > ttwrite 

ixxxioctI(~ev, cmd, addr, flag) 

dev_t dev; 
intcmd; 
caddct addr; 
int flag; 

Implements the ioctl system call for this line. liD 
control is used for special functions such as rewind-
ing tapes and the like. In terminal drivers . -------- -
routine is used to get/set vario aracteristics of 
the line. A commjln---ffy.c routine used is 
ttioccomm O. Calling sequence: 

xenix = = = = > ixxxioctlO = = = > 
ttioccomm 

ixxxstart (tp) 

struct tty *tp; 1* ptr to the tty structure • / 

the startO routine is called by the common tty sup
port routines to start output on the line. The address 
of this routine is set in the open 0 routine arid this 
address is kept in the line's tty-structure. This ad
dress is picked up by the tty.c routine to initiate 
action on the device. Typically,if the device is idle, a 
character is grabbed from the output queue and sent 
to the device. If the device is busy or no characters 
are available, the procedure is exited. Calling 
sequence: 

at task time: 

xenix = = = > ixxxwriteO = = = > ttwriteO 
= = = > ttstartO = = = > ixxxstartO 

at intr time: 

device = = = >ixxxintrO = = = >ttyinputO 
= = = >ttstartO = = = >ixxxstartO 

on input, 

device = = = >ixxxintrO = = = >ttstartO 
= = = >ixxxstartO 

on output 

ixxxintrOeveO 

int type; 

2-150 280041-001 



inter AP-184 

This is the interrupt procedure. Level may be 
ignored. An input interrupt service routine will call 
ttinputO while an output interrupt will call ttstartO 
to begin output of the next character. The ttstartO 
routine will then call the driver's startO routine. As 
in block device, the interrupt service routine is 
called when the device is returning from the busy 
state to the idle state. ttstartO is called to bring the 
device back to the· busy state if further output is 
necessary. Calling sequence: 

HW!input intr = = = > xenix = = = > ixxxintrO 
= = = > ttyinputO 

HW /output intr = = = > xenix = = = > ixxxintrO 
= = = > ttstartO 

Note: These routines are simpler to write due to the 
tty.c routines. Terminal 110 is a special case of char-

I I 

acter 110. Other character 110 devices require the 
same routines i.e. ixxxopenO etc. but cannot rely on 
the functionality provided by the line discipline 
routines. 

The following diagram (figure 9) illustrates how 110 
occurs in terminal I/O. Before any further detail is 
tackled, a brief diagram of the calling sequences for 
the main driver routines is shown also. ixxxstartO 
(figure 10) is called from both the ixxxintrO 
/ixxxwriteO routines. 

7.2.6 EXAMPLES OF CHARACTER 1/0 
(TERMINAL) DRIVERS 

There is no real substitute for actual code. However, 
in XENIX drivers, code can be a challenge to read 
and understand. To alleviate long hours, a walk
through of a roughlywritten driver follows. Another 
example is found in Appendix I. 

I KERNEL ------
_ D.!!'V.!R -l. ________ 2A!!< ____ _ ~ _ I~T!!'~P~ J 

I I I 
I READ ( ) CALL 
I (SYSTEM ~ALL) 

I 
READ ( ) I 

1 WRITE ( ) CALL WRITE ( ) I 
I -~I' --+1---
1 I 
I I 
I I 
I I 
1 I 
1 I 
I 1 
I I 

TTWRITE ( )-----1 

Figure 9. Architecture of Lists and Hold the Work. 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 

TTINPUT () RECEIVE 
INPUT 

I 
I 
I 
I 

TTSTARTt) 
---l.. TRANSMIT 

I OUTPUT 

I 
I 
I 
I 
I 
I 
I 
I 

1981 

280041-001 



inter 

USER 

SYSTEM/DRIVER 

DEVICE 

1982 

Figure 10. TerminalI/O Driver Routines. 

2-152 280041-001 -



inter 
7.2.6.1 iSBXTM 270 Walkthrough 

1/" 
2 " i270.c - iSBX270 device driver 
3" 

AP·184 

4 " - implements terminal device driver for the iSBX270 character 
5" graphics video display controller 
6" 
7 • See also: c270.c - i270 configuration 
8 " i270.h - i270 include files 
9" 

10 " Notes on this driver: 
11 " (1) The driver supports the keyboard interface and display 
12" in scroll mode or page mode 
13 * (2)AII manual references in the comments are to the iSBX270 
14" Video Display Terminal Controller Board Hardware Reference 
15 * Manual, order number 143444-001. 
16 *f 
17 
18 #include " . .lhfparam.h" 
19 #include " . .lhfuser.h" 
20 #include " . .lhftty.h" 
21 #include " . .lhIi270.h" 
22 
23 extern struct 
24 
25 short i270-alive; 
26 struct tty i270tty; 
27 int c..state; 
28 
291* 
30" i270initO 

i270cfg i270cfg; 1* configuration structure" f 

1* board alive flag" f 
1* tty structure * f 
f" state variable used for escape 

sequences * f 

31 *. - tests for presence of the iSBX270, and reports its presence 
32 * or absence 
33 * - initializes 270 for the configured modes of operation 
34 * - this routine is called very early in the system initialization 
35 *f 
36 
37 i270initO 
38 ( 
39 short mode; 
40 int rststat; 
41 
421* 
43 * The sequence below sends a reset command to the 270. The 
44 * algorithm is based on the flowchart, page 3-8 of the manual. 
45 * We perform the additional task of determining if the board is 
46' present or not. 
47 *f 
48 c..state 0= 0; 
49 rststat = rst270(); 1* reset 270 *f 
50 if (rststat = = RSTERR) 

f" 
* Board not found. 
"f 

51 
52 
53 
54 
55 
56 
57 
58 

printf("iSBX 270 board port %x NOT found.O, i270cfg.c_data); 
i270-alive = I270DEAD; 
return; 

2-153 280041-001 



AP-184 

59 } 
60 else ( 
61 printf("iSBX 270 board port %x found.O, i270cfg.c_data); 
62 i270_alive = I270LIVES; 
63 } 
64 
651* 
66 • Board lives, so set it up in the configuration specified. 
67 • NIMASK is anded with everything to clear any bits which 
68 • aren't implemented. 
69 • Once we reach this point, we'll assume that the board is 
70 • alive to some extent, so we'll just concern ourselves w.th 
71 * getting through the initialization; but we can't afford to 
72 • get hung up if the firmware is acting funny. Our approach 
73 * will be to protect ourselves against infinite loops, but not 
74 * check for error conditions or worry about reporting them. 
75 *1 
76 
77 mode = (i270cfg.c_keybrd I i270cfg.clpen I i270cfg.cdma I 
78 i270cfg.cmode I IBEINT I (i270cfg.c_cursor & CURMSK)) 
79 &NIMASK; 
80 mode270(mode); 
81 } 
82 
831* 
84 • rst2700 - resets the 270 board 
85 *1 
86 
87 rst2700 
88 ( 
89 unsigned i; 
90 
91/* 
92 * Clear out any garbage in input and output buffers. 
93 * i is a safety valve in case the board is not here and 
94 * we read a 1 in the IBF bit - we'll take care of the 
95 • presence or absence of the board later - for now we just 
96 * need to get out of this loop. 
97 *1 
98 
99i = 0; 

100 while «in-270(i270cfg.cstat) & I270IBF) && 0+ + < 30000)) ( 
101 if (in_270(i270cfg.c_stat) & I2700BF) 
102 in_270(i270cfg.cdata); 1* dummy data *1 
103 } 
104 ouL270(i270cfg.cstat, I270RST); 1* reset it *1 
105 
1061* 
107 * We'll look for some sign oflife from the 270. If 
108 • it's not there, we'll either blow right through the 
109 • loop, or get stuck in it forever. We'll limit 
110 * forever to 30000 iterations, and check for a count of 
111 * 0 or > 30000 upon terminating the loop - either one is 
112 • then interpreted as a sign that the board isn't here. 
113 *1 
114 
115 i = O· 
116 while' «in-270(i270cfg.c_stat) & 
117 (I2700BF I I270IBF I I270BUS)) && (j + + < 30000)) ( 
118 if (in_270(i270cfg.cstat) & 12700BF) 

2-154 280041-001 



AP-184 

119 in-270(i270cfg.c--"ata); 1* dummy input */ 
120 } 
121 if((i = = 0) I (i > 30000» return RSTERR; 
122 else return RSTOK; 
123} 
124 
125/* 
126 * mode270(mode) - sets VOTC mode for 270 board to specified mode 
127 */ 
128 
129 mode270(mode) 
130 short mode; 
13l{ 
132 unsigned i; 
133 
134/* 
135 * First, go into null busy wait until we can stick another 
136 • command into the input buffer - once again, i is used as 
137 * an escape in case the firmware on the 270 is acting goofy. 
138 *f 
139 i = O' 
140 while' ((in_270(i270cfg.c...stat) & I270IBF) && (i+ + < 30000»; 
141 
1421* 
143 * Now we can issue a new command - we do a set VOTC mode. 
144 *f 
145 
146 ouL270(i270cfg.c...stat, I270SM); 
147 
1481* 
149 * Wait until the 270 can accept the parameter. 
150 *f 
151 
152 i = O' 
153 while' (((in-270(i270cfg.c_stat) & 
154 (I2700BF II270IBF II270BUS» ! = I270BUS) && (i+ + < 30000» ( 
155 if (in-270(i270cfg.c...stat) & I2700BF) 
156 in-270(i270cfg.c_data); 1* dummy input ifOBF set *f 
157} 
158 ouL270(i270cfg.c_data, mode); 
159} 
160 
1611* 
162 * i270open(dev) - opens dev 
163 *f 
164 ' 
165i270open(dev) 
166 dev_t dey; 
167 ( 
168 int unit, i270startO; 
169 struct tty *tp; 
170 
1711* 
172 • First check to make sure that board is alive - if not, 
173 * mark error and return. 
174 *f 
175 
176 if (i270....alive == I270DEAO) { 
177 u. u_error = ENXIO; 1* no such device or address * f 
178 return; 

2-155 280041-001 



179 } 
180 
1811* 
182 ° tp will point to the tty structure 
183 *f 
184 
185 tp = &i270tty; 
186 
1871* 

AP-184 

188 ° Check for 270 already being exclusively opened 
189 of 

190 
191 if «tp->Lstate & XCLUDE) && u.u_uid) { 
192 u.u_error = EBUSY; 
193 return; 
194 } 
195 
1961* 
197 ° Set up fields in tty structure. 

198 *' 
199 
200 tp->Laddr = (caddr_t)i270cfg.c_data; r io base address *' 
201 tp- > Loproc = i270start; 1* routine to start output *' 
202 
203 ,* 
204 * If this is first open ... 

205 *' 
206 
207 if «tp- > Lstate & ISOPEN) = = 0) { 
208, ttychars(tp); r sets special characters 0, 
209 tp-> Lispeed = tp->Lospeed = 9600; 1* baud rate meaningless 0, 
210 tp- > Lflags = ODDP 1 EVENP 1 ECHO 1 CRMOD; 1* should add no 
211 tab expansion here *' 
212 } 
213 tp->Lstate 1= CARR_ON; 
214 ttyopen(dev, tp); 
215 } 
216 
2171* 
218 * i270close(dev, flag) 
219 0, 
220 
221 i270close(dev) 
222 dev_t dey; 
223 ( 
224 struct tty °tp; 
225 
226 tp = &i270tty; 
227 ttyclose(tp); 
228 tp- >Laddr = (caddr _t) 0; 1* forget base address * , 
229 } 
230 
231i270read(dev) 
232 dev_t dey; 
233 ( 
234 struct tty °tp; 
235 
236 tp = &i270tty; 
237 ttread(tp); 
238} 

2-156 280041-001 



inter 
239 
240 i270write (dev) 
241 dev_t dey; 
242 ( 
243 struct tty *tp; 
244 
245 tp = &i270tty; 
246 ttwrite(tp); 
247 ) 
248 
249 i270iintr(JeveI) 
250 int level; 
251 ( 
252 struct tty *tp; 
253 short status, chr; 
254 
255 tp = &i270tty; 
256 status = inb(i270cfg.c-stat); 
257 chr = inb(i270cfg.cdata); 
258 if (status & I270KDR) 

AP-184 

259 ttyinput(chr, tp); 1* only if a valid keyboard hit *f 
260 ) 
261 
262 i270ointr(JeveI) 
263 int level; 
264 ( 
265 struct 
266 

tty 

267 tp = &i270tty; 

*tp; 

268 if (tp- > Lstate & BUSY) ( 
269 tp- > Lstate & = - BUSY; 
270 ttstart(tp); 
271 if «tp-> Lstate & ASLEEP) && 
272 (tp-> Loutq.c_cc < = TTLOWAT» 
273 wakeup«caddLt)&tp-> Loutq); 
274 ) 
275 } 
276 int ttrstrtO; 
277 extern char par tab []; 
278 
279 i270start(tp) 
280 struc( tty *tp; 
281 ( 
282 int e,s; 
283 short mode; 
284 
285 
286 
287 
288 

s = sp150; 
if (tp-> Lstate & (TIMEOUT IBUSY» ( 

splx(s); 
return; 

289 } 
290 if «c=getc(&tp->Loutq» >= 0) ( 
291 tp->Lstatel= BUSY; 
292 splx (s); 
293 switch (c-state) ( 
294 case 0: 
295' if(c==Oxlb)( 
296 #ifdefDEBUG 
297 
298 #endif 

printf("O %xO, c); 

2-157 280041-001 



inter 
299 

J 

outb(i270cfg.c_data, c); 
c-state = 1; 

else if (c == Oxll) ( 
outb(i270cfg.c_data, c); 

AP-184 

300 
301 
302 
303 
304 c-state = 8; 1* graphics leadin *' 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 

I 
else if «tp->Ulags & RAW) I (c < = Ox7f)} 

outb(i270cfg.c_data, c); 
else ( 

J 

tp- > Lstate 1= TIMEOUT; 
tp-> Lstate &= - BUSY; 
timeout(ttrstrt, (caddU}tp, (c & Ox7f»; 
return; 

break; 
case 1: 

switch (c) 
case '=': 

1* cursor address sequence *' 
319 #ifdefDEBUG 
320 printf("O %xO, c); 
321 #endif 
322 
323 

outb(i270cfg.c_data, 0); 
c-sta te = 2; 
break; 324 

325 
326 

case 'G': 

327 #ifdefDEBUG 
328 
329 #endif 

1* visual attribute sequence "' 

printf("O 00000); 

330 outb(i270cfg.c_data,0); 
331 c_state = 3; 
332 break; 
333 case 'M': 
334 1* change mode sequence *' 
335 outb(i270cfg.c_data, 0); 
336 c-state = 6; 
337 break; 
338 default: 
339 1* regular escape sequence *' 
340 #ifdefDEBUG 
341 
342 #endif 
343 
344 
345 
346 J 

printf("O %xO, c); 

outb(i270cfg.cdata, c); 
c-state = 0; 
break; 

347 break; 
348 case 2: 
349 #ifdefDEBUG 
350 
351 #endif 

printf("O %xO, c); 

352 outb(i270cfg.c-stat, I270SCP); 
353 c_state = 4; 
354 break; 
355 case 3: 
356 #ifdefDEBUG 
357 printf("O %xO, cPx80); 
358 #endif 

280041-001 



inter AP-184 

359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 

outb(i270cfg.c_data, «c & Ox30 I Ox80»; 
c_state = 0; 
break; 

case 4: 
outb(i270cfg.c_data, (c - Ox30»; 
c-state = 5; 
break; 

case 5: 
outb(i270cfg.c_data, (c - Ox30»; 
c-state = 0; 
break; 

case 6: 
outb(i270cfg.c_stat, 1270SM); 
c-state = 7; 
break; 

case 7: 
mode = (i270cfg.ckeybrd I i270cfg.c.Jpen I 

i270cfg,cdma I i270cfgLmode I 

378 
379 
380 
381 
382 
383 
3841* 
385 
386 
387 
388 
389 
390 
391 
392 
393 I 

IBEINT I (i270cfg.c_cursor & CURMSK» 
&NIMASK; 

mode = (mode & Ox3f) I «c - Ox30) < < 6); 
outb(i270cfg.cdata, mode); 
c_state = 0; 
break; 

case 8: 

* just output character and go back to state 0 -
* nothing special, just didn't want to flip into a 
* special mode as a result of this graphics character 
*f 

394 else splx (s); 

'~§~ I 

outb(i270cfg.cdata, c); 
c_state = 0; 
break; 

397 i270ioctl(dev, cmd, addr, flag) 
398 caddLt addr; 
399 ( 
400 struct tty 
401 tp = &i270tty; 

*tp; 

402 if (ttioccomm (cmd, tp, addr, dev» ( 
403 
404 
405 
406 
407 
408 

1* 
* No ioctl functions supported 
*f 

409 else u.u_error = ENOTTY; 
410 I 
411 
412in-270(port) 
413 unsigned port; 
414 ( 
415 unsigned i; 
416 
417( for (i=0; i < DELAY270; i+ +); 
418 return (short) inb(port); 

2-159 280041-001 



AP-184 

419} 
420 ouL270(pori, val) 
421 unsigned port; 
422 short val; 
423 ( , 
424 unsigned i; 
425 
426 for (i=0; i < DELAY270; i+ +); 
427 outb(port, va!); 
428 } 

7.2.6.2 Low Level Routines 

The following routines are not required but were 
built for clarity and in accordance with structured 
methodology. The routines are: 

in_270-line 412 
ouL270-line 420 
rst270-line 87 
mode270-line 129 

Details of the calling sequences for these routines 
and others are found in figure 11. CO,nsider the 
procedures inJ70 (412) and ouL270 (420). These 
routines are just the in and out routines of the 
kernel with a constant delay in front, and are used 
only at boot time. This implies that DELAY270 
times the execution time of a for loop is lost for 
every byte transfer (at boot time) to/from the 270 
controller, and that the constant DELAY270 must 
be fixed every time the kernel is ported to a new 
cpu. These routines would make sense if the 270 re
quired requests to be a certain time interval apart, 
and the author of the driver could not guarantee that 
the commands'to the 270 would be far enough apart 
any other way. It would also need to be checked that 
DELAY270 iterations took less than 100 
microseconds, to insure interrupt latency was not ad
versely affected when these routines were called at a 
high cpu priority during interrupt service. 

rst270 (87) resets the 270 controller. It begins by 
reading the status register of the controller. If the 
input buffer is full (I270IBF), the 270 cannot accept 
another command (even the reset), so if the data 
buffer is full, a data byte is read to make room in the 
270 hardware's buffer. Once the input buffer of the 
270 is no longer full, it is sent a reset command. The 
variable 'i' is used to insure that if the 270 is not 
present, this loop will execute at most 30,000 times. 
Once the reset command is sent, it should be acted 
upon by the controller. We enter another loop, simi
lar to the first, which is designed to' check the exis
tence of the 270 controller. The controller exists if it 
is now unable to receive input (270IBF), ready to 
send to the cpu (I2700BF), or busy doing something 
(perhaps, but not necessarily, the reset). If it is none 
of the above, the loop will execute zero times. Note 
that it is possible that the 270 is not there and that 

garbage is being read from where the status register 
would have been. There is code here that assumes 
that if after 30,000 tries, the controller does not 
return to an idle state, garbage is being read. Note 
again that the use of a constant number of iterations 
to represent an interval of time is bad practice since 
it implies assumptions about the execution speed of 
the cpu, which will vary. 

Mode270 (129) is a routine similar to rst270, but de
signed to set the initial mode of the controller after 
the controller is reset. First the driver waits until the 
controller is ready to receive the command (or 
30,000 tries). Note that this means the controller 
must become ready within 30,000 executions of an 
inJ70 to accept the mode change command. This is 
why there is a delay in inJ70, but this is still bad 
practice, since it is cpu dependent code. The 'set 
mode' command is sent, and a wait is done until the 
controller can accept the new mode, then the new 
mode byte is sent to the controller. The code to do 
this wait ensures that 'while the controller is busy 
and has input or output flush any input from it'. It 
shOuld be noted that this is acceptable because this 
routine is called only by i270init at boot time. If 
mode270 were called during normal system 
operation, this input would be meaningful and there
fore would need to be processed. It is not clear that 
this loop will succeed in flushing all input generated' 
while the 270 was in the previous mode, raising the 
possibility that garbage typed before a reboot will 
remain in the 270's buffers. 

7.2.6.3 Required Routines 

i270init (37) is called at boot time to be sure the 270 
controller is ready to use, and is the only reference 
to the routines described above. First, rst270 is 
called to see if a 270 exists (49, 50). If not, a diagnos
tic is printed, and the fact there is no 270 controller 
is remembered (56, 57). If the 270 controller exists, 
it is set for a standard mode modulo NIMASK, 
which insures the controller is not placed in an unim
plemented mode (77-80). This is also the place 
where interrupts from the 270 are enabled (78). 

i2700pen (165) is called for every open of the 270 
device. In line 176 ensures that if the 270 controller 
was not found at boot time, all opens will fail with a 

2-160 280041-001 



inter AP-184 

KEY 

o DRIVER ROUTINES 

~ PROTOCOL ROUTINES 
'--'" TTY.C 

iIII111IIo. DRIVER WRITER ROUTINES 
'fiII/IV (NOT REQUIRED) 

0> KERNEL ROUTINES 1980 

Figure 11. iSBXTM 270 Video Terminal Controller Board 
Driver Routine Dependancies Calling Sequences. 

'nonexistent device' (ENXIO). Line 185 sets up a 
pointer to the status record for the device. If the 
device has an active exclusive open, line 191 ar
ranges an open failure with a busy return. Line 201 
sets a pointer for use by the protocol routines to start 
output. Line 207 arranges that the 270 looks to the 
kernel like a 9600 baud terminal with characteristics 
suited to the device. Line 213 sets a flag to note the 
device is open for later. Note that ISOPEN is set by 
ttyopen. 

2-161 

i270close (221) is called on the last close of the 
device. It just calls the protocol routine ttyclose, 
then removes the I/O address of the 270 from the 
tty structure. 

i270read (231) and i270write (240) respond. to reads 
and writes by simply calling the protocol routines 
'ttread' and 'ttwrite', respectively. 

280041-001 



AP-184 

i270iintr (249) responds to an input interrupt by 
simply getting the character, and calling the protocol 
routine 'ttyinput' with it if' it caqte from the 
keyboard. 

i2700intr (262) responds to an output interrupt by 
checking if there was output in progress. If so, line 
269 c1earsthe BUSY flag (in case there are no more 
characters to output). The protocol routine 'ttstart' 
wilI send the next character and set BUSY if there is 
more output to do. If a process is sleeping because 
the output queue was at the high water mark, and 
the queue is now below the low water mark, all such 
processes are awakened(271-273). 

i270start (279) is called after output interrupts and 
by the protocol routines to initiate output to the 270. 
This routine sets a cpu priority high enough to pre
vent reentrancy problems caused by the fact it can 
be called by interrupts (285). The high cpu priority is 
used to insure the BUSY bit does not change, so that 
it may be used as a lock to prevent more than one 
flow of control from getting into the switch state
ment of line 293. Once this lock is obtained, the cpu 
priority is lowered. The interrupt priority should 
remain raised for no more than the 100 
microsecond. If the driver is doing output, this rou
tine will return(Iine 286). It is necessary that all 
paths out of this routine lower the cpu priority (note 
lines 287, 292, and 394) within the time constraint. 

Line 290 uses the 'getc' routine to get the next char
acter from the output c1ist. The way interrupt driven 
output to tty devices is performed is by maintaining 
the output portion of the terminal in one of two 
states (idle or BUSY). In the idle state the device is 
ready to receive a character for output, and in the 
BUSY state a character has been sent to the device 
and the device has not yet signaled (via an output 
-interrupt) that it is finished initiating. the output. 
Output interrupts do not necessarily signal that the 
character has been output, only that the output has 
been started and the output device is ready to accept 
the next output character. A call to i270start, then 
should force the terminal into the BUSY state 
except in the case that the output c1ist is empty (lines 
290 and 394). At the next output interrupt the termi
nal goes from BUSY to idle (line 269), and protocol 
routine ttstart calls the appropriate start routine (set 
by line 201 to be i270start) to attempt to put the 
device back into the BUSY state. 

A major reason for the bulk of this routine is that it 
maintains a finite state machine which controls the 
disposition of characters sent to the 270. This ma
chine implements certain escape sequences which do 
device control operations. Some of these device con
trol operations cannot be done by writing to the data 
port, and so require special code. There is also code 
implementing an escape for graphic attribute bytes 

which prevents them from being mistaken for 
device control escape sequence lead ins. A state tran
sition diagram, shown in figure 12, details the con
trol character sequences and other input sequences 
expected by the device. The code for the default 
treatment for most characters is in state 0 at lines 
306 and 307. Characters with the high bit set 
(non-ASCII characters) are used to implement a 
timed delay at lines 308 through 313. If this state is 
not cleared, the driver will hang. The code at lines 
295 through 301 implement a transition to state one 
in the event an escape character is written to the 270. 
The graphic attribute escape is in state 0 at lines 302 
through 305 and in state 8 at lines 383 through 392. 

An escape is followed by a character which deter
mines which escape sequence is involved. At state 1 
lines 317 through 324 we see a transition to state 2 if 
a cursor motion sequence (<: ESC> =) is found, 

, after sending an ASCII NUL to the 270 controller to 
abort the escape sequence. State 2 sends a set cursor 
position (I270SCP) command to the status port and 
sends us to state 4 (Jines 352 and 353). State 4 then 
sends a data byte minus an ASCII '0' (the X axis 
position), and sends us to state 5 (lines 363 and 
364). State 5 then sends another data byte minus an 
ASCII '0' (the Y axis position), and sends us back to 
state 0 (Jines 367 and 368). State 1 lines 325 through 
332 abort the escape sequence and move to state 3 to 
implement a 'set attributes' «ESC> G) 
command. State 3 sends the character after masking 
it to insure a valid attribute byte (Jine 359), the re
turns to state O. State 1 lines 333 through 337 abort 
the escape sequence and move to state 6 to initiate a 
'set mode' command. State 6 sends a 'set mode' to 
the controller's status port and moves to state 7 
(Jines 371 and 372). State 7 shifts the output byte's 
low bit into the 'page mode' bit, sends the new 
mode to the data port and returns to state 0 (Jines 
375 through 38J). Note that an <ESC> M sequence 
followed by a character other than an ASCII '0' or 
'1' is not guaranteed to result in a valid mode. The 
remaining state 1 code (Jines 338 through 347) 
implement the default action, which is to send the 
escape sequence on to the device and return to state 
zero. Note that this works because no 270 hardware 
escape sequence is over two characters (the escape 
and the command). Longer escape sequences would 
probably need a protection similar the protection by 
state 8 of attribute bytes, to prevent them from 
being mistaken for lead-in characters. If all escape se
quence support were implemented by the device via 
the data port, as is the case for terminals on a serial 
'line, none of this state machine logic would be 
appropriate. 

i270ioctl (379) is called to respond to every ioctl 
issued to the 270. It responds by using tlie protocol 
routine 'ttioccomm' to process al) terminal ioctls, 
and rejecting all others since the board does not sup-
port baud rates. . 

2-162 280041-001 



AP-184 

ESCAPE SEQUENCE 

GRAPHIC CHARACTER 1979 

Figure 12. State Transition Diagram for iSBXTM 270 Terminal Controller Board. 
Used by the Driver. 

7.2.6.4 A Final Note 

This walkthrough has detailed the required routines, 
their subtleties as well as their interactions with the 
line discipline routines ( protocol routines). The 
iSBX 270 Video Terminal Controller Board driver is 
only in draft form ( it works!) and is not an example 
oflntel Corporation's coding methodology. 

CONCLUSIONS 

Now the clouds should have cleared around the 
XENIX Operating System and device driver writing. 
Insight is but one aspect of the challenge of writing 
device drivers. It is premature to call it a trivial task. 
The task of writing one is simple but the task of 
debugging, testing and completing one demands 
respect. Device driver writers have the pow~r to do 
almost anything with the operating system especially 
crash it! This power can be extremely difficult to 
adjust to at the tender age of a "XENIX user." 
However, this discussion has briefly covered 

2-163 

definitions, the 1/0 environment, the representative 
driver routines and code walkthroughs. 

In attacking the device-driver writing issue, there is 
difficulty in approaching the subject with any step
by-step logical flow with a top-down methodology. 
Hence, imagine the entire learning environment of 
device drivers to be a circle. This discussion joins the 
circle at anyone point, follows it and embraces the 
entire concept of device driver writing for the 
XENIX 286 and 86 Operating System. With this 
circle relatively filled, by this discussion, the task of 
writing device drivers may still be more a task than 
trivia but will be more a challenge than a chore! . 

280041-001 



AP-184 

APPENDIX A: THE c.c FILE CREATED BY MASTER 
AND XENIXCONF ................................................ . 

APPI=NDIX B: XENIXCONF ................................... .. 

APPENDIX C: THE CONFIGURATION 
FILE MASTER ..................................................... . 

APPENDIX D: INTERRUPT MAPPING ...................... . 

APPENDIX E: param.h FILE THAT LISTS THE 
. SYSTEM CONSTANTS ........................ : ............... . 

APPENDIX F: THE buf.h FILE DESCRIBING THE 
BUFFER-HEADER STRUCTURE ........................... . 

APPENDIX G: NAMING CONVENTIONS .................. . 

APPENDIX H: THE tty.h FILE DESCRI~ING THE 
TTY STRUCTURE ................................................ . 

APPENDIX I: THE c254.c AND i254.h FILES ............ . 

APPENDIX J: THE iSBC® 534 ................................ .. 

2-164 280041-001 



AP-184 

APPENDIX A: 

THE C.C FILE CREATED BY MASTER AND XENIXCONF 

/* 
* Conf1guration information 
*/ 

#def1ne 
#define 
#def1ne 
#define 
#def1ne 
#deflne 
#def1ne 
#def1ne 
#def1ne 
#deflne 
#def1ne 
#def1ne 
#define 
#def1ne 
#define 
#def1ne 
#deflne 

#1nclude 
#1nclude 
#include 
#lnclude 
#1nclude 
#1nclude 
#1nclude 
#1nclude 
#1nclude 
#1nclude 
#1nclude 
#1nclude 
#include 
#1nclude 
#lnclude 
#lnclude 
#lnclude 
#lnclude 

NBUF 29 
NINODE 
NFILE 
NMOUNT 
SMAPSIZ 
NCALL 
NPROC 
NTEXT 
NCLIST 
NFLOCKS 
MAXUPRC 
TIMEZONE 
NCOREL 
DSTFLAG 
GENBOOT 
CMASK 
MTOP 612 

120 
120 
8 
(NPROC/2) 
26 
100 
40 
160 
100 
16 
(8*60) 
1 
1 
o 
o 

· ... /h/param h" 
" .. /h/buf .h" 
• .. ./h/tty. h" 
". /h/conf.h" 
" .. /h/proc.h" 
· ... /h/text. h· 
" . ./h/dlr.h" 
.... /h/a out.h" 
• ... /h/user h" 

./h/flle h" 
" . ./h/1node h" 
· ... /h/acct. h· 

/h/mmu.h" 
· ... /h/map. h' 
· .. ./h/ callo. h" 
" .. /h/mount h" 

.. /h/var h" 
" .. /h/clist.h" 

extern nodev(), nulldev(), novec(); 

int clockO; 
int dbgintrO; 
int 1544intr(); 
int 12161ntr(); 
int 174intrO; 
1nt IplntrO; 

1nt (*vecintsw[])() 
{ 

clock, 
dbgintr, 
novec, 
15441ntr, 
novec, 
12161ntr, 
1741ntr, 

2-165 280041-001 



}; 

i~ 

novee, 
novee, 
novee, 
novee, 
novee, 
Dovee, 
Dovee, 
novee, 
novee, 
novee, 
novee, 
Dovee, 
Dovee, 
novee, 
novee, 
novee, 
novee, 
novee, 
Dovee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
Dovee, 
novee, 
novee, 
novee, 
Dovee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
Dovee, 
novee, 
Dovee, 
novee, 
novee, 
novee, 
Dovee, 
Dovee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
novee, 
Ip1nt.r, 

AP·184 

ext.ern 1216open(), 1215elose(), 12161nlt.(), 1216read(), 1215vr1t.e(), i2161oet.l(), 
1215.st.rat.egyO, 1215t.ab; 

ext.ern 1644open(), 1644elose(), 16441n1t.(), 1644read(), 1644vr1t.e(), 15441oet.l(); 
ext.ern 1740pen(), 174elose(), 1741nlt.(), 174read(). 174vrlt.e(). 1741oet.l(); 

.,' / 

2-166 280041-001 



AP·184 

extern Ipopen(), lpclose(), Iplnlt(), Ipwrlte(); 
extern mmread(), mmwrlte(); 
extern syopen(), syread(), sywrlte(), syloctl(); 

struct 
{ 

bdevsw bdevsw[]= 

1* 0*1 
} ; 

l2150pen, l215close, l215strategy, &1215tab, 

struct 
{ 

cdevsw cdevsw[] = 

1* 0*1 
1* 1*1 
1* 2*1 
1* 3*1 
1* 4*1 
1* 5*1 
} ; 

12150pen, 
syopen, 
nulldev, 
l544open, 
l74open, 
lpopen, 

int nblkdev= 1; 
int nchrdev= 6; 

l215Close, 
nulldev, 
nulldev, 
1544close, 
l74close, 
Ipclose, 

l215read, 
syread, 
mmread, 
l544read, 
l74read, 
nodev, 

dey t rootdev= makedev(O,l); 
dev-t pipedev= makedev(O,l); 
dev-t swapdev= makedev(O,2); 
dadQr t swplo= 1; 
1nt nswap= 1180; 

lnt 
{ 

}; 

(*d1nitsw []) 0 = 

12151n1t, 
16441n1t, 
1741nit, 
Ipln1t, 
(int (*) 0)0 

1215wr1te, 
sywr1te, 
mmwrlte, 
1544wr1te, 
174wrlte. 
Ipwr1te, 

12151octl, 
sy1octl, 
nodev, 
164410ctl , 
1741octl, 
nodev, 

1nt ttyopen(), ttyclose(), ttread(), ttylnput(), ttstart(); 
char *ttwrl te 0 ; 

struct 11nesw 11nesw[]= 
{ 

nulldev, 
nulldev, 
nulldev, 
nulldev, 
nulldev, 
nulldev, 

1*0*1 ttyopen, ttyclose, ttread, ttwr1te, nodev, tty1nput, nulldev, 
nulldev, ttstart, nulldev, 

o 
}; 

1nt nld1sp::: 1; 

1nt Tlmezone=TIMEZONE; 
1nt Dstflag=DSTFLAG; 
1nt Genboot=GENBOOT; 
1nt Cmask=CMASK; 

struct but but[NBUF]; 
char buffers [NBUF] [BSIZE+BSLOP); 
Struct flle f11e[NFILE); 
struct lnode 1node[NINODE); 
struct lockl1st lockI1st(NFLOCKS); 
struct proc proc[NPROC); 
struct text text[NTEXT); 
struct map swapmap[SMAPSIZ) 
struct callo callout[NCALL) 
struct cblock cfree[NCLIST) 
struct mount mount[NMOUNT); 

struct var v= 
{ 

NBUF, 

2-167 

0, 
0, 
0, 
0, 
0, 
0, 

280041-001 



}; 

NCALL, 
NINODE, 
(char *)(11node[NINODE). 
NFILE. 
(char *)(lfile[NFILE]). 
NMOUNT. 
(char *)(lmount[NMOUNT]). 
NPROC. 
(char *)(lproc[NPROC). 
NTEXT. 
(char *)(ltext[NTEXT). 
NCLIST. 
MAXUPRC, 
NFLOCKS 

short mm free = 0; 
short mm-nfree = 0; 
short mem_top = MTOP; 

2-168 280041-001 



Ap·184 

APPENDIX B: 

XENIXCONF 

The following file establishes the devices to be 
selected and conf1gured into the system. 

* * Dev1ces 
* i216 
*1634 
1644 
174 
*1270 
lp 
*sm 1 
debug 
*fd 
*1287 
root 
p1pe 
swap 

* 

1 
1 

1 
1 

1 
1 

1 
1 
1 

1216 1 
1216 1 
1216 2 1 1180 

* Local parameters 

* t1mezone (8*60) 
daylight 1 
cmask 0 

* • Tunable Parameters 

* * Dont change them unless you're sure you know what you're do1ng! 

* bufters 29 
procs 100 
mounts 8 
1nodes 120 
fUes 120 
c11sts 160 
locks 100 
maxproc 16 
mem_top 612 

2-169 280041-001 



inter AP-184 

APPENDIX C: 

The configuratlon !!~-Master 

* * The follo~ing devices are those that can be specified in the system 
* description file. The name specified must agree ~ith the name shown 
*name vsiz msk typ hndlr'na bmaj cmaj # na vecl vec2 vec3 vec4 
* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
i215 2 0137 014 1215 0 0 0 2 -1 0005 0 0 Oa 
fd 0 0137 014 fd 0 6 6 1 -1 0 0 0 Oa 
i534 2 0137 004 i534 0 0 1 1 -1 0002 0 0 Oa 
i544 2 0137 004 1544 0 0 3 1 -1 0003 0 0 Oa 
i74 2 0137 004 i74 0 0 4 1 -1 0006 0 0 Oa 
i270 2 0133 004 i270 0 0 7 1 -1 01060 ,0 0 Oa 
sm 0 036 010 sm 0 1 0 1 -1 0 0 0 
Ip 2 0132 004 Ip 0 0 5 1 -1 0107 0 0 
debug 2 0 0 dbg 0 0 0 1 -1 0001 0 0 
slave7 2 0 0 sl 0 0 0 1 -1 0007 0 
i287 2 0 300 i287 0 0 0 -1 0008 0 o 
* 

Oa 
Oa 
Oa 

o Oa 
Oa 

* The following devices must not be specified in the system description 
* file. They are here to supply information to the config program. 

* memory 
tty 
$$$ 

* 

o 
o 

06 0324 
027 0324 

mm 
sy 

o 
o 

-1 
-1 

2 
1 

* The following is the line discipline table 

* 

o 
o 

o 
o 

o 
o 

o 
o 

o 
o 

tty 
$$$$$ 

ttyopen ttyclose ttread ttwrite nodev ttyinput nulldev nulldev' ttstart nulldev 

* * The following entries form the alias table. 

* i215 disk 
i534 serial 
sm sim 
$$$ 

* * The following entries form the tunable parameter table. 
* 
buffers NBUF 50 
inodes NINODE 100 
files NFILE 100 
mounts NMOUNT 8 
swapmap SMAPSIZ (NPROC/2) 
calls NCALL 25 
procs NPROC 60 
texts NT EXT 40 
clists NCLIST i50 
locks NFLOCKS 200 
maxproc MAXUPRC 15 

tlmezone TIMEZONE (8*60) 
pages NCOREL 1 
dayllght DSIFLAG 1 
genboot GENBOOT 0 
cmask CMASK 0 
mem_top MIOP 512 

2-170 280041-001 



AP-184 

APPENDIX D: 

.!E.terrupt ~E..g 

Interrupts are not vectored directly to the interrupt 
routIne procedure of a drIver. Rather, the interrupt is vec
tored inot part of the Xenix kernel. The kernel code takes 
care of playing with the 8259A PIC, setting up an appropri
ate interrupt mask, switching to the kernel map and stack 
for the process, saving and restoring registers and handline 
scheduling semantics The outcome to this in that the inter
rupt routine can be written in C. Xenix handles the other 
details 

The interrupt model is one of multiple levels 
ities. An interrupt is unique in priority and can 
only if it higher(smaller in numerical form) 
current interrupt level 

of prior
be served 
than the 

The SPl~() command is used to lock out other interrupts 
which are ower in priority (i.e. <N). ~l() (set priority 
level) is a privileged operation and not one any process can 
use. All interrupt driven routines need a method to inter
lock data access. Data items such as buffer pools and 
private data. The calls S~Uf()/skICli() are these 
features that 'permit routines to Interloc tneir allocation 
and de-allocation of buffers. ~ only raises the current 
CPU interrupt level, it never changes the priority level to 
a lower level with as with an dP~x() The system 
buffers/clists can also be mutually exclu e during acc.ess 
by StlCli() and aplbUf() which is an s¥iN() with N high 
enoug to lock out eVlce interrupts that a ect them. In 
mutual exclusion, all relevant interrupt levels are locked 
out from access by. 

short s 

s = sp160 1* returns 16 bit value, not-decipherable *1 

splxO 1* must accompany each spl call to return pri level *1 
1* note that sp17 IS most restrictive and splO is the least *1 

2-171 280041-001 



inter AP-184 

APPENDIX E: 

Param.~ file that lists the system constants 

.defipe HAXMEM Ox180 

.define SSIZE 4096 
'define SINeR 1024 
'define NOFILE 20 
'define CANBSIZ 266 
.define HZ 20 
'define DHZ 20 

1* max core per process - 750K *1 
1* initial stack Site (bytes) *1 
1* increment of stack (bytes) *1 
1* max open files per process *1 
1* max size of typewriter line *1 
1* Ticks/second of the clock *1 
1* Ticks/second of the clock *1 

'define MSGBUFS 128 
'define NCARGS 6120 
.define USTK SIZE 4096 
.define HAXTTYS 16 
'define NIOSTAT 60 

1* Characters saved from error messages *1 
1* # characters in exec arglist *1 
1* default size of user stack *1 

1* Max # open ttys *1 
1* max number of bufs to keep stats for *1 

1* * priorities * probably should not be 
* altered too much 
*1 

'define PSWP 0 
'define PINOD 10 
'definePRIBIO 20 

4define PZERO 26 
'define NZERO 20 
'define PPIPE 26 
'define PWAIT 30 
.define PSLEP 40 
'define PUSER 50 

1* * signals 
* dont change 
*1 

'define NSIG 
1* 

17 

* No more than 16 signals (1-16) because they are * stored in bits in a word. 
*1 

.deUne SIGHUt> 1 1* llangup *1 

.define SIGINT 2 1* interrupt (rubout) *1 
#define SIGQUIT 3 1* quit (FS) *1 
.define SIGINS 4 1* illegal instruction *1 
'define SIGTRC 5 1* trace or breakpoint *1 
'define SIGIOT 6 1* iot *1 
#define SIGEMT 7 1* emt *1 
#define SIGFPT 8 1* float~n~ exceDtlon *1 
#define SIGKIL 9 1* kill, uncatchable termination 
.define SIGBUS 10 1* bus error *1 
'define SIGSEG li 1* segmentation violation *1 
#define SIGSYS i2 • 1* bad system call *1 
#define SIGPIPE 13 1* end of pipe *1 
'define SIGCLK 14 1* alarm clock *1 
'define SIGTRM 16 1* Catchable termination *1 
#define SIGFN 16 1* function key *1 

1* * fundamental constants of the implementation-
* cannot be changed easily 
*1 

2-172 

*1 

280041-001 



inter AP·184 

#define NBPW sizeof(int) 1* number of bytes in an integer *1 
#define BSIZE 1024 1* size of secondary block (bytes) *1 
1* BSLOP can be 0 unless you have a TIU/Spider *1 
#define BSLOP 4 1* In case some device needs bigger buffers *1 
#define NINDIR (BSIZE/sizeof(daddr t» 
#define BMASK 01777 1* BSIZE-l *1 
#define BSHIFT 10 1* LOG2(BSIZE) *1 
#define NMASK 0377 1* NINDIR-l *1 
#define NSHIFT 8 1* LOG2(NINDIR) *1 
#define INOPB (BSIZE/sizeof(struct dinode» 1* # inodes per block *1 
#define LINOPB 4 1* LOG2(INOPB) *1 
#define NULL 0 
#define DCMASK 0 1* default mask for file creation *1 
#define NODEV (dev t)(-I) 
#define ROOTINO «ino t)2) 
#define SUPERB «daddr t)l) 

1* i number of all roots *1 

#define DIRSIZ 14 - 1* 
#deflne NICINOD 100 1* 

1* block number of the super block *1 
max characters per directory *1 
number of superblock lnodes *1 

#define NICFREE 100 1* number of superblock free blocks *1 
1* #define INFSIZE 138 
#define CBSIZE 6 
#define CROUND 07 

1* size of per-proc info for users *1 
1* number of chars in a clist block *1 
1* clist rounding: sizeof(int *) + CBSIZE - 1*1 

1* 
* MMU parameters. 
*1 

#define 
#define 
#define 
#define 
#define 

MMPGSZ 2048 
LMMPGSZ 11 
NPAGEPS 32 
NSEG 0 

1* bytes/page 1n the MMU *1 
1* log2(MMPGSZ) *1 
1* There are 32 pages in a segment *1 
1* max seg 1 user (see user.h) *1 

MMFRAGMENTS 256 1* mamlmum number of free segments *1 

1* 
* Some macros for units conversion 
*1 

1* pages to disk blocks */ 
#define ptod(x) «x) * (MMPGSZ/BSIZE» 
1* bytes to diSk blocks */ 
#define btod(x) «(x)+(BSIZE-l»»BSHIFT) 

/* lnumber to disk address */ 
#define Itod(x) (daddr_t) «(unsigned) (x) + (INOPB+INOPB-l»»LINOPB) 

/* inumber to disk offset */ 
#define itoo(x) (lnt)«(x)+(INOPB+INOPB-l»~(INOPB-l» 

1* pages to bytes */ 
#define ptob (x) «x) «LMMPGSZ) 

1* bytes to pages */ 
#deflne btop(x) «(unsigned) (x) + (MMPGSZ-l»»LMMPGSZ) 

1* bytes to page number */ 
#deflne btopn (x) « (unsigned) (x» »LMMPGSZ) 

1* page to address */ 
#deflne ptoa(x) «(long)(x)« LMMPGSZ) ) 

1* address (long (32 bit» to page number (lnt)*1 
#deflne atopn(x) «int) «(long) (x»»LMMPGSZ» 

.1* address (long (32 bit» to page count (1nt)*1 
#define atop(x) «int) «(long) (x)+(MMPGSZ-l»»LMMPGSZ» 

1* address (long (32 bit» to offset (int) get bits LMMPGSZ-l - 0 *1 
#define atoo(x) «int) «x)AI;(MMPGSZ-l)) 

1* long address to short address (get low 16 bits of long address */ 
#define atos(x) «int)( (x) AI; OxOOOOFFFF» 

2-173 280041-001 



AP-184 

1* long address to short address (get low 16 bits of long address *1 
#define atoh(x) «int)( (x) » 16»· 

1* page number to long *1 
#define ptol(x) «(long) «(tnt) (x» «LMMPGSZ) 

1* major part of a device *1 
#define maJor(x) (int) «(unsigned) (x»>8» 

1* minor part of a device *1 
#define minor(x) (int) «x)l0377) 

1* make a device number *1 
#define makedev(x.y) (dev_t) «x)«8 I (y» 

1* extract low word of long *1 
#define LOWORD (x) . «int) x) 

1* extract high word of long *1 
#define HIGHWORD(x) «int) «long)x » 16» 
1* 8086 base from an absolute physical address *1 
#define base86 (x) «short)(x»4» 

typedef 
typedef 

typedef 
typedef 
typedef 
typedef 
typedef 
typedef 
typeclef 

1* 

struct { int r[1]; } * physadr; 
struct { unsigned short off; 

unsigned short seg;} segadr; 
long daddr t; 
char * caddr-t; 
unsigned short Ino t; 
long time t; -
int label t[5]; 1* return. sp. si. di. bp *1 
lnt dev t; 
long off=t; 

* Machine-dependent bits and macros 
*1 

.4efine SPLOMASK OxOO 

.4efine USERHODE(~s) 

.4eflne CLKONLY(ps) 

1* OxCO ==> SM on On-Board USART *1 
«ps)l03 == 03) 
«ps)lOX8000) 1* 1010 --- PLB *1 

280041-001 



AP-184 

APPENDIX F: 

The buf.~ file describing the buffer-header ~~ructure 

~ / 

• Each buffer in the pool is usually doubly linked into'.! lists: 
• the device with which it is currently associated (al~ays) 
• and also on a list of blocks available for allocation 
• for other use (usually). 
• The latter list is kept in last-used order. and the two 
• lists are doubly linked to make it easy to remove 
• a buffer from one list when it was found by 
• looking through the other. 
• A buffer is on the available list. and is liable 
• to be reassigned to another disk block. if and only 
• if it is not marked BUSY. When a buffer is busy. the 
• available-list pointers can be used for other purposes. 
• Kost drivers use the forward ptr as a link in their liD 
• active queue. 
• A buffer header contains all the information required 
• to perform liD. 
• Kost of the routines which manipulate these things 
• are in bio.c. 
·1 

struct but 
{ 

int b flags; 1* see 
struct- but *b forw; 

defines below *1 

struct buf *b-back; 
1* headed by d tab of cont c *1 
1* • *1 -

struct buf *av forw; 1* position on free list. *1 
struct buf *av-back; 1* if not BUSY*I 
dev t b dev; -
unsIgned b_ocount; 
union { 

caddr t b addr; 

1* major+minor device name *1 
1* transfer count *1 

1* always points to buffer area *1 
1* as low order core address *1 

int *0 words; 
struct-filsys *b filsys; 
struct dinode *b-dino; 
daddr t *b daddr; 

1* as words for clearing *1 
1* as superblocks *1 
1* as iUst *1 
1* as indirect block *1 

}; 

} bun; - -
dadar t b blkno; 
char 0 xmem; 
char b-error; 1* 
unsignid int b_resld; 
unsigned int b_cylin; 

1* block # on device *1 
1* high order core address *1 

returned after liD *1 
1* bytes not transferred after error *1 
1* cylinder number for disk i/o queue *1 

extern struct buf buff]; 1* The buffer pool itself *1 
extern struct buf bfreelist; 1* head of available list *1 ,. 
* These 
*1 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

flags are kept In.b_flags. 

B WRITE 
B-READ 
B-DONE 
B-ERROR 
B-BUSY 
B-PHYS 
B-MAP 
B-WANTED 
B-AGE 
B-ASYNC 
B-DELWRI 

, 
o 1* 
01 1* 
02 1* 
04 1* 
010 1* 
020 1* 
040 1* 

0100 1* 
0200 1* 
0400 1* 

01000 1* 

non-read pseudo-flag *1 
read when liD occurs *1 
transaction finished *1 
transaction aborted *1 
not on av forw/back list *1 
Physical TO potentially using UNIBUS map *1 
This block has the UNIBUS map allocated *1 
issue wakeup when BUSY goes off *1 
delayed write for correct aging *1 
don't wait for liD completion *1 
don't write till block leaves available list *1 

2-175 280041-001 



inter AP-184 

a-TAPE 02000 /* this is magtape (no bdwrite, raw i/o at any loc) *1 
a-paUSY 04000 
B-PACK 010000 

#define 
#define 
#define 
#define a-PURGE 020000 /* bpurge() +n progress--invalidate buf when releas' 

/* * special redeclarations for 
* the head of the queue per 
* device driver. 
*/ 

#def1ne 
#deUne 
#define 
#deflne 

/* 

b actf 
b-actl 
b-actlve 
b-errcnt 

av forw 
av-back 

b bcount 
b-resid 

* collect 10 statistics 
*/ 

#deflne DISKMON 

#1fdef 
struct { 

" lnt 
long 
long 
long 
long 
long 
long 

} 10 info; 
#endIf 

DISKMON 

nbuf; 
nread; 
nreada; 
ncache; 
nwrite; 

bufcount[NIOSTAT]; 
nswapb; 

2-176 280041-001 



APPENDIX G: 

. Naming Conventions. 

The convention followed is: 
ixxxppp 

where 

AP-184 

xxx is the number of the device (i.e 634.624) 
ppp is the procedure name i.e. lnit, open 

Thus, the iSBX 270 Video Terminal Controller Board 
driver has the interface procedures: 

i270initO 
i2700penO 
i270sta.rtO etc. 

This na.ming convention allows the kernel procedures to 
understand unique driver interfaces. Usually, data struc
tures also follow this convention to identify variable names 
and symbols. 

2-177 280041-001 



AP-184 

APPENDIX H: 

The ~.~ file describing the ~ structure 

1* 
* A clist structure is the head 
* of a linked list queue of characters 
* The characters are stored in 4-word 
* blocks containing a link and several characters. 
* The routines getc and putc 
* manipulate these structures. 
*1 

struct clist 
{ 

int c cc; 
char *c cf; 
char *c=cl; 

1* character count *1 

} ; 

1* 

1* pOinter to first char *1 
1* pOinter to last char *1 

* A tty structure is needed for 
* each UNIX character device that 
* is used for normal terminal 10. 
* The routines in tty.c handle the 
* common code associated with 
* these structures. * The definition and device dependent 
* code is in each driver. (kl.c dc.c dh.c) 
*1 

struct tc 
char 
char 
char 
char 
char 
char 

{ 
t intrc; 1* 
t-quitc; 1* 
t-startc; 1* 
t-stopc; 1* 
t-eofc; 
t=brkc; 

interrupt *1 
qui t *1 
start output *1 
stop output *1 

1* end-of-file *1 
1* input delimiter (like nl) *1 

}; 

struct tty 
{ 

} ; 

struct clist t rawq; 1* input chars right off device *1 
struct clist t=canq; 1* input chars after erase and kill *1 
struct clist t outq; 1* output list to device *1 
int (* t oproc)(Y; 1* routine to start output *1 
int (* t=iproc)(); 1* routine to start input *1 
struct chan *t chan; 1* destination channel *1 
caddr t t linep; 1* aux line discipline pOinter *1 
caddr-t t-addr; 1* device address *1 
dev t- t-dev; 1* device number *1 
short t-flags; 1* mode, settable by ioctl call *1 
short t-state; 1* internal state not visible externallv */ 
short t 2state; 1* continuation of state, driver specific *1 
short t-pgrp; 1* process group name *1 
char t delct; 1* number of delimiters in raw q *1 
char t-line; 1* line discipline *1 
char t-col; 1* printing column of device *1 
char t-erase; 1* erase character *1 
char t-kill, 1* kill character *1 
char t-char; 1* character temporary *1 
char t-ispeed; 1* input speed *1 
char t-ospeed; 1* output speed *1 
union '{ 

struct tc t tc; 
struct clist t ctlq; 

} t_un; -

2-178 280041-001 



AP-184 

#define tun tp->t un 

1* * structure of arg for 
*1 

ioctll 
* struct 

char 
char 
char 
char 
int 

} ; 

#define 
#define 

#define 

#define 
#define 
#define 
#define 
#define 
#define 

1* 11mt ts 
#define 

ttiocb { 
ioc ispeed; 
ioc-ospeed; 
ioc-erase, 
ioc-kill ; 
ioc:::r lags; 

TTIPRI 28 
TTOPRI 29 

CERASE 

CKILL '@' 

CQUlT 034 
CINTR 0177 
CSTOP 023 
CST ART 021 
CBRK 0377 

*1 
TTHIWAT 100 

#define TTLOWAT 70 
#define TTYHOG 256 

1* modes *1 
#define TANDEM 01 
#dehne CBREAK 02 
#define LCASE 04 
#define ECHO 010 
#define CRMOD 020 
#define RAW 040 
#dehne ODDP 0100 
#define EVENP 020a 
#define NLDELAY 001400 
#define TBDELAY 006000 
#define XTABS 006000 
#define CRDELAY 030000 
#define VTDELAY 040000 

1* Hardware bits *1 
#define DONE 0200 
#define I ENABLE 0100 

1* Internal state bits *1 
#define TIMEOUT 01 
#define WOPEN 02 
#define ISOPEN 04 
#define FLUSH 010 
#define CARR ON 020 
#define BUSY-040 1* 
#define ASLEEP 0100 
#define XCLUDE 0200 
#define TTSTOP 0400 
#define HUPCLS 01000 
#define TBLOCK 02000 
#define DKCMD 04000 
#define DKMPX 010000 
#deftne DKCALL 020000 
#define DKLINGR 040000 
#define CNTLQ 0100000 

d 
e 
f 
a 
u 
I 
t 

s 
p 
e 
c#define CEOT 004 
1 
a/* FS, cntl shift L *1 
1/* DEL *1 
1* Stop output: ctl-s *1 

c/* Start output: ctl-q *1 
h 
a 
r 
a 
c 
t 
e 
r 
s 

* I 

1* Delay timeout 1n progress *1 
1* Waiting for open to complete *1 
1* Device is open *1 
1* outq has been flushed during DMA *1 
1* Software copy of carrier-present *1 

Output in progress *1 
1* Wakeup when output done *1 
1* exclusive-use flag against open *1 
1* Output stopped by ctl-s *1 

1* Hang up upon last close *1 
1* tandem queue blocked *1 
1* datakit command channel *1 
1* datakit user-multiplexed mode *1 
1* datakit dial mode *1 
1* datakit lingering close mode *1 
1* interpret t_un as clist *1 

1* Driver specific state bits *1 
#define INBUSY 01 1* Input in progress *1 
#define INSTOP 02 1* Stop input interrupts *1 

2-179 280041-001 



/* * tty ioctl commands 
*/ 

.define TIOCGETD «('t'«8)IO) 

.define TIOCSETD ({'t'«8)ll) 

.define TIOCHPCL ({'t'«8)12) 

.define TIOCHODG ({'t'«8)13) 

.define TIOCHODS «'t'«8)14) 

.define TIOCGETP «'t'«8)18) 

.define TIOCSETP «'t'«8)19) 

.define TIOCSETN «'t'«8)II0) 

.define TIOCEXCL «'t'«8)113) 

.define TIOCNXCL «'t'«8)114) 

.define TIOCFLUSH «'t'«8) 116) 

.define TIOCSETC «'t'«S)117) 

.define TIOCGETC «'t'«8)118) 

.define TIOCGETS «'t'«8)119) 
'define' DIOCLSTN «'d'«S}fl) 
.define DIOCNTRL «'d'«S)12) 
#define DIOCMPX «'d'«8)13) 
#define DIOCNMPX «('d'«S)14) 
.define DIOCSCALL (t'd'«S)15) 
#define bIOCRCALL (C'd '«S) 16) 
'define DIOCPGRP «'d'«8)17) 
#define DIOC~ETP «'d'«S)IS) 
.define DIOCSETP «'d'«8)19) 
#define DIOCLOSE «'d'«8)IIO) 
.define DIOCTIME «'d'«8)111) 
#define DIOCRESET «'d'«8)112) 
#define FIOCLEX «'f'«8)11) 
.define FIONCLEX «'f'«8)12) 
.define FIORDCHK «'f'«8)13) 
.define MXLSTN «'x'«8)11) 
#define MXNBLK «'x'«8)12) 

/* * tty ioctl commands (extension) 
*/ 

.define MLCRESET «'m'«8)IO) 
#define MLCBOOT «'m'«S)ll) 
#define MLCREAD «'m'«S) 12) 
.define MLCWRITE «'m'«S)13) 

AP-184 

, 2-180 280041-001 



inter AP-184 

APPENDIX I: 

The c254.c and ~.~ files 

* include file for 254 driver ... this is i254 h 

* * mask constants for BMC status: 
*/ 

#define 
#define 

/* 

BMCBUSY Ox80 
BMC 

* configuration structure for 254 
*/ 

struct i254cfg {unsigned c base port; 
unsigned c page size; -

}; --

/* this is c264.c 
*/ 

#include " .. /h/i254.h" 
struct 1254cfg 1264cfg={Ox40. /* I/O base port address */ 

256} /* bubble page size 
- 64 for 1 bubble, 

128 for 2 bubbles, 
266 for 4 bubbles */ 

2-181 280041-001 



APPENDIX J: 

The iSBC 634 -----
/* * INTEL CORPORATION PROPRIETARY INFORMATION. THIS LISTING IS 
* SUPPLIED UNDER THE TERMS OF A LICENSE AGREEMENT WITH INTEL 
* CORPORATION AND MAY NOT BE COPIED NOR DISCLOSED EXCEPT IN 
* ACCORDANCE WITH THE TERMS OF THAT AGREEMENT. 
*/ 

/* * isbc634 device driver. 
* * This is the set of procedures that make up the isbc634 device driver. 
* The procedures provided include i6340pen, i634close. i634intr. i634start. 
* i634ioctl which are the interfaces between xenix and the hardware. 
* The subroutines used are i634init. i634param which are used to program the 
* hardware. The isbc634 hardware conSists of 4 usarts. 2 pic's, 2 pit's and 
* a pp1. 
* * Multiple Isbc634 minor number structure: 
* bits 0-4: * Minor #: Board: * 0-3 usarts 1st Board lowest intr level 
* 4-7 usarts 2nd Board intr level 
* 
* * 20-23 usarts 6th Board last intr level(7) 
* bits 6-6 reserved for future use. 
* * NOTES: The base address of the board MUST be non-zero!!! 
* The isbc86/12 board must have the fail safe timer installed. (default) 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* * 
* 

The isbc634 REQUIRES a HARDWARE MODIFICATION for MODEM SUPPORT 
The isbc634 reqUires a default jumper removed from 

pin 106-106 
and add a jumper from 

pin 106-104 
This modification cascades timer bdg4 to bdg6 to allQw a 
2 second timer used in detecting carrier from a modem. 
The carrier loss signal is generated via a separate interrupt. 

The above modification is ONLY NEEDED to FOR MODEM SUPPORT but should 
be done for conSistency. 

Debug switches are: DEBUG for isbc634 support. 
i634debug: output control 

o == no output except spurious intrs 
1 -- special currently same as 0 
2 -- little but useful output 
3 -- all output 

* Written by Jim Chorn 
* on 12/29/81 
* * History: modified 1/16/82 for multiple board support. 
* modified 1/29/82 for console support. 
* modified 3/29/82 for addition of modem support 
* mods affect i6340pen,i634close,i634intr. 
* modefled 4/22/82 moved console support out to support isbx361 
* modlfied 6/22/82 added OR tie'ng of 634's on the same interrupt 
* level. * Changed the modem support bit to OxCO meaning configure 
* the llne for detection of aquisition AND loss of carrier detect 
* Signal. Bit Ox40 means detection of aquisition and bit Ox80 
* means detection of loss of carrier detect signal. 
* The detection of aquisition of carrier without detection of 

2-182 280041·001 



int:er AP-184 

* loss of carrier is meaningless and is not mentioned in the 
* manual entry. 

* *1 
#include " . . /h/i634.h" 
#include " .. /h/param.h" 
#include " . . /h/systm.h" 
#include " . . /h/conf.h" 
#include " .. /h/dir.h" 
#include " . . /h/a.out.h" 
#include " . . /h/user.h" 
#include " .. /h/tty.h" 
#include " .. /h/usart.h" 
#include " .. /h/intr.h" 

#t!def DEBUG 
tnt i634debug = 1; 
.endt! 

1* hardware structure and local commands *1 

1* system *1 
1* system configuration *1 
1* system directory structures *1 

1* needed for user.h *1 
1* user structures (system) *1 
/* device structures (system) *1 
/* baud rates *1 
1* some pie commands from system */ 

1* debug output control *1 

int 
struct 
struct 
int 
int 

i634wakeup; 1* wakeup variable for modems *1 
tty i534tty[N534*4]; /* 4 USARTs per 534 *1 
i634cfg i534cfg[N534]; 1* board software addresses von conf*/ 
i634base[8]; 1* board number -> board base addr *1 
i634alive[N534]; 1* does it live ?? *1 

1* 
* This procedure verifies that a isbc634 board is presently 
* configured by putting the board into test mode and 
* then checking if the board actually is in test mode. 
* This test mode check is a one bit test. If the board configured is not 
* present an array variable for each board called i634alive is set to false. 
* * TITLE: 1634probe 
* * CALL: i634probe(); 
* * INTERFACES: i6340pen. 1634tntr (thru the variable 1634cf~[]) 
* * CALLS: none 

* * History: 
* *1 

i634probeO 
{ 

register 
register 
struct 
int 

board; 
struct i634cfg *cf; 

db634 *DBbase; 1* set up the i/o boards base address. */ 
alive; 

for (board=O; board<N534; board++){ 
cf = &i634cfg[board]; 
if(cf->c base != 0) { 

alive = 1; 1* assume it lives *1 
DBbase =cf->c base; 
outb(&DBbase->stestmd, 1); 1* select test mode *1 
if«inb(&DBbase->stestmd) & 1) == 0) 1* is test mode selected? *1 

} 
} 

} 

alive = 0; 1* trash base addr for intr() *1 
outb(&DBbase->stestmd, Oxff); 
if«inb(&DBbase->stestmd) & 1) == 0) 

alive = 0; 
outb(&DBbase->stestmd, 0); 1* deselect test mode */ 
printf("iSBC 634 Based Ix board Id Is.O, 

cf->c base, board, 
alive-? "found" : "NOT found" ); 

i534base[board] = cf->c base; 1* associate board & tty struc*1 
i634alive[board] = alive; 

2-183 280041-001 



1* 
* This procedure initializes the isbc534 when the call to dinit is 
* made. This procedure is done ONCE ONLY in the following sequence: 
* initlalize the lsbc534 structures to polnt at the board, 
* reset the board, 
* lnltlalize the usarts wlth a spec1al hardware sequence, 
* lnit1al1ze the pp1 port for 1nput, 
* ln1t1allze and mask the on-board p1c's. 
* After th1s has been accomplished there 1s no reason to reln1tla11ze the . 
* isbc534 except when hardware fallure occurs. , * NOTE: The baud rate clocks are not programmed here; th~s 
* is done on the f1rst device open in the call to l534param;see 15340pen.' 
* * TITLE: l6341nlt 

* * CALL: 1534init(); 

* * INTERFACES: d1nlt 

* * CALLS: delay 

* * H1story: 1/11/82 Shortened the delay time from 100 to 10 to speed things 
* up a b1t. , * 1/16/82 Added probing for boards. 

* *1 

15341n1tO 
{ 

struct db534 *DBbase; 1* set up the 1/0 boards base address *1 
struct cb634 *CBbase; 
reg1ster 1nt 1, board; 

#1fdef DEBUG 
1f(1634debug>=2) 

pr1ntf("1634 1n1t, 0); 
#end1f 

1634probe 0 ; 
for (board=O; board<N534; board++) { 

1f(1634aI1ve[board] == 0) 
cont1nue; 1* Board not there! *1 

} 
} 

1* 

CBbase = DBbase = l534cfg[board].c base; 
outb(lDBbase->reset, 0); -
outb(lDBbase->seldata, 0); 
for (1=0;1<4;i++){ 1* lnlt each usart *1 

l51u1n1t(lDBbase->USART[1] .cntrl); 
} 
outb(lDBbase->PIC[O] .csr, PICICW1) 
outb (lDBbase-'>PIC[O] . msr, PICICW2) 
outb(lDBbase->PIC[l] .csr, PICICW1) 
outb(lDBbase->PIC[l] .msr, PICICW2) 
outb(lDBbase->PIC[O] .msr, HASKINT) 
outb(lDBbase->PIC[l] .msr, HASKINT) 
outb(lCBbase->selcntr,l); 
163tprog(lCBbase->PIT[l] .. tlmer[1], 

lCBbase->PIT[l] .pcr, 
(RATEKDOI Ox40), 
U634SPEED); 

, 
163tprog(lCBbase->PIT[l] .tlmer[2] , 

lCBbase->PIT[l] .pcr, .. 
(RATEKDOIOx80), 
U534SPEED > ; 

outb(lCBbase->seldata,l); 

1* tlmer bdg4*1 
1* pcr *f. 
1* mode *1 

1* 2' sec *1 

1* tlmer bdg6*1 
1* pcr *1 
1* mode *1 

1* 2 sec *1 

* Thls procedure sets up a usart tlmer for a load operatlon. 

280041-001 



inter AP·184 

* The code depends on having the ttystructure filled out before a call is made 
* to i634param. This is the sequence of events; 
* check for valid speed 
* program timer (using i63tprog) 
* This procedure will program bdgO to bdg4 as a baud rate generator. 
* 
* * TITLE: i634param 
* * CALL: i534param(dev); 

* * INTERFACES: i534init, 

* * CALLS: i63tprog 

* * History: 1/20/82: removed bdg4, bdg6 programming options. 
* These timers aren't used. 
* 1/29/82 added console programming 
* 4/7/82: added i63tprog to handle pit programming 
* 4/22/82 : removed console programming 

* */ 

#define MAXBAUDS 16 /* maximum indexes into i634baud[] */ 
int i634baud[] = { 

US BO , US B50, US B76, US B110, 0, 
US-B1GO, US B200~ US B300~ US B600~ US B1200, 
0,- US=B2400, - US_B480U, US_B9600, 0, 
o 

} ; 
int 1634speed[N634*4]; /* track record */ 

1634param(dev) 
dev_t dev; 

{ 

} 

struct cb534 *CBbase; /* set up the i/o boards base address *, 
reglster struct tty *tp; 
lnt unit, s, speed,mode,plt; 

unit = minor(dev) l MINORMSK; 
tp = li634tty[unit] , 
CBbase = tp->t addr l OxfO; 
s = (1nt)tp->t-ospeed; 
1f(s==0) {- /* hangup signal via stty */ 

outb(tp->t addr+1,SHANGUP); 
return; -

} 
if(s == i534speed[unit]) 

return; 
else 

/* already that fast */ 

i534speed[un1t] = s; 
un1t %= 4; /* wh1ch usart? */ 
speed = 1634baud[s]; 
if «s > MAXBAUDS) II «s != 0) u (speed == OJ)) { 

u.u error = EINVAL; /* 1nvalid baud rate */ 
return; 

} 
if (unit == 3){ 

pit = lCBbase->PIT[l] .timer[O]; 
mode = RATEMDO; 

}else{ 
pit = lCBbase->PIT[O] .timer[unit]; 
mode = RATEMDO I (unit «6); 

} 
s = SPLO, 
outb(lCBbase->selcntr,l); 
163tprog(pit, (pltIOx03),mode,speed); 
outb(lCBbase->seldata,l); 
splx(s) ; 

2-185 280041-001 



AP~184 

/* 
* This procedure opens one of the 4 lines on the isbc534 board for 
* exclusive use by a user. The file ~tructure is initialized 
* and control is passed to ttyread w~ich does the actual open. 
* Not supported is the fifth device which is the parallel port. 

* 
* * TITLE: i5340pen 

* * CALL: i5340pen(dev. flag); 
* * INTERFACES: xenix 
* * CALLS: i534init. ttyopen 
* * History: 1/15/82: Modifed code for multiple i534's to:index a 
* configuration table to get the board base address. 

* */ 
int i634start(); 

i534open(dev) 
dev_t dey; 

{ 
struct db534 *DBbase; /* set up the i/o boards base address */ 
register struct tty *tp; 
register int unit; 
int modem; /* modem bit in minor dey numb */ 

unit = minor(dev) a MINORMSK; 
if (unit >= (N534*4» { 

u.u_error = ENXIO; 
return; 

/* not enough tp's */ 

} 
tp = ai534tty[unit]; 
if (i534alive[unit/4] -- 0) { 

u.u error = ENXIO' 
return; . 

/* Board not there! */. 

} 
DBbase = (struct db534 *)i534cfg[unlt/4] .c_base. 
unit %= 4; 
tp->t addr = (caddr t)aDBbase->USART[unlt] .data; 
modem-= minor(dev) I MODEMMSK; 
tp->t oproc = i534start; 
if «tp->t state a ISOPEN) == 0 ) { 

ttychars(tp) ; 
tp->t ispeed = tp->t ospeed = ISPEED. /* channel speed */ 
tp->t-flags = ODDP 1 EVENP 1 ECHO 1 CRMOD; 
i534param(dev); /* load baud clock */ 
outb«tp->t addr +1). SANSWER); /* turn usart (dtr) on */ 
if (modem) C 

} 

if(modem a MODEMWAIT) /* mask detect leaving aqua */ 
while«inb«tp->t addr +1» a DTRON) == 0) 

sleep«caddr=t)ai534wakeup.TTIPRI), 
outb(aDBbase->PIC[l] .msr . «inb(aDBbase->PIC[l] msr» a 
(-(Ox10« unit» aTIMERGO». 

/*unmask carrier/detect */ 

} 

outb(aDBbase->PIC[O] .msr . «inb(aDBbase->PIC[O] .msr» ~(-(3« unit * 2»». 
/* unmask txrdy. rxrdy */ 

} 

if (tp->t state a XCLUDE 
u.u error = EBUSY; 
return; 

aa u.u uid != 0) { 

} 
tp->t state 1= CARR ON; 
(*linesw[tp->t_lineT.l_open) (dev. tp). 

2-186 280041-001 



inter AP-184 

1* * This procedure performs the close operation on one of the devices of the 
* isbc534. A close masks the device on board; reinstalls the flags that 
* state the device is closed; calls ttyclose the do the operation. 
* Not implemented yet is device 4 which is the parallel port; it is 
* unknown device at this minute. 

* * TITLE: i534close 
* * CALL: i534close(dev, flag); 

* * INTERFACES: xenix 
* * CALLS: ttyclose 

* * History: 
* *1 

i534close (dev) 
dev_t dev; 

{ 

} 

struct 
register 
reglster 
register 
int s, 

db534 *~Bbase; 
struct tf..y *tp; 
unit; 

1* set up the 1/0 boards base address *1 

mask; 

unit = minor(dev) l MINORMSK; 
tp = li534tty[unit] , 
DBbase = (tp->t addr l OxfO); 
if (unit < N534*~) { 

} 

if(tp->t state l HUPCLS) { 
tp->t state l= -CARR ON; 

} 
outb(tp->t_addr +l,SHANGUP); 

(*linesw[tp->t line].l close) (tp); 
ttyclose(tp); - -
unit"=4; 
s = SPLO; 
mask = inb (lDBbase->PIC [0] .msr) I 
outb(lDBbase->PIC[O] msr, mask); 
splx(s); 

tp->t_addr = (caddr_t) 0, 

1* dtr off *1 

(3 « (unit * 2)); 
1* RxRDY, TxRDY off *1 

1* 
* This procedure interfaces the read ~equest with the system read operation 
* to obtain a byte from the usart. The usart's character is read after an 
* interrupt so this procedure calls the system to wait for the interrupt 
* procedure to pass the character on to the input character queue. 
* * TITLE: i534read 
* * CALL: i634read (dev) 

* * INTERFACES: xenix 

* * CALLS: ttread 
* * History: 

* *1 

2-187 260041-001 



AP-184 

i534read (dev) 
dev_t dey; 

{ 

} 

register struct tty *tp; 
register int unit; , 

unit=mlnor(dev) a MINORMSK; 
tp = ai534tty[unit); 
(*linesw[tp->t_line] I_read) (tp); 

1* 
* This procedure is the compliment of the i534read routine. A call is 
* made to ttwrite which watches the output queue for characters and 
* gets the characters in the queue out to the device 

* * TITLE: i534write 

* * CALL: i534write(dev), 

* * INTERFACES: xenlx 

* * CALLS: ttwrlte 

* * History: 

* *1 

i534wri te (dev) 
dey t dey; 

{ 

} 

register struct tty *tp; 
register int unlt; 

unit=minor(dev) a MINORMSK; 
tp = ai534tty[unit); 
(*linesw[tp->t_line) . I_write) (tp); 

1* 
* This procedure is called by xenix with interrupts off (sp15) when the 
* isbc534 interrupts. The interrupt process polles the 8259's on the isbc534 
* to find out whlch device; (if the device is a usart receiving it gets the 
* character) then sends the character to ttyinput or restarts output by 
* calling ttstart depending on which interrupt was set off. Ttystart calls 
* i534start to make sure that no more characters need to be transmitted and 
* to let every body know a character has been transmitted. The carrier detect, 
* ring indicator, present next digit and pit interrupt signals are not 
* implemented yet. The present next digit signal comes from the external 
* source on line 4. 
* * NOTE: all carrier detect signals both interrupt and latch on the 8255 ppi. 
* Refer to the H/W manual for possible uses of these signals 
* (ie ACU I printer applications) . 
* The rxrdy/txrdy lines from the older usarts (8251A/s2657 a older) cause 
* giltches on the piC interrupt lines. This is a problem with the USART. 
* If possible replace usart with a newer version. 
* 
* * TITLE: i534intr 

* * CALL: 1534intr(level); 

* * INTERFACES: xenix 

* * CALLS: ttyinput, ttstart 

2-188 280041-001 



AP-184 

* * History: 1/13/82: Condensed the usart Rxrdy/~xrdy intr switch to 
* run more efficiently using an if .. ; Added the 
* unset of busy flag which gets set in i634start. 
* 1/16/82: changed variable type to level which was incorrect. 
* added multiple isbc634 support. 

* *1 
tnt wakeupO, 

i634lntr(level) 
lnt level; 

{ 
struct db634 *DBbase; 1* set up the 1/0 boards base address *1 

*tp; reglster struct tty 
reglster char c; 
lnt status,mask; 
lnt gotone,board; 

1* mask ~ status to/from PIC *1 

do { 
gotone=O; 
for(board=O;board<N634;board++) { 

if(1534alive[board]) { 
DBbase = 1634base[board]; 
outb(~DBbase->PIC[O] .csr, GETINT); 
status = lnb(~DBbase->PIC[O] .csr); 
if «status ~ GOODINT) == GOODINT) { 

gotone++; 
outb(~DBbase->PIC[O] .csr, PIC EOI); 

1* check b1t 8 for an int *1 

status ~= Ox07; -1* mask off garbage blts *1 
tp = ~1634tty[board*4] + (status » 1); 

} 

if «status ~ OxOl) == O){ 1* Rxrdy intr *1 
c = inb(tp->t addr); 
(*linesw[tp->t line].l r1nt)(c, tp); 

}else{ - 1*- Txrdy intr *1 
tp->t_state ~= -BUSY; 1* the character is out *1 

} 

(*linesw[tp->t11ne].1 start) (tp); 1* do the next one *1 
if«tp->t state ~ ASLEEp) ~~ (tp->t outq.c cc <= TTLOWAT» { 

tp->t state ~= -ASLEEP; - -

} 
wakeup«caddr_t)~tp->t_outq); 

outb(~DBbase->PIC(l] .csr, GETINT); 
status = lnb(~DBbase->PIC[1] .csr); 
if «status ~ GOODINT) == GOODINT) { 1* check bit 8 for an int *1 

gotone++; 
outb(~DBbase->PIC[l] .csr, PIC EOI); 
status ~= Ox07; -1* mask off garbage blts *1 
if (status >= 4) 

tp = li634tty[board*4] + (status -4); 
switch(status) { 
case 0 : 1* pit 1 cntr 4 *1 

break; 
case 1 : 1* pit 1 cntr 6 *1 

wakeup«caddr_t)li534wakeup); 
break; 

case 2 : 1* ring ind all *1 
break; 

case 3 : 1* present next *1 
break; 

case 4 : 1* port 0 detect*1 
case 6 : 1* port 1 detect*1 
case 6 : 1* port 2 detect*1 
case 7 : 1* port 3 detect*1 

if«tp->t state l (CARR ONIISOPEN» 
== (CARR ONIISOPEN» { -

slgnal(tp->t pgrp, SIGHUP); 
tp->t state 1= -CARR ON; 
1* flIck dtr off to cause 

2-189 280041-001 



} 

AP-184' 

* hardware hang up on 
* modem 
*1 

mask = lnb(tDBbase->PIC[l] .msr} 
! (l«status);' 

outb(tDBbase->PIC[11.msr, mask}; 
1* carrler detect off *1 

outb«tp->t_addr +l},SHANGUP}; 
} 
break; 

.ifdef DEBtiG 
1* else 

'endU 

} 

prlntf("1534: Spurlous Int level IdO, level); *1 

1* no interrupt from thls device 
* a call should be made to handle 
* some form of accountlng as this 
* interrupt ls probably caused by 
* an out of date usart 8261A/s2657 
* or older. (glItches occaslonal1y 
* the rxrdy/txrdy 11nes) 
*1 

} 
} 

} whlle(gotone); 

* Thls procedure starts output on a usart if needed. 1534start gets a 
* character from the character queue, outputs the character to the usart, 
* and sets the BUSY flag. The busy flag gets unset when the character 
* has been transmitted 6y 15341ntrO. 
* * TITLE: 1634start 
• 
* CALL: 1634start(tp) 
* * INTERFACES: ttystart 
* * CALLS: none 
* * Hlstory: 
* 
* 
* *1 

1/13/82: Removed the hardware probing for txrdy and added 
a set of the busy flag whlch gets unset on txrdy 
lnterrupt. 

lnt ttrstrtO; 
cbar partab [] ; 

1634start(tp} 
reg1ster struct tty *tp; 
{ 

reglster c; 
reg1st.er s; 

'ifdef DEBUG 
if (1534debug>=3) 

pr1nt.f("1634~tart: called on unlt at IxO, tp->t_addr}; 
.endif 

s = sp160; 
1f (tp->t statea(TIMEOUT!BUSY» { 

splX"{S}; 
return; 

} 
sp1X(s) ; 
lf «c=getc(atp->t outq}) >= 0) { 

if (tp->t flags a RAW) {' 
outb"{tp->t addr, c}; 

hlse{ -
if (c<=Ox7f) { 

outb(tp->t addr, c ! (partab[c1a0200}); 
hlse{ -

2-190 



AP-184 

tp->t state 1= TIMEOUT; 
timeout(ttrstrt, (caddr t)tp, (ctOx7f»; 
return; 1* i'm tImed out t !BUSY *1 

} 
} 

} 
tp->t_state 1= BUSY; 

,. 
• This procedure handles the ioctl system calls for such things as baud rate, 
• changes and various ~ardware control changes from the initial set up. 
• Currently only baud rate changes are supported. 
• 
• TITLE: 163410ctl 
• 
• CALL: 1634ioctl(dev, cmd, addr, flag) 
• 
• INTERFACES: loctl 
• 
• CALLS: i634param, ttloccomm 
* • History: • 
*1 

i634ioctl(dev, cmd, addr, flag) 
caddr t addr; 
{ -

register struct tty *tp; 
register int unit; 

unit = minor(dev) t MINORMSK; 
tp = ti634tty[unit); 
1f (ttioccomm(cmd, tp, addr, dev» { 

if (cmd==TIOCSETP II cmd ==TIOCSETN) 

}else 
1634param(dev); 

u.u error = ENOTTY; 
} 

2-191 

I*if baud change do it*1 

280041-001 



AP-184 

REFERENCES 

1) Ritchie, Dennis M., The Unix 110 System, 
undated. 

2) Scheulen, Bob, Microsoft Device Driller Guide, un
published '82. 

3) Letwin, Gordon, Interrupt Structure, unpublished 
(MICROSOFT) '82. 

4) Short, Antony, The XENIX I/O System, unpu
blished (MICROSOFT) '82. 

5) Beck, Bob, The Anatomy of XENIX Device 
Drillers, unpublished. 

6) Byrant, McNamara, Vaish, Writing Device 
Drillers, UNIFORUM '84. 

2-192 

ACKNOWLEDGEMEfIITS 

1) Jim Emmons, for hours of shared discussion on 
device drivers and for his iSBC 254 Bubble 
Memory Board Pseudo,-Code. 

2) Dilip Ratnam, Phil Barret, Jean McNamara 
Rick Byrant and other members of the XENIX 
team for sharing their ideas. 

3) Vince Slyngstad, for his iSBX 270 Video Termi
nal Controller walkthrough. 



inter APPLICATION 
NOTE 

AP-221 

October 1984 

An Introduction to 
Task Management in the 

iRMX™ 86 Operating System 

© INTEL CORPORATION, 1984 

CATHERINE J. LUNDBERG 
APPLICATIONS ENGINEERING 

2-193 

Order Number 280047-001 



AP-221 

An Introduction to Task 
Management in the 

iRMX™ 86 Operating 
System 

Contents 

Introduction .......................... . 

iRMX™ 86 Operating System Nucleus 
Architecture ........................ . 
Memory Management ............... . 
Task Scheduling .................... . 

Single Task Application Example ..... . 
Inittask ............................. . 
Onetask ............................ . 
Creating Tasks ...................... . 
Mailboxes .......................... . 
Using the System Debugger (SOB) " 
Exception Handling ..... " ......... . 

Multiple Task Application Example ... . 
Main$task .......................... . 
Supervisor$task .................... . 
Widget$task ......................... ' 
IO$task ............................. . 
Mailboxes ......................... . 
Deadlock .............. : ........... . 
Initialization ........................ . 
Debugging ......................... . 

Configuration ........................ . 
Configuring the iRMXTM 86 

" Operating System ............... . 
Linking and Locating the 

Applipatio.n ..... I .... : .. .......... . 

Co.nclusion ............................ . 

Appendix A: Inittask Code ........... . 

Appendix B: Onetask Code .......... . 

Appendix C: Tasks Code ............ . 

Appendix D: Submitfile .............. . 

Appendix E: iRMX 86 Operating System 
Definition File ..................... . 

Appendix F: Related Publications .... 

2-194 



AP·221 

INTRODUCTION 

The purpose' of this application note is to help users 
understand the nucleus of the iRMXTM 86 
Operating System, and how to use the nucleus. The 
other layers of the Operating System are not 
discussed. It is assumed that the reader has a basic 
understanding of the iRMX 86 Operating System, 
which can be gained by reading the product 
documentation. This application note does not 
discuss all areas of the nucleus with equal depth, so 
readers wishing to understand areaS other than task 
scheduling should refer to the iRMX 86 Nucleus 
Reference Manual for more information. Related 
areas are covered in enough detail to provide the 
necessary background for understanding how to use 
tasks in the iRMX 86 Operating System. 

This application note focuses on the nucleus and its 
task scheduling and resource management 
functions. The nucleus of the iRMX 86 Operating 
System must handle two major functions: task 
scheduling, which also involves interrupt handling; 
and resource management, in particular memory 
management. The iRMX 86 Operating System has 
other layers, which increase the functions provided 
by the Operating System and which rely on the 
nucleus as their base. 

The iRMX 86 Operating System is a real time 
operating system which can have multiple jobs and 
tasks. It is a preemptive, priority based operating 
system. Since only one task can be executing on the 
central processor at any time, the task scheduler is 
the heart of the operating system. 

The application note has two examples. The first 
example creates a single task to show what is 
involved in creating a task. The second example 
shows multitasking, creating three tasks. It 
demonstrates how the relative priorities of the tasks 
affect the way the application behaves, and is used as 
the basis for discussing deadlock between tasks. 

iRMX™ 86 OPERATING SYSTEM 
NUCLEUS ARCHITECTURE 

The nucleus of the iRMX 86 Operating System is 
essentially a resource manager. There are many 
resources which an operating system must handle. 
These can be divided into three areas for the iRMX 
86 Operating System: processor time, objects and 
memory. The main concern in this application note 
is control of processor time, but the reader should 
remember that in controlling processor tif1le, the 
nucleus also manages each of the other two areas. 

Processor time is the key resource the iRMX 86 
Operating System manages. The Operating System 
should use the processor as efficiently as possible. 

When a task requires the processor, that task is 
placed in the ready state. The processor always 
executes the highest priority ready task first. If more 
than one task of that priority is ready, the processor 
is allocated to the task that has been ready the 
longest. Once a task gains control of the processor, 
that task retains control until preempted by a higher 
priority task or interrupt, or the task gives up controL 

Objects are the building blocks of the iRMX 86 
Operating System. There are several types of 
objects: tasks, jobs, segments, mailboxes, 
semaphores, regions, extension objects, and 
composite objects. Tasks are the primary focus of 
this application note. However, the use of segments 
and mailboxes will also be discussed since they are 
used to communicate between the tasks in the 
example programs. 

Memory usage is usually a critical factor in an 
application. It is desirable to use as little memory as 
possible, while still allowing the application to run 
efficiently. Insufficient memory can slow down the 
execution of a task or cause an error when executing 
the application. 

Some other functions of the iRMX 86 Operating 
System that are implemented at the nucleus level 
are exception handling, interrupt management, and 
hardware manipulation of devices such as the 
programmable interrupt controller, the system 
clock, and the numeric data processor. These 
functions are not specifically discussed in this 
application note. 

Memory Management 

In the iRMX 86 Operating System, memory is 
partitioned into pools. That portion of the nucleus 
that allocates memory is called the free space 
manager. The root job, which is the first job in the 
Operating System and the ancestor of all other jobs, 
has a memory pool consisting of all available 
memory when the Operating System initializes. As 
jobs are initialized, they are allocated memory from 
the root job's pool for their own use. 

Jobs which are created during system initialization, 
such as those that make up the iRMX 86 Operating 
System layers, are allocated memory based on 
configuration parameters. There are two parameters 
used in requesting memory. The first is the 
minimum memory pool size. This parameter 
specifies the minimum amount of memory that the 
job requires in order to run. The second parameter is 
maximum memory pool size. This parameter can 
either have the same value as the minimum pool 
size, or it can have some larger value. If it has a 
larger value, the job will be allowed to borrow 
memory dynamically from its parent or some more 

2-195 280047-001 



inter AP·221 

distant ancestor. If the maximum memory pO'ol is 
set to a smaller value than the minimum memory 
pool, an error will result. If the minimum and 
maximum memory pool sizes are the same, the job 
will be allocated that amo.unt of memory and will not 
be allowed to borrow memory. 

If there is sufficient memory to fulfill the request 
when a job is created, it is given the minimum 
amount of memory requested. If there is not enough 
memory, the job is not created and an error 
(E$MEM) will be returned to the creator. If the job 
is created and later needs more memory, the request 
will be honored up to the maximum memory pool 
size by borrowing. The memory is borrowed from 
the job's ancestors. A job with the same minimum 
and maximum memory pool size cannot borrow 
memory from its parent. 

Usually, only one job created by the root job should 
be allowed to borrow memory. This prevents more 
than one job borrowing memory from the same 
memory poo\. Multiple jobs borrowing from the 
same memory pool can cause deadlock between the 
jobs, so borrowing should be used with great 
caution. In an iRMX 86 Operating System with all 
the layers, the Human Interface is usually chosen to 
be the layer allowed to borrow memory. 

Memory is allocated by the free space manager on a 
first come, first served basis. The job that is created 
first will receive the memory it requested if there is 
sufficient memory available to satisfy the minimum 
memory pool request. Then the next job created wiII 
request the memory it needs. If a job is not able to 
get as much memory as it needs, the operating 
system will return an E$MEM error to the creating 
task and the job will fail to be created. The free space 
manager will continue to try to allocate memory to 
the next job that is created. 

The free space manager for Release 6 of the iRMX 
86 Operating System keeps a sequential doubly 
linked list of the available segments of memory 
within each job pool. Each block of memory has a 
header which contains two links: one forward, and 
one backward. A pointer called the rover always 
points to the next entry of the linked list's unallocat
ed memory. 

When a memory request is made, the next' memory 
entry in the linked list is checked to see if it is large 
enough. The first segment found which is large 
enough is allocated and removed from the free space 
manager's list. The rover points to the remainder of 
the segment just allocated. Memory is always allocat
ed in contiguous segments, including allocating mini
mum memory pools. The rover keeps the lower por
tionof memory from becoming more fragmented 
than the upper portions. Using the rover and a first 

fit algorithm means that the average number of seg
ments that must be checked is also decreased. (See 
Knuth: The Art of Computer Programming: Vol. I 
pp 435-453. In particular, refer to exercise 6 on p. 
452 and its answer on p. 597 J When memory is re
turned to a pool, it is merged with existing segments 
when possible. 

The Application Loader allocates memory to jobs at 
run time under control of the iRMX 86 Operating 
System. The OMF (Object Module Format) for ·the 
iAPX 86 processor has two areas in which minimum 
and maximum memory pools' are specified. First are 
the program's. minimum and maximum static 
memory requirements. These static memory 
requirements correspond to the code and data size 
of the job. The second area in which memory pools 
are specified are a minimum and maximum dynamic 
memory pool which are specified in the LINK86 
process. 

When the Application Loader allocates memory for 
a program, the Application Loader calls the Nucleus 
to create a memory pool as large as possible within 
the specified bounds from the user's memory poo\. 
In Releases 5 and 6 of the iRMX 86 Operating 
System, with each failed attempt to allocate 
memory, the application loader decrements the size 
of the memory pool requested by 3% of the 
difference between the current size attempted and 
the minimum size. The Application Loader then 
tries again to allocate the memory. This approach is 
used so that the application is given the largest 
amount of memory possible in as few tries as 
possible, and so that the loading time is decreased. 

Task Scheduling 

Tasks are the active objects in an iRMX 86 
Operating System, and they do all the work. They 
run inside of jobs, which provide the environment 
the tasks need, such as the memory pools. There are 
five possible execution states for an iRMX 86 task. 
These states are running, ready, asleep, suspended, 
and asleep-suspended. Nucleus system calls can 
change the state of a task. External events can also 
affect the state of the task. Figure 1 shows the state 
transition diagram for tasks. 

Tasks can have different priorities. A numerically 
lower priority is a logically higher priority task. A 
task which has a logically higher priority wiII execute 
first if it is in the ready state. Tasks will be put on the 
ready list in priority order, and within a priority, the 
task which has been ready the longest will execute 
first. 

Normal tasks are assigned priorities between 80H 
and OFFH so that they can be serviced with 
minimum delay. Interrupts are usually at a higher 
priority than normal ta,sks, and will always irterrupt 

2-196 280047-001 



inter AP-221 

NON-EXISTANT-----.. r------, 
READY 

RUNNING , 

ASLEEP
SUSPENDED 

2079 

Figure 1. Task State Transition Diagram 

the processor when they occur. The interrupt 
handler may be able to handle the interrupt directly, 
or it may invoke an interrupt task to handle the 
interrupt. The interrupt handler will retain control of 
the processor until the handler exits or a higher 
priority event occurs. 

When mailboxes are used, queues of either tasks 
and objects can form at the mailbox. Task queues 
can form at semaphores. Task queues can be priority 
ordered or FIFO (First In First Out) ordered. This 
order is specified when the mailbox is created. A 
FIFO queue on a mailbox can cause a task with a 
lower priority to execute before a task with higher 
priority. If both tasks are waiting on the mailbox 
before continuing execution and the lower priority 
task is first on a FIFO queue, the lower priority task 
will execute first. However, when the higher priority 
task receives the object for which it was waiting, the 
task now becomes the ready task with the highest 
priority and can take control of the processor. 

SINGLE TASK APPLICATION EXAMPLE 

This section explains how to create a task, how to 
use mailboxes, and how to use the System 
Debugger. It also covers exception handling, as well 
as how to configure the iRMX 86 Operating System, 
and how to link and locate the application job. 

The single task example shows how to create a single 
task that writes to the terminal. The structure of the 
operating system used for this application example is 
shown in Figure 2. The code has an initial module, 

2-197 

called Inittask (Appendix A), which is used to 
provide a stable entry point for the application code. 
The entry point of Inittask is the start address for the 
task. In the User Job screen of the ICU, this value 
must be supplied for the task start address 
parameter. Inittask calls Onetask (Appendix B) 
which does all the work of the application. The 
submit file which links and locates the user job is 
given in Appendix D. 

INITTASK 

The .initial module, shown in Appendix A, is very 
simple. It illustrates how to set up a stable entry 
point for a user job. There is no data in this module, 
and there are only two calls. Inittask is never 
changed, and it is linked first, so its entry point is 
stable no matter what changes are made to the rest 
of the application code. This approach allows the 
user job's entry point to be set up only once in the 
configuration of the operating system, and removes 
the need to generate a new operating system 
whenever the application code is changed. 

The .MP2 file generated by the LOC86 utility shows 
that the module has the entry point Inittask at 
1500:0002H. This address is used as the task start 
address in the definition file, in the User Job screen 
of the ICU. Inittask calls RQ$END$INIT$TASK, 
which is a requirement for any job created by the 
root job in the iRMX 86 Operating System. Calling 
RQ$END$INIT$TASK allows the root task to 
resume execution and create another first level job. 
Once RQ$END$INIT$TASK has been called, 

280047-001 



inter AP-221 

BIOS JOB 

ROOT 
JOB 

(deletes itself 
after initialization) 

SDBJOB APPLICATION JOB 

2080 

Figure 2. Single Task System 

Inittask calls an external procedure called 
Main$task, which is the actual code that creates the 
example task. The same initial module is used with 
both application examples. 

ONETASK 

In Appendix B, the code for Onetask is shown. 
There are two parts to Onetask. First is the main 
module, called Main$task. Second is the task which 
is created by Main$task, called First$task. Note that 
there are really two tasks, only one of which is creat
ed specifically in the example code. 

Main$task creates a mailbox and catalogs it in the 
user job's directory under the name DONEMBX. It 
uses this mailbox to synchronize Main$task and the 
task which is created. It creates First$task and then 
waits at the mailbox to receive a message from 
First$task to indicate that the task has finished. 
Main$task then deletes the task and deletes the 
mailbox. 

Main$task deletes segments received from the mail
box, and then deletes the mailbox. In the code 
shown in Appendix B. there is a loop around creating 
and deleting the task. with the PUM 86 call C AUSE
$INTERRUPT (3) at each end of the loop. This code 
as used in this example was for debugging purposes, 
but could have also allowed stopwatch timing of the 
routine. Note also that using CAUSE$INTERRUPT 
(3) calls in your code will result in all other tasks in 
the system halting. including those of other users. 

At the point where Main$task calls RQ$RECEIVE$
MESSAGE to wait at the mailbox, First$task begins 
to run. Main$task has a higher priority than 
First$task, so First$task cannot run until Main$task 
either suspends itself or goes to sleep. In this case, 
Main$task is waiting on the mailbox, which puts it in 
the sleeping state, and Main$task cannot continue 
until an object is received from the mailbox. This sit
uation gives First$task' a chance to run, since it is 
now the highest priority ready task. 

First$task creates some mailboxes and segments, 
and does a lookup to find the mailbox DONEMBX 
which it must use to communicate with Main$task. 
First$task then physically attaches the terminal, 
opens a file connection, and writes a buffer to the 
terminal. Then it closes the connection, deletes the 
file connection, and detaches the device. It cleans up 
by deleting the segments and mailboxes it created, 
and signals Main$task that it is done by sending a 
message to the mailbox DONEMBX. 

Main$task receives control of the processor after 
First$task sends a message to DONEMBX to indi
cate completion. Main$task then deletes the seg
ments and mailboxes which are left, and then 
deletes the application job. All memory allocated to 
the application job will then be returned to the root 
job's memory pool. 

If there was an error while running this application, 
the task would end up looping in one of the 'error' 
routines. If the application completed successfully 
and exited, the nucleus idle task for Release 6 of the 
iRMX 86 Operating System would begin executing. 

2-198 280047-001 



AP-221 

The Basic I/O System (BIOS) was used in this appli
cation to provide immediately visible results. The 
section which involves using the BIOS is the most 
complex part of the example code. Many applications 
will have no need of the BIOS. 

These applications were done in the LARGE model 
of compilation to provide simpler examples. The 
COMPACT model can be used if the application's 
code and data are less than 64K each. COMPACT 
code can usually execute faster because calls will be 
within the same segment, so won't require changing 
as many registers to execute the call. 

Creating Tasks 

To illustrate all the areas that are involved in creating 
a task, let's go through each of the parameters of the 
RQ$CREATE$TASK system call. The call looks like 
this. 

task$token = RQ$CREATE$TASK 
(priority, 
start$address$pointer, 
data$segment, 
stack$pointer, 
stack$size, 
task$flags, 
exception$pointer ); 

The parameters in the RQ$CREATE$TASK call are 
explained below. 

Priority: Task scheduling involves setting relative 
priorities of tasks. Unless a task is involved in 
processing interrupts, its priority should be 
between 129 and 255. When a task having a 
priority in the range 0 to 128 is running, certain 
external interrupt levels are disabled, depending 
on the priority. The task for this application used 
a priority of 202. The initial task itself was given 
a priority of82H, or 130, at configuration time. 

Start$address$pointer: The start address pointer is 
used to point to the beginning of the task which 
is being created. In the PUM 86 LARGE and 
COMPACT models, the pointer points to the 
label of the procedure containing the task. The 
task was a procedure within the same main 
module for these examples. If the task had been 
compiled separately, it would have to be defined 
as an external procedure within the main 
module which created the task. The actual 
locations are resolved when the application is 
linked and located. 

Data$segment: In the PUM 86 LARGE model, the 
data segment is set equal to zero when creating 
the task. Setting the data segment to zero allows 
the task to set up its own data segment. In other 

models of PL/M 86, the user task must 
explicitly set up its own data segment or the 
value of the data segment must be obtained 
from the locate map and used in the call. Refer 
to the iRMX 86 Configuration Guide, which is 
part of the ,RMX 86 TH Installation alld 
Configuration Guide for Release 6 for more 
information on how to set up the data segment 
of a task. 

Stack$pointer: The stack pointer is also set to zero 
to allow the iRMX 86 Operating System to 
automatically allocate a stack of size stack$size. 
While the task is running, the SS register will 
show which stack segment is being used for the 
application task. 

Stack$size: The stack size will need to vary with 
stack requirements of the task. If the task is 
reentrant, or makes calls to subroutines with 
many parameters, or if the task makes iRMX 86 
Operating System calls, the amount of stack 
must be larger than if the task only keeps local 
variables on the stack. 

There are two ways to determine the stack size 
needed. The first method involves arithmetically 
determining the stack size needed, based on 
three things: the number of bytes required for 
interrupts, the number of bytes required for 
system calls, and the amount of stack required 
by the task's code segment. This method is ex
plained in iRMX 86 Programming Techniques, 
which is part of the iRMXTM 86 Programmer's 
Reference Manual for Release 6, Part 1/. The 
other method involves choosing a relatively 
large stack size and reducing it through empirical 
methods. To use the empirical method, display 
the stack with a debugger. If there are "C7"s on 
the stack when the application has completed, 
that part of the stack hasn't been used. You can 
also watch the stack pointer, kept in the SP 
register, to see how low it goes. It will grow 
toward zero from the value given as the stack 
pointer when the task is created. 

While testing the example application code, the 
stack size was set to 2000 (7DOH) which was 
much too large. A stack size of 300 was sufficient 
for this task. 

Task$flags: Task flags are used in the iRMX 86 
Operating System Releases 5 and 6 to tell the nu
cleus whether the task contains floating point 
instructions. This task did not, so task$flags was 
set to O. Setting bit 0 of task$flags to I to indicate 
the use of floating point instructions will result 
in memory being reserved for the NPX 
registers. The other bits of task$flags are 
reserved. The iAPX 8087 or iAPX 80287 must 

2-199 280047-001 



inter AP·221 

be included in the system if floating point in
structions are used. 

Exception$pointer: This pointer gives the location 
of the word where the status of this call will be 
returned. The result is checked after the call to 
make sure that an E$OK was returned. For con
venience while debugging, the condition code 
can also be found in the CX register. The nu
cleus manual (Chapter 7 for iRMX 86 Release 
6) contains a table of exceptional conditions that 
can be returned and their numeric codes. 

Mailboxes 

There are two object queues associated with every 
mailbox. One is a fast queue, which has a fixed 
length determined when the mailbox is created. The 
other object queue is an overflow queue, and 
memory must be allocated for that queue each time 
it is used. This example used one mailbox to com
municate between the original task and the task it 
created. The fast queue has a length of 4, which is 
the default value, indicated by the 0 as the first 
parameter of the create$mailbox call. If this mailbox 
frequently had large numbers of objects on its 
queue, it might have been useful to use a larger fast 
queue. This approach, of course, means that more 
memory would be allocated to the mailbox when it 
is created. In this application, the minim.um fast 
queue length was used. 

The DONEMBX mailbox is being used as if it was a 
semaphore. It is used only to tell the parent task that 
the child task has completed. First$task also creates 
some mailboxes which are used to send 
information. For instance, when a physical connec
tion is made to the terminal, the mailbox is used to 
receive a token for the physical connection. 
Similarly, when a file connection is made, the mail
box receives a file connection token. 

Different protocols can be set up to handle objects 
which are received at a mailbox. In this application, 
after an object is received from a mailbox, that 
object is deleted after it has been used in an appropri
ate manner (such as to extract the file connection 
token). A protocol can also be set up so that objects 
are reused. A response can be sent to the task that 
sent the object. Only Operating System created ob
jects can be sent to a mailbox. Objects should be 
deleted when they are no longer needed, because 
they take up memory. Creating extra objects and ne
glecting to delete them can eventually cause a task to 
use up all its available memory. The objects which 
are sent to mailboxes in this example are segments. 
Examples of how to check for the presence of objects 
are shown in the following section on using the 
System Debugger. 

2-200 

Using the System Debugger (SOB) 

The System Debugger is a job which is added to the 
iRMX 86 Operating System at configuration time. 
The only configurable parameter in the SDB is its in
terrupt level, which in this example should be the 
default value of 018H, master interrupt level one. 
The SDB knows most of the data structures of the 
iRMX 86 Operating System, and can be used to 
determine what is happening within the Operating 
System while an application job is running. 

The first thing that must be done when using the 
SDB is to activate it. If you are writing an application 
which can be run from the Human Interface, the 
DEBUG cusp can be used. The example application 
wasn't run from the Human Interface. Instead it is 
built in as a user job. The SDB can be invok~d by 
pres.sing the front panel interrupt button, or by in
sertmg a 'CAUSE$INTERRUPT (3)' call into the 
source code. While bootloading an application, the 
'CAUSE$INTERRUPT (3)' call is a more useful 
tool, since pressing the interrupt button cannot stop 
the application at a specific point. The monitor won't 
get control immediately as it would if the job were 
loaded from a development system. The 
'CAUSE$INTERRUPT (3)' call can be taken outof 
the application: when the code is debugged. Any use 
of the SDB should be done only in a single-user 
system, since the SDB will stop all jobs. 

CAUSE$INTERRUPT (3) is used in three places in 
the single task application code. The first occurrence 
is as soon as the module Main$task is entered but 
before any of its code has executed. The se~ond 
place is before the loop to create and delete the task. 
The third place is after the loop is completed. During 
the debugging phase of developing the code, there 
were also CAUSE$INTERRUPT (3) calls within the 
task, to help determine what was happening. Break
points can also be used once the code has been 
stopped so that the monitor has control. A break
point is set by the monitor command 'g, address'. 
The code will execute until it gets to that address 
and then it will break to the monitor. ' 

The job tree is found by using the SDB command 
'vj' for view job. An example follows for the applica
tion task. 

.vj 
BFDD 

B68A 
BE9E 

BFDD is the token for the root job. By knowing the 
memory pools of each of the layers, and looking at 
the memory pools of each of the other job tokens, a 
user can determine that B68A is the user job, (the 
application code), and BE9E is the BIOS. The 'vI' 
command will show the current state of each token. 

280047-001 



inter AP-221 

.vtBE9E 
Object type = 1 Job (NOTE: This token is for the BIOS.) 

Current tasks 0003 
Current objects OOOA 
Directory size 0000 
Except handler OEE4:01CO 
Pool min 0800 
Pool size 0800 

.vt B68A 

Max tasks 
Max objects 
Entries used 
Except mode 
Pool max 
Allocated 

FFFF 
FFFF 
0000 

00 
0800 
0077 

Max priority 
Parameter obj 
Job flags 
Parent job 
Initial size 
Largest seg 

00 
BFB8 
0000 
BFDD 
0800 
0764 

Oject type = 1 Job (NOTE: This token is for the applicationjobJ 

Current tasks 
Current objects 
Directory size 
Except handler 
Pool min 
Pool size 

0001 
0001 
0010 

OEE4:01CO 
0500 
0500 

Max tasks 
Max objects 
Entries used 
Except mode 
Pool max 
Allocated 

Notice from these tables that the application job may 
have been created with too much memory. It is only 
using 01FD of memory (Allocated), and has a mini
mum and a maximum pool size of0500H (Pool min, 
Pool max). A pool size of 0250H would probably 
have been sufficient. If this command was executed 
early in the application, all the objects might not be 
created yet. So the job might require more memory 
than is currently being used at some point in its 
existence. 

The command 'vo job-token' shows all the objects 
that have been created in a job. The token for each 
object contained by that job will be shown, listed 
after a designation for which type of object it is. You 
can check for the presence of leftover segments at 
the end of a task's execution with this command. 
Before executing the application code, the following 
list shows what the command and its results look 
like. 

.vo B68A 
Child Jobs: 
Tasks: B491 
Mailboxes: 
Semaphores: 
Regions: 
Segments: 
Extensions: 
Composites: 

By using the SDB command 'vk', the tasks that are 
ready or sleeping can be seen. After running the 
user job to completion, the result of the 'vk' com
mand looks like this: 

.vk 
Ready Tasks: 
Sleeping Tasks: BE64 BE2E BE06 lCCF 

0010 
0020 
0001 

00 
0500 
01FD 

Max priority 
Parameter obj 
Job flags 
Parent job 
Initial size 
Largest seg 

00 
BFB8 
0001 
BFDD 
0500 
0303 

If the code hadn't completed executing, results like 
this might indicate deadlock. The tasks would have 
to be examined to see how long they were asleep. If 
they are all asleep forever, nothing further will 
happen without an external event. 

Exception Handling 

In this example, the default system exception han
dler is used, and the exception mode is set to 
'never'. This setting means that the application code 
either wishes to handle exceptions in-line or through 
a call to an exception handler. The system exception 
handler will not be invoked for errors. If the handler 
were invoked, it would simply delete the task con
taining the call which caused the exception. 

This application handles exceptions in line. After 
each system call, the task checks the status word for 
E$OK. If an exception is detected, the task will jump 
to ERROR and loop there forever. This technique is 
to help identify where an error occurred, and is 
useful for debugging the application. The CX register 
contains the status returned from the call, so it is 
possible to find out which error occurred by using 
the monitor command 'x' to display the registers. 
The problem them becomes the following: to find 
out where the error occurred. This procedure usually 
involves stepping through the code, or setting sever
al breakpoints (using the monitor commands to 
break at given points). 

It is useful to insert 'CAUSE$INTERRUPT (3)' 
calls at points when the task is likely to transfer con
trol (such as after sending or receiving messages). 
When the application is running properly, remove 
the 'CAUSE$INTERRUPT (3)' calls to allow the 
code to execute unattended. Breakpoints can also be 
used to monitor the code. 

2-201 260047-001 



inter AP-221 

If you write your own exception handler, you have 
to decide upon which conditions it will be invoked. 
You must compile, link and locate the exception 
handling code, and determine the starting address of 
the exception handler, This value must be confi
gured into the operating System as the User Job's ex
ception handler address. Each task can also have its 
own exception handler by using the call 
RQ$SET$EXCEPTION$HANDLER. 

An exception handler is the preferred method of 
handling exceptions, but exception handlers are 
beyond the scope of this application note. An excep
tion handler would eliminate the need for GOTOs in 
the code. GOTOs are considered bad programming 
practice in most structured' languages. 

MULTIPLE TASK APPLICATION 
EXAMPLE 

For the second example, the same initial code, 
Inittask, was used. The main module is called Main$
task as it was for the single task example. The same 
configuration of the iRMX 86 Operating System is 
used, since the start address is the same for both 
applications. The code for this example, 'called 
Tasks, is shown in Appendix C, The main module 
for this example creates three tasks, and lets them 
do the work, A diagram of the system is shown in 
Figure 3. 

BIOS JOB 

ROOT 
JOB 

(deletes itself 
after initialization) 

SDBJOB 

The three tasks are set up according to their 
function. This very simple example of a machine 
control system makes the classic product, widgets. 
One task is the supervisor and controls the other two 
tasks. It sends messages to the other tasks to tell 
them what to wri~e or how many widgets to make. 
The second task, called IO$task, outputs messages 
which it has received from Supervisor$task to the 
terminal. The third task, called Widget$task, makes 
widgets. In this example, Widget$task is essentially a 
no-op task, but it could easily be replaced with code 
that implemented a real application. 

MAIN$TASK 

The code in the second example has an initial 
module which creates three tasks, and then waits at 
a mailbox for them to complete execution. The ini
tial module then deletes the three tasks and the mail
boxes it has created. When everything is cleaned up, 
it deletes the application job. The initial task not only 
creates the mailbox it needs for signaling when the 
tasks are done, but it also creates the other four mail
boxes that are used by the three tasks to communi
cate with each other. The mailboxes are cataloged in 
the user job's directory, and each task must look up 
the mailboxes it needs to use. 

APPLICATION JOB 

2081 

Figure 3. Multiple Task System 

2-202 280047-001 



AP-221 

Pseudocode for Main$task 

create mailboxes 
catalog mailboxes injob's directory 
create Supervisor$task 
create Widget$task 
create IO$task 
receive message from Supervisor$task (done) 
delete tasks 
delete mailboxes 
delete myself 

SUPERVISOR$TASK 

Supervisor$task is created with the highest priority 
of the three tasks. It happens to be created first, but 
because it has the highest priority it would execute 
first regardless of when it was created. Supervisor$
task controls the other two tasks. The other two 
tasks are created with priorities lower than both Su
pervisor$task and the creating task. If one of them 
had been created with a priority higher than the 
creating task and had been the first one created, it 
would have begun executing as soon as it was 
created, preventing the creator task from creating 
Supervisor$task. 

Pseudocode for Supervisor$task 

lookup mailboxes in job's directory 
do 1 to 10 

send message to Widget$task (make widget) 
send message to IO$task (making widget, message) 
receive message from Widget$task (done) 
receive message from IO$task (done) 

end 
send message to Widget$task (cleanup) 
send message to IO$task (cleanup) 
receive message from Widget$task (done) 
receive message from IO$task (done) 
cleanup by deleting segments 
send message to Main$task (done) 

The supervisor allows Widget$task and IO$task to 
work as independently as possible. It sends messages 
to both of them, and then waits for both to reply 
before it repeats the loop. This approach allows the 
tasks to execute when they can get the processor, 
completely independently of each other. We can also 
look at the ready list at various points in the code 
and see which task is executing. Tasks will not 
always execute in the same order with this method. 
Because each task is required to wait for a message 
indicating that it may run, IO$task cannot inform 
the console that a widget is being made any sooner 
than Widget$task begins to make the widget. If the 
sends and receives had instead been paired (sending 
then receiving from the same task) Supervisor$task 
could have guaranteed which task would be execut
ing at any given point in the code. 

Supervisor$task is sending information in the 
mailboxes to each task. In the single task example, a 
simple segment with no information content was 
sent between the creating task and the created task 
to signal that the created task was done executing. A 
semaphore could have been used just as well in that 
example. In this multitasking example a semaphore 
would not work. Information is being passed to each 
of the tasks to tell them whether or not to continue 
executing, or that they should clean up their 
environments. In addition, Supervisor$task is 
passing to IO$task a message that will be printed out. 
To pass the message, a structure is used. The 
structure contains values, rather than tokens for 
objects. The values are moved into the structure 
with the MOVB PUM call prior to sending the 
structure's token through the mailbox. Structures 
which contain tokens should be avoided, especially 
when using mailboxes which communicate between 
jobs. On more advanced processors than the iAPX 
86, operating systems may be implemented in which 
jobs have disjoint address spaces. In that case, a 
token may have different values in different jobs. 
The iRMX 86 Operating System will expect this 
convention to be followed but will not enforce it. 
Future operating systems may enforce the 
convention. This example is completely contained 
within one job, so it isn't quite as restricted. 

WIDGET$TASK 

Widget$task is extremely simple for this example. 
This portion in a real application would probably be 
the most complex, since it would involve the ma
chine interfaces for a control process. It could also in
clude any mathematical calculations which need to 
be done. 

Pseudocode for Widget$task 

look up mailboxes 
receive message from Supervisor$task (make 

widget) 
do while make widget is true 

send message to Supervisor$task (done) 
receive message from Supervisor$task (make 

widget) 
end 
cleanup the environment 
send message to Supervisor$task (done) 

IO$TASK 

This task is very similar to First$task in the first 
example. The main difference between the two is 
the way the information for the messages is given to 
the tasks. In Onetask, the message was defined 
within the task. In IO$task, the information for the 
message is passed to IO$task via a mailbox from 
Supervisor$task. This task illustrates how to do 
simple l/O with just the BIOS. 

2-203 280047-001 



inter AP·221 

Pseudocode for IO$task 
, 

look up mailboxes 
receive message from supervisor (making 

widget, message) 
create user 
physically attach terminal 
get device connection 
create file ' 
get file connection 
open file 
receive message from Supervisor$task (making 

widget, message) 
do while making widget is true 

write message (Making widget) 
delete segments 
send message to Supervisor$task (done) 
receive message from Supervisor$task (making 

widget, message) 
end 
close file 
delete file connection 
detach device 
delete user 
cleanup environment by deleting segments 
send message to Supervisor$task (done) 

Mailboxes 

In this application, mailboxes are used for several 
purposes. Their most obvious purpose is to send in
formation between tasks. Less obvious but more im
portant is the role they play in allowing mutual exclu
sion and synchronization between tasks. 

The simplest messages in the application return an 
empty segment to the mailbox to indicate that the 
task has completed some portion of work, and the 
receiving task can continue. This empty segment is 
the kind of message that Widget$task and IO$task 
send to Supervisor$task, and the kind of message 
that Supervisor$task sends to Main$task when it has 
completed execution. This exchange could be ac
complished just as well by using a semaphore rather 
than a mailbox. 

The more complex messages contain some 
information. In this example, the message contains 
information indicating that the task should continue 
executing a loop, or that it is time to clean up the en
vironment and exit. The message that was sent be
tween Supervisor$task and IO$task also contained 
the message that Supervisor$task wanted IO$task to 
print out. This example illustrates the kind of infor
matiori that can be passed between tasks using 
mailboxes. 

Mailboxes are also used in this application to imple
ment mutual exclusion and synchronization betweeri 
the tasks. O,ne alternative implementation ~hich is 

2-204 

not shown here keeps the three tasks all at the same 
priority, and uses mailboxes to allow the tasks to ex
ecute in a strictly defined order. The implementation 
shown in this example is quite general purpose, and 
doesn't use as many mailboxes as the alternative 
implementation would. This implementation also 
allows the tasks to have more freedom in when they 
can run, and uses the processor more efficiently if 
one of the tasks is blocked while doing I/O. 

Deadlock 

As more tasks are used, and as more mailboxes are 
used to communicate between the tasks, the possi
bility of deadlock increases. Deadlock usually is 
caused by faulty design, and may appear when 
debugging of the code begins. Evidence of possible 
deadlock occurs when all the tasks are sleeping, and 
no tasks are ready when you use the SOB command 
'vk' to check what's going on. This situation can be 
caused by sending a message to the wrong mailbox, 
or by not creating segments to send within a loop 
that is sending messages. An example of deadlock 
can be obtained by changing the code in Supervisor$
task in some minor ways. 

Executes correctly: 

Do i := 1 to 10 
create segments 
send message to Widget$task (make widget) 
seRd message to IO$task (making widget, message) 
receive message from Widget$task (done) 
delete segment 
receive message from IO$task (done) 
delete segment 

end 

Causes deadlock: 

create segments 
Do i := 1 to 10 

send message to Widget$task (make widget) 
delete segment 
send message to IO$task (making widget, message) 
delete segment 
receive message from Widget$task (done) 
receive message from IO$task (done) 

end 

The second code example results in deadlock be
cause the object which is sent. to the mailbox is creat
ed outside the loop. Once it is sent, there is no 
longer an object to send, and the receiving task can't 
continue unless it has a timeout specified because it 
never receives another object. With a different syn
chronization scheme, 'if the receiving task hadn't 
deleted the message, that object could have been 
sent again. 

280047-001 



inter AP-221 

Key plac~s to watch for deadlock in the code are 
where some communication occurs between the 
tasks. Other situations that can cause deadlock are 
tasks needing the same resources, such as a unit 
from a semaphore, or a region. Insufficient memory 
will cause an E$MEM error rather than deadlock. 

Initialization 

Supervisor$task controls the other two tasks. This 
control is necessary since the tasks cannot execute 
more than a few lines of code without receiving a 
message from the supervisor. The tasks execute a 
few lines of code to lookup the mailbox which they 
will use to communicate with the other tasks. Then 
they can make the RQ$RECEIVE$MESSAGE call. 
The task with the highest priority which was created 
first, and as a result, has been ready the longest, will 
execute first. Since Supervisor$task was created with 
a higher priority than the other two tasks, it will exe
cute first. By the time it gives up control of the 
processor, it has already sent messages to both of 
the other tasks. The task that has been ready the lon
gest at this point will execute first. In this example, 
the first executed task happens to be Widget$task, 
since it was created before 10$task was. 

Debugging 

The same techniques are used to debug a multiple 
task application as were discussed in the single task 
example. Look at the .MP2 file before beginning 
debugging, and find the entry points to each task. 
The .MP2 file is produced as a result of the LOC86 
step in building the application. Use 
'CAUSE$INTERRUPT (3)' calls at the beginning of 
each task, and keep track of which task is executing 
at a given time. One technique that was used in this 
application to make it easier to debug was to send all 
errors to an error routine within each task. The error 
routine was different in each task (outputting AIH 
for the first task, A2H for the second task, etc.). It 
was immediately obvious by looking at the disassem
bled code containing the call which task caused the 
exception. 

As a second debug alternative, the iRMX 86 Dynam
ic Debugger is also useful in a multiple task 
application. Rather than halting the entire system 
like the SDB does, the Dynamic Debugger allows 
users to examine vital system objects while the 
system is running. The Dynamic Debugger must be 
configured into the Operating System with its own 
terminal handler and its own terminal if the BIOS is 
used. 

CONFIGURATION 

There are two steps involved in configuration: con
figuring the operating system; and compiling, linking 

2-205 

and locating the application code. The same defini
tion file was used for both applications, and the same 
submit file was used to link and locate the 
applications. 

Configuration of the iRMX™ 86 Operating 
System 

For both examples in this application note, the same 
operating system configuration was used. The layers 
used are the Nucleus (for scheduling and intertask 
communication) and the BIOS (so that I/O could be 
done). The SDB, for debugging the code, was also 
configured into the operating system as a user job. 
The only device driver required is the terminal 
driver. The listing of the operating system definition 
file is shown in Appendix E. 

User Jobs 

This application code is configured into the operating 
system as a user job. The Interactive Configuration 
Utility (lCU) requires information to be given about 
the user job, and sets up a %JOB macro for the job. 
However, the ICU does not set aside memory for 
the user job, and it does not link and locate the job 
as it does for the layers of the operating system. 

An application that uses only nucleus and BIOS calls 
is a user job. If the application uses the EIOS or the 
Human Interface, it is an I/O job and must be confi
gured as a child job of the EIOS. Applications can 
also be run from the Human Interface level, as jobs 
under the Human Interface. In a real-time 
application, treating the application as a user job or 
user jobs is usually most appropriate. During 
development, however, the application could be run 
under the Human Interface. This technique would 
eliminate rebooting after each code change or trial 
run to test the application. 

The following parameters appear in the User Jobs 
screen in the ICU. Each parameter is defined and ex
plained in the context of the example application. 

JOB NAME (NAM) 

The first question in the User Jobs screen for the 
iRMX 86 Release 6 ICU is Job Name. This question 
is optional, and is just used for the user to keep track 
of which user job is being configured in the screen. It 
is not used by the ICU. 

OBJECT DIRECTORY SIZE (ODS) 

Object directory size refers to how many objects can 
be cataloged in the job's directory. In the first 
example, the only object that is being cataloged is 

280047-001 



AP-221 

the mailbox DONEMBX which is used to let the 
main task know that First$task has completed. In 
the second example, five mailboxes are cataloged, 
so the object directory size doesn't have to be very 
big for this application. The default value for this 
parameter is IOH, which is large enough for this 
application. If you have a large application and many 
objects are cataloged, this number would have to be 
increased. For small applications, a small value can 
be used to conserve memory. Memory is allocated 
for the object directory of a job when the operating 
system is initialized. 

POOL MINIMUM, POOL MAXIMUM (PMI, PMA) 

Pool minimum and pool maximum are closely 
related. They specify the amount of memory that the 
job requests from its parent. For this example, a 
pool minimum and pool maximum size of 500H was 
chosen. The minimum and maximum should be set 
to the same value in the user job to avoid memory 
fragmentation. The Human Interface is usually the 
only exception to this rule. 

MAXIMUM OBJECTS (MOB) 

This parameter defines how many objects can be 
created by the application. For this application, the 
maximum objects was set to 20H, but only 10 objects 
existed at any given time. In a larger application, of 
course, 20H could easily become insufficient. To 
determine how many objects are being used at a 
given point in time, use the SDB command 'vo user
job-token'. 

MAXIMUM TASKS (MTK) 

The next parameter specifies the maximum number 
of tasks whiCh can be created by tasks in this user 
job. This application used the default value of lOH, 
but could have used 4H, since only three tasks were 
created (one task was created by the root job to be 
the .user job task). The definition file was being used 
by both the single task example and the multiple 
task example, so the default value is appropriate. 

MAXIMUM PRIORITY (MPR) 

The maximum priority parameter refers to the 
maximum priority allowed of any task in this job 
which is created. This parameter was set to OH 
where OH indicates that the priority of the root job is 
the maximum allowable priority of the tasks. The 
root job's priority in this. operating system is OOH, 
which doesn't limit the maximum allowable priority. 

ADDRESS OF EXCEPTION HANDLER (AEH) 

This application is using the system exception 
handler. so the address of exception handler used is 

OOOOH:OOOOH. If the user job had its own exception 
handler, the correct address of that exception han
dIer would have to be found by first linking and 
locating the application code and the exception 
handler, and then looking in the .MP2 file for the ad
dress of the exception handler. 

EXCEPTION MODE (EM) 

The exception mode is set to 'never' for this user 
job, indicating that the exception handler won't be 
invoked for any kind of error condition. Instead, ex
ceptions will be handled in-line in the example code. 

PARAMETER VALIDATION (PV) 

Parameter validation is used by the nucleus to deter
mine if the parameters passed in system calls are 
valid. This question should be answered yes until 
the application code is debugged. If the BIOS or 
other upper layers are being used in the operating 
system, parameter validation should be enabled 
even when the application code is debugged, or the 
Operating System will not work. If parameter valida
tion is turned off, the nucleus calls will execute 
faster, so setting parameter validation to 'no' can im
prove perform!1nce. 

TASK PRIORITY (TP) 

Task priority sets up the static priority of the initial 
task which is created for the user job. For this 
application, the priority of the task is set to 82H, or 
130. 

TASK START ADDRESS (TSA) 

The Task Start Address is the start address of the 
job's initialization task. This address is determined 
from the .MP2 file after locating the application 
code. For both example applications this address was 
I500H:0002H. 

DATA SEGMENT BASE (DSB) 

The data segment base is set to OOOOH, which allows 
the task to set up the data segment base for the initial 
task of the user job. Since the LARGE model of 
compilation was used, the parameter can be set to 
zero. 

STACK SEGMENT ADDRESS (SSA) 

The stack segment address is also set to 
OOOOH:OOOOH to allow the nucleus to allocate a stack 
segment to the task and take care of initializing the 
SS and SP registers. This setting permits dynamic 
stack allocation and deallocation. 

2-206 280047-001 



AP-221 

STACK SIZE (SS) 

The stack size for the task is set to 300, which is the 
amount that is considered necessary to make any nu
cleus system calls. Since this application was very 
small, it didn't need a very large stack. If a job used a 
lot of subroutines and nested procedures with many 
parameters, or if the job was recursive, the amount 
of stack needed could increase. 

NUMERIC PROCESSOR EXTENSION USED 
(NPX) 

The 8087 Numeric coprocessor was not used in this 
application task. If any floating point functionality is 
needed within a task, this parameter should be set to 
yes in the configuration process. 

Ram 

The last parameter which must be considered when 
creating the definition file for the application is the 
amount of RAM required and where it is located. 
This is a parameter in the memory screen of the 
ICU. Remember that the ICU does not locate the 
user job for you, so memory must be specifically set 
aside to be used by the user job. In this application, 
the RAM that was used was from 0104H to 1500H, 
and from 1800H to F7FFH. The user job was allowed 
to use RAM from 1500H to 1800H (these numbers 
are specified in paragraphs of 16 bytes each). The 
operating system itself was put into the memory 
from 104H to just under 1500H. This location can be 
determined by looking at the .MP2 files for each of 
the layers of the operating system after completing 
the configuration. 

Linking and Locating the Application 

The submit file that was used for this application is 
shown in Appendix D. Note first of all that instead 
of using the name of the application code program, a 
%0 was used. This convention allows you to invoke 
the submit file with a parameter which is the name 
of the application code program. The same submit 
file was used for both examples. Note that Inittask is 
linked with the INITCODE option. This is necessary 
with LINK86 v 2.0 and LOC86. The INITCODE 
option is not necessary with other versions of 
LINK86. 

While the submit file is running, some warnings will 
be generated. The following errors are normal and 
should be ignored. 

2-207 

WARNING 12: UNRESOLVED SYMBOLS 

WARNING 26: DECREASING SIZE OF 
SEGMENT 

SEGMENT: STACK 

WARNING 66: START ADDRESS NOT SPECI
FIED IN OUTPUT MODULE 

CONCLUSION 

This application note is an introduction to the basic 
functions of the iRMX 86 Operating System 
Nucleus. Task scheduling and memory management 
functions were covered in detail. Two applications 
were discussed, using some pieces of code in 
common. The functions involved in developing and 
testing real-time code were explained while using 
the application code for examples and reference. 
Configuration of the application operating system 
was also covered in detail. 

The examples shown in this application note illus
trate how to develop a real-time application. The 
first example shows how to use the nucleus and 
BIOS to do simple I/O at the lowest, most optimiza
ble level. The second example builds on the concepts 
developed in the first example, expanding the appli
cation to a more realistic process control situation. 

Both examples shown earlier are fairly simple. They 
illustrate what has to be done to create and use a 
task. They are good examples for a user who has 
written a limited amount of PUM 86 code using the 
nucleus system calls. The multiple task example 
would be a good foundation for a process control 
application. Each of the tasks in the second example 
shows a major function of real time code, 
demonstrating control, 110, and supervisory 
functions. 

The iRMX 86 Operating System is ideally suited to 
multi-tasking, real-time applications. The ability to 
use the same system for both development and as 
the target system is a great benefit to the develop
ment engineer and the company which is developing 
real-time applications. The modularity provided by 
the iRMX 86 Operating System and the PUM 86 
language make it easier to develop code for one 
application, then modify it for another application. 
The ultimate benefits to users are reduced develop
ment time, added cost savings, and shorter time
to-market for new products. 

280047-001 



inter AP-221 

APPENDIX A: 
APPENDIX B: 
APPENDIX C: 
APPENDIX D: 
APPENDIX E: 
APPENDIX F: 

2-208 280047-001 



inter AP-221 

APPENDIX A 

PL/M-86 COMPILER single task creation; for ap note 

iRMX 86 PL/M-86 V2.1 COMPILATION OF MODULE INITTASK 
OBJECT MODULE PLACED IN INITTASK.OBJ 
COMPILER INVOKED BY: :LANG:plm86 INITTASK.P86 

$large rom debug 
$title('single task creation; for ap note') 

/********************************************************* 
* This is an example to be used for an ap note on task * 
* scheduling. * 
* Cathy Lundberg 03/22/84 * 
*********************************************************/ 

1 inittask: do; 
$INCLUDE (/RMX86/INC/NEINIT.EXT) 

= $SAVE NOLIST 

4 i main$task: PROCEDURE EXTERNAL; 
5 2 END main$task; 

6 1 

7 2 
8 2 
9 2 

10 1 

/********************************************************* 
* This separate module is used to keep the user job's * 
* start address constant while changing the code. * 
* This module has no data or constants in it. all it * 
* does is call the main routine. main$task. after * 
* calling rq$end$init$task. * 
*********************************************************/ 

begin: PROCEDURE PuBLIC; 

CALL rq$end$init$task; 
CALL main$task; 
END begin; 

END inittask; 

MODULE INFORMATION: 

CODE AREA SIZE = 0018H 24D 
CONSTANT AREA SIZE = OOOOH OD 
VARIABLE AREA SIZE = OOOOH OD 
MAXIMUM STACK SIZE = 0008H 8D 
36 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

2-209 280047-001 



DICTIONARY SUMMARY: 

112KB MEMORY AVAILABLE 
3KB MEMORY USED (2%) 
OKB DISK SPACE USED 

END OF PL/M-86 COMPILATION 

AP-221 

2-210 280047-001 



AP-221 

APPENDIX 8 

PL/M-86 COMPILER single task creation; for ap note 

iRMX 86 PL/M-86 V2.1 COMPILATION OF MODUlE OMETASK 
OBJECT MODUlE PLACED IN ONETASK.08J 
COMPILER INVOKED BY: :LANG:PLM86 ONETASK.~86 

1 

Slarge rom debug 
Stitle('stngle task creation; for ap note') 
onetask: DO; 

/********************************************************* 
* This is an example to bp. used for an ap note on task * 
* schedul ing. * 
* Cathy Lundberg 03/22/84 * 
****************************************************~ •• **/ 

/* The include for LTKSEL.LIT must bp. done before any other 1ncludts, 
* because anything that uses TOKENS must have the data type defined 

* for a token. */ 

SINCLUDE (/RMX86/INC/LTKSEL.lIT) 
SSAVE NOLIST . 
SINCLUDE (/RMX86/INC/NEXCEP.LIT) 
Ssave nolist 
SINCLUDE (/RMX86/INC/NUC.EXT) 

= SSAVE NOLIST 
SINCLUDE (/RMX86/INC/BIOS.EXT) 

= SSAVE NOLIST 

/***************************************************.**.*********.******** 
* mainStask is the procedure that is called by inittisk to create the * 
* task 'firstStask'. It creates a mailbox, cre~tes the task, and then, * 
* waits at the mailbox, allqwing firstStask to execute. When ffrst$task* 
* finishes and sends a message to the mailbox, control is returned to * 
* mafn$task, and it deletes first$task and the mailbox. * 
**********************************.*.**************.*********************/ 

280 1 

281 2 

282 2 

mainStask: PROCEDURE REENTRANT PUBLICi 

DECLARE job 
data$seg 
userStoken 
taska 
done$writ fngSmbx 
resp 

DECLARE taskSflags 
status 

2-211 

TOI(EN, 
TOKEN, 
TOKEN. 
TOKEN, 
TOKEN. 
TOKEN; 

WORD. 
WORD. 
WORD; 



inter 
283 

284 
285 
286 
287 
288 

289 
290 
291 
292 

293 

294 
295 
297 

298 
300 
301 

302 

303 

305 
0, 

306 

308 
309 
311 
312 
314 
315 
316 
317 
319 

320 

321 
322 

2 

2 
2 
2 
2 
2 

2 
2 
2 
2 

2 

2 
2 
2 

2 
2 
2 

3 

3 

3 

3 

3 
3 
3 
3 
3 
2 
2 
2 
2 

2 

3 
3 

.AP·221 

DECLARE seg$pointer 
startSaddress 
taska$ptr. 
stack$pointer 

DECLARE stack$s.ize$300 
DECLARE priority$level$202 
DECLARE iors$token 

, DECLARE done$obj 
DECLARE iors 

. TOKEN 
BASED 

(status 
unitSstatus 
actual 

, POINTER, 
POINTER, 
POINTER, 
POINTER; 
L ITER ALL Y , 300 I ; 
LITERALLY '202 1 ; 

SELECTOR; 
AT(@iors$token); 
iors$token STRUCTURE 
WORD, 
WORD, 
WORD) ; 

data$seg = 0; 
stack$pointer =0; 

/* task sets up own data segment */ 
/* automatic .stack allocation */ 

task$flags = 0; /* no floating point */ 
job = 0; /* catalog object in containing job */ 

CA4SE$INTERRUPT (3); 
/* create a mailbox to use for letting this task know 
* that the ~ask it created is done writing. */ 

done$writing$mbj( = rq$create$mailbox (0, @status); 
IF· status <> E$OK THEN GOTO error; 
CALL rq$catalog$object (0, done$writing$mbx, @(7,IDONEMBX'), 

@status); . 
IF status<> E$OK THEN GOTO error; 
CAUSE$INTERRUPT (3); 
DO I = 1 TO 1000; . 

/* Now create taska.*/ 
taska = rq$create$task( priority$l eve 1 $202 ,@first$task, 

data$seg, stack$pointer, 
stack$size$300, task$flags, @status); 

IF status <> E$OK THEN GOTO error; 

done$obj == rq$receiv"e$message (done$writing$mbx, Offffh, 

@status); 
IF status <> E$OK THEN GOlO error; 

CALL rq$delete$segment (done$obj, @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$delete$task (taska, @status); 
IF status <> E$OKTHEN ~TO error; 

END; /* of DO WHILE loop */ 
CAUSE$INTERRUPT . (3); 
CALL rq$delete$mailbox (done$writing$mbx, @status); 
IF status <> E$OK THEN GOTO error; 
GOTO ok; 

error: /* output to usart to determine which */ 
DO WHILE 1; /* task had the error. For debugging.*/ 

OUTPUT(9CH) ~ OAAH; 
END; 

2-212 280047-001 



AP-221 

323 2 ok: 

324 2 

CALL rq$delete$job (0, @status); /* delete myself */ 

END main$task; 

/************************************************************************* 
* FIRST$TASK is the task which is created by main$task. It creates * 
* the necessary mailboxes and segments, and then attaches the terminal * 
* physically. It then creates a file so that it has a file connection.* 
* It opens the file connection, and writes the contents of a buffer to * 
* the terminal. Then it closes the file connection, deletes the * 
* device connection, and detaches the device. Last, it looks up the * 
* mailbox created in main$task and sends a message to the mailbox. * 
* This allows control to return to main$task. * 
*************************************************************************/ 

325 1 first$task: PROCEDURE REENTRANT PUBLIC; 

326 2 DECLARE job TOKEN, 
mbx$token TOKEN, 
seg$token TOKEN, 
user$token TOKEN, 
fil e$connect ion TOKEN, 
device$connection TOKEN, 
done$token TOKEN, 
done$writing$mbx TOKEN; 

327 2 DECLARE status WORD; 
328 2 DECLARE hard BYTE; 
329 2 DECLARE iors$token TOKEN; 
330 2 DECLARE dev$conn$object TOKEN AT (@iors$token), 

file$conn$object TOKEN AT (@iors$token), 
object TOKEN AT (@iors$token); 

331 2 DECLARE iors BASED iors$token STRUCTURE 
( status WORD, 
unit$status WORD, 
ac tua 1 WORD) ; 

332 2 DECLARE buffer BASED seg$token (1) BYTE; 

333 2 DECLARE user$object STRUCTURE 
(1 ength WORD, 
count WORD, 
id (1) WORD) ; 

334 2 DECLARE message(*) BYTE DATA ('SINGLE TASK TEST'); 

335 2 user$object.length = 1; 
336 2 user$object.count 1 ; 
337 2 user$object.id(O) OFFFFH; 

338 2 job = 0; /* catalog object in containing job */ 
339 2 hard = OffH; /* request a hard detach of the device */ 

2-213 280047-001 



340 2 
341 2 
343 2 
344 2 
346 2 
347 2 

349 2 

350 2 
352 2 

353 2 
355 2 

356 2 

357 2 
359 2 

360 2 
362 2 

363 2 
364 2 
366 2 
367 2 
369 2 
370 2 

372 2 
373 2 

374 2 
376 2 
377 2 
379 2 
380 2 

382 2 
383 2 
385 2 . 
386 2 
388 2 
389 2 

3<H 2 

392 2 
394 2 
395 2 
397 2 
398 2 

AP-221 

user$token = rq$create$user (@user$object, @status); 
IF status <> E$OK THEN GOTO error; 
mbx$token = rq$create$mailbox (0, @status); 
IF status <> E$OK THEN GOTO error; 
seg$token = rq$create$segment ( 48, @status); 
IF status <> E$OK THEN GOTO error; 

CALL rq$a$physical$attach$device ( @(2,'TO'), I, mbx$token, 
@status); 

IF status <> E$OK THEN GOTO error; i 

dev$conn$object.= rq$receive$message (mbx$token, OFFFFH, 0, 
@status); 

IF status <> E$OK THEN GOTO error; 
d~vice$connection = dev$conn$object; 

CALL rq$a$create$file (user$token, device$connection, ' 
0, 0, 0, 0, 0, mbx$token, @status); 

IF status <> E$OK THEN GOTO error; 
file$conn$object = rq$receive$message (mbx$token, OFFFFH, 0, 

@status); 
IF status <> E$OK THEN GOTO error; 
file$connection = file$conn$object; 

CALL rq$a$open (file$connection, 2, 0, mbx$token, @status); 
IF status <> E$OK THEN GOTO error; 
object = rq$receive$message (mbx$token, OFFFFH, 0, @status); 
IF status <>E$OI( THEN GOTO error; 
CALL rq$delete$segment (object, @status); 
IF status <> E$OK THEN GOTO error; 

CALL movb( @message, @buffer, SIZE(message»); 
CALL rq$a$write (file$connection, @buffer, size(message), 

mbx$token, @status); 
IF status <> E$OK THEN GOTO error; 
object =rq$receive$message (mbx$token, OFFFFH, 0, @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$delete$segment (object, @status); 
IF status <> E$OK THEN GOTO error; 

CALL rq$a$close (file$connection, mbx$token, @status); 
IF status <> E$OK THEN GOTO error; 
object = rq$receive$message (mbx$token, OFFFFH, 0, @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$delete$segment (object, @status); 
IF status <> E$OK THEN GOTO error; 

CALL rq$a$delet~$connection (file$connection, mbx$token, 
@status); 

IF status <> E$OK THEN GOTO error; 
object = rq$receive$message (mbx$token, OFFFFH, 0, @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$rlelete$segment (object, @status); 
IF status <> E$OK THEN GOTO error; 

280047-001 



inter AP-221 

400 ? 

401 2 
403 2 
404 2 
406 2 
407 2 

409 2 
410 2 

412 2 
413 2 
415 2 
416 2 
418 2 
419 2 
421 2 

422 2 
424 2 

425 2 
427 2 
428 2 
430 2 
431 2 
433 2 

434 2 

435 3 
436 3 

437 2 

438 3 
439 3 
440 2 
441 1 

CALL rq$a$physical$detach$device (device$connection, hard, 
mbx$token, @status); 

IF status <> E$OK THEN GOTO error; 
object = rq$receive$message (mbx$token, OFFFFH, 0, @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$delete$segment (object, @status); 
IF status <>E$OK THEN GOTO error; 

CALL rq$delete$mailbox (mbx$token, @status); 
IF status <> E$OK THEN GOTO error; 

CALL rq$delete$user (user$token, @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$delete$segment (seg$token, @status); 
IF status <> E$OK THEN GOTO error; , 
done$token = rq$create$segment ( 16, @status); 

, IF status <> E$OK THEN GOTO error; 
done$writing$mbx = rq$lookup$object (0, @(7,'DONEMBX'), 500, 

@status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$send$message (done$writing$mbx, done$token, 0, 

@status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$delete$segment (done$token, @status); /* this code */ 
IF status <> E$OK THEN GOTO error; /* shouldn't be*/ 
CALL rq$delete$mailbox (done$writing$mbx, @status); 
IF status <> E$OK THEN GOTO error; /* executed */ 
GOTO ok; 

error: /* output to usart for debugging */ 

ok: 

DO WHILE 1; 
OUTPUT(9CH) = OAAH; 

END; 

DO; 
CALL rq$suspent1$task (0, @status); /* slJspend myself */ 
END; 

END first$task; 
END onetask; 

MODULE INFORMATION: 

CODE AREA SIZE = 0554H 13640 
CONSTANT AREA SIZE = 0023H 350 
VARIABLE AREA SIZE = OOOOH 00 
MAXIMUM STACK SIZE = 0040H 640 
1520 LINES READ 
o PROGRAM WARNINGS 
o PROGRAM ERRORS 

2-215 ) 
280047-001 



inter 
DICTIONARY SUMMARY: 

84KB MEMORY AVAILABLE 
20KB MEMORY USED (23%) 
OKB DISK SPACE USED 

END OF PL/M-86 COMPILATION 

2-216 280047-001 



inter AP-221 

APPENDIX C 

PL/M-86 COMPILER three task creation; for ap note 

iRMX 86 PL/M-86 V2.1 COMPILATION OF MODULE TASKS 
OBJECT MODULE PLACED IN TASKS.OBJ 
COMP1LER INVOKED BY: :LANG:PLM86 TASKS.P86 

1 

$large rom debug 
$title('three task creation; for ap note') 
tasks: DO; 

/********************************************************* 
* This is an example to be used for an ap note on task * 
* schedul ing. * 
* Cathy Lundberg 04/23/84 * 
************************~********************************/ 

/* The include for LTKSEL.LIT must be done before any other 
* includes, because anything that uses TOKENS must have the 
* data type defined for a token. */ 

$INCLUDE (/RMX86/INC/LTKSEL.LIT) 
$SAVE NOLIST 
$INCLUDE (/RMX86/INC/NEXCEP.LIT) 
$save nolist 
$INCLUDE (/RMX86/INC/NUC.EXT) 
$SAVE NOLIST 

$INCLUDE (/RMX86/INC/BIOS.EXT) 
$SAVE NOLIST 

/************************************************************************* 
* MAIN$TASK is the procedure that is called by inittask to create the * 
* three tasks. IO$task outputs to the screen. Widget$task makes * 
* widgets. Supervisor$task controls what IO$task and widget$task are * 
* doing. When widget$task has made X widgets, supervisor$task sends * 
* a message to IO$task saying that X widgets have been made, and the * 
* message is printed by IO$task. Then it sends a message to * 
* main$task to tell it that the tasks are done executing. Main$task * 
* has been waiting at a mailbox for that welcome news, and when it * 
* receives the message, it deletes all three tasks. * 
*************************************************************************/ 

280 1 

281 2 

main$task: PROCEDURE REENTRANT PUBLIC; 

DECLARE data$seg 
IO$task$token 
widget$task$token 
supervisor$task$token 

2-217 

TOKEN, 
TOKEN, 
TOKEN, 
TOKEN, 

280047-001 



282 

283 
284 
285 
286 
287 
288 
289 

290 
291 
292 

293 

294 
,295 
297 
298 
300 
301 
303 
304 
306 
307 
309 

310 
312 

313 
315 

316 

318 

319 
321 

322 
324 

2 

2 
2 
2 
2 
2 
2 
2 

2 
2 
2 

2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2. 
2 

2 
2 

2 
2 

2 

2 

2 
2 

2 
2 

AP·221 

lila in$super$mbx 
write$msg$mbx 
start$write$mbx 
done$write$mbx 
start$widget$mbx 
done$widget$mbx 

DECLARE task$flags. 
status 
i 

DECLARE stack$pointer 
DECLARE stack$size$300 
DECLARE priority$lev~1$202 
DECLARE priority$level$190 
DECLARE iors$token 
DECLARE done$obj 
DECLARE iors 

TOKEN 
BASED 

(status 
un it$status 
actual 

TOKEN. 
TOKEN. 
TOKEN. 
TOKEN. 
TOKEN. 
TOKEN; 
WORD. 
WORD. 
WORD; 
POINTER; 
LITERALLY 
LITERALLY 
LITERALLY 
SELECTOR; 

'300' ; 
'202' ; 
'190'; 

AT (@iors$token); 
iors$token STRUCTURE 
WORD. 
_WORD. 
WORD); 

data$seg = 0; 
stack$pointer = 0; 
task$flags = 0; 

/* task sets up own data segment */ 
/* automatic stack allocation */ 
/* no floating point */ 

CAUSE$INTERRUPT (3); 
/* create a mailbox to use for letting this j~b know 
* that the tasks are done executing. */ 

main$super$mbx = rq$create$mailbox (0. @status); 
IF status <> E$OK THEN GOTO error; 
start$write$mbx = rq$create$mailbox (0. @status); 
IF status <> E$OK THEN GOTO error; 
done$write$mbx = rq$create$mailbox (0. @status); 
IF status <> E$OK THEN GOTO error; 
start$widget$mbx = rq$create$mailbox (0. @status); 
IF status <> E$OK THEN GOTO error; 
done$widget$mbx = rq$create$mailbox (0. @status); 
IF status <> E$OK THEN GOlO e~ror;. 
CALL rq$catalog$object (0. main$super$mbx. @(9.'"AINSUPER'). 

@status); 
IF status <> E$OK THEN GOlO error; 
CALL rq$catalog$object (0. start$write$mbx. 

@(lO.'STARTWRITE'). @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$catalog$object (0. done$write$mbx. @(9.'DONEWRITE'). 

. @status); 
IF status <> E$OK THEN GOTO error; 

CALL rq$catalog$object (0. start$widget$mbx, 
. @(ll.'STARTWIDGET'). @statlJs); 

IF status <> E$OK THEN GOTO error; 
CALL rq$catalog$object (0. done$widget$mbx. 

, @(10. 'DONEW-IDGET'). @status); 
IF status <> E$OK THEN GOTO·error; 
CAUSE$INTERRUPT (3); 

2-218 280047-001 



inter 

325 2 

326 2 
328 2 

329 2 
331 2 

332 2 

334 ? 

335 2 
337 2 

338 2 
339 2 
341 2 
342 2 
344 2 
345 2 
347 2 
348 2 
350 2 
351 2 
352 2 
354 2 
355 2 
357 2 
358 2 
360 2 
361 2 
363 2 
364 2 
366 2 
367 2 

368 3 
369 3 

370 2 

371 2 

AP-221 

/* Now create the tasks. */ 
supervisor$task$token = rq$create$task (priority$level$190, 

@supervisor$task, data$seg, stack$pointer, 
stack$s1ze$300, task$flags, @status); 

IF status <> E$OK THEN GOTO error; 
widget$task$token = rq$create$task (priority$level$202, 

@widget$task, data$seg, stack$pointer, 
stack$size$300, task$flags, @status); 

IF status <> E$OK THEN GOTO error; 
IO$task$token = rq$create$task (priority$level$202, @IO$task, 

data$seg, stack$pointer, 
stack$size$300, task$flags, @status); 

IF status <> E$OK THEN GOTO error; 

done$obj = rq$receive$message (main$super$mbx, OFFFFH, 0, 
@status); 

IF status <> E$OK THEN GOTO error; 
CAUSE$INTERRUPT (3); 

CAtl rq$delete$segment (done$obj, @status); 
IF status <> E$OK THEN GOTO error; 
CAll rq$delete$task (IO$task$token, @status); 
IF status <> E$OK THEN GOTO error; 
CAll rq$delete$task (widget$task$token, @status); 
If status <> E$OK.THEN GOTO error; 
CAll rq$delete$task (supervisor$task$token, @status); 
IF status <> E$OK THEN GOTO error; 
CAUSE$INTERRUPT (3); 
CAll rq$de 1 ete$ma 11 box (ma in$super$mbx, @status); 
IF status <> E$OK THEN GOTO error; . 
CAll rq$delete$mailbox (start$write$mbx, @status); 
IF status <> E$OK THEN GOTO error; 
CAll rq$delete$mailbox (done$write$mbx, @status); 
IF status <> E$OK THEN GOTO error; 
CAll rq$delete$mailbox (start$widget$mbx, @status); 
IF status <> E$OK THEN GOTO error; 
CAll rq$delete$mailbox (done$widget$mbx, @status); 
IF status <> E$OK THEN GOTO error; 
GOTO ok; 

error: /* output to usart for debugging */ 
DO WHILE 1; 

OUTPUT(9CH) = OAAH; 
END; 

ok: 

CAll rq$delete$job (0, @status); /* myself */ 

END main$task; 

/*********************************************************************** 
* This is the task which is controlling the other two tasks. It has * 
* higher priority than them now, but could have the same priority * 
* since it uses the mailboxes to synchronize the tasks. * 
***********************************************************************/ 

2-219 280047-001 



372 1 

373 

374 

375 

376 

377 
378 

2 

2 

2 

2 

2 
2 

379 2 
380 2 

381 2 
383 2 

384 2 

386 2 

387 2 
389 2. 

390 2 
392 2 

393 2 

395 2 
396 3 

397 3 

398 3 
400 3 

401 3 

402 3 
404 3 

AP.-221 

supervisor$task: PROCEDURE REENTRANT PUBLIC; 

DECLARE oone$token 
main$super$mbx 
s tart$wr ite$mbx 
done$write$mbx 
start$widget$mbx 
done$widget$mbx 
cleanup$token 
make$wldget$token 

DECLARE status 
i 

TOKEN, 
TOKEN, 
TOKEN, 
TOKEN, 
TOKEN, 
TOKEN, 
TOKEN, 
TOKEN; 
WORD, 
WORD; 

DECLARE cleanup$ptr 
make$widget$ptr 

BASED cleanup$token (1) BYTE, 
BASED make$widget$token (1) BYTE; 
BYTE DATA(O), 
BYTE DATA(l), 

DECLARE cleanup$d 
make$widget$d 
message$d(*) 
making$widget$d 

BYTE DATA('Making widget'), 
BYTE DATA(l); 

DECLARE send$to$io$token TOKEN; 
DECLARE send$to$io BASED send$to$ io$token STRUCTURE ( 

making$widget (1) BYTE, 
message (13) BYTE); 

CAUSE$INTERRUPT (3); 
main$super$mbx = rq$lookup$object (0, @(9,'MAINSUPER'), 

OFFFFH, @status); 
IF status <> E$OK THEN GOTO error; 
start$write$mbx = rq$lookup$object (0, @(10,'STARTWRITE'), 

OFFFFH, @status); 
IF status <> E$OK THEN GOTO error; 

done$write$mbx ='rq$lookup$object (0, @(9,'DONEWRITE'), 
OFFFFH, @status); 

IF status <> E$OK THEN GaTO error; 
start$widget$mbx = rq$lookup$object (0, @(11,'STARTWIDGET'), 

OFFFFH, @status); 
IF status <> E$OK THEN GOTO error; 
done$widget$mbx = rq$lookup$object (0, @(10,'DONEWIDGET'), 

OFFFFH, @status); 
IF status <> E$OK THEN GOTO error; 

DO i = 1 TO 10; 
CAUSE$INTERRUPT (3); 
/* Send message to widget task, mailbox STARTWIDGET */ 
make$widget$token = rq$~reate$segment (SIZE(make$widget$d), 

@status); 
IF status <> E$OK THEN GOTO error; 
CALL MOVB (@make$widget$d, @make$widget$ptr, 

SIZE(make$widget$d)); 
CALL rq$send$message (start$widget$mbx, make$widget$token, 

0, @status); 
IF status <> E$OK THEN GOTO error; 
CAUSE$INTERRUPT (3); 

2-220 280047·001 



inter 

405 3 
406 3 
408 3 

409 3 

410 3 

411 3 
413 3 

414 3 

415 3 
417 3 
418 3 
419 3 

421 3 

422 3 
424 3 
425 3 
426 3 

428 3 

429 2 
430 2 
432 2 
433 2 

434 2 
436 2 

437 2 
438 2 
440 2 
441 2 

442 2 

443 2 

445 2 

AP-221 

/* Send message to 10 task. mailbox STARTWRITE */ 
send$to$io$token = rq$create$segment ( 32. @status); 
IF status <> E$OK THEN GOTO error; 
CALL MOVB (@message$d, @send$to$io.message. 

SIZE(message$d)); 
CALL MOVS (@making$widget$d. @send$to$io.making$widget. 

SIZE(making$widget$d)); 
CALL rq$send$message (start$write$mbx. send$to$io$token, O. 

@status); 
IF status <> E$OK THEN GOTO error; 
CAUSE$INTERRUPT (3); 

/* Receive message from widget task. mailbox DONEWIDGET */ 
done$token = rq$receive$message (done$widget$mbx. OFFFFH, 

O. @status); 
IF status <> E$OK THEN GOTO error; 
CAUSE$INTERRUPT (3); 
CALL rq$delete$segment (done$token, @status); 
IF status <> E$OK THEN GOTO error; 

/* Receive message from 10 task. mailbox DONEWRITE */ 
done$token = rq$receive$message (done$write$mbx. OFFFFH. O. 

@status); 
IF status <> E$OK THEN GOTO error; 
CAUSE$INTERRUPT (3); 
CALL rq$delete$segment (done$token. @status); 
IF status <> E$OK THEN GOTO error; 

/* receiving messages from the tasks. they are done and we * 
* are ready to tell them to clean up. */ 

END; 

/* Send message to widget task. mailbox STARTWIDGET */ 
cleanup$token = rq$create$segment ( SIZE(cleanup$d), @status); 
IF status <> E$OK THEN GOTO error; 
CALL MOVS (@cleanup$d. @cleanup$ptr, SIZE(cleanup$d)); 
CALL rq$send$message (start$widget$mbx, cleanup$token, O. 

@status); 
IF status <> E$OK THEN GOTO error; 
CAlJSE$INTERRUPT (3); 

/* Send message to 10 task, mailbox STARTWRITE */ 
send$to$io$token = rq$create$segment ( 32, @status); 
IF status <> E$OK THEN GOTO error; 
CALL MOVS (@message$d, @send$to$io.message, SIZE(message$d)); 
CALL MOVS (@cleanup$d, @send$to$io.making$widget, 

SIZE(cleanup$d)); 
CALL rq$send$message (start$write$mbx, send$to$io$token, 0, 

@status); 
IF status <> E$OK THEN GOTO error; 

/* Receive message from widget task, mailbox DONEWIDGET */ 
done$token = rq$receive$message (done$widget$mbx, OFFFFH, O. 

@status); 

2-221 280047-001 



,i~ 

446 2 
448 2 
449 2 
450 2 

452 2 

453 2 
4~5 2 
456 2 
457 2 

459 2 

460 2 
461 2 
463 2 
464 2 

466 2 
467 2 
469 2 

470 2 

471 3 
472 3 

473 2 

AP-221 

~~U~af~~E~~U~~O~31~EN GOTO ,error; 
CALL rq$del ete$segment (dQI1.e$token, @status); 
IF status <> E$OK THEN GOTO error;, 

/*' Receive message from 10 task, mailbox DONEWRITE */ 
done$token = rqSreceive$message (done$write$mbx, OFFFFH, 0, 

, @status); 
IF status ,<> E$OK THEN GOTO error; 
CAUSE$INTERRUPT (3); 
CALL rq$delete$segment (done$token,' @status); 
IF status <> E$OK,THEN GOTO error; 

CAUSE$INTERRUPT (3); 

/* Send message to main task, mailbox MAI~SUPER */ 
done$token = rq$create$segment ( 16, @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$send$message (main$Super$mbx, done$token, 0, @statIJs); 
IF status <> E$OK THEN GOTO error; 

CALL rq$suspend$task (0, @status); /* suspend ~self */ 
IF status <> E$OK THEN GOTO error; 
GOTO ok; 

error: /* output to usart for debugging */ 
DO WHILE 1; 
OUTPUT(9CH) = OA3H; 
END; 

ok: ' 
CALL rq$suspend$task (0, @status) /* myself */ 

END supervisor$task; 

/***************~*************~**************~***~*****~****************** 
* IO$task is a, task which is created by main$t~sk. It creates * 
* the necessary mailboxes and segments, and then attaches the terminal * 
* physically. It then creates a file so that it has a file connection.* 
* It opens the file connection, and writes the contents of a buffer to * 
* the terminal.' Then it closes the file conned:ion~ deletes the * 
* device connection, and detaches the device. * 
**********~*****~********************************************************/ 

474 1 ' IO$ta~sk: PROCEDURE REENTRANT,PUBLlC; 

475 2 , DECLARE mbx$token ,TOKEN, 
seg$token TOKEN, 
user$token, TOKEN, 
fileSconnection TO~EN, 
device$connection TOKEN, 
cleanup$token TOKEN, 
done$token, TOKEN, 
make$widget$token TOKEN,' 
cOAtinue$token ' TOKEN, 
doneSwrite$mbx TOKEN, 
start$write$mbx TOKEN; 

280047-001 



inter 
476 2 
477 2 
478 2 
479 2 
480 2 
481 2 

482 2 

483 2 

484 2 
485 2 

486 2 
487 2 
488 2 

489 2 

490 2 

491 2 

492 2 
494 2 

495 2 

*/ 
497 2 

498 2 
500 2 

501 2 
502 2 
504 2 
505 2 
507 2 
508 2 

510 2 

AP·221 

DECLARE status WORD; 
DECLARE hard BYTE; 
DECLARE iors$token TOKEN; 
DECLARE cleanup$ptr BASED cleanup$token (1) BYTE; 
DECLARE send$to$io$token TOKEN; 
DECLARE send$to$io BASED send$to$io$token STRUCTLRE( 

making$widget (1) BYTE. 
message (13) BYTE); 

DECLARE dev$conn$object TOKEN AT (@iors$token). 
file$conn$object TOKEN AT (@iors$token). 
msg$received$obj TOKEN AT (@iors$token). 
object TOKEN AT (@iors$token); 

DECLARE iors BASED iors$token STRUCTURE 
(status WORD, 
unit$status WORD. 
actual WORD) ; 

DECLARE buffer BASED seg$token (9) 
DECLARE user$object STRUCTURE 

(length WORD. 
count WORD, . 
id (1) WORD) ; 

user$object.length = 1; 
user$object.count = 1; 
user$object.id(O) = OFFFFH; 

BYTE; 

hard = OffH; /* request a hard detach of the device */ 

CAUSE$INTERRUPT (3); 
/* Set up the mailboxes for this task to use */ 
start$write$mbx = rq$lookup$object (0. @(10.'STARTWRITE'). 

OFFFFH. @status); 
IF status <> E$OK THEN GOTO error; 
done$write$mbx = rq$lookup$object (0. @(9.'DONEWRITE'). 

OFFFFH. @status); 
IF status <> E$OK THEN GOTO error; 

/* Receive message from supervisor task. mailbox STARTWRITE. 

send$to$io$token = rq$receive$message (start$write$mbx. 
OFFFFH. O. @status); 

IF status <> E$OK THEN GOTO.error; 
CAUSE$INTERRUPT (3); 

user$token = rq$create$user (@user$object. @status); 
IF status <> E$OK THEN GOTO error; 
mbx$token = rq$create$mailbox (0. @status); 
IF status <> ESOK THEN GOTO error; 
seg$token = rq$create$segment ( 48. @status); 
IF status <> E$OK THEN GOTO ecror; 

CALL rq$a$physical$attach$device ( @(2.'TO'). 1. mbx$token. 
@status); 

2-223 280047-001 



inter 
511 2 
513 2 

514 2 
516 2 

517 2 

518 2 
520 2 

521 2 
523 .2 

524 2 
525 2 
527 2 
528 2 
530 2 
531 2 

AP-221 , 

IF status <> E$OK THEN GOTO error; 
dev$conn$object = rq$receive$message (mbx$token, OFFFFH, 0, 

@status); 
IF status <> E$OK THEN GOTO error; 
device$connection = d~v$conn$object; 

CALL rq$a$create$file (user$token, device$connection, 
0, 0, 0, 0, 0, mbx$token, @status); 

IF status <> E$OK THEN GOTO error; 
file$conn$object = rq$receive$message {mbx$token, OFFFFH, 0, 

@status); 
IF status <> E$OK THEN GOTO error; 
file$connection = file$conn$object; 

CALL rq$a$open (file$connection, 2. 0, mbx$token, @status); 
IF status <> E$OK THEN GOTO error; 
object = rq$receive$message (mbx$token, OFFFFH, 0, @status); 
IF status <> E$O~ THEN GOTO error; 
CALL rq$delete$segment (object, @status); 
IF status <> E$OK THEN GOTO error; 

/*********************************************************************** 
* This is the part of the code that will be repeated. It receives * 
* the message from second task and writes it to the screen, then * 
* returns control to the second task. . */ 

533 2 
534 3 
535 3 

536 3 
538 3 

539 3 
541 3 
542 3 
544 3 
545 3 

547 3 
548 3 
550 3 

551 3 
553 3 

554 3 

555 3 

DO WHILE send$to$io.making$widget(O) = 1; 
CAUSE$INTERRUPT (3); . 
CALL rq$a$write (file$connection, @send$to$io.message, 

size(send$to$io.message), 
mbx$token, @status); 

IF status <> E$OK THEN GOTO error; 
object = rq$receiv~$message 1mbx$token, OFFFFH, 0, 

@status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$delete$segment (object, @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$delete$segment (send$to$io$token, @status); 
IF status <> E$OK THEN GOTO error; 

/* Send message to supervisor task, mailbox DONEWRITE */ 
done$token = rq$create$segment ( 16, @status); 
IF status <> E$OK THEN GOTOerror; 
CALL rq$send$message (done$wtite$mbx, done$token, 0, 

. @status); 
IF status <> E$OK THEN GOTO error; 
CAUSE$INTERRUPT(3) ; 

/* Receive message from rupervisor task~ mailbox 
* STARTWRITE */ 

send$to$io$token = rq$receive$message (start$write$mbx, 
OFFFFH, 0, @status); 

IF status <> E$OK THEN GOTO error; 

2-224 280047-001 



inter 
557 3 
558 3 

559 2 
560 2 
562 2 
563 2 
565 2 
566 2 
568 2 
569 2 
571 2 

572 2 
574 2 
575 2 
577 2 
578 2 

580 2 

581 2 
583 2 
584 2 
586 2 
587 2 

589 2 
590 2 

592 2 
593 2 
595 2 
596 2 

598 2 
599 2 
601 2 
602 2 
604 2 
605 2 

606 2 

607 3 
608 3 

609 2 

610 2 

611 1 

AP .. 221 

CAUSE$INTERRUPT (3); 
END; 

CALL rq$delete$segment (send$to$io$token. @statlJs); 
IF status <> E$OK THEN GOTO error; 
CALL rq$a$clos~ (file$connection. mbx$token. @status); 
IF status <> E$OK THEN GOTO error; 
object = rq$receive$message (mbx$token. OFFFFH. O. @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq'$de 1 ete$segment (object. @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$a$delete$connection (file$connection. mbx$token. 

, , @status); 
IF status <> E$OK THEN GOTO error; 
object = rq$receive$message (mbx$token. OFFFFH. 0, @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$delete$segment (object. @status); 
IF status <> E$OK THEN GOTO error; 

CALL rq$a$physical$detach$device (device$connection, hard, 
mbx$token. @status); 

IF status <> E$OK THEN GOTO error; 
object = rq$receive$message (mbx$token. OFFFFH. O. @status); 

, IF status <> E$OK THEN GOTO error; 
CALL rq$del~te$segment (object, @status); 
IF status <> E$OK THEN GOTO error; 

CALL rq$delete$mailbox (mbx$token, @status); 
IF status <> E$OK THEN GOTO error; 

CALL rq$delete$us~r (user$token. @status); 
IF status <> E$OK THEN GOTO error; 
CALL rq$delete$~egment (~eg$token. @status); 
IF status <> E$OK THEN GOTO error; 

/* Send message to supervisor task, mailbox DONEWRITE */ 
done$token = rq$create$segment ( 16. @status); 
IF status <> E$OK.THEN GOTO error; 
CALL rq$send$message (done$write$mbx. done$token. O. @status); 
IF status <> E$OK THEN GOTO error; 
CAUSE$INTERRUPT (3);, 
OOTO ok; 

error: 
DO WHILE 1; 

OUTPUT(9CH) = OAIH .. 
, END; 

ok: 
CALL rq$suspen~$task (0. @status); 

END IO$tas'k; 

w,idget$task: PROCEDuRE REENTRANT PUBLIC; 

2-225 280047-001 



a12 2 

a13 2 
614 2 

615 2 
616 2 

611 ~ 
619 2 

no 2 

622 2 

623 '. 2 

625 2 

626 3 
627 3 
628 1 

630 3 
631 3 
a33 3 

634 3 
636 3 

637 3 

638 3 

640 3 

641 2 

642 2 
643 , 2 

645 2 
646 t 
648 2 

, '0 

AP-221 

D£CLARE done$token TOKE". 
continue$token TOKEN, 
clelAupStoken TOKEN. 
start$widgetSmbx, TOKEN. 
dQne$w1d,get$mbX TOKEN. 
MahSwic;tget$tOken' 'FOKEN; 

OECLAR£ statqs , WORD; 
DECLARE c1eanupSptr BASED cleanup$token (1) BYTE. 
, continueSptr BASED continue$token (1) BYTE. 

makeSwidget$ptr BASED make$widget$token (11) BYTE; 
CAUSESINTERRUPT (3); " " ' 
~tatt$widget$mbx 10 rqSlookupSobject (0,- @(11.'STARTWIDGET'). 

OFFFFH. @status): 
IF status' <> [SOK THEN GOTO error; , 
doneSwidge~$mbx 10 rq$.lookl.lpSobject (0, tt(10,'DONEWIOGET'), 

OFFFFH, @status): 
If status <> E$OK THEM GOTO error; " 

/* Receive message from supervisor task, mailbox STARTWIDGET */ 
MakeSw1dtetStoken 10 rqSreceive$meuage (startSwidgetSmbx. 

, ,,' OFFFFH, 0, @status); I' status <> ESOk THEN GOlO error; 

00 WHILE makeSwidgetSptr'(O) .. 1; /* Repeat endlessly. 
* Let superv~sor task take 'cafe of controlling. */ 

CAUSES'INTERRUPT (3); , , 
CALL rqSdeleteSsegment (make$widget$token, @status); 
IF stitu$ <> ESOK THEN 9OTO efror: 

/* Send me$sage,to supervisQr task, mailbox DONEWIDGET */ 
~one$token .. rqScreate$segment ( l~', @status): 
IF status <> ESOK THEN GOTO error; 
CALL fqSsepdSmessage (done$widget$mbx. done$token. O. 

.status); 
IF status ~> ESOK THEN GOTQ error; 
CAUSES I NTtRR UPT(3 ); " 

/'* Receive message from supervisor task. mailbox STARTWIDGET */ 
MakeSwidg'etStoken • rqSrecei'veSmessage (start$widgetSmbx. 

, . OFFFFH. 0, @status); . 
IF stltus <> E$OK THEN GOtO error; 

ENDi /* do making the widgets */ 

CAUSE$IHTE~RUPT (3). 
/* del.,up the environmenf now.*! 
CALL rq$delete$segment (mi~e$widget$token, @status); 
IF stltus <> E$OK lHE~ GOTO error; 

/* Send messlge'to supervisor task, mailbox 'DONEWIDGET */ 
don.Stoken 10 rq$cre.teSsegment ( 16. @status); 
IF status <> ~$.OK THEN GOTO error; , 
C~LL rq$s_nd$messlge, (done$widget$~bx, doneStoken. 0, 

, . ' '" '@sta,ttl!;);' ".' 

2-228 280047-0<11 . 



inter AP-221 

649 2 
651 2 
652 2 

653 2 

654 3 
655 3 

656 2 

657 2 

658 1 

IF status <> E$OK THEN GOTO error; 
CAUSESINTERRUPT (3); 
GOTO ok; 

error: /* output to usart for debugging */ 
DO WHILE 1; 

OUTPUT(9CH) = OA2H; 
END; 

ok: 
CALL rq$suspend$task (0. @status); 

END widget$task; 

END tasks; 

MODULE INFORMATION: 

CODE AREA SIZE = OD1BH 33550 
CONSTANT AREA SIZE = OOA9H 1690 
VARIABLE AREA SIZE = OOOOH 00 
MAXIMUM STACK SIZE = 0044H 680 
1796 LINES READ 
o PROGRAM WA~NINGS 
o PROGRAM ERRORS 

DICTIONARY SUMMARY: 

84KB MEMORY AVAILABLE 
22KB MEMORY USED (26%) 
OKB DISK SPACE USED 

END OF PL/M-86 COMPILATION 

2-227 280047-001 



AP'·221 

APPENDIX 0 

PLMS6 %0.PS6 
PLMS6 inittask.PSn 
LINKS6 inittask.OBJ to inittask.lnk initcode 
LINKS6 %O.OBJ to %O.lnkl initcode 
\inkS6 inittask.LNK, & 

%O.LNKl, & 
/lib/ndpS7/dconS7.1ib,·& 
/lib/ndp87/celS7.1ib, & 
/lib/ndpS7/ehS7.1ib, & 
/lib/ndpS7/S0S7.1ib, & 
/lib/rmxS6/epifl.lib, & 
/lib/rmxS6/ipifl.lib, & 
/LIB/RMXS6/RPIFL.LIB, & 
/LIB/PLMS6/PLMS6.LIB & 

TO %O.LNK 
LOCS6 %O.LNK TO %0 & 

SEGSIZE(STACK(O» ADDRESSES(CLASSES(CODE(015000H),DAT~(017000H») NOINITCODE 
1 ibS6 ' 
delete /boot/%O(inittask) 
add %0 to /boot/%O 
e 

2-228 280047-001 



AP-221 

APPENDIX E 

ICU86 V2.0 ONETASK.DEF 

Hardware 
(CPU) Processor used in the system 8086 
(OSP) 80130 Operating System Extension [Yes/No] No 
(TP) 8253/8254 Timer Port [O-OFFFFH] OODOH 
(CIl) Clock Interrupt level [0-7] 0002H 
(CN) Timer Counter Number [0,1,2] OOOOH 
(CI) Clock Interval [O-OFFFFH msec] OOOAH 
(CF) Clock Frequency [O-OFFFFH khz] 04CDH 
(TPS) Timer Port Separation [O-OFFH] 0002H 
(NPX) Numeric Processor Extension [Yes/No] No 
(NIL) NPX Interrupt level [Encoded] 0008H 

Interrupts 
(MP) 8259A Master Port [O-OFFFFH] OOCOH 
(MPS) Master PIC Port Separation [O-OFFH] 0002H 
(SIl) Slave Interrupt levels [0-7/None] None 
(lSS) level Sensitive Slaves [0-7/None] None 

Memory 
Type RAM = low, high 
Type ROM = low, high 
Type RAM = 0104H, 1500H 
Type RAM = 1800H, F7FFH 

Sub-systems 
(UDI) Universal Development Interface [Yes/No] 
(HI) Human Interface [Yes/No] 
(Al) Application loader [Yes/No] 
(EIO) Extended I/O System [Yes/No] 
(BIO) Basic I/O System [Yes/No] 
(SDB) System Debugger [Yes/No] 
(DDB) Dynamic Debugger [Yes/No] 
(TH) Terminal Handler [Yes/No] 
(CA) Crash Analyzer [Yes/No]' 

BIOS 
(ASC) All Sys Calls in BIOS [Yes/No] 
(ADP) Attach Device Task Priority [1-0FFH] 
(TF) Timing Facilities Required [Yes/No] 
(TTP) Timer Task Priority [O-OFFH] 
(CON) Connection Job Delete Priority [O-OFFH] 
(ACE) Ability to Create Existing Files [Yes/No] 
(SM1) System Manager 1D [Yes/No] 
(CUT) Common Update Timeout [O-OFFFFH] 

2-229 

No 
No 
No 
No 
Yes 
Yes 
No 
No 
No 

Yes 
0081H 
Yes 
0081H . 
0082H 
Yes 
Yes 
03E8H 

OS/21/84 07:04:32 

280047-001 



illtJ ... Ap·221 

(CST) Control-Sequence Translation [Yes/No]· 
(OSC) Terminal OSC Controls [Yes/No] 
(TS) Tape Support for iSBC 215G [Yes/No] 
(PMI) BIOS Pool Minimum [O-OFFFFH] 
(PMA) BIOS Pool Maximum [O-OFFFFH] 

8251A Driver 
(Ill) Input Interrupt level [Encoded] 
(OIL) Output Interrupt level [Encoded] 
(UDP) USART Data Port [O-OFFFFH] 
(USP) USART Status Port [O-OFFFFH] 
(IRP) 8253 Inrate Port [O-OFFFFH] 
(ICP) 8253 Input Control Port [O-OFFFFH] 
(IRC) 8253 Input Counter Number [0-2] 
(IRF) Inrate Frequency [O-OFFFFFFFFH] 
(ORP) 8253 Outrate Port [O-OFFFFH] 
(OCP) 8253 Output Control Port [O-OFFFFH] 
(ORC) 8253 Output Counter Number [0-2] 
(ORF) Outrate Frequency [O-OFFFFFFFFH] 

8251A Unit Information 
(NAM) Unit Info Name [1-17 Chars] 
(lEM) line Edit Mode [Trans/Normal/Flush] 
(ECH) Echo Mode [Yes/No] 
(IPC) Input Parity Control [Yes/No] 
(OPC) Output Parity Control [Yes/No] . 
(OCC) Output Control in Input [Yes/No] 
(OSC) OSC Controls [Both/In/Out/Neither] 
(DUP) Duplex Mode [Full/Half] 
(TRM) Terminal Type [CRT/Hard Copy] 
(Me) Modem Control [Yes/No} 
(RPC) Read Parity Checking [See Help/0-3] 
(WPC) Write Parity Checking (See Help/0-4] 
(BR) Baud Rate [O-OFFFFH] 
(SN) Scroll Number [O-OFFFfH] 

251A Device-Unit Information 
(NAM) Device-Unit Name [1-13 chars] 
(UN) Unit Number on thi~ Device [O-OFFH] 
(UIN) Unit Info Name [1·17 Chars] 
(MB) Max Buffers [O-OFFH] 

System Debugger 
(SlV) SDB Interrupt level [Encoded level/None] 

Nucleus 
(ASC) All Sys Calls [Yes/No] 
(PV) Parameter Validation [Yes/No] 

. (ROD) Root Object Directory Size. [0 - OFFOh] 

2-230 

Yes 
Yes 
No 
0800H 
0800H 

0068H 
0078H 
00D8H· 
OODAH 

- 00D4H 
00D6H 
0002H 
0012COOOH 
OOOOH 
OOOOH 
OOOOH 
OOOOOOOOH 

tOinfo 
Normal 
Yes 
Yes 
Yes 
Yes 
Both 
Full 
CRT 
No 
OOOOH 
OOOOH 
2580H 
0017H 

0018H 

Yes 
Yes 
0020H 

TO 
OOOOH 
tOinfo 
OOOOH 

280047-001 



inter AP-221 

(MTS) Minimum Transfer Size [O-OFFFFH] 0040H 
(DEH) Default Exc~ption Handler [Yes/No/Deb/Use] Yes 
(NEH) Name of Ex Handler Object Module [1-32chs] 
(EM) Exception Mode [Never/Program/Environ/All] Never 
(SRR) Start Root job from Reset [Yes/No] No 

User Jobs 
(NAM) Job Name [0-14 characters] onetask 
(ODS) Object Directory Size [O-OFF.OH] 0010H 
(PMI) Pool Minimum [20H - OFFFFH] 0500H 
(PMA) Pool Maximum [20H - OFFFFH] 0500H 
(MOB) Maximum Objects [1 - OFFFFH] 0020H 
(MTK) Maximum Tasks [1 - OFFFFH] 0010H 
(MPR) Maximum Priority [0 - OFFH] OOOOH 
(AEH) Address of Exception Handler [CS:IP] OOOOH:OOOOH 
(EM) Exception Mode [Never/Prog/Environ/All] Never 
(PV) Parameter Validation [Yes/No] Yes 
(TP) Task Priority [O-OFFH] 0082H 
(TSA) Task Start Address [CS:IP] 1500H:0002H 
(DSB) Data Segment Base [O-OFFFFH] OOOOH 
(SSA) Stack Segment Address [SS:SP] OOOOH:OOOOH 
(SS) Stack Size [O-OFFFFH] 1F40H 
(NPX) Numeric Processor Extension Used [Yes/No] No 

User Modul~s 
Module: 1-55 characters 

ROM code 
(BIR) Basic I/O System in ROM [Yes/No] 
(SIR) SOB in ROM [Yes/No] 
(NIR) Nucleus in ROM [Yes/No] 
(RIR) Root Job in ROM [Yes/No] 

Includes and Libraries 
Path Name [1-45 Characters] 
(UDF) UOI Includes and Libs 

/rmx86/udi/ 
(HIF) Human Interface Includes and Libs 

/rmx86/hi/ 
(ElF) Extended I/O System Includes and Libs 

/rmx86/eios/ 
(ALF) Application Loader Includes and Libs 

/rmx86/l oader/ 
(BIF) Basic I/O System Includes and Libs 

/rmx86/ios/ 
(SDF) System Debugger Includes and Libs 

/rmx86/sdb/ 

No 
No 
No 
No 

(THF) Terminal Handler and Dynamic Debugger Includes and Libs 
/rmx86/th/ 

(NUF) Nucleus and Root Job Includes and Libs 
/rmx86/nucleus/ 

2-231 280047-001 



AP-221 

(ILF) Interface Libraries 
/rmx86/l ib/ 

(CAF) Crash Analyzer Includes and Libs 
/rmx86/crash/ 

(DTF) Development Tools Path Names 

Generate File Names 
File Namf! [1-55 Characters] 
(ROP) ROM Code Prefix 

(RAF) RAM Code File Name 

:lang: 

none 

/boot/onetask 

2-232 280047-001 



AP-221 

Appendix F: Related publications 

Knuth, The Art of Computer Programming, Vol 1, pp 
435-453, and exercise 6, p 452 with answer p 597. (c) 
1973,1978, Addison-Wesley Publishing Co., 
Redding,MA 

iRMXTM 86 Introduction and Operator's Reference 
Manual For Release 6 (146194-001) 

iRMXTM 86 Programmer's Reference Manual, Part I, 
For Release 6 (I46195-001) 

iRMXTM 86 Programmer's Reference Manual, ,Part II, 
For Release 6 (146196-001) 

iRMXTM 86 Installation and Configuration Guide For 
Release 6 (146197-001) 

2-233 280047-001 



" 

ARTICLE 
REPRINT 

Reprinted with permission from VLSI Design magazme, March/Apnl1983 Copynght© 1983. 

2-234 

AR-286 

June 1983 

2'034.-GOS 



inter AR-286 

Software That Resides In SUicon 
Ron Slamp and Jim Person. Intel Corporation 

Silicon software sounds like a contradiction in terms. The 
casting of software in silicon implies that the software 
cannot be changed; yet software does and must change. 

For example. it must be possible to alter a microprocessor 
operating system so that the system will support different hard
ware and software designs, as well as accommodate new hard
ware components and applications. And if the software has 
been committed to silicon, then a way must exist to overcome 
any bugs that are discovered later. 

Design Considerations 

Silicon software consists of two kinds of code: on-chip code 
and off-chip code (see Figur~ I). In a typical case, some of the 
off-chip code works closely with the on-chip code, and is devel
oped as part of the silicon software package. This special off
chip (or "support") code might contain initialization, interface, 
system, and version update codes. For silicon software to 
tolerate change and be usable in more than one system, the 
on-chip code must have three qualities: position independence, 
configuration independence and stepping independence. 

Position Independence 

Because the most advanced microprocessors address at least 
I megabyte of memory, system software that resides in silicon 
must work right regardless of its location in memory. Absolute 
addresses in the read-only, on-chip code or data restricts the 
configuration of the system. Because the on-chip code recog
nizes only offsets, absolute addresses are unacceptable. On
chip code cannot presume to know the location of any code or 
data, it can only presume to know the structure of the data 
whicn it accesses. It cannot know, except relatively, where in 
memory it (or any other code) resides. If the on-chip code is to 
be position independent, then any absolute addresses needed 
by the on-chip code must be obtained via the processor's 
registers. 

Position independence i, not a new concept: in fact, it is 
rather an obvious requirement for sIlicon software. Compilers 
and relocatable assemblers allow linking and locating, thus 
making it easier to produce position-independent code~ But 
most of these tools can also produce code that is not position 
independent. Silicon software developers need to be aware of 
the position-independence requirement throughout the design, 
implementation and test phases for their products. 

ConfiguralionIndependence 

The second requirement for silicon-resident software is that 
the on-chip code must not depend on the underlying hardware 
and software configuration of the system. Instead, the on-chip 
code must have indirect access to other code or data, and must 
then check the run-time data to deduce the system 
configuration. 

On-Chip Code 

SilICon 
Software 

r---, 
I I 
I ~~f:~r~ I 
I I 
I I 

Olf-Chlp Code 

Other Code 

I System Memory 

I I L ___ J 

nGURE I. Silicon soft1rare is dh1ded into on-chip code and 011-
chip code. The oil-chip code either directly supports the 
on-chip code or contains other applications code. 

Because of the read-only nature of silicon software, con
stants can cause problems when they are located within the 
on-chip code. Values representing a hardware device must not 
reside on-chip if that device can be located anywhere in the 
system, or when values support several devices having similar 
functions but different programming interfaces. Indirect access 
is necessary for all values that vary depending on the configura
tion of the system. 

Stepping Independence 

Stepping independence is an expansion of configuration in: 
dependence, and is perhaps the most elusive of the 
requirements to be met by software intended for residence in 
silicon. A "step" is an updated version of the on-chip code. The 
on-chip code and the off-Chip code must remain compatible, 
regardless of changes in either of them. Stepping independence 
exists when all versions of the on-chip code work with all 
versions of the off-chip code. 

If stepping independence is taken into consideration when 
the ,ilicon software is developed, then provisions can be made 
for the subsequent additions of options without changing the 
on-chip code. Otherwise, the static nature of the on-chip code 
might make it impossible to add options. Although configura
tion independence can be designed into software from the start, 
stepping independence can be achieved only if a system's exist
i ng silicon software does not include features that prevent it. 

One type of data that is likely to change between steps is the 
value representing the size of a data area. !fthe software is to be 
stepping independent, it cannot know the sizes of the data areas 
accessed by on-chip code prior to run time. (No problems arise 
if on-chip and off-Chip code agree on the size of the data area.) 

But what happens if the on-chip code IS not from the same 
version of the product as the off-chip code, and if the size of the 
data area has changed between versions" If the size of the data 
area is defined by a constant in the on-chip code, then that area 
might be smaller than the off-chip code expects it to be. This 
misunderstanding can lead to disaster as the off-chip code reads 
and writes beyond the data area. 

VLSI DESIGN March/April 1983 2-235 210341-005 



AR-286 

This problem is, solved when the on-chip code asceitains the 
size of the data area from off-chip data. Thus, the size of the 
data areas for the system becomes a configuration option. 

Getting the Bugs Out 01 SUicon Software 

Every large program contains bugs. I)esignets" us'ua)ly 
remove bugs'by modifying the program to correct the problem, 
and then discarding the old program. However, a program in 
silicon cannot be modified without stepping the component. 
And even so, it is undesirable to discard the outdated 
component. 

Software designed for silicon should include a facility for 
fixing bugs in on-chip code, One way to fix an on-chip bug is to 
prevent access to the routine containing the bug. A correct 
version ofthe routine is provided off-chip, and program execu
tion is forced to branch to the off-chip version whenever the 
routine is invoked. Modular programming practices during de
velopment help reduce the cost of such off-chip duplication. 

This on-chip bug-fix works well over time. Each component 
step has an associated collection of bug-fix modules. The col
lection is updated for each new version of the product, as 
component steps fix known bugs. During system configuration, 
the user specifies which component step is being used ; the fixes 
for that step are included automatically in the off-chip code. 
Because of this facility, one step looks just like another to the 
user. 

Intel's OSF: A S01tware Component 

The Operating System Firmware (OSF) component consists 
of several hardware modules (see Figure 2). These modules 
provide two functions that are essential to operating systems: 
interrupts and timers, The OSF modules include a Control 
Store (l6K.bytes of fast ROM) to contain the silicon software, 
three programmable interval timers, an eight-input program
mable interrupt controller, a bus interface, control logic, a data 
buffer, and address latch logic. 

The 80130: The lRMX™ 86 Kernel in Silicon 

Intel's first software-on-silicon product is the 80130. It pro
vides a functional subset of the iRMXTM 86 Nucleus, which is 
the heart of the iRMX 86 operating system (OS), The iRMX 86 
OS is a real-time, multi-tasking, multiprogramming operating 
system intended for 16-bit microprocessor designs. The iRMX 
86 family of standard software modules includes a nuCleus, a 
stand-along terminal handler, a stand-alone debugger, an asyn
chronous 1/0 system, a synchronous I/O system, a: loader, a 
human interface, and options required for real-time applica
tions. The nucleus manages the creation and dynamic deletion 
of all system architectural features (tasks, program environ
ments, memory segments, data-communicaiion managers, 
etc.), It also schedules tasks, based on priority, interrupt man
agement, memory management, validation of parameters, 
management of exceptional conditions, and co-process?r 
support. 

How the 80130 Satisfies 
the Silicon Sollware Criteria . 

The iRMX 86 Nucleus provides both the on-chip and off-chip 
codes needed to implement the operating system. The on-chip 
code resides in the 16K-byte ROM space of the 80130. It is the 
main portion of the Nucleus code, and includes the kernel ofthe 

nGtJRE 2, The OS, component works with systems that use the 
IAPX 86.88. 186. or 188 microprocessor. Close coupling 01 the 
CPU and the osr allows mazimum .ero-walt-state perloImqJ;l.ce 
01 the osr soltware. 

On Chip Code 

80130 
Kernel 
Control 
Storti 

Oll-Ch!p COde 

r Sup;;-rt-'" 1 User Execution 
I Software I + 
I ~ ~e<:qu,es.tlor 

.. _ I ~~I~~~ment ! ~ SerYIce 

-r--.,' I ' 
L-----..J _K.,," , ~ 
_~ L_~ '. 

nGtJRE 3. Th;, position-Independent Interlace supplies data 
location and run-time yalue •• and starts on-chip execution 01 
the soltware. 

operating system and the primitives, which are present in the 
basic 80130 configuration. The off-chip code is stored in exter
nal RAM or ROM: It consists of initialization code, and code 
that either cannot be position in.dependent or cannot be known 
before a given system is configured. , 

Position independence is guaranteed If entry to the on-chip 
code is possible only through an interface in .the off-chip code 
that sets up the necessary registers. The off-chip position
independence interface (see Figure 3) provides an absolute 
data location and begins on-chip e~ecution by the silicon
resident code. All run-time values can be determined, based on 
the data location. O~-chip execution gives the processor a 
location in the on-chip code from which other on-chip locations 
can be calculated. 

It was relatively easy to make the80130 configuration inde
pendent, because (like most operating-system kernels) it con
tains oQly general-purpose' functions. The off-chip code 
contains all the drivers for particular peripheral chips. The 
Interactive Configuration ,Utility integrates the drivers with the 
80130. 

The interface between the off-chip and on-chip codes 
remains stable across component steps. The stepping
independence interface (see Figure 4) resideson the chip, and 
is a mal' of the on-chip code. This interface gives the qff-chip 
code indirect access to all on-chIp "publics" (e.g" externally 
accessible routines, modules, and labels). It is also a chart that 
routes execution to the proper on-chip location. The off-chip 
code uses an index of this chart to specify which public should 

VLSI DESIGN MarchiAprill983 2-236 210341.005 



inter AR·286 

nGUIIE <t. All ODo-c:1I1p ac::c:: ..... are rout.d tllrougll til. oDo·c::lI1p 
.t.pplAg.lAd.peDod.DoC::. IAt.rfac::., wll1c::l1 prorid •• c::ompatl· 
blllt, b.tw •• Do oDo·c::lI1p au 01f·c::1I1p c::ocl •. lec::au .. til. 
IAt.rfac:: •• tnrc::ture .taya c::oD.llaDot, III •• xt.mal refereDoC. 
alIo Itaya coD.ataDot, WII11e til. oDo-c:lllp OFFSET ell_g., to 
polAt 10 tile DoeW loc::atloDo of til. ODo'Cll1p cod •. 

be accessed. The index of a given routine remains the· same 
across component steps, even though the actual address (offset 
into the component) of the public has changed. For different 

• 

.000 

CCP 
Code 

CCP 
Data 

BOOS 
Code 

BOOS 
Data 

• 
CCP 
Code 

BOOS 
Code 

BIOS 
Code 

versions of the on·chip and off·chip codes to work correctly. all .2500 

access from outside the component must be routed through the 
stepping·independence interface. 

The 80150: CP/II.86* 1D S1Uc::OIl. 

Intel's decision to implement CP/M·86 operating system in 
silicon (the 80150) raised a different design problem. With the 
80130. Intel only had to deal with Intel.designed software. Code 
design. implementation. extensions. corrections. support. and 
the subsequent effect on the end user were all under Intel's 
control. The selection of an independent software system such 
as CP/M·86 (a product of Digital Research. Inc.Hntroduced 
new factors into the implementation. • 

The CP/M·86Archileclure 

The CP/M·86 operating system consists of three modules. 
The Console Command Processor (CCP) handles command 
line processing. and executes built-in utilities. The Basic Disk 
Operating System (BDOS) performs logical disk I/O. including 
disk reading and writing. directory management. and sector 
allocation. The Basic Input/Output System (BIOS). which con· 
tains the configuration·dependent code and data. also provides 
I/O for specific peripheral chips. 

CP/M·86 is a single·user. single·tasking operating system 
written in position·dependent code. The 80150 contains the 
entire CP/M·86 operating system: for many configurations. it 
requires no off-chip code. Intel's goal was to use the 
configuration·independent CCP and BDOS elements as It base. 
and add to them a BIOS that supported a variety of peripheral 
components but was still configuration independent. 

The 80150 BIOS supports the following two functional con
figuration options: 

I. A preconfigured·mode .• ystem. for which the system de
signer needs to do no operating-system code development 
or extension. 

2. A C'Imfif(urable-mode .• y •• tem. for which the designer makes 
a selection from among the Intel drivers supplied. and 
maklls changes as required to meet hardware needs. 

The 80150 BIOS includes drivers for the following chips: 

CCP 
BIOS eonatants and me ... gu 
Code 

BOOS 

~ 
Constants and meSNges 

BIOS 
Constants and m • ...".. 

HI·byte cOld· boot 
InitialIZation .'6K 

(a) (b) 

nGUIIE 5. (a) TIl. staDodarcl dlsk·bas.d C' /101·86 modlll.1I ODo. 
10Dog ItNctur. cODotalDolAg botll cod. aRd data. (b) lAte! 
reorgaDoi •• d til. baatc C. /101·86 arcll1tectur. to fit tII.Op.ratIDog 
,,,t.m IDotO til. 80150 OS flrmwar. compoDo.Dot. 

8251A 

8274 
8255A 
8275 
8237 

Universal Asynchronous Receiver/Transmitter 
(UART) 
Multi-Protocol Serial Controller (MPSC) 
Programmable Parallel Interface (PPl) 
Floppy·Disk eontroller 
Direct Memory Access (DMA) Controller 

If the 80150 is used as a co-processor with the iAPX 186 or 
the 188. then the on-chip peripherals of these processors 
(DMA. timers. interrupt controller. chip-select logic) are also 
used. 

Configuration independence is achieved via the Configura
tion Block (CB). with which whole BIOS drivers. data struc· 
tures. and built·in utilities can be selected independently by the 
system integrator. ' 

CP/M-86 'D'anstormalions 

Intel and Digital Research together addressed the issues of 
position dependence and intermixed code. d)lta. buffers. and 
stacks. The CCP and BDOS were reorganized to consolidate 
code and to use the 80150's ROM space efficiently. 

CP/M·86 was originally developed using an 8080 model struc· 
ture. The use of this structure implied that the code and data 
groups would overlap. as they do in the classical 808O-based 
CP/M design. Each module contained set·aside buffer areas. 
and included ~eparate data stacks. Therefore. all variable areas 

VLSI DESIGN March/April 1983 2-237 



AR .. 286 

/ 
/ 

/ 

Address-BOOS 
Address-BIOS .... __ 
Addresses of user entry pom""tS- - - _ _ Start of BIOS 
CONIN +----==:...:.:.=:..::..-----1 
CONOUr:...", 

CCP 
Constants and Messages ~~~ST........ '-'" 

LlSTST "- "':::-- '" / AUXIN ,,"-
AUXOUT ",- "'_ 1'-", BOOS 

Constants and Messages / AUXST " ~ " '" 
Disk read '" I ~ '" "'-

BIOS 
DI~k wnte I'--. '- '" 
E~or messages ......... , ............ 

CONIN ____ _ 

======== 
Constants and Messages 

InpuVoutput control blOCkS, """-
CAT 

CONOUT ____ _ 

CCP '. 
Variables. Buffer 

Keyboard 
Printer 

and Stack Disk 

BOOS 
Variables. Buffer 

Olsk~parameter header 
Disk-parameter block 
Disk-skew tables 

and Stack 

BIOS 
BIOS stack Variables. Buffer 

and Stack 
I-- 16-dlsk-dnve dlsk-paramel..:r headers 

All disk-parameter blocks 
Check vectors 
Allocation vectors '-

'-- Track/sector dIsk buffers 

~------~--------~ 
(a) (b) (c) 

FIGURE 6 .. Th. Configuration Blocl< (CB) r.conflgur •• the 80150 lor .p.clflc hardware .ystems. a) Th. CB constants r.ad 
down Irom the 80150, and varlabl •• u •• d at fUn-tim •. b) Th. BIOS portion 01 the CB contain. conllguratlon-d.p.nd.nt data. 
c)T ..... addr ••••• provld. access to the 80150 On-chip cod •• to all.r ex.cutlon paths lor dlff.rent configurations and stepplngs. 

and stack areas had to be removed from code that would reside 
in ROM. 

Figure 5(a) ,howsthe general structure of the original CCP 
and BDOS. Although a natural ,eparation between code and 
data i, clear, Digital Re,earch did not distil1guish between 
con~tants. literal me~sage~. and pure scratch slor'age. 

Intel's first ,tep in the transformation of CP/M-86 was to 
group all variable, within each module, including butTers and 
stacks. We then placed this data grouping at the end of the 
constants and literal me"ages for each of the CCP and BDOS 
modules. 

The new structure (Figure 5(b» include, all code. con,tanh, 
and internal mes;ages. as'well as a l6-byte initial-program-Ioad 
(IPL) boot resident in the 16K-byte OSF ROM. We removed all 
variables from the body of CP/M-86. and put them in an exter
nal RAM-based structure. 

Second., the implementation of CP/M via \he Intel 8086 
"'small model"' (separate code and data segments) rather than 
via the 8080 model (intermixed code and data), meant that the 
necessary additional variable data space would be available at 
80150 execution time. The segmented architecture of the iAPX 
86 family made this implementation easy, because separate 
CPU registers were, available for data and code addresses. As 
part of the BIOS initialization. we moved the constal1t data 
structures for the CCP. BDOS. and BIOS to the base of a 
RAM-resident Co'nfiguration Block (CB). An additional 
amount of RAM equivalent to 'the total variable space.was also 
allocated and preset to zero. This 8086 "'small-model"' transfor
mation not only ma,~e it easy to separate code and data, but also 

made the code more efficient and eliminated approximately 
2100 bytes. 

We achieved configuration and stepping independence via 
the otT-chip RAM-based Configuration Block. Figure 6(a) 
,hows the overall structure of the CB as constructed during 
BIOS initialization. During initialization. the 80150 B'IOS 
copies the CCP. BDOS, and BIOS constant and literal struc
tures into the Configuration Block. and appends additiqnal 
'pace for variable and ,cratch-pad storage. Even the location of 
the CB is alterable. based on the address stored in locations 
0:3FE-3FF. 

Figure 6(b) ,hows expanded portions qf the CB. The data 
area contains pointers that can be changed' to select custom 
otT-chip code instead of the standard on-chip code. The entire 
BIOS can be replaced. (The BIOS code insert in Figure6(c) and 
the various code labels are reflected back to'the CB.) Complete 
1/0 control block structures are ptovided for each CP/M logical 
device. induding C;RT. keyboard. list. auxiliary. and disk. The 
control block includes port addresses, protocol 'support. and 
other default data needed to detect and cont~ol the status of 
each peripheral. Figure 6(b) also expands the systems tables 
and butTers created for disk support. 

The addresses in Figure 6(b) indicate how stepping indepen
dence is achieved. Any otT-chip routines changed by'the user 
can be selected by altering the address of the CB. If Intel 
updates an on-chip routine, the address in the CB is updated 
automatically when the 80150 copies its constant structures 
into the CB. As explained above. full stepping independence is 
maintained. because any ROM changes can al~o be imple-

VLSI DESIGN MarchlAprii /983 2-238 ~10341-OOS 



AR-286 

mented off-chip by having the address in the CB point to an 
off-chip patch. (The CB contains BOOS entry points (shown in 
Figure 6(b)) that make this change possible.) 

The Contiguralion-Independent lntertace 

Use of the predefined configuration requires that the 80150 be 
installed at the top of the 80861l)emory address space (FCOO:O). 
The 16-byt~ internal hardware boot is activated at all POWER 
ON and hardware resets. and passes control to the 80150. The 
80150 initialization sequence uses this positioning to indicate 
the defauh hardware configuration (floppy disk. printer port. 
serial console. or auxiliary port). Each device has predefined 
port addresses. interrupt assignments. and protocols. The 
iAPX 186 or 188 CPU supports programmable chip-selection 
and the on-chip OMA drives the floppy disk controller. 

If the configuration must be altered. or if the BIOS code 
needs revision. the 80150 can be installed on any 16K code 
boundary except at the very top or bottom of memory. A 
PROM that contains off-chip code and data for a user's particu
lar configuration is also installed at the top of memory. 

The 80150 initializes the default system hardware tables. 
then calls an EPROM to complete or revise the existing data in 
the off-chip CB RAM area. At this point. the CB contains the 
addresses that select either on-chip or off-chip code. When the 
configuration is complete. control is returned to the 80150. The 
80150 completes the CP/M initialization. displaying the familiar 
CP/M "A" sign-on. 

Conclusion 

Converting software to silicon IS not new. But redesigning 
software to consist of on-chip ROM code and configurable 
RAM data is somewhat more innovative. One silicon-related 
specter that haunts software designers is the fear of 
"committing code before its time." But software designers can 
never expect to produce bug-free code the first time. And sys
tem designers cannot always predict the capabilities or the 
implementation requirements of peripheral devices that have 
yet to be built. Nevertheless. software designers who use the 
general silicon-implementation strategies of position indepen
dence and configuration independence. and who provide for 
steppmg mdependence. can create standard silicon hardware 
without fear of component obsolescence. 0 

About the Authors 

Ron Siamp received the A.S. degree in software technology 
from Portland Communnity College, and gained much of his 
skill in electronics at Clark Community College in Vancouver, 
Washington. He has worked in Intel's OEM Module Opera
tion in Hawthorne, Oregon since 1978 and is currently the 
project leader for component software. 

Jim Person received the B.S. degree in mathematics in 1962 
from the University of Arizona. He was the engineering project 
manager at Intel for the 80150 "CP IM-on-a-chip." 

2-239 210341-805 



inter ARTICLE, 
REPRINT 

Reprmted with permiSSiOn from ElectronICS, March 24,1983 CopYflght© 1983 McGraw-HI/line All rights reserved 

2-240 

AR-287 

June 1983 

210341-005 



intJ AR-287 

SPECIAL REPORT 
Punching in for real-time jobs 

in industry, R&D, and offices, 

operating systems use special 

software structures to squeeze 

better-than-ever performance 

out of 16-bit microprocessors 

by Stephen Evanczuk, Software Editor 

D A special class of operating systems is hard at 
work in the IS-bit microsystem world. For controlling 
environmental processes, acquiring data at high 
speed, or even handling transactions at a commer
cial bank, these operating systems contain mecha
nisms that enable them to respond rapidly to exter
nal events and that differentiate them from the more 
familiar general-purpose operating systems. 

In fact, all the operating systems for lS-bit micro
processors respond in a reasonable period of time. 
But the general-purpose, or developmental, operating 
systems like CP/M, Bell laboratories' Unix, and MS
DOS are intended for standard programming activi
ties like editing, compiling, and file management 
[ElectroniCS, March 24, 1982, p. 113]. As such, they 
lack certain software structures needed for reliable 
control of processes producing data at a high speed. 

Real-time operating systems tend to fall into two 
general categories-multipurpose and embedded, re
flecting the type of hardware they run on. Multipur
pose real-time systems are typically built around full
fledged microcomputer systems with terminal, 
keyboard, plenty of system memory, and mass stor
age. Furthermore, in process-control or data-acquisi
tion applications, some special-purpose hardware is 
usually included in these systems to serve equipment 
or high-speed data input operations. Besides the fa
miliar applications for research and development, 
transaction-processing environments are an example 
of situations needing mUltipurpose real-time systems. 

No doubt the largest class in volume because of 
their growing use in consumer items, embedded sys
tems are minimal hardware systems, often just one
chip microprocessors that control limited parts of a 
larger system. Programmers ordinarily employ a spe
cial development system to create the software, 
which is loaded into the target system for use and 
ideally is never seen again. 

To meet the needs of these two classes of appli
cations, real-time operating systems come in three 
flavors for lS-bit microprocessors. Serving multipur
pose real-time systems, one type-discussed in the 

Ilectronlcs'March 24, 1983 

first part of this report (see p. 10S)-includes all the 
software development support found in their general
purpose counterparts. Furthermore, many can be 
stnpped of the layers needed in the developmental 
environment and placed in programmable read-only 
memory for use in an embedded system. 

For those who swear by Unix, the group of Unix
based operating systems discussed in the second 
part (see p. 111) may mean no need to swear at it in 
real-time applications. A growing number of vendors 
are starting to convert this admittedly non-real-time 
operating system into versions that can be used to 
handle external processes. Although the industry is 
cautious, if not downright skeptical, of real-time ver
sions of. Unix, the fact that C-the language of 
Unix-is so highly regarded for use in real-time appli
cations may help swing this group into the forefront. 

The potential for distributed-control systems based 
on embedded microprocessors hinges largely on the 
availability of high-performance real-time operating 
systems that can be plugged into the application with 
the same ease as an integrated circuit. Called silicon 
software, these operating systems discussed in the 
last part (see p. 114) have been designed to be 
stored in read-only memory. Providing a fixed set of 
system cans, they present programmers with a con
sistent set of high·level commands to perform the 
low-level functions usually built from scratch. 

Building system-level software from scratch has 
long been the hallmark of real-time programmers, 
even a mark of honor. Fortunately, however, the in
creased acceptance of ready-made operating sys
tems using well-understood algorithms (described in 
the first part) is helping to replace this software "ran
dom logic" with rather more standardized packages. 

On still another level, the unique responsiveness 
and throughput demonstrated by real-time operating 
systems is a truly user-friendly feature. For this rea
son, these systems should find their way into less 
obvious real-time applications, such as transaction 
processing, word processing, and personal work sta
tions for office automation. 

2-241 2,_,_ 



intJ AR .. 287 

~ .. AI90rithms star in 
multipurpose s'lstems 

o Whatever environment it finds itself in, the function of 
an operating system is the efficient management of 
shared resources by a number of users, whether these are 
huOlllli beings acCessing a computer through terminals or 
programs vying for a single central processing unit. In 
fact, the degree of sophistication of an operating system 
is reflected by the number and types of physical re
sources it manages and by the fineness of control it 
exercises in their management. And operating systems 
targeted for control of the external environment must 
wrestle with the most demanding resource of all-time. 
The degree of care with which such software is designed 
to manage time is what determines its suitability for the 
real-time environment. 

Scbed ..... and q ....... 

Two critical aspects of the real-time environment are 
the random nature of physical events and the simulta
neous occurrence of physical processes. Consequently, 
interrupt handling and multitasking are primary attri
butes of a real-time operating system. In fact, it might be 

EXECUTING 
PROCESS 

lal ROUNO·ROBIN SCHEDULING 

TASK WAITING 
TO EXECUTE 

Ibl PRIORITY BASED PREEMPTIVE SCHEDULING 

1. PrIorItIes. In round-robin scheduling (a). tasks (or processes) taI<e 
equal turns executing, while a higher-prionty task will supersede a 
lower·pnorily one In priority-based preemptive s<;heduling (b). Most 
schedulers employ some combination of these teChniques. 

argued that the mechanism for handling multitasking
the scheduler-is the heart of the operating system. The 
rest of the operating system lies atop this kernel and 
serves the specific demands of the application 
environment. 

In particular, the lists, or queues, and their managef$ 
that surround the scheduler are constructed to deal with 
the different physical resources supported by tile operat
ing system. Thus, one queue may contain those tasks 
(processes, or programs in the course of being run) that 
are ready to execute on the processor, another queue 
may be tasks waiting for access to input/output hard
ware, and another queue may contain tasks waiting for 
some specified event to occur. 

In any multitasking operating system, the scheduler 
uses the queues as input. Its output, on the other hand, is 
a single task that has been activated and allowed to 
execute on the central processing unit. The scheduling 
algorithm in large part defines the operating system. 

In one system, the scheduler may simply select a task 
on a first-come, first-served basis, allowing it to CUn until 
completion or until some specified period of time has 
elapsed. This type of relatively primitive algorithm was 
commonly used in mainfrilll!e computers running simple 
batch-oriented operating systems. 

In a slightly more sophisticated operating system that 
can be used interactively through terminals, the schedul
er may' select tasks on a round-robin basis and permit 
each of them to run for a specified period of time (Fig. 
I). Once the task exceeds its time slice, it is placed at the 
end of the queue and forced to wait until all other tasks 
have had a chance to execute. 

Round~robin SCheduling with equal time slices is ade
quate if every task is no more important than any other 
task. However,' if some are considered to possess a higher 
priority, then a more sophisticated scheduling algorithm 
must be used-one that recognizes that some tasks are 
more important, but that no task should be excluded 
from using the CPU. 

One solution is the use of several queues, where the 
length of the time slice is related to the priority of 
elements in the queue. In this case, the scheduler would 
allow all tasks in each queue of a different priority to 
execute on the CPU, but lower~priority tasks would be 
given less time. 

A further refinement permits \tigher-priority tasks to 
suspend a running task. This technique, called preemp
tive scheduling, is an important feature for real-time 
environments, in which the delayed execution of a high
priority task could ha"e disastrous results, rather than 
simply disapPOinting the user. 

In scheduling algorithms, tasks may exist in a number 
of logicill states, depending on their readiness to run. In 
the Versatile Real-Time Executive (VRTX) from Hunter 

Elecitronics/March 24, 1963 2-242 21_1-005 



AR-287 

& Ready Inc., Palo Alto, Calif., for example, tasks are 
driven through four possible states by external events, by 
other tasks and system utilities, or by their own system 
calls (Fig. 2). For example, an executing task may delete 
itself-in which case It enters a dormant state-or may 
cause itself to be blocked either explicitly through a call 
to suspend itself or implicitly through a call to perform 
some 110 function. On the other hand, once suspended, a 
task may reschedule itself through a system call, or an 
external real-time event may bring the task back into the 
ready queue. 

Recognizing the importance of scheduler design, at 
least one software vendor has made it easier for real-time 
users to build systems around a prepared kernel. United 
States Software of Portland, are., is offering a basic 
scheduler that assembles into less than 100 bytes of ob
ject code for the target microprocessor [Electronics, Nov. 
17, 1982, p.206]. Furthermore, in anticipation of real
time systems targeted for specific application areas, U. S. 
Software supplies a list of design notes detailing exten
sions to the basic kernel. 

Another use for queue. 

In addition to having queues serving the scheduler 
directly, most systems use them as the preferred means 
of associating a task with a required. resource. For exam
ple, one capability commonly found in real-time operat
ing systems is the ability to suspend a task for a specified 
period of time. Typically, the operating system contains a 
special queue for this function. Each element in the 
queue is a task in a suspended state. Associated with 
each task is a counter that contains the number of clock 
ticks remaining until it should be reactivated. 

For example, in iRMX-86 from Intel Corp., Santa 
Clara, Calif., the counters keep track of the incremental 
time remaining with respect to the previous element in 
the queue, rather than the total time remaining before 

EXECUTING 
PROCESS 

2. Task states. As one task (or process) runs, others may be In 

various states of readiness. In Hunter & Ready's VRTX, for example, 

tasks can be ready (able to run Immediately), suspended (wailing for a 
resource), or dormant (deleted by a system call). 

the task may be reactivated. Thus at each clock tick only 
the counter in the element at the head of the queue need 
be decremented, rather than every counter in every queue 
element. This method takes longer to insert new elements 
into the queue and so requires slightly higher overhead 
for insertion than when the total time is maintained by 
each counter; however, that overhead is more than offset 
by the time saved by updating only a single counter. 

Real-time environments pose a special set of problems 
for resource allocation. Besides all the more familiar 
problems of scheduling, a real-time operating system 
must maintain reliable behavior under extremes of load 
when it is driven by a high rate of external stimuli. From 
the system user's point of view, the system must main
tain a predictable level of response and throughput. 

In an interactive environment, users sitting at termi
nals measure response as the time the system needs to 
react to a keystroke. In general, system response is the 
time that the system needs to "detect and collect data 
from some external stimulus. Throughput, in an interac
tive environment, is seen as the number of users able to 
utilize the installation simultaneously. In a more general 
real-time environment, throughput is the rate at which 
the system is able to collect, process, and store data. 

In fact, although response and throughput share some 
common software elements, operating-system designers 
will invariably find themselves forced to make choices 
that will tend to optimize one at the expense of the other. 
Often, the interrupt-handling requirements of a real-time 
operating system force this choice. 

Interrupt processing is hardware and software integra
tion at its most demanding (see "Handling hardware 
interrupts," p. 108). To handle interrupts, operating sys
tems often place layers of software between the user and 
the microprocessor in order to allow different levels of 
performance and capability. 

Intel's RMX-86 is a typical example of distinct levels 
of software used to perform basic interrupt processing. 
At the lowest level, an interrupt handler works intimate
ly with the hardware to execute some operation, such as 
sending a message character by character to a printer. 
Code for interrupt handlers is kept compact and simple, 
since system interrupts are disabled during their opera
tion. The higher level, called the interrupt task, works at 
a priority associated with the particular hardware it ser
vices. Interrupt tasks act as interfaces between applica
tion tasks, working with specific interrupt handlers to 
complete execution of operations dealing with external 
devices. RMX makes this interrupt-handling mechanism 
available to application programs through a special set of 
system calls. 

Protection and communication 
Once the interrupt software has completed its function, 

tasks that use the data are indistinguishable from any 
other task in the system as far as the operating system is 
concerned. Unless special care is taken, confticts could 
still arise between two separate tasks that might need to 
use the same resource, such as the same location in 
memory. MP/M-86, for example, employs a special 
queue, called a mutual exclusion queue, that contains a 
unique message representing the shared resource. In or-

Electronics/ March 24, 1983 2-243 210341-005 



AR"287 

der to use the resource, a 

S; the message, much as a ~ 
task ,must first capture 

a node in a token-passing 
network must first obtain 
the token before being at 

, liberty to transmit. 
Per Brinch Hansen' 

identified such shared resources as key elements in multi
tasking systems. Sections of code that access critical re
sources are called critical regions. The simple expedient 
of ensuring that only one task at a time is allowed 'in a 
critical region guarantees that multiple tasks may share 
the same critical resource without fear that its integrity 
may be compromised when two of them attempt to ac
cess it simultalleously (Fig. 3). 

This' concept of the mutual exclusion of tasks from 
critical regIOns is implemented in a structure called a 
monitor, in which critical regions are gathered in one 
section of code and protected from use by more than one 
task at a time, The MSP operating system from Hemen
way Corp. of Boston [Electronics, Jan. 27, 1983, p. 119] 
explicitly supports mutual exclusion through monitors in 
its internal structure. ' 

Furthermore, user-written routines needing monitor 
protection are provided with four functions in MSP that 
are implemented using h!lrdware traps 'for' rapid access: 
Entermon, Exitmon, Walt, and Signal. Entetmon and 
Exitlnon serve as monitor entry and el"it points, respec
tlvely, performmg required housekeeping functions. En
termon disables system interrut>ts and preserves all regis
ters, while Exitmon reverses these actions. Wait and 
Signal, on the other hand, work in tandem to control 
access to a critical resource. Wait queues up tasks need
ing an unavailable resource. Signal releases them from 
the queue when the resource becomes available. 

Wait and Signal are examples of an intertask commu
nication mechanism, called semaphores, found in most 
real-time operating systems. As noted, these commands 
Simply queue up and release tasks needing a critical 
resOurce. Such a resource may be an 1/0 device, a memo
ry location, or simply a go-ahead' signal that synchro
nizes a pair of tasks. For example, task A may execute 
only after task B has completed. In this case, task A 
would begin with a Wait (flag) command, where the flag 
IS used as an associated variable. Task B, on the other 
hand, would end with a Signal (flag) command. In this 
way, task A would be blocked until task B had exeCuted 
its Signal command at the end of its processing. But 
exchanging simple go-no-go Signals is not sufficient for 
many l\1ultitasking environments. 

For longer messages, real-time operating systems offer 
extensive intertask commumcatlOn facilities called mail
boxes. Mailboxes are essentially semaphores with storage. 
As such, 'tasks needing data from another task will wait 
until the other has loaded the mailbox with the informa
tion. Intel's object-oriented RMX-S6 transfers any of the 
defined objects in the system through mailboxes. Hemen
way's MSP, on the other hand, provides a buffer of fixed 
size that may be used without restriction on its contents; 
as long as the 256-byte buffer is not 'exceeded. With its 
Multibus message exchange (iMMX) extension to RMX for 

Handling hardware interrupts 
Underlying the special software of a real-tlma syStem is the 
assumption that the hardware itself can respond in a coordI
nated fashion to external events, or Interrupts. In ,_ct, 
microprocessors contain subsystems whose sole functiOn 

. Is to deal with interrupts in a way that eases integration of 
the interrupt-handling software. 

All modem computers integrate interrupt-handling hard
ware and software at a very low level of design. When a user 
accesses a microprocessor through a terminal, the same 
hardware interrupt facilities coma into play as when, for 
example, lin anaJog.to-digital converter sends data to the 
same type of microprocessor. The software response, on 
the other hand, depends on the type of operating system, 
but both real-tlma and genaral-pwpose operating systems 
must take some action, like read in the data value or the 
character. 

Examining the details of a simple keyboard task illus
trates the complex nature of real·time processing. It also 
serves as a vehicle for Introducing soma of the basic 
vocabulery in this field. 

A standard software subsystem in a microcomputer sys
tem, called the keyboard monitor, is respOnsible for working 
With the hardware interrupt system to detact a charactar, 
collect it, and effect some action bssed on the input 
character. When a key is struck on a terminal, the corre
sponding byte is converted into a serial stream of bits that 
are passed from the terminal to a universal asynchronous 
receiver·transmitter. Onoe it receives the full character, the 
~ART generates a hardware signal, or Interrupt, that noti· 
fies the processor. Since interrupt management is a com
mon activity, processors contain special hsrdware to re
spond to this signal. 

Although the details may vary from one particular micro
prooessor to the naxt, the result is the same for all. When its 
interrupt-request line is asserted, the processor ceases its 
current processing and places values from its Internal 
registers into system mamory. Typtcally, the processor 
status I!IId instruction-address ragistars are saved In the 
system stack, a last-in, first-out buffer located In soma 
portion of system mamory. As the figure shows, the pr0ces
sor responds to the original Interrupt-request signal by 
issuing a signal of its own, called an interrupt acknowledge. 

The peripheral hardware that originated the interrupt 
detects the interrupt-acknowledge signal on the system bus 
and responds by returning the mamory addraases of both 
the interrupt-handllng subroutine and the new processor 
status. Typically, the n_ processor status Will provide for 
disabling any further interrupts. This latter action is a simple 
precaution, preventing a single external stimulus from caus
ing a continuous series of interrupts that Will eventually 
result in an overflow of the system stack. 

Such an interrupt machanism, called a vectored interrupt, 
allows the speediest identification and reaction to an inter
rupt. (An alternative interrupt mechanism used by earlier 
processors, called a device-poiling interrupt, simply forced 
the processor to sWitch to a defined address in mamory 
containing softwara that polled each penpheraJ device until 
the devioe that generated the interrupt was discovlrred.) At 

Electronics/March 24, 1983 2--244 21_1_ 



intel· AR-287 

this point in the interrupt-handling task, all the activity was 
exclusively in hardware, but nevertheless resulted in exten
sive processor activity and bus traffic due to multiple ac
cesses of system memory and the involved peripheral
device controller. 

Consequently, it is not surprising that the time for hard
ware to set the processor to handle the interrupt-the 
hardware;intflrrupt latancy-should be several processor 
cycle times in length. In general, hardware-interrupt lateney 
is not a fixed number, but will lie within some range, since 
the processor will need a varisble length of time to complete 
Its current instruction and to initiata the intarrupt-acknowl
edge signal. For example, if a processor is involved in a 
lengthy floating-point operation, several microseconds 
could elapse before the interrupt is acknowledged. 

Once the processor has reached the interrupt-handling 
subroutine, the contents of only a minimal set of Its internel 
registers have been preserved. However, before the resl 
work of the subroutine may commence, the contants of 
other registers and variables shared by independent sac
tions of the operating system must be preserved. The time 
needed to perform this action is called the contaxt-switch
ing time. Only altar the software context is switched is the 
system ready to begin handUng the special requirements of 
the device that Originated the interrupt. The period of time 
betwaan the occurrence of the eldamal event and this stata 
is the total intarrupt-response latency. 

In real-time operating systems, intarrupt-response laten
cy is ususlly a specified value-sround 100 microsaconds 
in vary, high-performance systal'l1$ based on 16-bit micro
processors. Designers oltan bypass the constraints im
posed by response lataney by including speciaI-purpose 
hardware to boost system response to external events. 

Throughout all this time, system intarTUpts are still dls
abled. However, now thet the context switch has taken 
place, the keyboard hendler is fres to transfer the charactar 
from the lJART. DecIding wIlere to put the character is 
iItlportant in terms of system throughput and overall effi.. 
ciency. When it is put in some specified location in system 
memory, system interrupts must remain disalJled; other
wise, if the handler attempted to service a subsequent 
intarrupt, the new charactar would overwrita the cheractar 
aIresdy in the location. but not yet fuDy processed. 

In general. there are two methods for hendHng this 
problem. In the first method, the charactar is simply placed 
on th!I system stack and referenced through the relevant
pointer. In an alternative 
method, the charectar is 
placed In a block of 
memory thet has bsen 
reserved just for the hen
dler and is called a con
taxt block: In this case, 
the charactar is 'referred 
to by using a specified 
offset from the bese of 
the contaxt bloCk. Each 
time the keyboard han
dier is called in response 
to an interrupt, one of 

1 
ERNAL EXT 

EVE .~ 

PERIPHERAL 
CONTROLLER 

these context blocks is reserved from available system 
memory. Setting up a context block and switching the 
proceseor to it in a context switch acoounts for a significant 
fraction of the time that is needed to respond to an interrupt. 

Software code. such as the UART hencllar in this exam
ple, that does not contain any memory lOcations for vari
ables is called reentrant because the proceseor l'l1$y asyn
chronouely enter it, be called away by an interrupt <even one 
that results in another call to the same piece of code). and 
ratum without loss of data or context If the code is not 
already resident in system men1Ory, another routine causes 
a copy of the code to be read from storage Into memory. 
With reentrant code, only a single copy of the program or 
task need be resident at any time. Each context block. or 
logical copy of the task. is called an instance of the task. 

Multiple Instances of a task help explain some of the 
confusion associated with performance figures report_ed as 
a result of benchmarks. In examining benchmark figures. it 
should be clear just whet the values are that are being 
reported. Total interrupt latency generally includes hard
ware intarrupt lataney. the time to create an instance of a 
task (plus the time to call in the task into memory If not 
already resident), the contaxt-switch time. and an additional 
period needed to execute a variable amount of code thet 
causes the data to be read from the peripheral registers. 
Creating a new task mesns either calHng in a new task and 
creating a context block for an instance of It or just cresting 
a new instanca of a task aIresdy existing In memory. 

Once the handler in the UART ex8mple reads in the 
cheractar from the receiver buffer, it wiD reenabIe intarTUpta. 
The time betwaan entry to the interrupt routine, when 
Interrupts ware disabled. until the time when interrupts are 
reenabled Is an iItlportant IaOtor in determining the eIIective 
latency of system respoiIse. 

This dead time must be minimized. or the system wiD 
remain deaf to extamal stimuU for unacceptably long peri
ods of time. In fact, the length of time that system Interrupts 
are disabled is one of the critaria for determining the 
usefulness of an operating system for real+tiine applica
tions. The longest period during which intarTUpts are dls
abled is a diract meesure of the responaMinesa of the 
system. Because of the weight of disaIJIed interrupts on 
total system performance. modern microprocessors use a 
number of hardwere-lntarrupt levels. or priorities. that dls
able Interrupts at or below the priority leva! of the device 
originating the Intarrupl 

2. 

INTERRUPT REQUEST 5. 

JUMPTO 
MICRO, INTERRU PT-

3. PROCESSOR HANDLING 

INTERRUPT ACKNOWLEDGE ROUTINE 

4. 

ADDRESS Of ROUTINE fOR 

HANDLING INTERRUPT 

Electronics'March 24, 1983 2-245 210341.f105 



intJ AR-287 

multiprocessor-based sys
tems, Intel replaces the 
concept of a mailbox 
with that of a software 
port connecting different 
tasks, whether they exist 
on the same or different 
physical processor. 

Unlike memory-intensive software development sys
tems, real-time environments find less need to support a 
virtual address space. In fact, the increased system over
head is less than desirable, because the designer seeks to 
minimize. response latency. A useful feature, however, 
that can be found in some real-time operating systems is 
a set of system calls responsible for dynamically allocat
ing and deallocating .memory. 

For example, in the ZRTS system from Zilog Corp., 
which comes in different versions for the Cupertino, 
Calif., firm's segmented Z8001 and nonsegmented Z8002, 
a set of three system calls provides for dynamic alloca
tion and deallocation,. as well as information on the sta
tus of memory allocation. The system call for memory 
allocation allows application programs to specify the at
tributes of the memory block to be allocated and returns 
a name referring to the created structure. 

Besides similar system calls, Intel's RMX adds some 
calls suited to its context-based architecture. In RMX, 
each task lies within the context of a job environment 
that bounds the scope of tasks within it (Fig. 4). As such, 
each task is allowed to draw from the memory pool of its 
job ... In case more memory is required than that initially 
allocated to the job, a pair of system calls provides for 
querying the system on the size of the job memory pool 
and for dynamically changing it. 

Dynamic memory allocation and deallocation is a rela
tively advanced concept that exacts some overhead dur
ing runtime. However, the alternative--static allocation 
before runtime based on expected requirements-may be 
less suitable for applications in which the real-time envi
ronment is relatively unpredictable. 

In real-time operating systems, disk-file management is 
treated as just another asynchronous task possessing a 
particular set of critical resources-mass-storage devices. 
In real-time environments, file-management utilities have 

lal 

TASK A TASK B 

STORE COUNT. - -I- COUNT _ COUNT + t 

COUNT -0 -

RESULT 
STORED COUNT, N 
NUMBER OF EVENTS' N + t 
COUNT, 0 

to meet not only the requirements of general-purpose 
systems but some additional demands. 

In terms of system response, a requirement of real-time 
operating systems in heavily loaded systems is the ability 
to conduct asynchronous 1/0 operations. In such an oper
ation, the calling task 'simply queues up the 1/0 request, 
then immediately returns as if the task were completed in 
zero time. When the 1/0 request is fulfilled, the operating 
system switches' $he processor to a separate routine 
whose address is supplied when the original asynchro
nous request was made. This completion routine then 
may continue any processing that may be required fol
lowing the vo· request. 

System throughput depends heavily on the efficiency 
and performance of the 1/0 subsystem. Peripheral con
trollers with direct memory access and the ability to 
move the disk's read-write head without necessarily per
forming data transfer can significantly reduce the over
head associated with data movement. 

Reducing overhead 
System software can also contribute to reduced over

head by providing a simple disk organization when high 
throughput is needed. One of the simplest structures is a 
file consisting of an unbroken series of disk sectors, such 
as the contiguous file in Hemenway's MSP or the physical 
file in Intel's RMX. By ensuring that the next block of 
data will be written to the next physical sector on a disk, 
the operating system can reduce the delay caused by 
head movement on the disk. 

In their use of an I/O interface that is common to all 
system device drivers, MSP and RMX attack another im
portant aspect of system design, though one not necessar
ily tied to their utility in real-time applications. In MSP, a 
basic I/O routine called Iohdlr serves for all operations by 
accessing a special block of information in memory. 
RMX, on the other hand, uses a number of device-inde
pendent system calls to handle communication with pe
ripheral devices. 

Next to multiprocessor-based software systems, real
time software systems are the most difficult to debug. 
Again, the cause is the distinguishing feature of real-time 
operating systems-precise management of time. Stan
dard debugging tools for single-user general-purpose op-

ibl 

TASK A 

ACOUI RE COUNT 
STORE COUNT 
COUNT ~o 
RELEASE COUNT 

RESULT 

TASK 8 

ACOUIRE COUNT 
COUNT' COUNT+! 
RELEASE COUNT 

STORED COUNT' N 
NUMBER OF EVENTS' N + t 
COUNT' t 

3. Critical r.,lon .. 11 two asynchronous tasks use a counter, events can be miscounted II task B Interrupts task A belore the counter is reset (a). 
Forcing the ta~ks to acqUire a counter belore using it (b) ensures synchronIZation through the cribcai regions (bnted). 

Electronics/ March 24, 1983 2-246 2141341-4106 



inter AR·287 

.lOlA .lOll 

ri- TASK A, -h. 

4 • .lob _lIL In Intel's RMX. all fObs eXIst 
WIthIn the context of another lob. A directory 
defines the objects that are known to other 
oblects In the same context. For example, all 
three jobs may use maIlbox RM sInce It IS In 
the system's root-job object directory. l MAILBOX AM I I MAILBOX AN I I TASK B, I 

4 TASK A, 1--' 
OBJECT OIRECTORY 
MAILBOX~ 
MAILBOXA. 

JOBC 
',l 

I TASK C, I I MAILlO?CRu J . 

I SEMAPHORE Cs I I MAILBOX CM I ~"I SEMAPHORE ft,I.', 
' \~,,~\ \, , .f' ',' 

I 

e~ting systems generally disable all system interrupts in 
various phases of the debugging routines. Since the object 
of a real-time software system is asynchronous involve
ment with the task, under control, this effect makes stan
dard debugging tools useless. 

Ideally, debugging real-time software would use perfor
mance-analysis tools and troubleshooting aids built into 
the operating system itself. Unfortunately, the processing 
overhead and additional memory requirements imposed 
by such a technique make this an unpopular notion in 
the design of an operating system. However, some sys
tems do provide some means for run-time error handling. 
The exception handlers in RMX, for example, are proce
dures that are associated with each task when it is creat
ed. If a task attempts to use a system call but encounters 
an error, called an exception, the operating system in
vokes the associated exception handler to allow some 
graceful recovery from the error. 

Although the technique in VRTX is not true exception 
handling, Hunter & Ready's silicon-software system does 
include a, mechanism to build run-time debugging soft
ware. A special location in the VRTX configuration table 
(see p. 115) causes a user-defined routine to be called 
whenever a context switch is performed. By recording 
information about the task as well as the processor, such 

TASK C, I 
OBJECT OIRECTOlIY 

~~~tmg~~Cs 
, ,
~ ..

'7',

a routine can be used to create a list, called a trace, of
the history of task execution.

Because real-time systems often include special-pur
pose hardware, the accepted techmque for debugging
user-written routines uses the classical approach of col
lecting data before and after passing through a suspect
region, along with a logic analyzer to monitor timing of
traffic through critical regions.

Intel offers some relief to this problem through the
iRMX debugger In particular, the debugger allows the
user to work with individual tasks without interfering in
the operation of other tasks, as well as to monitor the
activity of the system as a whole without disturbing it.
The debugger recognizes data structures in the RMX ker
nel, so the user may examine system objects. In addition,
Intel's crash analyzer brings mainframe debugging power
to microprocessor-based applications using RMX.

Zilog's ZRTS configuration language offers another lev
el of support to the development of systems targeted to
specific hardware complements. By defining the details of
the hardware, a system designer can configure ZRTS to
particular systems.

--1 Per Bnnch Hansen, ''Opefatlng System Pnnoples." PrentJce.Hall, Englewood Cliffs, N J.
1973, P 84

Desiflners tune Unix
for real-time use

o With an eye on the growing momentum of Bell Lab
oratories' Unix, real-time system designers have endeav
ored to squeeze this complex operating system into the
rigid confines imposed by the demands of real-time envi
ronments. Although Unix brought advanced system ca-

pability to mini- and microcomputers, the original intent
was ,to provide a hospitable software-development envi
ronment, rather than to include the features considered
necessary for real-time uses.

Until now, data-acquisition systems employing unmod-

Electronics/March 24, 1983 2-247

inter AR-287

ified Unix typically used
dedicated microproces
sors to buffer a central
computer ftom constant
random activity caused
by external events. For
example, in th,e Conceps
process-control system

from Bell Laboratories, Murray Hill, N. J., a Unix-based
host is linked with auxiliary microprocessors. In each
microprocessor, software derived from Unix software
handles the low-level details of real-time activity (Fig. I).

Unix goes real-time

Appearing in, all shapes aM sizes, Unix-compatible
executives, Unix lookalikes, and new Unix versions are
bringing this popular environment into real-time applica
tions. However, unlike their colleagues creating totally
new operating systems (see pp. 106-111), designers of
these second-generation systems are constrained by the
boundaries set by the original. Caught between Unix's
complex organization and the high-speed needs of some
real-time applications, they have opted for preserving the
basic architecture. Still, for intensive data-acquisition ap
plications, vendors like VenturCom, Cambridge, Mass.,
and Masscomp, Littleton, Mass., add on dedicated hard
ware like high-speed peripheral controllers to link devices
into the main system without losing the generality of the
Unix software architecture.

For microprocessor-based dedicated systems, memory-

DATA PHONES
AND

TERMINALS

UNIX'BASED
HOST COMPUTE R

(POP 111231

DOWNLOADING
ANO STATUS

DATA

SATELliTE
MICRO

PROCESSOR
ILSHlI

SENSORS

1. satellite processing. In Bell Labs' Conceps system', separate
microprocessors handle low~level details of process control Yet
another processor-a host computer that runs the UniX operatmg
system-Is In charge of coordlnatmg these satellite machines

resident kernels like the C Executive bring a measure of
Unix compatibility io even dedicated systems. Offered by
JM! Software Consultants of Roslyn, Pa., the C Executive
combines support of an extensive C-I;mguage run-time
library with many of the features considered important in
real-time appliqtions. Although not directly supporting
shared data in its multitasking architecture, the execu
tive's intertask-communication facilities include data ex
change through a queuing mechanism. As befits a real
time executive, the task-scheduling algorithm allows
higher-priority tasks to preempt lower-priority ones. Be
cause it is intended primanly for embedded systems
that is, dedicated microsystems that do not have disks
the C Executive is totally contained in system memory
and does not support the extensive Unix file-management
subsystem.

C'lntrolling real-time tasks
Full-blown Unix lookahkes, on the other hand, find

themselves forced to deal with some of the very internal
structures that aided Unix's rise in popularity. For appli
cations like 'program development where regular schedul
ing is more important that instant response, scheduling is
aided by Unix's manipulation of the priority levels of
tasks (or processes, in Unix's preferred terminology). For
real-time applications, however, the slight uncertainties
this feature introduces could destroy the synchrony of
timed events controlled by the system.

Consequently, one enhancement commonly found in
the real-time offshoots IS the addition of some mecha
nism to ensure more precise control of real-time tasks. A
technique that sits ,well within Unix's task-oriented (that
is, process-oriented) design is the definition of a real-time
class of tasks (or processes). This class earns special
rights in the operating system, such as a guarantee that
each task will not be swapped out of memory, but re
main locked in and ready to respond more rapidly to
events.

VenturCom's Venix, for example, defines a real-time
priority level. The scheduler allows tasks running at this
level to mamtain control of the processor for as long as
necessary. In contrast, Regulus from A1cyon Corp. of
San Diego, Calif., speeds response to real-time events
through the use of 32 user-defined priority signals.

Better I/O handling

In additIOn to its scheduling algorithm, Unix's method
of handling mput/output operations needs improvement
to perform well in real-time apphcations. Aldmg total
system 'response, the' asynchronous I/O procedure in
Venix supplements the conventional synchronous proce
dun" in Unix, in which the requestmg task must be
suspended until the I/O operation IS completed (Fig, 2).
By placing asynchronous requests at the head of the 110

"request queue, Venix's manager lets real-time tasks issue
a write request, for example, and Immediately contmue
processing, assured that the request WIll be honored next,
,Concentrating instead on, Improving what happens

when I/O requests have been completed, Masscomp's en
hanced version of Bell Labs' UnIX System I~I adds a
modIfied. sIgnal called an asynchronous signal trap, SimI
lar to the concept of completion routines in other operat-

Electronics/ March 24, 1983 2-248 210341-005

AR-287

Going Forth with altematives
Few nightmares evOke the feelings of dread experienced by
a programmer who must alter code that has been devel
oped by another programmer-worse yet if the code IS all

'assarnlllYlanguage for an embedded system. Fortunately,
system dlMllopers are seeing the light of day and are
specilyiitg 'one Of the commercilllly available real-lime oper
ating systenl$, so programmers now are dealing with a set
01 MIIkfefi~ lIOItWate CIIlIs for system functions. SliD, for
the I. '<jIeihlI.rdwt'lo feels reatricted, by using someone
el$e's'$YS1em or the(/ellalOper trying to eliminate 1111 pro
_1119 0'II8I'tIead caused by the operating system, alterna-
lIIfudo eldst. "

For straighlforward, yet high-Pl'Iformance, process-con·
trol ,lIPPlicalioll$, the use of a finite-state machine as the
~I\!If'll\an _Iylmplemenled !llehniqlHl. A finile-state
machin_it sinlM' 'some device that preiduces. a defined
output state based on its input state. For example, a
microprQG~!'IlIY read some inpUt register, access a
table in \MlltltIIy using 'II1l$ input as the addreM, and send
out the value contained in the accessed location. In such a
system, a value couId'be created with a smgle indirect move
InIltllJl:tiQn in a rn/croproCessor USing a memory-mapped
lnput/ou\put scheme. Clearly, using' a microprocessor this
way WOuld lIIIow Olliy II retatively smau number Of stales.

ge8Ides this I1ardWare approach, the software alterna
'\iva Illclude ina illtefp/'eterS for high·ievellanguages, such
as Forth and 1:Oncurrent versions 01 Pascal, that are ap
pearing in the raad-only memory Of single-chip B-bit mioro
com~ For_mple,ltle COPI604P complementary·

ing systems, the AST mechanism allows tasks to perform
operations that were contingent on the completIOn of a
separate real-hme operation. For example, by issuing an
AST when it has completed its work, a read task is able
to notify another task that a buffer has been filled. The
other task is then free to initiate whatever calculation

MaS single-chip microcomputer from RCA Corp.'s SOlid
State division, SOmerville, N. J. [Electronics, Nov. 30, 1982,
p. 1271, contalll$ a core interpreter for Micro Concurrent
Pascal (mCP) from Enertec Inc. of Lansdale, Pa. Baeed on
Per Brinch Hansen"s COncurreni Pascal, mC? conteins all
the constructs necessary for real·time appHoationa, such as
shared dlita; monitors, interrupt handling, and task queuing
and switching. RCI\ also provides a ROM that extends tile·
core inlerpreter toinolude' full multitasking support. SofI.. '
ware for this microeystem is developed uSing an FICA ~
compiler available on variOus host machines.

In parallel with tha use of modified high-'-Itangu.s
like mCP, Forth 'inlerpraters are on the verge Of appeIIring:
as Single-chip microcomputers like the CDP1804 or Ihe
RF1/12 from Fl<li:lkwell InternatiOOlII Corp.'. ~
Beach, Calif" Electtonicl)evioes dIYislonU;~, "OR-, .
13, 1983, p. 41). After its development iII'the: t$l108fcr *'"
time applications, F9rth .gained a stow acoaplance among . .
system developer$.:Sut with tile inception of FOIthIltall
dards committees and the spread Of inlerpreters into more
systems, this staCk-orianted language is rapidly atIIacInt
the attention Of larger houses.' ,

Forth is a thr~ language in whiChbBSicp~
caDs, or words, are used to build up more colflPltjl(~:,
Because Of the threadlng, programS lend to be' VII'Y~ ,
pact. Once the programmer -gets lIIIed'to'~'
notation, program development Is simPIr' a matte!'.dt' ~,,'
ing up the system dictionary with the words needldklt INI" .
parlicular'appfica\ion.

may be needed to make use of this new data.
Besides such modifications improving UnIX's response

to asynchronous events, Masscomp upgraded the sys
tem's throughput by adding support for contiguous files
to the file-management system. In this way, large
amounts of data may be wntten at a hIgh speed to

SYNCHRONOUS INPUT/OUTPUT

2. No blocking. In synchronous 1/0, execu·
tlon of a task blocks, orwaJIs (tinted), until the

data transfer IS completed (a) Since 1/0 IS

handled Independently, a task need only re

quest an 1/0 operallon (shaded) and cantin·
ue on to the next operation

Electronics I March 24, 1983

1,1

Ibl
STEPn

2-249

WAITING

n'l n+2 n+3

210341-ClOS

inter AR-287

consecutive disk sectors. Since other disk ·accesses are
locked out in this mode, the disk head will be positioned
correctly, thereby eliminating unnecessary and time-con
suming movements.

In addition to these 1/0 add-ons, Masscomp boosted
intertask communication capability by enlarging the
Unix standard intertask communication mechanism,
called pipes, to allow tasks to transfer buffers. In an
alternative approach, Charles River Data Systems of Na
tick, Mass., allows tasks in its Unix-like Unos system to
share data directly. A number of independently con
structed software tasks may use a common set of loca
tions in memory 'to transfer data between themseIve& at
to perform some sequence of calculations. However,
whenever asynchronous tasks share some common re-

source, their use of the resource could result in corrupted
data-unless some mechanism coordinates their activi
ties, such as the monitor concept described on page 108.
Unos provides a mechanism called event counts to help
avoid these conditions.

Event counts are integer values that are a nondecreas
ing count of the number of times some particular event
has occurred. By using an event count associated with
some task that produces shared data and another event
count for a task that consumes the shared data, program
mers may ensure the correct sequencing of asynchronous
data-producing and -consuming tasks. Similarly, event
counts serve as primitive operations for emulating the
synchronizatIOn function that is provided by semaphores
and the mutual exclusion that is furnished by monitors.

Chips come to aid of
embedded slJstems

D Storing machine instructions in read-only memory is
hardly a new concept in microprocessors. If supporting
software totally breaks down, Digital Equipment Corp.'s
LSI-II, for example, resorts to a basic keyboard monitor
stored in a speCial ROM that is logically placed in the
input! output address space. Using a primitive on-line
debugging technique stored in the same ROM as the mon
itor, a software designer may read and alter memory
locations and initiate a bootstrap loading operation from
storage-a common provision in computer systems.

From these primitive beginnings, however, ROM-based
software has evolved into complete operating systems in
memory, engendering the term silicon software. Comple
menting hardware for distributed-processing architec
tures, such silicon-software systems Signal a migration of
application software into dedicated microcomputers pre
viously considered unable to gain full systems capability.
For developers of dedicated microcomputers embedded
m some larger real-time system, sihcon software spells
the end of the need to rem vent the wheel to carry out the
fundamental functions of a real-time operating system.

Extending the microprocessor

Functionally, silicon operating systems extend the mi
croprocessor's instruction set to include system-level in
structions that perform operations on software structures,
like queues and tables, rather than on hardware registers.
AppllcatlOn-program developers are then presented with
a virtual machine-one that is perceived by the program
mer as different from the actual host processor. IIJ these
Virtual operating-system machines, their instruction set
mcludes a well-defined set of system calls as well as the
basic machine instructions of the host microprocessor.
For example, with systems like VRTX and RMX, the virtu
al microprocessor has a specllI:l set of instructIOns for
handling interrupts (see Table 1).

For system developers, however, the problems m devel
opmg rellable silicon software extend beyond resource

protectio~, timing, and communication problems (see
pp. 106-111). In fact, the development problems extend
beyond the purely logistical exercise of main taming a
separate ROM-based instruction store and one for vari
ables that need to be placed in system read-write memo
ry. Treading a fine edge between the full function of a
general operating system and the fine-tuned performance
of special-purpose software, silicon systems need to bal
ance the need for a wide range of system functions with
the reqUirement that they squeeze into a mimmal amount
of ROM.

Flexibility for expansion

Still, once a system meets a reasonable compromise
between capability and Size, it should not irrevocably
lock the user into accepting its choices. For example,
many real-time applications require some custom periph
eral-deVice drivers and system-level functions. Conse
quently, the program should proVide a mechanism for
logically incorporating user-written extenSIOns to the op
erating system, such as the user-defined pointers in the
VRTX system from Hunter & Ready, Palo Alto, Calif

In VRTX, a configuration table (Table 2) in system
random-access memory allows specification of a custom
routine that is to be executed whenever the system is
Imtialized. For even more delicate control of system op
erations by custom software, a trIO of' pointers in the
table specifies user-written routines to be accessed when
ever a task IS created or deleted or whenever a context
SWitch IS performed. Hunter & Ready also includes a
location in this baseline configuration table for its anticI
pated file-management extensIOns to VRTX.

The 80130, an RMX-86 kernel in sillcon from Intel
Corp., Santa Clara, Calif., generalizes this approach
through an mdex table contammg pointers to system
routines. If circumstances require the replacement of an
eXlstmg system rout me, the mdex-table pomter IS merely
altered to mdlcate the address of the new routine. In an

Electronics/March 24, 1983 2-250 210341.005

intel' AR-287

UI POST

UI EXIT

UI TIMER

UI RXCHR

UI TXRDY

ROSSETSINTERRUPT

ROSR ESETSI NTE R RUPT

RO$GETSLEVEl

RO$SIGNAL$INTE A RUPT

RO$WAITSINTERRUPT

RQ$EXIT$I NTERRUPT

AQ$ENABlE

ROSDISABLE

deJ,)osl\ messrlge from Interrupt
hdndler

eXit from Interrupt hdndler

titl1€r Interrupt

receiver reddy Interrupt

trdrlsmltter ready mterrupt

dSSlyn In\prrupt hdndler

dt>dS~lg!l Intf'rrupt hdndler

return number of highest priority
Interrupt level currently being
lJroct'sspd

5191101 from Interrupt hdndler that
{'vent has occurred

Wdrt for occurrence of event

reitnqulsh control of the system

enable hardware to deeept Interrupts

dlSdble hardwdre from accepting
mterrupt~

embedded system, thiS new routine could be placed In
ROM along with applicatIOn software,

Now that programs In ROM have matured into slhcon
systems, the development of software for embedded sys
tems may now follow a more hospitable development
cycle. The particular method used to create embedded
systems will, In general, fall Into one of two paths repre
sented by the two major camps.

On one hand, kernels In slhcon from systems such as
RMX-86 or the MSP from Hemenway Corp., Boston,
Mass., for the 68000 or Z8000 are self-contained subsets
of the full operating system. Consequently, software pro
grammers may use the full development version of the
same operating system as that in the eventual target to
create the application package. On the other hand, devel
opment of apphcatlOn programs around the ZRTS system
from Zilog Corp., Cupertino, Calif., or Hunter &
Ready's VRTX for the Z8002, IAPX-86 family, or 68000
relies on the use of a separate development system to
create software for the target microprocessor, since this
software does not have development versions.

Two approaches

The significance of these two approaches as usual de
pends on the Intended application. Hunter & Ready
views VRTX as a set of processor-independent building
blocks that programmers use to construct application
packages for embedded systems. As such, the program
mers employ the same development systems that they
might use to build apphcation code, but now with the
benefit of a sophisticated set of ready-made system-soft
ware components.

In plaYing Its part in Intel's systematic dnve toward

TABLE 2 VRTX CONFIGURATION TABl E

Table Entry Entry Description

sys RAM addr system beginning dddress

sys RAM Sile system memory size

sys stack SllP system stack size

user RAM addr stdftlng address for avalldble memory In

initial partition

user RAM size $IZ8 of Initial partition

user block size size of memory block for dynamiC allocation

user stack size size of stdck for user tasks

user task dddr dddress of first user task

user task count mdXlmum number of tasks

sys Inlt dddr dddress of user supplied initialization routme

sys tcreate addr address of user supplied routine accessed

when a task IS created

sys tdelete addr address of user supplted routme accessed

when a tdsk IS deleted

sys tswap addr address of user supplied (outlne accessed

whf'n d context SWitch occurs

[RESERVEDI dddress of Hunter & Ready future
extenSions to VRTX

providing an Integrated environment around the iAPX-
86 family, the 80130 holds the anchor pOSitIOn in an
Interlocked set of components. Able to function indepen
dently of the upper layers of the operating system, it
provides a hardware base for the rest of RMX-86. Serv
ing as a. viewport into thiS system-software base for the
central processing Unit, Intel's universal run-time and
development interfaces offer the mechanism for software
portability needed for the next stage In the company's
plan to grow Into higher-performance microprocessors,
such as the 186, 286, and 386.

While interlocking With the software in thiS way, the
80130 also must play its role in the complementary rela
tionships being established at the hardware level. As
such, it Includes on-chip hardware support for system
level functions, including timers, interrupt controller, bus
control, and bus interface.

Meanwhile, Intel's plan for software-in-silicon becomes
evident as it gathers the other pieces of the puzzle, such
as the 82730 text-coprocessor chip, the 82586 local-net
work coprocessor, and the 82720 graphics processor
chip. Similar to the 80130 software connection, the 82720
graphics part interlocks with the rest of the system at the
software level through its support of another well-defined
software Interface-the virtual device interface. Yet to
come are pieces for voice I/O support, as well as some
level of hardware support for data-base access.' 0

Electronics/ March 24, 1983 2-251 210341-005

ARTICLE
REPRINT

Copynght© 1983 CMP PubhcatlOns, tnc, 111 E Shore, Rd, Manhasset, N Y 11030
Reprinted with permission trom Electr5Jnlc Engmeermg Times

2-252

AR-288

June 1983

210341-005

inter AR-288

Intel's Matchmaking Strategy: Marry
iRMXTM Operating System With Hardware

Intel's major software product, the iRM)(TM-86 16-bit
operating system, which is now in its fifth release,
represented a three-year development investment which
most independent software vendors would have found a
daunting prospect in 1978 when the project was conceived.

The investment was essential. By the mid-1970s, feedback
from OEMs working with Intel's hardware revealed prob
lems with system integration-the marriage of software
with hardware. It consequently slowed sales, with the
prospect of even greater problems at higher levels of cir
cuit integration. Intel management, looking for ways of
coping with the ballooning software requirements of the
rapidly accelerating hardware program, began stepping up
software development programs in the mid-1970s.

"The RMX program illustrates a number of things one
needs to keep in mind with developing a real-time
operating system;' explained Bill Lattin, Intel's OEM
microcomputer systems manager. "Foundations must be
well laid so the system can grow and evolve over time. And
there is a need for the system to be open to modification
by typical OEM-specific applications.

"Although the RMX program has been around since
1978, it has only recently hit its stride, as processor
technology has advanced to use the full range of its
features;' Lattin said.

The fast-paced microcomputer market had created a new
situation: for systems designers in terms of a radical shift
in the hardware/software cost ratio. Earlier hardware
generations involved various expensive centralized
facilities. Not only was software cheap in comparison, but
the hardware environment changed slowly, so that it was
also feasible to rewrite systems as needed.

But when the price of a computer drops to as low as $5,
the hardware environment becomes volatile and software
turns into a major investment. Intel was finding that
customers might invest as much as two-thirds of their
development costs in software, only to see it eclipsed by
evolving VLSI technology.

It became evident that merely supplying components
would become increasingly counterproductive. Thus, the
Intel "total solution" emerged-a consistent systems ap
proach to hardware sales, which naturally depends heavily
on a viable software program.

Object-oriented programming is a method which has
worked best in creating a software program blending with
the component approach. By hiding data representation
within an object with its own object manager, changes in
the hardware environment that affect the data ean be ac
commodated without having to change the rest of the
software.

A price is paid in terms of program size with this ap
proach, however. And it was difficult at the ti}lle to justify
this kind of liability with the existing onboard memories
of the 8-bit generation.

Bill Stevens, iRMX-86 program manager for release five,
explained the difficult decisions that had to be made at the
outset of the program. "Every engineering decision
involves a trade-off. We wanted to optimize program pro
ductivity and we had to have modularity. The conse
quence of this was large size. It turned out that a minimum
configuration was 12 kbytes wide and the full configura
tion was 128 kbytes. At the time we did not have 64k
dynamic RAMs and 64k EPROMs, so we didn't have the
technology to realize the systems of initial specifications
times. Bruce Schafer has to take credit for making that
decision to go ahead anyway, early on ... it was a gutsy
decision, and it turned out to be absolutely right:'

2-253 210341.(105

AR-288

Had Intel known of ,the difficulty it was about to en
counter in producing its 64-kbyte RAM, Schafer may have
had second thought!l.

Schafer joined Intel in 1976 and began working on
iRMX-80. "It was a nice little system;' Schafer said. "A
miniat)Jre dispatcher had evolved to handle multiple asyn
chronous events and became a primitive OEM operating
system. It was tempting to do an enlarged version of it,
mainly because I was already working on it for the 16-bit
generation:'

Schafer soon found himself centrally involved in the task
of heading off the 16-bit software crunch, laying ground
work for a system that could cover a wide range of ap
plications, many of them unknown at the time, and a
system which could also evolve with hardware advances.

"When you set out to design a system of that scope, you
don't just sit down and start writing code. It's definitely
a top-down process;' explained Schafer. He discovered
early in the project that the purely technical hurdles in
writing software were minor compared to orchestrating a
team of engineers on such a comprehensive project.

The iRMX-86 system is multi-layered, 'and the project had
to be coordinated across these layers along with the se
quence of planning, design and implementation. On top
of that, a thorough testing program had to be coordinated
with all phases.

"I had a difficult time convincing engineers on the pro
ject that documentation of their work was as important
as the work itself. Specificatiens were absolutely crucial
to the development phase:' said Schafer.

Schafer began with a customer survey to discover the kind
of problems OEMs were experiencing with system design.
He wrote a production implementation plan, which was
critiqued by marketing and engineering personnel. This
was approved in June 1978 and formed the basis for
engineering specifications. A critiquing process evolved as
the organizing principle behind initial product design;
engineers on the project would exchange documentation
and then meet to evaluate the progress of the system.

The sessions were lively and the problems of coordinating
implementation, testing and design along with the pressure
of deadlines for the whole program generated quite a bit
of excitement.

Development testing turned out to be a particularly thor
ny problem-the asynchronous interrupts and multiple-

processing aspects of real-time applications required a
special test apparatus to simulate a real-world
environment.

What they came up with is a nuCleus executing directly on
the 8086 and 8088 processors as the basic building block
of the system. Together with the next layer-a basic I/O
system-a minimal operating system can be configured,
which has been found useful in many applications.

However, it was necessary to develop an application on
the Series-III development system even though the target
was going to be RMX. "We quickly realized that users
want to be able to do development work on the machine
they target on;' said Schafer. "This is particularly impor
tant for field maintenance ... you can't drag a Series-III
out to an oil derrick:' To realize this goal, Intel built higher
layers around iRMX so that program development could
be done without a Series-III. Higher layers involve extend
ed I/O and human interface facilities. After this,
customer-written software can be added in high-level
languages.

A major objective has been to provide a stable base for
independent software vendors; with its latest release,
Intel also announced an ISV program initially involving
three major vendors; Microsoft, Digital Research and
Mark Williams Inc.

The first release of iRMX-86 came out in April 1980. Since
then, the system has bee~ refined and released four more
times, with release five appearing last December. An In
teractive Configuration Utility appeared for the first time
with release five, a further attempt to aid OEMs in put
ting their systems together. The system designer runs the
ICU program on a terminal and is quizzed on his re
quirements, after which tM program generates the unique
iRMX software for his application.

"It has been a successful product in its own right, apart
from its role in the hardware program, but I doubt that
anyone would have wanted to invest in a three-year
development process before there was a chance at some
return;' observed Stevens, who has been most excited by
the diverse applications he has seen. "I've really enjoyed
the iRMX symposiums. There is always some new system
demonstrated. In Tokyo, I just saw an 8086-based scien
tific system with really first-class graphics put together by
Seiko. Another time I saw a blood analyzer based on the
system. There are even RMX-based personal computers:'

2-254 210341.005

ARTICLE
REPRINT

Reprinted with pennlaolon from April, 1984 _e of Sys1ems & Software, Heyden PubflShing, 1984.

2-255

AR-337

APRIL,1984

21_,-005

AR·337

"The tasks
must be able
to coordinate

with one another." PC • INTEGRATION SERIES
,

Industrial PC systems demands
real-time op'erating system

Personal computers find a wide range of applications
in an industrial process control environment. For

, example, the computers can be used for temperature
monitoring and control, production line testing,
wear analysis, frequency signature monitoring,
analysis in noisy or hostile environments, and
vibration analysis.

All of these jobs for the computer have certain
characteristics in common. All require that the
computer process asynchronously occurring events
that are happening in real time. Moreover, handling
multiple asynchronously occurring events, some of
which can happen concurrently, demands that the
computer process more than one operation or task
at a time.

For example, in monitoring and controlling the
temperature of a burn-in oven used to stress printed
circuit boards, the computer must have a task that
keeps track of time so that the temperature is read at
prescribed intervals. It requires a second task to read
the temperature sensor, and a third to control the
application or remQval of heat:

Furthermore, 'certain tasks ate more time critiCal
than others. For example, an error 'routine' that
detects a critical overtemperature condition in the
burn-in oven must be given the highest priority and
executed before any other routine vying for
computer time.

Finally, the tasks must be able to coordinate with
one another. They must be able to communicate so
that the results of one needed by a second can be
passed between the two. Tasks must also be able to
exclude one another so that, for example, olie can
have use of commonly' aqcessed data without"
interference from a second. Finally, tasks must be,'
able to synchronize with one another to ensure, for
example, control of a chemical reaction that
requires an ordered sequence of elements be added
to produce the desired result.

Kathryn S. Norrll, Software Products Marketing Manager
Intel Corp
5200 N.E. Elam Young Pkwy
Hillsboro. Ore 97123

To meet the requirements of an industrial control
environment, a personal computer must have an
operating system like the iRMX-86 from Intel Corp.
(Hillsboro. Ore.), which can meet the requirements
just described. One recently announced industrial
personal computer which offers iRMX-86 is the
MSC 8807 Industrial PC from Monolithic Systems
Corp. (Englewood, Colo.), see ("Industrial PC goes
to work;.

The' o'perating system contains a nucleus which
gives an applications program or task the means to
monitor and control external events. Tasks running
concurrently are called into execution by interrupts
generated by the real-world process being controlled.

A scheduler inside the operating system decides
whether an executing task should be interrupted to
process data from a device generating an interrupt.
In addition, three facilities inside the operating
system provide for tasks to interact with one
another. Each of the three is optimized for data
transfer, synchronization or mutual exclusion.

Handling multiple tasks. The essence of real-time
application systems is the ability to process
numerous events occurring at randoll) times. Any
single program that attempts to process multiple,
concurrent, asynchronous events is bound to be
complex. It must process each event and remember
which have already occurred and the order in which
th~yhappened. The complexity obviously grows
greater as the system monitors more events.

Multitasking capability in an operating system
unwinds this confusion. Rather than writing a single
monolithic program to process N events, N
progfams are written, each of which processes a '
single event. Each of..these N programs forms an
iRMX 86'task. Multitasking eliminates the need to
monitor the order in which events occur.

The operating system is an interrupt processor.
When an interrupt occurs, it schedules a task to
proce~s the interrupt. This method of event
detection improves the performance of an applica
tion system.

There are two ways that computer systems can
schedule processing associated with detecting and

APRIL 1984 SYSTIMS a SOFTWARI' 2-256 210341-G115

AR·337

PC • INTEGRATION SERIES

controlling events in the real world: polling and
interrupt processing. Polling has the major
shortcoming of requiring a significant amount of the
processor's time to test to see if events have
occurred.

The second method of controlling processing is
the interrupt. An event occurring generates an
interrupt to the computer. Rather than executing
the next sequential instruction, the processor begins
to execute a task associated specifically with the
detected event.

Interrupt processing allows a system to spend all
of its time running the tasks that processes events,
rather than executing a polling loop to see if events
have occurred. Since there is a direct correlation
between interrupts and tasks, a system can easily be
modified to process different events. All that is
needed is to write the tasks to process the new
interrupts.

Because interrupt processing allows a system to
respond to events by means of modularly coded
tasks, system programs are more structured and
easier to understand. Modular programs are less
costly to develop and maintain, and modules can be
developed more quickly than a monolithic program
containing the equivalent of several independent
modules.

Scheduling with priority. The iRMX 86 operating
system uses preemptive, priority-based scheduling
to decide which task runs at any instant. This
technique ensures that if a more important task
becomes ready while a less important task is
running, the more important task begins execution
immediately. ,

In multitasking systems, there are two common
techniques for deciding which task is to be run at any
given moment. One called time slicing, better known
as the familiar round-robin approach, involves tasks
running in rotation. Each task is allotted a fixed
quantity of computer time in whic~ to execute. If it
does not complete in that time, it must relinquish the
CPU and wait-until its turn with the CPU comes up
again. The technique is commonly employed in
time-sharing systems.

The second technique, priority-based scheduling,
uses assigned priorities to decide which task is to be
run next. Within priority-based scheduling, there
are two approaches. N?n-preemptive scheduling

"iRMX 86 uses
preemptive, priority-
based scheduling to
decide which tasks

runs at any instance."

allows a task to run until it relinquishes the
processor. Even if while running it causes a higher
priority task to become ready for execution, the
original task continues to run until it explicitly
surrenders the processor.

The second approach to priority-based scheduling
is preemptive. Using preemptive scheduling, the
system always executes the highest priority task that
is ready to run. In other words, if the executing task
or an interrupt causes a higher priority task to
become ready, the operating system switches the
processor to the higher priority task.

Preemptive, ptiority-based scheduling goes hand
in-hand with interrupt processing. The priorities of
tasks can be tied to the relative importance of the
events that they process. Thus, the processing of
more-important events preempts the processing of
less-important ones.

Allowing tasks to Interact. The iRMX 86
operating system provides simple techniques for
tasks to coordinate with one another. These
techniques allow programs in a multitasking system
to mutually exclude, synchronize, and communicate
with each other. The processing of several events
may be related. For instance, the task processing
event A may need to know how many times event B
has occurred since event A last occurred. This
processing requires coordination between programs.

Tasks exchange information for two purposes.
One is to pass data from one program to another.
Suppose that one task accumulates keystrokes from
a terminal until a carriage return is encountered. The
keyboard program then passes the entire line of text
to another task, which is responsible for decoding
commands.

The second reason for passing data is, to draw
attention to a specific object, a mailbox for example,
in the application system. In effect, one task says to
another, "I am talking about that object."

The iRMX 86 system facilitates intertask
communications by supplying objects called
mailboxes along with system calls to manipulate
them. The system calls associated with mailboxes
are CREATE ~AILBOX, DELETE MAILBOX,
SEND MESSAGE, and RECEIVE MESSAGE.
Tasks use the first two commands to build and
eradicate a particJ,llar mailbox. They use the
remainder to communicate with each other.

SYSTEMS a SOFTWARE APRIL 1984 2-257 210341_

AR .. 337

"The priorities of tasks
can be tied to the

relative importance of
the events that they

process."

If Task A wants task B to become aware of a
particular object, it uses the SEND MESSAGE
system call to send the object to the mailbox. Task B
uses the RECEIVE MESSAGE system call to
retrieve the object from the mailbox. Why don't
tasks just send messages directly between each other
rather than through mailboxes? Tasks are asynchro
nous; they execute in unpredictable order.
Mailboxes allow tasks to communicate with each
other even though tasks are asynchronous.

If the receiver uses the RECEIVE MESSAGE
system call before the message has been sent, the
receiver waits at the mailbox until a message arrives.
Similarly, if the sender uses the SEND MESSAGE
system call before the receiver is ready to receive, the
message is held at the mailbox until a task requests a
message from the mailbox.

Providing tasks exclusivity. Occasionally, when
tasks are running concurrently, the following kind
of situation arises. Task A is in the process of
reading information from a memory segment. An
interrupt occurs and task B, which has a higher
priority preempts task A. Task B modifies the
contents of the segment that task A was in the midst
of reading.

Task B finishes processing its event and
surrenders the processor and task A resumes reading
the'segment. However, task A might have
information that is completely invalid. For ins'tance,
suppose the application is air traffic control. Task A
is responsible for detecting potential collisions and
task B is responsible for updating the plane location
table with the new X- and Y -coordinates of each
aircraft's location. U-nless task A can obtain
exclusive use of the plane location table, task Bean
make task A faU to spot a collision.

Here's how it could happen. Task A reads the X
coordinate of the plane's location and is preempted
by task B. Task B updates the entry that task A was
reading, changing both the X~ and Y -coordinates of
the plane's location. Task B finishes its function and
surrenders the processor. Task A resumes execution
and reads the new X- and Y -coordinate of the
aircraft's location. As' a direct result of task B
changing the plane location table while task A was
reading it, task A thinks the plane is at old X and
new Y coordinates. This misinformation could
easily lead to disaster.

PC • INTEGRATION SERIES

This problem can be avoided by mutual
exclusion. If task A can prevent task B from
modifying the table until after A has finished using
it, A can be assured of valid information. Somehow,
task A must obtain exclusive use of the table. The
iRMX 86 operating system provides a type of object
that can be used to provide mutual exclusion in the
form of the semaphore.

A semaphore is an integer counter ,that tasks can
manipulate using four system calls: CREATE
SEMAPHORE, DELETE SEMAPHORE, SEND
UNITS and RECEIVE UNITS. The creation and
deletion system calls are used to build and eradicate
semaphores. The send and receive system calls can
be used to achieve mutual exclusion.

Semaphones can only take on non-negative
integer values. Tasks can modify a semaphore's
value by using the SEND UNITS or RECEIVE
UNITS system calls. When a task sends N units to a
semaphore, the value of the counter is increased by
N. When a task uses the RECEIVE UNITS system
call to request M units from a semaphore, one of two
things happens: If the semaphore's counter is greater
than or equal to M, the operating system reduces the
counter by ~ and continues to execute the task.
Otherwise, the operating system begins running the
task having the next highest priority, and the
requesting task waits at the semaphore until the
counter reaches M or greater.

To use a semaphore to achieve mutual exclusion,
the task wanting exclusivity creates a semaphore
with an initial value of one. Before any task uses the
shared resource, it must receive one unit from the
semaphore. Also, as soon as a task finishes using the
resource, it must send one unit to the semaphore.
This technique ensures that at any given moment, no
more than one task can use the resource, and any

'other tasks that want to use it must await their turn
at the semaphore.

Semaphores allow mutual exclusion; they don't
enforce it. All tasks (there can be more than two)
sharing the resource must receive one unit from the
semaphore before using the resource. If one task
fails to do this, mutual exclusion is not achieved.
Also, each task must send a unit to the semaphore
when the resource is no longer used. Failure to do
this can permanently lock all tasks out of the
resource.

SYSTEMS. SOFTWARE APRIL 1984 2-258 210341·005

intJ AR-337

PC • INTEGRATION SERIES

Synchronizing tasks. Tasks are asynchronous.
Nonetheless, occasionally a task must know that a
certain event has occurred before it starts running.
For instance, suppose that a particular application
system requires that task A cannot run until after
task B(has been completed.

An application system can achieve synchroniza-

"Occasionally a task
must know that a
certain event has
occurred before it

starts running."

tion also by using semaphores. Before executing
either task A or task B, a semaphore is created with
an initial value of zero. Task A issues RECEIVE
UNITS requesting one unit from the semaphore.
Task A is forced to wait at the semaphore until task
B sends a unit. This achieves the desired synchroniza
tion.

I ndustrial PC goes to work

One portable computer designed exclusively for the
multitasking industrial and scientific environment IS the
MSC Model 8807 Industrial PC from Monolithic Systems
Corp. (Englewood. Colo). the first of a planned family of
system and support products that emphasizes software
flexibility by offering two operating systems. four major
languages and a variety of utility programs

Based on the Intel Multibus architecture. the industrial
PC Integrates a 16-bit 80186 CPU. up to 512 kby1es of
parity RAM. 9-in. CRT screen. dual 3Y,-in. floppy disk
drives, parallel and serial I/O ports, and ACSllnterface
The total weighs approximately 35 Ib and Includes a
100-W power supply, cooling fan and built-In carrying
handle. One of two operating systems available for the
PC is Intel's iRMX-86 operating system.

RMX-86 is a multi-user, multitasking, real-time
operating system, which provides such advanced
features as hierarchical file structure with variable file
granularity. It schedules tasks with true real-time
preemptive priorities. It enables dynamic memory
allocation among concurrent applications, device

. independent I/O and intertask communication via
mailboxes and semaphores.

The PC is built around the company's MSC 8186
single-board computer, which, in turn, is based on the
Intel 80186 microprocessor. The processor board
contains 128 kby1es of dual-port, dynamic parity RAM, a
dynamic flAM controller, up to 64 kby1es of EPROM, and
programmable parallel and senall/O ports. Twenty-bit

addreSSing, plus four bits for bank select, enables
addreSSing up to 16 Mbytes of system memory. The
senal I/O port is controlled by a programmable
communications Interface for operatIOn In most
synchronous or asynchronous data transmiSSion .
formats Parallel I/O is Implemented with a baSIC 24
lines controlled by a programmable peripheral interface

An on-board programmable Interrupt controller allows
the system to handle up to eight levels of interrupt
Priority under software control The CPU operates at 8
MHz and has the enhanced 80186 instruction set. The
processor board contains two iSBX bus connectors for
piggyback expansion modules

Product packaging also reflects the targeted
industrial market. The enclosure is metal, rather than
plastiC, and the top of the unit is hinged for easy access
to all internal parts. This permits a user to run an
interface directly off the processor board in addition to
external port connectors.

The chassis is designed with six board slots, of which
three are intended for customer-specified modules. This
is a tool for system integrators who specialize in factory
automation, test systems, process control, R&D
laboratories, and a muHitude of other on-line applications
where system portability is important.

The product can monitor units under test concurrent
with statistical analysis or data processing applications.
As a software development tool, the system can do large
compiling jobs concurrent with code writing or editing.

SVSTEMS .. SOFTWARE APRIL 1984 2-259 21_1-G05

1ranslators and Utilities 3
for Program Development

.'>., '

TRANSLATORS AND UTILITIES
FOR PROGRAM DEVELOPMENT

Intel offers an extensive selection of program development tools for its microprocessor (8080, 8086, 8088,
80186, 80286) and microcontroller (8048, 8051, 8096 etc.) families. These tools include translators and
programming utilities such as linkers, relocators, and library managers. These program development tools are
high quality, time tested tools for the professional. Based on a set of well-defined standards, they provide an
integrated development environment. The result isan extremely flexible and productive program development
environment. '

A LANGUAGE FOR EVERY NEED
The iAPX-86 family has the most comprehensive set of translators available for a microprocessor. These
include a macro assembler and compilers for PUM, Pascal, FORTRAN, and C (see Table 1). The macro
assembler produces the most optimum code. PUM is the most popular 8086 language for systems
programming and provides the best of both optimal code and high level language capabilities.

The main advantage of 'C' is portability across different target machines. Pascal and FORTRAN are used
extensively for applications programming. To allow applications to be portable, Pascal and FORTRAN conform
to ISO and ANSI77 standards respectively, with many useful extensions for microprocessor applications.

Intel's microcontrollerfamily (8048, 8051, 8096 etc.) is similarly the best supported in the industry. PUM-51 was
the first high level language ever to be introduced for a microcontroller. The 8096 is similarly supported with
PUM-96. Every microcontroller in the family is supported with an assembler and linkage utilities.

USE A MIXTURE OF LANGUAGES FOR MAXIMUM FLEXIBILITY
Programs are typically decomposed into modules to exploit the many benefits of modular programming. Intel's
integrated programming technology allows different modules of the same program to be programmed in a
variety of languages. For instance, the most performance-sensitive system modules may be coded in assembler
or in PUM. The application modules, on the other hand, can be written in Pascal to speed up programming. The
system and application modules can then be linked into one program using the linker. Hence, the various
modules of a program can each be coded in the most suitable programming language.

UTILITIES ENHANCE PROGRAMMING PRODUCTIVITY
A set of utilities is provided to support modular and position independent programming. The linkers combine
the constituent modules of a program into one system. A locator is provided to position the code in memory.
This allows code to be placed in appropriate ROM and RAM locations. Also, coding can be done in a
position-independent way, The librarian provides a structured way of organizing frequently used routines. The
routines needed by a particular program can be linked in by the linker. The linker automatically selects only
those modules from the libaray that are needed by the program. For the protected, virtual-memory, and
multi-tasking processor iAPX 286, a sophisticated operating system configuration utility BUILD-286, is
provided.

FULL RANGE OF DEBUG SUPPORT
The programming tools are integrated with the debugging tools via the well-defined Intel object module format
standard. iAPX-86 family programs may be debugged using any of the Intel 8086 debug tools. This includes
PSCOPE which provides source level software debug, and the ICE products which provide in-target real-time
debug. Microcontroller software is similarly supported by the various emulators and ICE units.

CHOOSE FROM A VARIETY OF HOST CONFIGURATIONS
The programming tools are provided on a variety of development host environments to meet the needs of
different project sizes and development budgets (see Table 1). The environments span personal development
systems (iPDS), stand alone development systems, network development systems (NDS-II) and even the
'VAXNMS microcomputer. The programming tools work identically, no matter which of the available host
configurations is chosen. This allows the user to grow his development environment, as his needs grow,
without impacting previous investment in software .

• VAXNMS is a trademark of Digital Equipment Corporation.

3-1

inter
Table 1. Intelll'anslator/Host Summary

Language Component Family

2920
MCS-85 Family
MCS-48 Family

Macro Assembler + Utilities MCS-51 Family
iACX-96 Family
iAPX-86 Family
iAPX-286 (Protected Mode)

MCS-85 Family
MCS-51 Family

PUM iACX-96 Family
iAPX-86 Family
iAPX-286 (Protected Mode)

MCS-8S Family
PASCAL iAPX-86 Family

iAPX-286 (Protected Mode)

MCS-85 Family
FORTRAN iAPX-86 Family

iAPX-286 (Protected Mode)

"C" iAPX-86 Family
I iAPX-286 (Protected Mode)

Ada iAPX-86 Family
iAPX-286 (Protected Mode)

NOTE: '= Planned

HOST CODES
1 = 8085 Based Development System
2 = iAPX-86 family Based Development System
3 = VAX/VMS Minicomputer

3-2

Host Code

1,2
1
1
1
2

1,2,3
2,3

1
1
2

1,2,3
2,3

1
2,3
2

1
2
2'

2,3'
2',3'

3'
3'

PL/M 80
HIGH LEVEL PROGRAMMING LANGUAGE

• Provides Resident Operation on
Intellec® Microcomputer Development
System and Intellec® Series II
Microcomputer Development Systems

• Produces Relocatable and Linkable
Object Code

• Sophisticated Code Optimization
Reduces Application Memory
Requirements

• Speeds Project Completion with
Increased Programmer Productivity

• Cuts Software Development and
Maintenance Costs

• Improves Product Reliability with
Simplified Language and Consequent
Error Reduction

• Eases Enhancement as System
Capabilities Expand

The PLiM 80 High Level Programming Language Intellec Resident Compiler is an advanced, high level pro
gramming language for Intel 8080 and 8085 microprocessors, iSBC-80 OEM computer systems, and Intellec
microcomputer development systems. PLiM has been substantially enhanced since its introduction in 1973
and has become one of the most effective and powerful microprocessor systems implementation tools avail
able. It is easy to learn, facilitates rapid program development and debugging, and significantly reduces main
tenance costs. PLiM is an algorithmic language in which program statements naturally express the algorithm
to be programmed, thus freeing programmers to concentrate on system development rather than assembly
language details (such as register allocation, meanings of assembler mnemonics, etc.). The PL/M compileref
ficiently converts free-form PLiM programs into equivalent 8080/8085 instructions. Substantially fewer PLiM
statements are necessary for a given application than would be using assembly language or machine code.
Since PLiM programs are problem oriented and thus more compact, programming in PLiM results in a high
degree of productivity during development efforts, resulting in significant cost reduction in software devel
opment and maintenance for the user.

© INTEL CORPORATION, 1983

3-3

MAY 1983

ORDER NUMBER:210327-002

PUM 80

FUNCTIONAL DESCRIPTION

The PUM compiler Is an efficient multlphase complier
that accepts source programs, translates th.em Into
object code, and produces requested listings. After
compilation, the object program may be first linked to
other modules, then located to a specific area of memo
ory, and finally executed. The diagram shown In Figure 1
Illustrates a program development cycle where the pro·
gram consists of three modules: PUM, FORTRAN, and
assembly language. A typical PUM compiler procedure
Is shown In Table 1.

F.ltur ..
Major features of the Intel PUM ao complier and pro·
grammlng language Include:

Allld.nt Op.ratlon - on Intellec microcomputer devel·
opment systems eliminates the need for a large In·
house computer or costly timesharing system.

ObJ.ct Cod. O.nlratlon - of relocatable and linkable
object codes permits PUM program development and
debugging In small modules, which may be easily linked
with other modules and/or library routines to form a
complete application.

Extln.lvl Codl Optimization - Including compile time
arithmetic, constant subscript resolution, and common
subEixpresslon elimination, results In generation of
short, efficient CPU Instruction sequences.

SymbOlic Dabugglng - fully supported In the PUM
complier and ICE·a5 In·clrcuit emulators.

Compile Time Options - includes general listing for·
mat commands, symbol table listing, cross reference
listing, and "innerlist" of generated assembly language
instructions.

Block Structure - aids In utilization of structured pro·
grammlng techniques.

Acc ••• - provided by high level PUM statements to
hardware resources (Interrupt syetem., absolute
addresses, CPU Input/output ports).

Data Dlflnltlon - enabln complex data structures to
be defined at a high level.

A.,.ntr.nt P~c.dure. - may be specified as a user
option.

B.n.fltl
PUM I. designed to be an efficient, co.t,.ff.ctlv •• olu·
tlon to the .peclal requlrem.nts of mlcrocomput.r soft,
ware dev.lopm.nt .s IlIu.trat.d by the following b.n.,
fits of PUM use:

Low Learning Effort - .v.n for the novice progr.mm.r,
bec.use PUM I •••• y to I •• rn.

Earlier Project Compl.tlon - on critical proj.ct.,
b.caus. PUM substantl.lly Incr..... progr.mmmer
productivity whll. reducing program dev.lopment tim •.

Low.r D.velopmlnt Co.t - b.cause Incr •••• d pro·
gFammer productivity requiring Ie.. programming
rnource. for a given function tran.late. Into lower .oft·
ware development co.ts.

Increa.ld Aellablllty - because of PUM's use of simple
statement. In the program algorithm, which are easier
to comlct and thus substantially reduce the- risk of
costly errors In systems that have already reached full
production status.

Easler Enh.ncem.nt and Maintenance - because pro·
grams written In PUM are easier to read and easier to
understand than assembly language, and thus are eas·
ier to enhance and maintain as system capabilities
expand and future products are developed.

Figure 1. Program Development Cycle Block Diagram

3-4 AFN·OO818B

PUM 80

Simpler Project Development - because the Intellec
microcomputer development system with resident
PUM 80 is all that is needed for developing and debug-

ging software for 8080 and 8085 microcomputers, and
the use of expensive (and remote) timesharing or large
computers is consequently not required.

Table 1. PL/M-80 Compiler Sample Factorial Generator Procedure

2

3
4 2
5 2
6 2

7 2
9 2

10 3
11 3
12 4
13 4
14 4
15 4

16 3
17 3
18 4
20 4
21 4
22 4

24 2

25

SPECIFICATIONS

OPERATING ENVIRONMENT

Intel Microcomputer Development Systems
(Series II, Series III, Series IV)
Intel Personal Development System

ORDERING INFORMATION

Product Code Description

MDS PLM PliM 80 High Level Language
Compiler. Needs Software License

$OBJECT(:F1 :FACT.OB2)
$DEBUG
$XREF
$TITLE('FACTORIAL GENERATOR - PROCEDURE')
$PAGEWIDTH(80)

FACT:
DO;

DECLARE NUMCH BYTE PUBLIC;

FACTORIAl. PROCEDURE (NUM,PTR) PUBLIC;
DECLARE NUM BYTE, PTR ADDRESS;
DECLARE DIGITS BASED PTR (161) BYTE;
DECLARE (I,C,M) BYTE;

NUMCH=l; DIGITS(l)=l;
DO M = 1 TO NUM;

C=O;
DO 1=1 TO NUMCH;

DIGITS(I)= DIGITS(I)*M + C;
C= DIGITS(I)/10;
DIGITS(I)= DIGITS(I) - 10'C;

END,

IF C<>O THEN
DO;

NUMCH = NUMCH + 1; DIGITS(NUMCH) = C;
C = DIGITS(NUMCH)/10,
DIGITS(NUMCH)= DIGITS(NUMCH) - 10*C;

END
END;

END FACTORIAL;

END;

DOCUMENTATION

PliM 80 Programming Manual
ISIS-II PliM 80 Compiler Operator's Manual

SUPPORT:

Hotline Telephone Support, Software Performance
Report (SPR), Software Updates, Technical Reports, and
Monthly Technical Newsletters are available

'MDS IS an ordering code only and IS not used as a product or trademark MOS' 's a registered trademark of Mohawk Data SCiences
Corporation

3-5 AFN-0081B8

FORTRAN 80
8080/8085 ANS FORTRAN 77

INTELLEC® RESIDENT COMPILER

• Meets ANS FORTRAN 77
Subset Language Specification plus
adds Intel·· microprocessor extensions

• Supports Intel Floating Point
Standard with the FORTRAN 80 soft·
ware routines, the iSBC·310™ High
Speed Mathematics Board, or the
ISBC·332 IM math multi module

• Executes on Intellec Microcomputer
Development System, Intellec Series
II Microcomputer Development System,
and Personal Development System

• Supports full symbolic debugging with
ICE·80™ and ICE·85™

• Produces relocatable and linkable
object code compatible with resident
PL/M 80 and 8080/8085 Macro
Assembler

• Provides optional run·time library to
execute in RMX·80™ environment

• Has well defined I/O interface for
configuration with user·supplied
drivers

FORTRAN SO is a computer industry-standard, high-level programming language and compiler that translates FORTRAN
statements into relocatable object modules. When the object modules are linked together and located into absolute
program modules, they are suitable for execution on Intel SOSO/SOS5 Microprocessors, iSBC-SO OEM Computer Systems,
Intellec Microcomputer Development Systems and Personal Development Systems. FORTRAN SO meets the ANS
FORTRAN 77 Language Subset Specification1. In addition, extensions designed specifically for microprocessor applica
tions are included. The compiler operates on the Intellec Microcomputer Development System and Personal Development
System under the ISIS-II Disk Operating Systems and produces efficient relocatable object modules that are compatible
for linkage with PLiM SO and SOSO/SOS5 Macro Assembler modules.

The ANS FORTRAN 77 language speCification offers many powerful extensions to the FORTRAN language that are
especially well suited to Intel 8080/8085 Microprocessor software development. Because FORTRAN 80 conforms to
the ANS FORTRAN 77 standard, the user is assured of compatibility with existing FORTRAN software that meets the
standard as well as a guarantee of upward compatibility to other computer systems supporting an ANS FORTRAN 77
Compiler.

1 ANSI X3J3/90

<£,)INTEL CORPORATION, 1983

3-6

MAY 1983

ORDER NUMBER:400610-001

FORTRAN 80

FORTRAN 80 LANGUAGE FEATURES

Major ANS FORTRAN 77 features supported by the Intel
FORTRAN 80 Programming Language include:

o Structured Programming is supported with the IF ...
THEN ... ELSE IF ... ELSE ... END IF constructs.

• CHARACTER data type permits alphanumeric data
to be handled as strings rather than characters
stored in array elements.

o Full 1/0 capabilities include:
Sequential and Direct Access files
Error handling facilities
Formatted, Free·formatted, and Unformatted
data representation
Internal (in·memory) file units provide capa·
bility to format and reformat data in internal
memory buffers
List Directed Formatting

o Supports arrays of up to seven dimensions.

• Supports logical operators
.EQV. - Logical equivalence
.NEQV. - Logical nonequivalence

Major extensions to FORTRAN 77 in Intel FORTRAN·80
include:

o Direct 8080/8085 port 1/0 supported by intrinsic
subroutines.

• Binary and Hexadecimal integer constants.

o Well defined interface to FORTRAN·80 I/O state·
ments (READ, OPEN, etc.), allowing easy use of
user·supplied I/O drivers.

o User·defined INTEGER storage lengths of 1,2 or 4
bytes.

o User·defined LOGICAL storage lengths of 1, 2 or 4
bytes.

o REAL STORAGE lengths of 4 bytes.

o Bitwise Boolean operations using logical operators
on integer values.

o Hollerith data constants.

• Implicit extension of the length of an integer or
logical expression to the length of the left·hand
side In an assignment statement.

o A format descriptor to suppress carriage return on
a terminal output device at the end of the record.

FORTRAN 80 COMPILER FEATURES

• Supports multiple compllatfon units In single
source file.

o Opllonal Assembly Language code listing.

o Comprehensive cross·reference, symbol attribute
and error listing.

• Complier controls and directives are compatible
with other Intel language translators.

o Optional Reentrancy.

• User·deflned default storage leng·the.

• Opllonal FORTRAN 66 Do Loop semantics.
o Source files may be prepared In free format.

o The INCLUDE control permits specified source
files to be combined into a compilation unit at com·
pile time.

o Transparent interface for software and hardware
floating pOint support, allowing either to be chosen
at time of linking.

FORTRAN 80 BENEFITS

FORTRAN 80 provides a means of developing applica·
tion software for Intel MCS·80/85 products in a
familiar. widely accepted, and computer industry·
standardized programming language. FORTRAN 80 will
greatly enhance the user's ability to provide cost·
effective solutions to software development for Intel
micropro.cessors as illustrated by the following:

3-7

o Completely Complementary to Existing Intel Soft·
ware Design Tools - Object modules are linkable
with new or existing Assembly Language and PUM
Modules. •

• Incremental Runtime Library Support - Runtime
overhead is limited only to facilities required by the
program.

o Low Learning Effort - FORTRAN 80, like PUM, is
easy to learn and use. Existing FORTRAN software
can be ported to FORTRAN 80, and programs
developed in FORTRAN 80 can be run on any other
computer with ANS FORTRAN 77.

o Earlier Project Completion - Critical projects are
completed earlier than otherwise possible because
FORTRAN 80 will substantially increase program·
mer productivity, and is complementary to PUM
Modules by providing comprehensive arithmetic,
1/0 formatting, and data management support In
the language.

• Lower Development Cost - Increases In program·
mer productivity translates Into lower software
development costs because less programming
resources are required lor a given function.

o Increased Reliability - The nature of hlgh:level
languages, Including FORTAN 80, Is that they lend
themselves to simple statements of the program
algorithm. This substantially reduces the risk of
cosily errors In systems that have already reached
production status.

• Easler Enhancements and Maintenance - Like
PUM, program modules written In FORTRAN 80 are
easier to read and understand than assembly
language. This means It Is easier to enhance and
maintain FORTRAN 80 programs as system
capabilities expand and future products are
developed.

• Comprehensive. Yet t;lmp/e Project Development -
The Intellec Microcomputer Developmef!t System
and Personal Development System, with the
8080/8085 Macro A.8Imbler, PL/M 80 and FORTRAN
80 are the most comprehensive software design
facilities available for the Intel MCS-S0/85 Micropro
cessor family. This reduces development time and
cost because expensive (and remote) timesharing or
large computers are not required.

AFN·00241C

FORTRAN 80

SAMPLE FORTRAN·80 SOURCE PROGRAM
LISTING -

• " ThIS PROGRAM IS AN EXAMPLE OF ISIS-II FORTRAN-BO THAT
• " CONVERTS TEMPERATURE BETWEEN CELSIUS AND FARENHEIT

PROGRAM CONVRT

ChARACTER'l CHOICE, SCALE

PRINT 100
, "ENTER CONVERSION SCALE (C OR F)
10 PRINT 200

READ (5,300) SCALE

IF (SCALE ,EQ. 'C')
+ THEN

PRINT 400
, " ENTER THE NUMBER OF DEGREES FARENHEIT

READ (5,') DEGF
DEGC = 5,/9,'(DEGF-32)

, " PRINT THE ANSWER
WRITE (6,500) DEGF,DEGC

, ,. RUN AGAIN?
20 PRINT 600

READ (5,300) CHOICE
IF (CHOICE ,EQ. 'Y')

+ THEN
GO TO 10

ELSE IF (ChOICE .EQ. 'N')
+ THEN

CALL EXIT
ELSE

GOTO 20
END IF

ELSE IF (SCALE .EQ, 'F')
+ ThEN

* ** CONVEHT FROM FARENHEIT TO CELSIUS
PRINT 700
READ (5,*) DEGC
DEGF = 9./5.*DEGC+32.

* ** PRINT THE ANSWER
WRITE (6,800) DEGC,DEGF
GOTO 20

ELSE
* ** NOT A VALID ENTRY FOR THE SCALE

WRITE (6,900) SCALE
GO TO 10

END IF
100 FORMAT(' TEMPERATURE CONVERSION PROGRAM',II,

+' TYPE C FOR FARENHEIT TO CELSIUS OR',I,
+' TYPE F FOR CELSIUS TO FARENHEIT' ,II)

200 FORMAT(/,' CONVERSION? ',$)
300 FORMAT(Al)
400 FORMATU, 'ENTER DEGREES FARENHE1T: ',$)
500 FORMATU ,F7 .2,' DEGREES FARENHEIT = ',F7 .2,' DEGREES' CELSIUS')
600 FORMAT(/,' AGAIN (Y OR N)? ',$)
700 FORMAT(/,' ENTER DEGREES CELSIUS: ',$)
~OO FORMAT(/,F7.2,' DEGREES CELSIUS = ',F7.2,· DEGREES FARENHEIT',/)
900 FORMAT(/,lH-,Al,' NOT A VALID CHOICE - TRY AGAIN I ',I)

END

3-8 AFN-00241C

inter FORTRAN 80

The FORTRAN 80 Compiler is an efficient, multiphase compiler that accepts source programs, translates them Into
relocatable object code, and produces requested listings. After compilation, the object program may be linked to other
modules, located to a specific area of memory, then executed. The diagram shown below illustrates a program devel·
opment cycle where tne program consists of modules created by FORTRAN 80, PUM 80 and the 8080/8085 Macro
Assembler.

1111-11
TEXT

IDITOII

IIII-II
TEXT

EDITOR

ISIS·II
TEXT

EDITOR

'OIlTIIANIO
SOURCE

PUMIO
SOU liCE

ASSEMBLY
LANGUAGE

SOUIICE

SPECIFICATIONS

OPERATING ENVIRONMENT

Required Hardware:

IMel Microcomputer Development Systems
-MDS-800 and Sertes II

or

2. Personal Development System

ORDERING INFORMATION

PART NO. DESCRIPTION

RELOCATABLE
OBJECT
MODULE

Model MDS·301 FORTRAN 80 Compiler for
Intellec Microcomputer Develop
ment Systems

Requires Software License.

;0- 1"1-11
LOAOEII

DIIUG
;0- VIA

MONITOR

OPTIONAL
ICE-IO'"

~ ICE ... "
IN·CIRCUIT
EMULATOR

'--- PROM
PROGRAMMER

DOCUMENTATION PACKAGE

FORTRAN-80 Programming Manual

ISIS-II FORTRAN-80 Compiler Operator's Manual

FORTRAN-80 Programming Reference Card

SUPPORT
Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of
Mohawk Data Sciences Corporation.

3-9 AFN-00241C

MICROSOFT*, INC. BASIC-SO INTERPRETER
SOFTWARE PACKAGE

• Compatible with other Microsoft BASIC
compilers and interpreters

• Sophisticated string handling and
structured programming features for
applications development

• Direct transfer of BASIC programs to
the 8085, 8086 and 8088

• Random and sequential file
manipulation where random file record
length is user-definable

• Read or write memory location
capabilities

• Meets the requirements for the ANSI
subset standard for BASIC, and
supports many enhancements

• Extensive text editing features built-in

• Automatic line number generation and
renumbering

• Supports assembly language
subroutine calls

• Trace facilities for easier debuggi"g

BASIC Release 5.0 from Microsoft is an extensive implementation of BASIC. Microsoft BASIC gives users what
they want from a BASIC-ease of use· plus the features that are comparable to a minicomputer or large
mainframe.

BASIC-80 meets the requirements for the ANSI subset standard for BASIC, as set forth in document BSRX3.60-
1978. It supports many unique features rarely found in other BASICs.

FEATURES

-Four variable types: Integer (-32768, +32767),
String (up to 255 characters), Single-Precision
Floating Point (7 digits), Double-Precision
Floating Point (16 digits).

-Trace facilities (TRON/TROFF) for easier
debugging.

-Error trapping using the ON ERROR GOTO
statement.

-PEEK and POKE statements to read or write any
memory location.

-Automatic line number generation and
renumbering, including reference line numbers.

·--Matrices with up to 255 dimensions.

-Boolean operators OR, AND, NOT, XOR, EQV,
IMP.

©INTEL. CORPORATION. 1983 3-10

-Formatted output using the PRINT USING facility,
including asterisk fill, floating dollar sign,
scientific notation, trailing sign, and comma
insertion.

-Direct access to I/O ports with the INP and OUT
functions.

-Extensive program editing facilities via EDiT
command and EDIT mode subcommands.

-Assembly language subroutine calls (up to 10 per
program) are supported.

-IF/THEN/ELSE and nested IF/THEN/ELSE
constructs.

-Supports variable-length random and sequential
disk files with a complete·set of file manipulation
statements: OPEN, CLOSE, GET, PUT, KILL,
NAME, MERGE.

MAY 1983
AFN·02086C

inter MICROSOFT, INC.
BASIC-80 INTERPRETER

BASIC-80 Commands, Statements,
Functions

AUTO
LIST
NULL
TROFF
CLEAR
LOAD

RENUM
WIDTH
CONT
MERGE
RUN
DELETE

Program Statements

CALL
GOSUB
END
GOTO
STOP
WHILE/

WEND
CHAIN
DEF USR
LET
REM

RANDOMIZE
COMMON
DEF FN
ERROR
POKE
RESUME
SWAP
DEFDBL
DEFSTR
DEFSNG
DEFINT

NAME
SAVE
EDIT
NEW
TRON

RETURN
WAIT
ON GOSUB
DIM
FOR/NEXT/

STEP
IF/THEN/

ELSE
ON ERROR

GOTO
OPTION BASE

Input/Output Statements and Functions

CLOSE
KILL
OUT
RESTORE
READ
TAB
DATA
LINE

INPUT
PRINT
WRITE
LPRINT

GET
POS
FIELD
LSET/RSET
PRINT

USING
LOC
MKI$
MKS$
MKD$
LUST
LPOS

SPECIFICATIONS

Operating Environment

NAME
PUT
EOF
SPC
INKEY$
INPUT
OPEN
CVD
CVI
CVS

The standard disk version of Microsoft BASIC-80
occupies 24K bytes of memory. Microsoft BASIC·eO
Interpreter Is compatible with Intel's ISIS operating
system or CP/M' operating system.

Required Hardware

Intellec Microcomputer Development System

-IPDS (Personal Development System)
-minimum of 1 diskette drive

Arithmetic Functions

ABS SIN
INT CDBL
SGN CSNG
ATN CINT
EXP SOR

String Functions

ASC STR$
LEN HEX$
STRING$ OCT$
CHR$ VAL
LEFT$

Operators

II <=
< +
> <>

\
>=

Special Functions

ERL ERR
USR FRE

Required Software

LOG
FIX
COS
RND
TAN

INSTR
RIGHT$
MID$
SPACES

XOR
NOT
EOV
MOD
IMP
OR
AND

VARPTR
PEEK

ISIS Operating System or CP/M Operating System.

Documentation Package

One C()py of each manual Is supplied with the
software package.

3-11

DIlCrlptlon
BASIC·eo Aeference Manual
BASIC Aeference Book

AFN·02088C

MIC.ROSOF1; INC.
BASlc·eo INTERPRETER

ORDERING INFORMATION

Order Cod. De.crlptlon
SD102CPMaOF Microsoft BASIC-aO Interpreter Software Package, CP/M version (Double-Sided,

Double Density 5W Floppy) IPDS format

SD1021ssaOF Microsoft BASIC-aO Interpreter Software Package, ISIS version (Double-Sided,
Double Density 5W Floppy) iPOS format .

SUPPORT
Intel offers several levels of support for this product,
depending on the system configuration in which it is
used. Please consult the price list for a detailed
description of the support options available.

An Intel Software license reqUIred.
'Microsoft IS a trademark of Microsoft. Inc.
'CP/M IS a registered trademark of Digital Research. Inc.
'MP/M-II IS a trademark of Digital Research. In.c.

3-12 AFN-02086C

intJ
MICROSOFT*, INC. BASIC-80 COMPILER

SOFTWARE PACKAGE

• Produces highly optimized, true
machine code

• Compiled programs are fast and
compact because of extensive
optimizations performed during
compilation

• Supports all the commercial language
features of the Microsoft BASIC
interpreter (except direct mode
commands)

• Supports double-precision
transcendental functions

• Machine code for application program'
may be placed on diskette, ROM, or
other Media

• Provides source program security
because only complied code need be
distributed to end-users

• Loader format identical to Microsoft's
MACRO-80 assembler, COBOL-80
compiler, and FORTRAN-80 complier:
Compiled BASIC programs can be
loaded and linked with any of these
languages

Microsoft's BASIC-BO compiler is a powerful tool for programming BASIC applications or microprocessor
system software. The single-pass compiler produces extremely efficient, optimized 8080 machine code that is in
Microsoft-standard, relocatable binary format. Execution speed is typically 3"-10 times faster than Microsoft's
BASIC-80 interpreter.

FEATURES

Optimized, Compatible Object Code

The BASIC compiler produces object code that is
highly optimized for speed and space, relocatable,
and compatible with other Microsoft software prod
ucts. The loader format is identical to that of the
MACRO-80 assembler, COBOL-80 compiler and
FORTRAN-80 compiler, so programs written in any
one of these four languages can be loaded and linked
together, The compiler can also provide a formatted
listing of the machine code that is generated,

Cqmpiled programs are fast and compact due to ex
tensive optimizations performed during compilation:

-Expressions are reordered to minimize temporary
storage and (wherever possible) to transform
floating point division into multiplication,

-Constant multiplications are distributed to allow
more complete constant folding,

-Constants are folded wherever possible. The
expression reordering finds "hidden" constant
operations.

-Peephole optimizations are performed, including
strength reduction.

, INTEL CORPORATION 1983 3-13

-The code generator is template-driven, allowing
optimal sequences to be generated for the most
commonly used operations,

-String operations and garbage collection are
extremely fast.

Compiled BASIC-80 programs are the Ideal end prod
uct for BASIC applications' programmers, The ma
chine code for any application program may be
placed on a diskette, ROM, or othllr media. The prc
gram not only runs faster than witH the Interpreter,
but the BASIC source program n'ed not be dis
tributed. Thus the original application program Is
protected from unauthorized alteration.

Language Feature.

The Microsoft BASIC-SO Complier supports all the
commercial langua~e features of Microsoft BASIC-
80, except thOH commands that ars not usable In the
compiler environment (I.e., direct mode commands
such as LOAD, AUTO, SAVE, EDIT, etc.). That mean.
you get the BASIC language compatible with other
Microsoft BASIC packages.

MII/II13
ORDIR NUMlllh1l101l470001I

intel' MICROSOFT, INC.
BASIC-SO COMPILER

In addition, the compiler sJpports double-precision
transcendental functions (SIN, COS, TAN, ATN, LOG,
EXP, SOR), %INCLUDE, CHAIN and COMMON. The
%INCLUDE compiler directive brings another source
file into the compilation without retyping the main
source file. .

BRUN Runtime Module

The BRUN runtime module contains the most com
mon runtime rOlltines needed for most programs ..
Using the BRUN module provides faster' link loading
of program modules and allows the user to link much

SPECIFICATIONS
Operating Environme.,t
The BASIC Compiler requires a minimum of 34K
bytes of memory (exclusive of the operating syste,m).
Microsoft recommends that 48K bytes .be available
for compiling medium to large programs. The com
piler itself .occupies about 28K bytes: At runtime, the
BRUN module occupies approximately 15.5K bytes.
If, as an option, the BRUN module is not used, the
runtime library occupies 8K-18K bytes.

Required Hardware
Intellec Microcomputer Development System
-iPDS (Personal Development System)
-minimum of 1 diskette driv~

ORDERING INFORMATION
Order Code

larger programs because the runtime routine library
does not reside in memory during linking. The ex
ecutable files saved on disk are also much smaller
since the BRUN module exists separately.

Utility Software Package

The BASIC-80 package includ~s the Microsoft Utility
Software Package. The Utility Software Package in
cludes the MACRO-80 macro assembler, the lINK-80
linking loader and the CREF-80 Cross-Reference
Facility. Refer to the description of the Microsoft
Utility Software Package for full details.

Required Software
CP/M" Operating System

Documentation Package
One copy of each manual is supplied with the
software package.

Description

BASIC Compiler User's Manual
BASIC-80 Reference Manual
BASIC Reference Book
Microsoft Utility Software Manual

(Specify by Alpha Character when ordering.)

Description

SD124CPM80F Microsoft BASIC-80 Compiler Software Package, CP/M version (iPDS Format)

SUPPORT:

Intel offers several levels of support for this product, depending on the system configuration in which it is used.
Please c6nsult the price list for a detailed description of the support options available.

An' Intel Software ,License required
'Microsoft IS a trademark of Microsoft. Inc

'CP/M IS a registered trademark of Digital Research. Inc
'MP/M-II IS a trademark of Digital ResearCh, Inc

3-14

•

•
•

•

•

MICROSOFT*
MULTIPLAN* SPREADSHEET

Simplifies the design and use of very • Wide array of sophisticated functions
large spreadsheets, and multiple inter· to simplify formulas
related spreadsheets • Cells and areas can be named for
Automatically updates subtotals, clarity
totals, percentages, growth curves, etc • Can reference and update several in·
Can perform multiple iterations to terrelated spreadsheets at once
solve closed· loop problems • Simple to use, intuitive commands.
Formulas automatically revised when Single keystroke command entry
reordering rows and columns in • "Windows" allow several portions of
displays large sheets to be viewed at once
Can be used in time, monetary, and in- • Contains the features of the most
ventory budgeting popular spreadsheet programs, as well

as its contribution of new features

Multiplan is a productivity tool designed to help the user to a:nalyze data in spreadsheet format. As an aid
to both business and personal needs, Multiplan is an extremely powerful modeling and planning tool.

Multiplan is easy to learn and use, yet its versatility is enhanced by the skill of the user. Multiplan allows
the user to operate in as intuitive a way as possible, and its widespread capabilities allow accomplish
ment of a variety of tasks. Advanced users are unencumbered by simplifying features, and have enough
power to satisfy their needs.

COLUMNS (1-63)

ROWS (1·255)

MENU SELECTION

COMMAND LINE

MESSAGE

lC.' . ATION AND CONTENTS
OF ACTIVE CELL

ACTIVE BORDERED
WINDOW.2

01

1
2 2
3 Sales $20000.00 3 $20000.00
4 4
5 Cost 5
6 Material $4000.00 6 '$4000.00
7 Labor $7000.00 7 $7000.00 DOLLAR FORMAT
8 Overhead $4000.00 8 $4000.00
9 9 IiiIi 10 Total Costs $15000.00 10

11 11

12
13

$5000.00
14
15 $5000.00
16
17
18

STORAGE REMAINING

95% Free ---,f-SHEET NAME

ABSOLUTE REFERENCE

Typical Multiplan Screen Display

The following are trademarks of Intel Corporation and Its affiliates and may be used only to Identlf> Intel products· BXP, CREDIT, I, .CE, leS, 1m, Inslte, Intel, INTEL,
InteleVISlon, Intellmk, Intellec, ,MMX, .OSP, IPDS, IRMX, ISSC, rsax, library Manager, MeS, MULTIMODULE, Megachassis Micromainframe, MULTI BUS, Multichannel, Plug-A
Bubble, PROMPT, Promware, AU?I, RMXfBO, System 2000, UPI, and the combmatlon of ICS, lRMX, Isec ISBX, ICE, 121CE, MCS, or UPI and numencal suffiX Intel CorporatIon
AS5um6s No Respon51blhty for the use of Any CirCUitry Other Than CircUitry Embodied 10 an Intel product No Other Patent Licenses are Implied. "/ INTEL CORPORATION,
©INTEL CORPORATION. 1983 MAY 1983
·Mlcrosoft & Multiplan are trademarks of Microsoft Corp 3-15 ORDER NUMBER:210767-002

MICROSOFT MULTIPLAN SPREADSHEET

FEATURES
~ , , ,

- Names can be used to'" express 'I'cells"
(worksheet elements), or groups of cells. These
names, in: turn, can be ,used 'as parts of for
mulas and commands. ,Named areas can be
comp,ined in various ways for ease of use.

-A wide range of functions unique to Multiplan
is availal:1le in, additjon to the functiQns typical
to the mqst popular spreadsheet, programs.
These functions allow the user to select' win
dows, sort data, draw from other worksheets,
and a numbeJ of other impo~tant <?perations.

- Expressio,ns, can be clarified by the use of
names as in "PROFIT = SALES - COSTS"
rather than "R12C1 = R1C3 - R5C12". '

-Active sheets can draw data ,automatically
from inactive "SUPPofting" sheets througtl ,the
use of named cells and areas: This' unique
feature allows the vser to streamline the pro
cessing of, data, and to generate an entire pad
full of interrelated spreadsheets.

- Multiplan offers a worksheet size of up to 255
rows by 63 columns, a br()ad worksheet,
simulator in which words, numbers, and for
mulas may be entered into information cells,
Added to the access of data in inactive sheets,
this large sheef size allows the user, to perform
very rigorous analyses in a minimum amount ,of
time. '

- With Multiplan the user gains the capability to
plan 'against several different Situations to
allow comparison of one set of circumstances
against another. A good example of this would
be the generation of several sheets, one based
on steady growth versus others based on
several potential problems. This way, con
tingency planning will become less tedious and
more effective.

- By altering a Single critical number, the Impact
on other, dependent numbers will be auto·
matically updated to help the user observe sen·,
sltivltles and Interdepe!1dencles. This helps the
user to plan resources efficiently, and schedule
more effectively. '

-'~oltiplan overcomes the limitations of paper ,
' worksheets by allowing the user to Instantly

mo>Je, Insert, or delete entire rows or columns
of data. The remaining rows, columns, or free
space will expand or contr~ct automatically as
necessary, thereby eliminating the costly and
tiresome work of typing or' hanO-prlntlng the
worksheet over and over.

-All commands can be invoked by"a s'ingle
keystroke and selections are menu driven.
Multiplan ev~n offers proposed responses to
commands, to encourage' Its use by even the
most unskilled user. Multiplan's commands,
prompts, and messages, as well as the screen'
and keybo,ard, communicatE! with each other
and the user directly and naturally to allow the
untrained user to accomplish objectives easily.

- A special edit area helps the user to make addi·
tions and deletions quickly and easily.

- Up to eight windows are available to allow
users to view different parts of a very large
worksheet simultaneously. The, windows can
be aligned, scrolled together, opened, or closed
at will.

- An iteration option allows the simulation of
closed-loop problems involving mutually In·
terdependant formulas. The number of Itera
tions can be chosen" or Iterations can continue
until a given constraint is met.

- Formulas can be moved from one worksheet
locati9n to another without having to be rewrlt·
ten by the user.

- Reference to a particular cell need not be In
absolute terms, but can be expressed as a loca·
tlon relative to other cells. A formula containing
this sort' of relative reference may be copied
Into other cells and will be automatically
changed'to reflect Its new position.

- The sheet display may be redesigned or format·
ted In various ways without affecting the data
sto.red In ~ultl,plan. Thus, the same data can be
presented In different order In different reports
with a minimum of effort.

3-16

MICROSOFT MULTIPLAN SPREADSHEET

Commands
The following Is a brief list of commands available
under Multiplan. All of these commands are In
voked by the single keystroke of their first letter
(I.e. "C" for Copy or "F" for Format) with the ex
ception of eXternal, which Is Invoked by typing an
"x. II

Several of the commands offer a number of selec
tions of operational modes, which are displayed
when the command Is Invoked. In order to choose
a mode, either press the TAB key until the cursor
rests over the selected mode, then hit RETURN, or
type the first letter of the selected mode, then hit
RETURN.

For more detailed descriptions of the commands,
please see the Multiplan User's Manual.

ALPHA
Replaces the contents of the active cell with a
character string. If the active cell already contains
a string, that string is the proposed response of
the command, so that it can be edited.

BLANK
Deletes contents of all specified cells. Names are
not affected; if a cell was referred to by a name
before use of this command, that name will still
apply.

COpy
Presents a choice of three ways of copying the
contents of some cells into other cells. To
duplicate one cell across several to its right,
choose Right. To duplicate one cell across several
below it, choose Down. To copy any cell or cells to
any others, choose From.

DELETE
Presents a two-way choice to delete cells. To
delete a row or rows, choose R. To delete a col
umn or columns, choose C. To blank out the cells,
use the Blank command.

EDIT
Makes contents of the active cell available for
editing. Place the cell pointer on the cell to be
edited and press E. The cell's contents are then

3-17

placed on the command line for modification. The
edit cursor Is placed at the end of the current
contents rather than highlighting the whole
command, as Is done for other defaults. If the cell
contains a string, It Is presented In double quotes.
After having edited the cell's contents, press
RETURN to put the changed contents back In the
cell (or press ABORT to cancel any changes).

FORMAT
Presents a choice of three kinds of format adjust
ment. To set a specific format for a cell or group of
uells, choose Cells. To set the width of a column
or columns, choose Width. To set the default
format-the format that applies wherever a
specific format hasn't been set-choose Default.

GOTO
Presents a choice of ways to move the cell pOinter
over the sheet. To display a specific row and col
umn, choose Row-col. To display a named area,
choose Name.

HELP
Provides helpful information about Multiplan.
When help is requested, the spreadsheet is
replaced by text from the HELP file and the HELP
command menu appears on the screen. Help is
available in the areas of Applications, Com
mands, Editing, Formulas, and the Keyboard. The
spreadsheet display is reinstated when the
RESUME subcommand is entered.

INSERT
Presents a choice of ways to insert new cells into
the sheet. To insert new rows choose Row. To
insert new columns choose Column.

LOCK
Provides two ways to lock cells in protection
against accidental change. Either individual cells
or all cells containing formulas can be moved,
deleted, formatted or sorted after having been
locked, but their contents cannot be changed.

MOVE
Presents a choice of ways to move cells around
the sheet. To move whole rows, choose Row. To
move whole columns, choose Column.

AFN-006498

ALPHA
BLANK
COPY DOWN
COPY FROM
COPYRIGHT
DELETE COLUM N
DELETE ROW
EDIT
FORMAT CELLS
FORMAT WIDTH
FORMAT DEFAULT

CELLS
FORMAT DEFAULT

WIDTH
FORMAT OPTIONS

COMMAS
FORMAT OPTIONS

FORMULAS
GOTO ROW·COL
GOTONAME
GOTOWINDOW
HELP APPLICATIONS
HELP COM MAN OS
HELP EDITING
HELP FORMULAS
HELP KEYBOARD
HELP NEXT
HELP PREVIOUS
HELP RESUME
HELP START
INSERT COLUMN
INSERT ROW
LOCK CELLS
LOCK FORMULAS
MOVE COLUMN
MOVE ROW
NAME
OPTIONS

PRINT FILE
PRINT MARGINS
PRINT OPTIONS
PRINT PRINTER
QUIT
SORT

TRANSFER CLEAR
TRANSFER DELETE
TRANSFER LOAD
TRANSFER OPTIONS
TRANSFER RENAME
TRANSFER SAVE
VALUE
WINDOW BORDER
WINDOW CLOSE
WINDOW LINK
WINDOW SPLIT

HORIZONTAL
WINDOW SPLIT

VERTICAL
WINDOW SPLIT

TITLES
XTERNAL COPY
XTERNAL LIST
XTERNALUSE

MICROSOFT MULTIPLAN SPREADSHEET

Table 1. Multiplan Commands

Replaces cell contents with a character string.
Clears cell c,ontents.
Used to fill a column with identical values.
Duplicates one or a, number of cells to another location.
Used to make a row of identical values.
Removes columns from the spreadsheet.
Removes'rows from the spreadsheet.
Allows editing of the contents of a single cell.
Used to help align cells in a column.
Limits the width of all cells in a given column.

Sets formats for all previously unformatted cells.

Sets formats for all previously unformatted columns.

Displays numbers with commas separating every third dig~t.

Displays formulas instead of their values.
Moves the cell pOinter to the specified row and column.
Moves the cell pOinter to the named area.
Places the specified cell within the given window.
Illustrates solutions to a number of common problems.
Lists and describes all commands.
Describes Editing functions.
Gives Formula construction rul':ls.
Explains'l3pecial functions of the keyboard.
Gives the next screenful of HELP text.
Gives the previous sc'reenful from HELP cail.
Returns to the spreadsheet from HELP call.
Begins the HELP tutorial.
Used to add a column to an existing spreadsheet.
Used to add a row to an existing spreadsheet
Protects the indicated cell from alteration.
Locks out alteration of all cells containing formulas or text.
Changes the order of the columns on the sheet.
Changes the order of the rows on the ~heet. '
Assigns a name to a cell or number of cells.
Allows the user to disallow recalculation upon every change of a cell
value, to mute the audible alarm, or to enable the Iteration option.
Outputs the spreadsheet to a diskette file.
Sets up the margins on the printed output.
Allows optional printing modes to be used.
Prints the spreadsheet on the system's printer.
Ends the Multiplan session without saving the active sheet.
Sorts a range of rows to put values In a specified column Into ascending
or descending numerical order.
Clears the active sheet.
Deletes the specified file.
Loads a sheet from the disk file.
Modifies the context of the following transfer operation.
Renames the active sheet.
Saves the active sheet on diskette.
Enters a value or formula Into the active cell.
Changes the border 01 the specified window.
Removes a window from the screen.
Sets orbreaks link for synchronized scrolling between windows.

Horizontally divides a window Inlo two wlr,~low~.

Vertically divides one window Into two windows.

Divides one window Into two or four which scroll together.
Copies data from an Inactlve'sheet to the active sheet.
Displays the relationships between the active sheet and the other sheets.
Sets a substitute name for a supporting sheet.

3-18 AFN·00849B

MICROSOFT MULTIPLAN SPREADSHEET

Commands (Contln,ued)
NAME
Assigns a name to a cell or area of cells. The
name defined may then be used wherever a
reference to that cell or area Is needed In a com·
mand or formula.

OPTIONS
The Options command can be used to set 'and
reset various options provided with Multiplan.

The Recalc option controls 'how often Multiplan
performs formula calculations. If the option Is on,
Multiplan recalculates all formulas whenever a
cell Is changed. If the option is off, recalculation
Is done only when the Recalc control key Is
pressed or during Transfer Save.

The Recalc option has an effect on how quickly
Multiplan finishes entering a new value in a cell.
The length of time Multiplan takes to recalculate
the sheet depends on how many cells are in use,
and on the complexity of the formulas in them.
When you want to make a number of entries on a
busy sheet, turn the Recalc option off to get the
quickest response. Turn it on again when you are
interested in seeing the effect of each change.

The Mute option silences Multiplan's audible
alarm.

The iterate option gives the user a means of solv-.
ing problems which involve circular or "closed
loop" references. Whereas formulas which count
on each other's results (Le., A = B + C, B = A + C)
are disallowed in other sp.readsheet programs,
Multiplan allows spreadsheets with such
references to be reiterated upon in an orderly
manner either until a maximum number of itera
tions has been reached, or until a cell has reached
a predetermined value.

PRINT
Presents a choice of four actions related to print
ing the active sheet. To begin printing, choose Go.
To put printable output In a disk file, choose File.
To set the margins that will be used on the printed
output, choose M~rglns. To fix the part of the
worksheet to be printed, or to insert a control line
at the top of the output, choose Options.

QUIT
Ends the Multiplan session without saving the ac-

tlve sheet. Multiplan requests conflrmatlonj If It Is
given, Multiplan terminates, returning control to
the computer operating system. The active sheet
Is lost unless It has previously been saved.

SORT
Reorders the rows on the spreadsheet so that the
data In a specified column appears In ascending
or descending numerical order. The column to be
sorted may contain numbers, text, or other values,
and If such values are mixed, they are presented
In ascending order numerically, alphabetically
and by error value, after which any bla"k cells
follow.

TRANSFER
Offers a choice of five commands, which affect an
entire sheet.

To load a saved sheet, replacing the active sheet,
\ choose Load.

To save the active sheet in a disk file, choose
Save.

To give the active sheet a new name, choose
Rename.

To clear the active sheet, deleting all its contents,
and restoring all its default settings, choose
Clear.

To delete the disk copy of the active sheet,
choose Delete.

VALUE
This command' is used to enter a formula or
number into the active cell. VALUE may either be
selected from the command menu or by typing a
numerical value, a mathematical symbol, or a left
parentheses ..

WINDOW
Presents a choice of four things that can be done
with windows.

To open a new window by splitting the active win
dow horizontally or vertically, or to open a window
used strictly for titles, choose Split.

To close a winnow by' removing it from the screen,
choose Close.

To synchronize scrolling of windows, choose Link.

3-19 AFN·00649B

MICROSOFT MULTIPLAN SPREADSHEET

To move a window to a particular part of the sheet,
choose Home.

To copy data, or blocks of data from an inactive
spreadsheet to the active sheet, choose Copy.

To add or remove a decorative border around a
window, choose Border.

To display the relationships between the active
sheet alid other sheets, showing which sheets
support (provide values for) the active one and
which sheets depend on (use values from) the
active sheet, choo!?e List.

XTERNAL
Presents a choice of actions relating.to the use of
data from other sheets in the formulas of the
active sheet. To assign a substitute name for an inactive sheet,

specify Use.

ASS
AND
ATAN
AVERAGE
COLUMN
COS
COUNT
DOLLAR
EXP
FALSE
FIXED
IF

INDEX
INT
ISERROR
ISNA
LEN
LN
LOG10
LOOKUP
MAX'
MID
MIN
MOD
NA
NOT
NPV
OR
PI
REPT
ROUND
ROW
SIGN
SIN
SORT
STDEV
SUM
TAN
TRUE
VALUE

Table 2. Multiplan Functions

Calculates the absolute value of an argument.
True if, and only if, all values are true; otherwise returns false.
Gives the arctangent of an argument.
Returns the average of all cells referenced by up to 5 arguments.
Gives the current column number.
Calculates an argument's cosine.
Finds the number of cells fitting the referenced criteria.
Formats numbers as dollar amounts.
This is the inverse natural logarithm of the argument.
Returns the logical false value.
Rounds the first argument to the precision specified by the second.
Returns value specified after "THEN" if argument is true, or the "ELSE" specified
value if false.
Returns the value of the cell in a named area offset by an Index value.
Truncates the argument's fractional part.
Returns true If, and only if, the argument Is an error value.
Returns true If, and only if, the argument Is an #N/A value.
Gives the number of characters In the argument's string.
Calculates the natural logarithm Of Its argument.
Returns the common logarithm of Its argument.
Used to search for dependent variables In a lookup table.
Finds the largest numeric value1n an area of cells.
Produces the middle characters of a string.
Finds the smallest numeric value In an area of cells.
Gives the remaInder of the Integer division of the two arguments.
Returns the #N/A value.
Gives the logical Inverse of the argument.
Calculates the net present value of a constant annuity.
True If, and only If, any of the arguments are true; otherwise returns a false.
Returns PI (3.14159 ...).
Forms a string consisting of a repeated substring.
Rounds the first argument to the precision specified by the second,
GIVes the current row number.
Performs the Signum function on the argument.
Returns the sine of the argument.
Calculates the square root of the argument.
Calculates the standard deviation of the arguments.
Adds the sum of all cells In a specified area.
Calculates the tangent of the argument.
Returns the logical true value.
Used to extract numbers from strings.

3-20

MICROSOFT MULTIPLAN SPREADSHEET

BENEFITS
Unlike other spreadsheet programs, Multiplan
allows the user to create and view as many as
eight different windows within the screen display
area. Complete control Is allowed over each win
dow, allowing windows without borders and the
freezing and scrolling of title columns a~d rows.

Multiplan allows formulas to describe the con
tents of any cell. Formulas are written In a method
similar to standard programming languages, and
are evaluated according to priority of functions a
unique feature among spreadsheet progra~s.
Parentheses are allowed to clarify the order of
calculation. Formulas can use a string of
characters as a variable name, and variables may
be either numerical data, or strings of characters
which may be manipulated to concatenate words
and phrases. These are all unusually powerful and
intuitively easy-to-learn features many of which
are unique to Multiplan.

Multiplan gives the user an unusual amount of
flexibility in rearranging the format or layout of a
spreadsheet with its three forms of addressing:
absolute, relative, or symbolic (by name). Any of
the three can be combined in any order to produce
the exact results needed in any case.

One of the features that sets Multiplan apart from
other spreadsheet programs is the ability to name
all cells. The NAME command allows the naming
of single cells, an area of ce!ls of any shape, or
even a list of unconnected areas of cells. That

SPECIFICATIONS
Operating Environment
REQUIRED HARDWARE:
Multiplan requires a minimum system which con
tains at least:
- 64K bytes of RAM
- 80S0/S0S5 CPU
- Console with absolute cursor positioning
- One Diskette drive .

OPTIONAL HARDWARE:
- Li ne pri nter

REQUIRED SOFTWARE:
CP/M' Operating System

·CFJIM JI I reglatared trademark of Digital AII •• ren, Inc.

3-21

name can then be used In functions, or even as a
response In a command. NAME also allows the
user to review all cell names In their proper posi
tion on the screen In order to reduce confusion.

Multiplan commands can be entered by single
letters on the command lines, after which the pro
gram will fill In the rest of the command. This
speeds the user through complex operations
without leaving any doubt about their functions.
Versatile commands handle not only single data
cells, rows, or columns as do other spreadsheet
programs, but these commands allow Multiplan
to move multiple rows or columns, or Insert,
delete, or handle any rectangular area. All relative
references are automatically adjusted to account
for these changes.

Multiplan automatically updates all entries
affected by a change in a single cell, without re
quiring the user to command it to do so. This
feature allows the user to fiddle with numbers and
test for sensitivities and trouble spots.

Another unique benefit of Multiplan is its ability
to employ values from one sheet in the formulas
of another. This "sheet linkage" can be used to
construct a hierarchy of worksheets, with detailed
worksheets feeding their totals to a summary
worksheet. When a detail sheet is updated and
saved on diskette, the dependent summary sheet
will be automatically updated the next time it is
loaded.

Documentation Package
Multiplan users manual

Shipping Media
(SpeCify by Alphabetical Character when order-
ing) .

A - Single density IBM 3740/1 compatible S"
diskette

B - Double density IBM 3740/1 compatible S"
diskette

F - IPDS1M compatible 5-1/4" diskette

AFN-0084tB

MICROSOFT MULTIPLAN S,PREADSHEET

ORDERING INFORMATION

Order Code Shipping Media

. SD1 09CPM80A
SD109CPM80B
SD109CPM80F

A-Single-density 8" diskette
B-Double-density 8" diskette
F-iPDS Format 5'/1' diskette

SUPPORT
Intel offers several levels of support for this pro
duct, depending on the system configuration in
which it is used. Please consult the price list for a
detailed description of the support options
available.

3-22

Product Description

Multiplan spreadsheet program
for use under CP/M' on 8080/8085
based small computers.

AFN-00649B

inter
PASCAL 80

SOFTWARE PACKAGE

• Offers a Superset of Standard Pascal

• Provides Highly Structured Language
with Powerful Data Type Definitions to
Suit Applications

• Compiles Pascal Source Code into
Intermediate Code to Optimize
Execution Speed and Storage

• Executes Compiler and Interprets the
In~ermediate Code on Intellec®
Microcomputer Development Systems

• Provides a Utility to Produce
Relocatable Object Modules
Compatible with Other Intel®
Languages

• Can Call Routines Written in PL/M 80,
FORTRAN 80, or 8080/8085 Macro
Assembler

• Allows Modular Breakdown of Large
Programs and Separate Compilation of
Individual Modules

• Gives Application Control Over
Run-Time Errors by Providing
User-Declared Error Procedures

PASCAL 80 Software Package consists of a compiler and an interactive Run-Time System designed to provide
the Pascal programming language as a software development tool for Intellec Development System Users.

Pascal is a highly-structured, block-oriented programming language that is now gaining wide acceptance as a
powerful software development tool. Its rigid structure encourages and enforces good programming tech
niques, which, combined with a high level of readability, helps produce more reliable software.

Standard Intel development tools, such as CREDIT editor car) be used to create and modify Pascal source
programs. The compiler compiles this source and creates a P-Code file. The Run-Time System executes this
P-Code in an interpretive manner undec ISIS-II.

• Pascal language as defined in PASCAL User Manual and Report, Second Edition. Kathleen Jenson and NiklalJs Wirth.

3-23

inter PASCAL 80

LANGUAGE FEATURES

Data Structures

Pascal allows the user to define labels, constants,
data types, variables, procedures, and functions.

Variable Types

Variables can be defined according to the following
system-defined data types: boolean, integer, real,
character, array, record, string, set, file, and pointer.

User-Defined Types

New types can be defined by the user for added
flexibility.

File Handling Procedures

Pascal provides procedures to allow a user's pro
gram to interface with the ISIS-II file manager.
Routines provided are: RESET, REWRITE, CLOSE,
PUT, GET, SEEK, and PAGE.

Input/Output Procedures

Routines are provided to interact with the console or
an ISIS file. These procedures are: READ, WRITE,
READLN, WRITELN, plus BUFFER and BLOCK Read
and Write.

Dynamic Memory Allocation

The procedures NEW, MARK, and RELEASE allow
the user to obtain and release memory space at run
time for dynamically allocating variable storage.

String Handling

Pascal provides powerful tools for defining and
manipulating strings and. character arrays. These
facilities enable concatenation of strings, character
and pattern scans, insertion, deletion, and pOinter
manipulation.

Recursion

Pascal allows a PROCEDURE definition to include a
call to itself, a powerful construct in many mathe
matical algorithms.

PROGRAM TRACING FACILITY

The PASCAL 80 System incorporates a program
tracing facility which allows for selectively monitor
ing the execution of a Pascal program. When the
TRACE flag is set, the line number of each program
statement being executed is output to the console.

The TRACE flag may be manipulated in two ways:

-The TRACEON command (of the Run-Time Sys
tem) will set the flag, and the TRACE OFF com
mand will reset the flag.

-Pressing the Interrupt 4 switch on the Intellec Sys
tem front panel will toggle the TRACE flag; I.e., the
flag will be set if it Was reset, and vice-versa.

3-24

COMPILER DIRECTIVES (PARTIAL LIST)

Compiler Command LIne Directives

NOLIST
No list file is produced; used for fast compilation of
"clean" programs. -

NOCODE
No code file is produced; used for syntax error
checking.

ERRLlST
List file is limited to only those Pascal lines that
contain errors, along with the error messages
produced.

LIST (file-name)
Specifies the name of the list file.

CODE (file-name)
Specifies the name of the code file.

NO ECHO
Error lines are echoed on the console unless this di
rective is specified.

Embedded Compiler Directives

$C text
Causes text to appear in code file (allows for com
ments, copyrights, etc.).

$1+
Causes checking for I/O completion after each I/O
transfer. Failure results in a run-time error. ($1-
causes no checking, and no errors on I/O failure.)

AFN-OI2338

inter PASCAL 80

$R+
Causes Range Checking to occur, so that an out-of
range value causes a Run-Time error. ($R- sup
presses generation of code for Range Checking.)

$0+
Causes the compiler to operate in overlay mode.
Overlays allow less source code to reside in mem
ory. ($0- causes no overlays, which decreases
compile time, since there are fewer disk accesses.)

$T+
Causes the compiler to generate tracing in
structions to be used by the TRACE facility. ($T
suppresses tracing instructions.)

BENEFITS

Brings Pascal to Intellec Microcomputer Develop
ment Systems:

-Pascal is a block-structured, highly-readable pro
gramming language, suitable for a wide-range of
applications.

The source program is
created on diskette with
the ISIS·II te)tt editor

-PASCAL

.. loads the Run~Time System
which executes compiled PASCAL
programs.

COMPPROG ...

... Loads the compiler to convert
the source program into an
interpreted object form known
as intermediate code, or P-code.

'PROG ...

•.• Loads the Run-nme S,ltem
which execute. compiled Peacal
programs.

-Pascal is being acclaimed as the programming
language of the future; it is being taught in many
colleges and universities around the country.

-PASCAL 80 Run-Time System provides great ease
in programming formatted I/O operations.

PASCAL 80 provides a portable language for appli
cation programs running under ISIS-II.

PASCAL 80 can be used to evaluate complicated
algorithms using a natural language.

PASCAL 80 compiler generates intermediate
Pseudo-code.

-P-code is optimized for speed and storage space.

-P-code is approximately 50% to 70% smaller than
corresponding machine code.

-P-code is machine independent, providing code
portability to any CPU.

Makes the Intellec Development System a more val
uable tool. Extension of software support to include
Pascal makes software development and resource
management more flexible.

Figure 1. Program Development Cycle

3-25 AFN.()l233B

,P~SCAL80

Table 1. Sample Program Ustlng Showing Nesting Levels

BUFFER.PAS Program UsUng ,
Line Seg Proc Lev Disp

program example;

3
4
5

,6

3 { 'Example USing bufferread and bufferwrite with break characters I
3
3 var buffer: stnng,

44 disk storage: hie;
7
8
9

10

64 break char;

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

SPECIFICATIONS

65
67

108
o 0

o
27
68
87

109
109
116

2 132
2 179

197
208
208

4 226

4 262
4 292
4 331
3 378
1 378
o 388

Operating Environment

REQUIRED HARDWARE

new len,len: integer,
buff array: packed arraylO. 80101 char;

begin
rewrite (disk storage, 'data');
wnteln(,lnput a line 01 text: ');
readln (buffer),
len .= bufferwnte(diSk storage, bufferl1!. length(buffer)),
repeat

reset(disk storage);
writeln, wnteln;
wnte('lnput break char Icntrl Z to stopl:, '),
readln(break);
II not eol(lnput) then

begin
new len = bufferread(disk storage, buff array, len, ord(break)),
wnteln('The buller read. '),
wnteln(copy(buffer, 1, abs(new len)));
wnteln('Length. ',abs(new len):O);
If new len < 0 then wnteln('(Break char not lound)');

end.
until eof(lnput),

end

OPTIONAL SOFTWARE
ISIS-II CREDIT™ (CRT-Based Text Editor)

Intellec$ Microcomputer Development System
-Model BOO

Documentatiol'J Package

PASCAL 80 User's Guide (9B01015-01)

-Series II·Model 220, Model 230, Model 240
64KB of Memory
Dual-Diskette Drives
-Single- or Double-Density·
System Console
-Intel@ CRT or non-Intel$ CRT

"Recommended.

REQUIRED SOFTWARE
ISIS-II Diskette Operating System
-Single- or Double-Density

3-26

PASCAL User Manual and Report, Second Edition,
Kathleen Jensen and Niklaus Wirth

Shipping Media

Flexible Diskettes
-Single- and Double-Density

intel PASCAL 80

ORDERING INFORMATION

Description Part Number

MDS-381* PASCAL 80 Software Package

Requires Software License

·MDS is an ordering code only and is not used as a product name or trademark. MDS" is a registered trademark of Mohawk Data Sciences
Corporation.

SUPPORT CATEGORY: Level 0

3-27 AFN-Ol233B

inter
WordStar~ WORD PROCESSING SOF·TWARE

• Powerful, reliable, and use,...frlendly
word processing software package

• Six oo-screen menus and ten Help
menus provide quick command
reference

• Printout enhancements provide
numerous combinttd print functions

• Simple formatting commands including
Hyphe,,-Help

• Streamlines text entry

• Horizontal scrolling for wide pages

• Wordwrap removes need to worry
about right margin

• On-screen formatting displays text
exactly as It will be printed

• All functions easily controlled despite
differences in printers and ,consoles

WordStar, a popular word processing program written for use under the CP/Mt operating system, gives screen
editing oapabilities in an easy to learn and use format. The program is in 'use by programmers, and engineers
for documentation and program entry, as well as managers and secretaries.

With WordStar. the user can easily make insertions and deletions, move or copy blocks of text, and search for
and replace a string of text. WordStar will automatically reformat text upon command as these editing functions
are p~rformed.

Documents produced by WordStar can include any combination desired of pagination (page numbers), right
and left justification, subscripts, superscripts, underlining, boldface type, overstrikes, crossouts, and even
accents for use in foreign languages. Commands for all of these are entered with simple control-character
keystrokes which are well documented in the program's six help menus.

All WordStar commands are easily executed using the CTRL key and the standard typewriter keys. Using the
CTRL key, the function of standard keys can be changed to perform useful editing commands. The cursor
movement diamond (a group of standard keys on the keyboard) allows fast access to any area of text.

r--
Q W E· R+ T

r---
Y U I 0 P

QUICK SCAOI.L LINE SCNIlL DELm DELm Il1IPA TAB tBIIII PRINT
MENU LINE + + SCIIEtN WORD LINE

co __

MENU MENU

A S 0 F G H J K REkAT WORt) .~:R ~J'Ii" WORO OELm BACK HELP BLOCK FINOI - - CHAR SPACE MENU MENU 11M(

Z X C4 V B N M
SCROLL Lr SCROLL INSERT RI'OIIM INSERT RETURN LINE. SCREEN ON/OFF RETURN

Flgur.1. WordStar Keyboard Functions

The follawlng Ire'rldlmarks of Intel Corporation and Itl affillat •• and may be uHd only to identify Irtel pfoducts: B)(P' CREDit I, ICE, ICS. im, Inslte. Intel, INTEL, InteleVlllon,
Int.II"nt IdentH''''· ,'ln~1I8.nt ProgrlmlT!lnglll ,lntelllnk,lnteUlc, IMMX, 10SP. ,POS. ,RMX, ,SBC, ,sex, Library Manager, MCS. MULTIMODULE. Megachass,s, Micromainframe.
MUl.TIIUI. Muntc:hlhnel. Pluo-A--Iubbll, PROMPT, Promwarl. RUPI, AMX/80. System 2000, UPI. and tne combination of rCS. IAMX. Isec. ,sex. Ice. 12 ICE, MCS. or UPI and I
nur'ftfrIClllUnlx. Intel COrporation AuUITtlI No Alaponalbility for the UN Of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other Patent Licenses are
IIIIplllCI. {ClINTIL COfIIPOIIATION. ' .. 3 MAY'883
_81., MIIIM.". Irld SpeI1811'.ro 1,Id.ml,kl 01 MIc,OP,o Inlllnillonil. 3-28 ORDER NUMBER:210782-002
'CP/M II I roglll.rod I,_.,k 01 Dlgllll A_I,ch Inc. ,

intel· WordStar* WORD PROCESSING SOFTWARE

FEATURES

WordStar is designed to be simple for the novice to
use, while remaining sophisticated enough to be
appealing to even the most advanced user.

Standard typewriter keys are combined with the
"Control" key to provide a wide variety of editing
functions (Fig. 1). All cursor control is localized to the
ten keys in the "Cursor-Movement Diamond" (Fig. 2),
and the on-screen menu details the functions of the
other keys, so the user can quickly find functions
without memorizing them.

Wordwrap is a feature of WordStar that allows the
typist to entirely disregard margins. When typed
characters go beyond the right margin, WordStar
brings the last full word down to the next line auto
matically. The only time the Return key needs to be
used IS between paragraphs Margins can be auto
matically right and left justified both during and after
entry.

Horizontal Scrolling give the flexibility in creating
documents too wide to fit on the video screen. When
Wordwrap is disabled and a line is being typed
beyond normal screen width, the displayed lines are
automatically scrolled offscreen to the left. A single
keystroke can be used to move the lines back to their
normal position. Editing functions can also use HOri
zontal Scrolling to examine and modify any part of a
wide document.

The On-Screen Formatting feature displays the text
on the screen as it will appear when it is printed. This
allows the changing of margins, spacing, and other
format variables without requiring the use of a num
ber of intermediate printouts.

Hyphen-Help aids in reformatting by positioning the
cursor over a word requiring hyphenation at the end
of a line, and allowing the user to select a hyphen
ation point or decide not to hyphenate. Hyphens en
tered this way are "soft", and will not be printed if the
document is reformatted and the hyphen is no longer
required. Permanent or "hard" hyphens are inserted
while typing and will always be printed.

WordStar's Find and Replace command allows the
text to be scanned for a specified character string.
Once the string is found it will be replaced quickly
with the updated information. Options with this com
mand allow the user to perform functions like finding
the "nth" occurrence, performing the operation "n"
times, replacing the string without verification by the

3-29

user each time, searching backward, or to compen
sate for differences in upper and lower case letters
(i.e., at the beginning of a sentence).

Entire blocks of text can be marked at their begin
ning and ending, then moved to a new area as easily
as moving the cursor. Different block control com
mands allow the duplication and deletion of blocks
as well.

Column Move assists in the creation and editing of
tables of data. With Column Move, a column can be
taken from one table and moved to another table or
to another place in the same table. Columns can also
be easily duplicated or deleted.

Over 20 Page Formatting commands enable a range
of functions from producing automatic page
headings to overriding built-in parameters for line
height and character width. Margins can be set and
number of lines typed per page can be dictated via
these very simple commands. These page com
mands are especially useful in long documents.

Decimal Tab is a feature that assists in aligning fig
ures into columns. When a number is entered into a
decimal tab position, it will be automatically aligned
so that its decimal point is directly below thadecimal
pOint of the number on the line above.

Files can be combined with each other to form
derivative documents. One file can be inserted at any
point of another, beginning middle or end, with equal
simplicity.

Print controls, single letters entered while editing to
enhance the printout, permit the user of underscore,
boldface, underlining, double-strike, superscript,
subscript, overprint, and nearly any combination of
the above. This facilitates the generation of mathe
matical formulas with subscripts and superscripts,
and allows the text to include foreign words and
phrases with accents above and below certain let
ters. Alternate character pitch, for italics, and even
ribbon color selection can be controlled by WordStar
if these options are available on the printer in use.

Can be used with MailMerge· to generate chained
printing combining form letters with mailing lists.
Mail Merge allows names to be drawn from the ad
dress and insertod i to the text of the form letter.

SpellStar· may also he used with WordStar to check
the spelling in a document against both a 20,000-
word standard dictionary and a user-generated sup
plemental dictionary which can be used to store
names, buzz words, or abbreviations.

AFN-01315B

WordStar* WORD PROCESSING SOFTWARE

WordStar is easily adapted to nearly any video termi
nal and document printer, despite the wide variation
of options and communication standards used by
these devices. At installation time the user is
prompted through a sllries of questions which con
figure that WordStar installation to fit the hardware
at hand.

When an existing file is edited and saved, any previ
ous version of the file is saved under the original
filename as a .BAK extension (Le., after updating a
file entitled "LETTER" there would be two files, LET
TER and LETTER.BAK on the diskette). When a doc
ument is to be updated, its latest extension is
automatically used as input. Whenever a new .BAK
extension is created, the older .BAK version is
destroyed.

WordStar allows documents of almost any size to be
entered and edited. A Memory Management feature
automatically transfers text to and from mass storage
if the document is too farge to be held in main
memory at one time.

There are six Main Menus (Fig. 3A-3F) and ten Help
Menus to guide even the most inexperienced user
through a WordStar editing session. The Main or

On-Screen Menus are displayed at the top of the
screen along with the text being edited. Should the
user desire to filt the entire screen with text, the menu
displays can be turned on and off as desired.

The ten Help Menus guide the user through the use
of alt editing functions from Moving Text to Para
graph Reform.

Figure 2. The Cursor Movement Diamond

A:TFSl' .r:cx: P1GE 1 LINE 1 CDL 1 INSERl' ON «< MAIN MENO »>
* * CUrsor Movenent * * '* Delete *' * Miscellaneous * , * Other Menus *
"s char left "'D char right '''G char '''I Tab "'B Refollll , (fran Main only)
"A word left "p word right IOEL chr 1£' "V Insert On or Off I"J Help "R Block
"E line up "'X line down '''T word rt' "'L PindiReplce again '''0 Quick "p print
* * SCrolling * * I "y line I RE'l.'IJRN End paragraph 1 "0 Onscreen
"z line up "'W line down 1 , "N Insert a Rm'tlRN ,
"c screen up '"R screen down' , "0 Stop a CCIIIIIIU'ld 1
L-l-l-l-l-l-I-I-I-I-I-I R

•
Figure 3A. Main Menu: guide to the most frequently used commands. This menu
-and all other menus-can be called up at any time, or dropped to allow full·screen viewing of the text.

A:TEST.OOC PAGE 1 LINE 1 CX>L 1
< < < H E L P MEN U

INSERT ON
> > >

H Display and set the help level
, B Paragraph reform (CTRL B command)
F Flags in rightmost column of screen
o Dot commands, print ctrl(P command)

1 * Other Menus *
S Status line 1 (from Main only)
R Ruler line '''J Help' "K Block
M Margins and tabs '''0 Quick "p Print
P Place markets 1"0 Onscreen .
V Moving text. 'Spacebar returns

, 'you' to Main Menu.
L---l-l--I-I--~l--I---l---I---I----I---I .. ----R

•
Figure 3B. Help Menu: a directory of commands that control help levels and show reference Information.

3-30

WordStar* WORD PROCESSING SOFTWARE

AQ A:TEST.DOC PAGE 1 LINE 1 COL 1 INSERT ON
< < < QUI C K MEN U > > >

* * Cursor Movement * *1* Delete *1 * Miscellaneous * I * Other Menus *
S left side D right side IY line rtlF Find text in file I (from Main only)
E top of scrn X bottom scrnlDEL lin IflA Find .and Replace IAJ Help AK Block
R top of file C end of filel* * * *IL Find misspelling IAQ Quick Ap Print
B top of block K end of block I Q Repeat conmand or I AO Onscreen
0-9 marker Z up W down I key until space ISpace bar returns
V last Find or block I bar or other key Iyou to Main Menu.
L----!----!----I---l---l--l--!--I--I--I--I-----R
•
Figure 3C. Quick Menu: expanded cursor movement, deletion, find/replace commands, and place
marker commands.

AK A:TEST.DOC PAGE 1 LINE 1 COL 1 INSERT ON
«< BLOCK MENU »>

* Saving Files * 1* Block Operations *1 * File Operations *1 * Other Menus *
S Save and resumelB Begin K End IR Read P Print I (from Main only)
D Save--done IH Hide / Display 10 Copy E Rename IAJ Help AK Block
X Save and exit IC Copy Y DeletelJ Delete IAQ Quick Ap Print
Q Abandon file IV Move W Write 1* Disk Operations *IAO Onscreen

* Place Markers *IN Column off (ON) IL Change logged disk I Space bar returns
0-9 Set/hide # 0-91 IF Directory on (OFF) Iyou to Main Menu.
L---!--I---!--I--!--I---I---I--I--I--l R
•

Figure 3D: Block Menu: Instructions for using block and place markers, saving and printing a file, and
inserting other files.

AO A:~EST.DOC PAGE 1 LINE 1 COL 1 INSERT ON
< < < 0 N S C R E E N MEN U > > >

* Margins & Tabs * 1* Line Functions *1 * More Toggles * I * Other Menus *
L Set left margin IC Center text IJ Justify off (ON) I (from Main only)
R Set right margin IS Set line spacing IV vari-tabs off (ON) IAJ Help AK Block
X Release margins I IH Hyph-help off (ON) IAQ Quick Ap Print
I Set N Clear tab I * Toggles * IE Soft hyph on (OFF) lAO Onscreen
G Set paragraph tablW Wrd wrap off (ON) ID Prnt disp off (ON) ISpace bar returns
F Ruler from line IT Rlr line off (ON)IP Pge break off (ON) Iyou to Main Menu.
L---! ----I---I---I--I--I--! --I --1--1--1-------R

•
Figure 3E. Onscreen Menu: functions that perform onscreen documel'lt formatting (such as line spacing,
tabs, margins, justification, and wordWrap).

3-31 AFN·01315B

WotdStar""WORD PROCESSING SOFTWARE

A p A:TFST.DOC Pi\GE 1 LINE 1 COL 1 INSERT ON
«<PR'INT MENU ,»> ,

*Special Effects*1 * Special EffeCts * 1* Printing Changes *1 * Other Menus *
Jbe9in and end) I (one'time each) IA Alternate pitch I (fran Main only)
B Bold D QoublelH OVerprint characterlN Standard pitch IAJ Help ~K Block

S Underscore IONon-br~k space Ie Printing pause I~Q Quick ~P Print
X StrikeQut IF Phantan'space . IY Other ribbon color I ~O Onscreen
V Subscript IG Phantan rubout I * User Patches *ISpace bar returns
T Superscript IRETURN OVerprint linelQCl) W(2) E(3) R(4) Iyou to Main Menu.

L----I----I----I----I----I----I----I----I----I----I----I--------R

•
Figure 3F. Print Menu: special print control characters Including llIubscrlpts, superscripts, boldface,
double strike, and strikeout.

BENEFITS

WordStar is an advanced word-processing program
that can turn any CP/M based personal computer
into a sophisticated yet easy to learn and use text
processor. It takes very little time for even the least
trained user to learn to productively generate docu
mentation with WordStsr.

The simplifying features of WordStar do not detract
from its acceptance by advanced users. Menu.s and
other features are designed to be unobtrusive when
they are not needed. WordStar's sophistication
means that it will not run out of horsepower as the

user progresses, but will always be an appealing and
highly productive tool.

With WordStar there is no question about the appear
ance of the printed output, since the text can be dis
played on the screen exactly as it is to be printed.

Time savings when using WordStar will be consider
able. Generation of new text is easier than by
handwritten/typed means. When WordStar is used
for program editing it supplies powerful features un
available in other editors. With WordStar, both code
and documentation can be generated at the same
time within the same environment.

3-32

WordStar* WORD PROCESSING SOFTWARE

Table 1.

EDITING COMMAND INDEX

" hold CTRl key, type letter "KO abandon edit
" A cursor left word " KR Read additional file
" B reform paragraph " KS Save and reedit
"c scroll up screenful " KV moVe block
" 0 cursor right character "KW Write block to additional file
" E. cursor up line " KX save and eXit
" F cursor right word " KY delete block
"G delete character right " OC Center cursor line H cu rsor left character " 00 print control display onloff " I tab "
" J help PREFIX OE soft hyphen Entry onloff
"

" OF margins & tabs from line K editing PREFIX
"

" OG paraGraph tab l findlreplace again
"

" OH Hyphen-Help onloff M (Same as RETURN) "
" N insert hard carriage return 01 set tab stop

" OJ Justification onloff 0 formatting PREFIX
" OL set left margin P print control PREFIX -" 0 editing PREFIX ON clear tab stop
" R scroll down screentul OP P'!lge break display onloff
" S cursor left character OR set Right margin
" T delete word right OS set line Spacing
" U interrupt OT ruler display onloff
" V insert onloff OW Wordwrap
" W scroll down line · PA-" PZ enter" A-"Z
" X cursor down line "

"
PM make next line overprint

Y delete line PO enter non-break space
" Z scroll up line " 00- 09 cursor to marker·0-9 · JB explain reform OA find and replace · · JD summarize print directives OB cursor Block beginning · JF explain Flags · OC cu rsor end file · JH set Help level · QD cursor right end line · JI command il"ldex · QE cursor top screen · JM explain tabs and Margins QF Find · JP explain Place markers

,
QK cursor blocK end · , JR explain Ruler line , QL find misspelling

JS explain Status line QP cursor Previous position
, JV explain moVing text

,
QQ repeat next command · QR cursor beginning of file

'KO-'K9 set/hide marker 0-9
,

QS cursor left Side screen
• KB mark/hide Block beginning

,
QV cursor source

, KC Copy block
,

QW continuous downward scroll
, KD Done edit (save) · QX cursor bottom of screen
, KE rEname file

,
QY delete to end line

, KF File directory on/off
,

QZ continuous upward scroll
, KH Hide/display marked block

,
Qde' delete ~o beginning line

, KJ delete additional file
, DEL ' KK mark blocK end clllete character left

KL change Logged disk ' ESCAPE error release
• KN column mode onloff : LINE FEED (samE! as J)
• KO cOpy file RETURN hard carriage return
, KP Print ' TAB tab

3-33 AFN·OI315B

WordStar*WORD PROCESSING SOFTWARE

Table 1. (Continued)

NO:"FILE COMMANDS

D open a Document file
E rEname file
F File directory on/off
H set Help level
L change Logged disk
M run MailMerge (optional)
N open a Non-document file

SPECIFICATIONS

OPERATING ENVIRONMENT

Hardware Required

8080 or 8085 CPU
5V4" or 8" Diskette drive
Printer
64K Bytes of memory

. Console with absolute cursor addressing
Note Intellee Series II and III reqUIre IMDX-Sll

Optional hardware

Additional mass storage

Software Required
CP/M 2.2 operating system

ORDERING INFORMATION

Description

0 cOpy file
P Print
R Run program
S run SpeliStar (optional)
X eXit to operating system
V delete file

~

DOCUMENTATION PACKAGE

Wordstar Training Guide
Wordstar Operator's Guide

Wordstar General Information Manual
Wordstar Reference Manual
Wordstar Installation Manual

SUPPORT

Intel offers several levels of support for this product,
depending on the system configuration in which it is
used. Please consult the price list for a detailed
description of the support options available.

Intel software license is required.

WordStar word processing software package for use under the CP/M operating system

Order Code Shipping Media

SD111 CPM80ASU A-Single-density 8" 'diskette
SD111 CPM80BSU B-Double-density 8" diskette
SD111 CPM80FSU F iPDS Format 5V4" diskette

AFN·01315B

inter
iAPX 86,88

SOFTWARE DEVELOPMENT PACKAGES
FOR SERIES II/PDS

• PUM 86/88 High Level Programming
Language

• ASM 86/88 Macro Assembler for
iAPX 86,88 Assembly Language
Programming

• LINK 86/88 and LOC 86/88 Linkage and
Relocation Utilities

• CONY 86/88 Converter for Conversion
of 8080/8085 Assembly Langaage
Source Code to iAPX 86, 88 Assembly
Language Source Code

• OH 86/88 Object-to-Hexadecimal
Converter

• LIB 86/88 Library Manager

The IAPX 86,88 Software Development Packages for Series II provide a set of software development toois for
the iAPX 86/88 CPUs and the ISSC 86/12A single board computer The packages operate under the ISIS-II
operating system on Intel Microcomputer Development Systems-Model 800, Series II or the Personal Devel~
opment System (PDS)-thus minimiZing requirements for additional hardware or training for Intel Microcom,
puter Development System users.

These packages permit 8080/8085 users to efficiently upgrade existing programs into iAPX 86/88 code from
either 8080/8085 assembly language source code or PLiM 80 source code.

For the new Intel Microcomputer Development System user. the packages operating on a PDS or an Intellec
Series II, such as a Model 235, provide total iAPX 86,88 software development capability.

'C INTEl COPPORATION 1983 MAY 1983

3-35 AFN-01239E

inter iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS .

PUM 86/88 COMPILER
FOR SERIES II/PDS

• Language is Upward Compatible from
PL/M 80, Assuring MCS-80/85™ Design
Portability

• Supports 16-bit Signed Integer and
32-bit Floating Point Arithmetic in
Accordance with IEEE Proposed
Standard

• Easy-to-Learn, Block-Structured'
Language Encourages Program
Modularity

• Produces Relocatable Object Code
Which is Linkable to All Other 8086
Object Modules

• Supports Full Extended Addressing
Features of the iAPX 86/10 and 88/10
Microprocessors (Up to 1 Mbyte)

• Code Optimization Assures Efficient
Code Generation and Minimum
Application Memory Utilization

Like its counterpart for MCS-80/85 program development, PUM 86/88 IS an advanced, structured high-level
programming language. The PUM 86/88 compiler was created specifically for performing software develop
ment for the Intel iAPX 86,88 Microprocessors.

PUM 86/88 has significant new capabilities over PUM 80 that take advantage of the new facilities provided by
the iAPX 86,88 microsystem, yet the PUM 86/88 language remains compatible with PUM 80.

With the exception of. hardware-dependent modules, such as Interrupt handlers, PUM 80 applications may be
recompiled with PUM 86/88 with little need for modification. PUM 86/88, like PUM 80, is easy to learn,
facilitates rapid program development, and reduces program maintenance costs.

PUM IS a powerful, structured, high-level system implementation language in which program statements can
naturally express the program algorithm. This frees the programmer to concentrate on the logic of the
program without concern for burdensome details of machine or assembly language programming (such as
register allocation, meanings of assembler mnemonics, etc.).

The PUM 86/88 compiler efficiently converts free-form PUM language statements into equivalent 86/88
machine instructions. Substantially fewer PUM statements are necessary for a given application than if it were
programmed at the assembly language or machine code level.

The use of PUM high-level language for system programming, instead of assembly language .. results in a high
degree of engineering productivity during project development. This translates into significant reductions in
initial software development and follow-on maintenance costs for the user.

FEATURES

Major features of the Intel PUM 86/88 compiler and
programming language include:

Block Structure

PL!M source code is developed in a series of mod
ules, procedures, and blocks. Encouraging program
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible by clearly defining
the scope of user variables (local to a private proce
dur global to a public module, for example).

The use of procedures to break down a large prob
lem is paramount to productive software develop
ment. The PUM 86/88 implementation of a block

3-36

structure allows the use of REENTRANT which is
especially useful in system design.

Language Compatibility

PL/M 86/88 object modules are compatible with ob
ject modules generated by all other 86/88 translators.
This means that PUM programs may be linked to
programs written in any other 86/88 language.

Object modules are compatible with ICE-88 and
ICE-86 units; DEBUG compiler control provides the
In-CirCUit Emulators with symbolic debugging
capabilities.

PUM 86/88 Language is upward-compatible with
PL/M 80, so that application programs may be easily
ported to run on the iAPX 86 or 88.

AFN-01239E

intel' iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

Supports Five Data Types

PUM makes use of five data types for various appli
cations. These data types range from one to four
bytes, and facilitate various arithmetic, logic, and
addreSSing functions'

-Byte: 8-bit unsigned number
-Word: 16-bit unsigned number
-Integer: 16-blt Signed number
-Real: 32-bit floating POint number
-Pointer: 16-bit or 32-bit memory address

indicator

Another powerful facility allows the use of BASED
variables that map more than one variable to the
same memory location. This IS especially useful for
passing parameters, relative and absolute address
Ing, and memory allocation

Two Data Structuring Facilities

In addition to the five data types and based variables,
PLIM supports two data structuring facilities. These
add fleXibility to the referencing of data stored in
large groups.

-Array:

-Structure:

-Combinations
of Each:

Indexed list of same type data
elements
Named collection of same or dif
ferent type data elements

Arrays of structures or
structures of arrays

8087 Numerics Support

PLIM programs that use 32-bit REAL data may be
executed using the Numeric Data Processor for im
proved performance. All floating-point operations
supported by PUM may be executed on the8087
NDP, or the 8087 Emulator (a software module)
provided with the package. Determination of use of
the chip or emulator takes place at link-time, allow
Ing compilations to be run-time independent.

Built-In String Handling Facilities

The PUM 86/88 language contains built-In functions
for string manipulalton. These byte and word func
tions perform the following operations on character
strings: MOVE, COMPARE, TRANSLATE, SEARCH,
SKIP, and SET.

Interrupt Handling

PLIM has the facility for generating interrupts to
the iAPX 86 or 88 via software. A procedure may be
defined with the INTERRUPT at~ribute, and the
compiler will automatically initialize an interrupt
vector at the appropriate memory location. The
compiler will also generate code to same and re
store the processor status, for execution of the
user-defined interrupt handler routine. The proce
dure SET$INTERRUPT, the function retuning
an INTERRUPT$PTR, and the PLIM statement
CAUSE$INTERRUPT all add flexibility to user pro
grams involving interrupt handling.

Segmentation Control

The PLIM 86/88 compiler takes full advantage of
program addressing with the SMALL, COMPACT,
MEDIUM, and LARGE segmentation controls. Pro
grams with less than 64KB total code space can
exploit the most efficient memory addressing
schemes, whi.ch lowers total memory requirements.
Larger programs can exploit the flexibility of ex
tended one-megabyte addreSSing.

Code Optimization

The PLIM 86/88 compiler offers four levels of optimi
zation for significantly reducing overall program
size.

-Combination or "folding" of constant ex
pressions; and short-circuit evaluation of Boo
lean expressions.

-"Strength reductions" (such as a shift left rather
than multiply by 2); and elimination of common
sub-expressions within the same block.

-Machine code optimizations; elimination of
superfluous branches; re-use of duplicate code;
removal of unreadable code.

-Byte comparisons (rather than 20-bit address cal
culations) for pointer variables; optimization of
based-variable operations.

Compiler Controls

The PLIM 86/88 compiler offers more than 25 con
trols that facilitate such features as:

-Conditional compilation
-Intra- and Inter-module cross reference
-Corresponding assembly language code in the

listing file
-Setting overflow conditions for run-time handling

3-37 AFN-01239E

inl:el'iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

BENEFITS

PL/M 86/88 is designed to. be an efficient, cost
effective solution to the special requirements of
iAPX 86 or 88 Microsystem Software Development,
as illustrated by the following benefits of PLIM use:

Low Learning Effort

PLIM 86/88 is easy to learn and to use, even for the
novice programmer.

Earlier Project Completion

Critical projects are completed much earlier than
otherWise possible because PLIM 86/88, a
structured high-level language, increases pro
grammer productivity.

Lower Development Cost

Increases in programmer productivity translate im
mediately into lower software development costs

because less programming resources are required
for a given programmed function.

Increased Reliability

PLIM 86/88 is designed to aid in the development of
reliable software (PLIM 86/88 programs are simple
statements of the program algorithm). This substan
tially reduces the risk of costly correction of errors in
systems that have already reached full production
status, as the more simply stated the program is, the
more likely it is to perform its intended function.

Easier Enhancements and Maintenance

Prog rams written in PL/M tend to be self
documenting, thus easier to read and understand.
This means it is easier to enhance and maintain
PL/M programs as the system capabilities expand
and future products are developed.

iAPX 86,88 MACRO ASSEMBLER
FOR SERIES II/PDS

• Powerful and Flexible Text Macro
Facility with Three Macro Listing
Options to Aid Debugging

• Highly Mnemonic and Compact
Language, Most Mnemonics Represent
Several Distinct Machine Instructions

• "Strongly Typed" Assembler Helps
Detect Errors at Assembly Time

• High-Level Data Structuring Facilities
Such as "STRUCTUREs" and
"RECORDs"

• Over 120 Detailed and Fully Docu
mented Error Messages

• Produces Relocatable and Linkable
Object Code

ASM 86/88 is the "high-level" macro assembler for the iAPX 86,88 assembly language. ASM 86/88 translate~
symbolic 86/10,88/10 assembly language mnemonics into 86/10, 88/10 relocatable object code.

ASM 86/88 should be used where maximum code efficiency and hardware control is needed. The iAPX 86,88
assembly language includes approximately 100 instruction mnemonics. From these few mnemonics the
assembler can generate over 3,800 distinct machine instructions. Therefore, the software development task is
simplified, as the programmer need know only 100 mnemonics to generate all possible 86/10, 88/10 machine
instructions. ASM 86/88 will generate the shortest machine instruction possible given no forward referencing
or given explicit information as to the characteristics of forward referenced symbols.

ASM 86/88 offers many features normally found only in high-level languages. The iAPX 86,88 assembly
language is strongly typed. The assembler performs extensive checks on the usage of variables and labels.
The assembler uses the attributes which are derived explicitly when a variable or label is first defined, then
makes sure that each use of the symbol in later instructions conforms to the usage defined for that symbol.
This means that many programming errors will be detected when the program is assembled, long before it is
being debugged on hardware.

3-38 AF~-01239E

inter IAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

FEATURES

Major features of the Intel iAPX 86,88 assembler and
assembly language include:

Powerful and Flexible Text Macro Facility

- Macro calls may appear anywhere
- Allows user to define the syntax of each macro

Built-in functions
conditional assembly (IF-THEN-ELSE, WHILE)
repetition (REPEAT)
string processing functions (MATCH)
support of assembly time 1/0 to console (IN, OUT)

- Th'ree Macro Listing Options include a GEN
mode which provides a complete trace of all
macro calls and expansions

High·Level Data Structuring Capability

- STRUCTURES: Defined to be a template and
then used to allocate storage. The familiar dot
notation may be used to form instruction
addresses with structure fields.

- ARRAYS: Indexed list of same type data ele
ments.
RECORDS: Allows bit-templates to be defined
and used as instruction operands andlor to allo
cate storage.

Fully Supports IAPX 86,88
Addressing Modes

Provides for complex address expressions in
volving base and indexing registers and
(structure) field offsets.

- Powerful EaU facility allows complicated ex
pressions to be named and the name can be used
as a synonym for the expression throughout the
module.

Powerful STRING MANIPULATION
INSTRUCTIONS

- Permit direct transfers to or from memory or the
accumulator.

- Can be prefixed with a repeat operator for repe
titive execution with a count-down and a condi
tion test.

3-39

Over 120 Detailed Error Messages

- Appear both in regular listfile and error printfile.
- User documentation fully explains the occur-

renCe of each error and suggests a method to
correct it.

Support for ICE·86™ Emulation and
Symbolic Debugging

- Debug options for inclusion of symbol table in
object modules for In-Circuit Emulation with
symbolic debugging.

Generates Relocatable and Linkable
Object Code-Fully Compatible with
LINK 86/88, LOC 86/88 and LIB 86/88

Permits ASM 86/88 programs to be developed
and debugged in small modules. These modules
can be easily linked with other ASM 86/88 or
PL/M 86/88 object modules and/or library
routines to form a complete application system.

BENEFITS

The iAPX 86,88 macro assembler allows the exten
sive capabilities 'of the 86/88 CPU's to be fully ex
ploited. In any application, time and space critical
routines can be effectively written in ASM 86/88. The
86,88 assembler outputs relocatable and linkable ob
ject modules. These object modules may be easily
combined with object modules written in PL/M
86/88-lntel's structured, high-level programming
language. ASM 86/88 compliments PL/M 86/88 as the
programmer may choose to write each module in the
language most appropriate to the task and then com
bine the modules into the complete applications pro
gram using the iAPX 86,88 relocation and linkage
utilities.

AFN-01239E

inter iAPX 88,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

. . CONV 86/88
MCS@·80/85 to iAPX 86,88 ASSEMBLY LANGUAGE

CONVERTER UTILITY PROGRAM·

• Translates 8080/808.5 Assembly
Language Source Code to iAPX 86,88
Assembly Language Source Code

• Provides a Fast and Accurate Means to
Convert 8080/8085 Programs to the
iAPX 86/88 Facilitating Program
PortabUity

• Automatically Generates Proper ASM
86/88 Directives to Set Up a "Virtual
8080" Environment that Is Compatible
with PL/M 86/88

In support of Intel's commitment to software portability, CONY 86/88 is offered as a tool to move 8080/8085
programs to the iAPX 86/88. A comprehensive manual, "MCS-86 Ass'embly Language Converter Operating
Instructions for ISIS-II Users," covers the entire conversion process. Detailed methodology of the conversion
process is fully described therein.

- CONY 86/88 will accept as input an error-free
8080/8085 assembly-language source file and
optional controls, and produce as output, op
tional PRINT and OUTPUT files.

- The PRINT file is a formatted copy of the
8080/8085 source and the 86/88 source file with
embedded caution messages.

- The OUTPUT file is an 86/88 source file.

- CONY 86/88 issues a caution message when it
detects a potential problem in the converted
86/88 code .

....:... A transliteration of the 8080/8085 programs oc
curs, with each 8080/8085 construct mapped to its
exact 86/88 counterpart:

Registers
Condition flags
Instruction
Operands
Assembler directives
Assembler control lines
Macros

Because CONY 86/88 is a transliteration process,
there is the possibility of as much as a 15%-20%
code expansion over the 8080/8085 code. For com
pactness and efficiency it is recommended that crit
ical portions of programs be re-coded in iAPX 86,88
assembly language.

Also, as a consequence of the transliteration, some
manual editing may be required for converting in
struction sequences dependent on:

-instruction length, timing, or encoding
-interrupt processing"
-PWM parameter passing conventions"

3-40

"Mechanical editing procedures for these are sug
gested in the converter manual.

The accompanying figure illustrates the flow of the
conversion process. Initially, the abstract program
may be represented in 8080/8085 or iAPX 86,88 as
sembly language to execute on that respective target
machine. The conversion process Is porting a source
destined for the 6080/8065 to the 86/88 via CONY
66/88.

AFN·01239E

intel' iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

SOURCE CODE
IN 8080/8085

ASSEMBLY LANG

ABSTRACT PROGRAM SOURCE CODE
IN 86110, 88110

ASSEMBl V LANG

~" .. ~ .. " ~ FOR
8080lB085

!

1
EXECUTe

ON
80808085

ALGORITHM

r- ~SSEM9LE
CONY 86188 -------ioiL. __ FO,...R_--I • 86/10, 88110

EQUIVALENT
FUNCTION

EXECUTE
ON

86110, 88/10

Figure 1. Porting 8080/8085 Source Code to the iAPX 86/10 and 88/10

LINK 86/88

• Automatic Combination of Separately
Compiled or Assembled iAPX 86, 88
Programs Into a Relocatable Module

• Automatic Selection of Required
Modules from Specified Libraries to
Satisfy Symbolic .References

• Extensive Debug Symbol
Manipulation, Allowing Line Numbers,
Local Symbols, and Public Symbols to
be Purged and Listed Selectively

• Automatic Generation of a Summary
Map Giving Results of the LINK 86/88
Process

• Abbreviated Control Syntax

• Relocatable Modules may be Merged
into a Single Module Suitable for
Inclusion in a Library

• Supports "Incremental" Linking

• Supports Type Checking of Public and
External Symbols

LINK 86/88 combines object modules specified in the LINK 86/88 input list into a single output module. LINK
86/88 combines segments from the input modules according to the order in which the modules are listed.

LINK 86/88 will accept libraries and object modules built from PLIM 86/88, ASM 86/88, or any other translator
generating Intel's iAPX 86/88 Relocatable Object Modules.

Support for incremental linking is provided since an output module produced by LINK 86/88 can be an input to
another link. At each stage in the incremental linking process, unneeded public symbols may be purged.

LINK 86/88 supports type checking of PUBLIC and EXTERNAL symbols reporting an error if their types are not
consistent.

LINK 86/88 will link any valid set of input modules without any controls. However, controls are available to con
trol the output of diagnostic information in the LINK 86/88 process and to control the content of the output
module.

LINK 86/88 allows the user to create a large program as the combination of several smaller, separately com
piled modules. After development and debugging of these component modules the user can link them
together, locate them using LOC 86/88 and enter final testing with much of the work accomplished.

3-41 AFN·01239E

intel' iAPX 86,88 SOFTWARl: DEVELOPMENT PACKAGES FOR SERIES II/PDS

LIB 86/88

• LIB 86/88 is a Library Manager
PrograR:! which Allows You to:

Create Specially Formatted Files to
Contain Libraries of Object Modules

Maintain These Libraries by Adding or
Deleting Modules
Print a Listing of the Modules and
Public Symbols in a Library File

• Libraries Can be Used as Input to
LINK 86/88 Which Will Automatically
I,.ink Modules from the Library that
Satisfy External References in the
Modules Being Linked

• Abbreviated Control Syntax

Libraries aid in the job of building programs. The library manager program LIB 86/88 creates and maintains
files containing object modules. The operation of LIB 86/88 is controlled by commands to indicate which op
eration LIB 86/88 IS to perform. The commands are:

CREATE: creates an empty library file
ADD: adds object modules to a library file
DELETE: deletes modules from a library file
LIST: lists the module directory of library files
EXIT. terminates the LIB 86 program and returns control to ISIS-II

When using object libraries, the linker will call only those object modules that are required to satisfy external
references, thus saving memory space.

LOC 86/88

• Automatic Generation of a Summary
Map Giving Starting Address, .Segment
Addresses and Lengths, and Debug
Symbols and their Addresses

• Extensive Capability to Manipulate the
Order and Placement of Segments in
iAPX 86/88 Memory

• Abbreviated Control Syntax

• Automatic and Independent
Relocation of Segments. Segments
May Be Relocated to Best Match
Users Memory Configuration

• Extensive Debug Symbol
Manipulation, Allowing Line Numbers,
Local Sy.mbols, and Public Symbols to
be Purged and Listed Selectively

Relocatabllity allows the programmer to code programs or sections of programs without having to know the
final arrangement of the· object code in memory.

LOC 86/88 converts relative addresses in an input module to absolute addresses. LOC 86/88 orders the seg
ments in the input module and assigns absolute addresses to the segments. The sequence in which the seg
ments in the input module are assigned absolute addresses is determined by their order in the input module
and the controls supplied with the command.

LOC 86/88 will relocate any valid input module without any controls. However, controls are available to control
the output of diagnostic info.rmation in the LOe 86/88 process, to control the content of the output module, or
both.

The program you are developing will almost certainly use some mix of random access memory (RAM), read
only memory (ROM), and/or programmable read-only memory (PROM). Therefore, ttie location of your pro
gram affects both cost and performance in your application. The relocation feature allows you to develop your
program on the Intellec development system and then simply relocate the object code to suit your application ..

3-42 AFN-01239E

inter iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGES FOR SERIES II/PDS

OH 86/88

• Converts an iAPX 86/88 Absolute
Object Module to Symbolic
Hexadecimal Format

• Facilitates Preparing a File for Later
Loading by a Symbolic Hexadecimal
Loader, such as the iSBC™ Monitor
SDK-86 Loader, or Universal PROM
Mapper

• Converts an Absolute Module to a
More Readable Format that can be
Displayed on a CRT or Printed for
Debugging

The OH 86/88 utility converts an 86/88 absolute object module to the hexadecimal format This conversion may
be necessary to format a module for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or
Universal PROM Mapper The conversion may also be made to put the module in a more readable format than
can be displayed or printed

The module to be converted must be In absolute format; the output from LaC 86/88 is in absolute format.

Figure 2. iAPX 86,88 Software Development Cycle

3-43 AFN·01239E

inl:el" iAPX 86,88 SOFTWARE DEVELOPMENT PACKAGi:S FOR SERIES II/PDS

SPECIFICATIONS

Operating Environment
Intel Microcomputer Development Systems
Intel Personal Development System

Documentation

PL/M-86 Programming Manual

ISIS-1/ PL/M-86 Compiler Operator's Manual

. MCS-86 User's Manual

MCS-86 Software Development Utilities Operating
Instructions for ISIS-1/ Users

MCS-86 Macro Assembly Language Reference
Manual

MCS-86 Macro Assembler Operating Instructions
for ISIS-1/ Users

MCS-86 Assembly Language Converter Operating
Instructions for ISIS-1/ Users

Universal PROM Programmer User's Manual

SUPPORT:

ORDERING INFORMATION

iAPX 86,88 Software Development
Packages for Series II:

Part No.

MDS-308*

MDS-309*

MDS-311 *

Description

Assembler and Utilities
Package

PUM compiler and Utilities
Package

PUM compiler, Assembler,
and Utilities Package

All Packages ReqUire Software Licenses

Hotline Telephone Support, Software Performance Reports (SPR), Software Updates, Technical Reports,
Monthly Newsletters are available

*MDS is an ordering code only and IS not used as a product name or trademark. MDS® is a registered trade
mark of Mohawk Data Sciences Corporation.

3-44 AFN-01239E

86/88/186/188 SOFTWARE PACKAGES
FORTRAN 86/88 Software Package
• Features High-Level Language

Support for Floating-Point
Calculation, Transcendentals,
Interrupt Procedures, and run-time
exception handling

• Meets ANS FORTRAN 77 Subset
Language Specifications

• Supports Complex Data Types

PASCAL 86/88 Software Package

• Resident on iAPX 86 Based Intel
Microcomputer Development Systems

• Object Compatible and Linkable with
PUM 86/88, ASM 86/88 and FORTRAN
86/88

• Supports Large Array Operation

ASM PROGRAMS

PL/M PROGRAMS

CPROGRAMS

FORTRAN
PROGRAMS

PASCAL PROGRAMS

:il
;::
:::;
;::
:::!
W
C!l

~
Z
:::;
CD

"" X
Il.
:'!

PUM 86/88/186/188 Software Package

• Advanced Structured System Imple
mentation Language for Algorithm
Development

• Supports 16-bit Signed Integer and
32-bit Floating Point Arithmetic in
Accordance with IEEE Proposed
Standard

• Easy-to-Learn Block-Structured
Language Encourages Program
Modularity

iC-86 C Compiler for the 8086

• Implements Full C Language

• Produces High Density Code
Rivaling Assembler

• Supports Intel Object Module
Format (OMF)

TARGET
SYSTEM

COMPATIBLE
DEBUGGERS
e.g. PSCOPE,

ICETM DEBUGGER

Figure 1. Program modules compiled with any of the iAPX 86 languages may be linked together.
Each language is compatible with Intel's debug tools.

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than CircUitry Embodied In an Intel Product No Other CirCUit
Patent LIcenses are Implied Information Contained Herem Supercedes Previously Published SpecIfications On These DeVices From Intel

INTEL CORPORATION. 1983

3-45
SEPTEMBER 1984

ORDER NUMBER: 210689·003

FORTRAN 86/88
SOFTWARE PACKAGE

• Features high-level language support
for floating-point calculations,
transcendentals, interrupt procedures,
and run-time exception handling

• Meets ANS FORTRAN 77 Subset
Language Specifications

• Supports iAPX 86/20, 88/20 Numeric
Data Processor for fast and efficient
execution of numeric instructions

• Uses REALMATH Floating-Point
Standard for consistent and reliable
results

• Supports Arrays Larger Than 64K

• Unlimited User Program Symbols

• Offers powerful extensions tailored to
microprocessor applications

• Offers upward compatibility with
FORTRAN 80

• Provides FORTRAN run-time support
for iAPX 86,88,186,188-based design

• Provides users ability to do formatted
and unformatted I/O with sequential or
direct access methods

• ICE™ SymboliC Debugging Fully
Supported

• PSCOPE Source Level Debugging Fully
Supported

• Supports complex data types

FORTRAN 86/88 meets the ANS FORTRAN 77 Language Subset Specification and includes many features of
the full standard. Therefore, the user is assurep of portability of most existing ANS FORTRAN programs and of
full portability from other computer systems with an ANS FORTRAN 77 Compiler.

FORTRAN 86/88 programs developed and debugged on the Intel Microcomputer Development Systems may be
tested with the prototype using ICE symbolic debugging, and executed on an RMX-86 operating system, or on a
user's iAPX 86,88,186,188-based operating system.

FORTRAN 86/88 is one of a complete family of compatible programming languages for iAPX 86,88,186,188
development: PUM, Pascal, FORTRAN, and Assembler. Therefore, users may choose the language best suited
for a specific problem solution.

© INTEL CORPORATION, 1983 MAY 1983

3-46

intel' FORTRAN 86/88 SOFTWARE PACKAGE

FEATURES

Extensive High-Level Language
Numeric Processing Support

Single (32-bit), double (64-bit), and double extended
precision (80-bit) floating-pOint data types

REALMATH Proposed IEEE Floating-Point Stan
dard) for consistent and reliable results

Full support for all other data types: integer, logical,
character

Ability to use hardware (iAPX 86/20, 88/20 Numeric
Data Processor) or software (simulator) floating
point support chosen at link time

ANS FORTRAN 77 Standard

Intel® Microprocessor Support

FORTRAN 86/88 language features support of iAPX
86/20, 88/20 Numeric Data Processor

Compiler generates in-line iAPX 86/20, 88/20 Nu
meric Data Processor object code for floating-point
arithmetic (See Figure 1)

Intrinsics allow user to control iAPX 86/20, 88/20
Numeric Data Processor

iAPX 86,88,186,188 architectural advantages used
for indexing and character-string handling

Symbolic debugging of application uSing ICE
emulators

Source level debugging using PSCOPE.

[FLOATING.POINT.STATMENT]

TEMPER = (PRESS - VOlUM I JUEK) - 3.45 I (PRESS - VOlUM I QUEK)
& - (PRESS - VOlUM I QUEK) * (PRESS - VOlUM I QUEK)

OBJECT CODE GENERATED I

Intel FORTRAN-86 Compl.ler

iAPX 86/20, 88/20
[iSSEMBLER MNEMONI~ • MACHINE CODE

- , STAT::MENT # 2
0013 9309060COO FlJ VOlUM
0018 9608360000 F DIV :;)UEK
0010 9B082E0800 FSU5~ PRESS
0022 960001 FST T:JS+1H
0025 9B2E083EOOOO FOIV~ CS:@CONST
0026 9609C9 FXCrlG TOS+1H
002E 960002 FST TOS+2H
0031 9BOEE9 FSU6RP
0034 9609C1 FLO T:J5+1H
0037 9B08C8 FMUl T05
0034 9BOOC2 FFREE TOS+2f1
0030 9BOEE1 FSUSP
0040 9B091E0400 F5TP TEMPER
0045 9B wAIT

Figure 2. Object Code Generated by FORTRAN 86/88 for a Floating·Point Calculation Using iAPX 86/20,
88/20 Numeric Processor.

3-47 AFN-016538

intel· FORTRAN 86/88 .SOFTWARE PACKAGE

Microprocessor Application Support

-Direct byte- or word-oriented port I/O

-Reentrant procedures

-Interrupt procedures

Flexible Run-Time Support

Application object code may be executed in iAPX 86,
88,186,188-based environment of user's choice:

-a Series III or Series IV Intellec Development System

-an iAPX 86,88,186,188-based system with iRMX-86
Operating System

-an iAPX 86,88,186,188-based system with user
designed Operating System

Run-time exception handling for fixed-point nu
merics, floating-point numerics, and I/O errors

Relocatable object libraries for complete run-time
support of I/O and arithmetic functions. In-line code
execution is generated for iAPX 86/20, 88/20 Nu-
meric Data Processor .

BENEFITS

FORTRAN 86/88 provides a means of developing ap
plication software for the Intel iAPX 86,88,186,188
products lines in a familiar, widely accepted, and
industry-standard programming language. FOR
TRAN 86,88 will greatly enhance the user's ability to
provide cost-effective software development for
Intel microprocessors as illustrated by the foliowing:

SPECIFICATIONS

Operating Environment

Intel Microcomputer Development Systems (Series
III/Series IV)

Early Project Completion

FORTRAN is an industry-standard, high-level
numerics processing language. FORTRAN pro
grammers can use FORTRAN 86/88 on micropro
cessor projectswith Iittle.retraining. Existing FOR
TRAN software can be compiled. with FORTRAN
86/88 and programs developed in FORTRAN 86/88
can run on other computers with ANS FORTRAN 77
with little or no change. Libraries of mathematical
programs using ANS 77 standards may be compiled
with FORTRAN 86/88.

Application Objec~ Code
Portability for a Processor Family.

FORTRAN 86/88 modules "talk" to the resident Intel
lec development operating system using Intel's stan
dard interface for all development-system software.
This allows an application developed under the ISIS
II operating system to execute on iRMX/86, or a user
supplied operating system by linking in the iRMX/86
or other appropriate interface library. A standard
logical-record interface enables communication
with non-standard I/O devices.

Comprehensive, Reliable
and Efficient Numeric Processing

. The unique combination of FORTRAN 86/88, iAPX
86/20, 88/20 Numeric Data Processor, and
REALMATH (Proposed IEEE Floating-Point Stan
dard) provide univel'6al consistency in results of
numeric computations and efficient object code
generation.

Documentation Package

FORTRAN 86/88 User's Guide

3-48 AFN-016538

FORTRAN 86/88 SOFTWARE PACKAGE

ORDERING INFORMATION

Part Number Description

MDS*-315 FORTRAN 86/88 Software Package

Requires Software License

SUPPORT

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a deSCription of the support
options available.

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of
Mohawk Data Sciences Corporation.

3-49 AFN·O,653B

intJ
PASCAL 86/88

. SOFTWARE PACKAGE

• Resident on IAPX 86 Based Intel • Unlimited User Program Symbols
Microcomputer Development Systems • Supports IAPX86/20, 88/20 Numeric

• Object Compatible and Linkable with Data Processors
PUM 86/88, ASM 86/88 and FORTRAN • Strict Implementation of ISO Standard
86/88 Pascal

• ICE™ Symbolic Debugging Fully • Useful Extensions Essential for
Supported Microcomputer Ai)pllcatlons

• PSCOPE Source Level Debugging Fully • Separate Compilation with Type-
Supported Checking Enforced Between Pascal

• Implements REALMATH for Consistent Modules
and Reliable Results • Complier Option to Support Full Run-

• Supports large array operation Time Range-Checking

PASCAL 86/88 conforms to and implements the ISO Draft Proposed Pascal standard. The language is
enhanced to support microcomputer applications with special features, such as separate compilation, inter
rupt handling and direct port I/O. To assist the development of portable software, the compiler can be directed
to flag all non-standard features.

The PASCAL 86/88 compiler runs on Series III and Series IV Microcomputer Development Systems. A well-defined I/O interface is
provided for run-time support. This allows a user-written operating system to support application programs as an alternate to the
development system environment. Program modules compiled under'PASCAL 86/88 are compatible and linkable With modules
written in PLIM 86/88, ASM 86/88 or FORTRAN 86/88. With a complete family of compatible programming languages for the iAPX
86,88, 186, 188 one can implement each module in the language most appropriate to the task at hand.

PASCAL 86/88 object modules contain symbol and type information for program debugging using ICE™
emulators and PSCOPE source language debugger. For final production version, the compiler can remove this
extra information and code.

Intel--Corporatlon Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other
Circuit Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications of These Devices
from Intel. JUNE 1984
© INTEL CORPORATION, 1983

3-50

PASCAL 86/88

FEATURES

Includes all the language features of Jensen & Wirth
Pascal as defined in the ISO Draft Proposed Pascal
Standard.

Supports required extensions for microcomputer
applications.

-Interrupt handling
-Direct port 110

Separate compilation extensions allow:

-Modular decomposition of large programs

-Linkage with other Pascal modules as well as PUM
86/88/186/188, ASM 86/88/186/188 and FORTRAN
86/88.

-Enforcement of type-checking at LINK-time

BENEFITS

Provides a standard Pascal for iAPX 86,88,186,188
based applications.

-Pascal has gained wide acceptance as the port
able application language for microcomputer
applications

-It IS being taught in many colleges and universities
around the world

-It is easy to learn, originally Intended as a vehicle
for teaching computer programming

-Improves maintainability: Type mechanism is
both strictly enforced and user extendable

-Few machine specific language constructs

Strict Implementation of the proposed ISO standard
for Pascal aids portability of application programs. A
compile time option checks conformance to the
standard making it easy to write conforming
programs.

PASCAL 86/88 extensions via predefined proce
dures for interrupt handling and direct port 110 make
It possible to code an entire application in Pascal
without compromising portability.

Standard Intel REALMATH is easy to use and pro
vides reliable results, consistent with other Intel
languages and other implementations of the IEEE
proposed Floating-Point standard.

3-51

Supports numerous compiler options to control the
compilation process, to INCLUDE files, flag non
standard Pascal statements and others to control
program listings and object modules.

Utilizes the IEEE standard for Floating-Point Arith
metic (the Intel REALMATH standard) for arithmetic
operations.

Well-defined and documented run-time operating
system interfaces allow the user to execute the ap
plications under user-designed (',perating systems.

Predefined type extensions allow:

-Create precision in read, integer, and unsigned
calculations.

-Means to check 8087 erl"Ors

-Circumvention of rigid type checking on calls to
non-Pascal routines

Provides run-time support for co-processors. All
real-type arithmetic is performed on the 86/20 nu
meric data processor unit or software emulator.
"Run-time library routines, common between Pascal
and other Intel languages (such as FORTRAN), per
mit efficient and consistently accurate results.

Extended relocation and IInkaye support allows the user to
link Pascal program modules With routines wntten In other
languages for certain parts of the program. For example, real
time or hardware dependent routmes wntten In ASM
86/88/186/188 or PUM 86/88/186/188 can be linked to Pascal
routines. further extending the user's ability to wnte structured
and modular programs.

PASCAL 86/88 programs "talk" to the resident
operating system using Intel's standard interface for
translated programs. This allows users to replace
the development operating system by their own
operating systems in the final application.

PASCAL 86/88 takes full advantage of IAPX 86, 88, 186, 188
high level language architecture to generate effiCient machine
code

Compiler options can be used to control the program
listings and object modules. While debugging, the
user may generate additional information such as the
symbol record information required and useful for
debugging using PSCOPE or ICE emulation. After
debugging, the production version may be stream
lined by removing this additional information.

AFN-01652B

PASCAL '86/88

SPECIFICATIONS

Operating Environment

REQUIRED HARDWARE
Intel Microcomputer Deve!opment Sys,tems (Series III. Series
IV)

ORD,ERING INFORMATION

Part Number Descr:iption

MDS*-314 PASCAL 86/88 Software Package

Requires software license,

Documentation PacJ(age

PASCAL 86 User's Guide

• MDS is an ordering code only and IS not used as a product name or trademark, MDS" is a registered trademark of Mohawk Data Science,

SUPPORT:

Hotline Telephone Support. Software Performance Report (SPR). Software Updates. Technical Reports. and
Monthly Technical Newsletters are available.

3-52 AFN-01652B

PL/M 86/88/186/188 Software Package

• Systems Programming Language for • Improved Compiler Performance Now
the iAPX 86/88/186/188 Processors Supports More User Symbols and

• Language Is Upward Compatible from Faster Compilation Speeds

PUM 80, Assuring MCS®-80/85 Design • Produces Relocatable Object Code
Portability Which Is Linkable to All Other 8086

• Advanced Structured System Imple- Object Modules

mentation Language for Algorithm • Code Optimization Assures Efficient
Development Code Generation and Minimum

• Supports 16-Bit Signed Integer and Application Memory Utilization

32-Bit Floating Point Arithmetic in • Built-In Syntax Checker Doubles Per-
Accordance with IEEE Proposed formance for Compiling Programs
Standard Containing Errors

• Easy-to-Learn Block-Structured • Resident on iAPX 86 Intel Micro-
Language Encourages Program computer Development Systems
Modularity

PUM 86 is an advanced, structured, high-level systems programming language. The PUM 86 compiler was
created specifically for performing software development for the Intel 8086, 8088, 80186 and 80188 Microproces
sors. PUM was designed so that program statements naturally express the program algorithm. This frees the
programmer to concentrate on the logic of the program without concern for burdensome details of machine or
assembly language program~ing (such as regist~r allocation, meanings of assembler mnemonics, etc.).

The PUM 86 compiler efficiently converts free-form PUM language statements into machine instructions. Sub
stantially fewer PUM statements are necessary for a given application than if it were programmed at the assembly
language or machine code level.

The use of PUM high-level language for system programming, instead of assembly language, results in a
high degree of engineering productivity during project development. This translates into significant reduc
tions in initial software development and follow-up maintenance costs for the user.

NOTE The Intellec@ Development System pictured here IS not Included With the PLfM 86/88 Software package but merely depicts a language In Its operating environment
The follOWing are trademarks of Intel Corporation and Its affiliates and may be used only to identIfy Intel products 8XP, CREDIT, I, ICE, leS, 1m, In site, Intel, INTEL, IntaleVISlon,
Intellnk, Intellee, IMMX, IOSP, lPDS, IRMX, ,sac, .SBX, library Manager, MeS, MULTIMODULE, Megachassls Micromainframe, MULTI BUS, Multichannel, Plug-A·Bubble,
PROMPT, Promware, RUPI, RMX/80, System 2000, UPI, and the combination ICS, IRMX, ISBC, IS ex, ICE, 121CE, MCS, or UPI and numerical suffiX Intel Corporation Assumes No
Responsibility for the use of Any Circuitry Other Than Circuitry Embo~led In an Intel product No Other Patent Licenses are Implied ©INTEL CORPORATION, 1983

MAY 1983

3-53

inter PL/M 86/88/186 SOFTWARE PACKAGE

FEATURES
Major features of the Intel PLiM 86 compiler and
programming language include:

Block Structure
PLiM source code is developed in a series of
modules, procedures, and blocks. Encouraging
program modularity in this manner makes pro
grams more readable, and easier to maintain and
debug. The language becomes more flexible, by
clearly defining the scope of user variables (local
to a private procedure).

The use of procedures to break down a .Iarge
problem is paramount to productive software
development. The PLiM 86 implementation of a
block structure allows the use of REENTRANT
(recursive) procedures, which are especiaily use
ful in system design.

Language Compatibility
PLiM 86 object modules are compatible with ob
ject modules generated by all other iAPX 86
translators. This means that PLiM programs may
be linked to programs written in any other iAPX 86
language.

Object modules are compatible with In-Circuit
Emulators; DEBUG compiler control provides the
In-Circuit Emulators with symbolic debugging
capabilities.

PLiM 86 Language is upward compatible with
PLiM 80, so that application programs maybe
easily ported to run on the iAPX8\5.

Supports Seven Data Types
PLiM makes use of seven data types for various
applications. These data types range from one to
four bytes, and facilitate various arithmetiC, logiC,
and addressing functions:

-Byte: 8-bit unsigned number
-Word: 16-bit unsigned number
-DWORD: 32-bit unsigned number
-Integer: 16-bit signed number
-Read: 32-bit floating point number
-Pointer: 16-bit or 32-bit memory address

indicator
-.,Selector: 16-bit base portion of a pointer

Another powerful facility allows the use of BASED
variables that map more than one variable to the
same memory location. This is especially useful
for passing parameters, relative and absolute ad
dressing, and memory allocation.

Two Data Structuring Facilities
In addition to the five data types and based
variables, PLiM supports two data structuring
facilities. These help the user to organize data in
to logical groups.

- Array: Indexed list of same type data elements
- Structure: Named collection of same or dif-

ferent type data elements
- Combinations of Each: Arrays of strl!ctures or

structures of arrays

8087 Numerics Support
PLiM programs that use 32-bit REAL data may be
executed using the Numeric Data Processor for
improved performance. All floating-point opera
tions siJpported by PLiM may be executed on the
iAPX 86/20 or 88/20 NDP, or the 8087 Emulator (a
software module) provided with the package.
Determination of use of the chip or Emulator
takes place at linktime, allowing compilations to
be run-time independent.

Built·ln String Handling Facilities
The PLiM 86 language contains built-in functions
for string manipulation. These byte and word
functions perform the following operations on
character strings: MOVE, COMPARE,
TRANSLATE, SEARCH, SKIP, and SET.

. Interrupt Handling

3-54

PLiM has the facility for handling interrupts. A
procedure may be defined with the INTERRUPT
attribute, and the compiler will automatically in
itialize an interrupt vector at the appropriate
memory location. The compiler will also generate
code to save and restore the processor status, for
execution of the user-defined interrupt handler
routine. The procedure SET$INTERRUPT, the
function retuning an INTERRUPT$PTR, and the
PLiM statement CAUSE$INTERRUPT all add flex
ibility to user programs involving interrupt and
handling.

AFN-01661C

intJ PL/M 86/88/186 SOFTWARE PACKAGE

Compiler Controls
. Including several that have been mentioned, the
PLIM 86 compiler offers more than 25 controls
that facilitate such features as:

- Conditional compilation
- Including additional PLIM source files from

disk
- Corresponding assembly language code in the

listing file
- Setting overflow conditions for run-time

handling

Segmentation Control
The PLIM 86 compiler takes full advantage of pro
gram addressing with the SMALL, COMPACT,
MEDIUM, and LARGE segmentation controls. Pro
grams with less than 64KB total code space can
exploit the most efficient memory addressing
schemes, which lowers total memory require
ments. Larger programs can exploit the flexibility
of extended one-megabyte addressing.

Code Optimization
The PLIM 86 compiler offers four levels of op
timization for significantly reducing overall pro
gram size.

- Combination or "folding" of constant expres
sions; and short-circuit evaluation of Boolean
expressions

- "Strength reductions" (such as a shift left
rather than multiply by 2); and elimination of
common sub-expressions within the same
block

- Machine code optimizations; elimination of
superfluous branches; re-use of duplicate
code; removal of unreachable code

- Byte comparisons (rather than 20-bit address
calculations) for pointer variables; optimization
of based-variable operations

Error Checking
The PLIM 86 compiler has a very powerful feature
to speed up compilations. If a syntax or program
error is detected, the compiler will skip the code
generation and optimization passes. This usually
yields a 2X performance increase for compilation
of programs with errors.

A fully detailed set of programming and compila
tion errors is provided by the compiler.

MOO. ;. Beginning of module 0/

SORTPROC PROCEDURE (PTA. COUNT. RECSIZE KEYINDEX)C£U~ISl:-~
DECLARE PTR POINTER. (COUNT RECSIZE. KEYINDEX) INTEGER

r Parameters

SORT

FIND

PTA IS pOinter to first record
COUNT IS number of records to be sorted
RECSIZE IS number of bytes In each record-max IS 128
KEYINDEX 15 byte position within each record of a BYTE scalar

to be used as sort key ~----_~ __

DECLARE CBECOfiD BASED PT~(11 BYTE
CURRENT (1281 BYTE
(I J) INTEGER.

Based Variables allow manipulation of external data by
passing the base of the data structure (a pOinter) ThiS
minimizes the STACK space used for parameter paSSing and
the execution time to perform many STACK operations

DO J 1 TO COUNT·1
CALL MOVB(@RECORD(J'RECSIZEI (@CURREN"C(RECSIZEI

The AT operator returns the address of a
vanable. Instead of Its contents ThiS IS very useful

i III passing pOinters for based variables

I J '

DO WHILE I 0
AND RECORD((I 1)"RECSIZE KEYINDEXI

CURRENT(KEYINDEXI
CALL MOVB(@RECORD((I 11'RECSIZEI

@RECORD(I'RECSIZEI
RECSIZEI

I I 1
END FIND

CALL~(@CURRENT @RECORD(I'RECSIZEI RECSIZEI
END SORT . ____ " _____ . ___ . ____ _ __ _

END SORTPROC
One of several PL M bUilt-In procedures for SIring
manipulation

END M 'End of module'

Figure 3_ Sample PUM 86 Program_

3-55 AFN-01661C

inter PL/M 86/88/186 'SOFTWARE PACKAGE

BENEFITS
PLiM 86 is designed to be an efficient, cost-effec
tive solution to th~ special requirements of iAPX
86 Mlcrosystem Software Development, as illus
trated by the following benefits Of PLiM use:

Cost· Effective Alternative to
Assembly Language
PLiM 86 programs are code efficient. PL/M 86
combines all of the benefits of a high-level
language (ease of use, high productivity) with the
ability to access the 'IAPX 86 architecture. Conse·
quently, for the development of systems software,
PLiM 86 is the cost· effective alternative to
assembly language programming.

, Low Learning Effort
PL/M is easy to learn and to use, even for the
novice programmer.

Earlier Project Completion
Critical projects are completed much earlier than
otherwise possible because PLiM 86, a structured
high-level language, increases programmer pro
ductivity.

SPECIFICATIONS

Operating Environment
REQUIRED HARDWARE:
Intel Microcomputer Development Systems (Series

, III/Series IV)

ORDERING INFORMATION

Part Number Description
MDS-313* PL/M 86 Software Package

3-56

Lower Development Cost
Increases In progrtlmmer. productivity translate
immediately into lower software development
costs because fewer programming resources are
required for a given prog,rammed func~ion.

Increased Reliability
PLiM 86 Is designed to aid In the development of
reliable software (PL/M 86 programs are simple
statements of the program algorithm). This
substantially reduces the risk of costly correction
of errors in systems that have already reached full
production status, as the more simply state~ the
program is, the more likely it is to perform its in
tended function.

Easler Enhancements
and Maintenance
Programs written in PLiM tend to be self
documenting, thus easier to read and understand.
This means it is easier to enhance and maintain
PLiM programs as the system capabilities expand
and future products are developed.

Documentation Package
PLlM·B6 User's -Guide for B086-based Develop
ment Systems (121636)

SUPPORT:
Hotline Telephone Support, Software Performance
Reporting (SPR), Software Updates, Technical
Reports, Monthly Newsletter available.

Requires Software License

·MOS IS an ordering code only and is not used as a product
name or trademark MOS' is a registered trademark of
Mohawk Data Sciences Corporation

AFN-Ol661C

iC-86
C COMPILER FOR THE 8086

• Implements full C Language
• Produces high density code rivaling

assembler
• Supports Intel Object Module Format

(OMF)

• Runs under the Intel UDI on
Intel Development Systems and
iRMXTM 86

• Available for the VAX/VMS· Operating
System

• Supports both small and large models of
computation

• Supports PSCOPE-86 and 121CETM
• Supports IEEE Floating Point Math with

8087 coprocessor

• Supports Bit Fields
• Supports full standard I/O Library (STDIO)

• Written in C

The C Programming Language was originally designed in 1972 and has become increasingly popular as a
systems development language. C is not a "very high level" language and is not tied to any specific application
area. Although it is used for writing operating systems, it has been used equally well to write numerical, text
processing and data base programs. C combines the flexibility and programming speed of a higher level
language with the efficiency and control of assembly language.

Intel iC-86 brings the full power of the C programming language to 8086 and 8088 based microprocessor
systems.

Intel iC-a6 supports the full C language as described in the Kernighan and Ritchie book, "The C Programming
Lanugage," (Prentice-Hall, 1978). Also included are the latest enhancements to the C language: structure
assignments, functions taking structure arguments and returning structures, and the "void" and "enum" data
types.

C is rapidly becoming the standard microprocessor system implementation language because it provides:

1. the ability to manipulate the fundamental objects of the machine (including machine addresses) as easily
as assembly language.

2. the power and speed of a structured language supporting a large number of data types, storage classes, ex
pressions and statements,

3. processor independence (most programs developed for other processors can be easily transported to the
8086), and

4. code that rivals assembly language in efficiency

INTEL iC-86 COMPILER DESCRIPTION
The iC-86 compiler operates in four phases: pre
processor, parser, code generator, and optimizer. The
preprocessor phase interprets directives in C source
code, including conditional compilations (# define).
The parser phase converts the C program into an
intermediate free form and does all syntaC1ic and

semantic error checking. The code generator phase
converts the parser's output into an efficient inter
mediate binary code, performs constant folding, and
features an extremely efficient register allocator,
ensuring high quality code. The optimizer phase
converts the output of the code generator into

Intel Corporation Assumes No Responsibility for the Use of Any CirCUitry Other Than Circuitry Embodied in an Intel Product No Other
CirCUit Patent licenses are Implied Information Contained Herein Supercedes Previously Published SpeCifications of These Devices
from Intel ·VAX IS a trademark of Digital EqUipment Corporation JUNE 1984
©INTEL CORPORATION, 1983

3-57

iC·86 intel' C COMPILER FOR THE 8086

relocatable Intel Object Module Format (OMF) code,
without creating an intermediate assembly file. Op
tionally, the iC-86 compiler can produce a symbolic
assembly like file. The iC-86 optimizer eliminates
common code, eliminates redundant loads and
stores, and resolves span dependencies (shortens
branches) within a program.

The iC-86 runtime library consists of a number of
functions which the C programmer can call. The run
time system includes the standard I/O libr.ary

FEATURES

Support for Small and Large Models

Intel iC-86 supports both the SMALL and LARGE
modes of segmentation. A SMALL model program
can have up to 64K bytes of code and 64K bytes of
data, with all pOinters occupying two bytes. Because
two byte pointers permit the generation of highly
compact and efficient code., this model is. recom
mended for programs that can meet the size restric
tions. The LARGE segmentation model is used by
programs that require access to the full addressing
space of the 8086/8088 processors. In this model,
each source file generates a distinct pair of code and
data segments of up to 64K bytes in length. All pointers
are four bytes long.

Preprocessor Directives
#define-defines a macro

#include- includes code outside of the program
source file

#if-conditionally includes or excludes code

Other preprocessor directives include #undef, #ifdef,
#ifndef, #else, #endif, and #Iine.

Statements
The C language supports a variety of statements:

Conditionals: IF, IF-ELSE

Loops. WHILE, DO-WHILE, FOR

Selection of cases: SWITCH, CASE, DEFAULT

Exit from a function: RETURN

Loop control: CONTINUE, BREAK

Branching: GOTO

Expressions and Operators
The C language includes a rich set of expressions
and operators.

Primary expression: invoke functions, select ele·

(STDIO), conversion routines, routines for manipu
lating strings, special routines to perform functions
not available on the 8086 (32-bit arithmetic and
emulated floating point), and (where appropriate)
routines for interfacing with the operating system.

iC-86 uses Intel's linker and locator and generates
debug records for symbols and lines on request,
permitting access to Intel's PSCOPE AND 121CETM to
aid in program testing.

ments from arrays, and extract fields from structures
or unions

Arithmetic operators: add, subtract, multiply, divide,
modulus

Relational operators: greater than, greater than or
equal, less than, less than or equal, not equal

Unary operators: indirect through a pOinter, compute'
an address, logical negation, ones complement, pro
vide the size in bytes of an operand.

Logical operators: AND, OR

Bitwise operators: AND, exclusive OR, inclusive OR,
bitwise complement

Data Types and Storage Classes

Data in C is described by its type and storage class.
The type determines its representation and use, and
the storage class determines its lifetime, scope, and
storage allocation. The following data types are fully
supported by iC-86.

3-58

char
an 8 bit signed integer

int
a 16 bit signed integer

short
same as int (on the 8086)

long
a 32 bit signed integer

unsigned
a modifier for integer data types (char, int,
short, . and long) which doubles the positive
range of vail,Jes .

float
a 32.blt f,ioating point number which utilizes the
8087 or a software floating pOint library

double
a 64 bit floating point nur:nber

AFN-00144C

IC-86 inter C COMPILER FOR THE 8086

void
a special type that cannot be used as an
operand in expressions; normally used for
functions called only for effect (to prevent their
use in contexts where a value is required).

enum
an enumerated data type

These fundamental data types may be used to
create other data types including: arrays, func
tions, structures, pOinters, and unions.

The storage classes availabe in iC-86 include:

register
suggests that a variable be kept in a machine
register, often enhancing code density and
speed

BENEFITS

Faster Compilation

Intel iC-86 compiles C programs substantially faster
than standard C compilers because it produces Intel
OMF code directly, eliminating the traditional inter
mediate process of generating an assembly file.

Portability of Code

Because Intel iC-86 supports the STDIO and pro
duces Intel OMF code, programs developed on a
variety of machines can easily be transported to the
8086.

SPECIFICATIONS

Operating Environment

The iC-86 compiler runs host resident on both the
Intel Series III Microcomputer Developrnent System
under ISIS-II and on the System 86/330 under the
iRMXTM 86 operating system. iC-86 can also run as a
cross compliler on a VAX 11/780 computer under the
VMS operating system 128 KBytes of User Memory is
required on all versions. Specify desired version
when ordering.

Required Hardware

Development System Version

-Intellec® Microcomputer Development System;
Series III or Series IV

extern
a variable defined outside of the function where
it is declared; retaining its value throughout the
entire program and accessible to other
modules

auto
a local variable, created when a block of code is
entered and discarded when the block is
existed

static
a local variable that retains its value until the
termination of the entire program

typedef
defines a new data type name from existing
data types

Rapid Program Development

Intel iC-86 provides the programmer with detailed
error messages and access to PSCOPE-86 and
121CETM to speed program development.

Full Manipulation of the 8086

Intel iC-86 enables the programmer to utilize features
of the C language to control bit fields, pointers, ad
dresses and register allocation, taking full advantage
of the fundamental concepts of the 8086.

3-59

-Dual Diskette Drives, Single or Double Density

-System Console; CRT or Hardcopy Interactive
Device

iRMX 86 version:

-Any iAPX 86/88, iSBC® 86/88, iTPS 86/XXX, or
SYS 86/3XX based system capable of running the
iRMX 86 Operating System

VAX version:

-Digital Equipment Corporation VAX 11/780 or
compatible computer

AFN·OO144C

ic-86 " .,"'

C COMPILER FOR THE. 8086 :',

Optional Hardware
ISIS· II version:

-ICE-86, 121CE-86

iRMX 86 version:

- Numeric Data Processors for support of the
REALMATH standard

VAX version:

-None

Required Software

ISIS· II version:

-ISIS·II Diskette Operating System

-Series III or Series IV Operating System

iRMX 86 version:

-iRMX 86 Realtime Multiprogramming Operating
System

-iRMX 860 Utilities Package

VAX version:
-VMS Operating System

Optional Software
Development System Version:

-None

ORDERING INFORMATION

Order Code

iMbx-317
iRMX-866

IMDX-347

Description

iC-86 Compiler for ISIS-II
iC-86 Compiler for iRMX 86
iC-86 Cross Compiler for
VAX/VMS

Intel Software license required

iRMX 86 version:

-None

VAX version:

-MOS··384 Kit-Mainframe Link for distributed development, or
iMOX-394 Asynchronous Communications Link.

-VAX iAPX 86/88/186 MACRO Assembler and
utilities package (iMDX-341VX)

Documentation Package

The C Programming Language by Kernighan and
Ritchie (1978 Prentice-Hall)

iC-86 User Manual

Shipping Media

Development System Version:

-Two single and one double density ISIS-II format ,
8" diskettes, one 5 1/4" Series IV Format

iRMX 86 version:

- Double Density iRMX 86 format 8" diskette

-Double Density iRMX 86 format 5%" diskette

V AX version:

-1600 bpi, 9 track Magnetic tape

SUPPORT
Intel offers several levels of support for this proCluct
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of
Mohawk Data Sciences Corporation.

3-60 AFN'()()l44C

8087 SUPPORT LIBRARY

• Library to support floating point
arithmetic in PUM·86 and ASM·86

• Common elementary function library
provides trigonometric, logarithmic
and other useful functions

• Decimal conversion module supports
binary.decimal conversions

• Error·handler module simplifies·
floating point error recovery

• Full 8087 Software Emulator for soft·
ware debugging without the 8087
component

• Accurate, verified and efficient Imple·
mentation of algorithms for functions

• Supports proposed IEEE Floating
Point Standard for high accuracy and
software portability

The 8087 Support Library provides PLlM-86 and ASM-86 users with the equivalent numeric data proceSSing capability
of Fortran-86. With the Library, it is easy for PLlM-86 and ASM-86 programs to do floating point arithmetic. Programs
can link in modules to do trigonometric, logarithmic and other numeric functions, and the user is guaranteed accurate,
reliable results for all appropriate inputs. The 8087 Support Library implements Intel's REALMATH standard and also
supports the proposed IEEE Floating Point Standard. Consequently, by using this Library, the PUM-86 user not only
saves software development time, but is guaranteed that the numeric software meets industry standards and is
portable-his software investment is maintained.

The 8087 Support Library consists of the common elementary function library, the decimal conversion module, the
error handler module, the full 8087 Software emulator and interface libraries to the 8087 and to the 8087 emulator.

B PLM

APLM

mq~,TNN PROCEDUIIE rTHETA REAL EXHRNAI
DECLARE THETA ilEAL

ENDmqerTNN

OUTPUT VALUE mqerTNNf!NPUT VALUE

Nuw w.lh ,h. 'e" Inp"' OUTPUT VALU,,, .h"",
0';5]12801

EXTRN m<,~,TNH FAR

'All ",,",HIH
t\TPf,IT11'11l VAI"t

DAsM

CAsM

"",,1'[1'1
,IUN', HfAI

I INTEL CORPORATION 1983

I----f PLM·86 "'---1

I----f AsM·86 I----t

3-61

I-------t LlNK86

LINKED USER
OBJECT MODULE

MAY 1983

ORDER NUMBER :121653-001

8087 SUPPORT LIBRARY

CEl87.LI·B·
THE COMMON ELEMENTARY FUNCTION LIBRARY

.....

CElS7.lIB contains commonly used floating point functions. It is used along with the'SOS7 numeric ·copr.ocessor or
the S087 emulator and it provides a complete package of elementary functions, giving valid results for all appropriate
inputs. This library provides PUM-S6 and ASM-86 users all the math functions supported intrinsically by the
Fortran-86. Following is a summary of CElS7 functions, grouped by functionality.

Rounding and Truncation Functions:

mqerlEX, mqerlE2, and mqerlE4 round a real number to the nearest integer; to the even integer if there Is a tie. The
answer returned is real, a 16-bit integer or a 32-bit integer respectively.

mqerlAX: mqerlA2, mqerlA4 round a real number to the nearest integer, to the integer away from zero if there is a tie;
the answer returned is real, a 16-bit integer or a 32-bit integer, respectively.

mqerlCX, mqerlC2, mqerlC4 truncate the fractional part of a real input; the answer is real, a 16·bit Integer or a 32-bit in-
teger, respectively .

. logarlthmlc and Exponential Functions:

mqerlGD computes decimal (base 10) logarithms,
mqerlGE computes natural (base e) logarithms.
mqerEXP computes exponentials to the base e.
mqerY2X computes exponentjals to any base.
mqerYI2 raises an input real to a 16-bit integp.r power.
mqerYI4 is as mqerYl2, except to a 32-bit integer power.
mqerYIS is as mqerYI2, but it accommodates PUM·S6 users.

Trigonometric and Hyperbolic Functions:

mqerSIN, mqerCOS, mqerTAN compute sine, cosine, and tangent.
mqerASN, mqerACS, mqerATN compute the .corresponding inverse functions.
mqerSNH, mqerCSH, mqerTNH compute the corresponding hyperbolic functions.
mqerAT2 IS a special version of the arc tangent function that accepts rectangular coordinate inputs.

Other Functions:

mqerDIM is FORTRAN's positive difference function.
mqerMAX returns the maximum of two real inputs.
mqerMIN returns the minimum of two real inputs.
mqerSGH combines the· sign of one input with the magnitude of the other input.
mqerMOD computes a modulus, retaining the sign of the dividend.
mqerRMD computes a modulus, giving the value closest to zero.

DCON87.LIB
THE DECIMAL CONVERSION LIBRARY

DCONS7.lIB is a library of procedures which convert binary representations of floating point numbers and ASCII
encoded string of digits.

The binary-to-decimal procedure mqcBIN DEClOW accepts a binary number In any of the formats used for the
representation of floating point numbers in the S087. Because there are so many output formats for floating point
numbers, mqcBIN_DEClOW does not attempt to provide a finished, formatted text string. Instead, It provides the
"building blocks" for you to use to construct the output string which meets your exact format speCification.

3.:a2
AFN-020638

8087 SUPPORT LIBRARY

The decimal-to-binary procedure mqcDEC_BIN accepts a text string which consists of a decimal number with
optional sign, decimal point, and/or power-of-ten exponent. It translates the string into the caller's choice of binary
formats.

Decimal-to-binary procedure.mqcDECLOW_BIN is provided for callers who have already broken the decimal number
into its constituent parts.

The procedures mqcLONG_ TEMP, mqcSHORT _TEMP, mqcTEMP _LONG, and mqcTEMP _SHORT convert floating
point numbers between the longest binary format, TEMP_REAL, and the shorter formats.

EH87.LlB
THE ERROR HANDLER MODULE

EH87.LlB is a library of five utility procedures which a user can utilize for writing trap hal1dlers. Trap handlers are
called when an unmasked 8087 error occurs.

The 8087 error reporting mechanism can be used not only to report error conditions, but also to let software implement
IEEE standard options not directly supported by the Chip. The three such extensions to the 8087 are: normalizing
mode, non-trapping not-a-number (NaN), and non-ordered comparison. The utility procedures support these extra
features.

DECODE is called near the beginning of the trap handler. It preserves the complete state of the 8087, and also iden
tifies what function called the trap handler, and returns available arguments and/or results. DECODE eliminates much
of the effort needed to determine what error caused the trap handler to be called.

NORMAL provides the "normalizing mode" capability for handling the "0" exception. By calling NORMAL in your trap
handler, you eliminate the need to write code in your application program which tests tor non-normal inputs.

SIEVE provides two capabilities for handling the "I" exception. It implements non-trapping NaN's and non-ordered
comparisons. These two IEEE standard features are· useful for diagnostic work.

ENCODE is called near the end of the trap handler. II restores the state of the 8087 saved by DECODE, and performs a
choice of concluding actions, by either retrying the offending function or returning a specified result.

FILTER calls each of the above four procedures. If your error handler does nothing more than detect fatal errors and
implement the features supported by SIEVE and NORMAL, then your interface to EH87.LlB can be accomplished with
a single call to FIL TEA.

E8087
THE FULL 8087 EMULATOR

E8087 is an object module that functionally emulates the 8087 coprocessor chip. It is ideal for use during prototyping
and debugging floating point progranls. However, the target system should use the 8087 component because it exe·
cutes 1000 times faster and uses significantly less memory.

3-63 AFN 020638

8087 SUPPORT LIBRARY

E8087.LIB,8087.LlB,87NULL.LlB
INTERFACE LIBRARIES

E8087. LIB, 8087.LlB and 87NULL. LIB libraries configure a user's application program for his run-time environment:
running with the emulator, with the 8087 component or without floating point arithmetic, respectively.

SPECIFICATIONS

TARGET ENVIRONMENT

8086/8088 Based Microcomputer System

DEVELOPMENT ENVIRONMENT

Required Hardware

All Intel Microcomputer Development Systems (Series II,
Senes III/Series IV)

• Recommended

ORDERING INFORMATION

Part Number

MDS*-319

Description

8087 Support Library

Requires Software License

SUPPORT

Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

Required Software

For Series II:
8086/8088 Software Development Package

Documentation Package

Numeric Support Library Manual

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of
Mohawk Data Sciences Corporation.

3-64 AFN-020638

8087
SOFTWARE SUPPORT PACKAGE

• Program Generation for the 8087
Numeric Data Processor on 8080/8085
Based Intel Microcomputer
Development Systems

• Consists of: 8086/8087/8088 Macro
Assembler, 8087 Software Emulator

• Macro Assembler Generates Code for
8087 Processor or Emulator, While
Also Supporting the 8086/8088
Instruction Set

• 8087 Emulator Duplicates Each 8087
Floating-Point Instruction in Software,
for Evaluation of Prototyping, or for
Use in an End Product

• Macro Assembler and 8087 Emulator
are Fully Compatible with Other
8086/8088 Development Software

• Implementation of the IEEE Proposed
Floating-Point Standard (the Intel®
Realmath Standard)

The 8087 Software Support Package is an optional extention of Intel's 8086/8088 Software Development
Package.

The 8087 Software Support Package consists of the 808618087/8088 Macro Assembler, and the Full 8087
Emulator. The assembler is a functional superset of the 8086/8088 Macro Assembler, and includes instruc
tions for over sixty new floating-point operations, plus new data types supported by the BOB7.

The B087 Emulator is an 8OB6/80B8 object module that simulates the environment of the 80B7, and executes
each floating-point operation using software algorithms. This emulator functionally duplicates the operation
of the B087 Numeric Data Processor.

Also included in this package are interface libraries tQ link with 80B6/8087/80B8 object modules, which are
used for specifying whether the 8087 Processor or the 8087 Emulator is to be used. This enables the run-time
environment to be invisible to the programmer at assembly time.

The follOWing are trademarks of Intel CorporatIon and may be used only to IdentIfy Intel products expo CREDIT, Intellee, Multlbus, I, ,SSC, Multlmodule, ICE. ,sax, PROMPT, tRMX,
leS, Library Manager. Promware, Inslte, t-1eS, RMX, Intel, Megachassls, UPI, InteleVISlon, Mlcromap, J,LScope and the combmatlon of ICE, leS, ISse, ,sex, MeS, or RMX and a
numerical suffix
©INTEL CORPORATION, 1983

3-65
SEPTEMBER 1984

ORDER NUMBER:4042150·002

8087 SOFTWARE SUPPORT PACKAGE

FUNCTIONAL DESC~IPTION
"

8086/8087/8088 Macro Assembler

The SOS6/S0S7/80SS Macro Assembler translates
symbolic macro assembly langu,age instructio'ns
into appropriate mach.ine instructions. It is an ex
tended version of the SOS6/S0SS.Macro Assembler,
and therefore supports all of the same features and
functions, such as limited type checking, condi
tional assembly, data structures, macros, etc. The
extensions are, the nevy instructions and data types
to support floating-point operations. Realmath
floating-point instructions (see Table 1) generate
code capable of being converted to either SOS7 in
structions or interrupts for the SOS7 Emulator. The
Processor/Emulator selection is made via interface
libraries at LINK-time. In addition to the new

floating-point instructions, the macro assembler
also'introduces two new SOS7 data types: aWORD
(S bytes) and TSYTE (ten bytes). These support the
highest precision of data processed by the SOS7.

Full 8087 Emulator

The Full SOS7 Emulator is a 16-kilobyte object mod
ule that is linked to the application program for
floating-point operations. Its functionality is identi
cal to the SOS7 chip, and is ideal for prototyping and
debugging floating-point applications. The
Emulator is an alternative to the use of the SOS7 chip,
although the latter executes floating-point applica
tions up to 100 times faster than an SOS6 with the
SOS7 Emulator. Furthermore, since the SOS7 is a
"co-processor," use of the chip will allow many op
erations to be performed in parallel with the SOS6.

Table 1. 80S7 Instructions

Arithmetic Instructions

1-------- Addition
FADD
FADDP
FIADD

Add real

1-----------

Add real and pop
integer add

FSUB
FSUBP
FISUB
FSUBR
FSUBRP

FISUBR

FMUL
FMULP
FIMUL

Subtraction

Subtract real
Subtract real and pop
Integer subtract
Subtract real reversed
Subtract real reversed and

pop
Integer subtract reversed

Multiplication

Multiply real
Multiply real and pop
Integer multiply

Division
I----------r---------~~~I

FDIV
FDIVP
FIDIV
FDIVR
FDIVRP

FIDIVR

Dlvlde .. real
Divide real and pop
Integer .dlvlde
Divide real reversed
DIvide real reversed and'

pop
Integer qlvlde .reversed

f----:F::::S---:O:-:R:-:T=-----O-th-,er °sPerations
quare root

FSCALE Scale
FPREM Partial remainder
FRNDINT Round to Integer
FXTRACT Extract exponent and

slgnlflcand

1_ ~~~~______ _~_~_~~_I~_!~_~g_a~_u_e ____ _

3-66

Processor Control Instructions

FINIT/FNINIT Initialize processor

FDISI/FNDISI Disable Interrupts

FENI/FNENI Enable Interrupts

FLDCW Load control word

FSTCW/FNSTCW Store control word

FSTSW/FNSTSW Store status word

FCLEX!FNCLEX Clear exceptions

FSTENV!FNSTENV Store environment

FLDENV Load environment

FSAVE!FNSAVE Save state

FRSTOR Restore state

FINCSTP Increment stack pOinter

FDECSTP Decrement stack pOinter

FFREE Free register

FNOP No operation

FWAIT CPU walt

Comparison Instructions

FCOM

FCOMP

FCOMPP

FICOM

FICOMP

FTST

FXAM

Compare real I
Compare real and pop

Compare real and pop
tWice

Integer compare

Integer compare and pop

Test

Examine

_ AFN·01574C

intel 8087 SOFTWARE SUPPORT PACKAGE

Table 1. 8087 Instructions (cont'd)

Transcendental Instructions

FPTAN

FPATAN

F2XM1

FYL2X

FYL2XP1

Constant Instructions

FLDZ

FLD1

FLDPI

FLDL2T

FLDL2E

FLDLG2

FLDLN2

SPECIFICATIONS

Partial tangent

Partial arctangent

2'-1

Y.log,X

Y.log,(X+1)

Load ~ 00

Load ~ 1 0

Load TT

Load log,10

Load log,e

Load log ,,2

Load 109,2

Operating Environment

REQUIRED HARDWARE
Intel Microcomputer Development Systems
-Series II
-Personal Development System
-Series IV

REQUIRED SOFTWARE
8086/8088 Software Development Package

ORDERING INFORMATION

Part Number Description

MDS*-387 8087 Software Support Package

Requires Software License

SUPPORT
Intel offers several levels of support for this product
which are explained in detail in the price list. Please
consult the price list for a description of the support
options available.

Data Transfer Instructions

Real Transfers

FLD Load real
FST Store real
FSTP Store real and pop
FXCH Exchange registers

Integer Transfers
FILD Integer load
FIST Integer store
FISTP Integer store and pop

Packed Decimal Transfers
FBLD . Packed decimal (BCD)

load
FBSTP Packed decimal (BCD)

store and pop

Documentation Package

8086/8087/8088 Macro Assembly Language Refer
ence Manual for 8080/8085-Based Development
Systems

8086/8087/8088 Macro Assembler Operating In
structions for 8080/80B5-Based Development Sys
tems

The 8086 Family Users Manual Supplement for the
8087 Numeric Data Processor

*MDS IS an ordering code only and is not used as a product name or trademark. MDS IS a registered trademark of
Mohawk Data Sciences Corporation.

3-67 AFN·01574C

inter

•

•
•

•

8089 lOP
SOFTWARE SUPPORT PACKAGE

#407200

Program Generation for the 8089 I/O • Supports 8089-Based Addressing
Processor on the Intellec® Modes with a Structure Facility that
Microcomputer Development System Enables Easy Access to Based Data

Contains 8089 Macro Assembler, plus • Powerful Macro Capabilities
Relocation and Linkage Utilities

Relocatable Object Module • Provides Timing Information in
Compatible with All iAPX 86 and iAPX Assembly Listing
88 Object Modules • Fully Detailed Set of Error Messages
Fully Supports Symbolic Debugging
with the RBF-89 Software Debugger

The lOP Software Support Package extends Intellec Microcomputer Development System support to the 8089
I/O Processor. The macro assembler translates symbolic 8089 macro assembly language instructions into
relocatable machine code. The relocation and linkage utilities provide compatibility with iAPX 86, iAPX 88, and
8089 modules, and make structured, modular programming easier.

The macro assembler also provides symbolic debugging capability when used with the RBF-89 software
debugger. 8089 program modularity is supported with inter-segment jumps and calls. The macro assembler
also provides instruction cycle counts in the listing file, for giving the programmer execution timing informa
tion. The programs in the 8089 Software Support Package run on any Intellec Series 1\ or Model 800 with 64K
bytes of memory.

The following are trad~marks of Intel Corporatton and may'be used only to Identlfy'lntel products exp, CREDIT, InteUee, MUltlbus, t, ,sec. Multlmodule, ICE,.SeX, PROMPT, iC$.
,RMX, Library Manager, Promware.lnslte. MeS, RMX, Intel, Megachassls. UPI, Intelevlslon, Mlcromap, p.$cope and the combination of ICE, ,sse,.sex, MeS, orRMX and a numerical
suffix MAY 1983
© INTE, CORPORATION 1983 ORDER NUMBER:210853-002

3-68

intJ 8089 lOP SOFTWARE SUPPORT PACKAGE

Table 1. Sample Program Listing

1::l1S-11 ~i1i1j PlACRO ""'Ellill.[F' KlS5 M~~E"8L~ OF !lOClUl£ aSK
oe 'ET 'tllDULE PLACE! PI t! TAH OBJ
A::~E:'t8!.ER IHVOKE!.I 9'1': Ol, .. ~q tl:tQ!J~ 11.99 g.n 1I00Cl"'0 d.bug pog,",dlh(132) pl"',nt{:fl:toskll 1st)

Baal

':8"
CIII
112 ••

....
'"' I"t
1111

1112
1116

8118

IIU

IIle

.'IF
•• 23

.127
1118
lUI

lin
Ill'

8Il~

8UC

UlE

!!II "1
eBB

OBJECT CODE

IU8
lUI ."2
'II •
.18Z

1.,1 •• CD
IIlI

2838

41le

4'.' F3

1111 I.CI
till I!CI

lilt 1112
'III
6182

I.IA FD

,"1 lice

2138

41lC

4848 F2

1I4'

" "
" 7.
77 .. ,
" ."
." .85

." '" ." 2. ,

.54 236

t?3 '"
Ht. '" '" '"
227 ,,,
'" '88
" . .. ,
38'· '" n. ...
'48 .f~i'

'" , ..
377 5"

3" 562

IH["HC llHE SOURCE

..

.. ., .. ., .. ., ., ..

. ,

.,

.,

!lGr'" TASK
9 TIIS'- !"~qfl_ent

" " . , In t ... ! ,rst po.rt or th,S SQllp\I 1'1'0.9".0" do.lo. " lIovtd rrOIl
8Bal:> s~n RAil to. .. ,,,,or-v 100co.I to. th. '189 lOP In th ••• cond
purt, th. dolo. IS IIQvtd fro.I'I th. 100clll tU"o,.", to Q do.to "ort. ., . , II. Iso, nth. 8889 110 spoc •

15 dQtQ~port'82S1 equ
16 cOI'I"'''''Idtlport@8251 equ
\;' buf(t"~~8889 equ

••

IIclll8h
BclJet h
92118h

; 8251 01' on 81.' 10co.l bu.
i 82' 1 tP on 88.' loco. t bu.
,RAt! burt ... ,n .18a, 110 .po.c.

19 t"xtrf'l bl,lt ferlHille,
28 extr" ':I

IRA" bu"." In .186 • .".t." "."or..,
, 1 oco.t. on of the buff.,. count.

2.
22 l.+def,". (IIo.cro_l)
23 (gil, bl,lrf.,.UlI89

" " ",
1 pd,
"ovb

gc, '"
bc,[gc)

Ito..,. buff.,. .dd,. ••• ,nt.o CI
Loo.d po,nt.,. to count Into Ct
"0'01'. b..,t.. count , .. to Ie

27 I .• d.t',". ("o.c .. o_2{ po.,.o.II_I, ,o.ro.,,_2» 10c,,\ loop
28 I ,"C %PI1"o." 1
2'3 d.c %po.,.0.,,:2
38 Jnz %po.ro.,,_2,%100p ,.
" 33

" J5

" " 38

,
ONE: go.,buffe,.~e88'

1'1011, gb,bl,lff.,.i81.,
I pd, 9c,."
"o..,b bc, (;c 1

Inc,..".nt ,otnt.,. Into .0U,.C.

O.c,..".nt byte count
Loop bo.ck ,f b\jt. count> •

Loo.d ".9; .t.,. GA lit' th .dd,. •••
0' e18' buff.,.

"0'01'. bl,l"." o.ddr ••• ,nto CI
Loo.d po,nt.r to count ,nto Cit
"ov. bvtt count • nto Ie

" loop": "ovil [;b],[90.)

" ,nc go. -
Nove b..,tt f,.o" 81., to •••• buU'.,.
Inc,..".nt po Int.,. ,nto ••• , bu"." ,.

" " " " " " " " 5.
5.

" " 54

" " " " " , . , .
" " " " " "

%ftllc,.0_2< gb, 9c)

rwo

%PARA"_1
,b) Inc,..".",t po,nt.,. ,nto .ourc.

I:PARA"_2
, O.c,..".nt byte cou"t

J 1'1% %PAPA"_2
gc,UDDP

LOOPS! ; Loop bOock • f bvt. count> I

go., d~ t 0.9 po ,.t •• 251
go., co ''''11 nd'.,.o,.t .82 51

lood eA 1/, th Ooddr ... of' 8251 OP
1000d ce v, th o.dd,. ••• of' 8251 ep

;'''(lcro I
9b ,bu(f.,.1lI888"

I pd, 9c, y
rlQvb b<:, r {lC l

"ov. buf'." add,. •••• nto 1:1
po.nt.r to count ,nto CiC

"ov. bvt. count .nto Ie

\o?p81)nbt [gc]'B.loopBt
"Qllb [gil J, (gb 1

loop unt, I aO!:J1 t,._n.".t r.o.Clllv
"."lIg. I "to buff.,.

""lJcro_2(gb 9C 1

gb
l,Pj:jRj:j" _I

Incr""'ent po,nt.r .nto
',PHRi4f't _~

9<: (I!l'cre-",.nt byt. count
) nz ·.PARAtI_2

9 c :~ LO J P
LOOf.BI Loop bOock, f byt. count) I

h. t

3-69 AFN-008408C

8089 lOP SOFTWARE SUPPORT PACKAGE

FUNCTIONAL DESCRIPTION

The lOP Software Support Package contains:

ASM89 -The 8089 Macro Assembler.

lINK86 - Resolves control transfer references be
tween 8089 object modules, and data ref
erences In 8086, 8088, and 8089
modules.

LOC86 -Assigns absolute memory addresses to
8089 object modules.

OH86 -Converts absolute object modules to
hexadecimal format.

UPM - The Universal PROM Mapper, which sup-
ports PROM programming In all iAPX
86/11 and IAPX 88/11 applications.

ASM89 translates symbolic 8089 macro assembly
language instructions Into the appropriate machine
codes. The ability to refer to both program and data
addresses with symbolic names makes It easier to
develop and modify programs, and avoids the errors
of hand translation.

The powerful macro facility allows frequently used
code sequences to be referred to by a single name,

SPECIFICATIONS

Operating Environment
Intel Microcomputer Development Systems (Model
800, Series II, Senes III, Senes IV)

Support
Hotline Telephone Support, Software Performance
Report (SPR), Software Updates, Technical Reports,
and Monthly Technical Newsletters are available.

Documentation Package

8089 Macro Assembler User's Guide (9800938)

8089 Macro Assembler Pocket Reference (9800936)

MCS-86 Software Development Utilities Operating
Instructions for 15/5-1/ Users (9800639)

Universal PROM Programmer User's Manual
(9800819)

so that arw changes to that sequence need to be
made in only one place in the program. Common
code sequences that differ only slightly can also be
referred to with a macro call, and the differences can
be substituted with macro parameters.

ASM89 provides symbolic debugging information in.
the object file. The RBF-89 debugger makes use of
this information, so the programmer can symboli
cally debug 8089 programs. ASM89 also provides
cycle counts for each instruction in the assembly
listing file (see Table 1). These cycle counts help the
programmer determine how long a particular
routine or code sequence will take to execute on the
8089.

ASM89 provides relocatable object module com
patibility with the 8086 and 8088 microprocessors.
This object module compatibility, along with the
8086/8088 relocation and linkage utilities, facilitates
the designing of iAPX 86/11 and iAPX 88/11 systems.

ASM89 fully supports the based addressing modes
of the 8089. A structure facility allows the, user to
define a template that enables accessing of based
data symbolically.

Shipping Media

-Single and Double Density Diskettes

ORDERING INFORMATION

3-70

Part Number Description

MDS*-312 8089 lOP Software Support Package

Requires Software License

'MDS IS an ordering code only and IS not used as a product name
or trademark MDS® IS a registered trademark of Mohawk Data
SCiences Corporation

AFN·008408C

iAPX 286 SOFTWARE DEVELOPMENT PACKAGE

• Complete System Development
Capability for High-Performance
iAPX 286 Applications.

• Allows creation of Multi-User, Virtual
Memory, and Memory-Protected Systems.

• Macro Assembler for Machine-Level
Programming.

• System Utilities for Program Linkage
and System Building.

• Software Simulator for Execution and
Symbolic Debugging on Intel Devel
opment System.

• Package Supports Program Develop
ment with PLlM-286, Pascal-286, and
FORTRAN 286.

• Extends Existing Intellec(R) Develop
ment Systems to Provide Broad
Support for the iAPX 286 Micro
processor.

The iAPX 286 is a 16-bit microprocessor system with 32-bit virtual addressing, integrated memory protection,
and instruction pipelining for high performance. The iAPX 286 Software Development Package is a cohesive
set of software design aids for programming the iAPX 286 microprocessor system. The package enables
system programmers to design protected, multi-user and multi-tasking operating system software, and
enables application programmers to develop tasks to run on a protected operating system.

The iAPX 286 Software Development package contains a macro assembler, a program binder (for linking
separately compiled modules together), a system builder (for configuring protected multiple-task systems),
and a software simulator (for execution and symbolic debugging).

The memory protection features of the lAP X 286 architecture are invisible to applicatIOn programmers, who use language
translators and the program binder System programmers, may use special memory protection features In ASM-286 or PUM 286,
and use the system bUilder for InitialiZing and managing protection features. The Simulator duplicates the operation of the 80286
CPU, as well as the floating pOint operations of the 80287.

All the utilities In the Software Development Package run on the Intel Microcomputer Development Systems (Series III/Senes IV)

APPLICATION
SOFTWARE

DEBUGGER
ICE. MONITOR, etc

The iAPX 286 Software Development Package keeps the protection mechanism invisible to the application
programmer, yet easy to configure for the system programmer.

Intel Corporal/on Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product. No Other
Circuit Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications of Thes's Devices
from Intel. JUNE 1984
©INTEL CORPORATION, 1983 3-71 ORDER NUMBER: 210585-001

iAPX 286 SOFTWARE DEVELOPMENT PACKAGE

• Instruction Set and Assembler
Mnemonics Are Upward Compatible
with ASM-86/88.

• Powerful and Flexible Text Macro
Facility.

• Type-Checking at Assembly Time Helps
Reduce Errors at Run-Time.

• Structures and RECORDS Provide
Powerful Data Representatio~.

• "High-Level" Assembler Mnemonics
Simplify the ~anguage~

• SlJpports Full Instruction Set of the
iAPX 286/20, Including Memory
Protection and Numerics:

ASM-286 is the "high-level" macro' assembler for the iAPX 286 assembly language. ASM-286 translates
symbolic assembly language mnemonics into relocatable object code. The assembler mnemonics are a
superset of ASM-86/88 mnemonics; new ones have also been'lldded to support the new iAPX 286 instructions.
The segmentation directives have been greatly simplified.

The iAPX 286 assembly language includes approximately 150 instruction mnemonics. From these few
mnemonics the assembler can generate over 4,000 distinct machine instructions. Therefore, the software
development task is simplified, as the programmer need know only 150 mnemonics to generate all possible
machine instructions. ASM-286 will generate the shortest machine instruction possible (given explicit
information as to the characteristics of any forward referenced symbols).

The powerful macro facility in ASM-286 saves development and maintenance time by coding common
program sequences only once. A macro substitution is made each time the sequence is to be used. This facility
also allows for conditional assembly of certain program sequences.

ASM-286 offers many features normally found only in high-level languages. The assembly language is
strongly typed, which means it performs extensive checks on the usage of variables and labels. This means
that many programming errors will be detected when the program is assembled, long before it is being
debugged.

ASM-286 object modules conform to a thorough, well-defined format used by all 286 high-level languages and,
utilities. ThiS makes it easy to call (and be called from) HLL object modules.

Key Benefit:
For programmers who wish to use assembly language, ASM-286 provides many powerful "high-Ie'vel"
capabilities that simplify program development and maintenance.

3-72 AFN-00378B

intel iAPX 286 SOFTWARE DEVELOPMENT PACKAGE

iAPX 286 BINDER

• Links Separately Compiled Program
Modules Into an Executable Task.

• Makes the iAPX 286 Protection
Mechanism Invisible to Application
Programmers.

• Works with PL/M-286, Pascal-286,
FORTRAN-286 and ASM-286 Object
Modules.

• Performs Incremental Linking with
Output of Binder and Builder.

• Resolves PUBLIC/EXTERNAL Code and
Data References, and Performs
Intermodule Type-Checking.

• Provides Print File Showing Segment
Map, Errors and Warnings.

• Assigns Virtual Addresses to Tasks in the
232 Address Space.

• Generates Linkable or Loadable Module
for Debugging.

BND-286 is a utility that combines iAPX 286 object modules into executable tasks. In creating a task, the
Binder resolves Public and External symbol references, combines segments, and performs address fix-ups on
symbolic code and data.

The Binder takes object modules written in ASM-286, PLlM-286, Pascal-286 or FORTRAN-286, and generates
a loadable module (for execution or debugging), or a linkable module (to be re-input tothe Binder later; this is
called incremental binding). The binder accepts library modules as well, linking only those modules required
to resolve external references. BND-286 generates a print file displaying a segment map, and error messages.

The Binder will be used by system programmers and application programmers. Since application
programmers need to develop software independent of any system architecture, the 286 memory protection
mechanism is "hidden" from users of the Binder. This allows application tasks to be fully debugged before
becoming part of a protected system. (A protected system may be debugged, as well.) System protection
features are specified later in the development cycle, using the 286 System Builder. It is possible to link
operating system services required by a task using either the Binder or the Builder. This flexibility adds to the
ease of use of the 286 utilities.

Key Benefit:
The Binder is the only utility an application programmer needs to develop and debug an individual task. Users
of the Binder need not be concerned with the architecture of the target machine, making application program
development for the 286 very simple.

iAPX 286 MAPPER

• Flexible Utility to Display Object File
Information.

• Mapper Allows Users to Display:

• MAP-286 Selectively Purges Symbols
from a Load Module.

• Provides Inter-Module Cross-Referencing
for Modules Written in All Languages.

Key Benefit:

Protection
Information:

SEGMENT TABLES
GATE TABLES
PUBLIC ADDRESSES

Debug
Information:

MODULE NAMES
PROGRAM SYMBOLS
LINE NUMBERS

A cross-reference map showing references between modules simplifies debugging; the map also lists and
controls all symbolic information in one easy-to-read place.

3-73 AFN-0037B8

intel' iAPX 286 SOFTWARE DEVELOPMENT PACKAGE

iAPX 286 LIBRARIAN

• Fast, Easy Management of iAPX 286
Object Module Libraries.

• Only Required Modules Are Linked,
When Using the Binder or Builder.

Key Benefit:

• Librarian Allows Users to:

Create Libraries
Add Modules
Replace Modules
Delete Modules
Copy Modules from Another Library
Save Library Module to Object File
Create Backup
Display Module Information

(creation date, publics, segments)

Program libraries improve management of program modules, and reduce software administrative overhead,

iAPX 286 SYSTEM BUILDER

• Supports Complete Creation of
Protected, Multi-task Systems.

• Creates a Memory Image of a 286 System
for Cold-start Execution.

• Resolves PUBLIC/EXTERNAL Definitions
(between protection levels).

ill Target System may be Boot-Ioadable,
Programmed into ROM, or Loaded From
Mass-store.

• Supports Memory Protection by Building
System Tables, Initializing Tasks, and
Assigning Protection Rights to Segments.

• Generates Print File with Command
Listing and System Map.

BLO-286 is the utility that ,lets system programmers configure multi-tasking, protected systems from an
operating system and discrete tasks. The Builder generates a cold-start execution module, suitable for ROM
based or disk-based systems.

The Builder accepts Input modules from IAPX 286 translators or the IAPX 286 Binder. It also accepts a "Build File" containing
definitions and Initial values for the 286 protection mechanism-descriptor tables, gates, segments, and tasks. BLD-286 gener
ates a Loadable or bootloadable output module, as well as a print file with a detailed map of the memory-protected system.

Using the Builder command Language, system programmers may perform the following functions:

- Assign physical addresses to segments; also set segment access rights and limits.
- Create Call, Trap, and Interrupt "Gates" (entry-points) for inter-level program transfers.
- Make gates available to tasks; this is an easier way to define program interfaces than using interface

libraries.
- Create Global (GOT), Interrupt (lOT), and any Local (LOT) Descriptor Tables.
- Create Task State Segments and Task Gates for multi-task applications.
- Resolve inter-module and inter-level references, and perform type-checking.
- Automatically select required modules from libraries.
- Configure the memory image into partitions In the address space.
- Selectively generate an object file and various sections of the print file.

Key Benefit:
Allows a system programmer to define the configuration of a protected system in one place, with one easy-to
use Utility. This specification may then be adopted by all project members, using either the Builder or just the
Binder. The flexibility simplifies program developmentfor all users.

3-74 AFN-00378B

IAPX 286 SOFTWARE DEVELOPMENT PACKAGE

iAPX 286 SIMULATOR

• Supports Symbolic Debugging of
Complete, Protected 286 Systems.

• Allows 286 Program Execution and
Debugging in Absence of iAPX 286
Hardware Execution Vehicle.

• Functionally Duplicates the Operation
of the IAPX 286 Microprocessor,
Including Memory Protection.

• Executes Full Instruction Set, Including
80287 Numerics.

• Symbolic Access to Program Variables as
well as Descriptor Tables.

• Two Execution Timers for Program
Benchmarking and Interrupt Simulation.

• UDI File System Support for User
Program. -

SIM-286 is an 8086-resident program designed to support development of iAPX 286 O.S. kernels, systems, and
applications. All of these may be developed and debugged without the use of a 286 hardware execution
vehicle.

The Simulator consists of a human interface layer, and software executors for the 80286 CPU and 80287
Numeric Data Processor. The human interface receives commands with symbolic names, and passes control
to the executor as though it were a 286-resident monitor.

SIM-286 lets designers manipulate a 286 program using the symbolic names given for code and data. It also
lets users symbolically examine and modify the protection features (such as system tables, access rights, etc.),
if it is desired.

SIM-286 contains two instruction timers. One may be set and incremented during execution; this allows
program sequences to be bench marked in clock cycles and microseconds. The second, an interval timer, may
be set to generate interrupts every 'f/ clock cycles, to simulate event-driven processing. These timers are
extremely useful for developing system kernels.

For programs that make operating system calls for file 1/0, SIM-286 provides access to these services through
the Universal Development Interface.

Key Benefit:
Symbolic system debugging (for protected 286 software) may be performed in the absence of a 286-based
target.

SPECIFICATIONS

OPERATING ENVIRONMENT
Intel Microcomputer Development Systems
(Series III1Serles IV)

DOCUMENTATION

ASM 286 Language Reference Manual
ASM 286 Macro Assembler Operating
Instructions
iAPX 286 Utilities User's Guide

ORDERING INFORMATION

Product Code Description

iAP.X 286 System Builder User's Guide
iAPX 286 Simulator User's Guide
PockefReference for all the above:

·ASM 286
Utilities
SIM286

SUPPORT:
Hotline Telephone Support, Software Performance
Report (SPR), Software Updates, Technical Reports,
and Monthly Technical Newsletters are available.

iMDX-321 iAPX 286 Software Development Package

3-75 AFN-IlO37BB

intJ
PL/M 286 SOFTWARE PACKAGE

• Systems programming language for
the protected virtual address mode
iAPX286

• Upward compatible with PL/M 86.and
PL/M 80 assuring softwar.e portability

• Enhanced to support design of
protected, multi-user, multi-tasking,
virtual memory operating system
software

., Advanced, structured system
implementation language for algorithm
development

• Producesrelocatab'e object code
which is linkable toobject'modules
generated by all other iAPX286 .
language translators

• Multiple levels of optimization

• Resident on Intel microcomputer devel
opment systems (Series III, IV)·

PL/M 286 is a powerful, structured, high-level system implementation language for the development of system
software for the protected virtual address mode iAPX 286. PL/M 286 has been enhanced to utilize iAPX 286
features-memory management and protection-for the implementation of multi-user, multi-tasking virtual
memory operating systems.

PL/M 286 is upward compatible with PL/M 86 and PL/M 80. Existing systems software can be re-compiled with
PL/M 286 to execute in protected virtual address mode on the iAPX 286.

PL/M 286 is the high-level alternative to assembly language programming on the iAPX 286. For the majority of
iAPX 286 system programs, PL/M 286 provides the features needed to access and to control efficiently the un
derlying iAPX 286 hardware and consequently it is the cost-effective approach to develop reliable, maintain
able system software.

The PL/M 286 compiler has been designed to efficiently support all phases of software development. Features
such as a built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of pro
gram size and memory usage for efficient code generation prpvide the total program development support
n~ded. .

3-76

MAY 1983

ORDER NUMBER:210536-002

infel' PL/M 286 SOFTWARE PACKAGE

FEATURES

Major features of the Intel PL/M 286 compiler and
programming language include:

Structured Programming

PL/M source code is developed in a series of mod
ules, procedures, and blocks. Encouraging program
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible by clearly defining
the scope of user variables (local to a private proce
dure, for example).

The use of modules and procedures to break down a
large problem leads to productive software develop
ment. The PL/M 286 implementation of block struc
ture allows the use of REENTRANT procedures,
which are especially useful in system design.

Language Compatibility

PL/M 286 object modules are compatible with object
modules generated by all other 286 translators. This
means that PL/M programs may be linked to pro
grams written in any other 286 language.

Object modules are compatible with In-Circuit
Emulators; DEBUG compiler control provides the In
Circuit Emulators with full sym~olic debugging
capabi lities.

PL/M 286 language is upward compatible with PL/M
86 and PL/M 80 so that application programs may be
easily ported to run on the protected mode iAPX 286.

Supports Seven Data Types

PL/M makes use of seven data types for various
applications. These data types range from one to
four bytes and facilitate various arithmetic, logic,
and addressing functions:

-Byte: 8-bit unsigned number
-Word: 16-bit unsigned number
-Dword: 32-bit unsigned number
-Integer: 16-bit s,igned number
-Real: 32-bit floating-point number
-Pointer: 16-bit or 32-bit memory address

indicator
-Selector: 16-bit pointer base.

Another powerful facility allows the use of BASED
variables which permit run-time mapping of var-

3-77

iables to memory locations. This is especially useful
for passing parameters~ relative and absolute
addressing, and dynamic memory allocation.

Two Data Structuring Facilities

In addition to the seven data types and based
variables, PL/M supports two powerful data structur
ing facilities. These help the user to organize data
into logical groups.

-Array: Indexed list of same type data elements
-Structure: Named collection of same or different

type data elements
-Combinations of both: Arrays of structures or

structures of arrays.

Numerics Support

PL/M programs that use 32-bit REAL data are ex
ecuted using the 80287 Numeric Data Processor for
high performance. All floating-point operations sup
ported by PL/M are executed on the 80287 according
to the IEEE floating-point standard. PL/M 286 pro
grams can use built-in functions and predefined
p roced u res-I N IT$ R E AL$M ATH$U NIT,
SET$REAL$MODE, GET$REAL$ERROR,
SAVE$REAL$STATUS, RESTORE$REAL$STATUS
-to control the operation of the 80287 within the
scope of the language.

Built-In String Handling Facilities

The PL/M 286 language contains built-in functions
for string manipulation. These byte and word func
tions perform the following operations on character
strings: MOVE, COMPARE, TRANSLATE, SEARCH,
SKIP, and SET.

Built-In Port I/O

PL/M 286 directly supports input and output from the
iAPX 286 ports for single BYTE and WORD transfers.
For BLOCK transfers, PL/M 286 programs can make
calls to predefined procedures.

Interrupt Handling

PL/M 286 has the facility for generating and handling
interrupts on the iAPX 286. A procedure may be
defined as an interrupt handler through use of
the INTERRUPT attribute. The compiler will
then generate code to save and restore the proces
sor status on each execution of the user-defined

infel PL/M 286 SOFTWARE PACKAGE

interrupt handler routine. The PUM statement
CAUSE$INTERRUPTaliows the user to trigger a soft
ware Interrupt from within the program.

Protection Model

PUM 286 supports the Implementation of protected
operating system software by providing built-in pro
cedures and variables to access the protection
mechanism of the !APX 286. Predefined variables
TASK$REGISTER, LOCAL$TABLE, MACHINE$
STATUS, etc.-aliow direct access and modification
of the protection system. Untyped procedures and
functions-SAVE$GLOBAL$TABLE, RESTORE$
GLOBAL$TABLE, SAVE$INTERRUPT$TABLE,
RESTORE$INTERRUPT$TABLE, CLEAR$TASK$
SWITCHED$FLAG, GET$ACCESS$RIGHTS, GET
$SEGMENT$LlMIT, SEGMENT$READABLE,
SEGMENT$WRITABLE, ADJUST$RPL-provide all
the facilities needed to Implement efficient operating
system software.

Compiler Controls

The PUM 286 compiler offers controls that facilitate
such featu res as'

-Optimization
-Conditional compilation
- The Inclusion of additional PUM source files

from disk
-Cross-reference of symbols
-Optional assembly language code In the

listing fl,le
- The setting of overflow conditions for run-time

handling.

Addressing Control

The PUM 286 compiler uses the SMALL, COMPACT,
MEDIUM, and LARGE controls to generate optimum
addreSSing Instructions for programs. Programs
of any size can be easily modularized into
"subsystems" to exploit the most effiCient memory
addressing schemes. ThiS lowers total memory re
quirements and Improves run-time execution of
programs.

Code Optimization

The PUM 286 compiler offers four levels of optll'niza
tlon for significantly redUCing overall program size.

-Combination or "folding" of constant
expressions; and short-Circuit evaluation of
Boolean expressions

3-78

-"Strength reductions": a shift left rather than
multiply by 2; and elimination of common sub
expressions within the same block

-Machine code optimizations; elimination of
superfluous branches; reuse of duplicate code;
removal of unreachable code

-Optimization of based-variable operations and
cross-statement load/store.

Error Checking

The PUM 286 cbmpiler has a very powerful feature
to speed up compilations. If a syntax or program
error is detected, the compiler will skip the code
generation and optimization passes. This usually
Yields a 2X performance increase for compilation of
programs with errors.

A fully aetailed and helpful set of programming and
compilation error messages is provided by the com
piler and user's guide.

BENEFITS

PUM 286 is deSigned to be an efficient, cost
effective solution to the special requirements of
protected mode iAPX 286 Microsystem Software De
velopment, as Illustrated by the following benefits of
PUM use:

Low Learning Effort

PUM 286 is easy to learn and use, even for the novice
programmer.

Earlier Project Completion

Critical projects are completed much earlier than
otherWise possible because PUM 286, a structured
high-level language, increases programmer
productivity.

Lower Development Cost

Increases in programmer productivity translate im
mediately into lower software development costs be
cause less programming resources are required for a
given programmed function

Increased Reliability

PUM 286 is designed to aid in the development of
reliable software (PL/M 286 programs are simple
statements of the plOgram algorithm). This substan
tially reduces ,the risk of costly Gorrection of errors in

AFPIJ-006438

PL/M 286 SOFTWARE PACKAGE

systems that have already reached full production
status, as the more simply stated the program is, the
more likely it is to perform its intended function.

Easier Enhancements and Maintenance

Programs written in PL/M tend to be self
documenting, thus easier to read and understand.
This means it is easier to enhance and maintain
PL/M programs as the system capabilities expand
and future products are developed.

SPECIFICATIONS

Operating Environment

Intel Microcomputer Development System (Series
III/Series IV)

ORDERING INFORMATION

Part Number Description

iMDX 323 PL/M 286 Software Package

Requires Software License

3-79

Cost-Effective Alternative to
Assembly Language

PL/M 286 programs are code efficient. PL/M 286
combines all of the benefits of a high-level language
(ease of use, high productivity) with the ability to
access the iAPX 286 architecture. This includes lan
guage features for control of the iAPX 286 protection
mechanism. Consequently, for the development of
systems software, PL/M 286 is the cost-effective al
ternative to assembly language programming.

Documentation Package

PL/M 286 User's Guide

SUPPORT:

Hotline Telephone Support, Software Performance
Report (SPR), Software Updates, Technical Reports,
and Monthly Technical Newsletters are available.

AFN-006438

iSDMTM 286
iAPX 286 SYSTEM DEBUG MONitOR

• Development support for iSBC® 286- • Universal Development Interface (UDI)
and iAPX 286-based applications support via development system

• Real Address Mode (RAM) and Protect- connection

ed Virtual Address Mode (PVAM) support

• Support of MULTIBUS® I and MULTIBUS® • Command execution, including pro-
II environments gram load capability from Intellec® Series

• Powerful debugging commands, III or Series IV Development Systems

including single step CPU operation

• For MULTIBUS® II, software configuration • Supports 80287 Numeric Processor
of system boards at start-up and auto- Extension (NPX) for high-speed math
matic configuration. of memory boards applications

The Intel iSDMTM 286 System Debug Monitor package contains the necessary software, cables, I;:PROMs, and
documentation required to interface an iSBC® 286 board or iAPX 286 application to an Intellec® Series III or Series
IV through a high-speed link. The System Debug Monitor supports an OEM's choice of MULTIBUS® lor MULTIBUS
II environments, and the iRMXTM 86 Real-Time Multitasking Operating System or a custom operating system.
The monitor contains debugging tools that examine CPU registers, memory content, CPU descriptor tables, and
other crucial environmental details. The Monitor also allows programs to access files on the development sys
tem via the internal UDI support 'and the serial communication link.

The following are trademarks of Intel CorporatIon and may be used only to describe Intel products: Intel, ICE, iMMX, iRMX, iSBC, iSBX, iSXM, MULTIBUS,
MULTICHANNEL and MULTI MODULE. Intel Corporation assumes no responsibility for the use of any circuitry other than CirCUItry embodied in an
Intel product. No other circuit patent licenses are implIed. Information contained herein supercedes previously published specificatons on these deVIces
from Intel.

© INTEL CORPORATION, 1984
3-80

SEPTEMBER, 1984
ORDER NUMBER: 230882'()()2

inter iSDM™286 MONITOR

FUNCTIONAL DESCRIPTION

Overview

The iSDM 286 System Debug Monitor provides
programmers of iAPX 286-based applications with the
debugging tools needed to test new applications rang
ing from single-user systems to complex operating
systems executing in either a MUL TIBUS I or MUL
TIBUS II environment. Programmers are given direct
access to both the Real Address (RAM) and Protect
ed Virtual Address (PVAM) modes of the CPU via a
simple terminal interface or via an Intellec Series III
or Series IV Development System.

Powerful Debugging Commands

The iSDM 286 Monitor contains a powerful set of user
functions, including commands to:

Examine and modify CPU registers

Examine, modify, and move memory locations

Symbolic reference to variable names

Find and compare memory contents

Set program breakpoints

Bootstrap load applicati9n software from iRMX 86
file compatible peripherals (requires the iRMX 86
Operating System for Bootstrap Loader)

Single-step CPU operation

Switch from Real Address Mode to Protected Vir
tual Address Mode

Formatted Displays

The iSDM 286 Monitor formats all iAPX 286 prede
fined data structures into clearly understandable dis
plays. This display gives programmers a formatted
view of such CPU structures as LOTs, GDTs, lOTs,
Segment Selectors, and Task State Segments-not
just a series of unconnected digits.

Universal Development Interface (UDI)

Via the Universal Development Interface (UDI), the
iSDM 286 Monitor can support the execution of iRMX
86, Series III, Series IV, or any other UDI-based ap
plications. The Monitor emulates many of the UDI
calls (RAM or PVAM), and passes all requests for a
file system to the host development system. UDI ap
plications, such as compilers and other programs
available from Independent Software Vendors, can,
be tested in the target iAPX 286 environment im
mediately.

MUL TIBUS® II Software
Configuration of System Boards

The MUL TIBUS II Interconnect Space Registers al
low the software to configure boards, eliminating
much of the need for jumpers and wire wraps. The
iSDM 286 Monitor can initialize these registers at con
figuration time using user-defined variables. The Mo
nitor can also automatically configure memory boards,
defining the addresses for each board sequentially
in relation to the board's physical placement in the
card cage. This feature allows for the swapping, ad
ding, and deleting of memory boards on a dynamic
basis.

Command Execution

Commands to the iSDM 286 Monitor are entered
interactively via a standalone terminal, an Intellec~
Series III or a Series IV Development System. The
target application hardware is connected to the terminal
or development system via a serial link. Figure 1
shows a typical MUL TIBUS I environment and Figure
2 shows a typical MUL TIBUS II environment. All con
trol operations and UDI file manipulations occur over
the serial link through the cables supplied. More than .
one channel can be configured for the communica
tion since the Monitor scans all configured channels
to determine which channel is in use.

Numeric Data Processor Support

In addition to executing 80287 Numeric Processor Ex
tension (NPX) applications with full NPX performance,
programmers may examine and modify NPX registers
using decimal and real number format. Any location
in memory known to contain numeric values in stan
dard real format (IEEE-P754) may be examined or
modified using normal decimal notation. In this man
ner, programmers may feel confident that correct and
meaningful numbers are available to applications
without having to encode and decode complex real,
integer, and BCD hexadecimal formats.

3-81 230882'()()2

iSDMTM 286 MONITOR

INTELLEC SERIES III
DEVELOPMENT STATION

,SDM'· 286
MONITOR PROMS

SERIAL PORT

Figure 1. Typical MUL TIBUS® I Environment

INTELLEC" SERIES IV
DEVELOPMENT SYSTEM RS232

CABLE

Figure 2. Typical MUL TIBUS® II Environment

3-82

SERIAL 110
PORT

,SBC 286/10

SERIAL 110
PORT

APPROPRIATE
,SBC' BOARD

230882·002

inter iSDM™286 MONITOR

SPECIFICATIONS

Development System Environment

Intellec Series III or Series IV Development System
with 128K of memory and 1 disk drive.

Target System Environment

Any iAPX 286 system with at least 4K of read-write
memory starting at location OH and 32K of read-only
memory starting at location OFF8000H.

Serial communication with a stand-alone terminal or
development system requires either a 8274 USART
and 8253 or 8254 PIT, or an 82530 SCC.

Monitor EPROMs are supplied for locations OFF8000H
through OFFFFFFH.,

ORDERING INFORMATION

The iSDM 286 System Debug Monitor package in
cludes cables, EPROMs, software, and a reference

3-83

manual. The software is provided on a double-density,
single-sided ISIS-formatted 8" diskette for Series III
Development System use and on a double-density,
double-sided iRMX-formatted 5V4" diskette for Ser
ies IV Development System use.

The OEM license option listed here allows users to
incorporate iSDM 286 into their applications. Each
use requires payment of an Incorporation Fee.

ORDER CODE: iSDM 286 RO.

The iSDM 286 RO product also includes 90 days of
support services that includes the Software Problem
Report service.

Another licensing option includes prepayment of all
future incorporation fees.

As with all Intel software, purchase of any of these
options requires the execution of a standard Intel
Master Software license. The specific rights granted
to users depends on the specific option and the
license signed.

230BB2-OO~

80287 SUPPORT LIBRARY
• Library to support floating

pOint arithmetic in Pascal-286,
PL/M-286 and ASM-286

• Decimal conversion module
supports binary-decimal
conversions

• Supports proposed IEEE Floating
Point Standard for high accuracy
and software portability

• Common elementary function library
provides trigonometric, logarithmic
and other useful functions

• Error-handler module simplifies
floating pOint error recovery

The 80287 Support Library provides Pascal-286, PLlM-286 and ASM-286 users with numeric data processing
capability. With the Library, it is easy for programs to do floating point arithmetic. Programs can bind in library
modules to do trigonometric,. logarithmic and other numeric functions, and the user is guaranteed accurate,
reliable results for all appropriate inputs. Figure 1 below illustrates how thee 80287 Support Library can be
bound with PLlM-286 and ASM-286 user code to do this. The 80287 Support Library supports the proposed
IEEE Floating Point Standard. Consequently, by using this Library, the user not only saves software develop
ment time, but is guaranteed that the numeric software meets industry standards and is portable--the
software investment is maintained.

The 80287 Support Library consists of the common elementary function library (CEL287.LlB), the decimal
conversion library (DC287.LlB), the error handler module (EH287.LlB) and interface librarie!? (80287.LlB,
NUL287.LlB).

B.PLM

APLM

m~J~lH.J'l~~f~~U~HETA) REAL EXTERNAL
ENOm'lf!{TNH

DECLAFlE(INPUTVALUE OUTPUTVALUEJAEAL

OUTPUT VALUE"mqe,TNH(INPUT VALUEI

~ ~~1~~~!~ 1&$Ilnpul OUTPUT VALUE 1$ a~out

DASM

CASM

T~:~, eXTRN must appea, oUls1de 01 all SEGMENT ENDS

J'XTANmqerTNH FAR

INPUT VALUE 001 OG2) V~I~,:alLzall""'$ ale51

TI1eloilowlngcodeduplK:alestheabcvePLIM
~!~'~~I:nl st81ement e.c,pl w~h LONG REAL

fLO INPUT VALUE ~~!hepaf.menle"nIQlhe802S1

CALLmqerTNH take the hy<!fboloc langent
FSTPOUTPUTVALUE storelheansW6'andpoplhe

80281staci<

l'Ii~h5~~1~~'npU1 OUTPUT VALUE os now aboot

I----t PLM·286 t--~

COMPILED
SOURCE MODULES

80287 SUPPORT
LIBRARY

Figure 1. Use of 80287 Support Library with PL/M·286 and ASM-286.

Intel Corporation Assumes No AesponSlbllitp for the Use of Any Circuitry Other Than Circuitry Emboched in an Intel Product. No Other CirCUit Patent Licenses are implied
l©f~~:~lco~Opb~r:~~~,r;I~8~upercedes revlously Published SpeCIfications of These DeVices from Intel MARCH 1984

ORDER NUMBER: 231041·001

3-84

8027 SUPPORT LIBRARY

CEL287.L1B
THE COMMON ELEMENTARY FUNCTION LIBRARY

FUNCTIONS

CEL287.LlB contains commonly used floating point
functions. It is used along with the 80287 numeric
coprocessor. It provides a complete package of
elementary functions, giving valid results for all
appropriate inputs. Following is a summary of CEL287
functions, grouped by functionality.

Rounding and Truncation Functions:

mqerlEX, mqerlE2, and mqerlE4. Round a real
number to the nearest integer; to the
even integer if there is a tie. The answer
returned is real, a 16-bit integer or a 32-bit
integer respectively.

mqerlAX, mqerlA2, mqerlA4. Round a real number
to the nearest integer, to the integer away
from zero if there is a tie; the answer
returned is real, a 16-bit integer or a 32-bit
integer, respectively.

mqerlCX, mqerlC2, mqerlC4. Truncate the frac
tional part of a real input; the answer is
real, a 16-bit integer or 32-bit integer,
respectively.

Logarithmic and Exponential Functions:

mqerLGD computes decimal (base 10) logarithms.
mqerLGE computes natural (base e) logarithms.
mqerEXP computes exponentials to the base e.

mqerY2X computes exponentials to any base.
mqerY12 raises an input real to a 16-bit integer

power.
mqerY14 is as mqerY12, except to a 32-bit integer

power.
mqerYIS is as mqerY12, but it accommodates

PUM-286 users.

Trigonometric and Hyperbolic Functions:

mqerSIN, mqerCOS, mqerTAN compute sine,
cosine, and tangent.

mqerASN, mqerACS, mqerATN compute the cor
responding inverse functions.

mqerSNH, mqerCSH, mqerTNH compute the cor
responding hyperbolic functions.

mqerAT2 is a special version of the arc tangent
function that accepts rectangular coor
dinate inputs.

Other Functions:

mqerDIM is FORTRAN's positive difference
function.

mqerMAX returns the maximum of two real inputs.
mqerMIN returns the minimum of two real inputs.
mqerSGH combines the sign of one input with the

magnitude of the other input.
mqerMOD computes a modulus, retaining the sign

of the dividend.
mqerRMD computes a modulus, giving the value

closest to zero.

DC287.L1B
THE DECIMAL CONVERSION LIBRARY

DC287.LlB is a library of procedures which convert
binary representations of floating point numbers and
ASCII-encoded string of digits.

The binary-to-decimal procedure mqcBIN_DECLOW
accepts a binary number in any of the formats used
for the representation of floating point numbers in the
80287. Because there are so many output formats
for floating point numbers, mqcBIN_DECLOW does
not attempt to provide a finished, formatted text string.
Instead, it provides the "building blocks" for you to
use to construct the output string which meets your
exact format specification.

3-85

The decimal-to-binary procedure mqcDEC_BIN
accepts a text string which consists of a decimal
number with optional sign, decimal point, and/or
power-of-ten exponent. It translates the string into the
caller's choice of binary formats.

Decimal-to-binary procedure mqcDECLOW_BIN is
provided for callers who have already broken the
decimal number into its constituent parts.

The procedures mqcLONG_ TEMP, mqcSHORT_
TEMP, mqcTEMP _LONG, and mqcTEMP _SHORT
convert floating point numbers between the longest
binary format, TEMP_REAL, and the shorter formats.

231041·001

inter 80287 SUPPORT LIBRARY

EH287.LlB
THE ERROR HANDLER MODULE

EH287.LlB is a library of five utility procedures for
writing trap handlers. Trap handlers are called when
an unmasked 80287 error occurs.

The 80287 error reporting mechanism can be used
not only to report error conditions, but also to let soft
ware implement IEEE standard options not directly
supported by the chip. The three such extensions to
the 80287 are: normalizing mode, non-trapping not
a-number (NaN), and non-ordered comparison. The
utility procedures support these extra features.

DECODE is called near the beginning of the trap
handler. It preserves the complete state of the 80287,
and also identifies what function called the trap
handler, and returns available arguments and/or
results. DECODE eliminates much of the effort
needed to determine what error caused the trap
handler to be called.

NORMAL provides the "normalizing mode" capability
for handling the "0" exception. By calling NORMAL

in your trap handler, you eliminate the need to write
code in your application program which tests for non
normal inputs.

SIEVE provides two capabilities for handling the "I"
exception. It implements non-trapping NaN's and non
ordered comparisons. These two IEEE standard
features are useful for diagnostic work.

ENCODE is called near the end of the trap handler.
It restores the state of the 80287 saved by DECODE,
and performs a choice of concluding actions, by either
retrying the offending function or returning a specified
result.

FILTER calls each of the above four procedures. If
your error handler does nothing more than detect fatal
errors and implement the features supported by
SIEVE and NORMAL, then your interface to
EH287.LlB can be accomplished with a single call to
FILTER.

80287.LlB, NUL287.LlB
INTERFACE LIBRARIES

80287.LlB and NUL287.LlB libraries configure a
user's application program for his run-time environ-

SPECIFICATIONS

Operating Environment

Intel Microcomputer Development Systems (Series
III, Series IV)

Documentation Package

80287 Support Library Reference Manual

ORDERING INFORMATION

Part Number

iMDX329

Requires Software License

SUPPORT

Description

80287 Support Library

Intel offers several levels of support for this product
which are explained in detail in the price list. Please

ment; running with the 80287 component or without,
floating point arithmetic, respectively.

Related Software

A 80287 software emulator is available as part of the
8086 software toolbox (iMDX364)

consult the price list for a description of the support
options available.

3-86 231041-001

PASCAL-286 SOFTWARE PACKAGE

• High-level programming language for
the protected virtual mode iAPX 286

• Implements ISO standard Pascal. Many
useful extensions may be enabled via
a compiler switch

• Upward compatible with Pascal-86 for
software portability

• Produces relocatable object code
which is linkable to object modules
generated by other iAPX 286
translators

• Supports full symbolic debugging with
iAPX 286 software and ICETM debuggers

• Fully supports the 80287 numeric proc
essor using the IEEE floating point
standard

Pascal-286 is a powerful, structured, applications programming language for the protected virtual address mode
of the iAPX 286. Pascal-286 is upward compatible with Pascal-86 so that 8086 Pascal source code can be
ported to the iAPX 286 in protected mode.

Pascal-286 implements strict ISO standard Pascal, but with many useful extensions. These include separate
compilation of modules, interrupt handling, port 1/0, and 80287 numerics support. A control is provided in the
compiler to flag all non-ISO features used.

Pascal-286 produces relocatable object code which can be linked with object code produced by other iAPX
286 translators such as ASM-286 and PUM-286. Thus, a combination of translators can be used to provide
great programming flexibility.

Type and symbol information needed by software and in-circuit debuggers is added to the object code by the
Pascal-286 compiler. This information can be stripped off by the compiler or linker for the final production version.

Intel Corporation Assumes No Responsibility for the use of Any CirCUitry Other Than Circuitry Embodied In an Intel Product. No Other Patent Licenses
are Implied ©INTEL CORPORATION, 1982. Note: The development system pictured here IS not included in the Pascal·286 software package,
but merely depicts the language In ItS operating environment

©Intel Corporation, 1983
3-87

NOVEMBER 1983
ORDER NUMBER: 230863-001

inter PASCAL-286 SOFTWARE PACKAGE

FEATURES

Conforms to ISO Standard Pascal

Pascal has gained wide acceptance as a portable
language for microcomputer applications. However,
portability can result only if standards are adhered to.
Pascal-286 is a strict implementation of ISO standard
Pascal. Extensions are provided to make the language
more powerful for microprocessor applications. All ex
tensions are clearly highlighted in the documentation.
In addition, the compiler provides a control to flag any
non ISO feature used. Pascal-286 will evolVe to track
future enhancements to standard Pascal.

Upward Compatible with Pascal·86

The Pascal-286 compiler produces object code for the
protected virtual address mode of the iAPX 286
language. However, no 286 architecture specific
features have been added to the Pascal-286 language.
This makes Pascal-286 source code upward compat
ible with Pascal-86, which allows for porting of 8086
software to the protected 286 with relative ease.

Compatible With Other iAPX 286
Translators

All Intel iAPX 286 translators output object code in a
standardized format. This allows 286 programs to be
written, in a mixture of languages. Systems routines
which need access to architectural features can be
coded in PL/M-286 or ASM-286. Pascal-286 may be
better suited for the applications routines. The Systems
and application routines can then be combined using,
the 286 linker (BIND-286).

Standardized Run Time Support

Programs compiled with Pascal-286 can be moved
from the development host environment to the target
environment with ease. ThiS is the result of standard
izing run-time operating system interfaces required by
the compiled program into a well defi,ned an,d well
documented set of routines. After programs are
developed on a development host, they can then be
executed' in the target using the same set of system

, interfaces.

3-88

Extensions for Microprocessor
Programming ,

Pascal-286 provides extensions that make it power
ful for microprocessor applications. Built-in procedures
allow 1/0 directly from the ports of the iAPX 286. This
speeds up 1/0 as it is done by direct communication
wit~ the microprocessor. Interrupt processing is also
supported by built in procedures. Examples are:
ENABLEINTERRUPTS, DISABLEINTERRUPTS,
CAUSEINTERRUPT. Many built in procedures and
variables are provided for communicating with the
80287 for numeric computations.

Compiler Controls

The Pascal-286 compiler provides many controls
which can be used at invocation time to enhance pro
gramming flexibility. Examples are: CODEINOCODE,
DEBUG/NODEBUG, INCLUDE (file), LIST/NOLlST,
OPTIMIZE (n), EXTENSIONS/NOEXTENSIONS. All
controls have default values that are active unless the
opposite is specified during invocation. Thus, for most
compiles, no controls need be specified.

Support for IEEE Standard Numerics

Pascal-286 provides full support for the 80287
numerics co-processor. All floating point operations
are done according to the IEEE floating point stand
ard. The benefits are predictable, accurate and con
sistent results. Built-in procedures to support the
80287 include GETS087ERRORS and MASK
8087ERRORS. A full sat of 80287 library routines are
supplied with the compiler.

Optimizations

The Pascal-286 compiler' produces highly optimized
code, both in size and execution time. This is achieved
by:
-Use of powerful iAPX 28,6 inStructions, in particular,
, for string handling, 802~ numerics and subroutine

linkage
-Short circuit evaluation of boolean' eXprel!Sions, con

. stant folding and strength' reduction of multiplica-
tions and additions , ,

-Elim!n!ltion of superfluous branches, optimization
of span dependent jumps

AFN·230863

PASCAL-286 SOFTWARE PACKAGE

SPECIFICATIONS

Operating Environment

Intel 8086 based microcomputer
Development systems (Series III, Series IV)

ORDERING INFORMATION

Part Number Description

iMDX-324 Pascal-286 Software Package

Requires Software License

Support

Hotline service, SPR (Software Performance Reports),
Updates and technical newsletters are available ..

Documentation Package

Pascal-286 User's Guide
Pascal-286 Pocket Reference

3-89 AFN-230863

inter
VAX*/VMS* RESIDENT SOFTWARE DEVELOPMENT

PACKAGES FOR iAPX 286

• Hosted on DEC VAX * Minicomputer
Under the VMS* Operating System

• Allows Development of System and Ap
plication Software for the Protected Vir
tual Address Mode of the iAPX-286

• Packages include PL/M-286, BUILD-286,
BIND-286, I-IB-286 and MAP-286

• Compatible with Corresponding Intel
Development System Resident Products

These packages provide the capability of developing software on a VAX * NMS * host for the iAPX-286 in pro- .
tected virtual address mode. With these packages a user can assemble and compile 286 programs, configure
system and application software and create and manage 286 object libraries. Figure 1 illustrates the process
of 286 software development on VAX*NMS* hosts.

Two packages are available:

1. A PLlM-286 package which contains the PLlM-286 compiler and run time support libraries.

2. An ASM-286 package which contains the iAPX-286 Assembler (ASM-286) and programming utilities.
These utilities include the iAPX-286 System Builder (BLD-286), the System Binder (BND-286), a Library
Utility (UB-286) and an Object Map Utility (MAP-286).

These packages are compatible with corresponding products which are hosted on Intel development systems.
Correspondence can be established via version numbers. For 'example, BND-286 V2.0 offers the same set
of features on VAXNMS and Intel development systems.

Owing to this compatibility, iAPX-286 software developed on VAXNMS can be linked to iAPX-286 software
from development systems. Moreover, iAPX-286 programs developed on the VAX can then be downloaded
to development systems and debugged using 286 debuggers like the 121CE™_286 system.

ASM-286
PROGRAMS

PLlM·286
PROGRAMS

PASCAL·286
PROGRAMS t

FORTRAN·286
PROGRAMS t

OPERATING SYSTEM

SOFTWARE

APPLICATION SOFTWARE

((g@~A ocm~~o :-v' TO
DEVELOPMENT

SYSTEM OR
PROTECTED MULTI·TASK TARGET SYSTEM

SYSTEM FOR EXECUTION
OR DEBUGGING

Figure 1: 286 Software Development on VAX * NMS'

'VAX, VMS are trademarks of DIgital Equipment Corporation tCurrentty AvaIlable on Intel Development Systems Only

Intel Corporation Assumes No ResponsIbility for the Use of Any CIrcuitry Other Than CirCUitry Embodied In an Intel Product No Other CirCUIt Patent Licenses are Implied
Information Contained Herein Supercedes Previously Published Speclflcattons of These DevIces from Intel
,)INTEl CORPORATION, 1984 MARCH 1984

ORDER NUMBER: 231038·001
3-90

VAX*IVMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES

VAX * IVMS * RESIDENT PL/M-286

• Systems Programming Language for • Produces relocatable object code
the protected virtual address mode linkable to object modules generated
iAPX-286 by other Intel 286 language translators

• Enhanced to support design of • Upward compatible with PLlM-86 and
protected, multi-user, multi-tasking, PLlM-80 to allow software portability
virtual memory operating system
software

• Provides multiple levels of optimization • Compatible with development system
to produce efficient code resident PLlM-286

PUM-286 IS a powerful, structured, high-level system implementation language for the development of system
software for the protected virtual address mode iAPX-286. PUM-286 has been enchanced to utilize iAPX-286
features--memory management and protection--for the Implementation of multi-user, multi-tasking virtual memory
operating systems.

PUM-286 is upward compatible with PUM-86 and PUM-80. Existing systems software can be re-compiled
with PUM-286 to execute in protected virtual address mode on the IAPX-286.

PUM-286 is the high-level alternative to assembly language programming on the iAPX-286. For the majority
of IAPX-286 system programs, PUM-286 provides the features needed to access and to control efficiently
the underlYing IAPX-286 hardware, and consequently it is the cost-effective approach to develop reliable, main
tainable system software.

The PUM-286 compiler has been designed to efficiently support all phases of software development. Features
such as built-in syntax checker, multiple levels of optimization, virtual symbol table and four models of pro
gram size and memory usage for efficient code generation provide the total program development support
needed. The compiler also provides complete symbolic debug capability to the various 286 debuggers and
emulators

VAXIVMS resident PUM-286 IS completely feature compatible with development system resident PUM-286
with the same version number.

3-91 231038·001

VAX*IVMS" RESIDENT SOFTWARE DEVELOPMENT PACKAGES

VAX * IVMS * RESIDENT iAPX-286 MACRO ASSEMBLER

• Supports full Instruction Set of the
iAPX .. 286 including memory protection
'and numerics (with 80287)

• Structures and RECORDS provide
powf!rful data representation

• Type checking at assembly time
helps reduce errors at run-time

• Powerful and flexible Text Macro
facility

• Upward compatible with
ASM-86/88/186

• Compatible with development
system resident iAPX-286 Macro
Assembler

ASM-286 is the "high-level" macro assembler for the iAPX-286 assembly language, ASM-286 translates
symbolic assembly language mnemonics into relocatable object code. The assembler mnemonics are a superset
of ASM-86/88 mnemonics; new ones have also been added to support the new iAPX-286 instructions. The
segmentation directives have been greatly simplified.

The iAPX-286 assembly language includes approximately 150 instruction mnemonics. From these few
mnemonics the assembler can generate' over 4,000 distinct machine instructions. Therefore, the software
development task is simplified, as the programmer need know only 150 mnemonics to generate all possible
machine instructions. ASM-286 generates the shortest machine instruction possible (given explicit informa
tion as to the characteristics of any forward referenced symbols).

The powerful macro facility in ASM-286 saves development and maintenance time by coding common pro
gram sequences only once. A macro substitution is made each time the sequence is to be used. This facility
also allows for conditional assembly of certain program sequences.' '

ASM-286 offers many features normally found only in high-level languages. The assembly language is strong
ly typed, which means it performs extensive checks on the usage of variables and labels. This means that
many programming errors will be detected when the program is assembled, long before it is b!'ling debugged.

ASM-286 objeCt modules conform to a thorough, well-defined format used by 286 high-level languages and
utilities. This makes it easy to call (and be called from) HLL object modules.

ASM-286 also provides support for the 80287 numerics co-processor. The complete instruction set of the 80287
is available through high-level mnemonics,

VAXNMS resident ASM-286 is completely feature compatible with development systern resident ASM-286
with the same version number.

3-92 231038·001

VAX*/yMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES

VAX*/VMS* RESIDENT iAPX-286 SYSTEM BUILDER

• A tool for configuring multi-tasking • Target system may be bootloadable,
protected, virtual memory systems programmed into ROM or loaded from

mass storage software for the iAPX-286

• Links separately compiled modules. • Generates print file with command
Resolves EXTERNAL/PUBLIC listing and system map
definitions

• Creates a memory image of a 286 • Compatible with development
system for cold start execution system resident iAPX-286 System

Builder

BLD-286 is the iAPX-286 System Builder. It allows systems programmers to configure multi-tasking and memory
protected iAPX-286 software. The configuration is specified by the user in a "Build file" using a symbolic
meta-language. BLD-286 thus provides the programmer a high-level symbolic interface to the multi-tasking
and memory protection features of the iAPX-286 architecture.

BLD-286 accepts as inputs object modules from the iAPX-286 translators, the iAPX-286 Binder and itself (for
incremental building). Using the programmer's specifications in the Build File, it produces a bootloadable or
loadable module as well as a print file with a map of the configured module.

Using the builders command language, system programmers may perform the following functions:

- Assign physical addresses·to segments; also set segment access rights and limits.
- Create Cali, Trap, and Interrupt "Gates" (entry-points) for inter-level program transfers.
- Make gates available to tasks; this is an easier way to define program interfaces than using interface libraries.
- Create Global (GDT), Interrupt (IDT), and any Local (LDT) Descriptor Tables. I

- Create Task State Segments and Task Gates for multi-tasking applications.
- Resolve inter-module and inter-level references, and perform type-checking.
- Automatically select required modules from libraries.
- Configure the memory image into partitions in the address space.
- Selectively generate an object file and various sections of the print file.

VAXNMS BLD-286 is completely feature compatible with development system resident BLD-286 with the same
version number.

3-93 231038-001

VAX*NMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES

VAX*/VMS* RESIDEN'T iAPX-286 BINDER

• Links separately compiled program
modules into an executable task

• Makes the iAPX-286 protection
mechanism invisible to application
programmers

• Assigns virtual addresses to tasks

• Performs incremental linking with
output of Binder and Builder

• Resolves PUBLIC/EXTERNAL code
and data references, and performs
intermodule type-checking

• Provides print file showing
segment map, errors and warnings

• Generates linkable or loadable
module for debugging

• Compatible with development
system resident iAPX-286 Blnder-

BND-286 is a utility that combines iAPX-286 object modules into executable tasks. In creating a task, the Binder
resolves Public and External symbol references, combines segments, and performs address fix-ups on sym
bolic code and data.

The Binder takes object modules, produced by the 286 translators, and generates a loadable module (for ex
ecution or debugging), or a linkable module (to be re-input to the Binder later; this is called incremental bind
ing). The binder accepts library modules as well, linking only those modules required to resolve external
references. BND-286 generates a print file displaying a segment map, and error messages.

The Binder is useful for system as well as application programmers. Since application programmers need
to develop software independent of any system architecture, the 286 memory protection mechanism is
"hidden" from users of the Binder. This allows application tasks to be fully debugged before becoming part
of a protected system. (A protected system may be debugged, as welL) System protection features are specified
later in the development cycle, using the 286 System Builder. It is possible to link operating system services
required by a task using either the Binder or the Builder. This flexibility adds to the ease of use of the 286 utilities.

VAXIVMS resident BND-286 is completely feature compatible with development system resident BND-286
with the same version number.

VAX * /VMS * RESIDENT iAPX-286 LIBRARIAN

• Allows creation and management of
iAPX-286 object libraries

• Library functions include Create, Delete,
Add, Replace, Copy, Save, Backup
and Display

• Only required modules linked in when
using Binder or Builder

• Compatible with development system
resident iAPX-286 Librarian

LlB-286 is the iAPX-286 Librarian. It can be used to create and manage iAPX-286 Object Libraries. By placing
often used object modules into libraries, the administrative overhead of managing software modules can be
reduced.

VAXIVMS based LlB-286 is completely feature compatible with development system resident LlB-286 with
the same version number.

3-94 231038-001

infel VAX*/VMS* RESIDENT SOFTWARE DEVELOPMENT PACKAGES

, VAX * IVMS * RESIDENT iAPX-286 MAPPER

• Flexible Utility to display object file
information in symbolic form

• Compatible with development system
resident iAPX·286 Mapper

MAP-286 IS a cross reference utility for IAPX-286 object modules It provides a symbolic listing of the
EXTERNAL and PUBLIC symbols in the specified object modules

VAXIVMS resident MAP-286 IS completely feature compatible with development system resident MAP-286
with the same version number.

SPECIFICATIONS

Operating Environment

DEC VAX' 11/780 or compatible model running
VMS' operating system V3.4 (or upward com
patible versions)

Documentation

Instalia[lon gUide and user's manuals for the soft
ware are supplied with the products

SUPPORT
Hotline Telephone Support, Software, Per
formance Report (SPR) Software Updates,
Technical Reports and Monthly Newsletters
are available.

ORDERING INFORMATION

Product Code

iMDX-371VX

iMDX-373VX

Description

ASM-286, BLD-286,
BND-286, LlB-286, MAP-286

PLlM-286

'VAX,IVMS are trademarks of Digital Equipment Corporation

3-95 231038·001

··VAX*/VMS* RESIDENT
IAPX-86/88/186

.,SOFTWARE DEVELOPMENT PACKAG·ES

• Executes on DEC VAX· Minicomputer
under VMS· Operating System to
translate PLlM-86, Pascal-86 and
ASM-86 Programs for IAPX-86, 88
and 186 Microprocessors.

• Packages Include Pascal-alj PL/M-alj
ASM-alj Link and Relocation Utliltlesj
OH·al Absolute Object Module to
Hexadecimal Format Convertarj and
Library Manager Program.

• Output linkable with Code Generated
on Intellec~ Development Systems.

The VAXNMS Resident Software Development Packages contain software development tools for the iAPX-86,
88, and 186 microprocessors. The package lets the user de,!elop, compile, maintain libraries, and link and
locate programs on a VAX running the VMS operating system. The translator output is object module compati
ble with programs translated by the corresponding version of the translator on an Intellec Development System.

Three packages are available:

An ASM-86 Assembler Package which includes the Assembler, the Link Utility, the Locate Utility,
the absolute object to hexadecimal format conversion utility and the Library Manager Program.

2. A PLlM-86 Compiler Package which contains the PL/M-86 Compiler and Runtime Support Libraries.

3. A Pascal-86 Compiler Package which contains the Pascal-86 Compiler and Runtime Support Libraries.

The VAXNMS resident development packages and the Intellec Development System development packages
are built from the same technology base. Therefore, the VAXNMS resident development packages and the
Intellec Development System development packages are very similar.

Version numbers can be used to identify features correspondence. The VAXNMS resident development
packages will have the same features as -the Intellec Development System product with the same version
number -

Support for the iAPX-186 processor will be provided as an update to the iAPX-86, 88 software.

The object modules produced by the translators contain symbol and type information for programming
debugging using ICE" translators and/or the PSCOPE debugger. For final production verSion, the compiler
can remove this extra Information and code

'VAX OEC and VMS are trademarks of DigItal EqUipment Corporation

Intel Corporetlon Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other
Circuit Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications of These Devices
from Intel. JUNE 1984
©INTEL CORPORATION, 1983 3-96 ORDER NUMBER: 210843·002

intel· VAX*/vMS* RESIDENT

VAX*-PL/M-86/88/186 SOFTWARE PACKAGE

• Executes on VAX· Minicomputer Under
the VMS* Operating System

• Supports 16-Bit Signed Integer and
32-Bit Floating Point Arithmetic in
Accordance with IEEE Proposed
Standard

• Easy-To-Learn Block-Structured
Language Encourages Program
Modularity

• Produces Relocatable Object Code
Which is Linkable to All Other Intel 8086
Object Modules, Generated on Either a
VAX· or Intellec® Development Systems

• Code Optimization Assures Efficient
Code Generation and Minimum
Application Memory Utilization

• Built-In Syntax Checker Doubles
Performance for Compiling Programs
Containing Errors

• Source Input/Object Output Compatible
with PL/M-86 Hosted on an Intellec®
Development System

• ICE™, PSCOPE Symbolic Debugging
Fully Supported

Like Its counterpart for MCS®-80/85 program development, and Intellec® hosted iAPX-86 program develop
ment, VAX-PLiM-86 IS an advanced, structured high-level programming language The VAX-PLiM-86
compiler was created specifically for performing software development for the Intel iAPX-86, 88, and 186
Microprocessors

PLiM is a powerful, structured, high-level system implementation language in which program statements can
naturally express the program algorithm. This frees the programmer to concentrate on the logic of the
program without concern for burdensome details of machine or assembly language programming (such as
register allocation, meanings of assembler mnemonics, etc.).

The VAX-PL/M-86 compiler efficiently converts free-form PLiM language statements intO equivalent
iAPX-86/88/186 machine instructions. Substantially fewer PLiM statements are necessary for a given appli
cation than if it were programmed at the assembly language or machine code level.

The use of PLiM high-level language for system programming, instead of assembly language, results in a high
degree of engineering productivity during project development. This translates into significant reductions in
initial software development and follow-on maintenance costs for the user.

·VAX DEC and VMS are trademarks of Digital Equipment Corporation

3-97
AFN-00680C

VAX*IVMS'* RES1DENT

VAX*'-PASCAL~86/88S0FTWAREPACI<AGE

• Executes.on VAX· Minicomputer Under,
the VMS· Operating System

• Produces Relocatable 'Object Code
Which Is Linkable to All Other Intel 8086

. Object Modules; Generated on Either a
VAX· or Intellec® Development Systems

• ICE™ ,PSCOP~ Symbolic Debugging
Fully Supported

• Implements REALMATH for Consistent
and Reliable ResultS

• Supports iAPX-86/20, 88/20 Numeric
Data Processors

• Strict 'Implementation of. ISO Standard
Pascal

• Useful Extensions Essential for Micro
computer' Applications

• Separat~·tompilation 'with Type
Checking Enforced Between Pascal
Modules "

• Compiler Option to Support Full Run
Time Range-Checking

• .Source Input/Object Output
Compatible with Pascal-8S Ho~ted o,n a
I'ntellec pevelopment System .,

VAX-PASCAL-86 conforms to and implements the ISO Pascal standard. The language is enhanced to
supP?rt microcomputer applications with special features, such as separate compilation, interrupt
handling and dire.ct port 1/0. OHler extensions include additional data types not required by the standard
and miscellaneous enhancements such as an allowed underscore in names, an OTHERWISE clause in
CASE construction and so forth. To assist the development of portable software, the compiler can be
directed to flag all non-standard features

The VA'X-PASCAL-86 compiler runs on the Digital EqUipment Corporation VAX under the VMS
Operating System A well-defined I/O Interface IS provided for run-time support. This allows a user
written operating system to support application programs on the target system as an alternate to the
development system environment Program modules compiled under PASCAL-86 are compatilble and
linkable with' modules written In PLlM-86. and ASM-86 With a complete family of compatible program"
mlng languages for the iAPX-86, 88, and 186 one can implement each module in the language most
appropriate to the task at hand

'VAX DEC and VMS are trademad<,s of Digital EqUipment Curporatlon

3-98 AFN-00680C

VAX*/VMS* RESIDENT

VAX*-iAPX-86/88/186 MACRO ASSEMBLER

• Executes on VAX· Minicomputer Under
The VMS· Operating System

• Produces Relocatable Object Code
Which Is linkable to All Other Intel
iAPX-86/88/186 Object Modules,
Generated on Either a VAX· or Intellec<8i
Development Systems

• Powerful and Flexible Text Macro Facility
with Three Macro listing Options to Aid
Debugging

• Highly Mnemonic and Compact
Language, Most Mnemonics Represent
Several Distinct Machine Instructions

• "Strongly Typed" Assembler Helps
Detect Errors at Assembly Time

• High-Level Data Structuring Facilities
Such as "STRUCTURES" and
"RECORDS"

• Over 120 Detailed and Fully Documented
Error Messages

• Produces Relocatable and linkable
Object Code

• Source Input/Object Output Compatible
with ASM-86 hosted on an Intellec
Development System

VAX-ASM-86 IS the "high-level" macro assembler for the iAPX-86/88/186 assembly language. VAX-ASM-86
translates symbolic IAPX-86/88/186 assembly language ml1emOnlCS Into iAPX-86/88/186 relocatable
object code

VAX-ASM-86 should be used where maximum code effiCiency and hardware control is needed. The
IAPX-86/88/186 assembly language Includes approximately 100 instruction mnemonics. From these few
mnemonics the assembler can generate over 3,800 distinct machine instructions. Therefore, the software
development task IS simplified, as the programmer need know only 100 mnemonics to generate all
possiblE' IAPX-86/88/186 machine Instructions VAX-ASM-86 Will generate the shortest machine Instruction
possible given no forward referenCing or given expliCit Information as to the charactenstics of forward
referenced symbols

VAX-ASM-86 offers many features normally found only In high-level languages The IAPX-86/88/186
assembly language IS strongly typed The assembler performs extensive checks on the usage of variable
and labels The assembler uses the attnbutes which are derived explicity when a variable or label IS first
defined, then makes sure that each use of the symbol In later instructions conforms to the usage defined for
that symbol ThiS means that many programming errors Will be detected when the program is assembled,
long before It IS being debugged on hardware

'VAX DEC and VMS art:' trademarks of Digital Equipment Corporation

3-99 AFN·0068OC

VAX* IVMS*RESIDENT

VAX*-LIB-86

• Executes on VAX* Minicomputer'Under,
the VMS* Operating System

• VAX*-LIB-86 is a Library Manager
Program which Allows You to:
Create Specifically Formatted Files to
Contain Libraries of Object Modules
Maintain These Libraries by Adding or
Deleting Modules
Print a Listing of the Modules and
Public Symbols in a Library File

• Libraries Can be Used as Input to
VAX*-LINK-86 Which Will Automatically
Link Modules from the Library that
Satisfy External References in the
Modules Being Linked

• Abbreviated Control Syntax

Libraries aid in the job of building programs. The library manager program VAX-LlB-86 creates and
maintains files containing object modules. The operation of VAX-LlB-86 is controlled by commands to
indicate which operation VAX-LlB-86 is to perform. The commands are:

CREATE:
ADD:
DELETE:

creates an empty library file
adds object modules to a library file
deletes modules from a library file

LIST: lists the module directory of library files
EXIT: terminates the LlB-86 program and returns control to VMS

When using object libraries, the linker will call only those object modules that are required to satisfy external
references, thus saving memory space.

VAX-OH-86

• Executes on VAX· Minicomputer Under
the VMS· Operating System

• Converts an iAPX 86/88/186 Absolute
Object Module to Symbolic
Hexadecimal Format

• Facilitates Preparing a file for Loading
by Symbolic Hexadecimal Loader (e.g.
iSBC™ Monitor SDK-86 Loader), or
Universal PROM Mapper

• Converts an Absolute Module to a More
Readable Format that can be Displayed
on a CRT or Printed for Debugging

The VAX-OH-86 utility converts an 86/88 absolute object module to the hexadecimal format. This conversion
may be necessary for later loading by a hexadecimal loader such as the iSBC 86/12 monitor or the Universal
PROM Mapper. The conversion may also be made to put the module in a more readable format that can be
displayed or printed.

The module to be converted must be in absolute form; the output from VAX-LOC-86 is in absolute format.

'VAX, VMS are trademarks of Digital Equipment Corporation.

3-100 AFN·OO880C

intel VAX* IVMS*RESIDENT

VAX*-LINK-86

• Executes on VAX* Minicomputer Under
the VMS* Operating System

• Automatic Combination of Separately
Compiled or Assembled 86/88/186
Programs Into a Relocatable Module,
Generated on Either a VAX or an Intellec@
Development System

• Automatic Selection of Required
Modules from Specified Libraries to
Satisfy Symbolic References

• Extensive Debug Symbol Manipulation,
allowing Line Numbers, Local Symbols,
and Public Symbols to be Purged and
Listed Selectively

• Automatic Generation of a Summary
Map Giving Results of the L1NK-86
Process

• Abbreviated Control Syntax

• Relocatable modules may be Merged into
a Single Module Suitable for Inclusion in
a Library

• Supports "Incremental" Linking

• Supports Type Checking of Public and
External Symbols

VAX-lINK-86 combines object modules specified In the VAX-lINK-86 Input list Into a single output module
VAX-lINK-86 combines segments from the Input modules according to the order In which the modules pre
listed

VAX-lINK-86 will accept libraries and object modules built from VAX-PLlM-86, VAX-PASCAL-86, VAX-ASM-
86, or any other Intel translator generating 8086 Relocatable Object Modules, such as the Series III reSident
translators.

Support for Incremental linking IS provided since an output module produced by VAX-LlNK-86 can be an
Input to another link At each stage In the Incremental linking process, unneeded public symbols may be
purged

VAX-lINK-86 supports type checking of PUBLIC and EXTERNAL symbols reporting a warning if their
types are not consistent

VAX-lINK-86 will link any valid set of Input modules without any controls However, controls are available
to control the output of diagnostic information In the VAX-lINK-86 process and to control the content of
the output module

VAX-lINK-86 allows the user to create a large program as the combination of several smaller, separately
compiled modules After development and debugging of these component modules the user can link them
together, locate them using VAX-LOC-86 and enter final testing with much of the work accomplished.

·VAX DEC and VMS are traderndrks or Digital Eqll,plllPIlI Corporation

3-101 AFN-006BOC

VAX* IVMS*RESIDENT

VAX*-LOC-86

• Executes on the VAX* Minicomputer
Under the VMS* Operating System

• Automatic Generation of a Summary
Map Giving Starting Address, Segment
Addresses and Length, and Debug
Symbols and their Addresses

• Extensive Capability to Manipulate the
Order and Placement of Segments In
8086/8088 Memory

• Abbreviated Control Syntax

• Automatic and Independent Relocation
of Independent Relocation of Segments.
Segments May be Relocated to Best .
Match Users Memory Configuration

• Extensive Debug Symbol Manipulation,
Allowing Line Numbers, Local Symbols,
and Public Symbols to be Purged and
Listed Selectively

Relocatability allows the programmer to code programs or sections of programs without having to know the
final arrangement of the object code in memory.

VAX-LOC-86 converts relative addresses in an input module in iAPX-86/88/186 object module format to
absolute addresses. VAX-LOC-86 orders the segments in the input module and assigns absolute addresses
to the segments. The sequence in which the segments in the input module are assigned absolute
addresses is determined by their order in the input module and the controls supplied with the command.

VAX-LOC-86 will relocate any valid input module without any controls. However, controls are available to
control the output of diagnostic information in the VAX-LOC-86 process, to control the content of the
output module, or both.

The program you are developing will almost certainly use some mix of random access memory (RAM),
read-only memory (ROM), and/or programmable read-only memory (PROM). Therefore, the location
of your program affects both cost and performance In your application. The relocation feature allows you to
develop your program and then simply relocate the object code to suit your application.

SPECIFICATIONS

Operating Environment

Required Hardware

VAX' 111780, 11/782, 11/750, or 11/730
9 Track Magnetic Tape Drive, 1600 BPI

Required Software

VMS Operating System V3.0 or Later. All of the devel
opment packages are delivered as unlinked VAX ob-

. ject code which can be linked to VMS as designed for
the system where the development package is to be
used. VMS command files to perform the link are
provided.

:VAX DEC and VMS are trademarks of Digital EqUipment Corporation

3-102

Documentation Package

iAPX-86, 88 Development Software Installation
Manual and User's Guide for VAXIVMS, Order
number 121950-001

Shipping Media

9 Track Magnetic Tape 1600 bpi

ORDERING INFORMATION

Part Number Description
iMDX-341VX VAX-ASM-86, VAX-LiNK-86, VAX

LOC-86, VAX-LiB-86, VAX-OH-86,
Package

iMDX-343VX VAX-PLM-86 Package
IMDX-344VX VAX-PASCAL-86 Package

REQUIRES SOFTWARE LICENSE

AFN-006BOC

intJ
, iSDM™ 86

SYSTEM DEBUG IVIONITOR

• Supports target system debugging for
iSBC@ liAPX 86, 88, 186 and 188-based
applications

• Provides interactive debugging
commands including single-step code
execution and symbolic displays of
results' ,

• Supports 8087 Numeric Processor
Extension (NPX) for high-speed math
applications

• Allows building of custom commands
through the Command Extension
Interface (CEI)

• Supports application access to ISIS-II
files

• Provides program load capability from
an Intellec@ De"elopment System '

• Contains configuration facilities which
allow an applications bootstrap from
iRMX™ 86 and 88 file compatible
peripherals

• Modular to allow use from an Intellec
Development System or from a stand
alone terminal

The Intel iSDMTM 86 System Debug Monitor package contains the necessary hardware, software, cables, EPROMs
and documentation required to interface, through a serial or parallel connection, an iSBC® 86/05, 86/12A, 86/14,
86/30, 88/25, 88/40, 88/45, 186/03, 186/51, 188/48, or iAPX 86, 88, 186 or 188 target system to an MDS 800, Series
II, Series III, or Series IV Intellec'" Microcomputer Development System for execution and interactive debug
ging of applications software' on the target system. The Monitor can: load programs into the target system; ex
ecute the programs instruction by instruction or at full speed; set breakpoints; and examine/m09ify CPU registers,
memory content, and other crucial environmental details. Additional custom commands can be built using the
Command Extension Interface (CEI). The Monitor supports the OEM's choice of the iRM)(TM 86 Operating Sys
tem, the iRMX 88 Real-Time Multi-tasking Executive or a custom system for the target application system. OEM's
may utilize any iRMX 86~ 88 supported target system peripheral for a bootstrap of the application system or have
full access to the ISIS-II files of the Intellect System.

The followmg are trademarks of Intel Corporallon and may be used only to describe Intel products Inlel ICE IMMX, ,RMX Isec ,sax, ISXM, MUL TlBUS Multichannel and MULTI MODULE
IntetCorporatlon assumes no responSibility for the use of any CirCUitry other than CirCUitry embodied In an Inlel product No other ClrCUlt patent licenses are Implied Information contained
herem supercedes previously published specificatIOns on these deVIces from Intel

INTEL CORPORATION, 1983 October, 1983

3-103 ORDER NUMBER: 230882-002

iSDM™ 86

FUNCTIONAL DESCRIPTION

Overview
The iSDM 86 Monitor extends the software development
capabilities of the Intellec system so the user can effec
tively develop applications to ensure timely product avail
ability.

The iSDM 86 package consists of four parts:

• The loader program

• The iSDM 86 Monitor

• The Command Extension Interface (CEI)

• The ISIS-II Interface

The user can use the ISDM 86 package to load programs
into the target system from the development system,
execute programs in an instruction-by-instruction manner,
and add custom commands through the command ex
tension interface. The user also has the option of using
just the iSDM 86 Monitor and the CEI in a stand-alone
application, without the use of an Intellec development
system.

Powerful Debugging Commands
The iSDM 86 Monitor contains a powerful set of com
mands to support the debugging process. Some of the

features included are: bootstrap of application software;
seleCtive execution of program modules based on break
points or single stepping requests; examination, modi
fication and movement of memory contents; examination
and modification pf CPU registers, including NPX regis
ters, All results are displayed in clearly understandable
formats. Refer to Table 1 for a more detailed list of the
iSDM 86 monitor commands.

Numeric Data Processor Support

Arithmetic applications utilizing the 8087 Numeric Pro
cessor Extension (NPX) are fully supported by the iSDM
86 Monitor. In addition to executing applications with the
full NPX performance, users may examine and modify
the NPX's registers using decimal and real number forma!.

This feature allows the user to feel confident that correct
and meaningful numbers are entered for the application
without having to encode and decode complex real,
integer, and BCD hexadecimal formats.

Command Extension Interface (CEI)

The Command Extension Interface (CEI) allows the ad
dition of custom commands to the iSDM 86 Monitor com
mands. The CEI consists of various procedures that can
be" used to generate custom commands. Up to three
custom commands (or sets oi commands) can be added

Table 1. Monitor Commands

Command Function

B Bootstrap application program from target systems peripheral device

C Compare two memory blocks

0 Display contents of memory block

E* Exit from loader program to ISIS-II Interface

F Find specified constant in a memory block

G Execute application program

I Input and display data obtained from input port

L* Load absolute Intellec@ object file into target system memory

M Move contents of memory block to another location

N Display and execute single instruction

0 Output data to output port

P Print values of literals

R* Load and execute absolute Intellec@ object file in target system memory

S Display and (optionally) modify contents of memory

T* Transfer block of memory tq an Intellec® file

U,V,W User defined custom commands extensions

X Examine and (optionally) modify CPU and NPX registers

• Commands require an attached Series II/Series III.

3-104 230882-002

intJ iSDM™ 86

to the monitor without programming new EPROMs or
changing the monitor's source code.

ISIS-II Interface

The ISIS-II interface consists of libraries which contain
interfaces to ISIS-II I/O calls. A program running on an
iAPX 86, 88, 186 or 188-based system can use the ISIS-II
interface and access the individual ISIS-II I/O calls. The
interface allows the inclusion of these calls into the pro
gram; however, most of the calls require a Series III
Series III system. Table 2 contains a summary of the
major I/O calls and parameters.

Program Load Capability

The iSDM 86 loader allows the loading of iAPX 86, 88,
186 or 188-based programs into the target system. It exe
cutes on a Intellec Microcomputer Development System
and communicates with the target system through a
serial or a parallel load interface. If a Series IIISeries
III/Series IV system containing an Intel 1/0 expansion
board is being used, the board can be used as a fast
parallel load interface, freeing up the UPP port for ap
plication use.

Configuration Facility

The monitor contains a full set of configuration facilities
which allow it to be carefully tailored to the requirements

of the target system. Pre-configured EPROM-resident
monitors are supplied by Intel for the iSBC 86/05, 86/12A,
86/14,86/30,88/45,186/03,186/51, and 188/48 boards.
The monitor must be configured by the user for the iSBC
88/25, 88/40 boards and for other iAPX 86, 88, 186, 188
applications. iRMX 86 and iRMX 88 system users may
use the configuration facilities to include the iAPX 86,
88 Bootstrap Loader (V5.0 or newer) in the monitor.

Variety of Connections Available

The physical interface between the Intellec Microcom
puter Development System and the target system can
be established in one of three ways. The systems can
be connected via a serial link, a parallel link or a fast
parallel link. The fast parallel link requires the use of an
iSBC 108(A), 116(A), 517 or 519 I/O expansion board in
the Intellec system and is only available for connections
with the Series II/Series III/Series IV systems. The ca
bling arrangement is different depending upon the de
velopment system being used. Figure 1 displays the
cable connections needed between an Intellec Series
III system and a target system for a serial interface.

The iSDM 86 Monitor does not require the use of a de
velopment system. The monitor can be used by simply
attaching a stand-alone terminal to the target system.
Figure 1 also displays the cable connections needed for
this arrangement.

Table 2. Routines for ISIS-II Services Available to Target System Applications

Routine Target System Function

AnRIB Changes to ISIS-II file attribute

CI Retums a character input from the console

CO Transfers a character for console output

CLOSE Closes an opened ISIS-II file

DELETE Deletes the specified ISIS-II file

DQ$CFG Returns information about monitor's communication link and type

ERROR Displays an error message on the Intellec® console
,

EXIT Exits to the target system monitor

LOAD Loads target system memory with ISIS-II object code file

OPEN Opens an ISIS-II file for access

READ Reads up to 4096 bytes from an ISIS-II file to memory

RENAME Renames an ISIS-II disk file

SEEK Seeks to the specified ISIS-II file location

WRITE Writes up to 4096 bytes from memory to an ISIS-II file

3-105 230882-002

intJ iSDM T .. 86

A

SERIAL I/O
PORT

APPROPRIATE
iSac' BOARD

fo OEM RS232C
/' I CABLE

INTELLEC' SERIES III
DEVELOPMENT SYSTEM

Figure 1. Typical iSDM ™ 86 Serial Connection Environment

SPECIFICATIONS

Development System Environment

The Inteliec Microcomputer Development System may
be utilized for application program development and. if
used. requires the following to support the iSDM 86
package:

• 48 Kbytes memory

• Double density or single density diskette subsystem

• ISIS-II Operating System and associated language
translators

iAPX 86,88,186,188 TARGET SYSTEM
ENVIRONMENT'

To support the iSDM 86 package. the target system must
contain the following:

• 2K read-write memory beginning at location OH

• 16K read-only memory beginning at location FCOOOH

• For Parallel link:
- 8255A Programmable Peripheral Interface

• For Serial link:
- 8251A USART or 8274 Multiprotocol Serial Con

troller. and 8253/4 or 80130 or iAPX 186/188 timer.
or

- 82530 Serial Communications Controller. including
82530 timer

Hardware

• Supported iSBC Microcomputers:

iSBC 86/05 Single Board Computer

iSBC 86/12A Single Board Computer

iSBC 86/14 Single Board Computer

iSBC 86/30 Single Board Computer

iSBC 88/25 Single Board Computer

iSBC88/40 Single Board Computer

iSBC 88/45 Single Board Computer

iSBC 186/03 Single Board Computer

iSBC 186/51 Single Board Computer

iSBC 188/48 Single Board Computer

• Supported iSBX MULTIMODULETM Boards;

iSBX 350 Parallel 110 MULTIMODULE Board

ISBX 351 Serial 110 MULTIMODULE Board

3-106 230882-002

iSDM™ 86

ISDM ™ 86 Package Contents

Cables:

1 - Parallel 110 Cable (upload/download)

2 - RS232 Cables

Adaptors:

1 - Parallel Status Adaptor

1 - Parallel Adaptor

110 Drivers and Terminators:

4 - Pull-up Resistor Packs

4 - Pull-up/down Resistor Packs

4 - Line Driver Packs

Interface and Execution Software Diskettes:

1 - Single Density, ISIS Compatible

1 - Double Density, ISIS Compatible

ORDERING INFORMATION

Part Number Description

iSDM 86

iSDM 86 RO

iSDM 86 BSR

Intellec to target system interface
and target system monitor, suitable
for use on iSBC 86, 88, 186, 188
computers, or other iAPX 86, 88,
186, 188 microcomputers. Package
includes cables, EPROMs, soft
ware and operator manual.

The iSDM 86 package includes
SPR Service for 90 days after
shipment.

As with all Intel Software, purchase
of any of these options requires
execution of a standard Intel
Master Software License.

Object Software

Machine Readable Source

System Monitor EPROMs:

Microcomputer EPROM

iSBC@86/05

iSBC@86/12A

iSBC@86/14
Four 2732A EPROMs

iSBC@86/30

iSBC@88/45 Two 2764 EPROMs

iSBC@ 186/03
Two 2764 EPROMs

iSBC@ '186/51

iSBC@ 188/48 Two 2764 EPROMs

Reference Manual (Supplied):

146165-001 - iSDM 86 System Debug Monitor Refer
ence Manual

3-107 230882-002

•

•
•
•

iVDI720
GRAPHICS VIRTUAL DEVICE

Interpreter
Provides standardized decoding of • Support for iSBXTM 275 and
high-level graphics commands iSBC® 186/78 Graphics hardware.

modules
Full iRMXTM 86 compatibility operating • Procedural interface from Pascal 86,
system (Rei. 6) PL/M 86 and Fortran 86

Standardized inpl,lt & output drivers • Compatible with (proposed) ANSI X3H33
specification

Compact for EPROM installation • Virtual Device Metafile interpreter

The Intel iVDI 720 Graphics Virtual Device Interpreter provides both a powerful library of high-level commands,
and the drivers necessary to support the iSBXTM 275 or iSBC® 186/78 graphics modules in an iRMXTM 86
(Release 6) environment. It allows the OEM to quickly tailor an Intel system for application into the rapidly
growing graphics marketplace, especially low-cost CAD/CAE, CAM, and process control. Individual single
board computer (SBC) modules may also be configured from Intel's broad product family.

For intra-systems graphics control, iVDI 720 is the most powerful and efficient product available that brings
(proposed) ANSI X3H33 compatabilily to an iRMX 86 operating system environment.

iVDI720
GRAPHICS
SUBSYSTEM

AVAILABLE D
SEPARATELY',
FROM INTEL

HOST CPU

The following are trademarks of Intel Corporation and may only be used to describe Intel Products: Intel, ICE, iRMX. iSBC, ISBX, ISXM, MULTI·
BUS, MULTICHANNEL. MULTIMODULE, and iCS. Intel Corporation assumes no responsibility for the use of any CirCUitry other than the cirCUitry
embodied in an Intel Product. No other circuit patent licenses are implied

©INTEL CORPORATION, 1984
3-108

JUNE, 1984
ORDER NUMBER' 280002-001

IVDI 720 VIRTUAL DEVICE INTERPRETER

FUNCTIONAL DESCRIPTION
Graphics Standard Software
The iVDI 720 Graphics Virtual Device Interpreter im
plements the proposed ANSI standard on any Intel
based graphics system running under the iRMX 86
operating system, release 6. The proposed standard
is a significant advancement in graphics software. It
creates a predictable environment for the input and
output of high-level commands between the user and
system, or among the graphics peripherals attached
to the system, such as a mouse, tablet, printer or piot
ter. The software supports two environments: stand
alone and distributed, depending on the hardware
configuration.

All elements of iVDI 720 can run as tasks of the oper
ating system or as part of the graphics applica
tion program, hence a stand-alone partitioning of
graphics activities such as with the iSBX 275
MUL TIMODULETM attached to a general purpose
CPU board like the iSBC 86/30. In a distributed en
vironment, the device driver runs under the iRMX 86
operating system and the remaining application code
and VOl interpreter are exercised by a separate
processor dedicated to graphics activities. The iSBC
186/78 subsystem was designed especially for the dis
tributed solution.

KEyeOARD

\

MOUSE

RS 232 j
\ r

86/310 OR
286/310 SYSTEM

iSBC®186/78 Graphics Subsystem
Support
By virtue of its on-board, high integration microproces
sor (the Intel 80186), the iSBC 186/78 subsystem is
an excellent platform on which to perform graphics
routines in a distributed environment. This is partic
ularly important in mUlti-user systems where one iSBC
186/78 subsystem can be dedicated to each user.
(see figure 1)

The compact coding of the iVDI 720 Graphics Virtu
al Device Interpreter lends itself to EPROM installa
tion on the iSBC 186/78 subsystem. The host CPU
board is thereby off-loaded from graphics activities
so it can direct more global system level operations
such as database management or network commu
nications.

iSBX™ 275 Graphics MUL TIMODULETM
Support.
In single-user applications or where graphics activi
ties are not the major focus of the system, the iSBX
275 MUL TIMODULE shares the CPU on the host
processor board through the iSBX expansion bus.
The subsystem formed in this manner supports either
monochrome or eight colors and is a very cost
effective solution. Like the iSBC 186/78 subsystem,

"\. OTHER 186/78
~ SUBSYSTEMS

Figure 1. Multi-User Example

3-109

inter iVOI 720 VIRTUAL DEVICE INTERPRETER

this expansion module is based on the Intel 82720
Graphics Display Controller (GDC) component. (see
figure 2)

For example using an iSBC 86/30 CPU board, the
iVDI 720 library can be installed in EPROM to sim
plify the application and provide higher performance
execution.

82720 Component Designs
The Intel 82720 GDC is an intelligent graphics con
troller component designed to operate as the heart
of a raster-scan computer graphics display system.
The 82720 performs all the basic timing needed to
generate the raster display and manage the display
memory. In addition, it supports several high-level
graphics figure drawing functions. The Intel 82720 is
an alternative to the NEC 7220 component.

VDI COMMAND LIBRARY
In addition to providing driver support for Intel's grow
ing family of graphics modules, the iVDI 720 Graph
ics Virtual Device Interpreter decodes a wealth of
high-level commands to streamline the development
of application code for a variety of graphics devices.

MONITOR
OR

COLOR
CONSOLE

The proposed ANSI standard provides multiple en
codings of high-level text and graphics commands
and c~pabilities. The' iVDI 720 software decodes a
binary representation of these proposed commands,
along with the Virtual Device Metafile (VDM) routines
that allow consistant formatting and storage of VOl
encoded images.

In addition te a full set of inquiry functions, manyad
ditional high-level commands are supported in the
iVDI 720 software. (See Table 1)

These features are configurable as defined in the iVDI
720 Software Reference Manual. However, they are
typically device dependent and therefore reflect the
users application. Consequently, the reference manu
al should be consulted to assure compatability.

DEVELOPMENT ENVIRONMENT
Intel's family of development systems and their ex
tensions are highly recommended for both the de
velopment of iVDI 720 and related application co~e.
Languages that are supported include Fortran 86,
Pascal 86 and PUM 86. All iVDI 720 commands can
be called from any of these programming languages
through the PUM 86 procedural interface that is in
tegral to the iVDI 720 product.

Figure 2. Single-User Example

3-110

iVDI 720 VIRTUAL DEVICE INTERPRETER

Table 1. iVDI 720 Command Library

Graphical Elements:
Polyline
Polygon
Arc
Text
Cell Array

Attribute Elements:
Aspect Source Flags
Character Orientation
Character Path
Character Spacing
Text Alignment
Perimeter Type & Color
Hatch Fill
Pattern Fill
Pattern Definition
Text Precision

String
Character
Stroke

SPECIFICATIONS

Polymarker
Circle
Arc Close (Pie or Chord)
Append Text

Bundled & Individual
Attributes

Character Height
Character Expansion

Factor
Interior Style
Marker Type & Color
Line Type & Color
Set Color Table
Pattern Size
Pattern Reference Point
Text Color

ANSI X3H33 VOl Specification
The American National Standards Institute (ANSI) ad·
ministers the standard specification. Requests for in
formation should be directed to:

X3 Secretariat
Computer Business Equipment Manufacturers
Association (CBEMA)
311 First Street, NW
Washington, D.C. 20001

Intel is heavily involved in the development of the
ANSI X3H33 Virtual Device Interface standard. We
will endeavor to bring to our user base the latest re
visions through phased introductions and updates.
Consequently, it is strongly advised that implementers
of iVDI 720 also subscribe to the update service (VOl
720 WX, see below).

iVOI 720 Specifications
Code size - 80 Kbytes in distributed mode (using

the iSBC 186/78 subsystem), includ
ing the iRMX 86 nucleus

Ordering Information
Intel makes available a variety of licensing programs
to the iVDI 720 Graphics Virtual Device Interpreter
which allow different plans for incorporation of the
Intel software into the final product. The Intel Master
software Agreement should be consulted to determine
which plan is best suited for the particular applica
tion and production environment.

The iVDI 720 Graphics Virtual Device Interpreter
comes in three formats as shown below, along with

3-111

Control & Descriptor Elements:
Begin & End Metafile Begin & End Picture
Background Color VDC Extent
Clip Rectange Clip Indicator
Clear Surface Defaults Replacement
Set Device Viewpoint Color Direct Precision
Scaling Mode Color Specification
Marker Size Mode Mode

Input Elements:
Initialize Locator
Sample Locator
Request Locator
Set Prompt State
Release Input Device

Initialize String
Sample String
Request Locator
Set Echo State
Set Input Device Mode

Code size - 64 Kbytes in stand-alone mode (using
the iSBX 275 MUL TIMODULE)

Source-code language - PLIM 86

Related Literature
Reference material may be ordered from any Intel
sales represenative, distributor office or from Intel
Literature Department, 3065 Bowers Avenue, Santa
Clara, Calif., 95051.

146717 - iVDI 720 Software Reference Manual

210506 - iSBX 275 Video Graphics Controller
Data Sheet

231035 - iSBC 186/78 Video Graphics
Subsystem Data Sheet

146666 - iSBC 186/78 Video Graphics Sub
system Hardware Reference Manual

210655 - 82720 GDC Component Data Sheet

9803126 - iRMX 86 Configuration Guide

source listings and update services. The iRMX
86-Real-time Multitasking Operating System is avail
able separately.

IVOI 720RO OEM license (8 inch single-sided/dou
ble densite ISIS and iRMX plus 5% inch
double-sided/double density iRMX for
mats are supplied)

IVDI 720RF Incorporation fee payment

iVDI 720WX Object code update

•

•
•
•
•

iPLP 720
NAPLPS Interpreter

Provides decoding of NAPLPS • Driver support for Intel
(Videotex) commands Graphics hardware modules

Multipl~ font sizes and definitions • Complete library of high~level
frame management instructions

Full iRMXTM 86 compatibility

Compact fo; EPROM installation
• Resolution independant presentation

• Simplified communication of Graphic
Compatible with ANSI BSR)(3.110 ·1983 images between systems

The Intel iPLP 720 NAPLPS (North American Presentation Level Protocol Syntax) Interpreter provides both
a powerful library of high-level commands, and the drivers necessary to support the iSBXTM 275 or iSBC
,186/78 Graphics Modules in an iRMXTM 86 Operating System (Release 5 or later) environment. It allows the
OEM to quickly tailor an Intel system for application into the rapidly growing Videotex marketplace. Individual
iSBC® modules may also be configured from Intel's broad product family, and iPLP 720 will also be con
venient for the those implementing custom, component designs based on the Intel 82720 Graphics Display
Controller (GDC). '

Regardless of the hardware configuration, iPLP 720 is the most powerful and efficient product available that
brings full ANSI X3L2 Videotex compatibility to an iRMX 86 environment.

iPLP 720

GRAPHICS •
SUBSYSTEM

D

HOST CPU

AVAILABLE SEPARATELY
FROM INTEL

The follOWing are trademarks of Intel Corporation and may be used only to describe Intel products: Intel, ICE, IMMX, iRMX, ISBC, ISBX, iSXM,
MULTIBUS, Multichannel and MULTI MODULE Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
In an Intel product. No other CirCUit patent licenses are Implied. Information contained herein supercedes previously published specifications on
these deVices from Intel

© INTEL CORPORATION, 1984 May, 1984
3-112 Order Number: 280001-001

iPLP 720

FUNCTIONAL DESCRIPTION

NAPLPS Interpreter

The iPLP 720 software implements the NAPLPS
videotex standard on any 82720-based graphics ap
plication using the iRMX 86 Operating System,
Release 5 or later. The NAPLPS Standard is a sig
nificant advancement in device-level graphics soft
ware. It creates a predictable environment for
development of presentation frames along with a
transmission scheme to dramatically improve perfor
mance when moving graphics images from one sys
tem to another. The software supports two
environments: stand-alone and distributed, depend
ing on the hardware configuration.

All elemements of iPLP 720 can run as tasks of the
operating system or as part of the graphics applica
tion program, hence a stand-alone partitioning of
graphics activities such as with the iSBX 275 MUL
TIMODULETM. In a distributed environment, the
device driver runs under the iRMX 86 Operating Sys
tem and the remaining controller code and NAPLPS
interpreter are exercised by a separate processor
dedicated to graphics activities. The iSBC 186/78 sub
system was designed especially for the distributed
solution.

KEYBOARD

\~T

86/310 OR
286/310 SYSTEM

This architecture also allows iPLP 720 to run under
non-iRMX environments.

iSBC® 186/78 Video Graphics
Subsystem Support

By virtue of its on-board, high integration microproces
sor (the Intel 80186), the iSBC 186/78 subsystem is
an excellent platform on which to perform graphics
routines in a distributed environment. This is partic
ularly important in multi-user systems where one iSBC
186/78 subsystem can be dedicated for each user.
The host CPU board is thereby off-loaded to direct
more global system level operations such as database
management or network communications.

The combination of the iSBC 186/78 subsystem and
iPLP 720 interpreter meets all requirements of AN
SI's NAPLPS Standard Reference Model (SRM).

iSBXTM 275 Graphics Controller Support

In single-user applications or where graphics activi
ties are not the major focus of the system, the iSBX
275 MULTIMODULE shares the CPU on the host
processor board through the iSBX Expansion Bus.
The subsystem formed in this manner supports either
monochrome or eight colors and is a very cost-

OTHER 186/78
SUBSYSTEMS

Figure 1. Multi-User Example

3-113 Order Number: 280001-001

inter IPLP 720

MONITOR
OR

COLOR
CONSOLE

Figure 2. Single-User Example

effective solution. Like the iSBC 186/78 subsystem,
this expansion module is based on the Intel 82720
component.

82720 Component Designs

The Intel 82720 GDC is an intelligent graphics con
troller component designed to operate as the heart
of a raster-scan computer graphics display system.
The 82720 performs all the basic timing needed to
generate the raster display and manage the display
memory. In addition, it supports several high-level
graphics figure drawing functions. The Intel 82720 is
an alternative to the NEC 7220 component. Custom
hardware designs based on either component are
supported by iPLP 720 running in an iRMX 86 en
vironment.

NAPLPS COMMAND LIBRARY

In addition to providing driver support for Intel's grow
ing family of graphics products, the iPLP 720 NAPLPS
Int~rpreter decodes a wealth 0' high level commands
to streamline the development of application code for
videotex environments. .

The NAPLPS standard provides character set encod
ings of high level text and graphics commands and
capabilities. The iPLP 720 NAPLPS Interpreter im
plements every one of these character encodings.

The following table lists the major high level com
mands which are encoded in th,e NAPLPS standard:

Table 1. IPLP 720 Command Library

Geometric Drawing Primitives:
Point Incremental Point
Line Incremental Line
Polygon Incremental Polygon
Arc Rectangle

Text:
Character Rotation
Character Path

Movement
Inter-character Spacing
Character Field

Dimensions
Texture:

Line Texture
Highlighting

Cursor Styles
Word or Character

Wrap Around
Inter-row Spacing
ScrOlling

Programmable Texture Patterns
Texture Mask Size

Miscellaneous Functions:
Logical Pel Size Set Color
Macro Definitions Mosaic Sets
Blink Processes Wait Intervals
Dynamically Redefin-
able Character Sets

3-114 Order Number: 280001.001

inter iPLP 720

Other features are configurable as defined in the stan
dard, however they are typically device dependent
and therefore reflect the users application. Conse
quently, the standards document should be consult~
ed to assure compatibility.

ANSI X3L2 NAPLPS Specification

The development of any standard is an evolutionary
process. Consequently, the specification used as a
reference model for the design of iPLP 720 was pub
lished in October 1982. Updates to iPLP 720 will
render it fully compatible with the final specification.
The American National Standards Institute (ANSI) ad
ministers the standard specification and makes it
available to all interested parties. Requests for co
pies should be directed to:

X3 Secretariat
Computer Business Equipment Manufacturers

Association (CBEMA)
311 First Street, NW
Washington, D.C. 20001

Reference document: BSR X3.11 0

ORDERING INFORMATION

Intel makes available a variety of licenses to the iPLP
720 NAPLPS interpreter that allow different plans for
incorporation of the Intel software into the final
product. The Intel Master Software Agreement should
be consulted to determine which is best suited for the
particular application and production environment.

The iPLP 720 NAPLPS Interpreter comes in two for
mats as shown below, along with yearly update serv-

iPLP 720 Specifications

Code size - 90 Kbytes (four 27256 EPROMs) 'in dis
tributed mode;

- 72 Kbytes in stand-alone mode

Source-code language - PUM 86

Related Literature

Reference material may be ordered from any Intel
sales representative, distributor office, or from Intel
Literature Department, 3065 Bowers Avenue, Santa
Clara, Calif., 95051.

146144 - iPLP 720 Software Reference Manual
210506 - iSBXTM 275 Video Graphics Controller

Data Sheet
231035 - iSBC® 186178 Video Graphics Subsystem

Data Sheet
146666-001 - 186/78 Reference Manual.
210655 - 82720 GDC Component Data Sheet
9803126 - iRMXTM 86 Configuration Guide
145412 -Intel's Guide to Understanding the ANSI

VideotexlTeletex Standard

ices. The iRMX 86 Real-time Multitasking Operating
Systems are available separately.

iPLP 720RO OEM License, single density
(both ISIS and iRMX formats
are included)

iPLP 720RF Incorporation fee payment

iPLP 720WX Object code update

3-115

inter
iRMXTM

LANGUAGE

@INTELCORPORATION, 1984
·XENIX IS a trademark of Microsoft Corporation
tUNIX IS a trademark of Bell laboratorIeS

3-116

• Industry-standard languages and
utilities for developing applications on
iRMX-based systems. Includes
FORTRAN, Pascal, C, BASIC, PL/M,
assembler, text editor

• Complete set of utilities to create and
manage object modules

• Mix languages on single application
syStem with UDI standard

• Intel 8087 and 80287 math coprocessor
support

• 8086 and 80286 compatibility

• Worldwide post-sales service and
support organization

Full Language S~pport
for iRMXTM ·Based Systems
Intel's iRMXTM 86 based systems are
completely supported by a wide variety
of popular laoguages and utilities with
which to build fast, real-time, multi
tasking applications. Included are the
latest versions of FORTRAN, Pascal,
BASIC, C, PLIM and Assembler for
Intel's iAPX 86 and iAPX 286 pro
cessors. Previously developed applica
tions using any of these laoguages port
easily to iRMX-based systems with
minimal source code modifications.

In addition to the wealth of languages
available, iRMX-based systems are com
plemented by utilities with which to
create and manage object modules. This
latitude in configurability allows pro
grammers to team their efforts in order to
achieve a shorter development time than
would otherwise be possible.

Because the high-level languages are
actually resident on the iRMX-based
system, OEMs can pass application
software directly on to end users. End
users may then tailor the OEM's system
to better meet application needs by writ
ing programs using the same laoguages.

Language-Independent
Application Development
Intel's Universal Development Interface
(UD I) and Object Module Format
(OMP) enable several users to write
different modules of an application, in
different languages, then link them
together.

The OMF provides users with the ability
to mix languages on a single application
system, affording the luxury of choosing
exactly the right language tools for
specific pieces of the application, rather
than compromising specialized tasks for
the sake of one, project-wide language.

iRMX languages are fully compatible
with the Intel Series ill and Series IV
Development Systems, should the user
choose to develop applications on a
specialized development system.
Applications are easily moved to the final
target system for test, debug and minor
redevelopment.

Fast, Lean Programs
for Rapid Processing
The iRMX language products enable
programmers to write the smallest,
fastest programs available in high-level
languages, due to the compiler's superior
ability to optimize code.

It is also possible to make iRMX
operating system calls directly from
FORTRAN, PASCAL and PLIM. This
means that application developers can
take full advantage of the iRMX multi
tasking capability, whereby multiple
applications execute concurrently on
the operating system. Multi-tasking, a
requirement of most real-time systems, is
sometimes as necessary in application
software development as in an operating
system environment.

3-117

Standardized REALMATH
Support
All the iRMX languages (except BASIC
and C) support the REALMATH floating
point standard. This ensures universal
consistency in numeric computation
results and enables the user to take
advantage of the Intel iAPX 86/20 and
iAPX 88/20 Numeric Data Processor or
iSBC@ 337 MULTIMODULE™ boards,
which boost performance two to four
times over that possible on a mini
computer.

All the Utilities Needed to
Link Languages
Utilities for iRMX operating
systems include Intel's own
EDIT, LINK, LOCATE
and LIBRARIAN. The
iRMX EDIT program
meets the needs of both .
novice and sophisticated
users with powerful line
oriented editing facilities.

Using the iRMX LINK program, users
may link individually compiled object
modules to form a single, relocatable
object module. This provides the ability
to merge work from several programmers
into one cohesive application system.

The iRMX LOCATE utility maps
relocatable object code into the processor
memory segments, allowing user defini
tion of module/memory type allocation.
For example, often-used portions of an
application may be mapped to (P)ROM.

The LffiRARIAN object code library
manager affords easy creation, collection·
and maintenance of related Object code to
reduce the overhead of separately main
tained modules.

I
I

Finally, the iRMX Assembler for the
iAPX 86 and iAPX 286 processors gen:
erate extremely efficient code and invoke
8086/8087 machine instructions.

iRMX'M 86 Pascal
iRMX Pascal meets the proposed ISO
language standard and implements
several microcomputer extensions. A
compile-time option checks conformance
to the standard, making it easy to write
uniform code. Industry-standard specifi
cations contribute to portability of appli
cation programs and provide greater
reliability.

iRMX 86 Pascal supports extensions,
such as an interrupt -handler and direct

I
I

port I/O extension, that allow programs
to be written specifically for micro
computers. Separate module compilation
allows linkage of Pascal modules with
modules written in other high-level
languages.

For more information on iRMX 86 Pas
cal see the Pascal 86 Software Package
data sheet.

iRMX'M 86 FORTRAN
The iRMX 86 FORTRAN compiler pro
vides total compatibility with FORTRAN

3-118

UNIVERSAL RUN-TIME INTERFACE

URI '

66 language standards, plus most new
features provided by the FORTRAN 77
language standard. iRMX 86 FORTRAN
includes extensions specifically for
microcomputer application development.
Programming is simplified by relocatable
object libraries, which provide run-time
support for execution time activities.

iRMX 86 FORTRAN supports the 8087
math coprocessor for the most powerful

:T

microcomputer solution available in
number-intensive applications. For more
information on iRMX 86 FORTRAN see
the FORTRAN 86 Software Package
data sheet.

iRM)(TM 86 PL/M
PLiM offers full access to micro-com
puter architecture while simultaneously
offering all the benefits of a high-level
language. Invented by Intel in 1976,
PLiM 80 was the first microcomputer
specific, block-structured, high-level
language available. Since then, thou
sands of users have generated
code for millions of microcomputer

based systems using PLiM 80 and
PLiM 86.

Software written for 8-bit
processors (PLIM 80)
are easily ported to the

more powerful 16-bit
(PLIM 86) environment. The

same portability will be available
for future VLSI.

For more information about iRMX 86
PLiM see the PLiM 86/88 Software
P.ackage data sheet.

iRM)(TM 86 BASIC
Intel's offering of Microsoft BASIC is a
standardized version of the most popular
high-level language in the world. Exist
ing BASIC programs are easily ported to
iRMX-based systems. BASIC is an ex
cellent pass-through language by which
an OEM Can offer customers the ability
to write and modify their own
applications.

iRM)(TM 86 C Compiler
The popular new programming language,
C (Mark William's Company version), is
fully supported on iRMX-based systems.
iRMX 86 C offers both small and large

segmentation models, enabling applica
tions to be written efficiently. The iRMX
86 C compiler combines assembly
language efficiency with high-level lan
guage convenience; it can manipulate on
a machine-address level while maintain
ing the power and speed of a structured
language.

The iRMX 86 C compiler affords easy
portability of existing C programs to
iRMX-based systems. For more infor
mation on the iRMX C compiler see the
iRMX 86 C Software Package data
sheet.

iRM)(TM 86 Text Editor
The iRMX 86 Text Editor is screen
oriented, menu-driven and easy to learn.
Guided by the menu of commands al
ways before him, the user can edit text
and programs easily and efficiently.

iRMX 86 Text Editor allows the simul-

re-use them repeatedly.

Worldwide Service
. and Support

All iRMX systems are completely sup
ported by Intel's worldwide staff of
trained hardware and software engineers.
iRMX Language customers receive a
warranty that includes Hotline Support,
Software Updates, and Subscription
Service.

Complete documentation is provided for
all operating system and application
software languages, as well as for system
hardware components. An Intel system is
not a collection of hardware and software
pieces as much as a cohesive whole that
is supported and serviced as such.

Intel Has Total Solutions
for Real-Time Systems
iRMX 86 is the fastest, most powerful
operating system available for multi
tasking, multi-user, real-time applica
tions. Complemented by a wide range of
industry-standard languages and utilities,
the iRMX-based systems are highly
flexible and configurable.

Application development for iRMX
based systems is possible at the board or
the system level. OEMs can integrate
functionality at the most profitable level
of product design, using one system for
both development and target use. Intel's
choice of industry standard high-level
languages enables the end user to extend
OEM-provided functionality even
further, if desired.

Who is better qualified to write and sup
ply software for Intel VLSI than Intel?
Today you have the ability to tap into .
hundreds of available application soft
ware packages, languages and utilities,
peripherals and controllers and
MULTIBUS® boards.

Tomorrow, and ten years down the road,
you will be able to tap into the latest,
high-performance VLSI - without losing
today's software investment.

• ---~~iRMXTlANGUAGS -3-119 ---J::1t

Specifications

Required Hardware Required Software
• Any iAPX 86/286 based or iSBC 861 The iRMX 86 Operating System Release

286 based system including Intel's 6 or later including the nucleus, basic 110
System 86/300 and 286/300 family. In system, extended 1/0 system and human
addition, object code from the compil- interface
ers will run on iAPX 88 based systems.

• I40KB of memory Purchase of any RMX language requires

• 1\\10 iRMX 86 compatible floppy disks signing of Intel's OEM license

or one hard disk Agreement (OLA).

• One 81' double density or 5.25" double-
density floppy disk drive for distribu-
tion of software

• System console device

Ordering Information

Language Order Code Product Contents Warranty
ASM86, RMX860 1\\108" disk and two 5.25" diskettes 90 days:
Utilities Edit Reference Manual Software Updates, Subscription Service,

iAPX 86/88 Family Utilities User's Hotline Support
Guide

Macro Assembler Operating Instructions
ASM 86 Language Reference Manual
8087 Support library Reference Manual

Pascal RMX861 1\\10 8" diskettes and two 5.25" diskettes 90 days:
Pascal 86 User's Guide Software Updates, Subscription Service,

Hotline Support

FORTRAN RMX862 Two 8" diskettes and two 5.25" diskettes 90 days:
FORTRAN 86 User's Guide Software Updates, Subscription Service,

Hotline Support

PL/M RMX863 One 8" diskette and one 5.25" diskette 90 days:
PLIM 86 User's Guide Software Updates, Subscription Service,

Hotline Support

TXEditor RMX864 One 8" diskette and one 5.25" diskette 90 days:
TX Screen Behter User's Guide Software Updates, Subscription Service

BASIC RMX865 One 8" diskette and one 5.25" diskette 90 days:
BASIC Reference Manual
BASIC 86 User's Guide

Software Updates, Subscription Service

One 8" diskette and one 5.25" diskette

C RMX866 One 8" diskette and one 5.25" diskette 90 days:
C Programming Language by Software Updates, Subscription Service,

Kernighan and Ritchie (Prentice-Hall) Hotline Support
C ~6 Compiler User's Guide

3-'120

XENIX'
LANGUAGES

• COBOL, BASIC and FORTRAN
support for Xenix-based systems

• Conformation to international
standards: ANSI 77 subset FORTRAN,
ANSI X3.231974 COBOL to Federal
High Level and ANSI X3.60-1978
subset BASIC

• Powerful microcomputer extensions to
ANSI standards

• Easy porting of mainframe and
minicomputer applications to micro
environment

• Intel 80287 math coprocessor support

• Worldwide service and support
organization

"'..... - ~-FOATRAN CO

3-121

OATRAN COB
ATRAN CaBO
TRAN COBOL
RAN COBOL F
AN COBOL Fa

High-level Language
Support for XENIX- ,
Based Systems
Intel's XENIX operating system, avail
able for component, board, or system
level integration, is a multi-user operat
ing system well suited for both technical
and commercial interactive applications.
Typical applications include small busi
ness systems, software developmentl
engineering workstations, distributed
data processing and graphics.

For OEM and end-user application de
velopment on XENIX, Intel has provided
three industry-standard, high-level
languages-FORTRAN, COBOL and
BASIC-with which to build micro
computer-based solutions for systems
products or component and board-
level applications. XENIX BASIC,
FORTRAN and COBOL accommodate
easy porting of existing mainframe and
mini-based applications to the micro
environment.

XENIX FORTRAN for
Scientific and Technical
Applications
FORTRAN is the most popular pro
gramming language for scientific and
numerical applications. There are
thousands of existing FORTRAN pro
grams and subroutines written in main
frame and minicomputer environments,
most of which can be ported to a micro
environment via Intel's offering of
Microsoft FORTRAN.

Compliance with the X3.91978 ANSI
standard for FORTRAN at the subset
level ensures portability with minimal
source code modifications. By moving to
a microcomputer-based system, you lose
none of your mainframe and mini
developed software investment.

Speed and Accuracy
Where They're Needed
Scientific, math-oriented applications
usually require fast, highly accurate pro
cessing. XENIX FORTRAN delivers ac
curacy with double-precision arithmetic

*XENIX l~ a trademark of Mlcro!>Oft Corporation

which handles numbers containing 15
significant digits.

High speed results from XENIX FOR
TRAN support of the Int~1 80287 float
ing point coprocessor, as well as from an
extensive subroutine library, which in-

I eludes subroutines for 16- and 32-bit
integer arithmetic and 32- and 64-bit
floating-point arithmetic. Because of
XENIX FORTRAN's 80287 math co
processor support, some programs writ
ten in XENIX FORTRAN will execute
from two to four times faster than their

Calls to "C" and MS MACRO
Assembler are possible, making it easy

to interface non-standard peripherals to
XENIX FORTRAN programs.

XENIX COBOL for
the Micro Environment
Intel's offering of Microfocus COBOL
is a mainframe-caliber compiler for
ANSI 1974 COBOL programs, enabling
XENIX-ba,ed ,ystem, to compile and run
existing COBOL programs with minimal
source code modification. XENIX
COBOL also contains features specifi
cally aimed at facilitating the interactive

'I////////////////""/""/"""'IIIIIIII~
3-122

program development of new applica
tions in a microcomputer environment.

These features include a facility for
dynamically loading sub-programs
from disk as required which effectively
removes limits on the size of the applica
tion code that can be run. XENIX
COBOL augments the functionality of
the ANSI standard with additional com
pilerfeatures, such as interactive
screen"handling, that further increase
convenience and programmer
productivity.

Users can license a separate run-time
support package. This enables OEMs to
pass COBOL applications onto custom
ers at a much lower cost than that in
volved in transferring full COBOL
packages.

XENIX COBOL is one of only eleven
COBOL compilers in existence-and
the only one for microcomputers - that
has been GSA-certified

defined communications module pro
vides the user with a standard mechanism
for program-to-program message
passing in multi-user networks such as
those found in an "office of the future ..
settings.

Forms-2™ Support for
Screen-Painting
XENIX COBOL supports FORMS-2,
a powerful visual programming tool that.
speeds the creation of programs involv
ing interactive screen-handling. In an
extremely user-ftiendly environment, the
user "paints" a form on the screen, and
FORMS-2 generates the COBOL source
code to support it. FORMS-2 results in
greatly improved programmer produc
tivity in a microcomputer, screen
building environment.

XENIX BASIC for Maximum
Flexibility
Intel's offering of Microsoft BASIC
opens a whole window of applications to
the XENIX user. Since their BASIC is
the same as that used on MS-DOS· based
machines, most programs written for
MS-DOS can now run on XENIX un,
changed. When developing your own

programs, BASIC is simple and easy for
quick prototyping, yet complete enough
for total development. Conforming to the
ANSI X3.60 1978 subset standard,
BASIC also has powerful extensions, 16
significant digit Double Precision float
ing point arithmetic,80287 support, and
assembly languages routine calling capa
bilities. From using applicatIOns to de
signing your own programs BASIC is
easy, complete, and extremely flexible.

Worldwide Service
and Support
All XENIX systems are fully supported
by Intel's worldwide staff of trained
hardware and software engineers. Com
plete documentation is provided for ail
operating systems and application soft
ware languages, as well as for system
hardware components. The XENIX and
XENIX Languages warranty includes
Hotline support, Software Updates, and
Subscription Service.

Total Solutions for
Interactive, Multi
User Applications
Intel's XENIX-based systems offer the
most complete solutions for interactive,
multi-user applications requiring fast,
accurate throughput and a ftiendly
programming environment. XENIX is
complemented by industry-standard,
high-level languages with which OEMs
can create flexible and open end-user
systems.

XENIX languages are completely port
able-from one level of integration to
another (chip to board to system).

Intel is paving the way into the future of
VLSI and pioneering VLSI-based sys
terns. We are committed to providing
customers with smooth, uninterrupted
application development on the latest
VLSI-based systems - today and
tomorrow.

'IIIIIIIIIIIXENIX* LANGUAGES
3-123

inter

Specifications

Required Hardware: Required Software:

• Any iAPX 286 based or iSBC® 286 • Intel's XENIX 286 Operating System
based system including Intel's • Purchase of any XENIX Language
286/300 family and iDlS systems requires signing of Intel's OEM

• 196 KB memory License Agreement (OLA)

• Two floppy disks or one hard disk

• One 8" double-density or 5.25"
double-density floppy disk drive for
distribution of media

Ordering Information

Language Order Code Product Contents Warranty
COBOL XNX2867 One 8" diskette and one 5.25" diskette 90 days:

Level II COBOL Language Reference Software Updates, Subscription Service
Manual-122158

Level II COBOL Operating
Guide-122159

Forms II Utility Manual-122160
Level II COBOL Pocket Guide-12216l

XNX2868 Incorporation Fee for passing through the
COBOL Runtime System

FORTRAN XNX2862 One 8" diskette and two 5.25" diskettes 90 days:
Fortran Reference Manual Software Updates, Subscription Service
Fortran User's Guide

BASIC XNX2865 One 8" diskette and one 5.25 diskette 90 days:
BASIC Reference Manual Software Updates, Subscription Service
BASIC User's Guide

FORMS·21S a trademark of Micro Focus

3-124

2920 SOFTWARE SUPPORT PACKAGE

• Complete software design and
development support for the 2920

• Extends Intellec@ Microcomputer
Development System to support 2920
software development

The 2920 Software Support Package furnishes a 2920 Signal Processing Applications Software/Compiler, 2920
Assembler, and 2920 Software Simulator. These three software design and development tools run on the Intellace
Microcomputer Development System.

The 2920 Signal Processing Application Software/Compiler is an interactive tool for designing software to be
executed on the 2920 Signal Processor. The compiler accepts English·like statements from the user and generates
2920 assembly language code.

The assembler tra.lslates symbolic 2920 assembly language programs into the machine operation code. The user can
load the code into the simulator for 2920 simulation or to the Universal PROM Programmer for 2920 EPROM
programming.

The simulator, operating entirely in software, allows the user to test and symbolicaily debug 2920 programs. The user
can specify input signals, Simulate program execution, set up breakpoints, display input and output, and display and
alter the contents of the 2920 registers and memory locations. The simulator can also stop or trace the program and
constructively give the user access to the key elements inside a 2920 for analyzing his program.

The 'compiler, assembler, and simulator enable the designer to develop and test an entire program without a
complete prototype design, The 2920 designer works on the Inteilec" Microcomputer Development System rather
than on a breadboard, The development system can program, store and recall programs or routines and aid in 2920
program design.

2920 Software Support Package

The fOllowing are trademarks of Intel Corproallon and may be used only to Identify Intel products BXP.lntellec, Muilibus. I, ,sac. MultlmOdule.ICE.IS8X, PROMPT, leS.lIbrary
Manager, Promware. InSlte, MeS, RMX, Inlel, MegachaSSIS. UP!. InteleVISlon, Mlcroamp, .I'Scope and the combinatIon of ICE .• es. ,sac. ,sax, MeS. or AMX and a numerical
suffiX Sept 1980

Intel CorporatIon 1980 3-125 1662208

2920 SOFTWARE SUPPORT PACKAGE

2920 SIGNAL PROCESSING APPLICATIONS
SOFTWARE/COMPILER

• Compiler generates 2920 A~sembly
Language Code '

• Extensive command set for designing
electrical filters

• Graphics capability enhances analysis
of filter response or piecewise linear
function approximations

• Powerful MACRO capability for
executing frequently used routines

• Interactive software support tool for
2920 Signal Processor

• Extends IntelJec® Microcomputer
Development System support of the
2920

• Contains MACRO library for several
standard filters and signal processing
functions

The 2920 Signal Processing Applications Software/Compiler (SPAS20) is an interactive tool for designing
software to execute on the 2920 Signal Processor.

The SPAS20 package can be visualized as being comprised of four inter-related sections: A compiler section,
a filter design section, a curve fitting section, and a MACRO section.

Among the abilities of SPAS20 are: ability to generate 2920 assembly language code directly from
specifications of signal processing building blocks such as filters and waveform generators; ability to
generate 2920 assembly language code for several classes of algebraic equations such as Y = C· X, Y = C'Y,
and Y = C· X + Y where X, Yare variables and C is a constant; ability to generate 2920 assembly language
code for one variable function Y(X) = F(X); ability to examine time and frequency r~sponses of filter sections
specified by continuous or sampled poles and zeroes; ability to examine piecewise linear approximation of
specific function; ability for users to implement more complex commands by grouping sets of commonly
used commands into a MACRO.

The SPAS20 package runs under ISIS-II on any Intellec@ MicrocQmputer Development System with 64K
RAM. The output of SPAS20 can be assembled with the 2920 assembler, tested with the 2920 Simulator, and
programmed into the 2920 chip with the Universal PROM Programmer for prototyping.

3-126 AFN·01386A

2920 SOFTWARE SUPPORT PACKAGE

FUNCTIONAL DESCRIPTION

The 2920 Signal Processing Applications Software!
Compiler gives the analog designer a "high level
language" for his 2920 applications-it decreases
the need to code 2920 assembly language. Further
more, the compiler is interactive. This feature
enables the designer to define a filter, or transfer
function, graph their response, and change their
parameters many times, without having to program
and test in an actual 2920 implementation.

Once a filter is realized by moving poles and zeros
in the continuous and sampled planes, the filter
may be coded and written onto an ISIS file. Simi
larly, after a function Y = F(X) has been defined, the
code for a piecewise linear approximation can be
stored onto an ISIS file. Several other file com
mands are available to store and retrieve command
sequences for SPAS20 sessions.

SPAS20 Command Language

DEFINE

GRAPH!
OGRAPH

MOVE

REMOVE

HELP

FIT

This command defines a pole or
zero by associating it with a
number (i.e., POLE 3), and with real
and imaginary coordinates in the
continuous or sampled plane.

This command also defines a sym
bol by associating a name with a
numeric value, or a MACRO by pro
viding a pOinter to a specified com
mand sequence.

This command graphically displays
the values of object(s) specified.
For example, GRAPH GAIN and
GRAPH PHASE are used to display
filter response. The OGRAPH com
mand will "overgraph" the new
response over the old response.
after any changes have been
made. (You may also graph Group
Delay, Step, and Impulse.)

Allows the definition of a pole or
zero to be changed-its coor
dinates, its plane, or both.

Deletes the definition of a pole,
zero, symbol, or macro.

Types an explanatory message on
the console, pertaining to a com
mand or its attributes.

This command performs curve fit
ting, i.e. it approximates an arbitrary
user supplied function with a piece
wise linear function.

DATA

HOLD

This command allows for specifica
tion of a set of vertices (i.e. X - Y
coordinate pairs) which determine a
piecewise linear approximation of
some defined function, filter
response characteristics, etc.

Command to correct attenuation
due to sample-and-hold distortion:
if ON, it corrects absolute gain by
sin(x}! x and phase by adding x,
where x=TS'FREQ'lT. It corrects
group delay by subtracting IT'TS.

EVALUATE Gives the decimal nUf)1eric value of
any expression.

CODE Creates 2920 assembly language
code for given poles, and zeros,
equations, and user defined func
tions.

The SPAS20 compiler also recognizes the follow
ing commands for file handling:

PUT!
APPEND

DISPLAY

INCLUDE

LIST

Writes out objects (commands) to
a specified file, either creating a
new one or appending an existing
one. This enables the user to
store all or part of a SPAS20 ses·
sion on a diskette to be brought
back later with the INCLUDE
command.

Copies the contents of a file to the
console.

Executes a sequence of
instructions from a diskette file as
if they were typed in from the con
sole.

Creates a file containing all
console interactions.

In addition to naming macros for specific com
mand seql,lences, compound and conditional
commands may be formed using all of the above
statements. These compound commands are:

IF

REPEAT

COUNT

3-127

Establishes conditional flow of
control within a block of
commands.

Used for repetition of a block of
commands; executes indefinitely
or until a condition is met (using
WHILE, UNTIL, and END
statements).

Establishes the number of times a
command sequence is to be
executed, in a looping fashion.

AFN-01386A

2920 SOFTWARE SUPPORT PACKAGE

SPAS20 MACRO Facility Intel also supplies several MACRO library files con·
taining the following commonly needed MACROs:

Filter design MACROS
- Butterworth filter
- Chebyshev filter
- Bilinear transform

A macro is a sequence of commands that is stored
on a temporary diskette file. The command
sequence is executed when the macro name is
entered as a command. This saves repetitive entry
of the sequence, and permits alogorithms to be
saved on diskette for future use. This SPAS20
facility allows you to do the following:

- Evaluate gain or phase of digital filter

• Display the text of any macro.

• Define a macro, specifying its name and any
parameters that are to be used by the block.
This definition is followed by the contents of
the macro (commands) and the EM statement
to end its definition.

• Invoke a macro by entering its name and
appropriate values for any parameters.

• List the names of all defined macros.

• Remove any or all macros.

SAMPLE SPAS20 FILTER DESIGN SESSION
-: Fl : SPAS20 • SFT

in parallel form
- Time response simulation

Function design MACROs
- Code and error optimization
- Calculate instertitial error

MACROs for generation of 2920 code
- Code for all·POLE filter
- Input and AID conversion
- Multiplication
- Division
- Logarithm functions
- Square·root functions
- Sinewave oscillator

ISIS-II 2920 SIGNAL PROCESSING APPLICATIONS COMPILER. V2.0 · 'OEFINE POLE 1 • -101.707 : CREATE A POLE IN CONTINUOUS S-PLANE · .p: LIST ALL POLES ANt ZEROS
PO"E I • -701 00000.701 OOOOO.CONTINUOUS
•
'FSCALE' 100.10000 : ESTABLISNES FREQUENt' RANGE OF INTEREST
•
OVSC4LE • -45.1 ESTABLISHES MAGNITUDE RESPONSE RANGE OF INTEREST · 'CP"PH CAIN PLOT MAGNITUOE RESPONSE OF POLE PAIR

CAH4
1.0

-! 2. 1
- l". -;
-tIL I)
- 1 l. •
-21). ~

-21. :
-2~.'
-1"'.':'
-2f
... 3 1. ?
-H.J
... 30).'::
-1) ...
-41). ,;

.... 1. '?
':'415 .. t)

'. . . , .., . -"

DB I HZ ! .. A. • • • •• " •• ,_ J
100 150 200 300 400 500 700 1000 1400 2000 3000 5000 \0000 ..

•
•• THE UNITS USED IN CRAPHING GAIN ARE SHOWN IN THE LOVER LEFT CORNER
•. CAIN IN DEelBELS IS GRAPHED VERSES FREQUENCV IN HERTZ

.: PREPARE TO MOYE TO THE OIGITAL OOM"IN .
• ; SAMPLE RATE MUST BE SPECIFIEO
•
.T& • 1/13020 RATE FOR 192 INSTRUCTION PROC'AM AND IOMH2 CLocr
TS = 7 '805004/10 •• 5'

3-128 AFN.()l386A

inter 2920 SOFTWARE SUPPORT PACKAGE

SAMPLE SPAS20 FILTER DESIGN SESSION (Cont'd.)

'"OVE POLE TO l , CONYERT FilTER TO DIGITAL YIA ftATCNEO-l TRAMaFORftATION
I OOcES/lE'OES ftDYEO

.p LIS T TRANSFORftEO POLE
POLE 1 • 0 71092836,0 341183",Z

., COMPARE RESPONSES OF THE ANALOG AHO DIGITAL FILTERS BV CRAPHINC THE

.' NEW RESPONSE OYER THE DLP

1"",'".'",,,'·,,',,.',,,,',,,, ""

!.~ --------------------------- ••.

-1. '*
-5.'; --. ~ + -.

- I 'J .• J
-11. I
-!".3

- t 1:. -
-ZO.-:-
- 2 ~. '
-~;.)

- r'. :.
- 2~
- J. .,
-::". ,:,
- J,;. • .;.
-B. -I
- .'L "
- 41 . ~
-45' 'I

+' ,
+' .

+' -.' -.
+ -.

• + • -- ••
++

++
++

++
++

+

:'8 I HZ ' ""... ,. ,. " A I

1 Ii o· i 50 . 2 00 ... 300 . 4 00' 500' . 70 0 . i 000 . i 400 . 2000' . iooo 5000 i 0000
C'

'. PLUS SICNS INDICATE OLD CURYE
" NOTE THAT THE DIGITAL FilTER RESPOHSE BECINS TO INCREASE Ar,AIN
., ., HALF THE SAftPlE UTE ("10HZ)

.: THE PHASE CHARACTEJISTICS OF THIS FILTER CAM BE EKAftlNEO · .YSC~LE • -PI.PI , ESTABLISHES RAMGE OF INTEREST

PH~SE
3. : ..
2 ...
2. ~.
2.24
1."
1. '5
1,35
1. O~
0,75
0.45
0.15

-0.15
-0.45
-O.~S
- I ,05
-1.35
-1,65
-t.H
-2.24
-2.54
-2.84
-3· 14

RAOIHZ

P.
•

I " .. !

I ... A ..."... ... A " I

i 00' iso' 200'" 300 '400 . 500" 700' ioao' i 400' 2000' "3000" .. 5000 .. , .. ioaoo

OP~T 'Fl 'POLE PZ , 'AYE THE POLE LOCATION IN A DISK FILE BACKUP · H'JUt PuLE 1 IN~Tul ; "~Hi.i<.i~ ,~lU A,H"tL, '.ODE FU~ THIS 'ILI~~
B;'1 33'8'.'0 B2'-0 50541'14

3-129 AFN·01386A

inter 2920 SOFTWARE SUPPORT PACKAGE

SAMPLE SPAS20 FILTER DESIGN SESSION (Cont'd.)

OPTI"IZEO 2'20 CODE IS NOW eEMERATEO TO ~AYE SPACE. SOME
OF THE SCREE" OUTPUT HAS BEEN DELETED NORNALLY ALL ATTENPTS
BY THE COM'ILER TO GE"ERATE CODE ARE ECHOED ON THE SCREEN

IHiT=lO
'OLE I • 0 7108'458.0 34116779.2

8EIT: PER~OR - 3 3795874/10005.1 5884'567/10005

, HOTE: "AlE SURE SIGNAL IS <0 74'35571
lD~ ?UT2.PI.OUTI.PI.ROO

: OUT2.PI-1 OOOOOOOOoOUII.'1
LD~ OUII.'I.OUIO.'I.ROO

OUII.PI-I ooooOOOOoOUIO.PI
sua QUTO.'I.OUTI.'I.R05

: OUTO.Plol oooOOOOOoOUTO.'I-O 03125000000UII_'1
ADO OUIO_'I.OUIO_'I.R03

OUTO.'lol IZ50000000UTO.'1·0 03'1'6Z'000UTI.PI
ADD OUIO_'I.OUII.'I.R02

. OUTO_PI-I 12'0000000UIO.PI+0 2148437,00UII.PI
SUB OUTO_'I, OUT2.'I.ROI

; OUTO.Plol 1250000000UIO_'1+0 2148437500U11.PI-O ,000000000UT2.PI
SUB OUTO_'I.OUI2.PI.ROB

OUTO_Plo, 12'0000000UTO.'I+O 2148437500UTI_PI-0 5039062500U12.PI
ADD OUTO.'I.OUIZ.PI.RII

OUIO.Plol 12'0000000UIO.PI+0 2148437,00UTI.PI·0 503417,,00UT2.PI
SUB OUTO_'I.OUT2_PI.R09

: OUTO_Plol '1250000000UIO.'1+0 2148437,00UTI.PI·0 '0'3710900UI2_'1
ADD OUTO_Pl, INO.' I, too

: OU'IO.PI-I l2'OOOOOOOUIO.'I+O 2148437,00UTI.P\·0 '0'3710900UT2.Pl+1 oOOOOOOOoINO.PI

0, THE CODE COUAND SPECIFIEO THAT THE POLE PAU BE CODED IN LESS THAN II
0, INSTRUCTIONS, SO 10 INSTRUCTIONS WERE GENERATED. WITH CO"",NlS
0, THE FIHAL ERROR 1M RADIUS AND ANGLE FOR THE POLE PAIR WAS OF THE
OJ ORDER OF 1/10'" AS INDICATED ABOYE IN PHROR
OJ THIS OPTI"IZED 2920 ASSE"BLY CODE CAH HOW BE APPENDED TO A FILE
OJ WHICH NAY CONTAIN OTHER COOED FUNCTIONAL BLOCtS OF A 2920 PROGRA"

SAMPLE SPAS20 CURVE FITTING SESSION
nE'10NSTRATION OF THE ~PA~2n CURVE-FITTING PACKAGI.

ISIS-II 2920 SIGNAL PROCESSING APPLICATIONS SOFTWARE/COMPILER, V2.0
*1.I<;T vfi!~Fn.R/q

*; TIIF CIIRVF FTTTI~r: r;n''''AllD<i T~ C;PA<i?n \T11.1. r:FNFPAl'l" "920 conE Tn CALrlJL.\T~~

•. <::in'IF FP'jrTIIH' "PCll -'Ie; v •• ,. '**1 r,()!!l,n RF rn'IPIITrn 0'1 TIIP ?920 (HlP
•. ',]1'P' T\I() ·1I'l.TTPLT~c; IlST'I1G ,'ROOT l~ ['lC:TRllrTTfHl<; A'j!) ';'lIf nAIL qOO!.VI"R IT
•• I'OP].!') ""1<:' IIp rllt" 1')AP. Ton Ln'I!";. T'IP cnnF r;F:~lFRAT.!) ~y TII[, CiT!;lIr F!TTP~r.

•. rfl"'1."I'I1ll"'i no.e; 'PH 11<;1' T'tr f)\'L

.conr ; 'lI'pr ts T'I~' rn])r Cr~lrl}\T"I).

LOA T ... ·1P,":.IUH)
; Tr'IP= 1 .nnnn()nnn*,{

1,!)J\ vfl1l1rn,V,'{nl
; 'leu ~rn=n. 'il)nnnnon*,<

I\Dn '<rl1t\I-!l.'<.I~n/l

; XCllllfll:"(l. 'll ")h2'l()(1*'<
All!) T!"IP.X.Q.nl

; TE'IP=n. ')nnnnnnn*X+i .1l()()onnnn*rl"'IP
Ani) VCIJlIFn. TF'tP, qO<;

: yrllHrll=l .onfl(lnOnn*'«'IPI!"Il+II.n112<;nno()*T" I!'
SOil, v('IjllF'n,Tl 'IP.Rfl2

; V(,lllH'I)=I,flnnnnono*"(lTl\r1J-n.~lq7~)()flfl*Tl III
Ann "'F'IP,"t,l{no

; TE~lP::;1 .onooonnll*':.+I,nonnr)(l{)Il*TF'11'
",nn XrlJjIEll,TP,'11',RIlR

; -.:n T f\F'll=i.()I](lf)lln0t1*"::('II\lrll+(\.f)nl9nh2')nn*Tl'll'
')UH X{'llli~Il.Tr~'I'.Rr)4

; I({,!TlIF' 1l= I • non 0 nnfHl* '(('\I P, I. n-n. () ') H <;1) "17 <;0 *T~ 'I P
LDA XCIJllrn,'{C!lllrll,I,02

; '(nl1\rn='~.t')nnnnnn*,-:(1'1"f'11-n.?"I417'}on*Tr',p

*1'JC;T ; T'll' fll'lrTTn" 'J!\C; r01}Fn T'! T'lle; "\"" I'i'';T~j1rTTnn~;

T"<;T IIl.nnnnnnn

3-130 AFN-Q1386A

2920 SOFTWARE SUPPORT PACKAGE

*F:~'l()r TIIF' ronr "rp:~{)Yl:!,\T"<:; '<**1 'IlT'll'! 711TC: r'~"'(lf";

ERRn~ z n.n46A7~{)nn

nAT\ n.nnO()(l("lnn TI[iW l.nnnnn()On ,. n.nonnonnn \T n.llnnnOnnn,F.
n.nh5h'~(112 A? n.4nnnnnnn,&
rl.2~5A?S(ln AT n.fi~6~hAfiq.~

n.Q51125()n AT l.nnnnnnnn

*(;I:,\P'[IlATA,(V) ;THF. flAT" !\PI:"V APP1!O'\1'IATF.<:; T'IP rotJCTln~ !d'f) C-\t' nr (;I{APIIF.n.

Fll ':(T I nfj t •••••• A •••••• A ••••• A •••••• A ... !
n.1) S
n.91
n • '~(J
n.K2
n. 7 7
n.71
n.flf\
n.64
n.')')

n. ,)/.
n.')()

n ,Ill
n./II
n.lll
n. 1 /
n. ~ 7
n.?)
n. I q
n. I 4
n.n<J
n.n')
n.on

.. .. '"
n .no n. 1 0.2 0.1 0.4 0.\ 0.6 0.7 0." o .? I .nn

*()(;RAPll '(**3 ; TliP. DlF'F'CRANCF. RF.TIlEF.N THE COlH-:n ArID T4F ACTnAL APVf.ARC; AS u+".

rUtJCTIOU ' •••••• & •••••• & .. !
I.no +'
(1.Q5 +'
(). qn +.'
n.Rh +.
n. R 1 ++-
0.7h + -
n.71, + .. '
n.~7 ++.
n.62 + -
0.')7 ++.'
n. '}2 +.-
!l.4R ++-
0.41 +. '
r).lS +. '
0.11

+++++++ ••• --"

+.-+
++.-'

++.-- '
+ •• --'

I .. & •••••• !
n .00 O. I

*r.nA (X**3)-DATA.(X)
0.2 0.1 0.4 0.\ 0.6
; THE ER.~OR IHI.1. nT: r.RAPHED.

0.7 0." 0.9 1.00

rg~~!~ON , .. !
0.043
0.0)9
o. n 1(,
0.(\)2
0.02A
0.025
0.021
o.n 1 7
o. n 14
o.(qo
0.00f.
n.on1

-0.001
-0.005
-O.nOR
-o.n 12
-n.nlfi
-0.n20
-0.021
-0.027
-0.0) 1

*EXIT

! ... !
o.on 0.1 0.2 0.3 0.4 0.5 n.6 0.7 n.R O.t) l.00
THAT'S AU. FOLKS

3-131

2920 SOFTWARE SUPPORT PACKAGE

2920 ASSEMBLER

2920 program development on Intellec@
Microcomputer Development Systems

Translates symbolic assembly language
instructions into 2920 machine code

Produces Assembly Listing, Object Code
File, and Error Diagnostics

Output used for 2920 programming with
the Intellec PROM Programmer or the
2920 Simulator for program debug

The 2920 Assembler translates symbolic 2920 Assembly Language instructions into the appropriate machine
operation codes. Through this facility, the programmer is able to symbolically program 2920 hardware operations.
Compared to machine code, these symbolic references provide faster programming, easier debugging, and greater
reliability.

The Assembler produces an object code file (executable machine code), a complete assembly listing, and error
diagnos1L~he object code output from the Assembler may be loaded directly into the Intel Universal PROM
Programmer for programming the 2920 EPROM. The object code may also be loaded to the 2920 Simulator for 2920
system design and debug.

The 2920 Assembler runs under the 1515·11 Operating System on the Intellec Microcomputer Development Systems.

Sample 2920 Assembly Listing
ISIS-II 2'20 ASSERBLER XI02 PACE

AS$ER8LE. INVOKED BY: AS2'20 SAW ASft DEBUG

SAWTOOTH YAYE GENERATOR

LINE Loe OBJECT SOURCE STATEMENT

fTITLE(' SAWTOOTH YAYE GENERATOR' > I

o OOOOEF INO SAMPLE INPUT CHANNEL 0
DODDEr INO
DOOOEF INO
008AE8 SUB Y. KP I. I HO SIftUL TAHEOUSLV CALCULATE SAYT OOTH

8 OOBAOA SUB Y.KP!.R!.IHO BY SUBTRACTIHG 3/1' fROH y , S 0044EF LU OAR.Y.lNO ALSO CHECK SIGN .BIT Of Y
:0 , 7A8AEO A~D Y.KP7.CHDS IF Y HrGATIYE START NEXT TOOTH
:1 7 nOOEF ens COHYERT SAMPLED I NPU T TO DIGITAL (S IGH 8 IT)

12 8 70B2EF LOA Y.KPO.CHDS SUPPRESS SAUTODTH IF IHPUT WAS < 0
: 3 , 4044£F LOA OAR,'Y PREPARE TO OUTPUT SAWTOOTH
:4 10 .OOOEF NOP ANALOG LEYEL HUST SETTLE
:5 II' 4000EF HOP
16 12 4000EF NOP
: 7 13 8000EF OUTO OUTPUT SAWTOOTH
18 14 BOOOEF OUTO
:C!' 15 8000EF OUTO
10 " SOOOEF EOP PROGRAM WILL EHO IH THREE HORE I HS TRUCT I OMS

11
12
13
24
,5

SYHBOL:

AS~E"8LY
ERROPS

17 8000EF
18 8000H

I' 8000fF

COMPLETE
o
o
I

YARNINGS •
RAMS !ZE
ROHSlZE 20

OUTO
OUTO
OUTO

EHO

YAlUE:

3-132 AFN·Ol386A

2920 SOFTWARE SUPPORT PACKAGE

2920 SIMULATOR

Speeds test and debug of 2920 programs

Simulates 2920 internal operation

Operates on Intellec@ Microcomputer
Development Systems

Allows users to specify 2920 input
signals, and display or alter ROM, RAM,
and system variables

Output and internal data can be saved
on disk for further analysis.

Provides ability to set breakpoints and to
collect trace information

Easy·to·learn commands

The 2920 Simulator is a software facility that provides testing and symbolic debugging of 2920 programs in an Intellec
Microcomputer Development Systems environment. The 2920 designers have the capability to specify the 2920 input
signals, to set breakpoints, to collect and display 2920 input, output, system variables, and ROM and RAM data values
during simulation The 2920 Simulator accepts the hex format oblect files produced by the 2920 assembler. Output
values and internal trace data may be saved on ISIS·II disk files for further analysIs.

Functional Description
2920 Input Signal Specification

The four analog signal inputs to the 2920 processor can
be specified as algebraic combinations of basic
functions of time. The basic functions are SIN, COS,
EXP, LOG, SaR, SAW, saw, ABS

2920 Simulation

The simulation bf 2920 machine instructions is per
formed in software All 2920 internal registers, memory,
input values, output values, and other sys:em variables
can be examined and modified. The Internal processing
of the 2920 is simulated. Time constants for the sample
and hold capacitators are assumed to be zero Calcula
tion of input signals is performed in single precision
floating poinf. The speed of simulation varies with the
complexity of the input signal, breakpoint setting, and
trace condition. Exclusive of I/O time requirements,
2920 instructions will be simulated at a rate of approxi
mately several hundred instructions per second.

Breakpoint Capabilities

After each instruction is simulated, the breakpoint is
evaluated to determine whether to stop or continue
simulation. Conditional breakpOints are also provided
for debugging purposes. Simulation can be manually
stopped at any time by .pressing the ESC key on the
Intellec console.

Trace Capabilities

Based on the qualifier's condition, trace data records
can be collected during simulation. The trace data

records are stored in Intellec resident memory and are
optionally written to the console for display or to a disk
file for record.

Symbolic Debugging Capabilities

The 2920 Simulator allows the user to refer to program
addresses symbolically. The user can load or save the
symbols generated from the hex format object files or
created during the debugging session. 2920 program
memory in ROM can be disassembled, or filled with
assembled instructions.

The 2920 Simulator is designed to provide users with
. powerful, easy-to-use commands. The user interfaces to

the Simulator by entering commands to the Intellec
console. The commands consist of one command line,
t!'lrminated by one of the two line terminators - carriage
return or line feed.

The 2920 Simulator offers two types of commands:

3-133

Simulation and Control Commands

Command

Simulate

Trace

Qualifier

Breakpoint

Operation

Starts slmulalton of the Input signals
and the 2920 program in simulated
ROM memory Imtlal setting IS

"FOREVER"

Controls the trace selection. Initial
setting IS "TIME."

Sets qualifter condition during trace.
Imtlal setting IS "ALW.AYS."

Sets breakpoint condition during simu
lation. Imtlal setting IS "NEVER."

AFN·01386A

inter 2920 SOFTWARE SUPPORT PACKAGE

Interrogation and Utility Commands

Command Operation

Display DIsplays the values of symbols, RAM,
ROM, Input, output, regIsters and
system variables

Change Alters the values of symbols, RAM,
ROM, input, regIster and system
variables.

Base Establishes the mode of display for
output data.

SuffIX EstablIshes the mode of display for
Input data.

Load

Save

Fetches user symbol table and object
code from input devIce.

Sends user symbol table and object
code to output devIce

Define Enters symbol name and value to user
symbol table

Console

list

Controls the console onloff dIsplay

Defines lIst devIce

Exit

Evaluate

Returns program control to 1515,11.

Converts expression to eqUIvalent
values In binary, decImal, and hex

Remove

Help

Deletes symbols from symbol table

ProvIdes a brief summary of the syntax
for the command languages.

Graphics'
OnlOff'

Switches output mode between list and
graphICS.

X S,ze Enters horizontal dIsplay sIze.

Keyword References

The 2920 Simulator provides users with keyword refer
ences to gain access to all of the numeric valued
system variables including simulated 2920's memory,
register, status flags and input/output. These keyword
references can function as the evaluation command,
display command, and change command.

• 2920 Processor Keyword References

INO
IN1
IN2
IN3
OUTO
OUT1
OUT2
OUT3
QUT4
OUT5
OUT6
OUT7
IN
DAR
PC
CY
OVF
OVE

Analog input 0 in volts
Analog input 1 in volts
Analog input 2 in volts
Analog input 3 in volts
Analog output 0 in volts (read only)
Analog output 1 in volts (read only)
Analog output 2 in volts (read only)
Analog output 3 in volts (read only)
Analog output 4 in volts (read only)
Analog output 5 in volts (read only)
Analog output 6 in volts (read only)
Analog output 7 in volts (read only)
Sampled and held analog input sigpal in volts
Digital to analog register (RAM location 40)
Program counter (integer 1 to 192)
Carry (integer 0 or 1)
Overflow (integer 0 or 1,read only)
Overflow enable (integer 0 or 1)

• Software Simulalor Keyword References

TIME Elapsed simulated time in seconds
(read only)

TaUAL Time when the qualifier last matched in
seconds' (read only)

COUNT Number of instructions simulated since
last SIMULATE command (integer, read
only)

BUFFERSIZE Number of trace data records (integer,
read only)

TlNST Time between successive instructions
in seconds (read only)

SIZE Number of instructions in program dis
regarding actual EOP placement

TPROG Time between successive program
passes in seconds

VREF Reference analog level voltage in volts

The above keyword references are designed to aid 2920
program debugging.

ISIS Compatibilities

The 2920 'software Simulator runs under the ISIS
"submit" facility. The 2920 software simulator uses the
ISIS-II line editing capabilities to correct errors 'in an
input line on the Intellec console.

Sample 2920 Simulation Session

ISIS-II 2920 SIMULATOR, Vl.l

*
*; THIS I~ THF. <;IMULATION OF THF. 'SAWTOOTH GF.:~r:RAToR·

*L1<;T SRG.LOG J.ISTS THE <;HHlLATION <;F.S<;ION TO AN lSI<; FlU'
*1.DAn SRG.HEX ; LOAD TH~ OHJECT CODP I~Tn TlfE 7Q20'SI'!UALTOR
*RO\t 0 TO S ; DISPLAY SRG PROCRAN

ROH nao - LOA .K.KP5,ROO,NOP
RO~1 001 ,. Ann .Y.,KPl,R05,NOP
ROtt 002 ,. LOA .K,oK,R02 , NOP
ROH n01 .. SUR .o<)c, .K,ROO,NOP
ROM 004 ,. LOA DAR,oOSC.ROO,NOP
ROM n05 • AOO .O<>C,KP4,LOl,CNDS
*TPROG-I/IOOOO ; SET THE SAIIPLF. RATE

*TRA-~C,RAM .K ; SET THE ITEMS TO HE TRACED
*HASE-R j DISPLAY THE RESULTS IN BINARY
*SIHULATE PROM 0 TILL COUNT=3 ; <>IMI!LATF. THREE IN~TRUCTIONS

PC
SIMULATION BEGUN

1.000000000000000000000000
2.0000000£+0
3.00(}OOOOf.+0

SHWLATION TF.RrlINATF.D

TO VERIFY CONSTANT

RAlf n

0_101000000000000000000000
0_101000010000000000000000
o. no 1 () 1 ooon 100000000000000

*QIJALIFIER=PC=O ; TRACt, EVERY PROGR'AI1 PASS
*TRACf.=T.OAR.RAH .00;(; ; <>F.T THf ITF.~t<> TO RF. TRACF.D
*RAll .ose-ONt, ; INITIALIZE TI-lE RAil LOCATION
*RRF.AY.:POINT-T).OOl12 ; <>IIIULATE FOR TWO CYCLECi
*RASF.-D ; (jET THE RA<>F, TO nF.CI~AL

*C;ItlULAT~ PRO.t 0 ; HEGIN Slf'l'LATION
T DAR RA!l I

3-134 AFN·01386A

2920 SOFTWARE SUPPORT PACKAGE

<;I·llr1.ATln~J 1'1; F [,(1 tl

n.nnfljflOOIl
n.noo2onno
o.nonlnnnn
n.non4nnnn
n.nnO,)fiOOn
n.nOllhnnno
n.On07nnOO
n.nnnRnnnn
n. Ol)l)qnflnn

n.klfJR417 r l

n.6R1S917,)
n,'i271417')
f). 1fo 7! R 7 ')()
n. 2 11)t) 17 ')()
Il.O')4hR7';o

-0. I n I ,)(,2 SO
n.71R2RI2'i
n. ')820112')

n.nnl"/)I)/)/) n.42'i7B12,)
n.nOlloonn 0.269')11]')
n.nOl2nnnn 0.10917')00
n.nnll!)OOc) -o.n46R75()O

<; HlULATl0N TERMINATf.n

n.A4777114
n,fJR'),)4hAl
n. ')2R1202fl
n.17J0917n
n.?J1Rh714
n.n,)6h4o,)f,
n.R9941196
(). 7421 R 14 ')
n.SR4961lA9
0.'12771711)
0.270')0776
O.1112R119
0.95605459

·CPAP!I ON ; <;WITrHF~ T'IE DI<;PLAY 'lODE TO CRAP!IIC~

*TRACf:-'T.O,DAR,RA'l.0'iC,-1.-l,i,1 ; ,)ET'> ITF-Mot; TO BE TRACED
*RA'1 ,ooe;r-oNF ; INITIALIZE THE RAil LOCATION
·SI'HlLATF: FRO'l 0

T
-I

<:;HlIll.ATION RF'r.UN
-).

n •

n •
n •
n •
1 •
o •
o •
o •
o •

<:;lH!JLATION TF'lHIINATEO
*EXIT

SPECI FICATIONS

Operating Equipment
Required Hardware

Intellec' Microcomputer Development System
RUNNING ISIS

DAR RAH 1 -I

1 •

2 1

Optional Software

FORTRAN·80 (Product Code MDS·301)

Documentation Package
2920 Assembly User's Guide (9800987)
2920 Simulator User's Guide (9800988)

3 •

Required Software

ISIS·II Diskette Operating System

2920 Signal Processing Application Compiler
User's Guide (121529)

Optional Hardware

Line Printer
Universal PROM Programmer

ORDERING INFORMATION
Product Code Description

MCI·20·SPS 2920 Software Support Package
Includes 2920 Signal Processing
Application Software/Compiler and 2920
AssemblerlSimilator Software

Shipping Media
Flexible Diskettes

3-135 AFN-01386A

intJ
MCS e -48

DISKETTE-BASED SOFTWARE
SUPPORT PACKAGE

• Extendslntellec microcomputer
development system to support Mcs-48
development

• MC5-48 mbler provides conditional
assembly and macro capability

• Takes advantage of powerfullSIS-1i file
handling and storage capabilities

• Provides assembler output in standard
Intel hex format

The MCS-48 assembler translates symbolic 8048 assembly language instructions into the appropriate machine
operation codes, and provides both conditional and macroassembler programming. Output may be loaded
either to an ICE-49 module for debugging or into the iUP Universal PROM Programmer for 8748 PROM
programming. The MCS-48 assembler operates under the ISI8-11 9perating system on Intel Development
systems.

@INTEL CORPORATION, 1983 MAY 1983

3-136 AFN·00619D

inter MCS·48

FUNCTIONAL DESCRIPTION

The MCS-48 assembler translates symbolic 8048
assembly language instructions into the appropriate
machine operation codes. The ability to refer to program
addresses with symbolic names eliminates the errors of
hand translation and makes it easier to modify programs
when adding or deleting instructions. Conditional
assembly permits the programmer to specify which por
tions of the master source document shoul,d be Includ
ed or deleted in variations on a basic system design,
such as the code required to handle optional external
devices. Macro capability allows the programmer use of
a single label to define a routine. The MCS-48 assembler
will assemble the code required by the reserved routine
whenever the macro label is inserted In the text. Output
from the assembler is in standard Intel hex format. It
may be either loaded directly to an in-circuit emulator
(ICE-49) module for integrated hardware/software
debugging, or loaded into the iUP Universal PROM
Programmer for 8748 PROM programming. A
sample assembly listing is shown in Table 1.

The MCS 48 assembler supports the 8048, 8049. 8050, 8020,
8021 , 8022, 8041 and 8042. The MCS 48 assembler can also
support CMOS versions of the 8048 family.

SPECIFICATIONS

Operating Environment
(All) Intel Microcomputer Development Systems

(Series II, Series III/Series IV)
Intel Personal Development System

Ordering Information

Part Number

MDS-D4S'

Description

MCS-48 Disk Based Assembler
Requires Software License

Table 1. Sample MCS-48 Dlskett.Based

ISIS 118048 MA,CROASSEM8LER VI 0

lOC OBJ

00'''' 00'"
0032

0100 88IE
0102 6928
OHM 8A32
0106 91
0101 FO
0106 TI
0109 57
OIOA AI
010818
OIDe 19
0100 EA07

USER SYMBOLS
ALPHA OOOte
U 0102

,DECIMAL AODITION ROUTINE ADO BCD NUMBER
AT LOCATION 6ETA TO eCD NUMBER AT ALPHA WITH
.RESULT IN ALPHA LENGTH OF NUMBER IS COUNT'DIGIT
,PAIRS 'ASSUME 80TH 8ETA AND ALPHA ARE SAME LENGTH
AND HAVE EVEN NUMBER OF DIGITS OR MSO IS 0 IF
0001
INIT

, "
" " " 13 ALPHA
1. BETA
15 COUNT

" " ". 19+L1

".
" 22 lP

" " " " " '"

,au
,au
,au
0'0
INIT

"0'
MO'
MO'
C,"

MO'
ACor:

" MO'
ONC
'NC
Dmz
'NO

AUGNO.AOONO eNT
FlO 'AUGNO
Rl lAOONO
R2,ICNT

'" " ,
'00" ALPHA BETA COUNT
FlO IALPHA
RltBET"
1'12 'COUNT
C
A @""
A @Rt
A
@""

'" " R~ LP

ASSEM8l Y COMPLETE NO ERRORS

ALPHA 1311 17
8ETA 14' \1
COU"1T 151 11

1. 17
Ll '!WI'
LP 2211 28

Documentation Package
Title.s of: User Guides

Operating Instructions
Reference Manuals

SUPPORT:
Hotline Telephone Support, Software Performance
Reports (SPR), Software Updates, Technical
Reports, Monthly Newsletters are available.

*MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of
Mohawk Data Sciences Corporation.

3-137 AFN-00619D

8051
SOFTWARE PACKAGES

PLlM51 Software Package Contains the
following:
• PL/M51 Complier which Is designed to

support all phases of software
Implementation

.. RL51 Linker and Relocator which
enables programmers to develop
software In 'a modular fashion

• LlB51 Librarian which lets
programmers create and maintain
libraries of software object modules

LEGEND

D ~J:~O:::~':=:OOLS
101 Me ,
- SOFTWARE TOOLS

O USER-CODED
.soFTWARE

8051 Software Development Package
Contains the following:
• 8051 Macro Assembler which gives

symbolic access to 8051 hardware
features

• RL51 Linker and Relocator program
which links modules generated by
the assembler

• CONV51 which enables software
written for the MCS@ ·48 family to be
up graded to run on the 8051

• LlB51 Librarian which lets
programmers create and maintain
libraries of software object modules

Figure 1. MCS®·51 Program Development Process

Intel Corporation Assumes No Responsibility for the Use of Any CirCUitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. Information Contained Herein. Supercedes Previously Published Specifications On These Devices From Intel.

© INTEL CORPORATION, 1983 MARCH 1984
3-138 ORDER NUMBER: 162771.002

inter 8051 SOFTWARE PACKAGES

PUM 51 SOFTWARE PACKAGE
• High-level. programming language for

the Intel MCS®-51 single-chip
microcomputer family

• Compatible with PL/M 80 assuring
MCS®-80/85 design portability

• Enhanced to support boolean
processing

• Tailored to provide an optimum balance
among on-chip RAM usage, code size
and code execution time

• Allows programmer to have complete
control of microcomputer resources

• Produces relocatable object code
which is linkable to object modules
generated by all other 8051 translators

• Extends high-level language
programming advantages to
microcontroller software development

• Improved reliability, lower maintenance
costs, increased programmer
productivity and software portability

• Includes th" linking and relocating
utility and the library manager

• Supports all members of the Intel
MCS®-51 architecture

PL/M 51 is a structured, high-level programming language for the Intel MCS-51 family of microcomputers. The
PL/M 51 language and compiler have been designed to support the unique software development require
ments of the single-chip microcomputer environment. The PL/M language has been enhanced to support
Boolean processing and efficient access to the microcomputer functions. New.compiler controls allow the
programmer complete control over what microcomputer resources are used by PL/M programs.

PL/M 51 is largely compatible with PLIM 80 and PL/M 86. A significant proportion of existing PL/M software can
be ported to the MCS-51 yvith modifications to support the MCS-51 architecture. Existing PL/M programmers
can start programming for the MCS-51 with a small relearning effort.

PL/M 51 is the high-level alternative to assembly language programming for the MCS-51. When code size and
code execution speed are not critical factors, PL/M 51 is the cost-effective approach to developing reliable,
maintainable software.
The PL/M 51 compiler has been designed to support efficiently all phases of software implementation with
features like a syntax checker, multiple levels of optimization, cross-reference generation and debug record
generation.

LEGEND

D INTEL DEVELOPMENT TOOLS
AND OTHER PRODUCTS

101 MC$-51 SOFTWARE TOOLS

O USERoCODED
SOFTWARE

Figure 2. PL/M51 Software Package

3-139 AFN-GOO47C

inter 8051 SOFTWARE PACKAGES

PU'-4 51 Compiler
FEATURES

Major features of the Intel PL/M 51 compiler and
programming language include:

Structured Programming
PL/M source code is developed in a series of mod
ules, procedures, and blocks. Encouragingprogra'm
modularity in this manner makes programs more
readable, and easier to maintain and debug. The
language becomes more flexible, by clearly defining
the scope of user variables (local to a private proce
dure, for example).

Language Compatiblity

PL/M 51 object modules are compatible with object
modules generated by all other MCS-51 translators.
This means that PL/M programs may be linked to
programs written in any other MCS-51 langlJage.

Object modules are compatible with In-Circuit
Emulators and Emulation Vehicles for MCS-51 pro
cessors; the DEBUG compiler control provides these
tools with symbolic debugging capabilities.

Supports Three Data Types .

PL/M makes use of three data types for various ap
plications. These data types range from one to six
teen bits and facilitate various arithmetic, logic, and
address functions:

-Bit: a binary digit
-Byte: S-bit unsigned number or,
-Word: 16-bit unsigned number.

Another powerful facility allows the use of BASED
variables that map more than one variable. to the
same memory location. This is especially useful for
passing parameters, relative and absolute address
ing, and memory allocation.

1\No Data Structuring Facilities

PL/M 51 supports two data structuring facilities.
These add flexibility to the referencing of data stored
in large groups.

,-Array: Indexed list of same type data elements
-Structure: Named collection of same or different

type data elements
-Combinations of Both: Arrays of structures or

structures of arrays.

Interrupt Handling

A procedure may be defined with the INTERRUPT
attribute. The' complier will generate code to save
and restore the processor status, for execution of the
user-defined int~rrupt handler routines.

Compiler Controls

The PL/M 51 compiler offers controls that facilitate
such features as:

-Including additional PLIM 51 source files from
disk

-Cross-reference
-Corresponding assembly language code in the

listing file

Program Addressing Control

The PL/M 51 compiler-takes' full advantage of
program addressing with the ROM (SMALL/
MEDIUM/LARGE) control. Programs with less than 2
,KB co~e space can use the SMALL or MEDIUM op
tion to generate optimum addressing instructions
Larger programs can address over the full 64 KB
range.

Code Optimization
The PL/M 51 compiler offers four levels of optimiza
tion for significantly reducing overall program size.

-Combination or "folding" of constant expressions;
"Strength reductions" (a shift left rather than mUl
tiply by 2)

-Machine code optimizations; elimination of super
fluous branches

-Automatic overlaying of on-chip RAM variables
-Register history: an off-Chip variable will not be

reloaded if its value is available in a register.

Error Checking
The PL/M 51 compiler has a very powerful feature to
speed up compilations. If a syntax or program error'iS
detected, the compiler will skip the code generation
and optimization passes. This usually yields a 2X
performance increase for compilation of programs
with errors.

A fully detailed set of programming and compilation
error messages is provided by the compiler and
user's guide.

3-140 AFN-00047C

inter 8051 SOFTWARE PACKAGES

BENEFITS

PUM 51 is designed to be an efficient, cost-effective
solution to the special requirements of MCS-51 Mi
crosystem Software Development, as illustrated by
the following benefits of PL/M use:

Low Learning Effort

PL/M 51 is easy to learn and to use, even for the
novice programmer.

Earlier Project Completion

Critical projects are completed much earlier than
otherwise possible because PL/M 51, a structured
high-level language, increases programmer
productivity.

Lower Development Cost

Increases in programmer productivity translate im
mediately into lower software development costs be
cause less programming resources are required for a
given programmed function.

Increased Rellabllty

PL/M 51 is designed to aid in the development of
reliable software (PL/M programs are simple
statements of the program algorithm). This substan
tially reduces the risk of costly correction of errors in
systems that have already reached full production
status, as the more simply stated the program is, the
more likely it is to perform its intended function.

Easier Enhancements and Maintenance

Programs written in PL/M tend to be self
qocumenting, thus easier to read and understand.
This means it is easier to enhance and maintain
PL/M programs as the system capabilities expand
and future products are developed.

RL51 Unker and Relocator

• Links modules generated by the
assembler and the PL/M complier

• Locates the linked object to absolute
memory locations

• Enables modular programming of
software-efficient program
development

• Modular programs are easy to
understand, maintainable and reliable

The MCS-51 linker and relocator (RL51) is a utility which enables MCS-51 programmers to develop software in a
modular fashion. The utility resolves all references between modules and assigns absolute memory locations to
all the relocatable segments, combining relocatable partial segments with the same name.

With this utility, software can be developed more quickly because small functional modules are easier to
understand, design and test than large programs.

The total number of allowed symbols in user-developed software is very large because the assembler number of
symbols' limit applies only per module, not to the entire program. Therefore programs can be more readable
and better documented. •

Modules can be saved and used on different programs. Therefore the software investment of the customer is
maintained.

RL51 produces two files. The absolute object module file can be directly executed by the MCS-51 family. The
listing file shows the results of the link/locate process. ,

3-141 AFN..ocJ047C

805.1 SOFTWARE PACKAGES

LlB51 Ubrarian
The LlB51 utility enables MCS-51 programmers to
create and maintain libraries of software object mod
ules. With this utility, the customer can develop stan
dard software modules and place them in libraries,
which programs can access through a standard in
terface. When using object libraries, the linker will

SPECIFICATIONS

Operating Environment

All Intel Microcomputer Development Systems or
Intel Personal Development Systems

OR.DERING INFORMATION

Part Number

iMDX 352
Requires Software License

Description

PL/M 51 Software
Package

call only object modules·that are required to satisfy
external references.

Consequently, the librarian enables the customer
to port and reuse software on different projects
-thereby maintaining the customer's software
investment.

Documentation Package

PL/M 51 User's Guide
MCS-51 Utilities User's Guide

SUPPORT:

Hotline Telephone Support, Software Performance Re
port (SPR), Software Updates, Technical Reports, and
monthly Technical Newsletters are available.

3-142 AFN·OOO47C

8051 SOFTWARE PACKAGES

8051 SOFTWARE DEVELOPMENT PACKAGE

• Symbolic relocatable assembly
language programming for 8051
mlcrocontrollers

• Extends IntelleC® Microcomputer
Development System to support 8051
program development

• Produces Relocatable Object Code
which is linkable to other 8051 Object
Modules

• Encourage modular program deSign
for maintainability and reliability

• Macro Assembler features conditional
assembly and macro capabilities

• CONV51 Converter for translation of
8048 assembly language source code
to 8051 assembly language source
code

• Provides upward compatibility from
the MCS-48™ family of single-chip
microcontrollers

The 8051 software development package provides development system support for the powerful 8051 family of single
chip microcomputers. The package contains a symbolic macro assembler and MCS-48 source code converter.

The assembler produces relocatable object modules from 8051 macro assembly language instructions. The object
code modules can be linked and located to absolute memory locations. This absolute object code may be used to pro·
gram the 8751 EPROM version of the chip. The assembler output may also be debugged using the ICE-51TM in·circuit
emulator.

The converter translates 8048 assembly language instructions into 8051 source instructions to provide software com
patibility between the two families of microcontrollers .

•

..:;s~, 1«14",,, 11%1
A'\hUIB~ Y tA ... <l<JAG£

~ O"'VI MnROPI1."A"T'''o.
'N$.. Od()HONl:oFflR ,1Ii'S IlU5f'\.,

3-143 AFN-00047C

8051 SOFTWARE PACKAGES

8051. MACRO ASSEMBLER

• Supports 8051 family program develop- • Object fUes are linkable and locatable
ment on Intellee<!> Microcomputer
Development Systems • Provides software support for many

addressing and data allocation
• Gives symbolic access to powerful capabilities

8051 hardware features
• Symbolic Assembler supports symbol

• Produces object file, listing file and table, cross-reference, macro
error diagnostics capabilities, and conditional assembly

The 8051 Macro Assembler (ASM51) translates symbolic 8051 macro assembly language modules into linkable and
locatable object code modules. Assembly language mnemonics are easier to program and are more readable than
binary or hexadecimal machine Instructions. By allowing the programmer to give symbolic names to memory locations
rather than absolute addresses, software design and debug are performed more quickly and reliably. Furthermore,
since modules are linkable and relocatable, the programmer can do his software In modular fashion. This makes pro
grams easy to understand, maintainable and reliable.

The assembler supports macro definitions and calls. This is a convenient way to program a frequently used code
sequence only once. The assembler also provides conditional assembly capabilities.

Cross referencing is provided In the symbol table listing, showing the user the lines in which each symbol was defined
and referenced. '

ASM51 provides symbolic access to the many useful addressing features of the 8051 architecture. These features include
referencing for bit and byte locations, and for providing 4-bit operations for BCD arithmetic. The assembler also provides symbolic
access to hardware registers, 110 ports, control bits, and RAM addresses. ASM51 can support ail members of the 8051 family.

Math routines are enhanced by the MUltiply and DIVide instructions.

If an 8051 program contains errors, the assembler provides a comprehensive set of error diagnostics, which are included in the
assembly listing or on another file. Program testing may be performed by using the IUP Universal Programmer and iUP F87/51
personality module to program the 8751 EPROM version of the chip.

ICE51 and EMV51 are available for program debugging.

RL51 LINKER AND RELOCATOR PROGRAM
• Links modules generated by the

assembler

• Locates the linked object to absolute
memory locations

• Enables modular programming of .soft
ware for efficient program development

• Modular prOgrams are easy to
understand, maintainable and reliable

The 8051 linker and relocator (RL51) is a utility which enables 8051 programmers to develop software In a modular
fashion. The linker resolves all references between modules and the relocator ass,lgns absolute memory locations to
all the relocatable segments, combining relocatable partial segments with the same name.

With this utility, software can be developed more quickly because small functional modules are easler to understand,
design and test than large programs.

The number of symbols in the software is very large because the assembler symbol limit applies only per module not
the entire program. Therefore programs can be more readable and better documented.

Modules can be saved and used on different programs. Therefore the software Investment of the customer is maintained.

RL51 produces two files. The absolute object module file can be directly executed by the 8051 family. The listing file
shows the results of the IInkilocate process.

3-144 AFN.QOO47C

inter 8051 SOFTWARE PACKAGES

CONV51
8048 TO 8051 ASSEMBLY LANGUAGE

CONVERTER UTILITY PROGRAM
• Enables software written for the

MC$-48TM family to be upgraded to run
on the 8051

• Maps each 8048 Instruction to a corre·
sponding 8051 Instruction

• Preserves comments; translates 8048
macro definitions and calls

• Provides diagnostic Information and
warning messages embedded In the
output listing

The 8048 to 8051 Assembly Language Converter is a utility to help users of the MCS-48 family of microcomputers
upgrade their deisgns with the high performance 8051 architecture. By converting 8048 source code to 8051 source
code, the software investm~nt developed for the 8048 is maintained when the system is upgraded.

The goal of the converter (CONV51) is to attain functional equivalence with the 8048 code by mapping each 8048
instruction to a corresponding 8051 instruction. In some cases a different instruction is produced because of the
enhanced instruction set (e.g., bit CLR instead of ANL).

Although CONV51 tries to attain functional equivalence with each instruction, certain 8048 code sequences cannot be
automatically converted. For example, a delay routine which depends on 8048 execution speed would require manual
adjustment. A few instructions, in fact, have no 8051 equivalent (such as those involving P4-P7). Finally, there are a
few areas of possible intervention such as PSW manipulation and interrupt processing, which at least require the user
to confirm proper translation. The converter always warns the user when it cannot guarantee complete conversion.

CONV51 produces two files. The output file contains the ASM51 source program produced from the 8048 instructions.
The listing file produces correlated listings of the input and output files, with warning messages in the output file to
point out areas that may require users' intervention in the conversion.

LlB51 LIBRARIAN
The LlB51 utility enables MCS-51 programmers to create and maintain libraries of software object modules. With
this utility, the customer can develop standard software modules and place them in libraries, which programs can
access through a standard interface. When using object libraries, the linker will call only object modules that are
required to satisfy external references.

Consequently, the librarian enables the customer to port and reuse software on different projects-thereby main
taining the customer's software investment.

-3-145 AFN-GOO47C

inter 8051 SOFTWARE PACKAGES

SPECIFICATIONS

OPERATING ENVIRONMENT

All Intel Microcomputer Development Systems or Intel
Personal Development System

ORDERING INFORMATION

Part Number

MCI-51-ASM

Description

8051 Software Development
Package

'Requires Software License

3-146

Docum~~tatlon Package:
MCS-51 Macro Assembler User's Guide
MCS-51 Utilities User's Guide for 8080/8085 Based De

velopment System
MCS-51 8048-to-8051 Assembly Language Converter

Operating Instructions for ISIS-II Users

SUPPORT:
Hotline Telephone Support, Software Performance
Reporting (SPR), Software Updates, Technical Reports,
Monthly Newsletter available.

AFN-G0047C

iRMXTM 51
REAL-TIME MULTITASKING EXECUTIVE

• Software tool for family of 8051
microcontroller based applications

• Real-time, multitasking executive

• Supports remote task communication

• Small - 2.2K Bytes

• Reliable

• Simple user interface

• Compatible with BITBUSlMlDistributed
Control Modules (iDCM) product line:
iSB)(lM 344 & iRCB 44/10 boards

The iRM)(TM 51 Executive is a compact, easy to use, software tool for development and implementation
of applications built on the high performance 8-bit family of 8051 microcontrollers. A few members
of this expansive family are the 8051,8044, and 8052 microcontrollers. Like the 8051 family, the iRMX 51
Executive incorporates many features that make it exceptionally well suited for real-time control appli
cations requiring manipulation and scheduling of more than one job, and fast response to external stimuli.

The 8051 microcontroller family is the family of choice for applications such as: data acquisition and
monitoring, process control, robotics, and machine control. Using the iRMX 51 Executive for a founda
tion can significantly reduce applications development time. Also, the iRMX 51 Executive fully supports
Intel's BITBUSTM microcontroller interconnect expressly designed for reliable high performange real
time control.

Figure 1. Structure Diagram

3-147 ORDER NUMBER 230972-001

iRMXTM 51

ARCHITECTURE

Real-time and Multitasking

Real-time control applications must be responsive
to the external environment and typically involve
the execution of more than one function (task or
set of tasks) in response to different external
stimu1i. Control of an industrial drying process is
an example. This process could require monitoring
of multiple temperatures and humidity; control of
fans, heaters, and motors that must respond ac
cordingly to a variety of inputs. The iRMX 51
Executive fully supports applications requiring
response to stimuli as they occur ie. in real-time.
This real-time response is supported for multiple
tasks often needed to implement a control appli
cation.

Some of the facilities precisely tailored for devel
opment and implementation of real-time control
application systems provided by the iRMX 51 Ex
ecutive are: task management, interrupt handling,
message passing, and when intergrated with
communications support, message passing with
different microcontrollers. Also, the iRMX 51 Ex
ecutive is driven by events: interrupts, timers,
and'messages ensuring the application system
always responds to the environment appropriately.

Task Management

A task is a program defined by the user to ex
ecute a particular control function or functions.
Multiple programs or tasks may be required to
implement a particular function such as 'control-

ling Heater 1: The iRMX 51 Executive recognizes
three different task states as one of the mech
anisms to accomplish scheduling of up to eight
tasks. Figure 2 illustrates the different task states
and their relationship to one another.

The scheduling of tasks is priority based. The
user can prioritize tasks to reflect their relative
importance within the overall control scheme.
For instance, if Heater 1 must go off line prior to
Heater 2 then the task associated with Heater 1
shutdown could be assigned a higher priority en
suring the correct shutdown sequence. The RQ
WAIT system call is also a scheduling tool. In this
example the task implementing Heater 2 shut
down could include an instruction to wait for com
pletion of the task that implements Heater 1
shutdown.

The iRMX 51 Executive allOWS for PREEMPTION
of a task that is currently being executed. This
means that if some external event occurs such
as a catastrophic failure of Heater 1, a higher
priority task associated with the interrupt, mes
sage, or timeout resulting from the failure will
preempt the running task. Preemption ensures
the emergency will be responded to immediately.
This is crucial for real-time control application
systems.

Interrupt Handling

The iRMX 51 executive supports sixteen inter
rupt sources as shown in Table 1. Four of these
interrupt sources, excluding timer 0, can be as-

Running Task Executes ROWAIT or RODELETE

I READY lk-----:::---:-=-----;:-~:_:7=:-;:::;:-_:::;_--__j1 RUNNING 1
Event Occurs Assoc. wlAsleep Task wi
Higher Priority Than Running Task.

Event Occurs Assoc.
wi Asleep Task wi
Lower Priority
Than Running
Task

Event Occurs Assoc. wi Asleep Task wi
Higher Priority Than Running Task

I ASLEEP Ik-----=--:---=--:--=-~__:=:-:-:-:;----------"
Running Task Executes ROWAIT

Figure 2. Task State Transition Diagram

3-148 230972-001

iRMXTM 51

signed to a task. When one of the interrupts
occurs the task associated with it becomes a run
ning task (if it were the highest priority task in a
ready state). In this way, the iRMX 51 Executive
responds to a number of internal and external
stimuli including time intervals designated by the
user.

Table 1. iRMXTM 51 Interrupt Sources

INTERRUPT SOURCE INTERRUPT NUMBER

External Request 0 OOH

Timer 0 01H

External Request 1 02H

Timer 1 03H

Internal Serial Port 1 04H

Reserved 05H

Reserved 06H

Reserved 07H

Reserved OSH

Reserved 09H

Reserved OAH

Reserved OBH

Reserved OCH

Reserved OOH

Reserved OEH

Reserved OFH

Message Passing

The iRMX 51 Executive allows tasks to interface
with one another via a simple message passing
facility. This message passing facility can be
extended to different processors when communi
cations support is integrated within a BITBUS/
iDCM system, for example. This facility provides
the user with the ability to link different functions
or tasks. Linkage between tasks/functions is typ
ically required to support development of complex
control applications with multiple sensors (inputs
variables) and drivers (output variables). For in
stance, the industrial drying process might require
a dozen temperature inputs, six moisture readings,
and control of: three fans, two conveyor motors,
a dryer motor, and a pneumatic conveyor. The
data gathered from both the temperature and
humidity sensors could be processed. Two tasks
might be required to gather the data and process
it. One task could perform a part of the analysis,
then include a pointer to the next task to complete

the next part of the analysis. The tasks could
continue to move between one another.

REMOTE TASK COMMUNICATION

The iRMX 51 Executive system calls can support
communication to tasks on remote controllers.
This feature makes the iRMX 51 Executive ideal
for applications using distributed architectures.
Providing communication support saves signifi
cant application development time and allows for
more effective use of this time. Intel's iDCM pro
duct line combines hardware and software to
provide this function.

In an iDCM system, communication between
nodes occurs via the BITBUS microcontroller
interconnect. The BITBUS microcontroller inter
connect is a high performance serial control bus
specifically intended for use in applications built
on distributed architectures. The iRMX 51 Ex
ecutive provides BITBUS support.

BITBUSTM/iDCM COMPATIBLE

A pre-configured version of the iRMX 51 Executive
implements the BITBUS message format and
provides all iRMX 51 facilities mentioned previ
ously: task management, interrupt handling, an'd
message passing. This version of the Executive
is supplied in firmware on the iDCM Controller
with the iDCM hardware products: the iSBX 344
BITBUS Controller MUL TIMODULE and the iRCB
44/10 BITBUS Remote Controller boards. It is
also supplied on diskette as part of the iRMX 51 0
iDCM Support Package to ease development of
BITBUS systems.

SIMPLE USER INTERFACE

The iRMX 51 Executive's capabilities are utilized
through system calls. These interfaces have been
defined for ease of use and simplicity. Table 2
includes a listing of these interfaces and their
functions. Note tasks may be created at system
initialization or run-time using the CREATE TASK
call. .

Functions such as GET FUNCTION IDS, ALLO
CATE/DEALLOCATE BUFFER, and SEND MES
SAGE (Messages in the iRMX 51 Executive have
a maximum size of 255 bytes.), support communi
cation for distributed architectures. Architectures
that define multiple remote stations requiring intel
ligent and dumb 110 manipulation. The remaining

3-149 230972-001

inter iRMXTM 51

Table 2. iRMXTM 51 'System Interfaces

COMMAND . DESCRIPTION

RO SEND MESSAGE Sends a message (a command from the BITBUS master, a response from
a slave, or a simple message between tasks on the same BITBUS compo-
nent) to another task.

ROWAIT Waits for an interrupt, an event time-out, a message, or any combination
of the three.

RO CREATE TASK Causes a new sequence of code to be run as an iRMX 51 task with a specific
function identification code" and priority. .

RO DELETE TASK Stops the specified task and removes it from all execution lists.

ROAllOCATE Allpcates Ii' fixed-length buffer from the on-chip, scratch-pad RAM for gen-
eral use, or, in BITBUS applications, for a BITBUS message buffer.

RO DEAllOCATE Returns an on-chip. buffer to the system.

RO SET INTERVAL Set the time interval to be used as a separate event-timer for the task.
RO ENABLE INTERRUPT Allow external interrupts to signal the microcontroller.
RO DISSABlE INTERRUPT Stops all external interrupts from signaling the microcontroller.
RO GET FUNCTION 10 Provides a list of the 8 function identification codes representing the tasks

currently operating on the microcontroller.

interfaces allow the user to specify the system's
response to the external environment - a must
for real~time control.

Another feature that eases application develop
ment is automatic register bank allocation. The
Executive will assign tasks to register banks
automatically unless a specific request is made.
The iRMX 51 Executive keeps track of the reg
ister assignments allowing the user to concentrate
on other activities.

The user configures an iRMX 51 system simply
by: specifying the initial set of task descriptors
and configuration values, and linking the system
via the RL 51 Linker and Locator Program with
user programs. The nature ot'the task descriptors
allows the user·to develop programs, locate them
in off-chip ROM, and access them without writing
additional code. Programs may be written in ASM
51 orPUM 51. (Intel's 8051 Software Development
PaGkage contains both ASM51 and. RL 51. The

. iRMX 51 Executive supplies the.configuration file
and macro defining initial task descriptors.) Figure
3 shows the relationships that exist in the system
generation process.

RELIABILE

Real-time control applications require reliability.
The nucleus requires about 2K bytes of code
space, 40 bytes on-chip RAM, & 218 bytes exter-

nal RAM. Streamlined code increases performance
and reliability, and flexibility is not sacrificed as
code may be added to either on-Chip or external
memory.

The iRMX 51 architecture and simple user inter
face further enhance reliablity and lower cost.
For example, the straightforward structure of the
user interfaces, and the transparent nature of the
scheduling process contribute to reliability of the
overall system by minimizing programming ef
fort. Also, modularity increases reliability of the
.system and lowers cost by allowing user tasks to
be refined independent of the system. In this
way, errors are identified earlier and can be easily
corrected in each isolated module.

In addition, users' can assign tasks a Function 10
that allows tracking of the tasks associated with
a particular control/monitoring function. This
feature reduces maintenance and trouble shoot
ing time thus increasing system run time and
decreaSing cost.

OPERATING ENVIRONMENT

The iRMX 51. Executive supports applications
developmf;lnt based on any member of the high
perforl')1ance 8051 family of microcqntroller$.
The Executive is available on diskette. with user
linkable libraries or in the Distributed Control
Modules (iDCM) controller preconfigured in on-

3--150 230972-001

inter IRMXTM 51

ABM· 51 PUM51

7
USER iRMX™51
PROGRAMS CONFIGURATION
(MODULES) PARAMETERS

/
RL51· iRMXTM 51 iRMX™51

LIBRARY LINKER AND INTERFACE
LOCATOR LIBRARY

APPLICATION
SYSTEM

ICE™-51 EMULATOR
=~~T1f~ :g::g ICE™-44 EMULATOR c--+

EMV-51
W/iPDS™SYSTEM CUSTOM BOARDS

·INCLUDED IN 8051
SOFTWARE DEVELOPMENT PACKAGE

Figure 3. System Generation Process

chip ROM. (The iDCM controller is an 8044 com
ponent that consists of an 8051 microcontroller
and SDLC controller on one chip with integral .
firmware.)

When in the iDCM environment (Figure 4), the
iRMX 51 Executive can communicate with iRMX
based systems like the System 286/310 or ISIS
based systems like the Intel Portable Develop
ment System (iPDS) by using the iRMX 51 0 iDCM
Support Package.

3-151

DEVELOPMENT ENVIRONMENT
Intel provides a complete development environ
ment for the 8051 family of microcontrollers. This
environment encompasses iDeM system (BITBUS
based) applications also. Software development
support consists of: the 8051 Software Develop
ment Package, and the iRMX 510 iDCM Support
Package. Hardware tools consist of a variety of
In Circuit Emulators (ICE), Intel's Portable Devel
opment System (iPDS) with EMV-51, and Intellec®
Series II or III Development Systems.

230972.001

inter

IRMXTM 510 OR CUSTOM
PARALLEL INTERFACE

HANDLERS

APPLICATION
SOFTWARE

310
SUPERMICRO

SYSTEM

SPECIFICATIONS

Supported Hardware

Mlcrocontrollers

8051 80C51

IRMXTM 51

BITBUS™
INTERCONNECT

..... /
ISBC' B8/30

BOARD

iSBX™344
BpARD

IRCB 44/10
BOARD

iSBX™344 ,B;7

Figure 4. iDeM Operating Environment

Compatible Software

IRMXTM 510 IDCM Support Package

Development Tools

ICETM 51 or ICE 44 Emulators
8052, 8044
8751 8744
8031 80C31

Intellec Series II or III Development System
iPDS System w/EMV·51

8032 8344

iDCM Product Line

iSBX 344 MULTIMODULE Board
iRCB 44/10 Remote Controller Board

Ordering Information.

Part Number

iRMX51BY

Description

Executive for 8051 Family of
Microcontrollers with Reference
Manual. A, B, and F Media
Formats Supplied

iRMX 510 iDCM Support Package
8051 Software Development Package

Reference Manual (Supplied)

146312-001 - Guide to USing the Distributed
Control Modules

3-152 230972'()()1

intJ
MCS~·96S0FTWARE DEVELOPMENT PACKAGES

MCS~·98 SOFTWARE SUPPORT PACKAGE

• Symbolic relocatable mbly
language progr.mmlng for the 8018
mlcrocontroller family

• System Utilities for Progr.m Linking
and Relocation

• Extende Intellece Microcomputer
Development Sy.tem to eupport Mes
M program development

• Encourage. modular program dealgn
for maintainability and reliability

The MCSGD-96 Software Support Package provides development system support for the MCS-96 family of 16-
bit single chip microcomputers. The support package includes a macro assembler and system utilities.

The assembler produces relocatable object modules from MCS-96 macro assembly language instructions.
The object modules then are linked and located to absolute memory locations.

The assembler and utilities run on the InteUecGD Series III or equivalent Microcomputer Development System.

LIGIND

[J INTIL DIYIL.O'MINT
TDOL AND OTHI~
'~DDUCTl

Figure 1, MeS.·11 Softwar. Dev.lopment Proc ...

Intel Corporation auumea no raaponlibility lor Ihe u .. 01 any circuitry other than olrcultry ambodlad In an Intel product. No other circuit patin!
Ilcen .. 1 are Impllad. Information contained herein euparlldel pr1Y1oU11y publllhld lpaoIftoatione on thIII dIYIoIIlrom Inial. JIIIUIIY 1884
(I) Intll Corporation, 1884. 3-153 Order Number: 23081 a.ooa

inter MCSIIP·II SOFTWARE DEVELOPMENT PACKAGES

8098 MACRO ASSEMBLER
• Supportl 8088 f.mlly progr.m

development on IntellecllP

Microcomputer Development Sy.tem

• Glv .. Iymbollc .cce .. to powerful
8088 hardw.re fe.tur ..

• Object fll ... re linkable .nd 1000tibie
• Symbolic Alllmbl.r luPPOrti m.oro

cap.bllltl .. , cro .. r.f.rence, Iymbol
t.bl •• nd oondltlon.1 mbly

ASM·S6 Is the macro assembler for the MCS family of mlcrocontrollera. ASM·S6 translates symbolic assembly
language mnemonics Into relocatable obJect code. Since the object modules are linkable and locatable, ASM·
S6 encourages modular programming practices.

The macro facility in ASM·S6 allows programmers to save development and. maintenance time since common
code sequences only have to be done once. The assembler also provides conditional assembly capabilities.

ASM·S6 supports symbolic access to the many features of the 80S6 architecture. An "include" file Is provided
with all of the 80S6 hardware registers defined. Alternatively, the user can define any subset of the 8096
hardware register set.

Math routines are supported with mnemonics for 16 x 16·bit multiply or 32/ 16·bit divide instructions.

The assembler runs on a Series III/Series IV Intellec Development Systems for high performance.

RL96 LINKER AND RELOCATOR PROGRAM

• Link. module. generated by
ASM·II and PLlM·II

• Locate. the linked object module to
ab.olute memory locatlonl

• Encourage. modular programming for
fa.ter program development

• Autom.ted IIlectlon of required
modul •• from Llbrarl .. to .. tllty
Iymbollc ref.rencel

RLS61s a utility that performs two functions useful In MCB-S6 software development:
- The link function which combines a number of MCS·96,object modules Into a single program.
- The looate functions which .. signs an absolute addreas to all relocatable addresses In the MC8-96 object
- module.

RLSS resolves all external symbol references between modules and will select object modules from library
flies If necessary.

RLS6 creates two flies:
- The program or absolute object module file that oan be executed by the targeted member of the MCS·aS

family.,
- The listing file that shows the results of IInkliocate, Including a memory map symbol table and an optional

cross reference listing.

The relocator allows programmers to concentrate on software functionally and not worry about the absolute
addresses of the object code. RLSS promotes modular programming. The application oan be broken down Into
separate modules that are ,easier to design, test and maintain. Standard modules can be developed and used
In different applications thus saving software development time.

3-154 23081a.ooa

inter MCSe." SOFTWARE DEVELOPMENT PACKAGES

FPAL9S FLOATING POINT ARITHMETIC LIBRARY
• Implement. IEEE Flo.tlng Point

Arithmetic
• B •• lc Arithmetic Oper.tlon.

+, -, x, I, Mod Plu. Squ.re Root

• SuPPOrti Single Preel.lon 32 Bit
Flo.tlng Point V.rl.ble.

• Include •• n Error H.ndl.r Llbr.ry

FPAL9S II a library of lingle precilion 32·blt floating point arithmetic functlonl. All math adherel to the
proposed IEEE floating point standard for accuracy and reliability. An error handler to handle exceptlonl (for
example, divide by zero) Is Included.

The following functions are Included:
ADO NEGATE
SUSTRACT ABSOLUTE
MULTIPLY SQUARE ROOT
DIVIDE INTEGER
COMPARE REMAINDER

LIB9S
The LIB SS utility creates and maintains libraries of software object modules. The customer can develop
standard modules and place them In libraries. Application programs can then call these modules using prede
fined interfaces.

LIB 96 uses the following set of commands:
-CREATE: Creates an empty library file.
-ADD: Adds object modules to a library file.
-DELETE: Deletes object modules from a library file.
-LIST: Lists the modules in the library file.
-EXIT: Terminates LIB 96

When using object libraries, RL96 will include only those object modules that are required to satisfy external
references, thus saving memory space.

SPECIFICATIONS

Operating Environment

Required Hardware:
Intellec Microcomputer Development System
- Series III/Series IV

Documentation Package:

MCS·S6 Macro Assembler User's Guide
MCS·96 Utilities User's Guide
MCS·96 Assembler and Utilities Pocket
Reference Card
8096 Floating Point Arithmetic Library

ORDERING INFORMATION

Part Number

iMDX·355
Requires Software License

Description

MCS·9S Software Support Package

SUPPORT:

Hotline Telephone Support, Software Performance
Report (SPR), Software Updates, Technical R ..
ports, and Monthly Technical Newelettera are avail·
able.

3-155 230113.Q03

MCS4t-96 SOfTWARE DEVELOl'MENTPACKAGES

PL/M-96 SOFTWARE PACKAGE

• High level programming language for • Re.ldent on IAPX-88 Intel
the Intel Mcse·96 mlcrocontroller microcomputer development .ystems
family for higher perfor(l'lance

• Block structured language design • Includes a linking and relocating utility
encourages module programming and the library manager

• Provides acce .. to Mcse"96 on chip • IEEE Floating Point Library Included for
resources numeric support

• Produces relocatable object code • Compatible with PL/M·86 assuring
which Is linkable to object modules dlltslgn portability
generated by other MCS@·96
translators

PLlM-96 is a structured, high-level programming language useful for developing software for the Intel MCS-96
family of microcontrollers. PLlM-96 was designed to support the software requirements of advanced 16 bit
microcontrollers. Access to the on chip resources of the MCS-96 has been provided in PL/M-96.

PLlM-96 is compatible with PL/M-86. Programmers familiar with PLIM will find they can program in PL/M-96
with little relearning effort.

The PLlM-96 compiler translates PL/M-96 high level language statements into MCS-96 machine instructions.
By programming in PL/M an engineer can be more productive in the initial software development cycle of the
project. PL/M can also reduce future maintenance and support cost because PLIM programs are easier to
understand. PL/M-96 was deSigned to complement Intel's ASM-96.

LEGeND

[J INTEL DEVELOPMENT
TOOL AND OTHER
PRODUCTS

IiCfpUM ... 6_ J 'O'TWA~I PACKAGI

O UIE~·CODED· .
'O'TWA~1

noelS-I

Figure 2. MCS.·" SOftware Development Proce ..

3-156 230813.()()3

inter MOS~·96 SOFTWARE DEVELOPMENT PACKAGES

PL/M·96 COMPILER

FEATURES
Major features of the PLlM~96 compiler and pro
gramming language include:

Structured Programming
Programs written in PL/M·96 are developed as a
collection of procedures, modules and blocks. Struc·
tured programs are easier to understand, maintain
and debug. PLlM·96 programs can. be made more
reliable by clearly defining the scope of user vari·
abies (for example, local variables in a procedure).
REENTRANT procedures are also supported by
PLlM-96.

Language CompatJblllty
PL/M-96 object modules are compatible with all oth
er object modules generated by Intel MCS·96 trans·
lators. Programmers may choose to link ASM-96
and PL/M·96 object modules together.

PLlM·96 object modules were designed to work
with other Intel support tools for the MCS·96. The
DEBUG compiler control provides these tools with
symbolic information.

Data Types Supported

PLlM·96 supports seven data types for programmer
flexibility in various logical, arithmetic and address
ing functions. The seven data types include:

-BYTE:

-WORD:
-oWORD:
-8HORTINT:

-INTEGER:

-LONGINT:

-REAL:

8-blt unsigned number

18·blt unsigned number

32·blt unsigned number

8·blt signed number

16·bit signed number

32-bit signed number

32-bit floating point number

Another powerful feature are BASED variables.
BASED variables allow the user to map more than
one variable to the same memory location. This is
especially useful for passing parameters, relative
and absolute addressing, and memory allocation.

Data Structures Supported
Two data structuring facilities are supported by
PLlM-96. The user can organize data into logical
groups. This adds flexibility in referencing data.

- Array: Indexed list of same type data elements

- Structure: Named collection of same or different
type data elements

- Combinations of Both: Arrays of structures or
structures of arrays

Interrupt Handling
Interrupts are supported in PLlM-96 by defining a
procedure with the INTERRUPT attribute. The com·
piler will generate code to save and restore the pro
gram status word when handling hardware interrupts
of the MCS-96.

Complier Controls
Compile time options increase the flexibility of the
PLlM·96 compiler. These controls Include:

- Optimization

- Conditional compilation

- The inclUsion of common PL/M·98 source file.
from disk

- Cross reference of symbols

- Optional assembly language code in the listing
file

3·157 230613·003

inter MCSQJ>·96 SOFTWARE DEVELOPMENT PACKAGES

Code Optimizations

The PL/M-96 compilers has four levels of optimiza
tion for reducing program size.

- Combination of constant expressions; "Strength
reductions" (e.g.: a shift left rather than ml,lltiply
by two)

- Machine code optimizations; elimination of super
fluous branches; reuse of duplicate code, remov
al of unreachable code

- Overlaying of on chip RAM variables

- Optimization of based variable operations

- Use of short jumps where possible

Built In Functions

An extensive list of built in functions has been sup
plied as part of the PL/M-96 language. Besides
TYP~ CONVERSION functions, there are built in
functions for STRING manipulations. Functions are
provided for interrogating the MCS-96 hardware
flags such as CARRY and OVERFLOW.

Error Checking

If th~ PL/M-96 compiler detects a programming or
compilation error, a fully detailed error message is
provided by the compiler. If a syntax or program er
ror is detected, the compiler will skip the code gen
eration and, optimization passes. This powerful
PL/M-96 feature can yield a two times increase. in
throughput when a user is in the initial program de~
velopment cycle.

BENEFITS

PLM-96 is designed to be an efficient, cost-effective
solution to the. special requirements of MCS-96 Mi
crocontroller Software Development, as illustrated
by the following benefits of PL/M use:

Low Learning Effort

PL/M-96 is easy to learn and to use, even for the
novice programmer.

Earlier Project Completion

Critical projects are. completed much earlier than
otherwise possible because PLlM-96, a structured
high-level language, increases programmer produc
tivity.

Lower Development Cost

Increases in programmer productivity translate im
mediately into lower software development costs
because less programming resources are required
for a given programmed function.

Increased Reliability

PL/M-96 is designed to aid in the development of
reliable software (PL/M programs are simple state·
ments of the program algorithm). This substantially
reduces the risk of costly correction of errors In sys
tems that have already reached full production
status. The more simply the program is stated, the
more likely it is to periorm its intended function.

Easler Enhancements
and Maintenance

Programs written in PL/M tend to be self·document·
ing, thus easier to read and understand. This means
it is easier to enhance and maintain PL/M programs
as the system capabilities expand and future prod
ucts are developed.

3-158 230613-003

MCSe-ee SOFTWARE DE.VELOPMENT PACKAGES

RL96 LINKER AND RELOCATOR PROGRAM
• Link. modul .. generated by ASM-98

and PUM-98

• Locate. the linked. object module to
ab.olute memory location.

• Encourage. modular programming for
fa.ter program development

• Automated .. Iectlon of required
module. from Ubrarle. to utl.fy
.ymbollc reterences

RL96 is a utility that performs two functions useful in MCS software development:
- The link function which combines a number of MCS object modules into a single program.
- The locate function which assigns an obsolute address to all relocatable addresses in the MC8-96 object

module.

RL96 resolves all external symbol references between modules and will select object modules from library
files if necessary.

RLge creates two files:
- The program or absolute object module file that can be executed by the targeted member of the MCS

family.
- The listing file that showS the results of linkllocate, including a memory map symbol table and an optional

cross reference listing.

The relocator allows programmers to concentrate on software functionality and not worry about the absolute
addresses of the object code. RLge promotes modular programming. The application can be broken down into
separate modules that are easier to deSign, test and maintain. Standard modules can be developed and used
in different applications thus saving software development time.

FPAL96 FLOATING POINT ARITHMETIC LIBRARY
• Implement. IEEE Floating Point

Arithmetic

• Ba.le Arithmetic Operation,
+, -, x, I, Mod Plu, Square Root

• Supportl Single Precl,lon 32 Bit
Floating Point Variable,

• Include, an Error Handler Ubrary

FPAL98 Is a library of single precision 32·blt floating point arithmetiC .functlons. All math adheres to the
proposed IEEE floating point standard for accuracy and reliability. An .rror handler to hindi •• xceptlonl (for
example, divide by zero) Is Included.

The following functions are Included:

ADO NEGATE
SUBTRACT ABSOLUTE
MULTIPLY SQUARE ROOT
DIVIDE INTEGER
COMPARE REMAINDER

3-159 18OI1a.oos

MCS@'-9SS0FTWAREDEVELOPMENT PACKAGES

LIB 96

The LIB 96 utility creates and maintains libraries of software object modules. The customer can deVelop
standard modules and place them in libraries, Application programs can then call these modules using prede-
fined interfaces. . . .

LIB 96 uses the following set of commands:

-CREATE: Creates an empty library file

-ADD: Adds object module.s to a library file

-DELETE: Deletes object modules from a library file

-LIST:

-EXIT:

Lists the modules in the library file .

Terminates LIB 96

When using object libraries, RL96 will include only those object modules that are required to satisfy external
references, thus saving memory space.

SPECIFICATIONS

Operating Environment

Required Hardware:
Intellec Microcomputer Development System
- Series IIIISeries IV .

Documentation Package:

PL/M-96 User's Guide
MCS-96 Utilities User's Guide
MCS-96 Assembler and Utilities Pocket
Reference Card
8096 Floating Point Arithmetic Library

ORDERING INFORMATION

Part Number

iMDX-356
Requires· Software License

Description

PLlM-96 Software Package

SUPPORT:

Hotline Telephone Support, Software Performance
Report (SPR), Software Updates, Technical Re
ports, and Monthly Technical Newsletters are avail
able.

3-160

Development Productivity Tools 4

inter
DEVELOPMENT PRODUCTIVITY TOOLS

INTRODUCTION

Improving an engineering team's productivity is a "ever ending task in today's competitive environments. Intel
offers software tools and communication systems that optimize the usage of expensive engineering personnel
and capital equipment. Software tools boost a programming team's productivity, thereby lowering development
costs and shortening product development times. Communication software provides further productivity gains
by linking multi-computer engineering environments into highly effective networks.

One software tool that substantially increases software productivity is PSCOPE, a source level symbolic
debugger. The PSCOPE debugger allows the high-level language programmer to completely debug his code at
the same level at which it was written. Breakpointing, tracing, and patching are all done in a faster and less
error-prone manner than through obsolete machine-level de buggers. As software testing and maintenance
consume a greater portion of development life-cycle time and cost, PSCOPE debugging can significantly
improve programming efficiency.

Another set of valuable software tools are Intel's Program Management Tools (PMTs), which provide the
essential ingredients to manage large software development projects. PMTs decrease the time spent on tracking
program changes and manually generating new systems, thereby giving engineers more time for software
design, development, and testing. PMTs consist of a Software Version Control System (SVCS), and an
automated software generation facility (MAKE). Together these tools control, examine, and automate the
management of a software system that may contain many versions consisting of numerous modules.

Intel's software toolboxes are collections of utilities that perform a variety of productivity-oriented functions. The
ISIS-II Software ToolbOX offers conditipnal submit file control tools, source management tools, and other tools
that operate atthe ISIS-II command level. The 8086 Software Toolbox is a collection of 16-bit software tools that
are valuable for text formatting and preparation, software testing and performance analysis, 286/287 software
development, and a multitude of other applications.

Intel also offers AEDIT, an advanced editor that significantly improves programmer productivity. AEDIT was
designed with the programmer in mind, and offers full screen editing, the ability to edit two files at once, features
for manipulating large blocks of text, and dynamic macro command definition.

4-1

PSCOPE
HIGH-LEVEL PROGRAM DEBUGGER

• Source-Level Debugging for High
Productivity

• Breakpoint, Single-Step and Execution
Trace by Statement Numbers,
Procedure Names and Labels

• High-Level Code Patching

• Compatible with Intel's 121CETM
Integrated Instrumentation and In
Circuit Emulation System for Target
System Debugging

• Native CPU Execution for iAPX 88 and
86 Architectures

• Supports PL/M, Pascal, and FORTRAN
Program Debugging

PSCOPE is an interactive, symbolic debugger for high-level language programs. It allows users to scrutinize
program execution at the source level, using high-level statement numbers, procedure and variable names and
labels. This is typically a more productive way of debugging high-level language (HLL) programs than at the
machine level.

Source-level debugging means that traditional functions, such as setting breakpoints or tracing execution flow,
are more powerful in PSCOPE. For examplj:l, tracing procedure entry (or exit) points conveys much more
information than tracing machine instructions. Single-step execution is more powerful, using statements and
procedures, as well.

The productivity improvement from debugging in a high-level language is analogous to programming in a
high-level language, when compared to assembly-level programming and debugging.

PSCOPE users may define high-level code patches, which are "compiled" and patched into the user's program.
Code patches may be stored on disk, so they may be later incorporated into the program source file.

PSCOPE is an integral part of the advanced 12 1CE Integrated Instrumentation and In-Circuit Emulation System.
This allows a smooth migration from program debugging to target system debugging.

PSCOPE's symbol capacity is virtually unlimited. Symbols are paged to disk when necessary ..

PROGRAM
DEVELOPMENT

ASSEMBLY
LANGUAGE
MODULES

HIGH·LEVEL
MODULES:

PL/M-86

PASCAL·86

FORTRAN-86

~
V

~
V

SOURCE·LEVEL
DEBUGGING

PSCOPE:
CPU-LEVEL DEBUGGING

REGISTERS

PSCOPE:
HIGH-LEVEL DEBUGGING

I3REAKPOINTS
TRACE POINTS
SINGLE STEP

EXAMINE/MODIFY
CODE PATCHING

TARGET SYSTEM
INTEGRATION

r--
PSCOPE AND INSTRUMENTATION:

~ REAL·TIME EMULATION
HIGH·LEVEL DEBUGGING

--V CPU·LEVEL DEBUGGING

r--

Figure 1. Debugging Methodology with PSCOPE

MAY 1983
ORDER NUMBER:210350-003

inter PSCOPE
HIGH-LEVEL PROGRAM DEBUGGER

SAMPLE DEBUGGER SESSION

SERI~S-III Pascal-86, Vl.l

Sourc~ ~lle: :F2:MAXMI~.PAS

Object Flle: :F2:MAXMIN.OBJ
Controls speclfied: OEBUG.

S'fMT LINE NESTING
1 1 0 0
2 2 0 0

3 0
4 0
5 o .
5 1
6 1

8 11
9 12

lU 13
H 14
11 15
12 16

13 18
14 19
14 20

16 21

18 22
2~ 23

21 25
21 26
21 n
22 2U

23 30
24 31
25 32
26 33
27 34

SOURCE TEXT: :F2:MAXMIN.PAS
proyram calc(lnput,output);
var a,b:integer;

procedure sum{x,Y:lnteger)i
va:- Z:lnteger;
begIn

Z:=X*Yi
w!"lteln('The sum IS I,Z);

end;

p:-ocedure dlfference(x,Y:lnteger);
var z.:integer;
begin
z:=abs(x-y);
wrlteln('The dlfference IS ',z);

end;

procedure maxffiln(x,y:integer);
begln
If x<y then wrlteln('The maXlmum IS I,y,

The mlnlmum IS I ,x);
if y<x then wrlteln(IThe maXlfnum IS ',x,

The mlnlmum 15 I ,y);
if x=y then wrlteln ('The two inputs are equlvalent I);

end;

begln
re~eat (*forever*)
w'!:lte('Input two Integers f);
readln(a,b);

sum(a,b);
dlffer~nce(a,b) ;
maXIDln(a,b) ;

untIl 1<3
end.

The program listing for the sample PSCOPE session
illustrates the high-level nature of PSCOPE debug
ging. The program consists of the module CALC, the
procedures SUM, DIFFERENCE, and MAXMIN, plus
global and local variables. Users exercise and ma
nipulate the program using these symbols. Code

patches, stepping, tracing, etc. are all done on line
numbers, procedures, labels, and symbolic names.
To debug a program, just PSCOPE and a listing are
required-no linkage maps, core dumps, locate
maps, etc. are necessary. This is how high-level
debugging relates to high-level programming.

4-3

intJ PSCOPE
HIGH-LEVEL PROGRAM DEBUGGER

FEATURES

Unlimited Breakpoints

Breakpoints may be set on statement numbers, pro
cedure names, or program labels. Any number of
breakpoint registers may be defined.

High-Level Trace Points

Execution trace points are defined the same way as
program breaks. Any number of trace points may be
defined. A trace message is displayed when execu
tion reaches a trace point.

Conditional Break and Trace

Any break or trace point may be defined to automati
cally call a debugger procedure, which will execute
PSCOPE commands and/or evaluate predefined
conditions. The operations will be performed, and
the condition will determine if the break or trace will
be done.

GO

The GO command initiates program execution from
any starting point. A set of stopping points may be
specified ("GO TIL"), and break/trace registers may
be used ("GO USING").

Source-Level Stepping

A program maybe executed, one high-level state
ment at a time, using the LSTEP command. Also,
entire procedures may be treated as single state
ments during stepping (PSTEP); the procedures will
be executed, but not stepped thrQugh.

Examine/Modify Data

PSCOPE allows users to symbolically examine (and
change the value of) program variables and data
structures. All PLiM and Pascal types are supported,
including numerics, dynamic and stack variables,
arrays, and fields within structures.

Virtual Symbol Table

All user-program symbols are stored in 'a virtual sym
bol table. This means symbols will be paged to disk, if
necessary.

Help File

Many PSCOPE commands, facilities, and error mes
sages have help information describing their use.
The HELP command is used for learning the

PSCOPE command language, for quick reference of
command syntax, and for learning the cause of com
mand errors.

, Debugger Procedures

PSCOPE has the facility for defining procedures in
its command language. This block-structured com
mand language allows users to extend the capability
of the program under debug. Like macros with
parameters, these procedures may also be used for
generating compound and conditional debugger
commands.

Code Patching

Program patches may be written in the debugger
command language to augment or replace current
program statements. These high-level code patches
are much closer to actual program changes than
machine-level patches, and are easy to use.

Built-in Editor

A menu-driven, CRT-oriented editor is built into
PSCOPE. This is used for creating and editing pro
gram patches, debugger procedures, and command
lines. One key is used to invoke the editor to alter the
last command entered, or any debugger definition
(literally, trace register, ,patch, etc,) may be edited
selectively.

Debugger Command Language

GOI.LSTEP/PSTEP-For controlling program
execution.

DEFINE/DISPLAY/MODIFY /REMOVE-For manipu
lating debugger objects (such as break registers,
patches, and procedures), or program objects
(variables and data structures),

CALL/RETURN-For executing debugger
procedures.

WRITE/CI-For console input and output.

DO/END-For defining command blocks.

REPEAT/COUNT-For repetition of commands or
blocks.

IF/THEN/ELSE-For conditional execution of com
mands or blocks.

INCLUDE/PUT/ APPEND-For saving/restoring
commands and definitions to and from disk.

4-4

PSCOPE
HIGH-LEVEL PROGRAM DEBUGGER

BENEFITS

Shortened Develop~ent Cycle

The ability to define debugger procedures and make
code patches is very useful. It actually allows users to
extend the capability of the program under debug.
After debug sessions, users typically make program
changes or enhancements. This involves the use of
an editor, compiler and linkage tools that create a
"new" load module for debugging. Since PSCOPE
allows these changes and enhancements to be made
in the debugger, the number of Edit/Compile/Link
iterations is lowered. More confidence can be placed
on a program during debugging, because its capa
bilities have been more fully exercised.

Improved Debugging Productivity

PSCOPE provides users with the same conceptual
interface to program debugging that was used in
program design. This includes the high-level lan
guage constructs such as statements, procedures,
labels and symbolic variables and data structures.
Functions such as program trace and single-step
execution are more meaningful with statements and
procedures than machine instructions; therefore the
improvement in debugging productivity is analo
gous to the programming productivity using high
level languages.

SPECIFICATIONS

Supports Intel's standard 86/88 languages:

-PL/M 86188
-Pascal 86/88
-FORTRAN 86/88

ORDERING INFORMATION

Description

More Reliable Software

Debugger procedures may be used to automate the
software testing process. The procedure may
repeatedly generate test values, execute the pro
gram with the input values, and record the results.
Running more comprehensive tests, plus being able
to "batch" the tests, yields more reliable software.

Easy to Learn and Use

An extensive command language, which is similar to
block-structured languages such as PL/M and Pas
cal, is very easy to use in an interactive debug ses
sion. The HELP facility makes learning to use
PSCOPE extremely fast as well. The "Literally"
facility and debugger procedures also allow users to
extend and tailor the command language to suit indi
vidual needs.

Improved Software Management

The use of debugger procedures allows parts of a
software system to be debugged independently. Pro
cedures can be substituted for program stubs, allow
ing programmers to debug different pieces of the
system separately. This results in improved project
management.

PSCOPE runs on an Inteilec(" Series III or Series IV
Microcomputer Development System, either stand
alone or in an NOS-II network configuration. A 512K
application memory space is recommended for most
applications.

Order Code
iMDX-333 PSCOPE Program Debugger (for Series III and Series IV)

111-951 A

111-951 B

111-951 C

PSCOPE Program Debugger and 121CE Base Software for Series III with 8" single density
disk drive

PSCOPE Program Debugger and 12 1CE Base Software for Series III with 8" double density
disk drive

PSCOPE Program Debugger and 12 1CE Base Software for Series IV with 5%" double density
disk drive

4-5

PSCOPE .
HIGH-LEVEL PROGRAM DEBUGGER

-run :tl:lJl::icope
SLKlc~-llI P~COP~-HG, Vl.~ ·
"d~tlnt:! iltt:!ral1y d = 'Ot:!tLOt:!'
*a Iltt!rally 1 = 'llterally'
*0 1 br 'brkre~'

*u 1 tr = 'trcrey'

}-
·
*loaa :tl;maxlllln~86
*cur
lliH of :CALC
PI! OUTPUT
p,rINPJT

TE~T (ftle)
T~XT (tlle)
integer
Integer
procedure

~ -
A

SUI"
X
Y
<:

• Intey~r
• integer

DIH"H~NC~
X

• HI teq ef
procedu"'e
• inteye"

Y

·pstt:lp
[;;t.~ at
·pstt!t'

[;;top at
·pste;:p

[;;top at
*l-'step

[Step at
*pstelJ

[Sto~ at
*lJstt:!p

[Ste!, dt ·
*dt!flne
*
* .. 0 tll

:CALCnl1

• integer
• loteyer
procedure

integer
• lnteger

INPUT TWO INTt:GEHS:
:CI\LC#221

(lnput) 19
:CALCf231

TliE SUI'" I~

:CALCi241

THI:; DIFHHENCE IS
:CALCi2,1

THE MAXIMUM I;; 19
'rrlE MINIMUM IS 4

:CALCf211

~atch ii, tll 46 = z=x+y

121
INPU1· TWO INTEGEHS:

(lnput) 19 4
THE SUM IS 23

THE DI~rbHENCE IS 15
THE' MAXIMUM IS 19
THE MINIMUM IS 4

[~reak at .211
*
*detlne proc PHI = do
.*w!'"lte I ttlt! numbers ana product a:"e: I ,a,u,a*b
.*wrlte uSlny ('id,>') 'brt!dk. ? I

.*It CI == ty' then returrl true
els~ i~turn talse endlf

.*end

*d ur ~3 = ~.1 call P~l

*yo U::ilny b3 INPJ'J' TWO tN1'I::GEHS:

(lnput) 23 24
THE SUI'" 1;;, 47

TH~ IlI~~~HENCE IS I
'fHE MAXIMUM IS 24
'l'1Jt: MINII",UJ'1 IS 24

the nUl,lbers and the p!'"oduct 'a:-e: +23 +24 +552
nreak ? y
["rodk dt *211
*

*exlt
t-'SCUPL.: terlll'lnatea

4-6

The Literally facility allows users to abbreviate,
redefine and extend the command language to suit
individual needs,

Any PL/M-86, Pascal-S6 or FORTRAN-86 program
may be loaded. All symbolic names may be dis

. played, in total or by type. Symbols defined at debug
time may be displayed as well. All program types are
supported, including numerics, user-defined types,
and records. The symbols' types are displayed by the
DIR command as well.

Several flavors of stepping are offered. This example
illustrates PSTEp, a line-py-line step where pro
cedures are executed as a single step. This program
contains five steps in the main body, with three being
procedure calls,

There appears to be a bug in the program, as the sum
is displayed i.ncorrectly. Looking at the program, we
notice that X and Y were multiplied instead of added,
at line #5. A code patch is defined, and the program
executes correctly.

This illustrates the facility where a debug procedure
(PR1) is called when reaching a breakpoint at line
#21. Here, some values are displayed, and a condi
tion is evaluated (in this case, a query to the user),
Had the condition been false, program execution
would continue with no break. The high-level con
structs in the command language make this a very
powerful facility.

PROGRAM MANAGEMENT TOOLS

• Increase Software Engineering
Productivity

• Decrease Software Administration
Overhead

• Allow Users to Control, Automate and
Examine the Evolution of a Software Project

• Enhance the Capability of Networked
(NOS-II) and Standalone Development
Systems

• SVCS Simplifies Administration of
Software Modules and Systems

• MAKE Automatically Generates New
Releases of Software Systems

• Both Tools Easily Incorporated Into
Existing Software Development
Methodologies

Intel's Program Management Tools (PMTs) provide the essential ingredients to manage large software devel
opment projects. PMTs decrease the time spent on tracking program changes and manually generating new
systems, thereby giving engineers more time for software design, development, and testing.

PMTs consist of a "Software Version Control System" (SVCS), and an automated software generation facility
(MAKE). Together these tools control, examine, and automate the management of a software system that may
contain many versions consisting of numerous modules.

SVCS controls and documents software changes for all file types. SVCS handles storage and. retrieval of
different versions of a given module, controls update privileges, prevents different users from making changes
independently, and requires all changes be thoroughly documented by recording who made what changes,
when and why.

MAKE produces the specification of a "minimum-work" job required to generate a new system. This job (Le.
submit file) typically includes compiles and links of the latest versions of specified source and object modules. If
a newer source module exists for any specified object module, MAKE will specify a compile of this module,
replacing the older module in the completed program. Unnecessary links and compiles, however, are
eliminated. MAKE does the minimum work required to ensure consistent, up-to-date software, thus saving many
hours of compiles and links.

Incorporating PMTs into an existing project is easy. PMTs work with existing operating systems and software
tools (edifors, compilers, utilities) and require very little relearning. New users can quickly gain expertise in using
PMTs by working through the examples contained in the PMT Tutorial Manual and Diskette, which are included
with every PMT software package. Program Management Tools are ideal in a networked (NOS-II) environment,
where multi-version software control is critical. PMTs are also extremely valuable on standalone systems (with
Winchester disk) as well.

i SVCS Get the source module out of database.

II AEDIT Make code changes using editor.

II SVCS Put module back into database.

I MAKE Automatically generate new version of system.

OPTIMAL CONTROL OF A SOFTWARE PROJECT.

Intel Corporation Assumes No t1asponslbility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel proauct. No Other Circuit
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel.

© INTEL CORPORATION, 1983 4-7 MARCH 1984
ORDER NUMBER: 210587-003

PROGRAM MANAGEMENT TOOLS

SOFTWARE VERSION CONTROL SYSTEM (SVCS)

• Simplifies Administration of Software
Modules and Systems

• Maintains Change History Information
on Every Module

• Prevents Users From Accidently
Deleting System Software or Making
Simultaneous Module Changes

• Offers an Effective Software Version
Generation and Control Mechanism

Intel's Software Version Control System (SVCS) is a utility that greatly simplifies software system housekeep
ing. SVCS automatically controls and documents software modules in a large project, eliminating costly manual
administration by a project leader or librarian.

SVCS maintains a system database of software modules called units. Each unit is divided into four classes:
Source, which contains the unit's source code; Object, which contains the unit's object code; History, which
contains the unit's history file; and Composition, which can be arbitrarily used by the user.

Users interact with the database by using SVCS administrative and access commands. Project managers use
administrative commands to create new system databases, add and delete database units. set unit access
rights, and create and name new system variants. Programmers use SVCS access commands to check out and
return database modules when making system changes. For every change made, SVCS reCords what
changed, who changed it, when it was changed, and why.

SVCS variant generation and control enable project administrators to effectively create and identify new ver
sions of software systems. Stable versions may be write protected and placed in the public domain, working
versions may be identified and accessible only to programming personnel, and special versions may be created
for customized releases. In addition, version control can minimize software archival, maintenance, and support
administrative overhead.

AUTOMATED SOFTWARE GENERATION (MAKE)

• Automatically Creates New Software
Systems, Using the Latest Versions of
Source Modules

• Automatically Determines Which Source
Modules Need Recompiling

• Eliminates Unnecessary Compiles and
Links

• Works Closely with SVCS for Generating
Complete, Up-To-Date Systems

• Easily Adopted into Existing
Development Methodologies

• Offers Many Powerful Macro Constructs

MAKE is a utility that greatly simplifies the generation of software systems. MAKE produces a "minimum-work"
submit file that can generate a complete, up-to-date system without any unnecessary compiles and links. MAKE
can reduce system generation times from hours to minutes while concurrently minimizing administrative
overhead.

4-8 210567-003

inter PROGRAM MANAGEMENT TOOLS

MAKE accepts a text Input file that Instructs it how to generate a new software system. The Input file specifies all
modules required to generate the new system and Includes a description of system dependencies. It also
specifies specific system operations, such as compiles, links, SVCS operations, line-printer spoolings, and other
system commands. MAKE uses this Input file In conjunction with the time and date stamps on each module to
determine the optimum system generation procedure that eliminates all unnecessary compiles and links.

Typically a MAKE input file is created once at the start of a project. Very occasionally during the life of the project
it may need modification. A powerful set of macros makes the creation and subsequent modification of a
generation procedure an easy task. Overall, the management of the MAKE input file is negligible compared to
maintaining numerous submit files for system generations.

The close relationship between SVCS and MAKE help simplify the overall job of software control at all levels.
For example, the very latest version of a source module may not be stable enough to be included in a
generation. A less functional, but more reliable version may exist. Since SVCS keeps unique versions distinct,
an SVCS-module containing the more reliable version may be specified in the MAKE input file.

BENEFITS: SVCS AND MAKE

Intel's Program Management Tools eliminate com
mon problems such as:

"We've modified module FOO, which has introduced a
new set of problems. Now we can't restore it back to
the earlier version."

"Module F002 has been modified; no one seems to
know who changed it, or why."

"We often have several programmers making
changes to the same modules. Trying to avoid simul
taneous changes is a lot of effort, and we waste time
synthesizing two sets of changes into one module."

"To ensure that we release up-to-date, correct soft
ware, we periodically go into "release mode" for a
few days. Everyone stops work completely while we
find the latest versions, and then start the generation
from the ground up. It literally takes days, when we
could be making productive changes."

SVCS and MAKE together provide a service that fits
easily into your existing design methodology, and
solves administrative problems such as those
described above.

4-9

SPECIFICATIONS

Networked, Multi-User Software Control
NOS-II with at least one Intellec Microcomputer
Development System
iN OX, ISIS-III(N) System Software

Standalone Use
Intellec Series III with Model 750 Winchester Disk or
Intellec Series IV
SVCS and MAKE will not operate on ISIS-II local
floppies or Model 740 Hard Disks.
SVCS and MAKE may be exported from any
workstation in an NOS-II configuration.

Documentation
"A User's Guide to Program Management Tools"
(121958)

SOFTWARE SUPPORT
This product includes a 90-day initial support consist
ing of new software releases, updates, subscription
services (software performance reports and technical
reports), and telephone hotline support. Additional
software support services are available separately.

ORDERING INFORMATION

Part Number

iMDX-332

Description

Intel Program
Management Tools

210567-003

ISIS-II SOFTWARE TOOLBOX

• Significantly Improves Programmer
Productivity

• Collection of Utilities that Speed Up
Software Design

• Enhances Capabilities of ISIS-II
Operating System

• Most Utilities will Operate on NOS-I
Workstations, and Remote Hard Disks

• Provides Source File Management,
Showing Source Changes, and
Performing Version Control

• Provides Conditional Control and
"Structured Programming" to Submit
Files

• ,Runs on Model 800, Series II, and
Series IIIlntellec® Development
Systems

The ISIS-II Software Toolbox is a collection of system utilities that perform a variety of "productlvity
oriented" functions. There are two major subsets of Toolbox tools, in addition to numerous ad hoc
utilities. These subsets provide Conditional Submit File Control and Source File Management.

The Conditional Submit File Control tools provide "structured programming" at the ISIS-II command level.
Jumps, Calls, Returns, etc. are supported, as well as conditional command execution, based on asser
tions such as file existence, program errors, file matching, and string matching.

The Source Management Tools. support version number tracking, and a1l0w users to identify which ver
sions of each source module were used to create a load module. There is also a tool which compares
source files and reports all differences.

The tools outside of the two major subsets assist the programmer in some very specific development and
debugging tasks. One tool manages all PUBLIC/EXTERNAL declarations in a system. Another merges the
locate maps into a program listing, giving absolute symbolic debugging information. There's a directory
sorter, a file compactor, and a tool to display just the last block of a file.

LATEST
COMPAR

GENPEX

PASSIF

/j

MRKOBJ

ERRS
LAST

flMERGIO
MERG86

MANY TOOLS IN THE TOOLBOX ENHANCE SPECIFIC PHASES OF THE DEVELOPMENT
CYCLE, OTHERS IMPROVE PRODUCTIVITY IN ALL PHASES,

4-10

CHKLOD

intJ ISIS-II SOFTWARE TOOLBOX

FUNCTIONAL DESCRIPTION

Submit File Execution Control

IF/ELSE/ENDIF-conditional submit file execu
tion based on file existence, program errors,
pattern matching, plus several other conditions

GOTO-causes submit execution to resume at a
specified label

RETURN-causes execution to return to the "sub
mitter" (calling file)

EXIT-halts submit file execution
LOOP-forces execution to resume at the begin

ning of the submit file
RESCAN-allows submit execution to begin

anywhere in file
NOTE-allows "progress report" notes to be

placed in submit files
WAIT-displays a message, and waits for user

input to continue or abort
STOPIF-halts submit file execution if specified

listing contains errors

Source Management

XLATE2-submit-like tool with intelligent
parameter substitution (for version control)

MRKOBJ-"marks" object modules with source
version information

CHKLOD-lists source version data put in load
modules by MRKOBJ

CLEAN-deletes all old versions off a specified
disk

LATEST-displays latest version numbers of
specified files

Operating System Functions

CONSOL-reassigns console input and console
output as directed

DSORT*-alphabetically sorts floppy disk and
hard disk directories

RELAB*-changes disk name to any other
specified name

Program Development and Debugging

ERRS-fast display of program errors in PLiM 80,
PLI M 86, and ASM 86 listings

MERG80-merges debug data from locate maps
into PLiM 80 listings

4-11

MERG86-merges debug data from symbol maps
into PLiM 86 and Pascal 86 listings

GENPEX-produces include file for PLiM external
declarations (source leve!)

PASSIF-general purpose assertion checking,
testing, and reporting tool

Text Processing

COMPAR-performs line-oriented text file com
parison (shows source changes)

UPPER-changes all letters in an ASCII text file to
uppercase .

LOWER-changes all letters in an ASCII text file to
lowercase

LAST-displays the last 512 bytes of a file
SORT-sophisticated line-oriented text file sort

ing tool

Disk Backup and File Processing

DCOPY-fast track-by-track diskette copying
HDBACK*-sophisticated hard disk to floppy disk

backup program
PACK-compacts text files by removing strings of

blanks
UNPACK-reconstitutes "packed" files

Disk Recovery

GANEF*-interactively reads and writes floppy or
hard disk data blocks

Program Identification

WHICH-displays version number of Software
Toolbox Programs

"These programs will not operate on the NOS-I
remote hard disks.

ORDERING INFORMATION

Product Code
MDS-363t

Description
ISIS-II SOFTWARE TOOLBOX

Requires software license.

SUPPORT CATEGORY: Level C

'MDS is an ordering code only and is not used as a pro
duct name or trademark. MDS is. a registered
trademark of Mohawk Data Science.

8086 SOFTWARE TOOLBOX

• Collection of Tools That Speed
Software Development

• MPL, a Standalone Macro Processor, is
Ideal for Debugging Macros

• SCRIPT and SPELL Assist Text
Preparation

• OMC286 and E80287 Aid 80286 and
80287 Software Development

• Many Other Valuable 16-Bit Software
Tools Are Included

• Runs on Series III and Series IV
Microcomputer Development Systems

• Runs under iRMxTM Operating System
The 8086 Software Toolbox is a collection of 16-bit software tools that can significantly improve programmer
productivity. These tools are valuable for text formatting and preparation, software testing and performance
analysis, 286/287 software development, and a multitude of other applications.

Text processing tools ease document formatting and preparation. SCRIPT is a text formatting program that
uses commands embedded in text to do paging, centering, left and right margins, subscripts, etc. SPELL finds
misspelled words in a text file and comes with a user expandable dictionary. COMP compares two text or source
files and displays their differences.

Test and performance analysis tools aid software testing and performance evaluation. PERF, a performance
analysis tool for 8086 software, is· ideal for isolating code "hot spots." PASSIF is a general-purpose assertion
checking and reporting tool perfect for running test suites.

Software development for 286/287 components is assisted by two software tools: OMC286, an 8086 to 80286
object module convertor, and E80287, an 80287 emulator that runs on the 80286.

Additional tools are included that aid 16-bit software development efforts. All tools run on Series III and Series
IV Microcomputer Development Systems.

SCRIPT

MPL

SPELL

WSORT

TEXT PROCESSING

286/287 DEVELOPMENT

OMC286

E80287

PERFORMANCE
MEASUREMENT & TESTING

PERF

GRAFIT

PASSIF

COMP
FUNC
XREF
DC

MISCELLANEOUS TOOLS

HSORT
ESORT

8086 SOFTWARE TOOLBOX TOOLS

lritel Corporation Assumes No Responslbllty for the Use of Any Circuitry Other Than Circuitry Embodied In an Intel Product No Other CirCUit Patent
LIcenses are Implied. InformatIon Contained Herein Supercedes Previously Published SpecIficatIons On These DeVices From Intel.

:0INTEL CORPORATION, 1983 4-12 ORDER NUMBER: 230915·003

8086 SOFTWARE TOOLBOX

FUNCTIONAL DESCRIPTION

Text Processing
SCRIPT-text formatting program that does paging,
centering, left and right margins, justification, page
headers and footers, underlines, boldface type,
subscripts and superscripts" upper and lower case,
and much more. Formatting commands are embed
ded in text.

MPL-standalone macro processor that processes
the macro language used in 8086, 80286, 8089, and
8051 assemblers. Can be used interactively which
makes it ideal for debugging macros. MPl can be
used to preprocess any text file.

SPELL-finds misspelled words in a text file. Dic
tionary of correctly spelled words is user expandable.

WSORT -utility for creating the SPEll dictionary.

COMP-performs line-oriented text file comparison
(shows source changes). Also understands 8086 ob
ject module formats for comparing 8086 object files.

Performance Measurement and Testing
PASSIF-general-purpose assertion checking,
testing, and reporting tool. Helps automate the soft
ware testing process.

PERF-performance analysis tool for 8086 software.
Monitors references in the code segment; segment
monitored is user defined. Works with small or com
pact bound loadable modules. Ideal for isolating code
"hot spots." Will only run on the Series III.

GRAFIT -graphing utility for use with PERF.

Miscellaneous Tools
OMC286-object module convetor that converts 8086
object modules into 80286 object modules.

E80287-an 80287 emulator that runs on the 80286.

4-13

FUNC-allows user to redefine the keys on a Series
III keyboard and define function keys. Requires the
iMDX 511 firmware.

XREF-produces -cross-reference tables from
translator list files. Cross-references all symbols
variables, labels, literallys, and quoted strings.

DC-floating point desk calculator program; allows
variable definitions.

HSORT -in memory heap sort utility.

ESORT-very flexible sort program.

SPECIFICATIONS

Operating Environment
ISIS Operating System with RUN or INDX Operat
ing System executing on Series III or Series IV
Microcomputer Development Systems.

iRMXTMS6 Operating System executing in SYS
XS6/3XX environment.

Required Hardware
Series' III or Series IV Microcomputer Development
System

Required System Software
ISIS Operating System with RUN or iNDX Operating
System

Documentation
"80S6 Software Toolbox"
(122203)

Software Support
This product includes a 90-day initial support consis
ting of new software releases, updates, subscription
services (software performance reports and technical
reports), and telephone hotline support. Additional
software support services are available separately.

ORDERING INFORMATION

Product Code

iMDX-364

Description

SOS6 Software Toolbox

inter
AEDIT TEXT EDITOR

• AEDIT·80 operates on any • AEDIT·86 Operates on any
Intellec® Series II, Model 800 Intellec® Series III, Series IV,
or iPDS™ Development System or iRMXTM system.

• Full Screen Editing • Powerful Macro Facility

• Menu· Driven, Easy to Use • Split;Screen Windowing

• Easy Handling of Large Blocks • Designed for the Programmer
of Text and Technical Writer

• Dual File Editing

AEDIT is a full screen editor for use on any Intellec® Development or IRMXTM system. It is designed to be
easy io learn and easy to use. At all times the user is guided by a menu which is used not only to select
commands, but also to select options to commands. There is no need to constantly refer to or memorize
detailed manuals.

AEDIT provides full screen editing capabilities and offers features to easily handle (move, copy, delete) large
blocks of text. In addition to the basic editing abilities, AEDIT supports tagging positions in the text, string
search and replace commands, and the option of automatic text indentation, spilling, and formatting. AEDIT
is able to edit files of any length and optionally creates back-up copies of the file being edited

With AEDIT, two files can be edited during one session. Tne user can eaSily switch between the files for quick
reference, editing, or to transfer text from one file to the other. Using the windowing capabilities available
with AEDIT-86, b~th of these files may be displayed simultaneously in a split-screen format

AEDIT supports a powerful macro facility. AEDIT can create macros by simply keeping track of what a user is
executing, "learning" the function the macro is to perform. The editor remembers the user's actions for later
execution, and can store them in a file if requested Alternately, a user may enter a macro using AEDIT's
macrolanguage, or modify any existing macro interactively.

These and many other features combine to make AEDIT the editor of chOice

The follOWing are trademarks of Intel Corporation and Its affiliates and may be used only to Identify Intel products. BXP, CREDIT, I, ICE,
les, 'm, Inslte, Intel INTEL, Intelevlslon, Intellec, IMMX, 10SP, IPDS, IRMX, ISBC, ISBX, Library manager, MCS, MULTIMODULE,
Megachassis, Micromainframe, Micromap. MULTIBUS, Multichannel, Plug·A·Bubble, PROMPT, Promware, RMXI80, System 2000, UPI,
and the combination of ICS. IRMX. ISBC. ISBX. ICE. MCS. or UPI and a numencal SUffiX Intel Corporation Assumes No Responsibility for
the use of An, Circuitry Other Than Circuitry Embodied in an Intel Product No Other Patent licenses are Implied
~ INTEL CORPORATION, 1983 SEPTEMBER 1984

4-14 ORDER NUMBER:210996·003

AEDIT TEXT EDITOR

MANUALS
AEDIT is supplied with a user manual documen
ting all the aspects of the editor, and a pocket
reference card. The manual includes an in
troductory tutorial.

HOST SYSTEM
AEDIT-80 is an 8080/8085-based utility and can be
run on any Intellec Development System, Senes liE,
Series II, Model 800, or iPDS, as well as on ISIS
Cluster workstations.

The higher-performance AEDIT-86 is an 8086-
based utility that can be run on any Intellec Se
ries IIIE, Series III, or Series IV Development sys
tem. Any Series liE, Series II or Model 800 sys·
tem can be upgraded to Series III functionality.
AEDIT·86 is also available for the iRMXTM Oper
ating Systems.

AEDIT can be configured to run with non-Intel
terminals. Tested configurations are availahle
for the following popular terminals:

ADDS Regent 200, Viewpoint 3A +
Beehive Mini-Bee
DEC VT52, VT100
Hazeltine 1510
Lear-Seigler ADM-3A
Zentec ZMS-35

Regent 200 IS a trademark of ADDS
Mini-Bee IS a trademark of Beehive
DEC designated Digital EqUipment Corporation
ADM·3A IS a trademark of Lear-Siegler

ORDERING INFORMATION
iMDX-335 AEDIT-80Text Editor.

IMDX-334

4-15

Includes tI" single and double den
sity diske~tes for Series liE, Series
II, or Model 800, and a 5'!."
diskette for iPDS.

AEDIT-86 Text Editor
Includes 8" single and double density
diskettes for Series III.

Communication Software 5

inter
COMMUNICATION SOFTWARE

Communications software is essential in an environment of multiple host systems. Intel recognizes the need to
exchange inf.ormation between Intel development systems, IBM mainframes, and DEC VAX minicomputers.
Intel provides software to make this communication easy.

The asynchronous communication link (ACL) enables an Intel development system to transfer files to and from
a VAX minicomputer. Two versions of this program are available, one for VAXIVMS and one for UNIX.

The mainframe link allows any ISIS-II user to transfer files to an IBM mainframe. This package uses the bisynch
protocol to communicate with the I BM host by emulafing a 2780/3780 batch terminal. Conversion of text files
between ASCII and EBCDIC is supported.

iNA955 allows a user to connect an iRMX system to the NOS-II network for file transfer purposes. Network
directories can be inspected and created remotely from the iRMX system. File transfer with this p.rogram occurs
at Ethernet speeds.

iNA960 is an OEM product for use in iRMX systems. It is a general purpose Local Area Network software
package that provides the user with guaranteed end to end message delivery. iNA960 conforms to ISO and
Ethernet standards. It provides network management functions as well as the 82586 device drivers.

NOS-II Electronic Mail allows human to human communication without wasting time on missed telephone
calls. Several types of mailboxes, such as private, group, or bulletin board, are supported. Typical mail uses are
to send memos, collect project milestone data, and be a telephone message center.

5-1

" MAINFRAME LINK FOR
DISTRIBUTED DEVELOPMENT

• Integrate. u.er mainframe re.burce.
with Intellec. De~elopment Sy.tem ••

• U.e.IBM 2780/3780 .tandard BISYNC
protocol ,upported by a maJorltyof
mainframe. and mlnlcompute,..

• Protocol.upport. full error detection
with automatic retry.

• Software run. under ISIS-II on any
Intellec. Development Sy.tem~

• Communicate. with remote.y.tem. on
dedicated or .wltched (dial-up)
telephone line..· ,

• Packaga allO Include. te.t. end a
connector for loop-back .elf-te.t
capability.

The Mainframe Link consists of software, modem cable to connect the development system to the modem and
a loopback connector for diagnostic testing. The software runs under ISIS-II on Intellec Development Sys
tems. It emulates the operation of an IBM 2780 or 3780 Remote Job Entry (RJE) terminal to (1) transmit ISIS-II
files to a remote system or (2) receive files from a remote system using standard BISYNC 2780/3780 protocol.
The remote system can be any mainframe or minicomputer which supports the IBM 2780 or 3780 communica
tions interface standard. Files may contain ASCII or binary data so that either program source files (ASCII) or '
program object files (binary) may be transmitted.

The Mainframe Link allows the user to integrate in-house mainframe resources with Intellec Microcomputer
Development resources. The mainframe can be used for storage, maintenance and management of program
source and object files. The program source can be downloaded to a development system for compilation,
assembly, linkage, and/or location. The linked modules can be transmitted and saved on the mainframe to be
shared by ail programmers. The linked program can then be downloaded to a development system for
debugging using ICE emulation.

USE MAINFAAME TO
o CAEATE SOU ACE PAOG USING MU~ TIP~E CAT'.
o STOAE SACKUP" MAINTAIN ~AAGE DISK FI~ES
o ~IST PAOGAAMS USING FAST PAINTEAS
o TAACK UPDATES" VEASION CONTAO~
o PAOTECT ACCESS TO SOU ACE/OBJECT FI~ES
o SHAAE COMMON ~ISAAAIES " MASTEA PAOGAAMS
o OAGANIZE, CONTAO~: MANAGE ~AAGE PAOJECTS

PLOP" ,
o COMPI~I I
o ~INK/~OCA TE I
o A.SEMS~E I ,

ellT

USE MDS FOA:

I
I

,;

o SVMaO~IC DEBUGGING
USING ICE

I
I

I

TIIofollowing 1 .. lrlld ... ar. 011 1 Corporation Ind mar !It ulld only '" Idontliy Inial produoll: I, Inlol, INTEL, INTILLIC, MeS, 'm, Ice, ICI, UP!, "I', ISIC, ISIX, INIITI, IIIMI(,
CREDIT, AMXIIO, "Scope, MuHlb.l, PAOMPT, PromwI .. , Mlglelllllll, Ubrary Manager, MAIN MULTI MODULI, and 1111 combination 01 Mel, ICE, SIC, !1M)(or ICland In._OIl
tufllx;,I,g.,I88Coe,
@INTEL CORPORATION, 1983

5-2
MAVINS

AFN·0154IlC

MAIN'RAMI LINK

'.ATURI.
I "unl undlr IIII-II on Iny Intllliol Mlorooom

putlr Dlvllopmlnt Iv-tim,

I Communloltal with I rlmotl Iv-tim ullng IBM
1710/8710 Itlndlrd BIIVNC protoool, whloh II
lupportld by I majority of mlnloomputlra Ind
mlfnfrlmll, on dldloltld or IwltOhld (dill-up)
tiliphonlllnll,

I Thl modlm olbll IUppllld with thl ploklgl oln
bl ulld to oonnlot thl Intllliol DlYllopmlnt
IYltlm to thl modlm (or modlm IlImlnltor)
ullng thl Itlndlrd "1182C port, '

I lupportl ullr IIllOtlbl1 dltl trlnlmlnlon rltll
of up to 1100 blUd,

I Ploklgl Inoludll dllgnoltlo tlltl ulld to vlrlfy
thl oplrltlon of thl Intllliol DlYllopmlnt IYI
tim ullng thl loop-blok oonnlotor luppllid Ind
dltl trlnlmlnlon up to thl modlm ullng thl
Inllog loop-blck futura,

I SYltlm cln be configured to mltch thl require
mlntl of thl Inltlllitlon, 1.1" ullng modlm
IlImlnatora for connectlonl up to fifty (50) flit, or
by ullng modeml Ind telephone II nil.

• Software cln be configured from Nveral conflg-
uretlon options such .. :

2780, 3780 or Intel Mode

Transparent mode for binary data

Non-transparent mode for ASCII data

BENEFITS
• Allows the customer to use an in-house main

frame or minicomputer for program source
preparation, editing, back-up and maintenance
us1ng Inexpensive CRT's and multi-terminal ac
cess. The common files may be shared and others
protected.

• Many programmers can use and share the high
performance devices normally available on large
computer systems, e.g., fast printers to reduce
listing time, the large capacity disks with their fast
access time to store large program files.

• The source files can be downloaded using the
Mainframe Link to an Intellec Development Sys
tem (e.g., Model 240 or 245) for compilation, link
ing and locating.

5-3

Automltlc trlnilition from AICII to EICDIC
Ind viOl VI,.I

"Ioilvi ohllnlng for rlollvlng multi I'll filII

I Intll modi II ulld mllnly for fill trlnlfl,. ba
twlln two Intllliol DlYllopmlnt IYltlml, Thl
flln Ire duplloltld IXlotly.

• Conloll oommlndl IUpport IlIltlndlrd futurn
Inoludlng:

lEND dltl In Trlnlp.,.nt or Non-trlnlplrlnt
modi, with or without trlnilition to EICDIC

"ECEIVE In Trlnlplrlnt or Non·trlnlplrlnt
modi, with or without trlnilition to EICDIC,

lupport for In 11M AJE oonloll (Iuoh .. HAlP)

• 11'10111 utility progrlml Irl provldld, IT"Z Itripi
Ixtrl blnlry zlro'l from thl Ind of obJlot filII.
CONSOL Inlgnl Iv-tim oonaollinput to In ISIS·
II dllk fill.

• Can prooln oommandl Intlractlvlly from thl
conloll or IIqulntlllly from an ISIS·II fill undlr
thl SUBMIT facility for IIml·lutomltlc bitch
operation.

• Error detection In IInl trlnlmlnlon Ind error re
COVlry by automatic retranlmlnlon.

• A Ipeclal com mind luch .. DIAGNOSE, allowl
logging of aU data activity on the line, during
tranlmlsllon and reception.

• When not ulld for communicating with the main
fraine, the InteUee· Devllopment System Is avail
able .. a complete, stand-alone system.

• The compiled and/or linked object files may be
transmitted back to the remote for storage. Up
dates and version numbers and dates can be
tracked to ensure that the latest version Is always
used and back-up files are available. Binary object
files can be later downloaded to an Intellec Devel
opment System for debugging using' an ICE
emulator.

• In short, provides a powerful and flexible tool
combining the best of both micro and mainframe
worlds, i.e., powerful CPU with large disk ca
pacity, file sharlng, multi-terminal access, etc.,
from a 'mainframe or minicomputer with Intel's
versatile and compatible software support sys
tems (Including PUM, PASCAL, FORTRAN, As
sembler, R & L) and sophisticated debugging
tools such as ICE emulators.

AFN·01549C

MAINFRAM, LINK

SPECIFICATIONS

Operating Envl,ronment

Required Hardware:

Intellec. Microcomputer Development System
ModelSOO
Models 220, 225, 230, 235, 240 or 245

64KB of Memory

One Diskette Drive
Single or Double Density

System Console
Intel CRT or non-Intel CRT

Recommended Hardware for Compilation:

Hard Disk (Models 240,245, or Model 740 Upgrade)

Additional Hardware Required for Model 800
ISBC-955T11 , ISBC-534T11

Required Software:

ISIS-II Dlsk.tt. Op.r.tlng System
Singi' or ,Double D.nslty

Documentation Package
M.'nfrem. t.lnk.U .. ,'. Guld. (121585-001)

8hlpplng Media
Flexlbl. DI.k.tt ..

Singi. and Doubl. O.n.lty

ORDIRING INFORMATION

'Irt Number
·MDS-3&4 Kit

DllOrlptlon

M.lnfram. Link for
DI.trlbut.d D.v.lopm.nt

Remote SYltem Requlrementl
• IBM 2780/3780 BISYNC, protocol as supported by

a m.Jorlty of mainframes and minicomputers In
cluding: all IBM-360/370 Systems, PDP-11/70,
VAX-111780, Data General ECLIPSE.

• Users should purchase this standard software
package from the remote system vendor and any
additional required hardware such as a synchro
nous 'communications interface.

• The operating system at the remote must be con
figured (SYSGEN'ed) with correct options such as
line address, 2780 or 3780, ...

Communication Equipment Requlrementl
The Intellec Development System may be connected
to the remote system using anyone of the following
methods:

• For short distances (up to 50 feet), use a syn
chronous modem eliminator (e.g., SPECTRON
ME-81 F8-2).

• For dlst.nces up to four miles, use short haul
synchronous modems .nd telephone lines.

I

• For dlst.nces gre.ter th.n four miles, use syn
chronous modems .nd t.l.phon. lines. Th. fol
lowing BELL mod.ms or thelrequlv.l.nts .re
recomm.nd.d:

BELL 201 C 2400 blts/s.cond
(h.lf dupl.x, swltch.d lin.)

BELL 208A 4800 blts/ .. cond
(full dup,l.x, I •••• d lin.)

BELL 208B 4800 bltl/ .. cond
(half dupl.x, swltch.d lin.)

BELL 209A 8800 bltl/ •• cond
(full dupl.x, I d lin.)

• Mod.ms at .Ither .nd mu.t be compatlbl.,

·MOS Is an ordering cod. only and Is not u .. d a •• product name or tr.d.m.rk,
MOS' Is a regl.ter.d trad.mark of Mohawk Data Scl.nc,' Corporation,

5-4 AFN·01548C

inter
INTEL ASYNCHRONOUS COMMUNICATIONS LINK

• Communications software for VAX*
host computer and Intel
microcomputer development systems

• Compatible with VAXIVMS* and UNIXt
operating systems

• Supports Intel's Model 800, Intellec@
Series II, Series III, Series IV and
iPOSTM microcomputer development
systems

• Supports NOS-II workstations

• Allows development system console
to function as a host terminal

• Operates through direct cable
connection or over telephone .lines

• Software selectable transmission rate
from 300 to 9600 baud

Intel's Asynchronous Communications Link (ACL) enables one or more Intel microcomputer development
systems to communicate with a Digital Equipment Corporation VAX family computer. The link supports Intel
Model 800, Intellec Series II, Series III, Series IV or iPDSTM development systems and NOS-II workstations.
Programmers can use the editing and file management tools of the host computer and then download to
the Intel microcomputer development system for debugging and execution. Programmers can use their
microcomputer d~lopment system as a host terminal and control the host directly without changing terminals.

WORK

STATION

iPDSTM

INTELLEC@ I SERIES·1I/8S

ETHERNET"

WORK

STATION

INTELLEC® SERIES IV

VAX
ASYNCHRONOUS

CIRCUIT

WORK

STATION

INTELLEC'" I SERIES-III

WORK

STATION

MODEL 800

NOS-II Example

NRM

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel.
'VAX and VAXNMS are trademarks of Digital EqUipment Corporation.
tUNIX is a trademark of Bell Laboratories.
"Ethernet is a trademark of Xerox Corp.

©INTEL CORPORATION, 1983 5-5
January, 1984

ORDER NUMBER: 210903-002

INTEL ASYNCHRONOUS COMMUNICATIONS LINK

FUNCTIONAL DESCRIPTION
The Asynchronous Communications Link (ACL) con·
slsts of cooperating programs: one that runs on the
host computer, and others that run on each microcom·
puter development system. The development system
programs execute under the ISIS·II or ISIS·III(N), ISIS·
IV, ISIS·II(W) orISIS·POS operating system. They In·
voke the companion program on the VAX-11I7XX,
which runs under either the VAXNMS or UNIX
operating system.

The link provides three modes of communication: on·
line transmission, slngle·llne transmission, and file
transfer .. In on·llne'mode, the development system
functions as a host terminal, enabling the program·
mer to develop programs using the host computer's
editing, compilation, and file· management tools direct·
Iy from the development system's console. Later,
switching to file transfer mode, text files and object
code can be downloaded from the host to the develop
ment system for debugging and execution. Alternative·
Iy, files can be sent back to the host for editing or
storage. In single line mode, the programmer can send
slngle·line commands to the host computer while reo
malning in the ISIS environment.

The user can select transmission rates over the link
from 300 to 9600 baud. The link transmits in encap·
sulated blocks. The receiver program validates the
transmission by checking record·number and
checksum Information in each block's header. In the
event of a transmission error, the receiving program
recognizes a bad block anq requests the sender to
retransmit the correct block. The result is highly
reliable data communications.

SOFTWARE PACKAGE
The Asynchronous Communications Link Package
contains either a VAXIVMS or UNIX compatible
magnetic tape, a Single 8", double 8", Series-IV SV4",
and POS SV4" diskette compatible with the Intellec
development system, and the Asynchronous Com·
munications Link User's Guide containing Installation,
configuration, and operation Information.

HARDWARE CONNECTION
The Link sends data over an RS232C cable. The com·
munlcatlon line from the host computer connects
directly to a development system port.

TELECOMMUNICATIONS
USING THE LINK
The ACL Is Ideal.for cross· host program development
using a commercial timesharing service. This con·
figuration requires RS232C compatible modems and
a telecommunications line. Depending on the an·
tlcipated level of usage, wlde·area telephone service
(WATS), a leased line, or a data communications net·
work may be chosen to keep operating overhead low.

NOS-II ACCESS USING THE LINK
The ACL Is Ideal for Interconnecting VAX host com·
puters with NOS·II. This configuration requires that
an NOS·II workstation be connected to the VAX host
computer using the RS232C interface and to NOS·II
using the Ethernet interface.

All three modes of communication operate identical·
lyon NOS·II. In the on·line mode, the development
workstation operates as a host terminal, and concur·
rently, as an NOS·II workstation. It is an easy transi·
tion between the VAX and ISIS operating system en·
vironments as LOGON/LOGOFF sequences are not
required to re·enter environments.

In file transfer mode, text and object files can be
transferred from the VAX directly to the Winchester
Disk at the NRM without first copying the files to the
workstation local floppy disk. Similarly, files residing
on the NOS·II Network File System (the Winchester
Disk at the NRM) can be transferred directly to the
VAX without using local workstation storage.

Using the EXPORT/IMPORT mechanisms of NOS·II,
a network workstation which Is not directly connected
to the VAX can cause files to be transferred between
the VAX and NRM. For example, any NOS·II worksta·
tlon can "EXPORT" ACL commands to another "1M·

5-6 210903-002

INTEL ASYNCHRONOUS COMMUNICATIONS LINK

POAT"ing NOS-II workstation which is physically con
nected to a VAX. The "IMPORT"ing workstation
executes the ACL command file causing the desired
action to occur.

VAX ACCESS USING THE LINK
Users who want multiple workstations concurrently

SPECIFICATIONS

Software·
Asynchronous Communications Link development
system programs

VAXNMS or UNIX companion program

Media
Single- or double-density ISIS 8" and Series-IV, POS
5%" compatible diskette

600-ft. 1600 bpi magnetic tape, VAXNMS or UNIX
compatible

Data Transfer Speeds
All systems up to 9600 bps

Online Terminal Mode Speeds
Series II, Series III, Series IV - 2400 bps max
POS - 9600 bps max
Model 800 - equal to or less than the Terminal speed

Manual
Asynchronous Communications Link User's Guide,
Order No. 172174-001

Required Host Configuration
VAX-1117XX running VAXNMS (Version 3.2) or fourth
Berkeley distribution of UNIX 4.1

ORDERING INFORMATION

Product Name
Asynchronous Communications Link

'Bell IS a trademark of American Telephone and Telegraph.
tVADIC IS a trademark of RacaPJadic Inc.
:j:See price book for proper suffixes for options and media selection.

operating as VAX terminals (ONLINE mode) must
physically connect each workstation to the VAX.
However, users who want multiple workstations to be
able to upload/download files, for example, must only
physically connect one workstation to the VAX. By us
ing the EXPORT/IMPORT mechanism of NOS-II as
described above, the user can have multiple worksta
tions accessing the VAX using only one connection.

Required Intel Development System
Configuration
Model 800, Series II, Series III, Series IV, or iPOS
under ISIS·

. Required Connection

5-7

RS232C compatible - cable 3M-3349/25 or
equivalent; 25-pin connector 3M-3482-1000 or
equivalent

Recommended Modems for
Telecommunications
300 baud - Bell* 103 modem; VAOICt 3455 modem
or equivalent

1200 baud - Bell 202 modem; VAOIC 3451 modem
or equivalent

9600 baud - Bell 209A (full duplex, leased line) or
equivalent

Note: Since one of the two Model 800 ports uses a cur
rent loop interface, Model 800 users need a ter
minal or modem that is current loop compatible,
or a current 100p/RS232C converter.
The Model 800 might require modification by a
qualified hardware technician. Intel does not repair
or maintain boards with these changes.

Ordering Codet
iMOX 394 for VAXNMS systems
iMOX 395 for UNIX systems

210903-002

iNA 960 NETWORK SOFTWARE

• ISO Transport (8073) Class 4 services
-Guarant ... d message integrity
-Data rate matching (flow control)
-Multiple connection capability
-Var!able length messages
-Expedited delivery
-Negotiation of virtual circuit

characteristics during opens

• Additional functionality
7Connectionless transport

(Datagram)
-External Data Link

• IEEE 802.3 Data Link protocol
(CSMAlCD) supported

• Comprehenslv, Network Management
services

-Collection of network usage
statistics

-Setting and Inspecting of transport
and data link parameters

-Fault isolation and·detectlon
-Boot Server .

• Compatible with multiple system
environments
-Runs as an iRMX'M 86 job
-Supports host operating system

independent designs based on 8086,
8088 or 80168 and 82586 compone"ts

• Runs on iSBC· 186/51 COMMpu.er'·
Board

• Size configurable to suit specific
application requirements

. iNA 960 is a general purpose local area network software package implementing the class 4 services of the
ISO transport specification and network management functions in system designs based on the 8086, 8088
and 80186 microprocessors and the 82586 communications co-processor. iNA 960 also supports Intel's board
level LAN products, the iSBC' 550 KIT and the iSBC' 186/51. Combined with !he iSBC 186/51 COM
Mputer™board, iNA 960 offers a high performance, cost effective network solution for MUL TIBUS ·,!RMXn•

86 users. See Figure 1 for iNA 960 functionality and operating environments. .

iNA 960 is a ready-to-use software building block for OEM suppliers of networked systems for both technical
and commercial applications. Examples for such applications include networked design stations, manufac
turing process control, communicating word processors, and financial services workstations. Using the iNA
960 software the OEM can minimize development cost and time while achieving compatil:>i1ity with a growing
number of equipment suppliers adapting the IEEE and ISO standards.

DATA
LINK

LAyER ~

ISOMDDEL

END-USER APPLI.
CATION PROCESS

l
APPLICATION

PRESENTAtiON

SESSION

TRANSPORT

NETWORK

DATA LINK INTERFACE ._------- ---
PHYSICAL DATA LINK

PHYSICAL

J
TYPICAL INA Il1O

HARDWARE ENVIRONMENTS

'NETWORK .1
MANAGEMENT ~ ~~

f-~:~fED
BY INA 960

IMPLEMENTED
BY 82586 8250
BASED HARD

,.
WARE

Figure 1.

Intel CorporatIon Assumea No Reaponslbihty for the Use of Any CircUItry Other Than CirCUItry Embodied in an Intel Product. No Other Circuit
Patent Licen_ Ire Implied. InformatIon Contained Herein Supercedea PrevIously Published SpeCificatIons On Theae DeVIces From Intel

is, INTEL CORPORATION 1984

5-8

MARCH 1984
ORDER NUMBER: 230m·Q02

iNA 960 NETWORK SOFTWARE

FUNCTIONAL OVERVIEW
The iNA 960 design is a standard implementation of
the Class 4 transport protocol defined by the ISO OSI
model. The Transport Layer provides a reliable full
duplex message delivery service on top of the "best
effort" IEEE 802.3 standard packet delivery service
implemented by the 82586 (or eqUivalent) physical
and data link functions.

Consisting of linkable modules, the software can be
configured to implement a range of capabilities and
interface protocols. In addition to reliable process-to
process message delivery, the capabilities include a
datagram service, a boot server, a direct user access
to the Data Link Layer, and a comprehensive network
management facility.

iNA 960 can be configured to run under iRMX 86
along with the user software, or to run on top of a

'/ CLIENT

•
+

dedicated 8086, 8088 or 80186 processor coupled
with an 82586 to provide a communlcat,ions front end
processor.

The software also Includes a Network Management
service. This facility enables the user to monitor and
adjust the ,network's operation in order to optimize its
performance.

The current release of INA 960 Includes a "null" Net
work Layer supporting the Data Link and Transport
Layers without providing internetwork routing ser
vice. This capability will be implemented In later
releases of iNA 960.

For a conceptual block diagram of INA 960, refer to
Figure 2.

I

iRMX' 86 OR
REMOTE HOST

INTERFACE
INTERFACE MODULE

TRANSPORT LAYER
ISO DP 8773

NETWORK
LAYER

DATA LINK
LAYER

,
t

,
1

DATAGRAM VIRTUAL CIRCUIT ~

"z
a: w

~
o~
;=w
tii~

~
z~

NULL LAYER ~

INA 960

~ a:
~w
0>

EXTERNAL DATA LINK
oa:

~ DATA ~
lOW

INTERFACE Ul
LINK

I ,
} HARDWARE

DATA LINK AND
PHYSICAL LAYERS

l
NETWORK

Figure 2. iNA 960 Conceptual Block Diagram

5-9

0n+ ... J® III-e- iNA 960 NETWORK SOFTWARE

TRANSPORT LAYER
The Transport Layer provides message delivery
services between client processes running on com
puters (network "hosts" or "nodes") anywhere in the
network.

Client processes are Identified by a combination of a
network address defining the node and a transport
service access pOint defining the Interface pOint
through which the client accesses the transport
services. The combined parameters, called the
transport address, are supplied by the user for. both
the local and the remote client processes to be
connected.

The iNA 960 transport layer implements two kinds of
message delivery services: virtual circuit and
datagram. The virtual circuit provides a reliable pOlnt
to-point message delivery service ensuring maxI
mum data integrity, and it is fully compatible with the
ISO 8073 Class 4 protocol. The datagram service
provides a best effort message delivery between
client processes requiring less overhead and
therefore allowing higher throughput than virtual
circuits.

Both the datagram and the virtual circuit services are
optional and can be included when configuring
iNA 960.

Virtual Circuit Services
-Reliable Delivery: Data is delivered to the destina

tion In the exact order it was sent by the source,
with no errors, duplications or losses, regardless of
the quality of service available from the underlying
network s.ervice.

-Data Rate Matching (flow control): The Transport
Layer attempts to maximize throughput while
conserving communication subsystem resources
by controlling the rate at which messages are sent.
That rate is based on the availablity of receive buf
fers at the destination and Its own resources.

-Multiple Connection Capability (Process Multiplex
ing): Several processes can be simultaneously
using the Transport Layer with no risk that prog
ress or lack,Of progress by one process will inter
fere with others.

-Variable Length Messages: The client software
can submit arbitrarily short or long messages for
transmittal without regard for the minimum or max
imum network service data unit (NSDU) lengths
supported. by the underlying network services.

5-10

-Expedited Delivery (optional). With this service the
client can transmit up to 16 bytes of urgent data
bypassing the normal flow control. The expedited
data is guaranteed to arrive before any normal data
submitted afterward.

Connectionless Transport
(Datagram) Service
The datagram service transfers data between client
processes without establishing a virtual circuit. The
service is a "best effort" capability and data may be
lost or misordered. Data can be transferred at one
time to a single destination or to several destinations
(multicast). .

NETWORK MANAGEMENT FACILITY (NMF)
The network management facility provides the users
of the network with planning, operation, maintenance
and initialization services described below.

-Planning: This service captures network usage
statistics on the various layers to help plan network
expansion. Statistics are maintained by the layers
themselves and are made available to users via an
interface with the NMF.

-Operation: This service allows the user to monitor
network functions and to inspect and adjust net
work parameters. The goal is to provide the tools
for performance optimization on the network.

~Maintenance: This service deals with detecting
isolating and correcting network faults. It also pro
vides the capability to determine the presence of
hosts and the viability of their connection to the
network.

-Initialization: NMF provides initialization and remote
loading facilities.

Network management provides distributed manage
ment of the network; the user can request any of the
services to be performed on a remote as well as a
local node. The NMF interfaces to every other net
work layer both to utilize their services and to access
their internal data bases.

In support of the above services, the NMF capabilities
include layer management, echo testing, limited
debugging facilities, and the ability to down line load
and dump a remote system.

inter iNA 960 NETWORK SOFTWARE

Layer management deals with manipulating the in
ternal database of a layer. The elements of these data
bases are termed objects. Some examples for objects
are the number of colliSions, retransmission time-out
limit, the number of packets sent, and the list of nodes
to boot. NMF can examine and modify objects in a
layer's data base.

An echo facility is provided. Using this facility the host
can determine if a node is present on the network or
not, test the communication path to that node and
determine whether the remote node is functional.

NMF enables the user to read or write memory in any
host present on the network. This feature is provid
ed as an aid to debugging.

NMF can down line load any system present on the
network. A simple Data Link protocol is used to en
sure reliability. This facility can be used to load
databases, to boot systems without local mass
storage or to boot a set of nodes remotely, thus en
suring that they have the same version of software,
etc.

Dumping is an operation equivalent to memory read
from the user's standpoint; however, dumping uses
the Data Link facilities while memory read uses the
transport faCilities.

EXTERNAL DATA LINK (EDL)
The External Data Link option allows the user to ac
cess the functionalltles of the Data Link Layer directly
Instead of haVing to go through the network and
transport layers. ThiS flexibility is L!seful when the
user needs custom higher layer software, or does not
need the Network Layer and Transport Layer
services (e.g., when sending "best effort" messages,
or running customer diagnostics).

Through the EDL the. capabilities supporting the
lower layers In INA 960 are made directly available to
the user. EDL enables the user to establish and
delete data link connections, transmit packets to Indi
vidual and multiple receivers, and configure the data
link software to meet the reqUirements of the given
network environment.

USER ENVIRONMENT
iNA 960 is deSigned to run on hardware based on the
8086, 8088 or 80186 microprocessors and the 82586
LAN Coprocessor. The software can be configured to
run under iRMX 86 or on a dedicated 8086, 8088 or
80186 processor. separately from the host. The fol
lowing' section describes these two operating
environments.

iRMX Environment
In thiS configuration, both the user program and iNA
960 are running under IRMX 86. The communica
tions software is implemented as an iRMX 86 Job
requiring the nucleus only for most operations. The
only exception IS the boot server option which also
needs the Basic I/O System iNA 960 will run in any
IRMX environment including configurations based on
the 80130. See Figure 3 for an illustration of iNA 960
running under IRMX 86.

Some of the typical hardware implementations in
clude the ISBC 550 KIT combined with an 8086, 8088
or 80186 based host or the iSBC 186/51 COMM
puter'M board Integrating the host processor and the
communications controller Into a single, high perfor
mance MULTIBUS board. See Figure 4A and 4B for
a conceptual block diagram of these configurations.

Operating System/Processor
Independent Implementation
In those systems where iRMX 86 is not the primary
operating system, where off-loading the host of the
communications tasks is necessary for performance
reasons, or where an existing communications front
end processor configuration is being upgraded, the
user may wish to dedicate a processor for communi
cations purposes. iNA 960 can be configured to sup
port such implementations by providing network
services on an 8086, 8088 or 80186 processor. Fig
ure '5 depicts the conceptual block diagram of this
configuration.

This approach provides the component and system
designer with an ISO standard communications soft
ware building block that can be adapted to his sys
tem's needs with a minimum interfaCing effort. For
added flexibility, iNA 960 provides the user with the
alternative of using the included interface module or
writing his own module, if necessary.

5-11

INA 960 NETWORK SOFTWARE

Figure 3. As an iRMX ,. job, iNA 960 uses nucleus calls and, when the Boot Server is present,
BIOS calls.

NETWORK

1
-'-

iSSC 550 KIT
iSBC 86'30

WITH iRMX 86
AND iNA 960

l-
- -t t

\ ; MULTIBUS

Figure 4A. Typical configuration using iSBC' 550 kit, iSBC' 86/30, iRMX 86'· and iNA 960.

5-12

inter iNA 960 NETWORK SOFTWARE

NETWORK

ISBC' 186151
WITH IRMX86
AND iNA 960

Figure 4B. Configuration using iSBC' 186/51, iRMX 86 and iNA 960.

-1 NETWORK ~

,... ---------*- --------....... ()

,

MEMORY
(iNA 960 PLUS

LOCAL
RAMIROM)

82586

SYSTEM
BUS

INTERFACE

8086 OR
80186

OEDICATED
COMMUNICATIONS
PROCESSOR

Figure 5. In the operating system/processor independent implementation INA 960 is running on a
dedicated 8086, 8088 or 80186 processor.

5-13

iNA 960 NETWORK SOFTWARE

USER INTERFACE
iNA 960 is designed to run both under iRMX 86 and
on a dedicated communications front end processor
separately from the host. In both environments, the
interface is based on exchanging memory segments
called request blocks between iNA 960 and the
client. The format and contents of the request blocks
remain the same in both configurations; only the re
quest block delivery mechanism changes. See Fig
ure 6 for a simplified interface diagram.

Request blocks are memory segments containing the
data to be passed from the user to iNA 960
(commands), or from iNA 960. to the user
(responses). The iNA 960 request blocks consist of
fixed format fields identical across all user com
mands and argument fields unique to the individual
commands. Refer to Figure 7 for the standard re
quest block format.

iNA 960

Figure 6.

Reserved (2)
Length
User 1.0.
Response Port
Return Mailbox Token
Segment Token
Subsystem
Opcode
Response Code

Arguments

CLIENT

Issuing an iNA 960 command consists of filling in the
request block fields and transferring the block to iNA
960 for execution. After processing the command,
iNA 960 returns the request block with one of the
pre-defined response codes placed In the response
code field of the request block. The response code
indicates whether the command was executed suc
cessfully or whether an error occurred. By examining
the response code, the user can take appropriate
action for that command.

For iRMX users, iNA 960 also provides a procedural
Interface option to simplify writing the application
software Interface. In this case, the allocation and
formatting of request blocks are replaced by a proce
dure call with parameters that specify the user's com
mand options. The procedure execution will create a
request block and fill in the appropriate fields from the
user's parflmeter list.

For component users the request block delivery
mechanism is the means by which the host processor
and the communications processor running iNA 960
software exchange the request blocks. iNA 960 pro
vides three such mechanisms: the MIP (Multibus
Inter-process Protocol), the BCB (Base Control Block)
and a user-defined mechanism. The MIP Interface is
included for use in systems already supporting this
protocol; the BCB is a simple interface for single host
environments, and the user-defined interface accom
modates unique application requirements.

WORD/BYTE

WORD
BYTE
WORD
BYTE
WORD
WORD
BYTE
BYTE
WORD

BYTE l

FIXED FORMAT
FIELDS

(same for all
commands)

ARGUMENTS

(changes by
command)

Figure 7. iNA 960 Request Block Format

5-14

intJ iNA 960 NETWORK SOFTWARE

Transport Layer User Interface

The following table summarizes the user commands and the corresponding transport layer responses

Command Function

1. OPEN Allocates memory for the connection data base of a virtual CirCUit (or
connecllon) to be established. The connection database contains
data concerning the connection .

2 SEND CONNECT Requests connection to a fully speCified remote transport address
REQUEST uSing speCified ISO connecllon negollallon options

-
3. AWAIT CONNECT Indicates that the transport client IS Willing to conSider Incoming con-

REQUEST TRAN necllon requests based on pre-established acceptance criteria

4 AWAIT CONNECT Indicates that the transport client IS Willing to conSider incoming con-
REQUEST USER nectlon requests If the request meets the address and negollallon

opllon criteria, It IS passed to the client for further conSideration

5 ACCEPT CONNECT Indicates that the connecllon requested by a remote transport ser-
REQUEST vice IS accepted by the client

6. SEND DATA or With thiS command, tne client requests the transmission of the data
SEND EOM DATA In the buffers uSing the normal delivery service of the speCified

connection. 'J

The SEND EOM DATA command Signals that the end of the data
marks the end of the transport service data unit

7. RECEIVE DATA Posts normal receive data buffers for a speCifiC connecllon or for a
buffer pool used by a class of connecllons

8. SEND EXPEDITED Transmits up to 16 by1es of data uSing the expedited delivery service
DATA The expedited data IS guaranteed to arrive at the destination before

any normal data submitted afterward.

9. RECEIVE EXPEDITED Posts receive data buffers for expedited delivery for a speCifiC con-
DATA nection or for a pool of buffers used by a class of connecllons

10. CLOSE Terminates an eXisting connection or rejects an Incoming connection
request Any normal or expedited data queued up to be sent Will not
be sent

11. AWAIT CLOSE Requests notlflcallon of the client of the termination of a speCified
connecllon

12. SEND DATAGRAM Requests transmission of the data In the buffers uSing the transport
datagram service.

13. RECEIVE DATAGRAM Posts a receive buffer for a speCifiC receiver or a class of receivers to
receive data from a transport datagram.

5-15

, iNA 960 NETWORK SOFTWARE

Network Management Layer User Interface ,
-

Command Function

1, READ OBJECT Returns the value of the specified object to the client.

2, SET OBJECT Sets the value of an object as specified by the client.

3. READ AND CLEAR Returns the value of the specified object to the client then clears the
OBJECT object.

4. ECHO ThiS function is used to determine the presence of a node, to test the
communication path to the node and to ascertain the viability and
functionality of the remote host addressed.

5, UP LINE DUMP Requests a remote node to dump a specified memory area.

6. READ MEMORY Reads memory of the specified network node.

7. SET MEMORY Sets memory of the specified network node.

8, FORCE LOAD Causes a node to attempt a remote load from another node.

External Data Link Interface

Command Function

1. CONNECT With this command the client establishes a data link connection.

2, DISCONNECT Eliminates a previously established connection.

3. TRANSMIT Transmits data contained in buffers specified by the client.

4. POST RECEIVE PACKET Allocates memory for maintaining records on receive data buffers,
DESCRIPTOR Also may be used to allocate memory for buffering receive data.

5. POST RECEIVE BUFFER Allocates memory for buffering receive data,

6. ADD MULTICAST
,

Adds an address to the list of data link multicast addresses.
ADDRESS

7. REMOVE MULTICAST Removes an address from the list of dllta link multicast addresses,
ADDRESS

8. SET DATA LINK 1.0, Sets up a unique data link 1.0, for the station.

5-16

inter iNA 960 NETWORK SOFTWARE

CONFIGURING iNA 960

In order to adapt iNA 960 to his specific application,
the user must configure the software to define the
desired functions, to select the appropriate interface,
to set the layer parameters and to set up for the
required hardware configuration.

There are a number of capability combinations the
user may elect to implement in his application. At the
transport layer level the options are: virtual circuit ser
vice with or without expedited delivery, or datagram
service, or both. At the data link level, the user may
include or exclude the External Data Link interface.

The Network Management Facility is also optional.

HARDWARE
REQUIRED:

-MDS SERIES III
OR

-86.300 AND
iRMX 86

-UNIVERSAL PROM
PROGRAMMER
IF USER SYSTEM
IS IN FIRMWARE

SOFTWARE
UTILITIES

REQUIRED:

-TEXT EDITOR
-ASM 86
-LINK 86
-LOC.86

When it is configured in, the user may also include
the boot server module. These capabilities can be
made available simply by linking in the corresponding
software modules. The interface options are also im
plemented in a modular fashion; the user links in the
desired module to set up for the iRMX 86 or the
operating system independent configurations.

Layer parameters and confiuratlon options are first
edited into layer configuration files, then assembled
and linked into iNA 960. Layer parameters adjust the
network's operation to match the usage pattern and
the available resources. For example, within the
Transport Layer, the flow control parameters, the
retransmission timer parameters, the transport data
base parameters, etc. can be set via thiS process.

INPUTS I_ OPTIONAL FUNCTIONS
_ USER ENVIRONMENT
_ LAYER PARAMETERS
_ H'W CONFIGURATION

Figure 8. The Configuration Process for iNA 960

5-17

inter iNA 960 NETWORK 'SOFTWARE

The user also sets up for the required hardware con
figuration, such as port addresses and interrupt
levels, dUring thiS process. For the flow diagram of
configuring iNA 960, refer to Figure 8.

SPECIFICATIONS

Hardware Supported:

-ISBC 186/51 Communicating Computer.
-Isec 550 KIT Ethernet controller board(s) config-

ured to run with ISBC 86/30 or iSBC 86/12B Multl
bus processor boards.

-Custom designs based on 8086, 8088 and 80186
microprocessors and the 82586 Local Communi
cations Controller.

Typical Throughput, at transport:

Environments:
186/51 and 50K to 200K bytes/sec

iRMX 86
Dedicated 80186/ 100K to 300K bytes/sec

82586 COMMenglne

Memory Requirements: (in bytes)

Base System

Normal Virtual
Circuit Option

Expedited Delivery Option
Datagram Option

Net Management Option
External Data Link Option
Boot Server Option

12K plus con
figurable Buffer
Memory
18K plus con
figurable Buffer
Memory
2K
3K plus Data Base
Memory
1K to 5K
5K
5K

5-18

Available Literaturel
Reference Materials:

-INA ,960 Programmer's Reference Manual (11/83)
-iSBC 186/51 Data Sheet (Now) .
-iSBC 186/51 Hardware Reference Manual (11/83)

Ordering Information
The following is a list of ordering options for the iNA
960 Network Software. All options include a full year
of update service that provides a periodic NEWSLET
TER, Software Problem Report Service, and oopies
of system updates that occur during this period. All of
the object code options listed are available on either
ISIS or RMX compatible double density diskettes.

As with all Intel software, purchase of any of these
options requires the execution of a standard Intel
Master Software License. The specific rights granted
to users depend on the specific option and the
License signed.

iNA 960 NETWORK SOFTWARE

Order Code Description
-

iNA 960 YAO OEM object code license requiring the payment of incorporation
fees for each derivative work based on iNA 960; ISIS and AMX
formatted diskettes

iNA 960 YST Object code license to use the product at a second site or facility;
iSIS and AMX formatted diskettes

iNA 960 YBY Object code buy-out license requiring no further payment of incor-
poration fees; ISIS and AMS formatted diskettes

iNA 960 YSU Object code single use license only; ISIS and AMS formatted
diskettes

iNA 960 ESA License for machine readable source code of iNA 960. AMX formulated
diskettes.

iNA 960 LST Source listing of iNA 960 provided on microfiche under a special
source code license agreement

iNA 960 AF Order code for the payment of incorporation fees

5-19

NOS-II ELECTRONIC MAIL

• Improves Project Coordination and • MAIL Operates Either Interactively or in
Communication Command-Tail Format

• Minimizes "Phone Tag" and Excess • User, Group, and "Bulletin Board"
Paperwork Mailboxes Can Be Created

• Users Can Send and Receive Text or • Operates on any Workstation in the
Object Files NOS-II Development Environment

Electronic Mail enables users to send and receive messages and files between any nodes on the NOS-II net
work. In doing so, Electronic Mail improves the communication and coordination between members, reduces
"phone tag" and paper generation, aids project configuration management by enabling simplified file transfers,
and increases flexibility in workstation location.

The Mail system is governed by an Electronic Mail directory which contains user, group, and bulletin board
mailboxes. Each NOS-II user has a mailbox which is only accessible to that user. Group mailboxes are acessi
ble by a defined group of users, and bulletin board mailboxes are accessible by all users. Both group and bulletin
board mailboxes can be easily created by any system users.

Users can send a message to any of the mailbox types listed above. Messages can consist of text generated
when Mail is invoked, or a text or object file. Options available when sending mail include using a subject string
to categorize a message, specifying a message expiration date and time, delaying message delivery until a
specific date and time, marking the message URGENT, and maintaining a log of all messages sent.

Users can interactively read their mail and perform the following operations; print messages on their worksta
tion console, delete messages from a mailbox, save messages in a file, forward messages to other users, and
reply to message senders. In addition, users can request a mailbox summary which includes, for each message,
the sender's name, date sent, subject, urgency, code type (text or object), and message number.

NOS-II Electronic Mail executes on all existing NOS-II workstations using either the iNOX or ISIS-III(N)/ISIS-
III(C) operating systems. .

TYPICAL MAIL U~AGE

• DISTRIBUTE SUPERUSER MESSAGES

• CREATE AND SEND INTERNAL MEMOS

• COLLECT PROJECT MILESTONE DATA -

• REPORT PROGRAM BUGS AND RECOMMEND
SYSTEM CHANGES

• SEND SOURCE AND OBJECT FILES

• USE AS TELEPHONE MESSAGE CENTER

TYPICAL MAIL BENEFITS

• IMPROVE TEAM COMMUNICATION AND
COORDINATION

• REDUCE PHONE TAG

• MINIMIZE PAPER GENERATION

• AID PROJECT CONFIGURATION MANAGEMENT

• INCREASE WORKSTATION LOCATION FLEXIBILITY

• OVERALL, BOOST DEVELOPMENT TEAM
PRODUCTIVITY

NOS-II ELECTRONIC MAIL

Intel Corporation Assumes No Responslbhty for the Use of Any Circuitry Other Than CirCUitry Embodied In an Intel Product No Other Circuit Patent
Licenses are Implied Information Contained Herein Supercedes Previously Published Specifications On These Devices From Intel.

©INTEL CORPORATION, 1983 ORDER NUMBER: 230916-002

5-20

NOS-II ELECTRONIC MAIL

OPERATING ENVIRONMENT

Required Hardware
NOS-II Environment with any 8- or 16-bit Microcom
puter Oevelopment System Workstation

Required Software
iNOX or ISIS-III(N)ISIS-III(C) System Software

DOCUMENTATION
"NOS-II Electronic Mail User's Guide"
(122146)

5-21

SOFTWARE SUPPORT
This product includes a 90-day initial support con
sisting of new software releases, updates, subscrip
tion services (software performance reports and
technical reports), and telephone hotline support.
Additional software support services are available
separately.

ORDERING INFORMATION

Product Code

iMOX-337

Description

NOS-II Electronic Mail

inter
iNA955

JRMX™NDS-II LINK

• Transfers files between iRMX™86-based
systems and the NOS-II NRM

• Supports fast and reliable download into
iRMX™86 target system

• Supports Intel's 86/310, 86/330A, 86/380
systems

• Confi~urable at nucleus level with
iRMX M86 operating system

• Operates through Ethernet communica
tions controller and cable connected to
NOS-II

• Utilizes Ethernet technology with data
transmission speeds at 10M bits per
second

The iNA955/iRMXTM NOS-II LINK is a software package that allows an iRMX based system 86/310, 86/330A,
or 86/380 system to be connected to an Intel Network Development System (NOS-II) network via an Ethernet
coaxial cable or Intellink™ module. .

iRMX system developers can use the Series II, III, IV and Model 800 for editing, compilation and debugging
to develop, store, and manage software programs at the Network Resource manager. Using iNA955 these
developers can download programs at Ethernet speeds from the Network Resource Manager into their target
iRMX hosts for execution and system integration. .

System developers can alSo use the iNA955 programmatic interface to develop their own application programs
which run in the iRMX environment and interface with the NRM. This is a way for OEM developers to customize
the operating environment to suit their own application.

SHARED SHARED
LINE MASS

PRINTER STORAGE

I I
NETWORK

SERIES II SERIES III SERIES IV RESOURCE
MANAGER

1 CLUSTER J

I 1 I ETHERNET

88/310 88/330A 88/380
IRMX" IRMX" IRMX"

SYSTEM SYSTEM SYSTEM

Figure 1. Example of NOS-II Configuration using the IRMXTM NOS·II LINK

Intel Corporation Assumes No Responsibility for the Use of Any Circuitry Other Than Circuitry Embodied in an Intel Product. No Other Circuit
Patent Licenses are Implied. Information Contained Herein Supercedes Previously Publisned Specifications On These Devices From Intel,

'< Intel Corporation, 1984

5-22
MARCH 1,984

Order Number 231034·001

inter iNA955

NOS-II OVERVIEW

The NOS-II is a distributed processing local area net
work optimized for development of microcomputer
based products. It addresses the needs of both soft
ware and hardware engineers by providing the base
environment for shared development tools plus the
capacity for expansion.

An NOS-II network consists of an NRM which serves
as the file server for a variety of Intel's development
systems. These development systems include
Series II, Series III, Series IV, and Model 800. By
configuring iNA955 into an iRMX 86 system, an iRMX
system can also be served by the NRM.

NOS-ll's Network Resource Manager (NRM) manages
all workstation requests for network resources. NRM
tasks include service of workstation file requests,
printer spooling, management of the distributed
Hierarchical File System, the Distributed Job Control
System and network maintenance functions such as
user-name creation, file archival and system
generation.

iNA955
CUSP

I

iRMX'·
HUMAN INTERFACE

A APPLICATION LOADER

EIOS

SIOS

IRMX"

iNA955 provides a basic upload/download file transfer
capability between an iRMX 86 system and the NRM.
When used with an iSBC® 550 Ethernet controller,
iNA955 allows users at iRMX 86 systems to move files
between iRMX systems and the NRM, list directories
at the NRM, delete or rename files at the NRM and
copy files between two directories on the same NRM.

Access to files is accomplished using two interfaces:

A A CUSP interface which operates on the network
file system in a manner similar to iRMX CUSPS
which operate on local iRMX files under a full
iRMX operating system.

B A programmatic interface which allows user pro
grams running with a iRMX nucleus to access files
at the NRM. These interfaces are similar to those
present in UOI and EIOS.

OPTIONAL USER
DEVELOPED APPLICATION

SOFTWARE THRU B
PROGRAMMATIC INTERFACE

INA955
NUCLEUS EXTENSIONS

I I

ISSC" ISSC" 550
SS/XXX PROCESSOR ETHERNET

CONTROLLER

Figure 2. INA955 Functional Diagram

5-23 231034·001

inter iNA955

FUNCTIONAL DESCRIPTION

iNA955/iRMX NOS-II LINK consists of a program
which runs on the system 86/3XX family of host
computers. iNA955 executes under the iRMX 86
operating system and uses the local iRMX file system.

is based upon Ethernet communication protocols.
These protocols are supplied by theiSBC550 board
set which must be included in the iRMX host system
since iNA955 uses the iSBC550 to communicate over
Ethernet.

The iRMX-based host computers communicate with
the NRM via iNA (Intel Network Architecture) which The following tables summarize the user commands

and programmatic calls with their descriptions.

User Interface Function Commands

NACCESS examines/changes NRM file access rights
NCREATE creates NRM directory
NOELETE deletes NRM file
NOIR examines NRM directory
NLOGOFF logs off from NRM
NLOGON logs on to NRM
NRCOPY copies file from NRM to iRMX station
NNCOPY copies NRM file to NRM file on the same NRM
RNCOPY copies files from iRMX station to NRM
NRENAME renames NRM file or directory

Programmatic Function Calls

NQ$CHANGE$ACCESS change access of file on the NRM
NQ$CREATE$OIR create directory on the NRM
NQ$OELETE delete file on the NRM
NQ$FILE$INFO get inform,ation of file on the NRM
NQGETVIRTUAL$ROOT get names of volumes at NRM accessible to user
NQ$LOGOFF logoff user from the NRM
NQ$LOGON logon user to the NRM
NQ$OPEN open file at the NRM
NQ$REAO read contents of file at the NRM
NQ$REAO$OIR$ENTRY$EXP read expanded directory entry at the NRM
NQ$RENAME rename file at the NRM
NQ$WRITE write file to the NRM

Configuring iNA955 Physical Connections

Like other iRMX systems iNA955 must be configured
according to the system environment. To assist you
in configuring your system, iNA955 comes with a con
figuration template. The file containing this template
is contained on the release diskette. This template
is desigrled to be self-explanatory.

The physical Ethernet connections can be made
either through an "lntellink"TM module or through
transceivers and the Ethernet cable. The Intellink
module serves as an Ethernet local station concen
trator. It allows workstations to be located up to 50
meters from the Intellink module and has 9 ports for
connecting the NRM and workstations, and one port
for connecting an Ethernet cable or other Intellink
modules.

The user has the option of integrating into his applica
tions the iNA955 CUSPS. iNA955 CUSPS require the
iRMX Human Interface to execute.

5-24 231034-001

inter INA955

SPECIFICATIONS
Operating Environment
HARDWARE SUPPORTED

- System 86/310
- System 86/330A
- System 86/380

HARDWARE REQUIRED

- iSeC'" 550 Ethernet Communication Controller
Set

SOFTWARE REQUIRED

- iRMXTMS6 Operating System version 5.0
- NDS·II System software Release 2.5 or greater

Software Supplied
MEDIA

One S inch, single sided, double density iRMX™S6
format diskette
One 5% inch, single sided, double density
iRMX™S6 format diskette

PROGRAMS

- iRMX/NDS·1I LINK software linked into iRMX
system library

- Examples of iRMX Integration Configuration
utilities

- iSBC550 Diagnostics

DOCUMENTATION

- iNA955/iRMX NOS·II LINK Installation and
User's Guide, Order Number 12256-001

- Complete NRM and Network operating manuals
are included with the NOS-II systems

- iSeC550 Ethernet communications controller
Hardware Reference Manual 121746.

ORDERING INFORMATION
Part Number Description
iNA 955 iRMX/NDS·1I Link

iSeC 550 Ethernet Communi·
cation Controller Set

IMDX 457 10 meter
transceiver cable

iMDX 458 50 meter
transceiver cable

iDCM 911·1 Intellink Module

iMDX 3015 Ethernet
transceiver kit

IDMX 3016·1 2S meter Ethernet
coaxial assembly

iMDX 3016·2 100 meter Ethernet
coaxial assembly

Installation
On·site installation is included with the NDS·II
Network Resource Manager. iNA9SS is customer
installable.

5-25
231034-001

iRMXTM 510
iDCM SUPPORT PACKAGE

• Low cost remote communicationl
control expansion for MULTIBUS®
based systems

• Extends functionality of
BITBUSTM/iDCM systems

• Software development support for
BITBUSTM/iDCM products:
iSBXTM 344 and iRCB 44/10 boards

• Simple software interface for
iRMX™ 86, 286, 88, and iPDSTM ISIS
operating system compatibility

The iRM)(TM 510 iDCM Support Package contains the necessary software tools to interface MULTIBUS®,
and iPDSTM ISIS systems to BITBUSTM systems in both a development environment and during run
time. With other members Of the Distributed Control Modules family, the iRMX 510 iDCM Support
Package expands Intel's OEM Microcomputer Systems capabilities to include distributed real-time
control.

The iRMX 510 Package software interface handlers and the iSBXTM 344 BITBUS Controller MULTI
MODULETM board extend the capabilities of other microprocessors such as the 8086, 80186, or 80286
in iDCM, MUL TIBUS, or iPDS systems. Support of iRMX 51 applications is provided via the iRMX
51 libraries incorporated in the iRMX 510 Support Package. Also, the Support Package completes
the development environment for BITBUS/iDCM products: iSBX 344 and iRCS 44/10 boards. When
used with an ICE-44 Emulator the iDCM controller is accurately simulated resulting in a highly effective
product development effort.

5-26 ORDER NUMBER: 230972-001

IRMXTM 510

MULTIBUS®, iPOS, ™ and iOCM
SYSTEM EXPANSION

The iRMX 510 Support Package provides the
software interface between Intel's MULTIBUS
and iPDS environment, and the BITBUS environ
ment. With Intel's Distributed Control Modules
hardware interface, the iSBX 344 MULTIMODULE
board, this capability enables the user to expand
the existing functionality of an iRMX-based SYS
TEM 310, for example, to include control and
monitoring of a material handling operation.
Intel's Personal Development System (iPDS) can
be used as a central supervisory station for data
acquistion in a laboratory or for program develop
ment. The iRMX 510 iDCM Support Package
provides a general purpose interface. For custom
applications, users may wish to develop a cus
tom interface.

OPERATING ENVIRONMENT

The iRMX 510 Support Package is supplied on·
diskettes formated for iRMX, Intellec® Series II
or III and iPDS ISIS development systems. Ap
plication programs or tasks residing on an exten
sion in the iDCM environment may use the iRMX
510 interface. (Application programs or tasks are
written in iRMX 88, 86 or ISIS compatible code.)
Some examples of extensions in an iDCM system
are the iSBC 86/05, 88/25, 186/03 boards and
the iPDS system. Figure 2 shows how the iRMX
510 interface is integrated into an iDCM system.

IRMXTM

~~STM ~ IRMXTM

ISIS 510
OPERATING INTERFACE

" y HANDLER SYSTEM
TASK

IDCM EXTENSION DEVICE: ISBC· 88/30 BOARD

For iRMX 86, 88, or 286R-based systems, con
figuration of the iRMX 510 interface requires two
steps: configuring the interface to the hardware
and then the supporting executive. Hardware
configuration requires creating a file of configura
tion parameters, compiling it, and linking the
result with the~pplication program. When using
the iRMX 510 Package with the iPDS ISIS system,
hardware configuration is not required.

ARCHITECTURE

The major functional blocks of. the iRMX 510
Support Package are: iRMX 86, 286R, 88 and
iPDS ISIS parallel interface handlers, iDCM Con
troller firmware files, and iRMX 51 include file~.

Simple Parallel Interface Handlers

The iRMX 510 Support Package includes parallel
interface handlers for systems using the iRMX 86
or 286R Operating System, the iRMX 88 Ex
ecutive, or Intel's Personal Development System
ISIS Operating System. These software handlers
pass iRMX 51 messages to and from the iSBX
344 parallel interface (Byte FIFO). In iRMX 86,
286R or 88 - based systems, the interface ex
ecutes as two tasks: one to transmit, the other to
receive the message. In iPDS systems the inter
face is a procedural call: DCM TRANSMIT, DCM
RECIEVE, or DCM STATUS CHECK. In both
cases the handlers are straightforward and easy
to use. Figure 1 illustrates transmission of a mes
sage in an iRMX-based system.

/'-- -~ IDCM'·

'v-iSBx™ rV CONTROLLER
BITBUS™

BUS INTER-
INTERFACE CONNECT

IDC~M/BITBUSTMNODE:
ISBX M 344 BOARD

Figure 1. Message Transfer to an IDeM System

5-27 230972-001

iR~XTM 510

IRMX'" 510 OR CUSTOM -
PARALLEL INTERFACE

HANDLERS

APPLICATION
SOF1:WARE

BITBUS'"
INTERCONNECT

ISBX'" 344
BOARD

.c;C_·""!:L=",,!,~~'.,,.?7~
IRCB 44/10

BOARD

IDCM CONTROLLER
w/FIRMWARE:

IN~~~~~a :~~~~~~~~~:ED

310
SUPER MICRO

SYSTEM
iSBX'Y 344

_-:z~~r)~B:~~A~R~D ~
..... / 7"

iSBC® 86/30
BOARD

Figure 2. iDeM Operating Environment

The software handlers ease integration of other
processors into an iDCM system and provide the
tools to quickly expand a MULTI BUS system, or
an iPDS ISIS system. Significant reduction in ap
plication system software development time
results, with more effort concentrated on the
overall application.

iDCM Controller Firmware
Also included in the iRMX 51 O'Support Package
is the iDCM Controller firmware in loadable object
files, iRMX 51 libraries, and iDCM Controller In
clude files. An Intellec Development System and
ICE-44 Emulator can be used with the loadable
object files to accurately'simulate the iDCM Con
troller. This capability significantly decreases

- development effort by reducing trial and. error

production of application system software. The
iRMX 51 Interface Library and iDCM Controller
Include files allow development of user code for
iDCM syste,ms.

DEVELOPMENT ENVIRONMENT
The iRMX 510 Support 'Package completes the
development environment for iDCM application
system development when used with an Intellec
Series II or III Development System and In-Circuit
Emulator (ICE-44), or an iPDS system EMV-440
and the 8051 Software Development Package.
As part of Intel's complete development environ
ment for the 8051 family of microcontrollers, the
iRMX 510 Support Package may also be used
with an iPDS system and EMV-51 or an Intellec
Series II or III Development System and an ICE-51

-Emulator.

5-28 230972"()()1

iRMXTM 510

SPECIFICATIONS

Supported HardwarelSoftware for iDCM
Systems

Operating System Supported Extension *
iRMX 86 Release 5.0 iSBC 86/05, 86/14,

86/30, 186/03, 186/51,
188/48, 88125,
88/45 boards

iRMX 88 Release 3.0 iSBC 86/05,86/14,
86/30,186/03,186/51,
188/48, 88125,

iRMX 286R

ISIS Release 1.0
(PDS)

88/45 boards

iSBC 286/10 board

iPDS System

Supported Hardware - 8051 Microcontroller
Family

8051
8052
8751
8031
8032

80C51
8044
8744
80C31
8344

Compatible Software
iRMX 86 Release 5.0
iRMX 286R
iRMX 88 Release 3.0
iPDS ISIS Release 1.0
iRMX 51 Release 1.0

Development Tools
ICE-51 or ICE-44 Emulators
iPDS System with EMV-51
Intellec Series II or III Development System
8051 Software Development Package

Reference Manual

*Each extension device uses an iSBX 344 BIT- 146312-001 - Guide to Using the Distributed
BUS Controller MULTIMODULE Board Control Modules (Supplied)

Ordering Information

Part Number Description
iRMX 510BY iDCM Support Package wi

Reference Manual
A,B,E, and F Media Formats
Supplied.

5-29 230972-001

Systems and 6
Applications Software

inter
SYSTEM" APPLICATION SOFTWARE

Thus far In this Handbook you have read about a rich set of software available for Intel's hardware and offered
by Intel. Almost all of this software is targetted at the programmer or the engineer, i.e. to highly technical and
specialized audiences that are intimately familiar with computers. Intel also has software which can be used by
the non-programmer to help him solve problems in his professional arena.

The professional end user (and the Value-Added Reseller who targets his systems at the professional end user)
is rapidly evolving as the largest segment of the computer user base. With predlcitions that within a decade
every professional will have a computer on his (or her) desk or at least readily available, it is easy to see the need
for generalized tools to help improve the productivity of these masses.

The advent of the Personal Computer not only made such predicitions plausible but it has already defined
many of these tools as necessary for professional productivity: spreadsheets, electronic mail systems, word
processors, and graphics displays.

The passage of time and shifting emphasis of our educational systems have also impressed upon these
professionals the importance of the data residing in their corporate data processing computers - and their
work environment has shown them explicitly what is meant by the data processing application backlog.
Database management system (DBMS) is a term now familiar to most professionals.

A demand for combining the benefits of the corporate mainframe with those of the personal computer is now
emerging as users see needs for sharing their data and the work performed by other users, for accessing
subsets of the mainframe DBMS but not being constrained by the DP backlog, and for dOing these things
without the constant assistance of a "compute guru". Multi-user small systems with data extract facilities, host
communications, PC links, and remote file transfer capabilities are beginning to address this need.

Intel is responding well to this emerging demand. Our multi-user XENIX-based systems are ideally suited for
this environment. Our mainframe DBMS SYSTEM 2000 product family, which provides sophisticated data
manipulation services, also offers user-friendly non-programmer facilities for today's professional.

In addition, Intel has in place an active and successful program for attracting, qualifyiing, and referencing
third-party software to execute on' O\lr systems.

The Intel Database Information System (iDIS 715) is a multiuser XENIX 286-based microcomputer system that
includes a complete set of end-user productivity and application development tools. The lOIS system can be
purchased as an integrated hardware/software microcomputer system configured for specific departmental
computing applications. In addition, the various iDIS productivity tools, application development tools,
relational database management system, and communication software options can be purchased separately to
run on XENIX-based Intel microcomputers.

6-1

XENIX*
Productivity

Software
Tools

1983 Intel Corporation

• iWORD Processing
• iPLAN (Multiplan*) Spreadsheet
• . iMENU Development System

·XENIX and Multiplan are trademarks of Microsoft Corporation
NOVEMBER 1983

ORDER NUMBER 230844-001

6-2

XENIX PRODUCTIVITY SOFTWARE TOOLS

INTRODUCfION
Software tools for the
XENIX environment

Intel's productivity software tools are
designed to meet the basic information
processing needs of the office environ
ment. Thilored specifically for the
XENIX* operating system, the soft
ware tools are available as individual
packages which can be applied to
specific end-user tasks. Intel's applica
tion packages are also offered as a
Seamless™ set of softwa~ tools, in
tegrated with a hardware/software
system such as Intel's Database Infor
mation System (iDIS™ 861735).
Seamless software tools support the
transparent sharing of data files among
various application packages with com
plete data integrity. With Seamless
software, results from one application
package are readily accessible and
compatible as input for another form
of processing.

iWORD*

• Standard text editing/formatting
commands

• Designed especially for the
XENIX operating system

• Easy-to-use for beginners, power
ful for experts

• Full-screen text editor

• Access to XENIX typesetter and
printer drivers

• Embedded commands for global
formatting

• On-screen display of formatted
text

• On-line Help facility, spelling/dic
tionary module, and mail/merge
facility

• Worldwide service and support

Intel's
"Software Backplane"

The powerful, versatile
word processing tool

Intel's iWORD package is a
sophisticated, yet friendly word pro
cessing tool for preparing business
documents, such as reports, letters,
memoranda, technical papers, and
more. Written in the "C" language and
tailored to the XENIX operating
system, the iWORD package can run
in both multi-user and single-user en
vironments. Menu-driven and screen
oriented, the iWORD package supports
all standard text editing, storage, and
formatting development functions.

An effiCient, easy-to-use
text processor
. Inexperienced users will find the
iWORD software concepts intuitively
easy. For example, the user accesses a
document file by opening a "drawer,"
and editing commands follow familiar
"cut and paste" procedures.

All commands are in plain English.
No memorization is necessary, and
many operations are executed by a

*IWORD is a version of Horizon Word Processing, a trademark of Horizon Software Systems, Inc.

6-3

single keystroke. Concise command
menus and an on-line Help facility are
continuously available so that novice
users can quickly advance in their
word processing abilities. The iWORD
system is sufficiently powerful to meet
the needs of more experienced users
as well.

Designed around
office needs

Intel's iWORD software is based on
the simple concept of an office file
cabinet, defined by a collection of
drawers, each of which contains files
(documents) .

The user may:
• Open an existing drawer or make a

new drawer
• Create a new file or select an ex

isting file
• Rename a drawer or file
• Add to, change, copy, move or

delete the selected file.
There is no limit to the number of

user-created drawers other than the
availability of disk storage space.

XENIX PRODUCTIVITY SOfTWARE TOOLS

On-screen display of
formatted text

The word processor allows users to"
visually format documents and 'print
them as they are displayed on the ter
minal, or to format them with the
powerful text processing fucilities in
herent to the XENIX operating system,
This on-screell"pisplay capability is
particularly helpful in preparing
documents for typesetting.

The results Of text ''formatting ,com
mands appear immediately on the
screen. Examples of these commands
include:
• Right justification
• Underlining
• Indentation
• Centering
• Alignment.

Advanced word processing
features

Inexperienced users may execute
commands from a simple menu (and
related Help screens), while more pro
ficient users may opt to use up to 64
function keys without accessing the
menu.

The iWORD system allows
simultaneous support for multiple
character and/or line printers at the
local or system level; printer selection
is an operator option at print time.

The iWORD package includes a
spelling checker and correction facility
with an extensive on-line dictionary.

A Mail/Merge facility is available to
combine mailing lists and document
files (e.g., form letters) for printer out
put. Mail/Merge also provides the
capability of incorporating paragraphs ,
from a third file.

The iWORD processing allows on
screen sorting of numeric or alphabetic
text.

Special editing commands
• Find commands ("string search") to

locate characters or words in text for
possible changes or additions

• Deletion commands for removing
words, sentences, lines, paragraphs
and entire files

• Fill commands to fit as many words
as possible ill a finite space

• For~ command to type over existing
, text

• (;:om'mand to mark location of the
cursor within text , ,

• Paste-in command to copy a section
of text

• Replace command that replaces one
text area with another

• Tab setting commands

Embedded "dot" commands
When formatting or printing needs

are complell, the, user has easy access
to ,more powerf~1 embedded "dot" com
mands. "Dot" commands are mOst
useful for medium-sized and long
documents requiring sophisticated for
matting functions like subscripts,
superscripts, and footnotes. "Dot" com
mands are fully compatible with
NROFF and TROFF, the XENIX
supplied printing and typesetting
utilities. The results of "dot" com
mands are displayed, on-screen before
the document is printed.

Embedded commands for global for
matting include:
• Page layout
• Justification
• Automatic hyphenation
• Running headers and footers
• Footnotes
• Superscripts and subscripts
• Automatic page numbering
• XENIX typesetting commands

(TROFF)
• XENIX printing commands

(NROFF).

6-4

Editing two files
simultaneously

The iWORD package provides a
moveable "window" into a file for full
screen text editing. The user may
simultaneously display two areas of the
same document or two different
documents in two screen "windows."
Employing this "split screen" capabili
ty, the user may review two different
files at the same time, as well as move
text between files.

Designed for experienced
and novice users

The iWORD software provides the
experienced word processing user the
full strength of XENIX text prepara
tion commands, such as NROFF and
TROFP. The iWORD package also of
fers a comprehensive menu shell which
makes the word processing software
easy to use for even the most
inexperienced computer user. In con
clusion, the iWORD system is a
powerful, "user friendly," and flexible
word processing package intended for
all levels of computer proficiency.

inter XENIX PRODUCTIVITY SOFTWARE TOOLS

iPLAN*

• Industry standard advanced elec-
tronic spreadsheet functions

• Sophisticated fonnatting options

• Easy-to-use English commands

• Extensive, on-line Help facilities

• Scrolling features and multi
window/multi-table display

• Links and updates multiple inter
related spreadsheets

• Automatically updates calculations

• Worldwide service and support

The most advanced
electronic spreadsheet

The iPLAN Multiplan Spreadsheet
software is one of the most powerful,
easy-to-use "electronic worksheet" pro
grams available. Developed by Micro
soft Corporation, Multiplan has been
enhanced for Intel hardware en
vironments operating under XENIX.

The iPLAN package is a multi
purpose tool capable of a wide variety
of business and scientific applications:
financial modeling, planning,
forecasting, tabulations, calculation of
engineering formulas, and much more.
It supports "what-if' decision-modeling
with a versatile two-dimensional matrix
that can be custom-tailored for specific
use.

Unlike other spreadsheets, the
. iPLAN system is designed to meet the
needs of both inexperienced and
sophisticated computer users. It also
offers versatile presentation and report
ing capabilities.

• iPLAN is a version of Microsoft Multiplan, a trademark of Microsoft Corporation.

The iPLAN matrix format
The iPLAN software displays

numerical data, text, or formulas in
matrix (row/column) format. The
spreadsheet screen is divided into
'cells' which are referenced by row and
column numbers. Cells may contain
numeric data, formulas, text, or labels.
Commands are listed at the bottom of
the screen along with the current ad
dressed cell, the amount of unused
spreadsheet storage space, and the
name of the file in use.

Designed for ease-of-use
Beginning iPLAN users can start

building worksheets after a couple
hours of initial use. While simple to
operate, the iPLAN system functionali
ty is enhanced by the skill of the user .

"..-:~~--~----~~---:--------:==:::======::::~;;~::::==::~~ACTIVE BORDERED
WINDOW #2 2 3

COLUMNS (1·63)

ROWS (1·255)

MENU
SELECTION

1
2
3 Sales
4
? Cost
6
7
8
9

10 Total Costs
11
12
13
14
15 Gross Profits
16
17
18

#2

$20000.00

Material $4000.00
Labor $7000.00

Overhead $4000.00

$15000.00

$5000.00

2
3
4
5
6 -;
8
9

10
11

12
13
14
15
16
17
18

3

$20000.00

$400000
$7000.00
$4000.00

$15000.00

$5000.00

4

CELL
POINTER

COMMAND LINE COMMAND. Alpha Blank Copy Delete Edit Format Goto Help Inset Lock Move
Name Options Print QUIt Sort Transfer Value Window Xternal

MESSAGE---+- Select opllon or type command letter

LOCATION
AND CONTENTS
OF ACTIVE CELL

Rl0C3 SUM(R6:8C3) 95% Free

ABSOLUTE REFERENCE

Typical Multiplan Screen Display

6-5

DOLLAR FORMAT

STORAGE
REMAINING

SHEET NAME

XENIX PRODUCTIVITY SOFTWARE TOOLS

The iPLAN package does not use
cryptic, abbreviated commands or
reference codes (e.g. "AZ23"). Instead,
it uses plain English commands (e.g.
COPY) and reference names (e.g.
COSTS or SALES). Completely menu
driven, the iPLAN software prompts
the user with simple commands that
can be executed with a single
keystroke. To help in command selec
tion,. the user can access a reference
guide.

Notable iPLAN features include:
• Ability to build formulas by high

lighting cells
• Menu-driven functions and com

mand prompting
• Plain English command words and

formulas
• Comprehensive on-line reference

guide
• Eight-window display option
• Full-screen display of worksheet

formulas.

A dynamic, versatile
workspace

The iPLAN package offers an effec
tive workspace that is 63 columns
wide by 255 rows long. Worksheets are
easily designed to fit project re
quirements. Moreover, worksheets can
be linked to automatically receive or
transmit data into other related iPLAN
worksheets. Column width can be
varied to accept long (or short) words
and numerals; lines of text can be
typed across several columns.

Up to eight windows are available
with vertical and horizontal scrolling,
such that different areas of a very
large worksheet can be viewed
simultaneously. The windows can be
aligned, scrolled together, opened, or
closed at the user's choice.

Built-in data security
The iPLAN software features cell

locking to protect worksheet data.
When data and formulas have been
entered, the specified information can
be "locked" in place so that vital data
cannot be accidentally erased or
altered. .

Flexible presentation
features

The iPLAN system enables users to
produce printed reports of professional
caliber. The program includes special
formatting, alignment, and printing
functions that support the printing of
presentati.!'n~quality reports. The
iPLAN software can automatically
break a spreadsheet into multiple

. pages, and the user can specify the ap
propriate margins.

Powerful modeling
capabilities

Highlights of iPLAN modeling
features include:
• Alphabetical or numerical sorting

capabilities
• Links and automatically updates up

to eight interrelated worksheets
• Automatically updates subtotals,

totals, percentages, growth curves
and other calculations

• Performs multiple iterations to solve
closed-loop problems

• Automatically revises formulas when
reordering rows and columns in
displays

• Cells and areas can be named for
clarity

• Continuous formatting allows entries
across cell boundaries

• Formulas moved to various work
sheet locations without retyping

• Includes special editing area for
quick additions or deletions

• Sheet display may be redesigned or
formatted in various ways without
altering the stored data

• Formulas, words, or numerals can
be entered into any location so that
printed sheets have titles and
descriptions

• Offers a rich repertoire of advanced
math functions and operators.

iMENU*

• Hierarchical control of menu
screens to organize application
program use

• On-line application develop
ment/maintenance system

• A menu screen design and menu
development system for
non-programmers

• On-line Help facility

• Written in the "C" language,
specifically for XENIX

• Supports turnkey application
development

• Worldwide service and support

Simplifies use, development
and maintenance of
XENIX-based applications

The iMENU software package is a
hierarchical user interface and applica
tion development tool that ties together
XENtX-based applications to achieve a
high level of software integration. The
iMENU package allows applications
developers to create integrated, logical,
and friendly interfaces to XENIX
applications.

In effect, the iMENU system allows
the XENIX operating system to appear
transparent to the non-technical user,
while it offers all the power and func
tionality inherent to XENIX to the
more experienced user. The iMENU
package interfaces with virtually all
character-oriented terminals.

Aids application
development and software
packaging

Programmers and experienced users
can apply the iMENU system in main
taining or creating menus, forms, or
Help screens for existing or new
applications. ,

• iMENU is a version of Schmidt's Imenus,
a trademark of Schmidt Associates.

XENIX PRODUCTIVITY SOFTWARE TOOLS

Full XENIX functionality is retained
and simplified with the iMENU soft
ware. Experienced users have the op
tion of skipping step-by-step menu
selection via the fast menu selection
mode. Advanced users can also modify
the menu system to reflect changes in
existing applications or to incorporate
new applications.

Standard iMENU package functions
include:
• Definition of login IDs
• Add. delete. and list login IDs
• Authorization control
• Define. update. delete and list menu

items. and attributes
• Screen and forms building
• Interaction with XENIX shell

commands
• Powerful macros
• Fast menu selection mode for ex

perienced users
• On-line Help facility.

6-7

The iMENU software includes a
Menu Development Subsystem. which
is a menu-driven set of maintenance
functions allowing:
• Menu screen maintenance
• Form screen maintenance
• Help screen maintenance
• Menu selection maintenance
• Macro maintenance
• Shellscript maintenance
• Login ID maintenance
• Deauthorization maintenance
• Backup/restore.

XENIX PRODUCTIVITY SOFTWARE TOOLS

Comprehensive on-line
Help system,

The HeIp system is an interactive
user-assistance filcility. The Help
system is completely integrated with
the iMENU package so the user need
not rely on bulky reference manuals to
operate a particillar application. In the
event the user encounters problems or
has questions, explanatory solutions
can be made available at all times. Us
ing the iMENU system itself, program
mers and experienced users can extend
or modify the Help system to include
new applications.

Expands markets and
increases profits

Systems integrators will find the
iMENU system to be an indispensible
tool for packaging XENIX-based ap
plications software and integrated hard
ware/software systems.

Using the iMENU package, applica
tion developers can:
• Extend the user-interfilce to wrap

around new and existing applications
software

• Customize existing applications to
meet varying customer needs

• Develop application demos
• Create applications that are easily

used by non-programmers
• Package sepllr;lte programs into in- ,

tegrated applications.
The iMENU software enhances the

cost-effectiveness of application
development by: .

• Improving time tomarke. for new
software products

• Reducing software 'development. time
• Reducing the need for training and

support
• Decreasing software installation time
• Cutting documentation expenses
• Unifying a filmily of software pro

ducts for consistent screen ap
pearance and operation.

Integrated software for the
iDIS system

Intel's Database Information System
(iDIS 86/735) provides end users and
systems builders with a vehicle for in
corporating a Seamless set of software
productivity tools~ Seamless software
supports the transparent ,sharing of data
files among application packages with

6-8

complete data integrity. The iDIS
system is a multi-user, multi-tasking
XENIX-based microcomputer available
with the iWORD processor, the iPLAN
spreadsheet, the iMENU development
system, iXTRACf communication
filcilities for downloading mainframe
databases, the iDB DBMS for local
relational database management, and
software that supports networking of
personal computers. Application
development tools and high-level pro
gramming languages are also offered
with the iDIS system. Data can be
transferred among the Seamless soft
ware packages, and the iDIS menu
system and iHELP filcility provide a
friendly, common user internce. The
iDIS system is an example of how Intel
provides hardware/software components
at all levels of integration to meet in
dividual system needs.

Worldwide service and
support

All Intel software included under an
active software maintenance agreement
is fully supported by Intel's staff of
trained software engineers. Depending
on the system configuration, several
levels of support are available. Each
package is offered with complete
documentation, including a comprehen
sive user manual and installation
guide.

SPECIFICATIONS
Required Hardware:
• Any 8086 or 80286-based system in

c1udillg Inters SYSTEM 86/300,
286/300 filmily and iDIS systems

• Minimum of 128 KB memory
• At least two floppy disks or one

hard disk
• One 8 in. or 5.25 in. double-<iensity

floppy disk drive for distribution
media

Required Software:
• Intel's XENIX 86/286 Operating

System

warranty:
90 days for:
Software Updates and application sup
port. Continuing support services
available with subscription to a Soft
ware maintenance agreement.

XENIX PRODUCTIVITY SOFTWARE TOOLS

The following are trademarks of Intel Cor
poration and may be used only to describe
Intel products: BXp, CREDIT, i, ICE, I'ICE,
ICS, iDBP, lOIS, iLBX, im, iMMX, Insite,
INTEL, , Intelevision, Intellec, Intehgent
Identifier™, InIeIBOS, Inleligent Program
mlng™, Intellink, iOSp, iPDS, IRMS, iSBC,
iSBX, iSDM, ISXM, Library Manager, MCS,
Megachassis, Micromainframe, MULTIBUS,
Multichannel™ Plug-A-Bubble, Seamless,
MULTI MODULE, PROMPT, Ripplemode,
RMXI80, RUPI, SYSTEM 2000, Data
Pipeline, iDIS, iDBp, and UPI, and the com
bination of ICE, iCS, iRMX, iSBX, MCS, or
UPI and a numerical suffix. Intel Corpora
tion assumes no responsibility for the use of
any circuitry other than circuitry embodied
in an Intel product. No other patent licenses
are implied. Specifications are subject to
change without notice.

iWORD is a version of HOrizon Word Pro
cessing, a trademark of Horizon Software
Systems, Inc. iPLAN IS a version of
Microsoft's multiplan, a trademark of
MIcrosoft CorporatIon. IMENU IS a version
of Schmidt's Imenus, a trademark of
Schmidt Associates.

InformatIon contained herein supercedes
previously published specifications on these
d/evices from Intel.

6-9

THIRD PARrY SOFTWARE
FOR INTEL SYSTEMS

• Over 125 Intel qualified software pack
ages to meet your software needs

• Select from a choice of packages in
most applications areas

• Support from the experts-the soft
ware manufacturers themselves

• Tested by Intel to ensure quality and
reliabHity on Intel Systems

SOHWAREII!EXPRESS
, ~

! ~'" OPEN '. "lIA!RYAN- ;:: I ~~SYSTEMSINC ~ ~YI, McFARLAND '"":
" :as< ~ III I{l ~ ""! <'!= ~
I s I I\!f ~ ~ ~ I asl"""C®]
i;-= ~I: ~~,-= ~ ~ :S'i § § a::5 : CYMA .~

1: e- ~ III !::q: .-:=:-:J !--l

~ 8 Q,... ~ ~ i ~ IlATARETRlEVAL ~
iii § SOFTWARE@ ~)~" C4 CORPORATION ~

~ "~I: coo~;x~ 'S..--Q ~ ~1\'Xl5 8MI
",J-r', ~ ~llllzi~ECHI~~

I, , I:l"I"l CDA"""",""NQ c t I
I." D~O PACIFIC BASIN GRAPHICS _ ::::E . m 00

RHODNIUS IE:'::l CLINICAL D<\TA DESIGN HORIZON'.
CONETIC SYSTEMS INC. :NVII ~resystems V N"'ooIM"ph,Iot"o",,o,,/,Ioc ~'O'Ii:''i'?I'2C&''ii'' n-·

BusmeS5ware @wu-iUI.!;&} U U~

• : Micro Data Base Systems, Inc.
AMERICAN BUSINESS SYSTEMS INC.

©INTEL CORPORATION, 1984
6-10

ORDER NUMBER 280048-001

PRODUCT NAME VENDOR SYSTEM AVAILBILITY

Accounting 86/310 286/310 86/3110 286/3110
Thoroughbred Accounting SMC X Immediate
Open Systems Accounting Open Systems X Immediate
MCBA Accounting MCBA X Immediate
APPGEN Accounting Software Express X Immediate
BACs ABS X Immediate
Real World Accounting Real World X Q4/84
CYMA Accounting CYMA X Q4/84
Complete Accounting NMI X Q4/84

Manufacturing
MCBA Manufacturing MCBA X Q4/84
ProfitKey Key Systems X QI/8S
A&M Manufacturing TOM Software X Q4/84
Specialty Manufacturers NMI X Q4/84

Medical
MDX Clinical Data X Immediate

Vertical
Contractor Management TOM Software X Q4/84
Distributor Management TOM Software X Q4/84
Not-for-Profit TOM Software X Q4/84
Project Management TOM Software X Q4/84
Property Management TOM Software X Q4/84
Public Accountant TOM Software X Q4/84
Restaurant Management TOM Software X Q4/84
Personnel Searcher NMI X Q4/84
Magazine Circulation NMI X Q4/84
Customer Profile NMI X Q4/84
Trucking Dispatcher NMI X Q4/84
Phototypesetting NMI X Q4/84
Client Accounting CYMA X Q4/84
Construction CYMA X Q4/84
Chiropractic CYMA X Q4/84
Orthodontic CYMA X Q4/84
Dental CYMA X Q4/84
Medical CYMA X Q4/84

THIRD PARTY SOFTWARE FOR INTEL iRMX™ SYSTEMS

Languages 86/310 286/310 86/3110 286/3110
Microsoft BASIC Intel X X X X Immediate
Mark Williams C Intel X X X X Immediate

Graphics
PBG 100 Pacific Basin,Graphics X X Immediate

Communications
3270 SNA Xicom X X X X Immediate
X.2S T.I.T.N. X X X X Immediate
3270 Bisync Data Retrieval X X X X Immediate
3780 Bisync Micro Integration X X X X Immediate

Database
DxSystem GDS X X Q4/84

Manufacturing
Ladder 86 Engineering Tools X X Q4/84

Other
IEEE-488 Ziatech X X Immedjate
Driver to Data Burr Brown X X Q4/84

110 subsystem

6-11

THIRD PARTY SOFTWARE FOR INTEL UNIX· SYSTEMS

PRODUCT NAME VENDOR SYSTEM AVAILABILITY

LaDlUagel 86/310 W/310 86/380 W/380
Microsoft BASIC Intel X X X X Immediate
Micro Focus COBOL Intel X X X X Immediate
Microsoft 'FORTAN Intel X X X X Immediate
RMCOBOL Ryan McFarland X Immediate
SMC BASIC SMC X Immediate
Softbol Omtool X X Immediate
UX BASIC UX Software X Immediate
S-TRAN SMI X Immediate
TOM BASIC TOM Software X ~/84

Spreadslleet
iPlan Intel X X X X Immediate
20/20 Access Technology , X Q4/84

Office Automation
iWord Intel X X X X Immediate
iMenu Intel X X X X Immediate
Q-One Quadratron X Immediate
Q-Menu Quadratron X Immediate
Q-Calc Quadratran X Immediate
Q-Mail Qaudratron X, Immediate
Q-Date ' Quadratron X Immediate
Q-Call Quadratron X Imniediate
Q-Note Quadratron X Immediate
Q-Form Quadratron X Q4/84
DATA 3500 Tom Software X Q4/84
LEX Softest X Immediate

Application Generator
APPGEN Software Express X Immediate
C/Tools Conetic Systems X Q4/84

Grapblcs
iGraph Intel X X X X Q4/84
PBG 200 Pacific Basin Graphics X Q4/84
SMC Color, Graphics SMC X Q4/84

, Communications
PC Link Intel X X X X Q4/84
3270 Bisync Intel X X X X Q4/84
3270,SNA Xicom X X Q4/84
X.2S T.I.T,N. X X Q4/84
3780 Bisync Micro Integration X X Q4/84
HASP Intel X X X X Immediate

Database
iDB Intel X X X X Q4/84
Informix RDS X Immediate
Fil~it! RDS X Immediate
C-ISAM RDS X Immediate
Unify Unify X Q4/84
MOBS 1Il MOBS X Q4/84
IDOL SMC X Immediate
Progress Data Languages X Q4/84

XENIX • I trademark of MIrosoft Inc

6-12

inter
Database

Information
System

iDIS™ 7lS

© 1984 Intel Corporation
6-13

• BuIldIng block for departmental-Jewel applications

• Data Pipeline'" s~em to distribute databiases

• DIrect mainframe database extract and me transfer
facilities

• Gateway for personal computer and terminal access

• Multiuser XENIX· 3.0 operating ~m

• lAIcal relational database management and report writer

• Integrated software with on-line help facility

• \\brd processing, spreadsheet, graphics, menu dewlop-
ment, and' communication options

• C programming language

• Desk-top Integrated micros~

• Worldwide vendor service and support

°XENlX Is a registered trademark of Mlcroooft Corporation.

ORDER NUM=-=~

Building Vertical
Applications with
the iDI!~'" System

The Intel Database Information
System (iOIS"') is a fully-integrated
multiuser hardware/software microcom
puter system. It serves as a building
block for end-user applications and a
powerful access tool in the Data
Pipeline connection between a main
frame and the end-user. Data can be
maintained by central data processing
departments and distributed to depart
mental users through a network of ter
minals and Pes. The system can be
configured as a gateway in the micro
to-mainframe flow of data or as a
stand-alone processor with shared local
database capabilities. The iDIS system
includes an SQL-compatible, multiuser
relational DBMS fcir shared access to
disk storage and features a full range
of information processing functions for
mUltiple concurrent users at all levels
of technical skil\.

The'lXTRACT remote
databa~e extract facilities

The iDIS system offers two interac
tive, menu-driven modes of database
extract. With the Remote File Transfer
(RFT) iXTRACf facility, a "flat file"
(sequential) data structure can be
downloaded from the mainframe and
converted into a local relational data
base. U sing host computer utilities to
generate the flat file, the RFT facility
can downloa!\ data from virtually any
DBMS or file management system.
The facility is bidirectional, such that
flat files can be transmitted between a
mainframe host and an iOIS, system
with its network of terminals and per
sonal computers.

A second facility, the Direct
, iXTRACf facility, is a menu-driven
data extract facility which directly
downloads Intel SYSTEM 2!J(JO'!'
databases (from IBM, CDC, and
Sperry environments) into an iDIS
database. Bo,th RFT and direct modes
allow non-technical users to access
remote corporate databases and extract
information while central data process
ing controls data security at every
termil)al.

'UNIX is a' trademark of AT&T Bell Laboratories.
Multiplan is a registered trademark 'Of Microsoft
Corporation.

Microsoft XENIX
The iDIS operating system is pro

vided by' XENIX 3.0, an enhanced
industry-standard version of UNIX~
XENIX is a general-purpose, multi
user, interactive operating system
designed to make the computing envi
ronment simple, efficient and produc
tive for a wide range of users. While
the system developer has access to all
XENIX functionality, the operatiqg
system appears to be transparent to the
user who interacts with the iDIS soft
ware through its menu system.

The XENIX system supplies:
• A flexible and logical hierarchical

file system, with cross-directory
file linking and multiple protection
and security modes

• The XENIX shell command lan
guage, with conditional, recursive,
and iterative constructs (for devel
opment of user/application
procedures) .

• Sequential, asynchronous, and
background 'proce's~ el\ecution

• Sophisticated editing and text
processing facilities ~upporting
printers and typesetters

• Device-independent input and'
output.

The lOB-local relational ,
database management (DBMS)

The iDIS system offers. the fDB
DBMS, a full-function relational
DBMS that supports an i~teractive ,
query/update language simjlar to that
of mM's SQL. Included with iDB is a
Report Writer package. This allows
users to prepare cuslOm reports
quickly from information in iOB with
out programming knowledge. The iDB
DBMS offers :all the power ofa main
frame DBMS at the, microsystem level.
Multiple iDB, users caD concurrel)tly
access common'local datab!l8es with
corifiden«l; in'system il\tegfity. '

Other features inClude:
• A ilser-proniPting data entry and
, update subsystem
.. A bulk loading anc;\ unloading,

utility for rapid transfer, of data
among files and databases

• Extensive on-line help facilities
• ,Descriptive error and diagnostic
,messages""
• Progr.ammatic fntet~ce to the C

language and :tENtx shell.

6-14

Seamless" software Interface
The iDIS software family is integrated

into a Seamless set of productivity
tools. Data can be easily transferred
amoqg the various iDIS application
packages, such that the iWORD proc
essor, iPLAN (Multiplan*) spread
sheet, and iDB DBMS can interchange
data and reports. All iOIS decision
support tools can be easily brought to
bear on a particular data-analysis
problem.

Individually, each package is accessi
ble through a common user interface
a hierarchical menu system serving as
a superstructure for the complete iDIS
system. A common help facility binds
all iDIS software.

The iWORD processor
The Intel iWORD facility is a

sophisticated word processing tool that
supports a complete office-wide range
of document preparation functions.
The iWORD user can develop, edit,
'store, format and print a variety of
presentation-quality business docu
m,ents, including reports, memoranda,
technical documents, specifications and

, :.manuals. All iWORD commands are in
,plain English and many can be exe
cuted. by a single keystroke. ,The
iWORD processor is also sufficiently

,powerful for the experienced user,
offering access to XENIX text process
ing capabilities including the printer-

, and typesetter-drivers nroff and troff,
An on-line help facility is continuously
available.

Major iWORD editing and format-
ting features include:

., Full-screen editor with on-line dis
. play of formatted text

• Embedded commands for global
, formatting

-Spelling/dictionary module and
mail/merge facility

• Right justification, underlining,
, indentation, centering, footnotes,

superscripts and subscripts.

TheiPLAN (Multiplan)
spreadsheet

The iDIS system supports 'what if
decision-modeling with iPLAN
(Multiplan) Spreadsheet, a multi
purpose tool capable of a wide variety
of busiriess and scientific tabulations.
The iPLAN user can custom-tailor a
versatile two-dimensional matrix for
specific analyses, including financial
modeling, planning and forecasting.
Like the other functions in the iDIS
software environment, the iPLAN
spreadsheet accepts data four ways:
from the keyboard, from the iDB
DBMS, from mainframe databases (via
the data extract facility), and from for
matted XENIX files.

Important iPLAN features include:
• Easy-to-use English commands
• Vertical and horizontal scrolling,

multi-window and multi-table
display

• Presentation of extra large tables
• Linking and updating multiple

interrelated spreadsheets
• Automatic updating of calculations
• Alphanumeric sorting capabilities
• Extensive, on-line help facility.

*dBASE II IS a trademark of Ashton-Tate.

HOST
COMPUTER

The personal computer
(iPC) connection

To complete the Data Pipeline con
nection, the iDIS system offers' a
menu-driven file conversion and trans
fer facility that allows single-user PC
files to be accessed in the multiuser
XENIX environment. The PC user can
use the iDIS system to convert data
base and spreadsheet files from popu
lar PC file formats (such as dBASE
lIt Lotus 1-2-3~ and Multiplan for
mats) to iDB file formats. As a result,
mainframe files can be downloaded to
relational structures within iDB data
bases and further converted and down
loaded to PC-based files for local
applications analysis. The PC user can
operate in three modes: bidirectional
iDIS-to-PC file transfers, iDIS terminal
emulation, and local PC-DOS control.

Office automation features
The XENIX operating system pro

vides an electronic mail service in
which business messages are shared
and relayed with ease. XENIX also in
cludes handy "desk calculator" functions
and an electronic calendar that pro
vides an automatic reminder (via elec
tronic mail) of any user appointments.

Lotus and 1-2-3 are trademarks of Lotus Development Corporation

6-15

Application
development tools
The iDIS application development sub
system includes such software tools as
the iMENU development system, C
programming language, the XENIX
Shell program, and the full-screen 'vi'
editor (visual editor). These tools sup
port efficient development and mainte
nance of program and text files by
technical users.

The iDIS system offers a complete
program development and execution
environment for C, the versatile gen
eral-purpose language in which the
operating system and all iDIS applica
tion packages are implemented. C
maximizes development productivity by
its structured programming methodolo
gies and standard flow-control con
structions - if, while, for, do, and
switch (case). It provides pointers, the
ability to perform address arithmetic,
and recursive functions. Many existing
C-based applications can be efficiently
ported to theiDIS system.

The iMENU
development facility

The iMENU development facility
provides the iDIS system-level user
interface, tying together the XENIX
operating system, iDIS applications
software, and help system. The
iMENU facility retains and yet simpli
fies full XENIX functionality. Pro
grammers and non-programmers alike
can use the iMENU facility m creating
or modifying menus, forms, and help
screens for existing or custom
developed applications.

The on-line help facility
The help facility, a comprehensive

on-line documentation feature, is inte
grated with the menu system so the
user need not refer to hard copy refer
ence manuals when using iDIS appli
cations. Experienced users can employ
the iMENU facility to extend or
modify the help facility to specify help
procedures for custom applications.

The iGRAPH facility
The iDIS system offers a presenta

tion graphics package, iGRAPH, that
provides high quality output to most

standard graphics peripherals. Through
iOIS integration, data can easily be
moved from iPLAN and iDB to
iGRAPH, from iGRAPHtO iWORD
fur printed output, and to and from
iPC. Graphic peripherals supported are
Thktronix 4105, color terminal, Tele
video 950 monochrome terminal with
Retrographics board, Hewlett-Packard
HP7475 plotter, the Epson MXSO
printer, and the mM PC with graphics
board. The Intel terminal can be used
to generate graphics hard copy.

Communications,
The iOIS communications subsystem

provides remote job entry (RJE) to
mainframe hosts through its emulation
of a, HASP multileaving workstation or
Z780/3780 protocol. TTY passthrough
facilities also provide direct access to
remote interactive applications. includ
iOg other iDIS systems and personal
computers. Support fur 3Z1O BCS
emulation is also available, and SNA
support is planned.

BASE SYSTEM HARDWARE
Processor

The iOIS 715 uses the MULTmU~
based iSBCi' 286110 board with the
80286 processor. An Intel S0287 co
processor is standard to provide sig
nificant perfurmance boost fur numeric
operations. Instructions are 8, 16, or
32 bits in length; data are 8 or It! bits
long; numeric processing, with the
80287, is carried out in 8O-bit words.
Memory management and protection
are also included.

One megabyte of high-perfurmance
RAM With ECC is standard. Th pro
vide faster access, Intel memory
boards are connected directly to the
286110 processor bOard via iLBX"
(Local Bus Excharige).

Communications support
Asynchronous communication and

synchronous mainframe communica
tions support is handled by an iSBC
188/48 Adv8nced Communications

, Processor Board. Eight connections
can be configured fur terminals. PCs
and/or mainframe communications.

MASS STORAGE
WInchester disk driw-'-The iOIS

715 contains a 40 MB 5 \4' Winchester
technology disk drive fur program and '
data storage. The drive has an average
access time about 40 milliseconds and
a transfer rate of 6.44 Mbits/sec.
I~Uillent contrnller-The iOIS 715

includes an intelligent, S089-based'
iSBC 215 Winchester controller. This
high perfurmance interface contains
firmware which is executed directly on
the iSBC 215 controller to offload a
significant portion of disk I/O over
head from the host 80286 processor.
In addition. the iSBC 215 board sup
ports an iSBX'M 218 controller to
manage the floppy disk.

Floppy disk drive-A 5\4" 320 KB
floppy disk driw is included in the
base system. This floppy drive, has an
average access time -or 91 milliSeconds
and a transfer rate of 250 KBlsec.

Optional peripherals
Display terminal-The standard

iOIS system can connect up to 10 ter
minals. The terminal connected to, the

6-16

console port can be used for system
control and administration. as well as
a regular workstation. An iOIS ter
minal is also available. with 24-80
character lines and a 25th status line.
The 96 upper and lower ASCII
characters are formed in 'a 7x9 matrix
in an 8xl0 cell. The screen is non
reflective and uses green P31 phosphor.

Printer-The.iOIS system supports a
Centronics-compatible printer. A dot
matrix character printer capable of 200
Character-per-second bidirectional
printing is also available. It includes a
Centronics-compatible parallel inter
face and a 218-chai'acter buffer. The
printer features a 7x9 dot mlltrix to

'furm all 96 ASCII characters. Maxi- '
,/ mum standard print line length is 132

characters or 218 with condensed print.
The Intel printer prints 10 characters
per inch; spacing of 5, 8.25, and 16.5
characters per inch cim also be
accommodated.

System support
The iOIS system is fully supported

by Intel's worldwide service, staff, in
cluding a group of infurmation system

professionals with over 15 years experi
ence in commercial database technolo
gies. Support for iDIS applications
software is included with the system
price for 90 days and is optional there
after. All iDIS software with a current
software maintenance agreement is
supported by the Intel Austin Systems
Support Hotline.

In addition to the hotline, system
support includes software updates, cus
tomer problem reporting, and a prod
uct newsletter. Intel provides compre
hensive training classes on all iD IS
applications, the XENIX operating sys
tem, programming languages, and
hardware operation.

The iDIS hardware includes a war
ranty for 90 days mechanical, 45 days
labor, and 90 days electrical compo
nents. After the warranty period, sub
scription maintenance is available from
the Intel field service organization.
Hardware service is also available for
users on a per-call basis.

Extensive system
documentation

The iDIS 715 is shipped with mul
tiple hardware and software manuals
that address all aspects of system oper
ations. Software documentation in
cludes manuals on the XENIX Release
3.0 operating system, iDB and Report
Writer software, and each optional
application package that is ordered.
General overviews and detailed tutori
als are an integral part of this docu
mentation. A system installation and
maintenance manual, a system over
view manual, and a site preparation
manual are also provided.

SYSTEM CONFIGURATION
Base Hardware System:

• I MB of RAM memory
• 320 KB floppy drive
• 40 MB Winchester disk
• Support for up to 10 terminals

and/or PCs
• Printer support for Centronics

compatible printer
• Disk controller board
• Communications processor

Optional Hardware:
• Additional communications

processor
• Terminals and dot-matrix printers

Base Software System:
• XENIX 3.0 operating system
• C programming language
• 'vi' editor
• XENIX utilities (including nroff

and troff text processors)
• Electronic mail and calendar
• iDB and Report Writer
• iMENU (runtime) system
• Help facility
• Complete systems diagnostics

Optional Software:
• iWORD word processor
• iPLAN (Multiplan) spreadsheet
• iMENU menu development system
• Direct iXTRACT facility
• Remote File Transfer facility
• iPC (personal computer link)
• iGRAPH presentation graphics
• RJE communication support

(2780/3780 and/or HASP protocol)
• 3270 BSC emulation

6-17

SPECIFICATIONS
Instruction cycle time

250 nanoseconds for fastest execut
able instructions.

Disk
Standard 40 MB Winchester disk:

Second 40 MB disk is planned.

External/PC interface
Serial- 8 asynchronous ports, con

figurable from 110 to 9600 baud. EIA
Standard RS232C signal support is
provided.

Parallel- one Centronics-compatible
parallel 110 port for printer
connections.

Regulatory Agency
Specifications

Meets ULII4-Safety; CSA 22.2-
Safety; FCC Docket 20780-RFIIEMI.
Designed to meet IEC 435-Safety;
VDE 087I-RFI/EMI.

ENVIRONMENTAL
OPERATING
REQUIREMENTS

Altitude-Sea level to 8000 feet.
Temperature -15 degrees C to 35

degrees C.
Relative humidity-20% to 80%

non-condensing over the operating
temperature range. The environmental
combination of humidity and tempera
ture together cannot exceed 26 degrees
C wet bulb.

The following are trademarks of Intel Cor
,poratlon and may be used only to describe

Intel products: BXP, CREDIT, i, ICE, I'ICE,
ICS, iOBP, lOIS, ILBX, im, iMMX, InSlte,
INTEL, inIeI ' Intelevislon, Intellec, Intellgent
Identifler™, IntelBOS, inlellgent Program
ming™, Intellink, IOSP, iPOS, IRMS, ISBC,
ISBX, iSOM, iSXM, Library Manager, MCS,
Megachassls, Micromainframe, MULTIBUS,
Multlchannel™ Plug-A-Bubble, Seamless,
MULTIMOOULE, PROMPT, Rlpple!l1ode,
RMX/80, RUPI, SYSTEM 2000, Data
Pipeline, lOIS, iOBp, and UPI, and",the com
bination of ICE, ICS, iRMX, iSBX, MCS, or
UPI and a numeTical suffix. Intel C~rpora
tion assumes no responsibility for the use of
any circuitry other than CirCUitry embodied
In an Intel product. No other patent licenses
are Implied Specifications are subject to
change without notice.

IWORO IS a version of Horizon Word Pro
cessing, a trademark of Honzon Software
Systems, Inc. IPLAN IS a version of
Microsoft's Multiplan, a trademark of
Microsoft Corporation IMENU is a version
of Schmidt's Imenus, a trademark of
Schmidt Associates.

Information contained herein supersedes
previously published speCifications on these
deVices from Intel.

6-18

Component Software 7

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

iRMX 86 OPERATING SYSTEM PROCESSORS

• High-Performance 2-Chip Data
Processors Containing OPerating
System PrimHives

• Standard iAPX 86/10, 88/10 Instruction
Set Plus Task Management, Interrupt
Management, Message Passing,
Synchronization and Memory
Allocation Primitives

• Fully Extendable To and Compatible With
iRMX$ 86

• Supports rIVe Operating System Data

'JYpes: Jobs, Tasks, Segments,
Mailboxes, Regions

• 35 Operating System PrimHives
• Built-In Operating System Timers and

Interrupt Control Logic Expandable
From 8 to 57 Interrupts

• 8086/80150/80150-218088/80186/80188
Compatible At Up To 8 MHz Without
WaH States

• MULTIBUS$ System Compatible Interface

The Intel iAPX 86/30 and iAPX 88/30 are twO-Chip microprocessors offering general-purpose CPU (8086)
instructions combined with real-time operating system support. They provide a foundation for multiprogram
ming and multitasking applications. The iAPX 86/30 cOl'jsists of an iAPX 86/10 (16-bit 8086 CPU) and an
Operating System Firmware (OSF) component (80130). The 88/30 consists of the OSF and an iAPX 88110 (8-bit
8088 CPU). (80186 or 80188 CPUs may be used In place of the 8086 or 8088.)

Both components of the 86/30 and 88/30 are implemented in N-channel, depletion-load, silicon-gate technol
ogy (HMOS), and are housed in 4o-pin packages. The 86/30 and 88/30 provide all the functions of the iAPX 86/10,
88110 processors plus 35 operating system primitives, hardware support for eight interrupts, a system timer, a
delay timer and a baud rate generator.

o
8284A

,-------,
8088
OR

8081

INTERRUPT STATUS

CLOCK BUS
DRIVER INTERFACE

RDY'

INTERRUPT STATUS

BAUD RATE
TIMER

DELAY
TIMER

CS.LlR "--__ ...J

INTERRUPT
REQUESTS

_J~
SYSTEM
TIMER

IAPX Il130. 88/30

PROGRAM
MEMORY

Figure 1. IAPX 86/30. 86/30 Block Diagram

, DATA
MEMORY

Inial Co<porotlOfl Ae No Raopon.lbilly lor tha U.a of Any CirGuHry Other Thon CifGuitry Embodied in on Intel Product No Other CIrcUit Potent Lie implled

@INTELCORPORATION.1S81. 7-1 ~~~!

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

MAX

I:E!
MODE
BOse

V •• Vee V •• Vee

AD14 AD1S (A14) AD14 AD15 (Al5)

AD13 8HE (Al3) AD13 Al8/S3

AD12 IR7 (Al3) AD12 A17/S4

ADll IRB (All) ADll Al8/85

AD10 IRS (AlII) AD10 Al91S6

AD9 IR4 (AI) AD9 BHElS7 (HIGH)

ADB IRa (AB) ADB MNIMX

AD7 1M AD7 AD
ADB IRl ADB lmiG'fii

ADS lAO ADS lmiGTl

AD4 INT AD4 LOCK

ADa Si ADa 52

AD2 S1 AD2 S1

ADl so ADl ill!

ADO iCK ADO DSO

iiiMci LIR NMI DSl

IOCS SYSTICK INTR i'Eif
CLK DELAY CLK READY

V.s BAUD Vss RESET

Figure 2. IAPX 86/30, 88/30 Pin Configuration

Table 1. 80130 Pin Description

Symbol Type Name and Function

AD1~-ADo 119 Addre •• Data: These pins constitute the time multiplexed memory address (T1) and
data (T2.T3. Tw. T4) Dus.These lines are active HIGH. The address presented duringT1 of
a bus cycle will be latched internally and interpreted as an 80130 internal address if
MEMCS or IOCS is active for the invoked primitives. The 80130 pins float whenever it is
not chip selected. and drive these pins only duringT2-T4 ofa read cycle andT1 of an INTA
cycle.

BHE/87 Bu. High En.ble: The 80130 uses the BHE signal from the processor to determine
whether to respond with data on the upper or lower data pins. or both. The signal is active
LOW. BHE is latched by the 80130 on the trailing edge of ALE. It controls the 80130 output
data as shown.

BHE AO
0 0 Word on AD1S-ADO
0 1 Upper byte on AD1S-AD8
1 0 Lower byte on AD7-ADO
1 1 Upper byte on AD7-ADO

82, S1. 80 I Statu.: For the 80130. the status pins are used as inputs only. 80130 encoding follows:

S2 S1 SO-

0 0 0 INTA
0 0 1 lORD
0 1 0 IOWR
0 1 1 Passive
1 0 0 Instruction fetch
1 0 1 ME~RD
1 1 X Passive

7-2 AFN.o2059A

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

Table 1. 80130 Pin Description (Continued)

Symbol lYpe Name and Function

ClK I Clock: The system clock provides the basic timing for the processor and bus controller.
It is asymmetric with a 33% duty cycle to provide optimized internal timing. The 80130
uses the system clock as an input to the SYSTICK and BAUD timers and to synchronize
operation with the host CPU.

INT 0 Interrupt: INT is HIGH whenever a valid interrupt request is asserted. It is normally used
to interrupt the CPU by connecting it to INTR.

IR7-IRO I Interrupt Requests: An interrupt request can be generated by raising an IR input (lOW
to HIGH) and holding it HIGH until it is acknowledged (Edge-Triggered Mode), or just by a
HIGH level on an IR input (level-Triggered Mode).

ACK 0 Acknowledge: This line is lOW whenever an 80130 resource is being accessed. It is also
lOW during the first INTA cycle and second INTA cycle if the 80130 is supplying the
interrupt vector information. This signal can be used as a bus ready acknowledgement
and/or bus transceiver control.

MEMCS I Memory Chip Select: This input must be driven lOW when a kernel primitive is being
fetched by the CPU. AD,3-ADo are used to select the instruction.

IOCS I Input/Olitput Chip Select: When this input is low, during an lORD or IOWR cycle, the
80130's kernel primitives are accessing the appropriate peripheral function as specified
by the following table:

BHE A3 A2 A, Ao

0 X X X X Passive
X X X X 1 Passive
X 0 1 X X Passive
1 0 0 X 0 Interrupt Controller
1 1 0 0 0 Systick Timer
1 1 0 1 0 Delay Counter
1 1 1 0 0 Baud Rate Timer
1 1 1 1 0 Timer Control

,

LlR 0 local Bus Interrupt Request: This signal is lOW when the interrupt request is for a
non-slave input or slave input programmed as being a local slave.

Vee Power: Vee is the +5V supply pin.

Vss Ground: VSS is the ground pin.

SYSTICK 0 System Clock Tick: Timer 0 Output. Operating System Clock Reference. SYSTICK is
normally wired to IR2 to implement operating system timing interrupt.

DELAY 0 DELAY Timer: Output of timer 1. Reserved by Intel Corporation for future use.

BAUD 0 Baud Rate Generator: 8254 Mode 3 compatible output. Output of 80130 Timer 2.

FUNCTIONAL DESCRIPTION ment which constantly controls the telephone traffic
in a multi phone office, file servers/disk subsystems
controlling and coordinating multiple disks and mul
tiple disk users, and transaction processing systems
such as electronics funds transfer.

The increased performance and memory space of
iAPX 86/10 and 88/10 microprocessors have proven
sufficient to handle most of today's Single-task or
single-device control applications with performance
to spare, and have led to the increased use of these
microprocessors to controlmultip/e tasks or devices
in real-time. This trend has created a new challenge
to designers-development of real-time, multitask
ing application systems and software. Examples of
such systems include control systems that monitor
and react to external events in real-time, multifunc
tion desktop and personal computers, PABX equip-

7-3

The iAPX 86/30, 88/30 Operating System
Processors

The Intel iAPX 86/30, 88/30 Operating System Pro
cesSors (OSPs) were developed to help solve this

AFN-02059B

80130/80130-2
~X86130,88130,186130,188/30

r-------------------~----~---------I
OPE~ATING SVSTEM UNIT I

I
OCJ.7 I

I

r I 8

• PROGRAMMABLE
INTERRUPT INTERRUPT INP

LOGIC
UTS

. INTERRUPT OUT

CONTROL
STORE

.
2 SYSTEM +-- SYSTEM

TIMER

~ D8·15

r-- DELAY DELAY

f- TIMER

-c
BAUD RATE ~ BAUDRA: r:' GENERATOR

1------------ ------ - -------------1
I I
I <- I
I rr--- CLOCK
I
I DATA I I 3 ,. BUS ~ STATUS I BUFFER INTERFACE

< & AND I. '
I ADDRESS CONTROL ~BUSC~N

ADDRESS! I LATC~
T~DL

DATA BUS I ~ LOCAL
I I INTERRU PT
I CONTROL UNIT I (LiII) L ____ , _____________________________ ~

Figure 3. OSF Internal Block Diagram

problem. Their goal IS to simplify the design of multi
tasking application systems by providing a well
defined, fully debugged set of operating system
primitives implemented directly in the hardware,
thereby removing the burden of designing mUltitask
ing operating system primitives from the application
programmer.

Both the 86/30 and the 88/30 OSPs are tworchip sets
conSisting of a main processor, an 8086 or 80Bs CPU,
and the Intel 80130, Operating System Firmware
component (OSF) (see Figure 1). The 80130 provides
a set of multitasking kernel primitives, kernel control
storage, and the additional support hardware, in
cluding system timers and interrupt control, re
quired by these primitives. From the application
programmer's viewpoint, the OSF extends the base
iAPX 86, 88 architecture by providing 35 operating
system primitive instructions, and supporting five
new system data types, making the OSF a logical and

7-4

easy-to-use architectural extension to iAPX 86, 88
system designs.

The OSP Approach

The OSP system data types (SOTs) and primitive in
structions allocate, manage and share low-level pro
cessor resources in an efficient manner. For
example, the OSP implements task context manage
ment (m2\naging a task state image consisting of
both hardware register set and software control in
formation) for either the basic 86/10 context or the
extended 86/20 (8~6+8087) numerics oontext. The
OSP manages the entire task state image both while
the task is actively executing and while it is inactive.
Tasks can be created, put to sleep for specified peri
ods, suspended, executed to perform their func
tions, and dynamically deleted when their functions
are complete.

AFN·02059B

inter 80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

The Operating System Processors support event
oriented systems designs. Each event may be pro
cessed by an individual responding task or along
with other closely related events in a common task.
External events and interrupts are processed by the
OSP interrupt handler primitives using its built-in
interrupt controller subsystem as they occur in real
time. The multiple tasks and the multiple events are
coordinated by the OSP integral scheduler whose
preemptive, priority-based scheduling algorithm
and system timers organize and monitor the process
ing of every task to guarantee that events are pro
cessed as they occur in order of relative importance.
The 86130 also provides primitives for intertask com
munication (by mailboxes) and for mutual exclusion
(by regions), essential functions for multitasking
applications.

Programming Language Support

Programs for the OSP can be written in ASM 86/88 or
PL/M 86/88, Intel's standard system languages for
iAPX 86,88 systems.

The Operating System Processor Support Package
(iOSP 86) provides an interface library for applica
tion programs written in any model of PWM-86. This
library also provides 80130 configuration and in
itialization support as well as complete user
documentation.

OSF PROGRAMMING INTERFACE

The OSF provides 35 operating system kernel
primitives which implement multitasking, interrupt
management, free memory management, intertask
communication and synchronization. Table 4 shows
each primitive, and Table 5 gives the execution per
formance of typical primitives.

OSP primitives are executed by a combination of
CPU and OSF (80130) .activity. When an OSP primi
tive is called by an application program task, the
iAPX CSPU registers and stacks are used to perform
the appropriate functions and relay the results to the
application programs.

OSP Primitive Calling Sequences

A standard, stack-based, calling sequence is used to
invoke the OSF primitives. Before a primitive is
called, its. operand parameters must be pushed on
the task stack. The SI register is loaded with the
offset of the last parameter on the stack. The entry
code for the primitive is loaded into AX. The primitive
invocation call is made with a CPU software interrupt

(Table 4). A representative ASM86 sequence for call
ing a primitive is shown in Figure 4. In PL/M the OSP
programmer uses a call to invoke the primitive.

PUSHP,
PUSHP2

SAMPLE ASSEMBLY LANGUAGE PRlMmVE CALL

;PUSH PARAMETER 1
;PUSH PARAMETER 2

PUSH PN ;PUsH PARAMETER N
PUSH BP ;STACK CALUNG CONVENTION
MOYBP,8P
LEA SI,SS:NUM_BYTES_PARAM , 2lBPI

MOV AX, ENTRY CODE
INT184

;SS:SI POINTS TO FIRST
;PARAMETER ON STACK
;AX SETS PRIMITIVE ENTRY CODE
;OSF INTERRUPT

OSP PRIMITIVE INVOKED

POPBP
RET NUM.JIYTEILPARAIL. ;POP PARAMETERS

;CX CONTAINS EXCEPTION CODES
;DL CONTAINS PARAMETER NUMBER
; THAT CAUSED EXCEPTION (IF
, CX IS NON ZERO)
;AX CONTAINS WORD RETURN YAWE
;ES:IX CONTAINS POINTER
; RETURN VAWE

Figure 4. ASM/86 OSP Calling Convention

OSP Functional Description

Each major function of the OSP is described below.
These are:

Job and Task Management
Interrupt Management
Free Memory Management
Intertask Communication
Intertask Synchronization
Environmental Control

The system data types (or SOTs) supported by the
OSP are capitalized in the description. A short
description of each SOT appears in Table 2.

.JOB and TASK Management

Each OSP JOB is a controlled environment in which
the applications program executes and the OSF sys-

. tem data types reside. Each individual application
program is normally a separate OSP JOB, whether it
has one initial task (the minimum) or multiple tasks.
JOBs partition the system memory into pools. Each
memory pool provides the storage areas in which the
OSP will allocate TASK state images and other sys
tem data types created by the executing TASKs, and
free memory for TASK working space. The OSP sup
ports multiple executing TASKs within a JOB by
managing the resources used by each, including the
CPU registers, NPX registers, stacks, the system data
types, and the available free memory space pool.

7-5 AFN-02OI5IIB

inter 80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

When a TASK is created, the OSP allocates memory
(from the free memory of its JOB environment) for
the TASK's stack and data area and initializes the
additional TASK attributes such as the TASK priority
level and its error handler location. (As an option, the
caller of CREATE TASK may assign previously
defined stack and data areas to the TASK.) Task
priorities are integers between 0 and 255 (the lower
the priority number the higher the scheduling
priority of the TASK). Generally, priorities up to 128
will be assigned to TASKs which are to process inter
rupts. Priorities above 128 do not cause interrupts to
be disabled, these priorities (129 to 255) are appro
priate for non-interrupt TASKs. If an 8087 Numerics
Processor Extension is used, the error recovery inter
rupt level assigned to it will have a higher priority
than a TASK executing on it, so that error handling is
performed correctly.

EXECUTION STATUS
A TASK has an execution status or execution state.
The OSP provides five execution states: RUNNING,
READY, . ASLEEP, SUSPENDED, and ASLEEP
SUSPENDED.
"7"" A TASK is RUNNING if it has control of the

processor.

- A TASK is READY if it is not asleep, suspended, or
asleep-suspended. For a TASK to become the run
ning (executing) TASK, it must be the highest
priority TASK in the ready state.

- A TASK is ASLEEP if it is waiting for a request to
be granted or a timer event to occur. A TASK may
put itself into the ASLEEP state.

- A TASK is SUSPENDED if it is placed there by
another TASK or if it suspends itself. A TASK may
have multiple suspensions, the count of suspen
sions is managed by the OSP as the TASK suspen
sion depth.

- A TASK is ASLEEP-SUSPENDED if it is both
waiting and suspended.

TASK attributes, the CPU register values, and the
8087 register values (if the 8087 is configured into
the application) are maintained by the OSP in the
TASK state image. Each TASK will have a unique
TASK state image.

SCHEDULING
The OSP schedules the processor time. among the
various TASKs on the basis of priority. A TASK has an
execution priority relative to all other TASKs in the
system, which the OSP maintains for each TASK in its
TASK state image. When a TASK of higher priority
than the executing TASK becomes ready to execute,

7-6

the OSP switches the contrQI of the processor to the
higher priority TASK. First, the OSP saves the outgo
ing (lower priority) TASK's state including CPU reg.is
ter values in its TASK state image. Then, it restores
the CPU registers from the TASK state image of the
incoming (higher priority) TASK. Finally, it causes the
CPU to start or resume executing the higher priority
TASK.

TASK scheduling is performed by the OSp. The OSP's
priority-oriented preemptive scheduler determines
which TASK executes by comparing their relative
priorities. The scheduler insures that the highest
priority TASK with a status of READY will execute. A
TASK will continue to execute until an interrupt with a
higher priority occurs, or until it requests unavailable
resources, for which it is willing to wait, or until it
makes specific resources available to a higher
priority TASK waiting for those resources.

TASKs can become READY by receiving a message,
receiving control, receiving an interrupt, or by timing
out. The OSP always monitors the status of all the
TASKs (and interrupts) in the system. Preemptive
scheduling allows the system to be responsive to the
external environment while only devoting CPU re
sources to TASKs with work to be performed.

TIMED WAIT
The OSP timer hardware facilities support timed
waits and timeouts. Thus, in many primitives, a TASK
can specify the length of time it is prepared to wait
for an event to occur, for the desired resources to
become available or for a message to be received at a
MAILBOX. The timing interval. (or System Tick) can
be adjusted, with a lower limit of 1 millisecond.

APPLICATION CONTROL OF TASK EXECUTION
Programs may alter TASK execution status and
priority dynamically. One TASK may suspend its own
execution or the execution of another TASK for a
period of time, then resume its execution later. Multi
ple suspensions are provided. A suspended TASK
may be suspended again.

The eight OSP Job and TASK management primitives
are:

CREATE JOB

CREATE TASK

Partitions system resources and
creates a TASK execution
environment.

Creates a TASK state image.
Specifies the location of the
TASK code instruction stream,
its execution priority, and the
other TASK attributes.

AFN·02059B

inter 80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

DELETE TASK Deletes the TASK state image,
removes the instruction stream
from execution and deallocates
stack resources. Does not delete
INTERRUPT TASKS.

SUSPEND TASK Suspends the specified TASK or,
if already suspended, in
crements its suspension depth
by one. Execute state is
SUSPEND.

RESUME TASK Decrements the TASK suspen
sion depth by one. If the sus
pension depth is then zero,
the primitive changes the task
execution status to READY,
or ASLEEP (if ASLEEPI
SUSPENDED).

SLEEP Places the requesting TASK in
the ASLEEP state for a specified
number of System Ticks. (The
TICK interval can be configured
down to 1 millisecond.)

SET PRIORITY Alters the priority of a TASK.

Interrupt Management

The OSP supports up to 256 interrupt levels or
ganized in an interrupt vector, and up to 57 external
interrupt sources of which one is the NMI (Non
Maskable Interrupt). The OSP manages each inter
rupt level independently. The OSF INTERRUPT
SUBSYSTEM provides two mechanisms for interrupt
management: INTERRUPT HANDLERs and INTER
RUPT TASKs. INTERRUPT HANDLERs disable all
maskable interrupts and should be used only for
servicing interrupts that require little processing
time. Within an INTERRUPT HANDLER only certain
OSF Interrupt Management primitives (DISABLE,
ENTER INTERRUPT, EXIT INTERRUPT, GET LEVEL,
SIGNAL INTERRUPT) and basic CPU instructions
can be used, other OSP primitives cannot be. The
INTERRUPT TASK approach permits all OSP
primitives to be issued and masks only lower priority
interrupts.

Work flow between an INTERRUPT HANDLER and an
INTERRUPT TASK assigned to the same level is
regulated with the SIGNAL INTERRUPT and WAIT
INTERRUPT primitives. The flow is asynchronous.
When an INTERRUPT HANDLER signals an INTER
RUPT TASK, the INTERRUPT HANDLER becomes
immediately available to process another interrupt.
The number of interrupts (specified for the level) the

7-7

INTERRUPT HANDLER can queue for the INTER
RUPT TASK can be limited to the value specified in
the SET INTERRUPT primitive. When the INTER
RUPT TASK is finished processing, it issues a WAIT
INTERRUPT primitive, and is immediately ready to
process the queue of interrupts that the INTERRUPT
HANDLER has built with repeated SIGNAL INTER
RUPT primitives while the INTERRUPT TASK was
processing. If there were no interrupts at the level,
the queue is empty and the INTERRUPT TASK is
SUSPENDED. See the Example (Figure 5) and Fig
ures 6 and 7.

OSP external INTERRUPT LEVELs are directly
related to internal TASK scheduling priorities. The
OSP maintains a single list of priorities including
both tasks and INTERRUPT LEVELs. The priority of
the executing TASK automati'cally determines which
interrupts are masked. Interrupts are managed by
INTERRUPT LEVEL number. The OSP supports eight
levels directly and may be extended by means of
slave 8259As to a total of 57.

The nine Interrupt Management OSP primitives are:

DISABLE Disables an external INTER
RUPT LEVEL.

ENABLE Enables an external INTER
RUPT LEVEL.

ENTER INTERRUPT Gives an Interrupt Handler
its own data segment, sepa
rate from the data segment
of the interrupted task.

EXIT INTERRUPT Performs an "END of INTER
RUPT" operation. Used by
an INTERRUPT HANDLER
which does not invoke an IN
TERRUPT TASK. Reenables
interrupts, when the INTER
RUPT HANDLER gives up
control.

GET LEVEL Returns the interrupt level
number of the executing IN
TERRUPT HANDLER.

RESET INTERRUPT Cancels the previous as
signment made to an
interrupt level by SET IN
TERRUPT primitive request.
If an INTERRUPT TASK has
been assigned, it is also
deleted. The interrupt level
is disabled.

SET INTERRUPT Assigns an INTERRUPT
HANDLER to an interrupt
level and, optionally, an IN
TERRUPT TASK.

AFN·020598

80130/80130.2
iAPX 86/30,88/30,186/30,188/30

r CODE EXAMPLE A INTERRUPT TASK TO KEEP TRACK OF TIME.oF-DAY

DECLARE'SECONlI$COUNT BYTE,
MINUTEICOUNT BYTE,
HOURSICOUNT BYTE;

TIMQT4SK: PROCEDURE;
DECLARE TIMESEXCEPTICODE WORD;

AClCYCLE$COUNT-O,
CALL RatSETSINTERRUPT(ACSINTERRUPTSLEVEL, 01 H},

@ACSHANDLER,O,@TIME$EXCEPTlCODE},
CAU ROSRESUMESTASK(INITSTASKSTOKEN,@TIME$EXCEPTSCODE};
DO HOURSCOUNT-O TO 23,

DO MINUTEICOUNT-O TO 51;
DO SECONlI$COUNT-O TO 51,

CALL ROSWAIT$INTERRUPT(AC$INTERRUPTSLEVEL,
@TIME$EXCEPTlCODE};

IF SECOND$COUNT MOD 5-0
THEN CALL PROTECTED$CRTlCUT(BEL},

ENO, r SECOND LOOP "'
END; ,r MINUTE LOOP "'

END; r HOUR LOOP "'
CAU ROSRESETSINTERRUPT(AC$INTERRUPTSLEVEL, @TIME$EXCEPTICODE};
END TIME$TASK;

r CODE EXAMPLE B INTERRUPT HANDLER TO SUBDIVIDE A.C. SIGNAL BY 60. "/
DECLARE AC$CYCLEICOUNT BYTE;

ACSHANDLER: PROCEDURE INTERRUPT 51;
DECLARE ACSEXCEPTICODE WORD;

AClCYCLElCOUNT-AC$CYCLE$COUNT +1;
IF ACICYCLE$COUNT> -60 THEN DO;

ACICYCLE$COUNT-O;
CALL RO$SIGNALSINTERRUPT(ACSINTERRUPT$LEVEL,@AC$EXCEPT$CODE};
ENO;

END ACSHANDLER;

INTERRUPT
HANDLER CALLS
EXITS INTERRUPT

NO

Figure 5. OSP Examples

CONTROL RETURNS TO AN
APPLICATION TASK

INTERRUPT
HANDLER CALLS

SIGNAL$INTERRUPT

INTERRUPT TASK
COMPLETES INTERRUPT

SERVICING

INTERRUPT TASK
CALLS

WAITS INTERRUPT

Figure 6. Interrupt Handling Flowchart

7-8 AFN·02059B

intJ 80130/80130·2
iAPX 86/30, 88/30, 186/30, 188/30

-~
i ~~:~ EJ /' I ,

-- I INTERRUPT ~
......... \ TASK 1'-.

INTERRUPT

G) STARTS FILLING
EMPTY BUFFER

(j) WHEN FULL, CALLS
SIGNAL$INTERRUPT
TO START TASK ON
FULL BUFFER

/ " ./ "-
/ -_.... "

I \
I \
I

--1 ", "
1 \

© CALLS I INTERRUPT I
WAIT$INTERRUPT \ TASK I
TO WAIT FOR NEXT \ I
FULL BUFFER > __ ...,.' ---

® PROCESSES
FULL BUFFER

Figure 7. Multiple Buffer Example

SIGNAL INTERRUPT Used by an INTERRUPT
HANDLER to activate an In
terrupt Task.

WAIT INTERRUPT Suspends the calling Inter
rupt Task until the INTER
RUPT HANDLER performs a
SIGNAL INTERRUPT to in
voke it. If a SIGNAL INTER
RUPT for the task has
occurred, it is processed.

FREE MEMORY MANAGEMENT

The OSP Free Memory Manager manages the
memory pool which is allocated to each JOB for its
execution needs. (The CREATE JOB primitive al
locates the new JOB's memory pool from the
memory pool of the parent JOB.) The memory pool is
part of the JOB resources but is not yet allocated
between the tasks of the JOB. When a TASK, MAIL
BOX, or REGION system data type structure is
created within that JOB, the OSP implicitly allocates

. memory for it from the JOB's memory pool, so that a
separate call to allocate memory is not required. OSP
primitives that use free memory management im
plicitly include CREATE JOB, CREATE TASK,
DELETE TASK, CREATE MAILBOX, DELETE MAIL
BOX, CREATE REGION, and DELETE REGION. The

7-9

CREATE SEGMENT primitive explicitly allocates a
memory area when one is needed by the TASK. For
example, a TASK may explicitly allocate a SEGMENT
for use as a memory buffer. The SEGMENT length
can be any multiple of 16 bytes between 16 bytes and
64K bytes in length. The programmer may specify
any number of bytes from 1 byte to 64 KB, the OSP
will transparently round the value up to the appropri
ate segment size.

The two explicit memory allocation/deallocation
primitives are:

CREATE SEGMENT Allocates a SEGMENT of spe
cified length (in 16-byte-long
paragraphs) from the JOB
Memory Pool.

DELETE SEGMENT Deallocates the SEGMENT's
memory area, and returns it
to the JOB memory pool.

Intertask Communication

The OSP has built-in intertask synchronization and
communication, permitting TASKs to pass and share
information with each other. OSP MAILBOXes con
tain controlled handshaking facilities which guaran
tee that a complete message will always be sent from
a sending TASK to a receiving TASK. Each MAILBOX
consists of two interlocked queues, one of TASKs

AFN·02059B

80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

and the other of Messages. Four OSP primitives for
intertask synchronization and communication are
provided:

CREATE MAILBOX Creates intertask message
exchange.

DELETE MAILBOX Deletes an intertask mes
sage exchange.

RECEIVE MESSAGE Calling TASK receives a mes
sage from the MAILBOX.

SEND" MESSAGE Calling TASK sends a
message to the MAILBOX.

The CREATE MAILBOX primitive allocates a MAIL
BOX for use as an information exchange between
TASKs. The OSP will post information at the MAIL
BOX in a FIFO (First-In First-Out) manner when a
SEND MESSAGE instruction is issued. Similarily, a
message is retrieved by the OSP if a TASK issues a
RECEIVE MESSAGE primitive. The TASK which
creates the MAILBOX may make it available to other
TASKs to use.

If no message is available, the TASK attempting to
receive a message may choose to wait for one or
continue executing.

The queue management method for the task queue
(FIFO or PRIORITY) determines which TASK in the
MAILBOX TASK queue will receive a message from
the MAILBOX. The method is specified in the
CREATE MAILBOX primitive.

Intertask Synchronization and Mutual
Exclusion

Mutual exclusion is essential to multiprogramming
and multiprocessing systems. The REGION system
data type implements mutual exclusion. A REGION is
represented by a queue of TASKS waiting to use a
resource which must be accessed by only one TASK
at a time. The OSP provides primitives to use
REGIONs to manage mutually exclusive data and
resources. Both critical code sections and shared
data structures can be protected by these primitives
from simultaneous use by more than one task.
REGIONs support both FIFO (First-In First-Out) or
Priority queueing disciplines for the TASKS .geeking
to enter the REGION. The REGION SDT can also be
used to implement software locks.

Multiple REGIONs are allowed, and are automatically
exited in the reverse order of entry. While in a
REGION, a TASK cannot be suspended by itself or
any other TASK, and thereby avoids deadlock.

There are five OSP primitives for mutual exclusion:

CREATE REGION Create a REGION (lock).

SEND CONTROL

ACCEPT CONTROL

RECEIVE CONTROL

DELETE REGION

Give up the REGION.

Request the REGION, but do
not wait if it is not available.

Request a REGION, wait if
not immediately available.

Delete a REGION.

The OSP also provides dynamic priority adjustment
for TASKs within priority REGIONs: If a higher
priority TASK issues a RECEIVE CONTROL primitive,
while a (lower-priority) TASK has the use of the same
REGION, the lower-priority TASK will be trans
parently, and temporarily, elevated to the waiting
TASK's priority until it relinquishes the REGION via
SEND CONTROL. At that point, since it is no longer
using the critical resource, the TASK will have its
normal priority restored.

7-10

OSP Control Facilities

The OSP also includes system primitives that provide
both control and customization capabilities to a mul
titasking system. These primitives are used to control
the deletion of SDTs and the recovery of free memory
in a system, to allow interrogation of operating sys
tem status, and to provide uniform means of adding
user SDTs and type managers.

DELETION CONTROL
Deletion of each OSP system data type is explicitly
controlled by the applications programmer by set
ting a deletion attribute for that structure. For exam
ple, if a SEGMENT is to be kept in memory until DMA
activity is completed, its deletion attribute should be
disabled. Each TASK, MAILBOX, REGION, and SEG
MENT SDT is created with its deletion attribute en
abled (Le., they may be deleted). Two OSP primitives
control the deletion a~tribute: ENABLE DELETION
and DISABLE DELETION.

ENVIRONMENTAL CONTROL
The OSP provides inquiry and control operations
which help the u,ser interrogate the application envi
ronment and implement flexible exception handling.
These features aid in run-time decision making and
in application error processing and recovery. There
are five OSP environmental control primitives.

OS EXTENSIONS
The OSP architecture is defined to allow new user
defined System Data Types and the primitives to ma
nipulate them to be added to OSP capabilities

AFN·02059B

inter 80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

provided by the built-in System Data Types. The type
managers created for the user-defined SOTs are
called user OS extensions and are installed in the
system by the SET OS EXTENSION primitive. Once
installed, the functions of the type manager may be
invoked with user primitives conforming to the OSP
interface. For well-structured extended architec
tures, each OS ~xtension should support a separate
user-defined system data type, and every OS exten
sion should provide the same calling sequence and
program interface for the user as is provided for a
built-in SOT. The type manager for the extension
would be written to suit the needs of the application.
OSP interrupt vector entries (224-255) are reserved
for user OS extensions and are not used by the OSP.
After assigning an interrupt number to the extension,
the extension user may then call it with the standard
OSP call sequence (Figure 4), and the unique
software interrupt number assigned to the
extension.

ENABLE DELETION Allows a specific SEGMENT,
TASK, MAILBOX, or REGION
SOT to be deleted.

DISABLE DELETION

GET TYPE

GET TASK TOKENS

GET EXCEPTION
HANDLER

SET EXCEPTION
HANDLER'

SET OS EXTENSION

SIGNAL EXCEPTION

Prevents a specific SEG
MENT, TASK, MAILBOX, or
REGION SOT from being
deleted.

Given a token for an in
stance of a system data type,
returns the type code.

Returns to the caller infor
mation about the current
task environment.

Returns information about
the calling TASK's current in
formation handler: its ad
dress, an<;l when it is used.

Provides the address and
usage of an exception
handler for a TASK.

Modifies one of the interrupt
vector entries reserved for
OS extensions (224-255) to
point to a user OS extension
procedure.

For use in OS extension er
ror processing.

EXCEPTION HANDLING

The OSP supports .exception handlers. These are
similar to QPUexception handlers such as OVER
FLOW and ILLEGAL OPERATION. Their purpose is to

7-11

allow the OSP primitives to report parameter errors
in primitive calls, and errors in primitive usage. Ex
ception handling procedures are flexible and can be
individually programmed by the application. In gen
eral, an exception handler if called will perform one
or more of the following functions:

-Log the Error.
-Delete/Suspend the Task that caused the

exception.
-Ignore the error, presumably because it is not

serious.

An EXCEPTION HANDLER is written as a procedure.
If PLM/86 is used, the "compact,", "medium" or
"large" model of computation should be specified for
the compilation of the program. The mode in which
the EXCEPTION HANDLER operates may be speci
fied in the SET EXCEPTION HANDLER primitive. The
return information from a primitive call is shown in
Figure 4. CX is used to return standard system error
conditions. Table 7 shows a list of these conditions,
using the default EXCEPTION HANDLER of the OSP.

HARDWARE DESCRIPTION

The 80130 operates in a closely coupled mode with
the iAPX 86/10 or 88/10 CPU. The 80130 resides on
the CPU local multiplexed bus (Figure 8). The main
processor is always configured for maximum mode
operation. The 80130 automatically selects between
its 88/30 and 86/30 operating modes.

The 80130 used in the 86/30 configuration, as.shown
in Figure 8 (or a similar 88/30 configuration),
operates at both 5 and 8 MHz without requiring pro
cessor wait states. Wait state memories are fully sup
ported, however. The 80130 may be configured with
both an 8087 NPX and an 8089 lOP, and provides
full context control over the 8087.

The 80130 (shown in Figure 3) is internally divided
into a control unit (CU) and operating system unit
(OSU). The OSU contains facilities for OSP kernel
support including the system timers for scheduling
and timing waits, and the interrupt controller for
interrupt management support.

iAPX 86/30, iAPX 88/30 System
Configuration

The 80130 is both 1/0 and memory mapped to the
local CPU bus. The CPU's status SOI-S21 is
decoded along with 10CSI (with BHE and AD3-
ADo) or MEMCSI (with AD13-ADo). The pins are
internally latched. See Table 1 for the dec,oding of
these lines.

AFN·020598

intJ 80130/80130·2
iAPX86/30, 88/30, 186/30, 188/30

Memory Mapping

Address lines A19-A14 can be used to form MEMCS/
since the 8013O's memory-mapped portion is aligned
along a 16K-byte boundry. The 80130 can reside on
any 16K-byte boundry excluding the highest
(FCOOOH-FFFFFH) and lowest (OOOOOH-QoaFFH). The
80130 control store code is position-independent ex
cept as limited above, in order to make it compatible
wi~h many decoding logic designs. AD13-ADo are
decoded by the 80130's kernel control store.

I/O Mapping

The I/O-mapped portion of the 80130 must be aligned
along a 16-byte boundry. Address lines A15-~
should be used to form 10CS/.

System Performance

The approximate performance of representitive OSP
primitives is given in Table 5. These times are shown
for a typical iAPX 86/30 implementation with an 8
MHz clock. These execution times are very compara
ble to the execution times of similar functions in
minicomputers (where available) and are an order of
magnitude faster than previous generation
microprocessors".

Initialization

Both application system initialization and OSP
specific initialization/configuration are required to
use the OSp. Configuration is based on a "database"
provided by the user to the iOSP 86 support package.
The OSP-specific initialization and configuration in
formation area is assigned to a user memory address
adjacent to the 80130's memory-mapped location.
(See Application Note 130 for further details.) The
configuration data defines whether 8087 support is
configured in the system, specifies if slave 8259A
interrupt controllers are used in addition to the
80130, and sets the operating system time base (Tick
Interval). Also located in the configuration area are
the exception handler control parameters, the ad
dress location of the (separate) application system
configuration area and the OSP extensions in use.
The OSP application system configuration area may
be located anywhere in the user memory and must
include the starting address of the application in
struction code to be executed, plus the locations of
the RAM memory blocks to be managed by the OSP
free memory manager. Complete application system
support and the required 80130 configuration sup
port are provided by the iAPX 86/30 and iAPX 88/30
OPERATING SYSTEM PROCESSOR SUPPORT
PACKAGE (iOSP 86).

RAM Requirements

The OSP manages its own interrupt vector; which is
assigned to low RAM memory. Working RAM storage
is required as stack space and data area. The
memory space must be allocated in user RAM.

OSP interrupt vector memory locations OH-3FFH
must be RAM based. The OSP requires 2 bytes of
allocated RAM. The processor working storage is
dynamically allocated from free memory. Approxi
mately 300 bytes of stack should be allocated for
each OSP task.

TYPICAL SYSTEM CONFIGURATION

Figure 8 shows the processing cluster of a "typical"
iAPX 86/30 or iAPX 88/30 OSP system. Not shown are
subsystems likely to vary with the application. The
configuration includes an 8086 (or 8088) operating in
maximum mode, an 8284A clock gener~tor and an
8288 system controller. Note that the 80130 is located
on the CPU side of any latches or transceivers. See
Intel Application Note 130 for further details on
configuration.

7-12

OSPTimers

The OSP Timers are connected to the lower half of
the data bus and are addressed at even addresses.
The timers are read as two successive bytes, always
LSB followed by MSB. The MSB is always latched on
a read operation and remains latched until read.
Timers are not gatable.

Baud Rate Generator

The baud rate generator is 8254 compatible (square
wave mode 3). Its output, BAUD, is initially high and
remains high until the Count Register is loaded. The
first falling edge of the clock after the Count Register
is loaded causes the transfer of the internal counter
to the Count Register. The output stays high for N/2
[(N+1)/2 if N is odd] and then goes low for N/2
[(N -1)/2 if N is odd]. On ~he falling edge of the clock
which signifies the final count for the output in low
state, the output returns to high state and the Count
Register is transferred to the internal counter. The
whole process is then repeated. Baud Rates are
shown in Table 6.

The baud rate generator is located at OCH (12), rela
tive to the i6-byte boundary in the I/O space in which
the 80130 component is located ("OSF" in the follow
ing example), the timer control word is located at

AFN·02059B

intJ 80130/80130-2
iAPX 86/30, 88/30, 186130, 188/30

ClK

0
"- CONTROL

~ ClK ~r- ~
8288

~
8086

.HE ~ iHi A19 A19 LOCAL .
~RESS/D~ 8282 "- AND

ADDRESS SYSTEM - RESOURCES
INTR ADO AD

"---

1--
Dl'

A " 8286 DATA .
~ " DO

S2Vi-
..... OE

INT
'"---

e- ClK AD:~
ADO ~

IOCS DECODE ~

I MEMCs
J lOGIC

ACi "
llR
lAO ,.

A r- . INTERRUPT REQUESTS
IR7

SYSTICK ~ IR2

Figure 8. Typical OSP Configuration

relative address, OEH(14). Timers are addressed with
IOCS=O. Timers 0 and 1 are assigned to the use by
the OSp, and should not be altered by the user.

For most baud-rate generator applications, the com
mand byte

OB6H Read/Write Baud-Rate Delay Value

will be used. A typical sequence to set a baud rate
of 9800 using a count value of 52 follows (see
Table 6):

MOV AX"OB6H ;Prepare to Write Delay to
Timer 3.

OUT OSF+14,AX ;Control Word.
MOV AX,52
OUT OSF+12,AL ;LSB written first
XCHG A!--,AH
OUT OSF+12,AL ;MSB written after.

The 80130 timers are subset compatible with 8254
timers.

7-13

Interrupt Controller

The Programmable Interrupt Controller (PIC), is also
an integral unit of the 80130. Its eight input pins
handle eight vectored priority interrupts. One of
these pins must be used for the SYSTICK time func
tion in timing waits, using an external connection as
shown. During the 80130 initialization and configura
tion sequence, each 80130 interrupt pin is individu
ally programmed as either level or edge sensitive.
External slave 8259A interrupt controllers can be
used to expand the total number of OSP external
interrupts to 57.

In addition to standard PIC funtions, 80130 PIC unit
has an LlR output signal, which when low indicates
an interrupt acknowledge cycle. LlR=O is provided to
control the 8289 Bus Arbiter SYSB/RESB pin. This
will avoid the need of requesting the system bus to
acknowledge local bus non-slave interrupts. The
user defines the interrupt system as part of the
configuration.

AFN-02059B

inter 80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

INTERRUPT SEQUENCE
The OSP interrupt sequence is as follows:

1. One or more of the interrupts is set by a low-to
high transilion on edge-sensitive IR inputs or by a
high input on level-sensitive IR inputs.

2. The 80130 evaluates these requests, and sends an
INT to the CPU, if appropriate.

3. The CPU acknowledges the INT and responds
with an interrupt acknowledge cycle which is en
coded in S2-S0'

4. Upon receiving the first interrupt acknowledge
from the CPU, the highest-priority interrupt is set
by the 80130 and the corresponding edge detect
latch is reset. The 80130 does not drive the ad
dress/data bus during this bus cycle but does
acknowledge the cycle by making ACK=O and
sending the LlR value for the IR input being
acknowledged.

5. The CPU will then initiate a second interrupt ac
knowledge cycle. During this cycle, the 80130 will
supply the cascade address of the interrupting
input at T1 on the bus and also release an 8-bit
pointer onto the bus if appropriate, where it is
read by the CPU. If the 80130 does supply the
pointer, then ACK will be low for the cycle. This
cycle also has the value LlR for the IR input being
acknowledged.

6 .. This completes the interrupt cycle. The ISR bit
remains set until an appropriate EXIT INTERRUPT
primitive (EOI command) is called at the end of
the Interrupt Handler.

OSP APPLICATION EXAMPLE

Figure 5 shows an application of the OSP primitives
to keep track of time of day in a simplified example.
The system design uses a 60 Hz A.C. signal as a time
base. The power supply provides a TTL-compatible

7-14

signal which drives one of 80130 edge-triggered in
terrupt request pins once each A.C. cycle. The Inter
rupt Handler responds to the interrupts, keeping
track of one second's A.C. cycles. The Interrupt Task
counts the seconds and after a day deletes 'itself. In
typical systems it might perform a data logging oper
ation once each day. The Interrupt Handler and Inter
ruptTask are written as separate modular programs.

The Interrupt Handler win actually service interrupt
59 when it occurs. It simply counts each interrupt,
and at a count of 60 performs a SIGNAL INTERRUPT
to notify the InterruptTask that a second has elapsed.
The Interrupt Handler (ACS HANDLER) was assigned
to this level .by the SET INTERRUPT primitive. After
doing this, the InterruptTask performed the Primitive
RESUME TASK to resume the application task (INITS
TASKS TOKEN).

The main body of the task is the counting loop. The
Interrupt Task is signaled by the SIGNAL INTERRUPT
primitive in the Interrupt Handler (at interrupt level
ACS INTERRUPTS LEVEL). When the task is sig
nalled by the Interrupt Handler it will execute the
loop exactly one time, increasing the time count
variables. Then it win execute the WAIT INTERRUPT
primitive, and wait until awakened by the Interrupt
Handler. Normally, the task will now wait some period
of time for the next signal. However, since the inter
face between the Handler and the Task is asyn
chronous, the handler may have already queued the
interrupt for servicing, the writer of the task does not
have to worry about this possibility.

At the end of the day, the task will exit the loop and
execute RESET INTERRUPT, which disables the in
terrupt level, and deletes the interrupt task. The OSP
now reclaims the memory used by the Task and
schedules another task. If an exception occurs, the
coded value for the exception is available in TIMES
EXCEPTS CODE after the execution of the primitive.

A typical PL/M-86 calling sequence is illustrated by
the call to RESET INTERRUPT shown in Figure 5.

AFN·Q2059B

inter 80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

Table 2. OSP System Data Type Summary

Job Jobs are the means of organizing the program environment and resources. An application consists of
one or more jobs. Each iAPX 86/30 system data type is contained in some job. Jobs are independent of
each other, but they may share access to resources. Each job has one or more tasks, one of which is an
initial task. Jobs are given pools of memory, and they may create subordinate offspring jobs, which
may borrow memory from their parents.

Task Tasks are the means by which computations are accomplished. A task is an instruction stream with its
own execution stack and private data. Each task is part of a job and is restricted to the resources
provided by its job. Tasks may perform general interrupt handling as well as other computational
functions. Each task has a set of attributes, which is maintained for it by the iAPX 86/30, which
characterize its status. These attributes are:

its containing job
its register context
its priority (0-255)
its execution state (asleep, suspended, ready, running, asleep/suspended).
its suspension depth
its user·selected exception handler
its optional 8087 extended task state

Segment Segments are the units of memory allocation. A segment is a physically contiguous sequence of
16·byte, 8086 paragraph·length, units. Segments are created dynamically from the free memory
space of a Job as one of its Tasks requests memory for its use. A segment is dejeted when it is no longer
needed. The iAPX 86/30 maintains and manages free memory in an orderly fashion, it obtains memory
space from the pool aSSigned to the containing job ofthe requesting task and returns the space to the
job memory pool (or the parent job pool) when it is no longer needed. It does not allocate memory to
create a segment if sufficient free memory is not available to it, in that case it returns an error
exception code.

Mailbox Mailboxes are the means of intertask communication. Mailboxes are used by tasks to send and
receive message segments. The iAPX 86/30 creates and manages two queues for each mailbox. One
of these queues contains message segments sent to the mailbox but not yet received by any task. The
other mailbox queue consists of tasks that are waiting to receive messages. The iAPX 86/30 operation
assures that waiting tasks receive messages as soon as messages are available. Thus at any moment
one or pOSsibly both of two mailbox queues will be empty.

Region Regions are the means of serialization and mutual exclusion. Regions are familiar as "critical code
regions." The iAPX 86/30 region data type consists of a queue of tasks. Each task waits to execute in
mutually exclusive code or to access a shared data region, for example to update a file record.

Tokens The OSP interface makes use of a 16-bitTOKEN data type to identify individual OSF data structures ..
Each of these (each instance) has its own unique TOKEN. When a primitive is called, it is passed the
TOKENs of the data structures on which it will operate.

7-15 AFN·02059B

inter 80130/80130-2
iAPX 86/3q, 88/30, 186/30, 188130

Table 3. System Data 1YPe Codes and Attrtbutes

S.D.T. Code Attributes

Jobs 1 Tasks
Memory Pool
S.D.T. Directory

Tasks 2 Priority
Stack
Code
State
Exception Handler

Mailboxes 3 Queue of S.D.T.s
(generally segments)
Queue ofTasks
waiting for S.D.T.s

Region 5 Queue ofT asks
waiting for mutually
exclusive code or
data

Segments 6 Buffer
Length

Table 4. OSP Primitives

Class
OSP Interrupt Entry Code Parameters

Primitive Number In AX On Caller's Stack

J
0 CREATE JOB 184 0100H ·See 80130 User Manual
B

CREATE TASK 184 0200H Priority, IP Ptr, Data Segment, Stack
Seg, Stack Size Task Information,

T ExcptPtr
A DELETE TASK 184 0201H TASK, ExcptPtr
S SUSPEND TASK 184 0202H TASK, ExcptPtr
K RESUME TASK 184 0203H TASK, ExcplPtr

SET PRIORITY 184 0209H TASK, Priority, ExcptPtr
SLEEP 184 0204H Time Limit,ExcptPtr

DISABLE 190 0705H Level, ExcptPtr
I ENABLE 184 0704H Level #, Excptl;'tr

N ENTER INTERRUPT 184 0703H Level #, ExcptPtr
T EXIT INTERRUPT 186 NONE Level # ,ExcptPtr
E GET LEVEL ,188 0702H Level #, ExcptPtr
R RESET INTERRUPT 184 0706H Level #, ExcptPtr
R SET INTERRUPT 184 0701H Level, Interrupt Task Flag Interrupt
U Handler Ptr, Interrupt Handler DataSeg
P ExcptPtr
T SIGNAL INTERRUPT 185 NONE Level, ExcptPtr

WAIT INTERRUPT 187 NONE Level, ExcptPtr

S
E
G CREATE SEGMENT 184 0600H Size, ExcptPtr
M DELETE SEGMENT 184 0603H , SEGMENT, ExceptPtr
E ,
N
T

7-16 AFN·020588

80130/80130·2
. iAPX 86/30, 88/30, 186/30, 188/30

Table 4. OSP Primitives (Continued)

Class
OSP Interrupt Entry Code Parameters

Primitive Number In AX On Caller's Stack

M CREATE MAILBOX 184 0300H Mailbox flags, ExcptPtr
A DELETE MAILBOX 184 0301H MAILBOX, ExcptPtr
I RECEIVE MESSAGE 184 0303H MAILBOX, Time Limit ResponsePtr,
L ExcptPtr
B SEND MESSAGE 184 0302H MAILBOX,Message Response, ExcptPtr
0
X

R ACCEPT CONTROL 184 0504H REGION, ExcptPtr
E CREATE REGION 184 0500H Region Flags, ExcptPtr
G DELETE REGION 184 0501H REGION, ExcptPtr

. I RECEIVE CONTROL 184 0503H REGION, ExcptPtr
0 SEND CONTROL 184 0502H ExcptPtr
N

E DISABLE DELETION 184 0OO1H TOKEN,ExcptPtr
N ENABLE DELETION 184 0OO2H TOKEN,ExcptPtr
V
I GET EXCEPTION

R HANDLER 184 0800H Ptr, ExcptPtr

0 GET TYPE 184 OOOOH TOKEN,ExcptPtr
N GET TASK TOKENS 184 0206H Request, ExcptPtr
M SET EXCEPTION
E HANDLER 184 0801H Ptr, ExcptPtr
N SET OS EXTENSION 184 0700H Code,lnstPtr, ExcptPtr
T SIGNAL
A EXCEPTION 184 0802H Exception Code, Parameter Number,
L StackPtr,O,O,ExcptPtr

NOTES:
All parameters are pushed onto the OSP stack. Each parameter is one word. See Figure 3 for Call Sequence.

Explanation of the Symbols

JOB OSP JOB SOT Token
TASK OSP TASK SOT Token
REGION OSP REGION SOT Token
MAILBOX OSP MAILBOX SOT Token
SEGMENT OSP SEGMENT SOT Token
TOKEN Any SOT Token

Level
ExcptPtr
Message
Ptr
Seg

Interrupt Level Number
Pointer to Exception Code
Message Token
Pointer to Code,Stack etc. Address
Value Loaded into appropriate Segment Register
Value Parameter.

7-17 AFN·02059B

80130/80130-2
. iAPX 86/30, 88/30, 186/30, 188/30

Table 5. OSP Primitive Performance Examples

Datatype Class Primitive Execution Speed·
(microseconds)

JOB CREATE JOB 2950
TASK CREATE TASK (no preemption) 1360

SEGMENT CREATE SEGMENT 700
MAILBOX SEND MESSAGE (with task switch) 475

SEND MESSAGE (no task switch) 265
RECEIVE MESSAGE (task waiting) 540
RECEIVE MESSAGE (message waiting) 260

REGION SEND CONTROL 170
RECEIVE CONTROL 205

'8 MHz iAPX 86/30 OSP Configuation.

Table 6. Baud Rate Count Values (16X)

Baud 8 MHz Count 5 MHz Count
Rate Value Value

300 1667 1042
600 833 521

1200 417 260
2400 208 130
4800 104 65
9600 52 33

7-18 AFN·02059B

inter 80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

Table 7a. Mnemonic Codes for Unavoidable Exceptions

E$OK Exception Code Value - 0
the operation was successful

E$TIME Exception Code Value = 1
the specified time limit expired before completion of the operations was possible

E$MEM Exception Code Value = 2
insufficient nucleus memory is available to satisfy the request

E$BUSY Exception Code Value - 3
specified region is currently busy

E$LlMIT Exception Code Value - 4
attempted violation of a job, semaphore, or system limit

E$CONTEXT Exception Code Value - 5
the primitive was called in an illegal context (e.g., call to enable for an already enabled
interrupt)

E$EXIST Exception Code Value = 6
a token argument does not currently refer to any object; note that the object could have
been deleted at any ti me by its owner

E$STATE Exception Code Value = 7
attempted illegal state transition by a task

ENOTCONFIGURED Exception Code Value - 8
the primitive called is not configured in this system

E$INTERRUPT$SATURATION Exception Code Value - 9
The interrupt task on the requested level has reached its user specified saturation point
for interrupt service requests. No further interrupts will be allowed on the level until the
interrupt task executes a WAIT$INTERRUPT. (This error is only returned, in line, to
interrupt handlers.)

E$INTERRUPT$OVERFLOW Exception Code Value = 10
The interrupt task on the requested level previously reached its saturation pOint and
caused an E$INTERRUPT$SATURATION condition. It subsequently executed an
ENABLE allowing further interrupts to come in and has received another SIG-
NAL$INTERRUPTcall, bringing it over its specified saturation pOint for interrupt service
requests. (This error is only returned, in line, to interrupt handlers).

Table 7b. Mnemonic Codes for Avoidable Exceptions

E$ZERO$DIVIDE Exception Code Value = 8000H
divide by zero interrupt occurred

E$OVERFLOW Exception Code Value = 8001 H
overflow interrupt occurred

E$TYPE Exception Code Value - 8002H
II token argument referred to an object tha was not of required type

E$BOUNDS Exception Code Value = 8003H
an offset argument is out of segment bounds

E$PARAM Exception Code Value = 8004H
a (non-token,non-offset) argument ha,s an illegal value

EBADCALL Exception Code Value = 8005H
an entry code for which there is no corresponding primitive was passed

E$ARRAY$BOUNDS = 8006H Hardware or Language has detected an array overflow

ENDPERROR Exception Code Value = 8007H
an 8087 (Numeric data Processor) error has been detected; (the 8087 status information
is contained in a parameter to the exception handler)

7-19 AFN·02059B

inter 80130/80130-2
iAPX 86/30, 88/30, 186/30, 188/30

ABSOLUTE MAXIMUM RATINGS·

Ambient Temperature Under Bins O°C to 70°C
Storage Temperature -65°C to 150°C
Voltage on Any Pin With

Respect to Ground -1.0V to + 7V
Power Dissipation 1.0 Watts

D.C. CHARACTERISTICS (TA = O°C to WC, Vee = 4.5 to 5.5V)

Symbol Parameter Min.

V'L Input Low Voltage - 0.5

V,H Input High Voltage 2.0

VOL Output Low Voltage

VOH Output High Voltage 2.4

Icc Power Supply Current

lu Input Leakage Current

ILA IR Input Load Current

ILO Output Leakage Current

VCLl Clock Input Low

VCHI Clock Input High 3.9

C'N Input Capacitance

C'O I/O Capacitance

Icu Clock Input Leakage Current

"NOTICE: Stresses above those listed under Absolute
Maximum Ratings may cause permanent damage to the
device. This is a stress rating only and functional operation
of the device at these or any other conditions above those
indicated in the operational section~ of this specification
is not implied. Exposure to absolute maximum rating con
ditions for extended period may affect device reliability.

Max. Units Test Conditions

0.8 V

Vcc + .5 V

0.45 V 10L ~ 2mA

V IOH ~ -4001Jl\

200 rnA TA ~ 25 C

10 IJl\ 0< Y'N < Vcc
10 IJl\ Y'N ~ Vcc

-300 "A Y'N ~ 0
10 IJl\ .45 ~ Y'N ~ Vee
0.6 V

V

10 pF

15 pF

10 IJl\ Y'N ~ Vee
150 IJl\ V,N ~ 2.5V
10 IJl\ V,N ~ OV

A.C. CHARACTERISTICS (TA ~ 0-70°C, Vcc ~ 4.5-5.5 Vol~ Vss ~ Ground)

80130 80130-2
Symbol Parameter Min. Max. Min. Max. Units Test Conditions

TCLCL CLK Cycle Period 200 - 125 - ns

TCLCH CLKLowTime 90 - 55 - ns

TCHCL ClK High Time 69 2000 44 2000 ns

TSVCH Status Active Setup Time 80 - 65 - ns

TCH~ Status Inactive Hold Time 10 - 10 - ns

TSHCL Status Inactive Setup TIme 55 - 55 - ns

TCLSH Status Active Hold Time 10 - 10 - ns

TASCH Address Valid Setup TIme 8 - 8 - ns

TCLAH Address Hold TIme 10 - 10 - ns

TCSCL Chip Select Setup Time 20 - 20 - ns

TCHCS Chip Select Hold Time 0 - 0 - ns

TOSCL Write Data Setup TIme 80 - 60 - ns

TCHOH Write Data Hold TIme 10 - 10 - ns

TJLJH IRLowTime 100 - 100 - ns

TCLDV Read Data Valid Delay - 140 - 105 ns CL ~ 200pE

TCLDH Read Data Hold Time 10 - 10 - ns

TCLDX Read Data to Floating 10 100 10 100 ns

TCLCA Cascade Address DelayTime - 85 - 65 ns

7-20 AFN·02059B

inter 80130/80130-2
iAPX 86/30, 88130, 186130, 188/30

A.C. CHARACTERISTICS (Continued)

80130 80130·2
Symbol Parameter Min. Max. Min. Max. Units Notes

TClCF Cascade Addresse Hold Time 10 - 10 - ns

TIAVE INTA Status t Acknowledge - 80 - 80 ns

TCHEH Acknowledge Hold Time 0 - 0 - ns

TCSAK Chip Select to ACK - 110 - 110 ns

TSACK Status to ACK - 140 - 140 ns

TAACK Address to ACK - 90 - 90 ns

TCLOO TImer Output Delay TIme - 200 - 200 ns Cl -100pF

TClOO1 Timerl Output Delay Time - 200 - 200 ns Cl -100 pF

TJHIH INT Output Delay - 200 - 200 ns

TIRCl IR Input Set Up 20 20 ns

WAVEFORMS
A.C.

elK

SYSTICK.
DELAY. BAUD ______________ ~x~ ____ _

elK

IR

INT

7-21 AFN-02059B

80130/80130·2 intJ iAPX 86/30, 88/30, 186/30;188/30

WAVEFORMS
A.C.

TO Tl T2 I T3 I
TW

ClK

• TCHCl .. reLCH I

I I
,

-'

~ ~
releL TeLSH FSHC~

0

\ I I I
52,51, S

~o ~~
BHE. A, 'I-Ap VALID x--- --

D"-r TeseL
BHE,A

SoT
I TDsel TE CYCLE WRI

I ADDRESS VALID 'jJ{jJ./'J. WRITE DATA VALID

:l -l r-TCSAK

TAACK
~ 0

I
TelDX o CYCLE I+- TCLDV ~H· J FLOAT

READ DATA VALID ttl ADDRESS VALID

K I
I

TSACK \
TACVCLE D I~

(i) CASCADE ADDRESS
FLOAT ® -ADo POINTER

AD

REA

AD,s-

2ND IN

~

TIAVE

I
K 0

IR \ @

TIAVE I
NOTES
1 CASCADE AOORE~S PRESENTED ON AD8, AD9 AND A010 CORRESPONDING TO CASO, CASt

AND CAS2 RESPFCnVELY A011·A015 LINES ARE ACTIVE AND HAVE UNKNOWN VALUES ADO-AD7
ARE TRISTATE

2 POINTER VAlUE IS ACTIVE ONLY IF POINTER IS GENERATED FROM THE 80150 AND NOT FROM
EXTERNAL SLAVE UNIT
ACnVE lOW ONLY WHEN POINTER DATA IS BE!NG SUPf'LlED BY THE 80150
lOW ONLY FOR LOCAL INTERRUPT

7-22

TO

i

AS
j

9
I
I

~
FLOAT

~

FLOAT

I
~ r--TCHEH

I
-IJ-- TCHEH

AFN·D2059B

•-n+ _I" 80150/80150-2 ~©w~oo©~ oOO[P@OOfMl~ii'O@OO

- -'eI iAPX 86/50, 88150, 186/50, 188/50
CP/M·86 OPERATING SYSTEM PROCESSORS

• High·Performance Two·Chip Data
Processors Containing the Complete
CP/M·86 Operating System

• Memory Disk Makes Possible Diskless
CP/M·86 Systems

• No License or Serialization Required
• Standard On-Chip BIOS (BaSic

Input/Output System) Contains Drivers
for 8272A, 8274, 8255A, 8251 A, 7220
Bubble Memory Controller

• Built·in Operating System Timers and
Interrupt Controller

• BIOS Extensible with User· Supplied
Peripheral Drivers

• 8086/80150/80150·2/8088/80186/80188
Compatible At Up To 8 MHz Without

• User Intervention Points Allow Addition
of New System Commands

wait States

The Intel iAPX 86/50, 88/50, 186/50, and 188/50 are two-chip microprocessors offering general-purpose
CPU instructions combined with the CP/M-86 operating system_ Respectively, they consist of the 8- and
16-bit software compatible 8086, 8088, 80186, and 80188 CPU plus the 80150 CP/M-86 operating system
extension,
CP/M-86 is a single-user operating system designed for computers based on the Intel iAPX 86, 88, 186,
and 188 microprocessors, The system allows full utilization of"the one m"egabyte of memory available for
application programs, The 80150 stores CP/M-86 in its 16K bytes of on-chip memory, The 80150 will run
third-party applications software written to run under standard Digital Research CP/M-86,
The 80150 is implemented in N-Channel, depletion-load, silicon-gate technology (HMOS), and is housed
in a 40-pin package_ Included on the 80150 are the CP/M-86 operating system, Version 1,1, plus hardware
support for eight interrupts, a system timer, a delay timer, and a baud rate generator,
·CP/M·8S 1$ a trademark of Digital ResearCh, Inc

o
8284A

CLOCK
DRIVER

ROV

1-------1
I I
I 8.88 I

OR I I 8.86

I INTERRUPT STATUS I

: I
I
I .----'----<------"'---,

INTERRUPT STATUS

BUS
INTERFACE

I
I

CS LlA I~------'

I

BAUD RATE
TIMER

80150

DELAY
TIMER

INTERRUPT
REQUESTS

_J~
SYSTEM
TIMER

,APX 86150, 88150

PROGRAM
MEMORY

Figure 1. iAPX 86/50, 88/SO Block Diagram

DATA
MEMORY

Thefoltowlng are trademarks of Intel Corporation and Its afflhatesand may be used only to Identify Intel products ex?, CREDIT. I, ICE, ICS, 1m. InSlte. Intel. INTEL. IntelevlSlon,lntellmk.

~~e~:~~.~~~~: ~~~=::~~~~P~: ~~~~h~Sc~~~:~~~lr~n~~7~~~:R~;~;~~~~;~~~.~~~~2~eE~~6~~~:u~:~~;:~~~;:~a~~u~~:~Y~~~~~~~~~;t~~~' :~~~~~~~~b~~:;~~:'~t~~~~t~:~~
of Any CircUItry Other Than CircUItry Embodied 10 an Intel Product No Other Patent licenses are Implied ©INTEl CORPORATION, 1982 SEPTEMBER 1982

7-23 ORDER NUMBER: 210705-002

intJ . 8d'150/80150-2
IAPX 86150, 88150, 186/50, 188/50

! MAX I
':E

Vss Vee Vss Vee

AD14 A015 A014 AD15

AD13 SHE AD13 A18/S3

AD12 IR7 AD12 A011fS4

AD11 IR6 AD11 A181$S

AD10 IRs AD10 A19/S6

ADO IRO ADO SHE/S7 (HIGH)

AD6 'IR3 ADa MNIMx

AD7 IR2 AD7 iiO

AD. IR1 ADO AO/GTo

ADS IRO ADS RO/GT1

ADO INT ADO LOCK

AD. S2 AD. 52

AD2 S, AD2 51

AD1 so' AD1 SO

ADO ACK ADO aso

MEMes LiR NMI aS1

IOCS SYSTICK INTR TEST

elK DELAY ClK READY

Vss BAUD Vss RESET

Figure 2. iAPX 86150. 88150 Pin Configuration

Table 1. 80150 Pin Description

Symbol Type Name and Function

AD,s-ADo 110 Address Data: These pins constitute the time multiplexed memory address (T,) and
data (T 2, T 3, T W' T 4) bus. These lines are active HIGH. The address presented during
T, of a bus cycle will be latched internally and interpreted as an 80150 internal
address if MEMCS or lacs is active for the invoked primitives. The 80150 pins float
whenever it IS not chip selected, and drive these pins only during T2- T4 of a read
cycle and T, of an INTA cycle.

BHEIS7 I Bus High Enable: The 80150 uses the BHE signal from the processor to determine
whether to respond with data on the upper or lower data pins, or both. The signal is
active LOW. BHE is latched by the 80150 on the trailing edge of ALE. It controls the
80150 output data as shown.

BHE Ao
0 0 Word on AD,s-ADo
0 1 Upper byte on AD,5 - ADa
1 0 Lower byte on AD7-ADo .
1 1 Upper byte on AD7-ADO

-
S2, S"SO I Status: For the 80150, the status pins are used as inputs only. 80150 encoding follows:

S2 S, So

0 0 0 INTA
0 0 1 lORD
6 1 0 10WR
0 1 1 Passive
1 0 0 Instruction fetch
1 0 1 MEMRD
1 1 X Passive

7-24 AFN·01467A

80150/80150-2
iAPX 86150, 88/50, 186/50, 188/50

Table 1. 80150 Pin Description (Continued)

Symbol Type Name and Function

ClK I Clock: The system clock provides the basIc timing for the processor and bus controller.
It is asymmetric with a 33% duty cycle to provide optimized mternal timing The 80150
uses the system clock as an input to the SYSTICK and BAUD timers and to synchronize
operation with the host CPU

INT a Interrupt: INT IS HIGH whenever a valid interrupt request IS asserted. It IS normally used
to mterrupt the CPU by connectmg It to INTR

IRrlRo I Interrupt Requests: An mterrupt request can be generated by raising an IR mput (lOW
to HIGH) and holdmg It HIGH until It IS acknowledged (Edge-Triggered Mode), or Just by a
HIGH level on an IR mput (level-Triggered Mode).

ACK a Acknowledge: This line is lOW whenever an 80150 resource is being accessed. It is
also lOW during the first INTA cycle and second INTA cycle if the 80150 is supplying
the mterrupt vector information. This signal can be used as a bus ready aCknowl-
edgement and/or ·bus transceiver control.

MEMCS I Memory Chip Select: ThiS Input must be driven lOW when a kernel primitive IS bemg
fetched by the CPU AD13-ADo are used to select the mstructlon

lacs I Input/Output Chip Select: When this input IS low, during an lORD or IOWR cycle, the
80150's kernel primitives are accessing the appropriate peripheral function as specI-
fied by the following table:

BHE A3 A2 Al Ao

0 X X X X Passive
X X X X 1 Passive

,
I X 0 1 X X Passive

1 0 0 X 0 Interrupt Controller
1 1 0 0 0 Systlck Timer
1 1 0 1 0 Delay Counter
1 1 1 a 0 Baud Rate Timer
1 1 1 1 0 Timer Control

LlR a local Bus Interrupt Request: ThiS signal IS lOW when the mterrupt request IS for a
non-slave mput or slave mput programmed as bemg a local slave

Vee Power: Vee IS the +5V supply pm

VSS Ground: VSS IS the ground pm
--

SYSTICK a System Cloc,k Tick: Timer 0 Output

DELAY a DELAY Timer: Output of timer 1

BAUD a Baud Rate Generator: 8254 Mode 3 compatible output. Output of 80150 Timer 2.

The 80150 breaks new ground in operating system
software-on-silicon components. It is unique
because it is the first time that an industry
standard personal/small business computer
operating system is being put in silicon. The
80150 contains Digital Research's CP/M-86
operating system, which is designed for Intel's
line of software- and interface-compatible iAPX
86, 88, 186, and 188 microprocessors. Since the
entire CP/M-86 operating system is contained on
the chip, it is now possible to design a diskless
computer that runs proven and commonly
available applications software. The 80150 is a

true operating system extension to the host
microprocessor, since it also integrates key
operating system-related peripheral functions
onto the chip.

MODULAR DESIGN
Based on a proven, modular design, the system in
cludes the:

• CCP: Console Command Processor

The CCP is the human interface to the
operating system and performs decoding and

7-25 AFN-01467B

80150/80150-2
IAPX 86/50, 88/50, 186/50, 188/50 &'IQ)W&'~«;~ O~r?©[ffilMl&.ifO©~

execution of user commands.

• BOOS: Basic Disk Operating System

The BOOS is the logical, invariant portion of the
operating system; it supports a named file
system with a maximum of 16 logical drives,
containing up to 8 megabytes each for a poten·
tial of 128 megabytes of on·line storage.

• BIOS: Basic Input/Output System

The physical, variant portion of the operating
system, the BIOS contains the system
dependent input/output device handlers.

CP/M· COMPATIBILITY
CP/M-86 files are completely compatible with
CP/M for 8080- and 8085-based microcomputer
systems. This simplifies the conversion of soft
ware developed under CP/M to take full advantage
of iAPX 86,88, 186, 188-based systems.

The user will notice no significant difference be
tween CP/M and CP/M-86. Commands such as
DIR, TYPE, REN, and ERA respond the same way
in both systems.

CP/M-86 uses the iAPX 86, 88, 186, 188 registers
corresponding to 8080 registers for system call
and return parameters to further simplify software
transport. The 80150 allows application code and
data segments to overlap, making the mixture of
code and data that often appears in CP/M applica
tions acceptable to the iAPX 86, 88, 186, 188.

Unique Capabilities of CP/M·86 in Silicon
1. CP/M-86 on-a-chip reduces software develop

ment required by the system designer. It can
change the implementation of the operating
system into the simple inclusion of the 80150
on the CPU board.

As described later, the designer can either
simply incorporate the Intel chip without the
need for writing even a single line of additional
code, or he can add additional device drivers by
writing only the small amount of additional
code required.

2. The 80150 is the most cost-effective way to im
plement CP/M-86 in a microcomputer. The in
tegration of CP/M-86 with the 16K bytes of
system memory it requires, the two boot ROMS
required in a diskette-based CP/M-86, and the
on-chip peripherals (interrupt controller and
timers) lead to savings in software, parts cost,
board space, and interconnect wiring.

3. The reliability of the microcomputer is in-

7-26

creased significantly. Since CP/M-86 is now
always in the system as a standard hardware
operating system, a properly functioning
system diskette is not required. CP/M-86 in
hardware can no longer be overwritten acciden
tally by a runaway program. System reliability
is enhanced by the decreased dependence on
floppy disks and fewer chips and interconnec
tions required by the highly integrated 80150.

4. The microcomputer system boots up CP/M-86
on power-on, rather than requiring the user to
go through a complicated boot sequence, thus
lowering the user expertise required.

5. Diskless CP/M-based systems are now easy to
design. Since CP/M is already in the microcom
puter hardware, there is no need for a disk drive
in the system if it is not desired. Without a disk
drive, a system is more portable, simpler to use,
less costly, and more reliable.

6. The administrative costs associated with
distributing CP/M-86 are eliminated. Since
CP/M-86 is now resident on the 80150 in the
microcomputer system, there is no end-user
licensing required nor is there any serialization
requirement for the 80150 (because no CP/M
diskette is used).

7. End-users will value having their CP/M
operating system resident in their computer
rather than on a diskette. They will no longer
have to back up the operating system or have a
diskette working properly to bring the system
up in CP/M, increasing their confidence in the
integrity, reliability, and usability of the system.

80150 FUNCTIONAL DESCRIPTION
The 80150 is a processor extension that is fully
compCitible with the 8086, 8088, 80186, and 80188
microprocessors. When the 80150 is combined
with the microprocessor, the two-chip set is
called an Operating System Processor and is
denoted as the iAPX 86150,88150,186150, or 188150.
The basic system configuration is shown in
Figure 1. The 80150 connects directly to the multi
plexed addressldata bus and runs up to 8 MHz
without wait states.

A. Hardware. Figure 3 is a functional diagram of
the 80150 itself. CP/M-86 is stored in the
16K-bytes of control store. The timers are com
patible with the standard 8254 timer. The inter
rupt controller, with its eight programmable in
terrupt inputs and one interrupt output, is
compatible with the 8259A Programmable In
terrupt Controller. External slave 8259A inter-

·CP/M IS a registered trademark of Digital Research, Inc

AFN'()14678

intJ 8015O18O1~2
IAPX 8&150, 88150, 186/50, 188150 ~@W~OO©~ OOOIi"@OO~~'iiO@OO

r----------------------------------,
I OPERATING SYSTEM UNIT I
I
I

I
DO-7 I

I

r I 8

PROGRAMMABLE
INTERRUPT I

lOGIC
INTERRUPT INP UTS

INTERRUPT OUT

CONTAOl
STORE

2 SYSTEM
TIMER

~ SYSTEM

If D8·1S

: r::- DELAY DelAY
TIMER

:)I

: 8 I
I

:
BAUD RATE ~ BAUDRA

GENERATOR I
I

I I

TE

f--------- ------ ------- -- --------------1
I I
I <- I
I r;--- CLOCK
I
I DATA I 3 ,. BUS ~ STATUS I BUFFER II INTERFACE

< Z • AND I 4

I ADDRESS CONTROL ~aUSCON
ADDRESS I LATCH

TROL

DATA 8US I ~ LDCAL
I I INTERAU PT
I CONTROL UNIT I ([iA) L __________________________________ ~

Figure 3. 80150 Internal Block Diagram

rupt controllers can be cascaded with the
80150 to expand the total number of interrupts
to 57.

B. Software. Digital Research's version 1.1 of
CP/M·8S forms the basis of the 80150. CP/M
consists of three major parts: the Console
Command Processor (CCP), the Basic Disk
Operating System (BOOS), and the Basic In·
put/Output System (BIOS). Details on CP/M·86
are provided In Digital Research's CP/M-86
Operating System User's Guide and CP/M·B6
Operating System System Guide.

CCP - Console Command Processor
The CCP provides all of the capabilities' provided
by Digital Research's CCP. Built·in commands
have been expanded to include capabilities nor·
mally included as tranSient utilities on the Digital
Research CP/M·86 diskette. Commands are pro-

7-27

vided to.format diskettes, transfer files between
devices (based on Digital Research's Peripheral
Interchange Program PIp), and alter and display
I/O device and file status (based on Digital
Research's STAT).

Through User Intervention Points, the standard
CP/M·86 CCP is enhanced to allow the user to add
new built-in commands to further customize a
CP/M·86 system.

BDOS - Basic Disk Operating System
Once the CCP has parsed a command, it sends it
to the BOOS, which performs system services
such as managing disk directories and files.
Some of the standard BOOS functions provide:

Console Status
Console Input and Output
List O.utput
Select Drive
SE!t Track and Sector

AFN 014678

Read/Write Sector
Load Program

The BOOS in the 80150 provides the same func
tions as the standard Digital Research CP/M-86
BOOS.

BIOS - Basic Input/Output System
The BIOS contains the system-dependent· I/O
drivers. The 80150 BIOS offers two fundamental
configuration options:

1. A predefined configuration which supports
minimum cost CP/M-86 microcomputer
systems and which requires no oper,ating
system development by the'system designer.

2. An OEM-configurable mode, where the
designer can choose among several drivers of-

808818086180186/80188 r-- 80150
CPU

fered on the 80150 or substitute or add any ad
ditional device drivers of his choice.

These two options negate the potential software
on-silicon pitfall of inflexibility in system design.
The OEM can customize the end system as
desired.

The predefined configuration offers a choice
among several peripheral chip drivers included on
the 80150. Drivers for the following chips are in
cluded in the 80150 BIOS:

8251A

8274

8255A

8272A

Universal Synchronous/
Asynchronous Receiver/Transmit·
ter (USART)
Multi·Protocol Serial Controller
(MPSC)
Programmable Parallel Interface
(PPI)
Floppy Disk Controller

7220 Bubble Memory Controller

FLOPPY DISK

I
8272A

ADDRESS/DATA BUS

8251A 8255A

I I
CONSOLE PRINTER

Figure 4. Predefined Configuration

7-28 AFN 01467B

inter 80150/80150-2
iAPX 86150. 88/SO, 186/50. 188/50

Even in the predefined configuration, the system
designer (or end user, if the system designer
desires) may select parameters such as the baud
rates for the console and printer, and the floppy
disk size (standard 8" or 511." mini-floppy) and
format (FM single density or MFM double density,
single-sided or double-sided).

Drivers for the 80150 on-chip timers and interrupt
controller are also included in the BIOS.

The 80150 takes advantage of the 80186 and 80188
on-chip peripherals in an iAPX 186/50 or 188/50
system. For example, the integrated DMA controller is
used. Also fully utilized are the integrated memory chip
selects and I/O chip selects.

Since all microcomputer configurations cannot
be anticipated, the OEM-configurable mode
allows the system designer to use any set of
peripheral chips desired. This configuration is
shown in Figure 5.

By simply changing the jump addresses in a con
figuration table, the designer can also gain the
flexibility of adding custom BIOS drivers for other

8088/808~~'U86/80188 r--- 80150

peripheral chips, such as bubble memories or
more complex CRT controllers. These drivers
would be stored in memory external to the 80150
itself. By providing the configurability option, the
80150 is applicable to a far broader range of
deSigns that it would be with an inflexible BIOS.

MEMORY ORGANIZATION
When using the predefined configuration of the
80150 BIOS, the 80150 must be placed in the top
16K of the address space of the microprocessor
(starting at location FCOOOH) so that the 80150
gains control when the microprocessor is reset.
Upon receipt of contrOl, the 80150 writes a con
figuration block into the bottom of the micro
processor's address space, which must be in
RAM. The 80150 uses the area after the inter
rupt vectors for system configuration information
and scratch-pad storage.

When using the OEM·configurable mode of the
80150 BIOS, the 80150 is placed on any 16K boun-

FLOPPY DISK

I
8272A OTHER

PERIPHERALS

ADDRESS/DATA BUS

8251A

I
ASYNCHRONOUS

COMMUNICATIONS,
CONSOLE,

SERIAL PRINTER

8255A

I
KEYBOARD,

PARALLEL PRINTER

Figure 5. OEM Configurable System

7-29

8274

I
SYNCHRONOUS LINE,

SERIAL PRINTER,
CONSOLE

AFN 014678

inter 80150/80150-2
iAPX 8&'50,88/50,186/50.188150 &'[Q)W&'OO©jg OOOIF@OO~&''ii'U@oo

dary of memory except the highest (FCOOOH) or
lowest (OOOOOH). The user writes interface code (in
the form of a simple boot ROM) to incorporate and
link additional features and changes into the
standard 80150 environment. The configuration
block may be located as desired in the address
space, and its size may vary widely depending on
the application.

Memory Disk and Bubble Memories
A unique capability offered by the 80150 is the
Memory Disk. The Memory Disk consists of a
block of RAM whose size can be selected by the
designer. The Memory Disk is treated by the
BOOS as any standard floppy disk, and is one of
the 16 disks that CPIM can address. Thus files can
be opened and closed, programs stored, and
statistics gathered on the amount of Memory Disk
space left.

The 80150 also contains software drivers for 7220
bubble memory controller. Use of a bubble memory
board as a substitute for one floppy disk drive is directly
supported.

,--------- ----

• rei';(

S2~--~
f- ClK 8288

50_ r-v
~

8086 8
SHE ~
A19

~RESS/O~ 8282

r----
INT ADO

'---

.,0 I

INT
'- ClK 5O[:c'

4015

ADO~ DECODE ME'~~: ~-~ lOGIC k== j

ACK
LlR
IRO

"

The Memory Disk opens the possibility of a por
table low-cost diskless microcomputer or network
station. Applications software can be provided in
a number of ways: ' .

a. telephone lines via a modem.
b. ROM-based software.
c. a network.
d. bubble memory based software.
e. low-cost cassettes.

TYPICAL SYSTEM CONFIGURATION
Figure 6 shows the processing cluster of a
"typical" iAPX 86/50 or iAPX 88/50 asp system.
Not shown are subsystems likely to vary with the
application. The configuration includes an 8086
(or 8088) operating in maximum mode, an 8284A
cl.ock generator and an 8288 system controller.
Note that the 80150 is I.ocated on the CPU side of
any latches or transceivers.

I

Timers
The Timers are connected to the lower half of the
data bus and are addressed at even addresses.
The timers are read as two successive bytes .

CONTROL "-

-
SHE
A1' LOCAL

"- AND
ADDRESS SYSTEM

RESOURCES
AO

...--
015

~

8286
~~

~ " DO

'---

J
r~' IR7

SYSTICK ~
=1 INTERRUPT REQUESTS

Figure 6, Typical OSP Configuration

7~30 AFN 01467B

80150/80150-2
iAPX 86150, 88/50, 186/50, 188/50 &'[Q)W&'~©~ O~[},@OO~&.'iJ'O@~

always LSB followed by MSB. The MSB is always
latched on a read operation and remains latched
until read. Timers are not gatable. An external
8254 Programmable Interval Timer may be added
to the system.

Baud Rate Generator
The baud rate generator operates like an 8254
(square wave mode 3). Its output, BAUD, is initially
high and remains high until. the Count Register is
loaded. The first falling edge of the clock after the
Count Register is loaded causes the transfer of
the internal counter to the Count Register. The
output stays high for N/2 [(N + 1)/2 if N is odd] and
then goes low for N/2 [(N -1)/2 if N is odd]. On the
falling edge of the clock which signifies the final
count for the output in low state, the output
returns to high state and the Count Register is
transferred to the internal counter. The baud rates
can vary from 300 to 9600 baud.

The baud rate generator is located at OCH (12),
relative to the 16-byte boundary in the I/O space in
which the 80150 component is located. The timer
control word is located at relative address,
OEH(14). Timers are addressed with 10CS = O.
Timers 0 and 1 are assigned to use by the OSP,
and should not be altered by the user.

The 80150 timers are subset compatible with 8254
timers.

I nterrupt Controller
The Programmable Interrupt Controller (PIC), is
also an integral unit of the 80150. Its eight input
pins handle eight vectored priority interrupts. One
of these pins must be used for the SYSTICK time
function in timing waits, using an external con
nection as shown. During the 80150 initialization
and configuration sequence, each 80150 interrupt
pin is individually programmed as either level or
edge sensitive. External slave 8259A interrupt
controllers can be used to expand the total
number of interrupts to 57.

7-31

In addition to standard PIC functions, the 80150
PIC unit has an LlR output signal, which when low
indicates an interrupt acknowledge cycle. LlR = 0
is provided to control the 8289 Bus Arbiter
SYSB/RESB pin. This will avoid the need of re
questing the system bus to acknowledge local
bus non-slave interrupts. The user defines the in
terrupt system as part of the configuration.

INTERRUPT SEQUENCE
The interrupt sequence is as follows:

1. One or more of the interrupts is set by a low
to-high transition on edge-sensitive IR inputs
or by a high input on level-sensitive IR inputs.

2. The 80150 evaluates these requests, and
sends an INT to the CPU, if appropriate.

3. The CPU acknowledges the INT and responds
with an interrupt acknowledge cycle which is
encoded in S2 - SO.

4. Upon receiving the first interrupt acknowledge
from the CPU, the highest-priority interrupt is
set by the 80150 and the corresponding edge
detect latch is reset. The 80150 does not drive
the address/data bus during this bus cycle but
does acknowledge the cycle by making
ACK = 0 and sending the LlR value for the IR
input being acknowledged.

5. The CPU will then initiate a second interrupt
acknowledge cycle. During this cycle, the
80150 will supply the cascade address of the
interrupting input at T 1 on the bus and also
release an 8-bit pointer onto the bus if ap
propriate, where it is read by the CPU. If the
80150 does supply the pOinter, then ACK will
be low for the cycle. This cycle also has the
value LlR for the IR input being acknowledged.

6. This completes the interrupt cycle. The ISR bit
remains set until an appropriate EXIT INTER
RUPT primitive (EOI command) is called at the
end of the Interrupt Handler.

AFN 01467B

intJ 80150/80150-2
iAPX 86/SO, 88/SO, 186/50, 188/50

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias
Storage Temperature
Voltage on Any Pm With

Respect to Ground
Power Dissipation

........ O'C to 70'C
. - 65'C to 150'C

-1.0Vto + 7V
.. 1 0 Watts

o C. CHARACTERISTICS (T A = O'C to 7O'C Vee = 4 5 to 5 5V)

Symbol Parameter Min.

Vil Input low Voltage - 0.5

V,H Input High Voltage 2.0

VOL Output low Vol\age

VOH Output High Voltage 2.4

Icc Power Supply Current

III Input leakage Current

ILA IR Input load Current

ILO Output leakage Current

VCLI Clock Input low

VCHI Clock Input High 39

C'N Input Capacitance

C,O I/O CapaCitance

ICLI Clock Input leakage Current

'NOTICE: Stresses above those listed under Absolute
Maximum Ratings may cause permanent damage to the
device. This is a stress rating only and functIOnal operation
of the device at these or any other conditions above those
indicated In the operational sections of this specification
is not Imp/!ed. Exposure to absolute maximum rating con
ditions for extended penod may affect device reliability.

Max. Units Tesf Conditi!>ns

0.8 V

Vec +.5 V

0.45 V 10L ~ 2mA

V 10H ~ -400~A

200 rnA TA ~ 25 C

10 ~A 0< Y'N < VCC
10 ~A Y,N ~ Vcc

-300 ~A Y,N ~ 0

10 ~A 45" V,N " Vcc
0.6 V

V

10 pF

15 pF

10 ~A Y,N ~ Vcc
150 ~A Y,N ~ 2.5V
10 ~A Y,N ~ OV

A.C. CHARACTERISTICS (TA ~ 0-70'C, Vcc ~ 4.5-55 Volt, Vss = Ground)

80150 80150-2

Symbol Parameter Min. Max. Min. Max. Units Test Conditions

TCLCL ClK Cycle Penod 200 - 125 - ns

TCLCH ClK low Time 90 - 55 - ns

TCHCL ClK High Time 69 2000 44 2000 ns

TsvcH Status Active Setup Time 80 - 65 - ns

TcHsv Status Inactive Hold Time 10 - 10 - ns

TSHCL Status Inactive Setup Time 55 - 55 - ns

TcLsH Status Active Hold Time 10 - 10 - ns

TAscH Address Valid Setup Time 8 - 8 - ns

TCLAH Address Hold Time 10 - 10 - ris

TcscL Chip Select Setup Time 20 - 20 - ns

TcHcs Chip Select Hold Time 0 - 0 ns

TDSCL Write Data Setup Time 80 - 60 - ns

TCHDH Write Data Hold Time 10 - 10 - ns

TJLJH IR low Time 100 - 100 - ns

TCLDV Read Data Valid Delay - 140 - 105 ns CL - 200 pF

TeLDH Read Data Hold Time 10 - 10 - ns

TCLDX Read Data to Floating 10 100 10 100 ns .

TCLCA Cascade Address Delay Time - 85 - 65 ns

7-32 AFN 014678

80150/80150-2
iAPX 86150, 88/50, 186/50, 188/50 ~@W~OO©~ OOOIF@IRlIMI&'ii'D@OO

A.C. CHARACTERISTIC (Continued)

Symbol Parameter

TClCF Cascade Addresse Hold Time

TIAVE INTA Status t Acknowledge

TCHEH Acknowledge Hold Time

TCSAK Chip Select to ACK

TSACK Status to ACK

TAACK Address to ACK

TCLOO Timer Output Delay Time

TClOO1 Timer1 Qutput Delay Time

TJHIH INT Output Delay

TIRCl IR Input Set Up

WAVEFORMS

A.C.

CLK

SYSTICK,
DELAV.BAUD

I

Min.

10

-
0

-
-
-
-
-
-

20

80150 80150-2

Max. Min. Max. Units Notes

- 10 - ns

80 - 80 ns

- 0 - ns

110 - 110 ns

140 - 140 ns

90 - 90 ns

200 - 200 ns Cl ~ 100pF

200 - 200 ns Cl ~ 100pF

200 - 200 ns

20 ns

} / \
TeLOO -,

X

IR -=to TJLJH 'l
INT

~ TJHIH y= __ _

7-33 AFN-01467B

80150/80150-2
iAPX 86150, 88150, 186/50, 188/50

WAVEFORMS
A.C.

T4

I
.. TCHCL

CLK -'

~I
0

\
$2 51, S

I
8HE AD 'r

s. lOICS

I
WRI TE CYCLE

.

I -
AD

=r
REA o CYCLE

I
ADJ

K I
TA CYCLE I

I~I
-ADo

--J

2NDIN

ADI~

K

TI T2 I T3 I
TW

feLCH I

/ /

~~ r.----- __ '-=':c_'-______
~1 I~

1 / /

pi ~~
y BtlE A A VALID y-----

I I I'
!CSCl .

TOSCl ,

r- .- I
I

ADDRESS VAllO YJtIJtI. WRITE DATAVAUD

-I 1- TCSAK
I

i TAACK '\
I

I--i ~ relOV

i
I!,:'!,H

ADDRESS VALID
FLOAT W READ OATAVALtO

I
I

I

TSACK \

t=J I
@ CASCADE ADDRESS

FLOAT
POINTER (1)

TlAVE

~
\ CD

IR \ 0
TlAVE 1

NOTES
1 CASCADE ADDRESS PRESENTED ON ADS AD9 AND A010 CORRESPONDING TO CASO CASl

AND CAS2 RESPECTIVELY A011-A015 LINES ARE ACTIVE AND HAVE UNKNOWN VALUES ADO-AD7
ARE TRISTArE

2 POINTER VALUE IS ACTIVE ONLY IF POINTER IS GENERATED FROM THE 60150 AND NOT FROM
EXTERNAL SLAVE UNIT
ACTIVE LOW ONLY WHEN POINTER DATA IS BEING SUPPLIED BY THF 80150
LOW ONLY FOR LOCAL INTERRUPT

7-34

T4

I

HS

/

A
I
I

I~
FLOAT

\1~

FLOAT

I
I

-\ FrCHEH

--lj--- TCHEH

User Library

inter
USER LIBRARY

The Insite User's Program Library is an Intel-sponsored software library supporting Intel microcomputer
products. There are currently over 325 programs in the Library collection.

Insite offices are located in the U.S., Brussels, Paris, Germany, the U.K., and Japan, serving about 1,500
members worldwide.

As the Library collection is built on programs submitted by Intel employees as well as customers, we encourage
and welcome all program contributions. These contributions are essential to the growth and success of Insite.

In the following pages you will be introduced to more in-depth information about Insite. Membership and
program submittal forms, including a complete program index listing, are also included for your convenience.

8-1

inter
INSITE™ USER'S PROGRAM LIBRARY

• Programs for 8048, 8051, 8080/8085,
and 8086/8087/8088 Processors

• Accepted Program Submittals Entitle
You to a Free Membership or Free
Program Package

• Worldwide Offices to Serve You

• Diskettes, Paper Tapes, and Listings
· Available for Library Programs

• Program Library Catalog Offering
Hundreds of Programs

• Updates of New Programs Sent During
Subscription Period

Insite, Intel's Software Index and Technology Exchange Library, is a varied collection of programs and
routines that have been written by users of Intel microcomputers, single-board computers, and develop
ment systems. This expanding library of programs covers a broad range of software tools that Includes
monitors, conversion routines, peripheral drivers, translators, math packages, and even games. As a
library member, you can acquire a copy of any program within the library on any of its available types of
media. By taking advantage of the availability of existing library programs, numerous hours of coding and
debugging time can be saved and routine or redundant programming operations can be eliminated. The
Insite Program Library also serves as a learning tool fbr individuals unfamiliar with assembly or high-level
languages associated with Intel's family of microcomputers. .

Membership. Membership in Insite is available on an annual basis. Intel customers may become
members through 'an accepted program contribution or paid membership fee.

Program Submittal •• The Insite Library is built on program submittals contributed by users. Customers are
ercouraged to submit their programs. (Details and forms are available through the Insite Library.) For each
accepted program, submittors will receive a choice of up to three free programs (for a maximum value of $300),
or free membership with Insite for one year.

Program Library Service. DISKETTES, SOURCE LISTINGS or PAPER TAPES are available for every
program in Insite. Diskettes are available on single or double density, 8" or iPDS 5W'. Membership is required to
purchase programs.

Inslte™ Program Library Catalog. Each member will be sent the Program Library Catalog consisting
of an abstract for each program indicating the function of the routine, required hardware and software,
and memory requirements.

Insite members will be updated with abstracts of new programs submitted to the Library during the sub
scription period. For catalog and yearly subscription fee please refer to the Intel OEM Price List or contact
the nearest Insite or Intel Sales Office.

INSITE OFFICES ARE WORLDWIDE, WITH FIVE LOCATIONS TO SERVE YOU:

NORTH AMERICA
Intel Corporation
3065 Bowers Avenue

THE ORIENT
Intel Japan K.K.

Santa Clara, California 95051
5-6 Tohkohdai, Toyosato-cho,
Tsukuba-gun, Ibaraki, 300-26, Japan
ATTN: Insite User's Program Library
Telephone: 029747-8511

ATTN: Insite User's Program Library
Telephone: 408-987-8080

Intel Corporation S.A.R.L.
5 Place de la Balance
Silic 223
94528 Rungis Cedex, France
ATTN: Insite User's Program Library
Telephone: 0687-22-21

EUROPE
Intel Semiconductor GmbH
Seidlstrasse 27
8000 Muenchen 2
West Germany
ATTN: Insite User's Program Library
Telephone: 089-5389-1

8-2

Intel Corporation (U.K.) Ltd.
Pipers Way
Swindon SN3 LRJ
Wiltshire, England
ATTN: Insite User's Program Library
Telephone: 0793-488-388

SUBMITTAL REQUIREMENTS

Programs submitted for Insite review must follow the guidelines listed below:

Programs must be written in a language capable of compilation and assembly by the currently-supported
version of an Intel standard compiler/assembler. Accepted languages are documented in the following manuals
available through Intel's Literature Department.

- BASIC-80 Reference Manual, Order No. 980758

- FORTRAN-SO Programming Manual, Order No. 980481

- FOF!TRAN-86 User's Guide, Order No. 121570

- Pascal-80 User's Guide, Order No. 981015

- Pascal-86 User's Guide, Order No. 121539

- PLIM-SO Programming Manual, Order No. 980268

- PLlM-86 Programming Manual, Order No. 980466

- MC5-48 and UPI-41A Assembly Language Manual, Order No. 980255

- MCS-86 Macro Assembly Language Reference Manual, Order No. 121703

- 8080/S085 Assembly Language Programming Manual, Order No. 980940

- 8086/S087/8088 Macro Assembly Language Reference Manual for 8085 Based Development System,
Order No. 121623

- 8086/8087/8088 Macro Assembly Language Reference Manual for 8086 Based Development System,
Order No. 121703

- 8089 Assembler User's Guide, Order No. 980938

- Microsoft BASIC Compiler Reference Manual, Order No. 121805

- Microsoft BASIC-80 Reference Manual, Order No. 121806

- Microsoft BASIC Reference Book, Order No. 121857

- Microsoft Cobol User's Guide, Order No. 121802

- Microsoft FORTRAN-SO Reference Manual, Order No. 121798

- Microsoft FORTRAN-80 User's Manual, Order No. 121799

- Microsoft M/Sort Reference Manual, Order No. 121809

- Microsoft Utility Software Manual, Order No. 121797

- C-86 Compiler Language User's Guide, Order No. 122085

A well-documented source code furnished on an ISIS-formatted 8" diskette, CP/M-formatted 8" diskette,
RMX-formatted 8" diskette, or PDS 5%" ISIS CP/M diskette.

A source listing of the program must be included. This must be the output listing of a compilation or an
assembly. No cqnsideration will be given to incomplete programs or duplications of programs already in the
Library.

A link and locate listing (whenever applicable).

A demonstration program which assures the validity of the contributed program must be included. This must
show the accurate operation of the program.

A complete submittal form.

Licensed software or copyrighted material must be accompanied by a written release from the appropriate,
authorized person.

8-3

Processor

Program
Title

Function

Required
Hardware

Required
Software

Input
Parameters

Output
Results

0

INSITETM USER'S PROGRAM LIBRARY
SUBMITTAL FORM

8048·08051 0 8080/8085 o 80861808718088 0 Other
Indicate the MDS series model the program was created on by checking the appropri-
ate box, and identify other MDS series models the program may be compatible with.

,

,

Reglste,. Modified: Program mar:

RAM Required: Company:

ROM Required: Address:

Maximum Subroutine Nesting Level: City:

As .. mbler/Compller U.ed: State:

Programming Language: Telephone:

ACKNOWLEDGEMENT AND AGREEMENT
To the best of my knowledge, I have the right to contribute this program material without breaching any obligation concerning nondisclosure
of proprietary or confidential information of other persons or organization~ I am contributing this program material on a nonconfidentlal
nonobligatory basis to the Insite User's Library for Inclusion in its program library, and I agree that the Llbraty may use, duplicate, modify,
publish, and sell the program material without obligation or liability of any kind. The Inslte User's Library may publish my name and address, as
the contributor, to facilitate user Inquiries pertaining to this program material.

"
Signature Date

8-4

inter
LIST OF PROGRAMS

ALPHABETICAL, BY APPLICATION

Program Tille Order No.

ADD AND SUBTRACT: BCD Numbers • .. CB11
AEDIT: Tutorial. .. E7
ASSEMBLER: 8080 MACRO, V4.1 ... BF4
ASSEMBLER, CROSS: 8008 Code ... BC5
ASSEMBLER, CROSS: 8048 On DG Nova .. BC6
ASSEMBLER, CROSS: DEC PDP-8 or PDP-11 .. BC2
ASSEMBLER, CROSS: DEC PDP-11•... PC3
ASSEMBLER, CROSS: DEC PDP-11 ... BC4
ASSEMBLER, CROSS: MCS-48 .. , BC1
ASSEMBLER: MCS-48 .. BF11
ASSEMBLER, ON-LINE ... , BF5

BAUD RATE: Detection and Setting Routine for MCS-51 BG50
BAUD RATE: Modify ...•........ , BG25
BAUD RATE: Modify Under CP/M .. , BG26
BIT HANDLING: 8048 .. BG35
BRANCH: MCS-48 Branch Table Routine. .. BG37
BREAKPOINT: 8089 . • BD15

CALCULATE: CHECKSUM. .. BD16
CALCULATE: Sine or Cosine Routine CB13
CALCULATE: Square Root. .. CB5
CALCULATION: Least Squares Quadratic Fitting. .. CB3
CALCULATION: Natural Logarithm ... CB4
CAPITALIZE: PL/M-86 Keywords ... BG55
CHANGE: Load Addresses, iAPX-86/88 Object File , BG42
CHECKBOOK ..•.................. '•.................•........................ BA6
CLOCK: 8748 Clock and LCD Tachometer BG30
CLOCK: MICRO/SYS MC1460 Real Time Clock Board Utilities BG31
CLOCK: Real Time .. BG29
COMMANDS: Meta-Programs•....................... BG38
COMMUNICATION: DEC PDP-11 to Intellec Development System BB16
COMMUNICATION: HP Calculator with Intellec Development System-800 '.. AD1
COMMUNICATION: Intellec Development System 220/230 with SDK-85, Vl.0 AD4
COMMUNICATION: Intellec Model 220/230 to Timesharing Computer. AD6
COMMUNICATION: Intellec Model 800 to/from DEC PDP-10•........ , AD8
COMMUNICATION: Intellec Development System to/from DEC .'....................... AD10
COMMUNICATION: Intellec Development System to/from Tektronix 8001 AD11
COMMUNICATION: Intellec Development System Series-II with Minicomputer ..•...... AD9
COMMUNICATION: Intellec Development System Series-II with PROMPT-48 AD2
COMMUNICATION: Intellec Development System PROMPT-48 or -80 , AD3
COMMUNICATION: Intellec System to Serial Output Device AD14
COMMUNICATION: Intel Development System to/from Hewlett-Packard Computer AD15
COMMUNICATION: Intel Development System to/from VAX 11, , AD13
COMMUNICATION: Intel MDS-Data I/O'Programmer Interface ' BE8
COMMUNICATION: iPDS to/from MDS-800 under CP/M-80 , AD19
COMMUNICATION: NDS-II to/from iPDS Running CP/M-80 AD17
COMMUNICATION: Series-III to/from IBM PC or PC-Compatible , AD23
COMMUNICATION: Tektronix DAS 9100 Digital Analysis System to

Intel Development System.. AD12
COMMUNICATION: Two Intellec Series-II Development Systems. .. AD7
COMMUNICATION: Xerox File Transfer Facility AD16

8-5

Program THle ' Order No.

COMPARE: 8048 or 8049 ROMS ••••••.•••••••••••..••.••••••••..••••...•••••....... AE11
COMPARE: Files ••.••••••••••••••••••••• ;... BD11
COMPILER: Pascal • . • • • • • • • . . • . . • . . . • • • • . • • • • • . • • • • .• BF1
CONSOLE ACCESS: Input and Output for Series III . . • • • • • • • • • • • • • • • . • • • . • • • • • . •. BD36
CONTROLLER: 8278 Keyboard/Display , •..••....•....•.•••••••••••.•••.•••••.•. ; . .. AC3
CONTROLLEA: 8292 on 8741A ••••••••......••••...••••.••••••••••••••.•••••.•.••.• AC4
CONTROLLER: Dual Floppy Disk Drive ••••••••.......•.•••••••••••••••••••••.•••••• AB11
CONTROLLER: Firmware for iSBC-589. • . . • • . . • . . . • . • • . . • . • • • . • • • . • • • • • • • • • • • . • . . • .• AC7
CONTROLLER: PID Control Loops •...•..•••••... : •....•••.•.••.••••••.•••••.•••••• AB20

,CONTROLLER: PROMPT-48 Interactive ••••••••••••••••••••••••••••••••••..•........ AB2
CONTROLLER: UP1-41 8-Digit LED Display ••••••••••••••••••••••••.••••.••••....... AC1
CONTROLLER: UP1-41A142 Digital Cassette, V2.5 ••••••••••••••••••••••.•••••.•..... AC5
CONVERSION: ASCII-Decimal to/from FPAL Number... ••• ••• ••• ••• •••• .. .••. BB13
CONVERSION: ASCII Floating Point Numbers to AM9711 and

Intel 8231 4 Byte FP Format ••..•....•.•.••..•••••.••••••••.••••••.•••••..•••• '.... BB5
CONVERSION: ASCII to Floating Point. •••••.••••••••••••••••.•••••••.•........••... BB14
CONVERSION: ASCII to/from EBCDIC. • • • • • • • • • . • • • • • • • • • • • • • • • • • • . • • • • . . • . . • BB1
CONVERSION: ASCII to/from Floating Point .••••••••••••••••.••••.••••••..•.• , BB11
CONVERSION: ASCII Code to/from Intel Floating Point •••••••••••••••••••..•.....••• BB12
CONVERSION: Binary to BCD. • . . • . . . • • • • . . • . . • • . • • • • • • • • • • • • • • • • • . . • • . • • .. BB6
CONVERSION: Binary to BCD. • . • • • • • . . . • . . . • . • • . • • • . . . • • BB7
CONVERSION: ConvertlFormaVPrint • . • . • . . . • • • . . . • . • • • • • • • •• BB8
CONVERSION: Decimal to/from Floatingh Point ••••••••••.••••••••.•..........•••.•• BB9
CONVERSION: FORTRAN or FPAL Floating Point to/from Decimal ••..•••••......••..• ,BB10
CONVERSION: Hex to ASCII. • . . • . • . • • • . . . • • •• BB2
CONVERSION: ISI8-11 to/from CP/M .•••••••••••••••••••••••••••••••.•....•....••••• BB18 '
CONVERSION: MCON-6800 Source Code to 6086/88 Source Code ••....•...••••••••. ; BB3
CONVERSION: ZCON-Z80 to 6086/88 Source Converter ••.•••.• , • • • . • • . • . • . • . . • • • • • •• BB4 '
CONVERT: 8051 Binary to/from BCD .. BB24
CONVERT: 8086 HEX File to 8080 HEX File. • . • • • . • . . . • • . •• BB26
CONVERT: ASCII Octal/Decimal/Hexadecimal to

ASCII Octal/Decimal/Hexadecimal/lnternal Binary ••••••••••••••••.•••••.......•..• BB27
CONVERT: Double word to ASCII String ••.•••••••.•.•..•..•.••.••.•.....••..••••••• BB22
CONVERT: Fixed Point to Floating Point ••••••••••••••••.••••••••.•..........••••..• BB21
CONVERT:'FPAL Numbers to/from IBM 32-Bit Floating Point ••••••••.••••......•....• BB28
CONVERT: Intel HEX Code to BASIC DATA Statements ••.••••.•••••• : ••.•••..•..•..• ' BB25
CONVERT: ISIS Object Modu'le to CP/M Object Module. . • . . • • .. BB23
COPY: Disk ••••• ' •••.•••.•..•••.•...• ~ • • • • • • • • • • • • • . • . • • • • • • . • • • • • • • • • • • • . . • .• BG28
COPY: Diskette •.•••.....•.••••••••••••••• , • . • • . . • • • • •• BG27
COPY: Diskette. . . • . . • • • • • . • • • • • .. • • • • • • • • • . • • • • • • • • .. • • • • • • .. • . • • . • .. • • •• BG43
COPY: iPDS CP/M-SO Diskette. • . • • . . • . • • • . • . • •• BG45
COPY: PDP-11 Disk File to Intel ISIS-II Disk File.......................... .. ••. ••••• BB15
COUNT: ICE-80 Machine Cycles. • . • • . . . • • . . • • • • • •• BD10
COUNT: Program Usage. . . . • • . . • • . • • . . • • . . • • . • . . . • • . • • . • • • . • • • • • • • • • • • • • • • • • .. BG40
CREDIT: Tutorial ••••••••••••••••..••.•••.••..•.•.•••..•..•.•••••.••••.•••••••••••. E6
CREDIT: Used on Modified Hazeltine 1500 • • • • . . • • . . • . . . • . • • • . . • . • • . • • • . • • • • . • • • • • • •• BG33

DEBUG: CAT.88 (iRMX88 Task Debugger) ••••.••••.•.•.•••••••.••.•.•••.•••••••••••• BD34
DEMO: 208 •.••.•.•.•••.•••••••••••••••••••••••••••••••••••••••.......•••.•••••••• AE7
DEMO: iAPX-88 ••••••••••••.•••.•••.•.••••.•.••....•.......••.•..••.•.•••••••••••• AE13
DEMO: iRMX 86 Multitasking Spectrum Analysis •.••• ~ . . • . . . • . . • . • • • • • • • • • • • • • • • • • • •. AE8
DEMO SOFTWARE: 8275 •••••••••••••••• ' •••••••.••..••••.•••.•..••. '. • . • • • • • • • • • • •• AE6
DEVICE, I/O: UPI-41A Combination ••••••••••••••••••••••••••.••••.•.•..••••• : • • • • •• AC2
D1AGNOSTIC: 6080 I/O • . • • • • • • . . • . • • • • •• AE2
DIAGNOSTIC: Microcomputer Development System 230 •••••••••• ; • • • • • • • • • . • • . .. AE9
DISASM ••••••••.•• : • • • • • • • . • • • . • . . • . • • . •• •• BD6
DISASSEMBLER: 8048 Object Code '.............. BD8

8-6

inter
Program nae Order No.

DISASSEMBLER: 8080 Code. • . . • • • • • • • • • • BD1
DISASSEMBLER: 8080 Code. • • • • • • • • • • • . . . • • • • • . • • • • . . • • • • . • • . • • • • • • . . • • • • • • • • • • •. BD4
DISASSEMBLER: 8080 Object Code ••••••••••.•••••••••••••••••••••••.•.••.••••...• BD2
DISASSEMBLER: ICE-80 Ver 2.1 ••••.•••••••••••• ',' • • . • . • • • • . • . • • BD3
DISASSEMBLER: ISIS-II Object Files ••.••.•••.••••••••••••••••.•••.••••..•.•....... BD5
DISPLAY: ISIS Directory under CP/M •••••••.•••••••••.•.••••.••••••...•..•• > • • • • • • •• BG46
DIVISION: 32-Bit by 16-Bit •.•••••••••••••••••••••••••.•.•••.••••••..•••••....•..... CB12
DOWNLOAD: iPDS to Serial Port ••••••••.•••••••••••.•••••.•.•••••••.••.•.•..•..... AD18
DRIVER: 8048 Seven-Segment Display •••••••••••••••.•..•.•••••.•...••..•••........ AB5
DRIVER: 8085 Serial I/O •• , •.•••••••.•••••••.•.•...•.••••....•........•......•...... 'AB1
DRIVER: Audio Cassette Recorder ••••••.••••••••••••.•••.••.••• :. • . . . • . • . • • AB6
DRIVER: Bios and Boot Program for CP/M-80 • • • • • . • • • . • • • • . • • . • • • • • . • • . • . • . • . • • • . • •. AB22
DRIVER: Cassette Operating System. . . • • . • . . • . . . • • . • . • • . • . . . • • . . . • . . • . . • . • • • . . • • • •. AB7
DRIVER: Dumb Terminal Simulator. • • • . . . • . . • • . • • • • • • • . .. AB10
DRIVER: Intellec Development System Series-II as Dumb Terminal. • • • • • • • . . • . . • . .. AB9
DRIVER: iPDS Dumb Terminal. • • • . . . • . • • • • . • • • • . . . • . • • • . . • • • . • • . • • . • • . • • . • • . • . . • . .. AB23
DRIVER: iSBC 86/12 Real Time Clock Driver ...•..•..••.•.•......•.•.•..•.••..••.••.. AB19
DRIVER: Okidata Microline 84 Line Printer. • • • • . • . . . • • • • . . • • • • • • . • • • • . • • • • • . . . • .. AB25
DRIVER: PROM Programmer. . . . • • • . . . • . . . • • • . • . • . • • . • • . • • • . • . • • .. BE7
DRIVER: RMX-80, for the iSBC 254 Bubble Memory with 80/10 Board. .•.••. . •.•. AB14
DRIVER: RMX-80, for the iSBC 254 Bubble Memory with 80/20/30 Board.......... AB15
DRIVER: RMX-86, for the iSBC 254 Bubble Memory Board .••. : ... ••• .••.•..•.•••..•.• AB16
DRIVER: RMX-80 for iSBC 534..... •••.•. •••• ••.••.••.•••.•.. . .•••••• ••• •••• •.• •.•.. AB12
DRIVER: RMX-80 for SBC 215 Controller Board ..•.••...•......••••..••.••••••••..••• AB13
DRIVER: RMX-86, for the iPAB-128, iPAB-256, iSBX-251 Bubble Memory Products. ..••. AB17
DRIVER: RMX-86, High Performance Drver, for iSBC-550

Ethernet Communications Controller ••••••••.••.•.•.•...•....•••.................. AB18
DRIVER: SYCOR 135 Cassette Operating System ••.•••••••.•••••.•................ :. AB8
DRIVER: Tektronix 4010 Graphic Screen •••••••••••••••••••••.•.•••.•.••............ AB3
DRIVER: T.r. Omni 810 Lineprinter. • • • • • • • . • • • . • • • • • • • • • • • • • • • • • • • • . . • • AB4
DRIVER: USART for iSBC-86/XX •••••••••••.••••••••••.•••••••••••••.•...•.......... AB21
DUMP: Diskette •••. • • • • • • • . • • . . • • . • . . • • • . • .. BD27
DUMP: Diskette File ••................•...•..••.•.....•..........•......•.••.•.•.•• BD28
DUMP: Diskette File ••.••..•....•...•.•...•.•..••...........................•...... BD26
D,UMP: iAPX-86/88 Absolute Object File. . . . • . • • . .. BD30
DUMP: is,BC 86/12 Memory •.•.........•..•.....•........•......•.......••..•.•...• BD29
DUMP: Screen •...........•.....•..•..............•............•.........••..•••.. BG54
DUMP: Symbol Table. • • • . • • • • . • • • • BD21

EDIT: Disk. • . • • • . . • • . • • • . • • • • • • • • • BD33
EDIT: Hex File •..•.•....•...•.....................•............•.•.....•••.•...•.• BD31
EDIT: Inspect and Change File•...•......•..••......•.....••...•..•••••...••.. BD32
EDIT: Text. . • • • • . . • • • • . . • • . . . • • • • • . • •• BA4
EDITOR: Text, Intel X111•...........................•............• '. • . . • BA3
EXECUTIVE: Real Time. • • . . • • • • . • • . • • . • • • . • • • . • .. M8
EXERCISE: Data Translation MUL TIBUS Analog I/O Boards. . . • . . • • • • • . • • . • • • BE6

FIFO •...•..... : .. :•....•.....•..•.•••••••••••..•••.•..•••.....••.•... '....... BG13
FIFO•.........•...•.•••.•..........•....................... BG12

GAME: Bandit. • • • . • • • • • • • • . . • • • • • . • • • . • • • • . • • • • • • . • . . . • 03
GAME: Black Box•..•••••.•••••••••.•••.•.•.•••••••..•..•..••.............. 015
GAME:' Breakout .•.....••••.•••.•••••••.•••••••••.••.••....................•...... 013
GAME: Craps .•.......••....••••••••••••••••••..•••••...••.....•...........•...... 05
GAME: Darts. • • • • • • • • • • • • • • • • • • • . • • • • . • • . • . . • . • • • • . . • • • • . • • . .• 06

8-7

Program Title Order No.

GAME: Fruit Machine•..• D4
GAME: Hangman. .. D7
GAME: Mastermind. • • D9
GAME: Maze ...•........ - D2
GAME: Maze•.......•............. -... D1
GAME: Othello. • • D10
GAME: Poker ... D14
GAME: Slalom, V1.4 ... ' ...•........ D8
GAME: Tiny Chess 86 ...•...... D12
GENERATE: 16-Bit Random Number. .• CB2
GENERATE: Calendar :....................................... BA8
GENERATE: CCITT Cyclic Redundancy Check BD37
GENERATE: Disk Directory Library... BA15
GENERATE: Fast Generation of IBM Bi-Sync CRC16•....... BD20
GENERATE: Graph • • • .. CB7
GENERATE: High and Low Bytes from 8086 Hex File BD35
GENERATE: Histogram•...................... CB8
GENERATE: IBM Bi-Sync CRC16 .. BD19
GENERATE: Music for SDK-85 .. D11
GENERATE: Output Signal•..•.. , • • BG5
GENERATE: PUM Cross Reference. • • • • . . . • • • • • BD25
GENERATE: PROM Checksum Calculation l. BD18
GENERATE: Public Symbol Cross Reference .. BD38
GENERATE: Public Symbol Cross Reference (Update) . . . • • BD24
GENERATE: Random Number. • CB6
GENERATE: Software Documentation•..................•..................... BA14
GENERATE: Stochastic Variates and Histograms. • .. CA23
GENERATE: Symbol List : . • • . . . • BD24
GENERATE: Symbol Table for BASIC-80 .. BD23
GENERATE: Tabs , BA16
GENERATE: X-V Graphs .. ;.. CB9

HANDLER: Enhanced RMX-80 Terminal Handler BE10
HANDLER: RMXl80 Minimal Terminal. • .. BE2

INCREMENT: Program Counter .. BG39
INFO: NDS-II File Information Utility.. BG5S
INITIALIZE: Baud Rate•..•.•................••.•......................... BG24
INITIALIZE: Baud Rate. • • .. BG23
INTERPRETER: 8086 Tiny BASIC. . • . • . • . . • BF9
INTERPRETER: Interactive 8087 Instruction Interpreter ..•.........•.................. AA12
INTERPRETER: LISP••............•...... .-. • . • • BF3
INTERPRETER: LLL BASIC-II•.........•.............•.......•...... BF7
INTERPRETER: LLL/Chernack BASIC•..................... BF8
INTERPRETER: MCS-51 Tiny BASIC, V2.2. • • BF10
INTERPRETER: PiLOT-SO .•....................••••..........•.•..•......•......... BF2
INTERPRETER: RMX/80 Command Line .•.•.......••.........•...••.........••..... BG4
INTERPRETER: Single-Step. • • • . • • • • . • . • • • . . . • .. BD7

LINKAGE: Series III i8087 Linkage Modules.. BG36
LIST: 8086 Public and External Symbols .. ~ BD41
LIST: Directory, ISIS Diskette/NDS Disk. . . • • . • • • • • . .. BG18
LIST: Diskette Directory. • . . . • • • . . . • . . . • • . . • • . . • • • . .. BG17-
LIST: File•..............••..•.......•••....•.... _. • • • . . • • . • .. BG15
LIST: File•..•..•.•..... : • • . • • • • • BG16
LIST: File Errors. • . . • • . • . . • . • . • • • • • BD12
LIST: PL/M Compiler Errors•.••.....•........... _•...........•.......... , .. BD13

8-8

Program Title Order No.

LlST/PRINTITYPE ... BG14
LIST: Save Error. • .. BD14
LOAD/SAVE: RAM. • .. BG1

MACROS: Block Structures ..•......... BG10
MACROS: Block Structures. BG11
MACROS: Enhancements for Credit Text Editor • .. BA22
MAIL LIST. • .. BA9
MAIL LIST .. BA11
MAIL LISTS FOR BASIC SO BA 12
MATH PACKAGE: S231 ... CA17
MATH PACKAGE: S051 . • CA 1S
MATH PACKAGE: SOSO/SOS5 Fundamental Support Package•................... CA20
MATH PACKAGE: S231 Arithmetic Processing Unit•......... CA 16
MATH PACKAGE: Arithmetic Functions .. CA11
MATH PACKAGE: Arithmetic Functions for MCS-4S CA22
MATH PACKAGE: Double Precision Floating Point .•................................. CA12
MATH PACKAGE: Double Precision Integer .. CA4
MATH PACKAGE: Fixed and Floating Point .. CA5
MATH PACKAGE: Floating Point. • .. CA2
MATH PACKAGE: Floating Point .. CA1
MATH PACKAGE: Floating Point : .. CA7
MATH PACKAGE: Floating Point. .. CA6
MATH PACKAGE: Floating Point Library/SOS6•.............................. CA13
MATH PACKAGE: Floating Point Utilities for FPAL.LlB .. CAS
MATH PACKAGE: High Speed Binary Math Package for S031/S051 CA21
MATH PACKAGE: Multiple Precision Arithmetic/SOS6 ' CA14
MATH PACKAGE: Multiplication, Division, and BCD-Binary ,
Binary-BCD Conversion for S051 .. CA24
MATH PACKAGE: Multiply/Divide. .. CA 15
MATH PACKAGE: Optimized Floating Point. .. CA9
MATH PACKAGE: Optimized Floating Point .. CA10
MATH PACKAGE: PLIM Multiple Precision. . . • • .. CA3
MATH PACKAGE: Recursive Computation of Mean and Standard Deviation CA19
MERGE: Mailing List•.............................. BA10
MONITOR: Intellec S/MODSO ... AA1
MONITOR: Bubble Memory Development Software for Intel BPK-72 AA10
MONITOR: HSE-49 Expansion Monitor ' AA13
MONITOR: Intellec Development System, V2.0 AA6
MONITOR: iSBC 250 1-Megabit Bubble Memory AA9
MONITOR: iSBC 254 Bubble Memory Board Monitor•... :•..... AA11
MONITOR: iSBC 544 .. AA7
MONITOR: iSBC SO/05 or SO/04 .. All. 14
MONITOR: iSBC SO/10 ... AA15
MONITOR: iSBC SO/10 or SO/10A. .. AA 16
MONITOR: iSBC SO/20 or SO/20-4. .. AA 17
MONITOR: iSBC SO/24. .. AA 1S
MONITOR: iSBC 80/30 .. ' AA 19
MONITOR: iSBC S6/12 Numeric Processor Extension (NPX) Monitor· AA2
MONITOR: SDK~S5, V2.0 .. AA3
MONITOR: SDK-S6 Keypad .•.. AA5
MONITOR: SDK-86 Serial, V1.1 ... AA4
MONITOR: Super Monitor 80 : .. AA20
MONITOR: Super Monitor 86 ' ... '. AA21
MONITOR: Super Monitor S6 for the iSBC S8/45 AA22
MORSE CODE TUTOR V2.0 .. E3

8-9

Program Title Order No.

MULTIPLICATION: 8748 BCD. . • . • . • . • • • . • • • • • . • • • • • • • • • • • • • • • • • . • • • • • • • • • • • . • • • • • •• CB10
MULTIPLICATION: 4Q-Bit •••••••••••••••..••.•.•.••..••.••••.•.•. ' ••. : .•..•.•••.•••• CB14

Pi=\INT .86 ••••••••..•.••••..•.•.•.••••.••••••••••••••• : ••••••••••.••.•••••.•.•.•••
PRINT: Cover Page ••••••••••••••.•.•...•..••.••••••.•••.••••••.•.•••.•••••••••••••
PRINT: Discounted Cash Flow ••••••.••••.•••••••••.••.••••••.•••.•.••••.•••.•••••••
PRINT: File •••• ,. •••••••.•••••••••.••.•••••.•.•.••••••••.•••••••••••••••••••••••••.
PRINT: Files .••..•.•••.•.••••••••••••....••..••...•.••.•.•.•.••• ' .••••.•... ' •.•••.••
PRINT: Files ..•....•......•.•••••.•••••••••••.••••••••••••••••••••••••.•••.••....•
PRINT: High Speed Utility •.....•.•.•.. ' ..•••••••.••••••.•••.••••••••••.•••••.•••••.•
PROCEDURE: Pascal 86 Screen/Cursor Control .••.•••••...•.••...•.•.•••.•••.••••• :
PROCEDURE: PLIM DOCASE •••••.•.•••••••••••••••••••••.•.•••••.••••.•...•....•.
PROCEDURES:' PLlM-86 General Purpose Library •.••.•.•.•.••.•••.•••.•••••••.••••.
PROCEDURES: PLIM Output •••••••••••.••••.••••.• ' .•.•.•.••...•••.•.•••.••••••••••
PROCEDURES: PLIM Utilities •••••.••••••••••••••..••.••••••....•....•...••......•.
PROCESSOR: Macro •.•.•••...•..•..••••.•••.•.•.•..•.•.•.••••••••.•••••.•...•.•..
PROCESSOR: Text .•.•••.•••.•.••••••••.••.••••••..•••.•••..•.•.•••.•••••••.•.••••
PROGRAM: 8741A as iSBC 941 .•.•.••.•••••.•••.••••.• ; •.•.••••••••••••••.•.•.•.•..
PROGRAMMER: EPROM-8755A ••.••..••••.•.•••..••••.•.•.•••••..•..•.•.•••••••.•.
PROGRAMMER: EPROMS 2708/16/32 •••••••••••••••.•.•.••••...•••.•••..••••.•..•.•
PURGE: Symbol Tables ...•.••••.•••••.••••••••••••.•.••••••.••••••••••.•...•••.•.•

READ/PUNCH: Paper Tape to/from SDK-85 RAM••......•••....•..•.•••••••.••••.
RECEIVE •.•••••.••.•..• : .•..•••.•.••••••..•••.•••.•.•••••••••••••••.•.••••••••.••
RECOVER:' Diskette •..•••••••••••••••••.••••••••.••••.•••.•••...•.•••.•.••••.•.•.•
RECOVER: Lost AEDIT Files
RECOVERY: Diskette File •.••••.•.•.••••.•.•• ; .••••.••••••••.••••••.••• ' •••••••..•••
RELOCATE .. .
REMOTE: NOS-II Communication with IBM PC running MS/DOS ..••••••••••••••.•••••

'REMOTE: NOS-II Communication. with iPDS/Series-II/Ill/IV (UPDATE) •..•..••.••.••..•

REMOTE: Terminal Control on Series-II under CP/M-80 .• '•.••••••••..••..•...•.••
REMOTE: iRMX-86 Communication Program •••••••••••••••••.••.•• ;•.•.•••..•.•
REPORT: Status of Exported Job ••••.•• : •••••.•....•..•.•.••••.•••••.••••.•.•.•.•..
RUNOFF: ASCII Text File to Epson Printer ..•..•••.••••••.•••••••••••••••••••••••••••

SEND: CP/M-80 PDS Files to Printer Via Modems •.•••..•••.••••.••••••••••.••••• • •
SEND: Intel HEX Code to PROM Programmer •••••.••.•.••.••.••••••••••••••••••••••.
SEND: ISIS-PDS Files to Printer Via Modems •••.•.••.••••••.••••.•••..•.•••.•••.••.•
SIMULATE: iACX-96 •.•.•.••••••••••••.••••.•.•••.••.•.•..• ' .•......•.••.•.•••••••••
SIMULATE: Light Box ••.••.•.•.•...•••..••.•••.•.••.•••••••••••••••••••••••••••••••
SIMULATOR: 8048/49 Code, V1.3 ••••••••••••••••••••••.••••...•.•.••••.•.•.•.....••
SIMULATOR: 8048/49 Simulator ••.•.••.••••••.•••.••••••.••....•.•••.••.•••.•.•.••.
SORT: Bubble Sort and Binary Search Routines .•••.••••.•.•••••...•••• : ••.••••••.•••
SORT: Disk Directory ••••••.••.•••••.••.•.•.••••.•••.•••••••• ' ••••••••••••••••••••••
SORT: Disk Directory •••••.•..•••.••••••.• : .. .
SORT: Diskette File ••••••••••••••••••••••••••••••••••.•.••••.••••••••••••.•••••.••.
SORT: General .•••••.•.•.••.•.•...•..•..•..•••••••.•.••••••••••••••••••••••. ' ••••••
SORT: Public Symbols ' •.••.•.•.•.•••••.••.••••.••••.•.....•...••••.•.•..•.•.••..•.•
SORT: Symbol Table from an Absolute File •••••••••••••••••.••••.•.••••.•••...•.••••
SOURCE FILES: iAPX-86/88 System Workshop Summary and Review ••••••••••.•.••••.
SOURCE FILES: iAPX-80/85 System Workshop Summary and Review .•••.••••••••••.••
SPELL •••••••••••.•••.••••••.•.••••••••••.•••••••••.••.•.••••..••••••• '" •••....•.•
SUBMIT: ISIS Command String' ••••••.••••••.• , ••.•••.• ' •••.••••••••••••••••••••••• '.'
SWEEP: ISIS-II General Disk File Utility •••••••.••.•.•••••••••••••••••••••••••••••.•.

8-10

BG58
BA1
BA7
BA17
. BA18
BA19
BG32
~G34
BG9
BG49
BG8
BG7
BF6
BA5
AC6
BE5
BE4
BD42

BE3
AD5
BG2
BG51
BA2
BG41
AD22
AD20/
AD21
AB24
AD24
BG44
BG48

BG53
BE9
BG52
BD40
E8
BB19
BB20
BG22
BG19
BG20
BG21
BA13
BD39
BD22
E1
E2
BA21
BG6
BG47

Program Title Order No.

TEST: 8080 CPU .. AE1
TEST: iSBC 80/10 110 Ports .. AE3
TEST: Error Correcting Code. • • .. AE12
TEST: MCS-48 Family CPU .. AE10
TEST: Memory .. AE5
TEST: Memory ; ' ' AE4
TEST: PROMIROM Checksum Self-Test ... BD17
TEST: RAM AE14
THERMOMETER: Thermistor Controlled .. BE1
TRACE: ICE-80 ... BOg
TRANSFORM: DISCRETE Fourier .. CB1
TREE: Utilities for Series-IV or NRM .. BG57

UTILITIES: Circular Lists. .. BG3
UTILITIES: Menu .. E5
UTILITIES: RT11 Diskette Utility for Intellec 800 " BB17
UTILITIES: Talk. E4

WORD PROCESSOR BA20

8-11

Appendix A

INTEL SOFTWARE STANDARDS

Intel's software is built on standards which facilitate software portability and provide an open system for
software.

Intel's software utilizes the emerging standards in graphics, networking, database and portable operating
system interfaces. This base system software provides a mapping from architectural and operating system
dependencies to a standard interface. High-level applications are built from the standard inte-rfaces and
remain portable across multiple configurations and operating systems. Figure 1 illustrates the open software
model relationship. .

Applications

Base System
Software

Operating
Systems

Micro
processors

Languages
R&L

UDI I

OPEN SOFTWARE MODEL

Word Spread Mail & Business Project
Document Processing Sheet Filling Graphics Management

Language I LAN
1

Graphics 1 Database Run-Time

RMX, Xenix
CP/M, MS-DOS

86,186,286,386

Figure 1

Intel has supported its fundamental software across multiple operating systems through the UDI operating
system interface. By writing software to use the UDI interface which provides memory management, 1/0
routines, and exception handling-Intel is able to port high level languages, language run-time, and
fundamental software to a new release or new operating system in minimal time. Thus Intel's software is
operating system independent.
Intel's local area networking products use the IEEE 802.3 CSMAlCD Access Method and physical layer. The
work for this standard was done jointly by Intel, DEC, and Xerox and is commonly known as the Ethernet
protocol. The transport layer uses the proposed ISO transport protocol specification.

A-1

Intel supports the ANSI graphics standardization effort and will offer products which utilize these standards.
The Virtual Device Interface (VOl) standard developed by the ANSI X3H3 committee is intended to provide a
single standard which supports mulitple graphics devices with the same set of graphics functions. A
companion standard Virtual Device Metafile (VDM) will give a means of storing or transmitting pictures as
streams of VOl functions. A third graphics standard being supported by Intel is the North Amefican Presenta
tion Level Protocol Syntax (NAPLPS). NAPLPS is suited forraster-scan display (both CRT and hardcopy) and
is currently in final approval stage by ANSI. .

Intel's Pascal and FORTRAN adhere to the ANSI standard and support optional extensions. All Intel
languages (ASM-86, PLlM, FORTRAN, and Pascal) use common data types and parameter passing
conventions to allow inter-language calls. The real number data types in these languages utilize the IEEE
real math standard and use the numerics coprocessor or an emulator to support the real math operations
and functions. The object module formats (OMF) are commonly used by all of the 86 language products as
well as many language products supplied by independent software vendors. .

INTEL SOFTWARE STANDARDS DOCUMENTS

Standard Document

UDI Run-Time Support Manual For iAPX 86, 88 Applications, Appendix A
(Intel 121776-002)

NAPLPS Intel's Guide To Understanding The ANSI Videotex Presentation Level
Protocol (Intel 145412-001)

VDM, VOl Draft of proposed American Standard for the Virtual Device Metafile,
ANSI X3H33 Virtual Device Interface Task Group

Local Area Network
- Data link and physical Draft IEEE Standard 802.3 CSMAlCD Access Method and Physical
layer (Ethernet) Layer Specifications, IEEE Computer Society

- Transport layer ISO draft proposal 8073 Information Processing Systems, Open
Systems' Interconnection-Connection Oriented Transport Protocol
Specification

FORTRAN 77 Intel's extension to ANSI FORTRAN 77 specified in FORTRAN-86
User's Guide (Intel 121570-002)

Pascal Intel's extension to ANSI Pascal specified in Pascal-86 User's Guide
(Intel 121539-001)

Real Math Draft 10.0 of IEEE Task P754, December 1982.

8087 Support Library Reference Manual (Intel 121725-001).

_Language Data Types.
and Parameter Passing

- Pascal Pascal-86 User's Guide, Appendix J (Intel 121539-003)

- FORTRAN FORTRAN-86 User's Guide, Appendix H (Intel 121570-002)

Object Module Formats
-86 8086 Relocatable Object Module Formats (Intel 121748-001)

-286 The Concrete Representation of 80286 Object Modules, Intel internal
document

iAPX 286 Compilers Writer's Guide, (Intel-in preparation)

A-2

SOFTWARE SUPPORT SERVICES

A FULL SERVICE SUPPORT PROGRAM

Intel's So~are Support Services is a comprehensive range of post-sales support programs for software and
systems purchased from Intel. Its objectives are to maximize the system's performance and minimize
unnecessary downtime for greater productivity. These services are provided for all Intel developed and most
Intel marketed thi.rd-party software.

DESCRIPTION OF SERVICES

SOFTWARE SUPPORT CONTRACTS

1. Subscription Service
Technical Reports
A technical report will be published quarterly for active products and semi-annually for mature products.
This will contain a Configuration and Compatibility Guide, a product performance exceptions list
providing solutions to known problems, a review of important current Software Problem Reports (SPRs)
submitted by customers, and articles of general interest such as programming hints. A listing of product
manuals available from Intel is also provided; comments newsletter is also provided monthly.

Software Problem Reporting Service (SPR) •
Intel will respond to written questions (submitted on a standard SPR form) on product-specific software,
system, or documentation issues. Intel will verify receipt of the SPR promptly and normally will respond
within approximately 3 weeks. Intel does not guarantee a resolution will always be available to specific
problems.

2. Software updates, associated manuals and documentation are provided at no additional charge for all
software products purchased by the customer and covered under a software support contract. Each
contract provides the customer with updates, manuals, and documentation for the covered software
product being updated. Copying of software updates is per the terms of the master software license
agreement.

3. Intel's Technical Information Phone Service (TIPS) provides the Customer with direct communication with
a member of Intel's Software Support staff. The Customer may call a single service number (U.S.) between
7:00 A.M. and 6:00 P.M., (Mountain Time) for product-specific inquiries.

This service enables the Customer to:
Obtain assistance in using the product.
- documentation clarification. .
- operational understanding.

Obtain product specific information.
- problem identification.
- work-around, patch, or other solution when available.
- information on existing SPRs.

If the reported condition is not an already documented SPR, obtain assistance in problem isolation
techniques.

As part of the TIPS, Software Support Services maintains a list of reported problems and problem
resolutions. TIPS does not include user application assistance or engineering time to derive a resolution to
a problem if none is currently available. (See Phone Consulting under Consulting Services.) However, the
Software Support Engin,eer will submit a problem report into the SPR system under the Customer name
when appropriate.

TIPS is offered as a supplemental tool for obtaining maximum utilization of Intel software products. It is
expected that the Customer will avail himself of training classes as appropriate, and will make reasonable
efforts to utilize all product documentation.

The Customer must designate one System Manager and one alternate who are authorized to call the TIPS.
This service is offered on a one-year period, and continues thereafter on a month to month basis until
cancelled by either party with 30 days written notice.

A-3

ORIENTATION/INSTALLATION SUPPORT PACKAGES

We have structured very specific support packages to assist our customers with the installation and
reconfiguration of such systems as NOS-II, 86/330, RMX and XENIX. See Intel's current price book for a listing of
support packages available today.

CONSULTING SERVICES

Consulting Services provides customized support for system, board, and component level customers.
Consulting services provide a wide range of support - from system designs to solving difficult development
problems to complete project management and prpject implementation.

1. Field Consulting - The Customer may contract for an Intel Software Support Engineerto come on-site to
assist and advise the customer in utilizing Intel software products. This service is available on a Time and
Material basis. Minimum period: 1 day (8 hours). Travel time and expens'es are billed separately as specified
in the price list.

2. Phone Consulting - The Customer may contract for an Intel Software Support Engineer in the Customer
Support Group to provide customer or application-specific research, effort, or consultation. Blocks oftime
may be purchased and utilized in minimum fifteen (15) minute increments.

INSITE USER'S PROGRAM LIBRARY

Intel's Software Index and Technology Library is a library of programs that have been submitted by users of
Intel microcomputers, single-board computers, and development systems. Membership in INSITE enables the
Customer to order programs at a nominal charge. Members are provided a program catalog and catalog updates.

LIMITATIONS

A. Software Support Services are limited to standard Intel system configurations supported by software
products, as defined in the applicable software product data sheet. Services will be performed within a
12-month period from effective date of the purchased services.

B. Software support services do not include hardware maintenance.

C. Any change in the equipment site of the system within the U.S, may affect Intel's ability to deliver the
support services ordered and may result in increased charges. If the system is moved outside the
continental U.S., it shall not be eligible for continued service as ordered, but may be eligible for continued
service under Intel's local terms and conditions then in effect for a like system in the country or territory of
reinstallation.

OTHER INFORMATION
A. Software Support Services is Intel's commitment to providing the customer with consistent, high-quality,

post-sales software support. It is our way of delivering guaranteed support which the customer can rely on.
To tailor a full service software support program that addresses specific needs, contactthe local Intel sales
or service office for more information.

B. Term: Service will be provided for the period specified in the price list.

C. Charges: There are three kinds of billings utilized with the service Offerings: front-end billing, monthly
billing (not less than $100 per month), and post-service billing. The customer will be billed on one of the
referenced types of billings, depending on the type of service. Prices will be those specified in the current
Intel price list.

O. 1n order to obtain maximum service from Software Support Services, it is advised that the customer
maintain the system to the latest revision level, and assign a System Manager who will be the key contactfor
Software Support Services.

E. Guidelines:

1. The customer must have signed an Intel Master Software License agreement. All services and
materials made available to the customer through Software Support Services, including documentation
and program materials, are subject to the terms and conditions of the license/sale.

2. The License Fee or List Price for cover,d software products includes a period of Initial Support as
defined in individual product descriptions. Additional support services may be obtained as listed in the
price list.

A-4

iRUG DESCRIPTION

iAUG is the Intel iAM)(TM 86 User's Group. It is a non-profit group chartered to establish a forum for users of the iAMX
86 Operating System and to promote and encourage development of iAMX 86 based software.

iAUG membership is free to licensed iAMX 86 Operating System users and to their employees. Benefits of member
ship include: access to the user's library of iAMX software tools and utilities; membership in local and national chap
ters; access to the group bulletin board; receipt of quarterly national newsletters; synopsis of software problem reports
(SPAs) submitted by member!!; opportunity to present papers and conduct workshops; invitations to seminars devot
ed to the use of Intel products.

The user's library, maintained by iAUG, contains software programs written and submitted by members and Intel
employees. Programs available range from file or directory manipulation commands and terminal attribute selec
tion utilities to dynamic logon, background job facilities and basic communication utilities.

Programs in the library are available through a telephone dial-up service.

Local and national iAUG chapters provide a forum for members to meet other iAMX Operating System users in an
informal setting. At local meetings and the annual international seminar, members can discuss their ideas, share their
experiences and techniques, and give fe9dback to Intel for future improvements and features of the iAMX 86 Operat
ing System. The meetings also showcase new products offered by Intel and other developments in iAMX based soft
ware supplied by other companies.

iAUG sponsors a Special Interest Group (SIG) on the CompuServe Information Service. The SIG offers two features,
message facilities and an orlline conference facility. The message facility (buttetin board) allows members to leave and
receive messages from other members. These might include problems and solutions regarding the iAMX 86 Operat
ing System or new techniques to be shared. The online conference facility allows users to hold scheduled meetings
on any topic. Whatever information a member types at his/her terminal will be displayed at all terminals logged into
the conference facility.

"Human Interface" in iAUG's quarterly national newsletter in the United States. It serves as a supplement to chapter
meetings by providing: library listings, informtion on the latest releases of products running on the iAMX 86 Operating
System; officer messages; member SPAs; release and update plans for the iAMX Operating System; and member ar
ticles.

If you are interested in becoming a member of iAUG or desire further information contact the Intel iAUG liason.
Terri Huggett
5200 N.E. Elam Young Parkway
Hillsboro, OA 97123
Mailstop HF2-2-352
(5{J3) 640-7123

A-5

inter
DOMESTIC SALES OFFICES

AI.AIIAIIA
FLCIIIIDA _

.w ,

_v __
''''''' Corp 5015 Bradford Onve \~~:I: """' SoUlh :::.~~ III
Suite 2 Sun. 170 -""""" HunI8VNIe 35805 f.,~il'r.:]'W' EdISOn 08837
Tel (205) 830-4010 ~ (2~,V)}jt~O TElWI - _IA

=0 ~te Parkway

__
Intel Corp

Sulle 200 8500 Manual Boulevan:l N E _ 3009'
Suite B 296

Tel (404) 449-0541 *:,~e2~~
''''''' Corp ~ ~~ en· Freeway 1161 N B Dorado Place NEW_
Sulla 301 Incel Corp. Suite 1490
Tuceon 85715 2550 Gun Road Houston 17074
Tel (602) 299-6815 SuIte 815 ~(7J~~ RoII"$,M"-' 60008 - Tel 2~981.7200 Inclullrlal DIgital Syalema Corp
Intel Corp

TWX 91 51-5881
6925 Sova'tIlgn

21615 Vanowen Street - Sulle 101
SuIte 118 HoUlton 71036
~ Park 91303 Inlet C9rP Tel (713)988-9421
Tel 18) 704-8500 87n Purdue Road

~~'~rson lane Intel Corp
SUIte 125
Incbanapolla 48268

2250 E Imperial HIghway Tet (317) 875-0623 Suite 314
Suite 218 InIeI Corp' AuBlin 78752

~~~e:o IOWA ~ ,s.re:r Boulevard Tel (512) 454-3628 

!'==SStnte101 
"""cap ~(7~~~= UTAH 

~~=~NE ''''''' Corp Cedar Rapids 52402 5201 Green Street 
Tel (916) 920-8096 Tal (319) 393-5510 Bulla 290 

''''''' carP - tr~~~23 
4350 EltecubYe DrIve 
Sulle 150 

~~'1OthStraet --fora) ~?5~'1 Suite 170 ~3~~VIclor Road inial Corp 

,""""""" Overland ~ 66210 .- 14584 1603 Santa Rol. Road 
Tel (~3) 642-8080 ~(7J~~: SUIIe 109 

2000 EaSt 4th Street RiChmond 23288 
Suite 100 L.OU*AIIA Tal (804) 282·5868 
SanIa Ana 92705 ~ CAIIOUM 
~(7J,~~~2 ~:-r:..lDl:u:&"1M Corp 

w_ 
.... eo .. 

IIARYLAIID 110 llD1ti Avenue N E 
Slide 510 

''''''' Corp' 
_ 98004 

7321 Paikway Onve South 
OlIO ~(~W~ Sude C 

Hanover 21076 
Intel Corp' 

~'ftu'" Road t:.x(~l~~ 6500 Poe Aveooe 

''''''' Corp ft<sJi:=o 102 
Intel Corp 98206 

4445 NorIhpark DrIve 7833 Walker DrIve ........ 
~::..J~~ 80907 

Greenbelt 2OnO 

Tel (303) -6622 
Tel (301) 441·1020 .-. 
..-ns =~u""""' .. _ _'30 

C1lanceIIoty Park , ........,....,. 
Tel (414) 784-8087 

.-cncur 
Intel Corp, CANADA IIICHHWI 4157 S Harvard Avenue 
Sulle 123 --Tulsa 74135 
Tel (918) 749-8688 --EMC cap 
, .... Corp 

_A 10700 S,W 8eavet1On 
222 Summer Street HUIadaIe Highway 
Stamford 06901 SulIa 22 of Canada, LtcI Tel (203) 327-2934 ........, 97005 

...... IDA +=x(sg,aJJ1~ 
m' ~~ __ Onve .....w.V_ 
Sullt 105 

''''''' Corp' ~-=)~'714 ~ t:.:m-vtvane 1~"1:U8 --.... Corp 

:=''i:'(ll ..... 9_ 
4203EarlhCrty_ T;l. (2J~&.s'W SuIte 131 

_'04 f:rh (31:r ~:so Intel Corp' 
Ft Lauderdale 33309 400 PeRl Cemar BouIe\Iard 
~(ag,6J.a~~ SuIte 610 

~41~970 

'Fl8ld ApplicatiOn LooIbon 



ALABAMA 

tArrow ElectroniCS, Inc 
3611 Memc)(Ial Parkway So 
Huntsville 35801 
Tel (205) 882-2730 

tHamdton/Avnet Electronics 
4940 Research OfIva 
Huntsville 35805 
Tel (205) 837-7210 
TWX 810·726-2162 

tP,oneer Electronics 
1207 Putnam Drive N W 
Huntsville 35805 

~ (2315J_7~r2~~~ 
A_ 
tHaffilnon/Avnel ElectroniCS 
505 S Madison Drive 
Tempe 85281 
Tel (602) 231-5140 
TWX 910-950-007' 

tWyle Distribution Group 
8155 N 24th Avenue 
PhoeniX 85021 

~ (~,2J.9~1~4~ij~2 
CAUFORNIA 
fArrow ElectroniCS, Inc 
521 Weddell Drive 
Sunnyvale 94086 

~ (48fJ.3~~~W 
tArrow ElectronICS, Inc 
19748 Dearborn Street 
Chatsworth 91311 

~ (2J~6-4~~~1~~g 
Arrow Electronics, Inc 
2961 Dow Avenue 
Tustin 92680 

~ (7Jn.5~~~2~~2 
tAvnet ElectroniCs 
350 McCormICk Avenue 
Costa Mesa 92626 

~ (7J:6.Jg~~~~1 
tHamlHonJAvnel ElectroniCS 
1175 Bordeaux Drive 
Sunnyvale 94086 
Tel (408) 743-3300 
TWX 910-339-9332 

tHamiHon/Avnet ElectrOniCS 

~~5 DYe.ewn~~~2:venue 
Tel (619r 571-7500 
TWX 910-595-2638 

tHamilton/Avnet Electronics 
20501 Plummer Street 
Chatsworth 91311 

~ (~~6.4~2%j' 
tHamliton/Avnet ElectroniCs 
4103 Northgate Boulevard 
Sacramento 95834 
Tel (916) 920·3150 

Hamllton/Avnet Electronics 
3002 G Street 
Ontano 91311 
Tel (714) 989·9411 

Haml/ton/Avnet ElectrOniCS 
19515 So Vermont Avenue 
Torrence 90502 

~ (2Jf6.t.~iiJ~ 
tHarmiton Electro Sales ' 
10912 W Washington Boulevard 
Culver City 20230 

~ (2~f6.s:.~~~ 
tHamitton Electro Sales 
3170 Pullman Street 
Costa Mesa 9262e 

~ (7J16_~5~iJgg 
Hamilton Electro Sates 
9650 De Soto Avenue 
Chatsworth 91311 
Tel (818) 7~0-6500 

Klerultf Electrorncs, Inc 

~~~ J~1lhJ51~rnue 
Tel (408) 947·3471
TWX 910-379-6430

DOMESTIC DISTRIBUTORS

CALIFORNIA (Cont'd)

Kl8rulff ElectrOniCS, Inc
14101 Franklin Avenue
TUstin 92680

~ (7~16_~3~.1lJ~
Klerulff ElectroniCS, Inc
5650 Jillson Avenue
Commerce' 90040

~(2J~6.~~~5
twyle Distribution Group
124 Maryland Street

l ~Jui:~~~~o or 7111

r~~ g:~n~ve~:)UP
Irvine 92714

~ (7J1~5~t,~~

ml~e fu~ln~~: g~
Rancho Cordova 95670
Tel (916) 635-5282

~':l~eghe=~=
San Dler 92123
Tel (619 565-9171
TWX 91 -335-1590

~~e B=~t~~n~oup
Santa Clare 95051

~ (4:~3~~O~~~0

~~o '1!:~7 Avenue
Irvine 92750

~ (7Jt~3~~~9~~

COLOIIADO

tWyle DIStribution Group
451 E 1241h Avenue
Thornton 80241

~ (~,sJ-9~~:O~Fo
tH

C~_

tArrow ElectroniCs, Inc
12 Beaumont Road

fe~llI(ro312c:t~~41
TWX 710-476-0162

tHamilloo/Avnet ElectroniCS
Commerce Industnal Park
Commerce DrIVe
Danbury 06810

~ (2?,sL~~:~~~0
tPlOnee(Northeast ElectroniCS
1

F1.OAIOA

tArrow ElectroniCS, Inc
1001 N W 62nd Street
SUite 108
Fl lauderdale 33309

~ (3~f~9~~~~
tArrow ElectroniCS, Inc
1530 Botllebrush Dnve N E

~ (3t~91~~1~~0

tHamlllon/ Avnel Electronics
3197 Tech Drive North

~~ ~~~)b~~6-:~2
lWX 810-863-0374

FLORIDA. (Cont'd)

tPloneer ElectroniCS
221 N lake Boulevard
Suite 412
Alta Monte spnn~ 32701

~ (3gfJ-8~~-O~~

GEORGIA

tArrow ElectroniCS, Inc
2979 Pacific Drive
Norcross 30071

~(~J.7~~~2
tHamliton/Avnet ElectroniCS
5825 0 Peachtree Comers
Norcross 30092

~ (4~J.7~~~0

IWNOIS

tPlOneer ElectroniCS
1551 carmen Dnve
Elk Grove VillaB:ao 60007

~ (3Jf~21~~1834
INDIANA

tArrow Electronics, Inc
2718 Rand Road
1~~n~~~~241
W 810-341-3119

tHamllton/Avnet ElectroniCS
485 Gradle Drive
Carmel 46032

~ (3JI6_2~0~3

ICAII8A8

tHarmlton/Avnet ElectronICS
9219 QUlvera Road
Overland Park 66215
Tel (913) 888·8900
TWX 910.743-0005

IWIYLAND

Arrow EleclronlCS, Inc
8300 GuHord Road # H
Rivers Cenlef
Columbia 2~046

~ (3~n.2~:a~3
tH

IWIIACIIUIETTS

tArrow Electronics, Inc
1 Arrow om.
Woburn 01801

~.(6jr6~~~~~8

MICHIGAN
tArrow Electronics, Inc
3810 Varsity Drive
Ann Arbor 48104

~ (3J~~2~i:ig

tHamllton/Avnel Electronics
32487 Schoolcraft Road
livonia 48150

~ (3J~6_2~~~~

MINNESOTA

tArrow ElectronICS, Inc
5230 W 73rd Street
Edina 55435
Tel (612) 830-1800
TWX 910-576-3125

~~rrgwS'=orucs,lnc
5t louis 63141

~(3Jn_7~~
tHamllton/Avnet ElectroniCS
13743 Shoreline Court
Eo'" ~ 63045
Tel (314 344-1200
TWX 91 -762-0684

"W HAllP8HIRE
tArrow Electronics, Inc
1 Perimeter Road
Manchester 03103

~(6jll~.2~
NEWJ£MEY

tArrow Electronics, Inc
6000 lincoln East
Marlton 08053

i;!.x (2jf6~~~W:
tArrow ElectronICS, Inc
2 Industnal Road
Fairfield 07006

~ (2~,16"9~~~~
tHamilton/Avnet Electrorucs
1 Keystol'l8 Avenue
Bldg 36
Cherry Hill 08003

t:h {6~iR~~~~W
tHarrllllOn/Avnet Electronics
10 Industrial
F8Irfleld 07006

~ (~~6-7~~s:..~s:

tMlCfOCOmputer System Technical Demonstrator Centers

intJ

NEW JERSEY (Cont'd)

tPloneer Northeast Electronrcs
45 Route 46
Ptnebrook 07058
Tel (201) 575-3510
TWX 710·7344382

tMTI Systems Sales
383 Route 46 W
Fairfield 07006
Tel (201) 227-5552

NEW MEXICO
tAlllance ElectroniCS Inc
11030 Cochiti S E
AlbUqUer~Ue 87123
Tel (505 292-3360
TWX 91 -989-1151

tHamllton/Avnel Electronics
2524 Bavlor Drive 5 E

~~u1~b~ue76~~~ggo
TWX 910-989-0614

NEW YORK
tArrow ElectrOnics. Inc
25 Hub Drive
MelVille 11735
Tel (516) 694-6BOO
TWX 510·224·6126

tArrow ElectrOnics, Inc
3000 South Winton Road
Rochester 14623
Tel (716) 275-0300
TWX 510-2534766

tArrow Electronics, Inc

l,~;~fl~~888Dn\le
Tel (315) 652-1000
TWX 710-545-0230

tArrow Electronics, Inc
20 Oser Avenue

~fpr5~~~e 2~~?Moo
TWX 510-227-6623

tHamliton/ Avne! Electronics
333 Metro Park
Rochester 14623
Tel (716) 475·9130
TWX 510·253·5470

tHamilton/Avnet Electronics
16 Corporate Circle
E Syracuse 13057
Tel (315) 437·2641
TWX 710·541-1560

tHamilton/Avnet Electronics
5 Hub Drive

~e~IVI~~16)L04~4~b~~ 11747

TWX 510·224-6166

tPioneer Northeast Electronics
t806 Vestal Parkway East
Vestal 13850
Tel (607) 748-8211
TWX 510·252·0893

tPloneer Northeast Eleclronlcs
60 Crossway Park West

~~~J?~2~~~~~i~and 11797 

tPloneer Northeast Electronics 
840 Fairport Park 14450 

~ (7Jf6'2~~I.ig~0 

t~T~a~~e~~r~a~~ve 
PO Box 271 

~Irt (~I~tI6~\~62Jb050 
TWX 510·223·0846 

DOMESTIC DISTRIBUTORS 

tPloneer EleCtrOniCS 
9801 • A·Southern Pine Boulevard 
Charlotte 28210 

~ (7~J.6~~~~~8 
OHIO 

tArrow ElectronICs, Inc 
7620 McEwen Road 
Centerville 45459 

~X (5J~6.4~~:1~f3 
tArrow Electronics. Inc 
6238 Cochran Road 
Solon 44139 

~ (2~f6.4~~~9~~~O 
tHamlllon/Avne! Electronics 
954 SeMle Drive 
Dayton 45459 

~ (5J~64~~~2~~? 
tHamllton/Avnel Eleetronlcs 
4588 Emery Industrial Parkway 

~(2!~~:~3n}~ 44128 

tPloneer ElectronICS 
4433 Interpornt Boulevard 
Dayton 45424 

.~ (5Jr~4~~~~0 
tPioneer Electronics 
4800 E 131st Street 
Cleveland 44105 
Tel (216) 587-3600 
TWX 81(}'422·2211 

OKLAHOMA 

tArrow Electronics, Inc 
4719 S Memorial Drive 
Tulsa 74145 
Tel (918) 665·7700 

OREGON 

tAlmac ElectroniCs COfPO,aIIOn 
8022 S W Nimbus, Bldg 7 
Beaverton 97005 

~ (531~-4~~8~~~0 
tHamllton/Avnet ElectronICS 
6024 S W Jean Road 
Bldg C, Sulle 10 

i:~e (~~i~5.~~ 
TWX 91(}'455·8179 

PENNSYLVANIA 

tArrow Electronics, Inc 
650 Seeo Road 
MonroeVille 15146 
Tel (412) 856-7000 

tP,oneer ElectroniCS 
259 Kappa Drive 
Pittsburgh 15238 
Tel (412) 782-2300 
TWX 710-795-3122 

PENNSYLVANIA (Cont'd) 

tPioneer ElectronICS 
261 Gibraltar Ro.ad 
Horsham 19044 

~ (2Jr6':5~6~~~0 
TEXAS 

tArrow ElectroniCS. Inc 
3220 Commander Drive 
carrollton 75006 

~(2J~6-8~~~ 

r~~go; K~:~~t"S, Inc 

Sulle 100 
Houston 77099 

~X (7J~6~~~~ 
tArrow Electronics, Inc 
2227 W 8faker Lane 
Austin 78758 

~ (5Jr6.8~~:t~~0 
tHamllton/Avnet ElectroniCS 
2401 Rutland 
Austin 78757 

~ (5Jf6-8~azl~~~1 
tHamllton/Avnet ElectroniCS 
2111 W Walnut HIli Lane 
Irving 75062 

~ (2Jt6~~~~~~ 
tHamllton/Avnet Electronics 
8750 West Park 
Hosuton 77063 
Tel (713) 780-1771 
TWX 910-881-5523 

tPioneer ElectroniCS 
9901 Burnel Road 
Austin 78758 
Tel (512) 835-4000 
TWX 910-874-1323 

tPloneer ElectroniCS 
13710 Omega Road 
Dallas 75234 
Tel (214) 386-7300 
TWX 910-850-5563 

tPloneer Eleclronlcs 
5853 POInt West Drive 
Houston 77036 

~X (7Jr~~~1~gg5 
UTAH 

tHamllton/Avnel ElectroniCs 
1585 West 2100 South 
Salt Lake City 84119 

~ (8~1'6_9%~4~~gO 

y;~~ ~~~u~~O 'W'eUft, Unll B 
Salt Lake City 84104 
Tel (801) 974-9953 

WASHINGTON 

~~:l~8:~~~teC~;atlon 
Tel (206) 643·9992 
TWX 910-444-2067 

tArrow Electronics, Inc 
14320 N E 21st Streel 
Bellevue 98007 

~X (2g1~_4~~~~0 
tHamllion/Avnet ElectroniCS 
14212 N E 21st Street 
Bellevue 98005 

~ (2g1~_4!~~2~~4 

WI8CON8IN 

tArrow ElectroniCS, Inc 
430 W Rausson Avenue 
Oakcreek 53154 

~ (4Jt6.2~~1~~0 
tHamllion/Avnet ElectrOniCS 
2975 Moorland Road 
New Berlin 53151 

~ (4Jt6~is~~g~o 

CANADA 
ALBERTA 

tHamilton/Avnet Electronics 
2816 21st Street N E. 

~~g~703)2~3~Z3k6 
TWX 03-827-642 

Zentronics 

~g60 Nf4th 1 Avenue N E 

~~a(703)2~7~t21 
BRITISH COLUMBIA. 

Zentronlcs 
108-11400 Bndgeport Road 
Richmond V6X 1 f2 
Tel (604) 273-5575 
TWX 04-5077·89 

IlAHrTOIIA 

Zentromcs 
590 Berry Street 
Winnipeg R3H OSI 
Tel (204) 775-8661 

ONTARIO 

Hamllton/Avnel ElectroniCs 
6845 Rexwood Road 
Units G & H 
Mississauga L4V lR2 

~ (4Jf6-4~~:~~~2 
Hamllton/Avnet Electronics 
210 Colonnade Road South 
Nepean K2E 7L5 
Tel (613) 226-1700 
TWX 05-349-71 

ZentronlCS 
8 Tilbury Court 
Brampton L6T 3T 4 
Tel (416) 451·9600 
TWX 06-976-78 

Zenlronlcs 
564/10 W.eber Street North 
Waterloo N2L 5G6 
Tel (519) 884-5700 

ZentronlCs 
155 Colonnade Road 
Unit 17 
Nepean K2E 7KI 
Tel (613) 225-8840 
TWX 06-976-78 

QUEBEC 

Hamllton/Avne! ElectrOniCS 
2670 Sabourin Streel 
SI Laurent H4S 1M2 

~ (5J:6_4~~~3~~~3 
Zenlronlcs 
505 Locke Street 
SI Laurent H4T IX7 
Tel (514) 735-5361 
TWX 05·827-535 

tMlcrocomputer System Technical Demonstrator Centers 



BELGIUM 

Intel Corporation S A 

~~~ d~~OUbn a Papler 51 
1

""LAND

FRANCE

Intel CorPOratlon, S A R L •
5 Place de la Balance

EUROPEAN SALES OFFICES

FRANCE (Confd)

Intel CorporatIOn, S A A L
Immeuble BBC
4 Qual des Etrorts
69005 Lyon
Tel (7) 842 40 89
TELEX 305153

WIST_V

lntel Semiconductor GmbH
Brueckstrasse 61
7012 Fellbach
Stuttgart

+~lEfP~2~82~ I~S 0

Intel Semiconductor GmbH·
Hohenzollern Strasse 5·
3000 Hannover 1

+~lE~51~2::2540IN~~ 0

....... L

~I t~'Cf~uctor ~td·
Harta
Tel 4/524 261
TELEX 46511

ITALY

NETHERLANDS
Intel Semiconductor Nederland B V •

~:~e=~egBuI~~ng
3068 Rotterdam
Tel (10) 21 23 77
TELEX 22283

NORWAY

W~I ~W2A/S
Hvamvel9n 4
N-2013

~:I'~II(~) 742 420
TELEX 18018

SPAIN
Intel Iberia
caUe Z,urbaran 28
Madnd 04
Tel (34) 1410 40 04
TELEX 46880

SWED£H

Inlel Sweden A B •

~~;~~~:n~~
Tel (OB) 734 01 00
TelEX 12261

SWITZERLAND

Intel Semiconductor A G •
T 17

UNITED KINGDOM

~I=rs c~abon (U K) Ltd·
SWlndon, ~illshlre SN3 lRJ
Tel (0793) 488 388
TELEX 444447 INT SWN

"FlElld Application location

EUROPEAN DISTRIBUTORS/REPRESENTATIVES

AUSTRIA

Bacher Elektronlsche Garaete GmbH

~tfl~ge~~:: ~6
Tel (222) 83 56 46
TELEX 11532 BASAT A

BELGIUM

~co dee:~~x Sd: Guerre 94
81120 Bruesels
Tel (02l 216 01 60
TELEX 25441 _.
lIT MultiKomponent A/S

~~~~ G:SkNP , 

~I, £~~~545 66 45 

'INLAND 

~elk~~:a~IC 2:BA 
SF·OO210 
Helsinki 21 
Tel (0) 692 60 22 
TELEX 124 224 Flron SF 

..... NCE 
Generlm 
Z 1 de Courtaboeuf 

~;~Ne L~: ~IS B~~:.B P 88 
Tel (1) 907 78 78 
TElEX F691700 

~~en~ Jean·Jaures 
94600 CholSy·Le·ROl 
Tel (1) 853 12 00 
TELEX 260967 

Metrologle 
La Tcur d' ASnl9f9s 
4, Avenue Laurent Cely 
926()6.Asnleres 
Tel (1) 790 62 40 
TELEX 611-448 

T ekelec Au1romc 
Cite des BrllY'res 
Rue carle Vernet B P 
92310 Sevres 
Tel (1) 531\ 75 35 
TELEX 204552 

WEST GERltANY 

Jermyn GmbH 
Postfach 1180 
Schulstl'aS89 64 
D·6277 Bad Camberg 
Tel (06434) 231 
TelEX 484426 JEAM 0 

. 

CES Computer ElectronICS Systems 
GmbH 
Gutenbergstrasse 4 
2359 Henlitedt·U!zburg 
Tel (04193) 4026 
TEL~ 2180260 

Metrologle GmbH 
Hal'lsaslrasse 15 
8000 MUnich 21 

f~LE~89b 5l21~~8:4 
Proelectron Vertr!ebs GmbH 
Max Planck Strasse 1·3 
6072 Drale:lch bel Frankfurt 
Tel (6ta3) 33564 
TELEX' 417983 

IRELAND 

....... L 

EastrOflICS LId 
11 RozanlS Street 
PO Box 39300 
Tel AVIV 61390 
Tel (3) 47 51 51 
TELEX' 33638 

ITALY 

Eledra 3S SPA 
Vlsle Elvezla, 18 
I 20154 Milano 
Tel (2) 34 97 51 
TELEX 332332 

Iotas! 
Mllal'lOflon Pal E/5 
20090 Assago 
Milano 
Tel (02) 82470 
TELEX 311351 

NETHERLANDS 

KOning 8. Hartman 

~~~~ if220 
2544 EN's Gravenhage

trLE~1 ~fg~8 210 101

NORWAY

Nordisk EJeklronlC (Norge) AlS
Postofflce Box 122

~~s~~:~d4
Tel (2) 646 210
TELEX 17546

PORTUGAL

D'ram
Componentes E Electronlca LOA
Av Miguel Bombarda, 133
P1000 lIsboa
Tel (19) 545 313
TELEX 14182 Bneks-P

SPAI.

Interface SA
Av Pompeu Fabra 12
08024 Barcelona
Tel (3) 219 80 11
TELEX 51508

ITT SESA
Miguel Angel 21, (I PISO

r~L&4h~~~11954 QO

SWEDEN

AB Gosta Backstrom
Box 12009
AIstroemergatan 22
5·10221 Stockholm 12
Tel (8) 541 080
TELEX 10135

Nordlsk Electronlk AB
1

Telko AB
~:dsJgrevagen 1

S·161 26 Bromma
Tel (8) 98 08 20
TELEX 11941

SWITZERLAND

Industrade AG
Herbstrasse 31
CH-8304 Wailisellen
iel (01) 830 50 40
TELEX 56788 lNOEL CH

UNITED KINGDOM
8ytech Ltd
UOII 57
London Road
Earley, Reading
Berkshire
Tel (0734) 61031
TELEX 848215

Comway MIC,osystems Ltd
Markel Street
UK·Bracknell, 8efketllfe

trLE~4 J#~l 55333

Jermyn IndustrlEls
Vestry Estate
Sevenoaks, Kent
Tel (0732) 450144
TELEX 95142

MEDL
East Lane Road

~=e::;m~~ 7PP
Tel (190) 49307
TELEX 28817

Rapid Recall, Lid
Rapid HO;lse/Denmark 5t
High ,combe
trkS('04~Ia~~ ~~11 2ER
TELEX 837931

YUGOSLAVIA
H A Microelectronics Enterprises
PO Box 5604
San Jose, california 95150
Tel 408/978·8000
TELEX 278·559

AUSTRALIA

Intel AustralIa Ply Ltd-

~MJlb1oxAd5d.frS)
North Sydney NSW, 2065

~ShIPPIn9 Address)

2ggc'PU;lfi~u~~~~~ay
L_ 6
Crows Nest, NSW, 2065
Tel 011-61-2-957-2744
TELEX 790-20097
FAX 011-61-2-957-2744

HONG KONG

Intel SemIconductor Ltd-

r~~~n;uon~a~O~d Centre

Tel 011-8~2-5-215-311
TWX 60410 ITLHK

INTERNATIONAL SALES OFFICES

JAPAN

Intel Japan K K
5-6 Tokcxial, Toyosato-maChl

i!rkU~2a9~~9:B~~~rakl-ken 300-26

TELEX 03656-160

Intel Japan K K •
2-1-15 Naka-machl
Atsugl, Kanagawa 243
Tel 0462-23-3511

~~la~cm~1~~
Tel 0424-~3151
Intel Japan K K -
2-69 Hon-cho

~~lma~:l~~4~~rs 360

Intel Japan K K -
2-4-1 Terauchl

f~Fot863~~~a 560

JAPAN (Com'd)

Intel Japan K K
1-5-1 MaNnouchl
Chlyoda-ku, TokyO 100
Tel 03-201-3621

~~~e~.9Ja~~m~~h~ 
¥~tagoa~_~~6:2JjlkYO 154 

Intel Japan K K -
MltaUI-Selmej Mueaehl-Kosugl Bldg 
915 ShlOmaruko, Nakahara-ku 
Kawasakl-Shl, Kanagawa 211 
Tel 044-733-7011 

Intel Japan K K 
I-I Shlbahon-cho 
Mlshlma-sht 
ShlzuOk:a-Ken 411 
Tel 0559-72-4121 

KOREA 

Intel SemICOnductor Asia Lid 
Smgsong Bldg Bth Floor # 906 
25-4 YOldo-Dong, Youngdeungpo-Ku 
Seoul 150 
Tel 011-82-2-784-8186 or 8286 
TELEX K29312 INTElKO 

........... -
Intel Semiconductor Ltd 
101 Thomson Road 
21-06 Goldhlll Square 

¥~ngacffi:5_1~~7811 
TWX AS 39921 
CABLE INTELSGP 

- Field Application Location 

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES 

ARGEtmNA 

VLC SRL 
Sarmiento 1630, 1 PISO 
1042 Buenos Aires 
Tel 011-54-1-35-1201/9242 
TELEX 17575 EDAAG 

Agent 
SOimex International Corporation 
15 Park Aow, Room #1730 
New York, New York 10038 
Tel (212) 406-3052 
Attn Gaston Bnones 

AUSTRAUA 

Total ElectrOniCS 
~Malhng Address) 

~r:od~etc~:ra 3125 

(ShiPPIng Address) 
9 Harker Street 
B,CNOOd 
Vlctona 3125 
Tel 011-61-3-288-4044 
TELEX AA 31261 

Total Electronics 
PO Box 139 
Artarmon, N S W 2064 
Tel 011-61-02-438-1855 
TELEX 26297 

BRAZIL 

lcotron SA 
05110 Av Mutlnga 3650-6 Ander 
Plfltuba Sao Paulo 
Tel 011-55-11-833-2572 
TELEX 1122274 ICOTBA 

CHILE 

DIN 

i~allvlt ~:~e~~fia 204 
Casilia 6055 

¥:lnhm_56-2_277_564 
TELEX 352-0003 

i~~I~PG~ee~~~~S&nter 
3801 Kennett PIke 
Wilmington, Delaware 19807 

HONG KONG 

Novel PreciSIOn Machinery Co, Ltd 
Flat 0 20 Kingsford Ind Bldg 
Phase 1 26 Kwal Hel Street NT 
Tel 011-852-5-0-223222 
lWX 39114 JINMt HX 

SChmidt & Co Ltd 
18/F Great Eagle Centre 
Wanch&! 
Tel 011-852·5-833-0222 
lWX 74766 SCHMC HK 

INDIA 

Mlcronlc DeVices 
65 ARUN Complex 
DVGAoad 
Basavan Gudi 

~lng~~~~1_~~~20~_631 
TELEX 011-5947 MDEV 

MlCromc Devices 
104/109C Nlrmal Industrial Estate 
Sion (E) 
Bombay 400022 
Tel 011-91-22-48-61-70 
TELEX 011-71447 MDEV IN 

Mtcronlc DeviceS 

~:!4 ~I~~ lf~668er Nager 

Ramlak International, Inc (Agent) 
465 S Mathilda Avenue 
SUIte 302 
Sunnyvale, CA 94086 
Tel (408) 733-8767 

S & S Co~oratlon 

~~'1110/~1~SS) 
Mauldin, South CarolIna 29657 

(Shipping Address) 
308 Green Drive 
liberty, South CarolIna 29657 

JAPAN 

Asahl ElectronICS Co ltd 
KMM Bldg Aoom 407 
2-14-' Asano, Kokuraklta-Ku 
Kitakyushu Ctly 802 
Tel (093) 511·6471 
TELEX AECKY 7126-16 

JAPAN (Cont'd) 

Hamllton-Avne! ElectroniCs Japan Ltd 
YU and YOU Bldg 1·5-7 Hondome
Cho 
Nlhonbashl Chuo-Ku, Tokyo 103 
Tel (03) 662-9911 
TELEX 2523774 

Ryoyo Electnc Corporatlen 
Konwa Bldg 
'-12-22. TsuklJI 
Chuo-Ku, Tokyo 104 
Tel (03) 543-7711/541-7311 

1 
232-2220 LABTEl J 

KOREA 

J-TEK Corporabon 
2nd Floor, Government PenSIOn Bldg 
24·3, YOido-Oong 

~~~P~,~po-KU 
Tel 011-82-2-782-8039
TELEX KODIGIT K25299

~= ~iIa~,r~~ne(Ag~~~ard
Sante Fe Spnngs, CA 90670
Tel (714) 739-2204
TWX 194715 KORAM DIGIT LSA

NEW ZEALAND
McLean Information Technology Ltd

~58 ~~r 94~~ N~~ar~e,wmarket.
Auckland 1, New Zealand
Tet 011-64-9-501-219, 501-801, 587-
037
TELEX NZ21570 THERMAL

PAKISTAN

~mg:r :cf~=:ns Lid

Defense
Karaohl-46
Tel 011-92-21-530-306/7
TELEX 24434 GAFAA PI<

PAKISTAN (Cont'd)

Horizon Training Co, Inc (Agent)

~'2~al=e S~:,ter N W
SUite 530

t~~;~'i~~~036
SINGAPORE

General Engineers Corporation Ply
Ud
Unrts 1003·1008 Block 3
10th Floor PSA Multi Storey Complex
Telok Blangahl Paslr
Pan Jang

¥~?tJacffi~5_~71-3163
TELEX RS23987 GENEACO
CABLE GENEARCORP

SOUTH AFRICA

ElectronIC BUilding Elements, Ply Ltd
PO Box 4609
Pretoria 0001
Tel 011-27-12-46-9221
TELEX 3-22786 SA
TELEGRAM ELBILEM

TAIWAN

Mltac CorporatIon
3rd Floor #75, Section 4
Nanking East Road
TaIpei
Tel 011-886-2-771-0940, 0941
TELEX 11942 TAIAUTO

Meetsl International, Inc (Agent)
3385 Visa Court
Santa Clara, CA 95050

~ (4~~6_3~i'~~~3
FAX 408-980·9742

YUClOSLAYIA

H A MicroelectroniCS Enterpnses
PO Box 5604
San Jose, California 95150
Tel (408) 978-8000
TELEX 278-559

-Field Application Locabon

CAUFORNIA
Inlel Corp
1350 ShorebIrd Way
Mt View 94043

~ (4J~6.3~~~~~
910·338-0255

Intel Corp
2000 E 41h Streel
SUite 110
Santa Ana 92705

~ (7J{6.5~~2~~~7
Intel Corp
4350 Execullve Drive
SUIte 150

~:t" (~\~o 4~~~~0
Intel Corp
5530 III Corbin Avenue
SUite 120
Tarzana 91356
Tel (213) 708·0333

COLORAOO

Inlel Corp
650 South Cherry
SUite 720
Denver 80222,
Tel (303) 321-8086
TWX 910·931-2289

CONNECTtCUT

~~el M~lor~18!n Road

V:ln~~3)06~ll.3130
FLORIDA

Intel Corp
1500 N W 62nd Streei
SUite 104
Ft Lauderdale 33309
Tet (305) 771·0600
TWX 510·956-9407

DOMESTIC SERVICE OFFICES

FLOIUDA (Cont'cI)

~~I ~°'f.taliland Avenue
SUite 205
Maitland 32751

~ (33'~-8~~9~1~3
GEORGIA

~~ %rrnte Parkway
SUite 200
Norcross 30092
Tel (404) 441-1171

ILLINOIS
Intel Corp
2550 Goll Road
SUite 815

m;P3JU1\~~~~~~OO08
KANSAS

Intel Corp
8400 W 110th Streel
SUite 170
OVerland Park 66210
Tel (913) 642·8080

MARYLAND

Intel Corp
5th Floor Product Service
7833 Walker Dnve
Greenbelt 20770
Tel (301) 441·1020

MASSACHlItIETn

Intel Corp
27 Industnal Avenue
Chelmsford 01824
Tel (617) 256-1800
TWX 710-343-6333

"",HlBAN

Intel Corp
7071 Orchard Lake Road
SUite 100
West Bloomfield 48033
Tel (313) 851-8905

MISSOURI
Intel Corp
4203 Earth City Expresswey
SuIte 143

'f:rh (31~~ ~g~~'5
NEW JERSEY

Intel Corp
Sylvan Avenue

~!~~ta~O~aza' III
Raritan Cenler
Edison 08817
Tel (201) 225·3000

NORTH CAROUNA

Intel Corp
2306 W MeadOWView Road
Suite 206
Greensboro 27407
Tel (919) 294-1541

OHIO

tntel Corp
6500 Poe
Dayton 45414
Tel (513) 890·5350

OREGON

Intel Corp
10700 S W Beaverton·Hlllsdale
HIghway
Suite 22
Beaverton 97005

~ (53lJ4rr~:,~~

~~~ ~rG Elam Young ParlMay 
Hillsboro 97123 
Tel (503) 681·8080 

PENNSYLVANIA 

Intel COI'P 
201 Penn Center Boulevard 
SUIte 301 W 

~(;¥;) ~;l~540 
T .... 

~~I ~O'£nderson lane 
SUIte 314 
Ausbn 78752 
lei (512)454·3628 
TWX 91Q.874-1347 

Inlel Corp 
12300 Ford Road 
Suite 380 
Dallas 75234 
Tel (214) 241·8087 
TWX 910-860·5617 

WASHINGTON 

Intel Corp 
110 110ttl Avenue N E 
SUite 510 
Bellevue 98004 
Tel 1-800-525-5560 
TWX 910-443-3002 

WISCONSIN 

Ro,d 




